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While extreme eigenvalues of large Hermitian Toeplitz matrices have been studied
in detail for a long time, much less is known about individual inner eigenvalues.
This paper explores the behavior of the jth eigenvalue of an n-by-n banded Her-
mitian Toeplitz matrix as n goes to infinity and provides asymptotic formulas
that are uniform in j for 1 ≤ j ≤ n. The real-valued generating function of the
matrices is assumed to increase strictly from its minimum to its maximum and
then to decrease strictly back from the maximum to the minimum, having nonzero
second derivatives at the minimum and the maximum.
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1 Introduction and main results

The n× n Toeplitz matrix Tn(a) generated by a function a in L1 on the complex
unit circle T is defined by Tn(a) = (aj−k)

n
j,k=1 where a` is the `th Fourier coefficient

of a,

a` =
1

2π

∫ 2π

0

a(eix)e−i`xdx (` ∈ Z).

The asymptotics of the eigenvalues of Tn(a) as n → ∞ has been thoroughly
studied by many authors for now almost a century. See the books [3], [5] for
more about this topic. We here bound ourselves to the case where a is real-
valued, in which case a` = a−` for all ` ∈ Z and hence the matrices Tn(a) are all
Hermitian. The eigenvalues are then real and may be labeled so that

λ
(n)
1 ≤ λ

(n)
2 ≤ . . . ≤ λ(n)

n .

1This work was partially supported by CONACYT project 80503, Mexico.
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The first Szegö limit theorem describes the collective behavior of the eigenvalues.
It says in particular that under certain assumptions,

|{j : λ
(n)
j ∈ (α, β)}|
n

=
|{t ∈ T : a(t) ∈ (α, β)}|

2π
+ o(1) (1)

as n → ∞, where |E| denotes the cardinality of E on the left and the Lebesgue
measure of E on the right. Much attention has been paid to the extreme eigen-
values, that is, to the behavior of λ

(n)
j as n→∞ and j or n−j remain fixed. The

pioneering work on this problem was done by Kac, Murdock, Szegö [7], Widom
[14], and Parter [9], [10]. This work is also outlined on pages 256 to 259 of [1].
Recent work on and applications of extreme eigenvalues include the papers [2],
[4], [6], [8], [11], [12], [13], [15]. The purpose of this paper is to explore the be-

havior of λ
(n)
j inside the set of the eigenvalues, for example, the asymptotics of

λ
(n)
j as n→∞ and j/n→ x ∈ (0, 1).

Throughout the paper we assume the following. The function a is a Laurent
polynomial

a(t) =
r∑

k=−r

akt
k (t = eix ∈ T)

with r ≥ 1, ar 6= 0, and ak = a−k for all k. The last condition means that a is real-
valued on T. It may be assumed without loss of generality that a(T) = [0,M ]
with M > 0 and that a(1) = 0 and a(eiϕ0) = M for some ϕ0 ∈ (0, 2π). We
require that the function g(x) := a(eix) is strictly increasing on (0, ϕ0) and strictly
decreasing on (ϕ0, 2π) and that the second derivatives of g at x = 0 and x = ϕ0

are nonzero.

For λ ∈ (0,M) and t ∈ T, we define the argument of a(t) − λ to be 0 if
a(t) > λ and to be π if a(t) < λ. Then log(a − λ) is a well-defined function in
L1(T). Let (log(a− λ))` be its `th Fourier coefficient and put

G(a− λ) = exp(log(a− λ))0,

E(a− λ) = exp
∞∑
`=1

` (log(a− λ))`(log(a− λ))−`.

We will show that there are continuous functions

ϕ : [0,M ]→ [0, π], θ : [0,M ]→ R

such that ϕ(0) = θ(0) = 0, ϕ(M) = π, θ(M) = 0, and

G(a− λ) = |G(a− λ)|eiϕ(λ), (2)

E(a− λ) =
1

i
|E(a− λ)|ei(ϕ(λ)+θ(λ)). (3)
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The function ϕ will turn out to be bijective and to have a well-defined derivative
ϕ′(λ) ∈ (0,∞] for all λ ∈ (0,M). In what follows, O estimates are always uniform,
that is, O(bn) denotes a sequence {ξn} such that |ξn| ≤ Cbn for all n with some
constant C < ∞ that depends only on the function a. Thus, if ξn depends on
parameters such as λ, j, k, . . ., then C is independent of the parameters.

Here are our main results.

Theorem 1.1 There is a number δ > 0 such that for λ ∈ (0,M),

detTn(a− λ) = 2 |E(a− λ)| |G(a− λ)|n
(

sin((n+ 1)ϕ(λ) + θ(λ)) +O(e−δn)
)
.

From (2) and (3) we infer that the formula of this theorem may also be written
in the form

detTn(a− λ) = E(a− λ)G(a− λ)n + E(a− λ) G(a− λ)
n

+|E(a− λ)| |G(a− λ)|nO(e−δn).

Theorem 1.2 If n is sufficiently large, then the function

[0,M ]→ [0, (n+ 1)π], λ 7→ (n+ 1)ϕ(λ) + θ(λ)

is bijective and increasing. For 1 ≤ j ≤ n, the eigenvalues λ
(n)
j satisfy

(n+ 1)ϕ(λ
(n)
j ) + θ(λ

(n)
j ) = πj +O(e−δn),

and if λ
(n)
j,∗ ∈ (0,M) is the uniquely determined solution of the equation

(n+ 1)ϕ(λ
(n)
j,∗ ) + θ(λ

(n)
j,∗ ) = πj,

then |λ(n)
j − λ

(n)
j,∗ | = O(e−δn).

In Section 4 we will provide an exponentially fast iteration procedure for
solving the equation (n + 1)ϕ(λ) + θ(λ) = πj. More importantly, in Sections 4
and 5 we will show how Theorem 1.2 can be employed to derive, at least in
principle, an asymptotic expansion of the form

∞∑
k=0

ck(d)

(n+ 1)k
, d :=

πj

n+ 1
(4)

for the jth eigenvalue λ
(n)
j . We consider d as a parameter representing j and n and

therefore suppress the dependence on j and n in the notation. The coefficients
ck(d) become more and more complicated as k increases. We limit ourselves to
the first few coefficients. Let ψ : [0, π] → [0,M ] be the inverse of the bijective
and increasing function ϕ. Clearly, ψ is differentiable in (0, π).
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Theorem 1.3 We have

λ
(n)
j = ψ(d)− ψ′(d)θ(ψ(d))

n+ 1
+O

(
(θ(ψ(d)))2

n2

)
+O

(
ψ′(d)θ(ψ(d))

n2

)
.

We emphasize once more that the estimate provided by Theorem 1.3 is uniform
in j ∈ {1, . . . , n}. Since ψ′ and θ are bounded on (0,M), we obtain in particular
that

λ
(n)
j = ψ(d)− ψ′(d)θ(ψ(d))

n+ 1
+O

(
1

n2

)
, (5)

uniformly in d from compact subsets of (0, π). For the inner eigenvalues, Theo-
rem 1.3 implies the following.

Theorem 1.4 Let x ∈ (0, 1) and let λx ∈ (0,M) be the solution of the equation
ϕ(λx) = πx. If n→∞ and j/n→ x, then

λ
(n)
j = λx +

π

ϕ′(λx)

(
j

n+ 1
− x
)
− θ(λx)

ϕ′(λx)

1

n+ 1
+O

((
j

n+ 1
− x
)2

+
1

n2

)
,

uniformly in x from compact subsets of (0, 1). This formula may be rewritten
using that

λx = ψ(πx), 1/ϕ′(λx) = ψ′(πx), θ(λx) = θ(ψ(πx)).

The last theorem reveals in particular that the eigenvalues λ
(n)
j are scaled

according to formula

λ
(n)
j+1 − λ

(n)
j =

π

ϕ′(λx)

1

n+ 1
+O

((
j

n+ 1
− x
)2

+
1

n2

)
as n→∞ and j/n→ x ∈ (0, 1).

Here is what Theorem 1.3 yields for the extreme eigenvalues.

Theorem 1.5 If n→∞ and j/n→ 0, then

λ
(n)
j =

3∑
k=0

(−1)k
ψ(k)(d)

k!

(
θ(ψ(d))

n+ 1

)k
+O

(
1

n4

)
(6)

=
g′′(0)

2

(
πj

n+ 1

)2(
1 +

w0

n+ 1

)
+O

(
j4

n4

)
(7)

=
g′′(0)

2

(
πj

n+ 1

)2

+O

(
j3

n3

)
, (8)

where

w0 =
1

π

∫ π

−π

(
g′(x)

g(x)
− cot

x

2
− g′′′(0)

3g′′(0)

)
cot

x

2
dx. (9)
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In this theorem, (6) ⇒ (7) ⇒ (8). Note that if the number j remains fixed,
then O (j4/n4) = O (1/n4) . Our proof will also yield (6) to (9) under the sole
hypothesis that n→∞ and j/n ≤ C0 for some C0 independent of n; in that case
the constants hidden in the O terms depend on C0 and a but on nothing else.
Under the assumption that g(x) = a(eix) is an even function, Widom [14] proved
that, for each fixed j,

λ
(n)
j =

g′′(0)

2

(
πj

n+ 1

)2(
1 +

w0

n+ 1
+ o

(
1

n

))
.

This is slightly weaker than (7).

A result similar to Theorem 1.5 is also valid for n → ∞ and j/n → 1. For
instance, the analogue of (8) reads

λ
(n)
j = M − |g

′′(ϕ0)|
2

(
π − πj

n+ 1

)2

+O

((
1− j

n+ 1

)3
)
.

In Section 5 we will also show that if 0 ≤ α < β ≤M then

|{j : λ
(n)
j ∈ (α, β)}| = (n+ 1)

ϕ(β)− ϕ(α)

π
+
θ(β)− θ(α)

π
+ κn(α, β)

with |κn(α, β)| < 2 for all n large enough.

The paper is organized as follows. In Section 2, we phase in the main actors
of our approach, such as the functions ϕ(λ) and θ(λ), and prove their basic prop-
erties. In Section 3, we use a formula by Widom to represent the determinant
detTn(a − λ) in a form that will be convenient for further analysis. There we
also prove Theorem 1.1. Section 4 is devoted to the proof of Theorem 1.2 and,
in addition, contains a convergence theorem on an iteration method for solving
the equation (n + 1)ϕ(λ) + θ(λ) = πj. Theorems 1.3 to 1.5 are proved in Sec-

tion 5. In that section, we also briefly discuss the asymptotics of λ
(n)
j+1 − λ

(n)
j and

improvements of (1). Some examples are provided in Section 6.

2 The main actors

In this section we introduce and study the quantities which occur in our asymp-
totic formulas. Let a be as in Section 1. For each λ ∈ [0,M ], there exist exactly
one ϕ1(λ) ∈ [0, ϕ0] and exactly one ϕ2(λ) ∈ [ϕ0 − 2π, 0] such that

g(ϕ1(λ)) = g(ϕ2(λ)) = λ;

recall that g(x) = a(eix). We put

ϕ(λ) =
ϕ1(λ)− ϕ2(λ)

2
.
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Clearly, ϕ(0) = 0, ϕ(M) = π, ϕ is a continuous and strictly increasing map of
[0,M ] onto [0, π], the derivative ϕ′(λ) ∈ (0,∞] exists for all λ ∈ (0,M) (with
ϕ′(λ) =∞ if and only if g′(ϕ1(λ)) = 0 or g′(ϕ2(λ)) = 0), and

% := inf
λ∈(0,M)

ϕ′(λ) > 0. (10)

Recall that ψ : [0, π]→ [0,M ] is the inverse of the function ϕ : [0,M ]→ [0, π].

Lemma 2.1 Let g(x) = g2x
2 + g3x

3 + g4x
4 + . . . be the Taylor series of g at

x = 0. Then as λ→ 0 + 0,

ϕ1(λ) =
1

g
1/2
2

λ1/2 − g3

2g2
2

λ+
5g2

3 − 4g2g4

8g
7/2
2

λ3/2 +O(λ2),

ϕ2(λ) = − 1

g
1/2
2

λ1/2 − g3

2g2
2

λ− 5g2
3 − 4g2g4

8g
7/2
2

λ3/2 +O(λ2),

ϕ(λ) =
1

g
1/2
2

λ1/2 +
5g2

3 − 4g2g4

8g
7/2
2

λ3/2 +O(λ5/2),

ϕ′(λ) =
1

2g
1/2
2

λ−1/2 +
3

2

5g2
3 − 4g2g4

8g
7/2
2

λ1/2 +O(λ3/2),

and as x→ 0 + 0,

ψ(x) = g2x
2 +

(
g4 −

5g2
3

4g2

)
x4 +O(x6),

ψ′(x) = 2g2x+

(
4g4 −

5g2
3

g2

)
x3 +O(x5).

The series for ϕ1(λ) and ϕ2(λ) have equal coefficients at even powers of λ1/2 and
opposite coefficients at odd powers of λ1/2. The series for ϕ(λ) contains only odd
powers of λ1/2, while the series for ψ(x) involves only even powers of x.

Proof. The equation g(ϕ) = λ has the two solutions ϕ1(λ) = Φ(λ1/2) and ϕ2(λ) =
Φ(−λ1/2) where Φ is analytic in a neighborhood of the origin. Consequently,

ϕ1(λ) =
∞∑
k=0

Φkλ
k/2, ϕ2(λ) =

∞∑
k=0

(−1)kΦkλ
k/2.

The coefficients Φk and subsequently the series for ψ and ψ′ can be determined
by standard computations. �

For λ ∈ C, we write a− λ in the form

a(t)− λ = t−r(art
2r + . . .+ (a0 − λ)tr + . . .+ a−r)

= art
−r

2r∏
k=1

(t− zk(λ)) (11)
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with complex numbers zk(λ). We may label the zeros z1(λ), . . . , z2r(λ) so that
each zk is a continuous function of λ ∈ C. Now take λ ∈ [0,M ]. Then a− λ has
exactly the two zeros eiϕ1(λ) and eiϕ2(λ) on T. We put

zr(λ) = eiϕ1(λ), zr+1(λ) = eiϕ2(λ).

For t ∈ T we have (11) on the one hand, and since a(t)− λ is real, we get

a(t)− λ = a(t)− λ = ar t
r

2r∏
k=1

(
1

t
− zk(λ)

)

= ar

(
2r∏
k=1

zk(λ)

)
t−r

2r∏
k=1

(
t− 1

zk(λ)

)
(12)

on the other. Here and in similar cases that will follow, zk(λ) := zk(λ). Com-
paring (11) and (12) we see that the zeros in C \ T may be relabeled so that
they appear in pairs zk(λ), 1/zk(λ) with |zk(λ)| > 1. Put uk(λ) = zk(λ) for
1 ≤ k ≤ r − 1. We relabel zr+2(λ), . . . , z2r(λ) to get z2r−k(λ) = 1/uk(λ) for
1 ≤ k ≤ r − 1. In summary, for λ ∈ [0,M ] we have

Z := {z1(λ), . . . , zr−1(λ), eiϕ1(λ), eiϕ2(λ), zr+2(λ), . . . , z2r(λ)}
= {u1(λ), . . . , ur−1(λ), eiϕ1(λ), eiϕ2(λ), 1/ur−1(λ), . . . , 1/u1(λ)}. (13)

Since all uk are continuous, it follows that

eδ0 := min
λ∈[0,M ]

min
1≤k≤r−1

|uk(λ)| > 1.

Put

hλ(z) =
r−1∏
k=1

(
1− z

uk(λ)

)
, σ(λ) =

ϕ1(λ) + ϕ2(λ)

2
,

d0(λ) = (−1)rare
iσ(λ)

r−1∏
k=1

uk(λ). (14)

For t ∈ T we then may write

a(t)− λ = art
−r(t− eiϕ1(λ))(t− eiϕ2(λ))

r−1∏
k=1

(t− uk(λ))
r−1∏
k=1

(t− 1/uk(λ))

= art
−r(−eiϕ1(λ))

(
1− t

eiϕ1(λ)

)
t

(
1− eiϕ2(λ)

t

) r−1∏
k=1

(−uk(λ))×

×
r−1∏
k=1

(
1− t

uk(λ)

)
tr−1

r−1∏
k=1

(
1− t

uk(λ)

)
= d0(λ)eiϕ(λ)

(
1− t

eiϕ1(λ)

)(
1− eiϕ2(λ)

t

)
hλ(t)hλ(t). (15)
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Let

Θ(λ) :=
hλ(e

iϕ1(λ))

hλ(eiϕ2(λ))
=

r−1∏
k=1

1− eiϕ1(λ)/uk(λ)

1− eiϕ2(λ)/uk(λ)
.

Clearly, Θ(0) = Θ(M) = 1. The function Θ is continuous and nonzero on [0,M ].
Since |uk(λ)| > 1, the real parts of 1 − eiϕ1(λ)/uk(λ) and 1 − eiϕ2(λ)/uk(λ) are
positive and hence the closed curve

[0,M ]→ C \ {0}, λ 7→ 1− eiϕ1(λ)/uk(λ)

1− eiϕ2(λ)/uk(λ)
(16)

has winding number zero. The winding number of the closed curve

[0,M ]→ C \ {0}, λ 7→ Θ(λ)

is therefore also zero. We define θ(λ) as the continuous argument of Θ(λ) that
assumes the value 0 at λ = 0 and λ = M .

Lemma 2.2 The function θ(λ) can be expanded into a power series in
√
λ in

some neighborhood of 0, and this decomposition contains only odd powers of
√
λ.

In particular,

θ(λ) = b0 λ
1/2 +O(λ3/2), θ′(λ) =

b0
2
λ−1/2 +O(λ1/2)

as λ→ 0 + 0. Here

b0 = − w0√
2g′′(0)

, w0 = 4 Re

(
r−1∑
ν=1

1

uν(0)− 1

)
.

Proof. We write λ = µ2 and thus have θ(λ) = Im ξ(µ) where the function ξ is
defined as

ξ(µ) = log
hµ2(eiϕ1(µ2))

hµ2(eiϕ2(µ2))
.

To prove the lemma we will show that ξ is analytic in some neighborhood of 0,
that its Taylor expansion contains only odd powers of µ, and that

ξ′(0) = − 4i√
2g′′(0)

r−1∑
ν=1

1

uν(0)− 1
. (17)

Fix some positive number δ such that δ < δ0 and denote by A the unital
Banach algebra consisting of all functions f ∈ C(T) such that ‖f‖A <∞ where

‖f‖A =
∑
n∈Z

|fn|e−|n|δ.

8



For every λ ∈ [0,M ], consider the function vλ defined by

vλ(t) =
a(t)− λ

(t− eiϕ1(λ))(t− eiϕ2(λ))
.

It follows from our assumptions on a that vλ is a Laurent polynomial whose zeros
are outside the annulus 1 − δ0 < |z| < 1 + δ0. Moreover, the coefficients of
odd powers of λ1/2 in eiϕ1(λ) and eiϕ2(λ) are opposite to each other. Hence the
coefficients of the polynomials tr(a(t)−λ) and (t−eiϕ1(λ))(t−eiϕ2(λ)) are analytic
functions of λ in a neighborhood of 0. Consequently, the Fourier coefficients of
vλ are analytic functions of λ in a neighborhood of 0. Hence vλ ∈ A and the
A-valued function λ 7→ vλ is analytic in a neighborhood of 0.

We know that vλ has a logarithm for each λ ∈ [0,M ]. Denote by log vλ the
logarithm of vλ which is real-valued at t = 1. For each λ, the function log vλ
is analytic in the annulus 1 − δ0 < |z| < 1 + δ0 and therefore belongs to A.
Moreover, the function λ 7→ log vλ is analytic in a neighborhood of 0 because
log is analytic on exp(A). Let P+ : A → A be the operator acting by the rule
P+

(∑
n∈Z fnt

n
)

=
∑

n≥0 fnt
n. This is a bounded linear operator and P+A is a

closed subalgebra of A with the same identity element. Since log hλ is nothing
but P+(log vλ), we conclude that λ 7→ log hλ is a P+A-valued analytic function
in a neighborhood of 0. Thus,

log hλ(t) =
∞∑
k=0

ck(t)λ
k (18)

with ck ∈ A and ‖ck‖∞ ≤ ‖ck‖A ≤ rk0 where r0 is some positive number.

Putting λ = µ2 and t = eiϕ1(µ2) or t = eiϕ2(µ2) in (18), we obtain a series of
analytic functions on the right-hand side. The inequality ‖ck‖∞ ≤ rk0 guarantees
that the series converge absolutely in some neighborhood of 0. Therefore the
functions µ 7→ hµ2(eiϕ1(µ2)) and µ 7→ hµ2(eiϕ2(µ2)) are analytic in some neighbor-
hood of 0. Further, the common value of these functions at µ = 0 is h0(1). It
follows that ξ is analytic in some neighborhood of 0 and ξ(0) = 0.

By virtue of (18), the function log hλ(t) may be expanded into a double series
converging for |t| < 1 + δ and 0 ≤ λ < 1/(2r1),

log hλ(t) =
∞∑
j=0

∞∑
k=0

Aj,kλ
jtk = log h0(t) +

∞∑
j=1

∞∑
k=0

Aj,kλ
jtk.

Accordingly,

ξ(µ) =
∞∑
j=0

∞∑
k=0

Aj,kµ
2j
(
ekiϕ1(µ2) − ekiϕ2(µ2)

)
.

From Lemma 2.1 we infer that the expansions of ekiϕ1(µ2) and ekiϕ2(µ2) have the
same coefficients at even powers of µ. Thus the expansion of ξ(µ) contains only
odd powers of µ.
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We finally calculate ξ′(0), that is, the coefficient of µ in the series for ξ(µ).
Lemma 2.1 yields

eiϕ1,2(µ2) = 1± i

g
1/2
2

µ− g2 + ig3

g2
2

µ2 +O(µ3).

Therefore

ξ(µ) = log
hµ2(eiϕ1(µ2))

hµ2(eiϕ2(µ2))
= log

h0(e
iϕ1(µ2))

h0(eiϕ2(µ2))
+ µ2 ·O(eiϕ1(µ2) − eiϕ2(µ2))

=
r−1∑
ν=1

(
log

(
1− eiϕ1(µ2)

uν(0)

)
− log

(
1− eiϕ2(µ2)

uν(0)

))
+O(µ3)

=
r−1∑
ν=1

(
log

(
1− eiϕ1(µ2) − 1

uν(0)− 1

)
− log

(
1− eiϕ2(µ2) − 1

uν(0)− 1

))
+O(µ3)

= −
r−1∑
ν=1

∞∑
k=1

(
eiϕ1(µ2) − 1

)k
−
(
eiϕ2(µ2) − 1

)k
k(uν(0)− 1)k

+O(µ3)

= − 2i

g
1/2
2

(
r−1∑
ν=1

1

uν(0)− 1

)
µ+O(µ3)

= − 4i√
2g′′(0)

(
r−1∑
ν=1

1

uν(0)− 1

)
µ+O(µ3),

which implies (17). �

The following lemma shows that the constant w0 from Lemma 2.2 is just the
constant (9). We remark that our integral formula (9) is a little simpler than
the original integral formula established by Widom [14] in the case of symmetric
matrices.

Lemma 2.3 We have

w0 =
1

π

∫ π

−π

(
g′(x)

g(x)
− cot

x

2
− g′′′(0)

3g′′(0)

)
cot

x

2
dx.

Proof. By Lemma 2.2, w0 = 4 Reα where

α =
r−1∑
j=1

1

uj(0)− 1
= −

r−1∑
j=1

1

1− uj(0)
.

Recall that {uj(0) : 1 ≤ j ≤ r − 1} is the complete set of the roots of a outside
the closed unit disk, counted with multiplicities. If for some j the root uj(0) has
multiplicity m then its contribution to the sum may be written as

m

1− uj(0)
= Res

z=uj(0)

a′(z)

a(z)(1− z)
.
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Thus, α is the sum of the residues of a′(z)/(a(z)(1 − z)) outside the closed unit
disk. The residue theorem therefore implies that

α = − 1

2πi

∫
|z|=R

a′(z) dz

a(z)(1− z)
+

1

2πi

∫
|z|=ρ

a′(z) dz

a(z)(1− z)

where R > max(|u1(0)|, . . . , |ur−1(0)| and 1 < ρ < min(|u1(0)|, . . . , |ur−1(0)|).
The first integral goes to 0 as R→∞ and hence

α =
1

2πi

∫
|z|=ρ

a′(z) dz

a(z)(1− z)
. (19)

The integrand in (19) has a double pole at z = 1. It is easy to see that, for z
near 1,

a′(z)

a(z)
=

2

z − 1
+
a′′′(1)

3a′′(1)
+O(z − 1).

Since
1

2πi

∫
|z|=ρ

dz

(1− z)2
= 0,

1

2πi

∫
|z|=ρ

dz

1− z
= −1,

we may write

α = − a
′′′(1)

3a′′(1)
+

1

2πi

∫
|z|=ρ

(
a′(z)

a(z)
− 2

z − 1
− a′′′(1)

3a′′(1)

)
dz

1− z
.

The integrand is now regular at z = 1. Deforming the integration contour to the
unit circle we get

α = − a
′′′(1)

3a′′(1)
+

1

2πi

∫
|z|=1

(
a′(z)

a(z)
− 2

z − 1
− a′′′(1)

3a′′(1)

)
dz

1− z
. (20)

To transform the contour integral into a real integral we make the change of
variables z = eix. Taking into account the formula

ieix
a′(eix)

a(eix)
=
g′(x)

g(x)
,

we obtain

α = − a
′′′(1)

3a′′(1)
+

1

2πi

∫ π

−π

(
g′(x)

g(x)ieix
− 2

eix − 1
− a′′′(1)

3a′′(1)

)
ieix dx

1− eix

= − a
′′′(1)

3a′′(1)
+

1

4π

∫ π

−π

(
g′(x)e−ix/2

g(x)
− 2ieix/2

eix − 1
− a′′′(1)ieix/2

3a′′(1)

)
2ieix/2

eix − 1
dx

= − a
′′′(1)

3a′′(1)
+

1

4π

∫ π

−π

(
g′(x)e−ix/2

g(x)
− 1

sin x
2

− a′′′(1)ieix/2

3a′′(1)

)
dx

sin x
2

.

11



Finally, using the formulas a′′′(1)/a′′(1) = −1− ig′′′(0)/3g′′(0) and

− ieix

sin x
2

a′′′(1)

3a′′(1)
= i
(

cot
x

2
+ i
)(

1 +
ig′′′(0)

3g′′(0)

)
= −1−

g′′′(0) cot x
2

3g′′(0)
+ i

(
cot

x

2
− g′′′(0)

3g′′(0)

)
and taking the real part, we arrive at

Reα = 1 +
1

4π

∫ π

−π

(
g′(x) cot x

2

g(x)
− 1

sin2 x
2

− 1−
g′′′(0) cot x

2

3g′′(0)

)
dx

=
1

4π

∫ π

−π

(
g′(x)

g(x)
− cot

x

2
− g′′′(0)

3g′′(0)

)
cot

x

2
dx. �

In addition to the function d0(λ) given by (14) we need the function d1(λ)
defined by

d1(λ) =
1

|hλ(eiϕ1(λ))hλ(eiϕ2(λ))|

r−1∏
k,s=1

(
1− 1

uk(λ)us(λ)

)−1

. (21)

Lemma 2.4 The functions d0 and d1 are real-valued, bounded and bounded away
from zero on [0,M ].

In what follows we frequently suppress the dependence on λ.

Proof. For d1, the assertion follows from the equality

r−1∏
k,s=1

(
1− 1

ukus

)
=

r−1∏
k=1

(
1− 1

|uk|2

)∏
s<k

∣∣∣∣1− 1

ukus

∣∣∣∣2 .
As for d0, it is evident that d0 is bounded and bounded away from zero on [0,M ].
To see that d0 > 0, note first that comparison of (11) and (12) gives

ar = ar

2r∏
k=1

zk = are
−iϕ1e−iϕ2

r−1∏
k=1

uk
uk
,

whence

2 arg ar + 2 arg σ + 2
r−1∑
k=1

arg uk = 0 (mod 2π).

Consequently,

arg d0 = rπ + arg ar + arg σ +
r−1∑
k=1

arg uk = 0 (mod π),

12



which shows that d0(λ) is real. By (15),

a(t) = d0(0)|1− t|2 |h0(t)|2

and thus d0(0) > 0. As d0(λ) is never zero and depends continuously on λ on
[0,M ], it results that d0(λ) > 0 for all λ ∈ [0,M ]. �

We finally relate ϕ(λ) and θ(λ) to the terms G(a− λ) and E(a− λ).

Proposition 2.5 For every λ ∈ (0,M),

|G(a− λ)| = d0(λ), G(a− λ) = d0(λ)eiϕ(λ),

|E(a− λ)| = d1(λ)

2 sinϕ(λ)
, E(a− λ) =

d1(λ)

2i sinϕ(λ)
ei(ϕ(λ)+θ(λ)).

Proof. We start with the Fourier series

log

(
1− t

eiϕ1

)
= −

∞∑
`=1

t`

`ei`ϕ1
, log

(
1− eiϕ2

t

)
= −

∞∑
`=1

ei`ϕ2

`t`
,

log h(t) =
r−1∑
k=1

log

(
1− t

uk

)
= −

r−1∑
k=1

∞∑
`=1

t`

`u`k
,

log h(t) =
r−1∑
k=1

log

(
1− 1

tuk

)
= −

r−1∑
k=1

∞∑
`=1

1

`u`kt
`
.

From (15) we therefore obtain that

(log(a− λ))0 = log d0 + iϕ+ 2µπi (µ ∈ Z)

and hence |G(a− λ)| = d0 (by Lemma 2.4) and G(a− λ) = d0e
iϕ. Furthermore,

from (15) we also infer that

∞∑
`=1

`(log(a− λ))`(log(a− λ))−`

=
∞∑
`=1

`

(
1

`ei`ϕ1
+

r−1∑
k=1

1

`u`k

) (
ei`ϕ2

`
+

r−1∑
k=1

1

`u`k

)

=
∞∑
`=1

e−2i`ϕ

`
+

r−1∑
k=1

∞∑
`=1

1

`

1

u`k

1

ei`ϕ1
+

r−1∑
k=1

∞∑
`=1

1

`

ei`ϕ2

u`k
+

r−1∑
k=1

r−1∑
s=1

∞∑
`=1

1

`

1

u`ku
`
s

= − log(1− e−2iϕ)−
r−1∑
k=1

log

(
1− e−iϕ1

uk

)

−
r−1∑
k=1

log

(
1− eiϕ2

uk

)
−

r−1∑
k=1

r−1∑
s=1

log

(
1− 1

ukus

)

= − log(e−iϕ 2i sinϕ)− log h(eiϕ1)− log h(eiϕ1)−
r−1∑
k=1

r−1∑
s=1

log

(
1− 1

ukus

)
.
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Thus,

E(a− λ) =
eiϕ

2i sinϕ

1

h(eiϕ1)h(eiϕ2)

r−1∏
k,s=1

(
1− 1

ukus

)−1

.

Since

h(eiϕ1)h(eiϕ2) =
h(eiϕ1)

h(eiϕ2)
|h(eiϕ2)|2

= e−iθ
∣∣∣∣h(eiϕ1)

h(eiϕ2)

∣∣∣∣ |h(eiϕ2)|2 = e−iθ|h(eiϕ1)h(eiϕ2)|, (22)

we get from (21) that

E(a− λ) =
d1

2i sinϕ
ei(ϕ+θ).

Lemma 2.4 tells us that d1 > 0, and we know that ϕ ∈ (0, π). This gives the
asserted formula for the modulus of E(a− λ). �

3 Determinants

Widom [14] proved that if λ ∈ C and the points z1(λ), . . . , z2r(λ) are pairwise
distinct, then the determinant of Tn(a− λ) is

detTn(a− λ) =
∑

J⊂Z,|J |=r

CJW
n
J (23)

where the sum is over all subsets J of cardinality r of the set Z given by (13)
and, with J := Z \ J ,

CJ =
∏
z∈J

zr
∏

z∈J,w∈J

1

z − w
, WJ = (−1)rar

∏
z∈J

z.

Lemma 3.1 Let λ ∈ (0,M) and put

J1 = {u1, . . . , ur−1, e
iϕ1}, J2 = {u1, . . . , ur−1, e

iϕ2}.

Then

WJ1 = d0e
iϕ, CJ1 =

d1e
i(ϕ+θ)

2i sinϕ
,

WJ2 = d0e
−iϕ, CJ2 = −d1e

−i(ϕ+θ)

2i sinϕ
.
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Proof. We henceforth abbreviate
∏r−1

k=1 to
∏

k. Obviously,

WJ1 = (−1)rar

(∏
k

uk

)
eiϕ1 = (−1)rar

(∏
k

uk

)
eiσeiϕ = d0e

iϕ.

Further, CJ1 equals (∏
k u

r
k

)
eirϕ1

(eiϕ1 − eiϕ2)
∏

k

∏
s

(
uk − 1

us

)∏
k(uk − eiϕ2)

∏
k

(
eiϕ1 − 1

uk

)
=

eirϕ1

eiσ(eiϕ − e−iϕ)
∏

k

∏
s

(
1− 1

ukus

)∏
k(1−

eiϕ2

uk
)ei(r−1)ϕ1

∏
k

(
1− e−iϕ1

uk

)
=

eiϕ

2i sinϕ
∏

k

∏
s

(
1− 1

ukus

)
h(eiϕ2)h(eiϕ1)

which in conjunction with (21) and (22) gives the asserted formula for CJ1 . The
proof for J2 is analogous. �

Theorem 3.2 For every λ ∈ (0,M) and every δ < δ0,

detTn(a− λ) =
d1(λ)dn0 (λ)

sinϕ(λ)

[
sin
(

(n+ 1)ϕ(λ) + θ(λ)
)

+O(e−δn)
]
.

Proof. Fix sufficiently small numbers α > 0 and β > 0. Given a neighbor-
hood U ⊂ C of [0,M ] and λ ∈ U , we denote by z1(λ), . . . , z2r(λ) the zeros
defined by (11). If λ ∈ [0,M ], the zeros are listed in (13). Since the zeros de-
pend continuously on λ, we conclude that if U is sufficiently small, then r − 1
zeros z1(λ), . . . , zr−1(λ) satisfy |zk(λ)| > eδ0−α, two zeros zr(λ) and zr+1(λ) are
located in the annulus {z ∈ C : e−β < |z| < eβ}, while for the remaining zeros
zr+2(λ), . . . , z2r(λ) we have |zs(λ)| < eα−δ0 .

We denote by Dr(z0) the disk {z ∈ C : |z − z0| < r} and by ∂Dr(z0) the
boundary circle. A point λ0 ∈ C is called a branch point if two of the zeros
z1(λ0), . . . , z2r(λ0) coincide. Pick λ0 ∈ [0,M ]. If λ0 is not a branch point, then
the zeros are all analytic functions of λ in a neighborhood of λ0. In case λ0 is a
branch point, there are a natural number m ≥ 2, an ε > 0, and a uniformization
parameter ζ such that for ζ ∈ D0(2ε) we may write λ = λ0+ζm and zk(λ) = Φk(ζ)
(1 ≤ k ≤ 2r) with analytic functions Φk in D0(2ε). The case where λ0 is not a
branch point can be included into this setting by choosing m = 1. As the number
of branch points in all of C is finite, we may assume that Vλ0 := {λ0 + ζm :
|ζ| < 2ε} does not contain a branch point different from λ0 itself and that Vλ0

is contained in U . If ζ ∈ ∂D0(ε), then z1(λ), . . . , z2r(λ) are pairwise distinct and
we can employ Widom’s formula. Let

J1 = {z1(λ), . . . , zr−1(λ), zr(λ)}, J2 = {z1(λ), . . . , zr−1(λ), zr+1(λ)}.
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Suppose J ⊂ Z = Z(λ), |J | = r, J 6= J1, J 6= J2. If J contains both zr(λ) and
zr+1(λ), then one of the numbers zk(λ) with 1 ≤ k ≤ r − 1 is missing and hence

|W n
J |

|W n
J1
|
≤
∣∣∣∣zr+1(λ)

zk(λ)

∣∣∣∣n ≤ ( eβ

eδ0−α

)n
= e−(δ0−α−β)n.

In the case where neither zr(λ) nor zr+1(λ) belong to J , the set J contains a
number zs(λ) with r + 2 ≤ s ≤ 2r. This implies that

|W n
J |

|W n
J1
|
≤
∣∣∣∣zs(λ)

zr(λ)

∣∣∣∣n ≤ (eα−δ0e−β

)n
= e−(δ0−α−β)n.

Obviously,
|W n

J2
|

|W n
J1
|

=

∣∣∣∣zr+1(λ)

zr(λ)

∣∣∣∣n ≤ e2βn.

Since z1(λ), . . . , z2r(λ) are pairwise distinct, we have

min
|ζ|=ε

min
j 6=`
|zj(λ)− z`(λ)| > 0.

Thus, max{|CJ | : |ζ| = ε} < ∞. In summary, there is a constant K0 < ∞ such
that |gn(ζ)| ≤ K0e

−(δ0−α−3β)n for all ζ ∈ ∂D0(ε) where

gn(ζ) =
1

WJ1(λ)

(
detTn(a− λ)− CJ1(λ)W n

J1
(λ)− CJ2(λ)W n

J2
(λ)
)∣∣∣

λ=λ0+ζm
.

The function gn is obviously analytic in D0(2ε) \ {0}. However, due to the term
zr(ζ

m) − zr+1(ζ
m) in the denominators of CJ1(ζ

m) and CJ2(ζ
m), it need not be

analytic at ζ = 0. So let us consider

Gn(ζ) = (zr(ζ
m)− zr+1(ζ

m))gn(ζ).

This is an analytic function in D0(2ε) that results from gn by multiplication by
a bounded function. Hence

|Gn(ζ)| ≤ Ke−(δ0−α−3β)n (24)

with some constant K <∞ for all ζ ∈ ∂D0(ε). The maximum modulus principle
now guarantees (24) for all ζ ∈ D0(ε). We may choose α > 0 and β > 0 so that
δ0 − α− 3β = δ. It follows that

| detTn(a− λ)− CJ1(λ)W n
J1

(λ)− CJ2(λ)W n
J2

(λ)|

≤ K
|WJ1(λ)|n

|zr(λ)− zr+1(λ)|
e−δn (25)

for all λ ∈ Uλ0 := {λ0 + ζm : |ζ| < ε}.
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Since [0,M ] is compact, we get (25) for all λ ∈ [0,M ]. But if λ ∈ (0,M),
then, by Lemmas 3.1 and 2.4, |WJ1|n = dn0 ,

CJ1W
n
J1

+ CJ2W
n
J2

=
d1d

n
0

sinϕ
sin((n+ 1)ϕ+ θ),

|zr − zr+1| = |eiϕ1 − eiϕ2| = 2 sin
ϕ1 − ϕ2

2
= 2 sinϕ.

Thus, again by Lemma 2.4 and for λ ∈ (0,M),∣∣∣∣detTn(a− λ))− d1d
n
0

sinϕ
sin((n+ 1)ϕ+ θ)

∣∣∣∣
= O

(
dn0

sinϕ
e−δn

)
= O

(
d1d

n
0

sinϕ
e−δn

)
. �

Theorem 1.1 is now almost immediate. Indeed, from Proposition 2.5 we know
that

E(a− λ)G(a− λ)n + E(a− λ) G(a− λ)
n

=
d1d

n
0

sinϕ
sin((n+ 1)ϕ+ θ),

2 |E(a− λ)| |G(a− λ)|n =
d1d

n
0

sinϕ
,

and hence Theorem 1.1 is nothing but Theorem 3.2 in other terms.

4 Approximations for the eigenvalues

In this section we prove Theorem 1.2 and prepare the proofs of Theorems 1.4
and 1.5.

Lemma 4.1 There is a natural number n0 = n0(a) such that if n ≥ n0, then the
function

fn : [0,M ]→ [0, (n+ 1)π], fn(λ) = (n+ 1)ϕ(λ) + θ(λ)

is bijective and increasing.

Proof. We have

f ′n(λ) = ϕ′(λ)

(
n+ 1− θ′(λ)

ϕ′(λ)

)
for λ ∈ (0,M). From Lemmas 2.1 and 2.2 we infer that |θ′(λ)/ϕ′(λ)| has a finite
limit as λ→ 0 + 0. The analogs of Lemmas 2.1 and 2.2 for λ→ M − 0 are also
true. Thus, |θ′(λ)/ϕ′(λ)| approaches a finite limit as λ→M − 0. It follows that
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|θ′(λ)/ϕ′(λ)| is bounded on (0,M). This in conjunction with (10) shows that
there is an n0 such that

f ′n(λ) ≥ ϕ′(λ)
n

2
≥ %n

2
> 0 (26)

for all n ≥ n0 and all λ ∈ (0,M). Since ϕ(0) = θ(0) = 0, ϕ(M) = π, and
θ(M) = 0, we arrive at the assertion. �

We are now in a position to prove Theorem 1.2. The first part is just
Lemma 4.1, which also implies that there are uniquely determined λ

(n)
j,∗ ∈ (0,M)

such that fn(λ
(n)
j,∗ ) = πj. We have 0 < λ

(n)
j < M for the eigenvalues of Tn(a).

Since d0, d1, sinϕ do not vanish on (0,M), we deduce from Theorem 3.2 that

sin fn(λ
(n)
j ) = O(e−δn). Again using Lemma 4.1, we conclude that f(λ

(n)
j ) =

πj +O(e−δn). Clearly,

fn(λ
(n)
j )− fn(λ

(n)
j,∗ ) = f ′n(ξj,n)(λ

(n)
j − λ

(n)
j,∗ )

with some ξj,n between λ
(n)
j and λ

(n)
j,∗ . Taking into account (26) and the estimate

|fn(λ
(n)
j )− fn(λ

(n)
j,∗ )| = |πj +O(e−δn)− πj| = O(e−δn),

we obtain that |λ(n)
j −λ

(n)
j,∗ | = O(e−δn), which completes the proof of Theorem 1.2.

Here is an iteration procedure for approximating the numbers λ
(n)
j,∗ and thus

the eigenvalues λ
(n)
j . We know that ϕ : [0,M ]→ [0, π] is bijective and increasing.

Let ψ : [0, π]→ [0,M ] be the inverse function. The equation

(n+ 1)ϕ(λ) + θ(λ) = πj

is equivalent to the equation

λ = ψ

(
πj − θ(λ)

n+ 1

)
.

We define λ
(n)
j,0 , λ

(n)
j,1 , λ

(n)
j,2 , . . . iteratively by

λ
(n)
j,0 = ψ

(
πj

n+ 1

)
, λ

(n)
j,k+1 = ψ

(
πj − θ(λ(n)

j,k )

n+ 1

)
for k = 0, 1, 2, . . . .

Recall that % is defined by (10) and put

γ = sup
λ∈(0,M)

∣∣∣∣ θ′(λ)

ϕ′(λ)

∣∣∣∣ .
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Theorem 4.2 If n ≥ γ and 1 ≤ j ≤ n, then λ
(n)
j,k → λ

(n)
j,∗ as k →∞ and

|λ(n)
j,k − λ

(n)
j,∗ | ≤

1

%

n+ 1

n+ 1− γ

(
γ

n+ 1

)k |θ(λ(n)
j,0 )|

n+ 1

for all k ≥ 0.

Proof. Fix n and j and put ϕk = ϕ(λ
(n)
j,k ). Then

ϕ0 =
πj

n+ 1
, ϕk+1 =

πj − θ(ψ(ϕk))

n+ 1
for k = 0, 1, 2, . . . .

We have

ϕk+1 − ϕk =
θ′(ψ(ξk))ψ

′(ξk)

n+ 1
(ϕk − ϕk−1)

with some ξk between ϕk−1 and ϕk. Since

|θ′(ψ(ξ))ψ′(ξ)| =
∣∣∣∣ θ′(ψ(ξ))

ϕ′(ψ(ξ))

∣∣∣∣ ≤ γ

for ξ ∈ (0, π), we get

|ϕk+1 − ϕk| ≤
(

γ

n+ 1

)k
|ϕ1 − ϕ0| =

(
γ

n+ 1

)k |θ(λ(n)
j,0 )|

n+ 1

and thus, by summing up a geometric series,

|ϕk+m − ϕk| ≤
n+ 1

n+ 1− γ

(
γ

n+ 1

)k |θ(λ(n)
j,0 )|

n+ 1

for all m ≥ 1. It follows that ϕk converges to the solution of the equation

yj =
πj − θ(ψ(yj))

n+ 1

and that

|ϕk − yj| ≤
n+ 1

n+ 1− γ

(
γ

n+ 1

)k |θ(λ(n)
j,0 )|

n+ 1
. (27)

Because yj = ϕ(λ
(n)
j,∗ ) and ϕk = ϕ(λ

(n)
j,k ), we obtain that

|ϕk − yj| = |ϕ′(η)| |λ(n)
j,k − λ

(n)
j,∗ | (28)

with some η between λ
(n)
j,k and λ

(n)
j,∗ . Combining (27) and (28) we arrive at the

assertion. �

To establish asymptotic formulas for the eigenvalues, we need the following
modification of Theorem 4.2.
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Theorem 4.3 There is a constant γ0 depending only on a such that if n is suf-
ficiently large, then

|λ(n)
j,k − λ

(n)
j,∗ | ≤ γ0

(
γ

n+ 1

)k
1

n+ 1

|θ(λ(n)
j,0 )|

ϕ′(λ
(n)
j,0 )

for all 1 ≤ j ≤ n and all k ≥ 0.

Proof. Let n+ 1 > 2γ. Then ((n+ 1)/(n+ 1− γ) < 2. Combining (27) and (28)
we get

|λ(n)
j,k − λ

(n)
j,∗ | ≤

2

ϕ′(η0)

(
γ

n+ 1

)k |θ(λ(n)
j,0 )|

n+ 1

where η0 is the point in the segment between λ
(n)
j,k and λ

(n)
j,∗ at which ϕ′(η) attains

its minimum. Thus, we have to show that

1

ϕ′(η0)
≤ γ0

ϕ′(λ
(n)
j,0 )

.

Suppose j/(n + 1) ≤ 1/2. The case where j/(n + 1) ≥ 1/2 can be disposed of
analogously. We have

λ
(n)
j,0 = ψ

(
πj

n+ 1

)
≤ ψ

(π
2

)
< ψ

(
2π

3

)
.

Theorem 4.2 tells us that

|λ(n)
j,∗ − λ

(n)
j,0 | ≤

2

%

|θ(λ(n)
j,0 )|

n+ 1
≤ 2

%

‖θ‖∞
n+ 1

, (29)

where ‖θ‖∞ is the maximum of θ on [0,M ]. Consequently, λ
(n)
j,∗ < ψ(2π/3) for all

n ≥ n1. Since, again by Theorem 4.2,

|λ(n)
j,k − λ

(n)
j,∗ | ≤

2

%

|θ(λ(n)
j,0 )|

n+ 1
≤ 2

%

‖θ‖∞
n+ 1

, (30)

it follows that λ
(n)
j,k < ψ(3π/4) =: M0 for all n ≥ n2 ≥ n1 and all k ≥ 0. By

Lemma 2.1, there are constants 0 < γ1 < γ2 <∞ such that

γ1 λ
−1/2 ≤ ϕ′(λ) ≤ γ2 λ

−1/2

for all λ ∈ (0,M0). We have

1

ϕ′(η0)
=

1

ϕ′(λ
(n)
j,0 )

ϕ′(λ
(n)
j,0 )

ϕ′(η0)
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and as λ
(n)
j,0 < M0 and η0 < M0, we conclude that

ϕ′(λ
(n)
j,0 )

ϕ′(η0)
≤ γ2

γ1

η
1/2
0

(λ
(n)
j,0 )1/2

≤ γ2

γ1

(
max

(
λ

(n)
j,k

λ
(n)
j,0

,
λ

(n)
j,∗

λ
(n)
j,0

))1/2

. (31)

There exist constants 0 < γ3 < γ4 <∞ such that

γ3x
2 ≤ ψ(x) ≤ γ4x

2

for all x ∈ [0, π]. Lemma 2.2 shows that θ(λ) ≤ γ5λ
1/2 for all λ ∈ [0,M ]. Thus,

|θ(λ(n)
j,0 )|

n+ 1
≤ γ5

(λ
(n)
j,0 )1/2

n+ 1
= γ5

(ψ(πj/(n+ 1)))1/2

n+ 1
≤ γ5γ

1/2
4

πj

(n+ 1)2

≤ γ5γ
1/2
4

π2j2

(n+ 1)2
≤ γ5γ

1/2
4 γ−1

3 ψ

(
πj

n+ 1

)
= γ5γ

1/2
4 γ−1

3 λ
(n)
j,0 .

Inserting this in (29) and (30) we get

λ
(n)
j,∗ ≤ λ

(n)
j,0 +

2

%
γ5γ

1/2
4 γ−1

3 λ
(n)
j,0 , λ

(n)
j,k ≤ λ

(n)
j,0 + 2 · 2

%
γ5γ

1/2
4 γ−1

3 λ
(n)
j,0 .

This proves that (31) does not exceed

γ0 :=
γ2

γ1

(
1 + 2 · 2

%
γ5γ

1/2
4 γ−1

3

)1/2

. �

5 Asymptotics of the eigenvalues

We begin by proving Theorem 1.3. From Theorem 1.2 we know that λ
(n)
j =

λ
(n)
j,∗ +O(e−δn). Theorem 4.3 gives

λ
(n)
j,∗ = λ

(n)
j,1 +O

(
|θ(λ(n)

j,0 )|
ϕ′(λ

(n)
j,0 )n2

)

with λ
(n)
j,0 = ψ(d). Since 1/ϕ′(ψ(d)) = ψ′(d), we obtain that

λ
(n)
j = λ

(n)
j,1 +O

(
ψ′(d)θ(ψ(d))

n2

)
.

Finally,

λ
(n)
j,1 = ψ

(
d− θ(ψ(d))

n+ 1

)
= ψ(d)− ψ′(d)θ(ψ(d))

n+ 1
+
ψ′′(ξ)

2

(
θ(ψ(d))

n+ 1

)2
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and ψ′′ is bounded on (0, π). This completes the proof of Theorem 1.3.

Here is the proof of Theorem 1.4. If j/n→ x, then d→ πx. Consequently,

ψ(d) = ψ(πx) + ψ′(πx)(d− πx) +O((d− πx)2),

ψ′(d) = ψ′(πx) +O(d− πx),

θ(ψ(d)) = θ(ψ(πx)) + θ′(ψ(πx))ψ′(πx)(d− πx) +O((d− πx)2).

These expansions in conjunction with (5) imply that

λ
(n)
j = ψ(πx) + ψ′(πx)(d− πx)− ψ′(πx)θ(ψ(πx))

n+ 1

+O((d− πx)2) +O

(
1

n2

)
+O

(
(d− πx)

1

n

)
.

Because |d− πx|(1/n) ≤ 2(d− πx)2 + 2/n2, ψ(πx) = λx, and ψ′(πx) = 1/ϕ′(λx),
this completes the proof of Theorem 1.4.

We now turn to the proof of Theorem 1.5. Again λ
(n)
j = λ

(n)
j,∗ + O(e−δn) due

to Theorem 1.2. From Theorem 4.3 we therefore get

λ
(n)
j = λ

(n)
j,1 +O

(
|θ(λ(n)

j,0 )|
ϕ′(λ

(n)
j,0 )n2

)
= λ

(n)
j,1 +O

(
ψ′(d)|θ(ψ(d))|

n2

)
;

recall that λ
(n)
j,0 = ψ(d) and ϕ′(ψ(d))ψ′(d) = 1. Since

λ
(n)
j,1 = ψ

(
d− θ(ψ(d))

n+ 1

)
=

3∑
k=0

(−1)k
ψ(k)(d)

k!

(
θ(ψ(d))

n+ 1

)k
+O

(
1

n4

)
,

we obtain (6). By Lemmas 2.1 and 2.2,

ψ(d) =
g′′(0)

2
d2 +O(d4) = O(d2),

ψ′(d) = g′′(0) d+O(d3) = O(d),

θ(ψ(d)) = −w0

2
d+O(d3) = O(d).

Clearly, ψ(k)(d) = O(1) for k ≥ 0. Hence for k ≥ 2,

ψ(k)(d)

(
θ(ψ(d))

n+ 1

)k
= O

(
dk

nk

)
= O

(
d2

n2

)
= O

(
j2

n4

)
= O

(
j4

n4

)
.

The terms with k = 0 and k = 1 give

ψ(d)− ψ′(d)θ(ψ(d))

n+ 1

=
g′′(0)

2
d2 +O(d4)− 1

n+ 1

(
g′′(0)d+O(d3)

) (
−w0

2
d+O(d3)

)
=
g′′(0)

2

(
πj

n+ 1

)2

+
g′′(0)

2

(
πj

n+ 1

)2
w0

n+ 1
+O

(
j4

n4

)
.
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This is (7). Formula (8) is an immediate consequence of (7). Thus, the proof of
Theorem 1.5 is complete.

Remark 5.1 As already noted in the paragraph after Theorem 1.5, the preceding
proof also works under the sole assumption that j/n ≤ C0, yielding that the
constants in the O terms depend on C0 and a but on nothing else.

Remark 5.2 Proceeding as in the previous proofs but starting with λ
(n)
j,2 , λ

(n)
j,3 , . . .

instead of λ
(n)
j,1 one can get as many terms of the expansion (4) as desired. For

example, Theorem 4.3 gives

λ
(n)
j,∗ = λ

(n)
j,2 +O

(
ψ′(d)θ(ψ(d))

n3

)
= λ

(n)
j,2 +O

(
1

n3

)
with

λ
(n)
j,2 = ψ

(
d−

θ(λ
(n)
j,1 )

n+ 1

)

= ψ(d)− ψ′(d)
θ(λ

(n)
j,1 )

n+ 1
+
ψ′′(d)

2

(
θ(λ

(n)
j,1 )

n+ 1

)2

+O

(
1

n3

)
and

θ(λ
(n)
j,1 ) = θ

(
ψ

(
d− θ(ψ(d))

n+ 1

))
= θ

(
ψ(d)− ψ′(d)θ(ψ(d))

n+ 1
+
ψ′′(d)

2

(
θ(ψ(d))

n+ 1

)2

+O

(
1

n3

))

= θ(ψ(d))− θ′(ψ(d))

(
ψ′(d)θ(ψ(d))

n+ 1
− ψ′′(d)

2

(
θ(ψ(d))

n+ 1

)2
)

+
θ′′(d)

2

(
ψ′(d)θ(ψ(d))

n+ 1

)2

+O

(
1

n3

)
,

which is more complicated but by one order better than (5). �

Finally, here are a few simple consequences of our main results.

Corollary 5.3 Let n→∞. Then λ
(n)
j+1 − λ

(n)
j is

π2ψ′′(0)

2

2j + 1

(n+ 1)2
+O

(
j3

(n+ 1)3

)
as j/n→ 0,

π

ϕ′(λx)

1

n+ 1
+O

((
j

n+ 1
− x
)2

+
1

n2

)
as j/n→ x ∈ (0, 1),

π2|ψ′′(π)|
2

2n+ 1− 2j

(n+ 1)2
+O

((
1− j

n+ 1

)2
)

as j/n→ 1.
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Proof. This is immediate from Theorem 1.4 and (8). �

Corollary 5.4 Given ε > 0, there is an n0 = n0(a, ε) such that if n ≥ n0 and
0 ≤ α < β ≤M , then∣∣∣∣ |{j : λ

(n)
j ∈ (α, β)}| − (n+ 1)

ϕ(β)− ϕ(α)

π
− θ(β)− θ(α)

π

∣∣∣∣ < 1 + ε.

Proof. From Theorem 1.2 we know that if n is sufficiently large, then α < λ
(n)
j < β

if and only if
A < (n+ 1)ϕ(λ

(n)
j ) + θ(λ

(n)
j ) < B

where A = (n+1)ϕ(α)+θ(α) and B = (n+1)ϕ(β)+θ(β). By the same theorem,

(n+ 1)ϕ(λ
(n)
j ) + θ(λ

(n)
j ) = πj + %

(n)
j

where |%(n)
j | ≤ Ce−δn with some constant C <∞ independent of j. Thus,

|{j : λ
(n)
j ∈ (α, β)}| =

∣∣∣∣∣
{
j :

A

π
< j +

%
(n)
j

π
<
B

π

}∣∣∣∣∣ .
We may assume that Ce−δn < πε/2. Then∣∣∣∣∣

{
j :

A

π
< j +

%
(n)
j

π
<
B

π

}∣∣∣∣∣ <
∣∣∣∣{j :

A

π
− ε

2
< j <

B

π
+
ε

2

}∣∣∣∣
<

(
B

π
+
ε

2

)
−
(
A

π
− ε

2

)
+ 1 =

B − A
π

+ 1 + ε

and ∣∣∣∣∣
{
j :

A

π
< j +

%
(n)
j

π
<
B

π

}∣∣∣∣∣ >
∣∣∣∣{j :

A

π
+
ε

2
< j <

B

π
− ε

2

}∣∣∣∣
>

(
B

π
− ε

2

)
−
(
A

π
+
ε

2

)
− 1 =

B − A
π
− 1− ε. �

In [15] it is shown that∣∣∣∣ |{j : λ
(n)
j ∈ (α, β)}| − (n+ 1)

ϕ(β)− ϕ(α)

π

∣∣∣∣ ≤ 6r

where r is the degree of the trigonometric polynomial g(x) = a(eix). As the
increment of the argument of function (16) is at most 2π, the maximal value
of θ on (0,M) cannot exceed 2π(r − 1). Thus, θ(β) − θ(α) ≤ 4π(r − 1) and
Corollary 5.4 therefore implies that∣∣∣∣ |{j : λ

(n)
j ∈ (α, β)}| − (n+ 1)

ϕ(β)− ϕ(α)

π

∣∣∣∣ ≤ 4(r − 1) + 1 + ε

for all sufficiently large n. Note that, however, our assumptions on a are stronger
than those required in [15].
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6 Examples

We consider Tn(a), denote by λ
(n)
j the jth eigenvalue, by λ

(n)
j,∗ the approximation

to λ
(n)
j given by Theorem 1.2, and by λ

(n)
j,k the kth approximation to λ

(n)
j delivered

by the iteration introduced in Section 4. We put

∆(n)
∗ = max

1≤j≤n
|λ(n)
j − λ

(n)
j,∗ |, ∆

(n)
k = max

1≤j≤n
|λ(n)
j − λ

(n)
j,k |.

We let w0 be the constant (9), denote by

λ
(n)
j,W =

g′′(0)

2

(
πj

n+ 1

)2(
1 +

w0

n+ 1

)
Widom’s approximation for the jth extreme eigenvalue given by (7), and put

∆
(n)
j,W =

(n+ 1)4

π4j4
|λ(n)
j − λ

(n)
j,W |.

Example 6.1 (a symmetric pentadiagonal matrix) Let a(t) = 8 − 5t − 5t−1 +
t2 + t−2. In that case

g(x) = 8− 10 cosx+ 2 cos 2x = 4 sin2 x

2
+ 16 sin4 x

2
,

a(T) = [0, 20], and for λ ∈ [0, 20], the roots of a(z) − λ are e−iϕ(λ), eiϕ(λ), u(λ),
1/u(λ) with

ϕ(λ) = arccos
5−
√

1 + 4λ

4
= 2 arcsin

√√
1 + 4λ− 1

2
√

2
,

u(λ) =
5 +
√

1 + 4λ

4
+

√
5 + 2λ+ 5

√
1 + 4λ

2
√

2

and we have

g′′(0) = 2, w0 =
4

u(0)− 1
= 2
√

5− 2.

The errors ∆
(n)
∗ are

n = 10 n = 20 n = 50 n = 100 n = 150

∆
(n)
∗ 5.4 · 10−7 1.1 · 10−11 5.2 · 10−25 1.7 · 10−46 9.6 · 10−68

and for ∆
(n)
k and ∆

(n)
j,W we have

n = 10 n = 100 n = 1000 n = 10000

∆
(n)
1 9.0 · 10−2 1.1 · 10−4 1.1 · 10−6 1.1 · 10−8

∆
(n)
2 2.2 · 10−4 2.8 · 10−7 2.9 · 10−10 2.9 · 10−13

∆
(n)
3 1.1 · 10−5 1.5 · 10−9 1.5 · 10−13 1.5 · 10−17
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n = 10 n = 100 n = 1000 n = 10000 n = 100000

∆
(n)
1,W 1.462 1.400 1.383 1.381 1.381

∆
(n)
2,W 0.997 1.046 1.034 1.033 1.033

∆
(n)
3,W 0.840 0.979 0.970 0.968 0.968

Example 6.2 (a symmetric heptadiagonal matrix) Consider

a(t) = 34− 21t− 21t−1 + 8t2 + 8t−2 − 4t3 − 4t−3,

g(x) = 100 sin2 x

2
− 256 sin4 x

2
+ 256 sin6 x

2
.

We have g′′(0) = 50 and the two roots of the polynomial z3a(z) that lie outside
the unit disk are u1(0) = 2i and u2(0) = −2i, which gives w0 = −8/5. The tables

show ∆
(n)
k , ∆

(n)
k , ∆

(n)
j,W .

n = 10 n = 20 n = 50 n = 100 n = 150

∆
(n)
∗ 7.6 · 10−3 2.7 · 10−5 4.6 · 10−12 8.0 · 10−23 1.7 · 10−33

n = 10 n = 100 n = 1000 n = 10000

∆
(n)
1 4.4 · 10−1 5.2 · 10−3 5.3 · 10−5 5.3 · 10−7

∆
(n)
2 3.9 · 10−2 7.5 · 10−5 7.6 · 10−8 7.6 · 10−11

∆
(n)
3 8.2 · 10−3 2.7 · 10−6 2.8 · 10−10 2.8 · 10−14

n = 10 n = 100 n = 1000 n = 10000 n = 100000

∆
(n)
1,W 8.51 12.65 13.16 13.21 13.22

∆
(n)
2,W 10.83 16.24 16.81 16.86 16.87

∆
(n)
3,W 9.92 16.88 17.48 17.54 17.54

Example 6.3 (a Hermitian pentadiagonal matrix) Let

a(t) = 8 + (−4− 2i)t+ (−4− 2i)t−1 + it2 − it−2,

g(x) = 8− 8 cosx+ 4 sinx− 2 sin 2x = 16 sin2 x

2
+ 16 sin3 x

2
cos

x

2
.

Here ϕ0 ≈ 2.527, M ≈ 18.73, g′′(0) = 8. The polynomial z2a(z) has the roots 1,
1, u(0), 1/u(0) with u(0) = −(

√
3 + 2)i. It follows that

w0 = 4 Re
1

u(0)− 1
=
√

3− 2. (32)

Numerical results are in the tables.

n = 10 n = 20 n = 50 n = 100 n = 150

∆
(n)
∗ 3.8 · 10−8 2.8 · 10−13 2.9 · 10−30 5.9 · 10−58 1.5 · 10−85
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n = 10 n = 100 n = 1000 n = 10000

∆
(n)
1 7.2 · 10−3 8.2 · 10−5 8.4 · 10−7 8.4 · 10−9

∆
(n)
2 3.5 · 10−4 4.8 · 10−7 5.0 · 10−10 5.0 · 10−13

∆
(n)
3 1.7 · 10−5 3.1 · 10−9 3.2 · 10−13 3.2 · 10−17

n = 10 n = 100 n = 1000 n = 10000 n = 100000

∆
(n)
1,W 1.287 1.533 1.559 1.561 1.561

∆
(n)
2,W 1.216 1.548 1.575 1.578 1.578

∆
(n)
3,W 1.055 1.549 1.578 1.581 1.581

Let us also use this example to demonstrate that w0 may not only be computed
via (32) but also with the help of the integral formula (9). In the case at hand,
g′′(0) = 8, g′′′(0) = 12, and the function under the integral equals(

g′(x)

g(x)
− cot

x

2
− 1

2

)
cot

x

2

=

(
16 sin x

2
cos x

2
+ 24 sin2 x

2
cos2 x

2
− 8 sin4 x

2

16 sin2 x
2

+ 16 sin3 x
2

cos x
2

− cot
x

2
− 1

2

)
cot

x

2
dx

=

(
2t(1 + t2) + 3t2 − t4

2t2(1 + t2) + 2t3
− 1

t
− 1

2

)
1

t

= − 1 + 2t

1 + t+ t2

where t = tan x
2
. Making the change t = tan x

2
in the integral we come to

w0 =
1

π

∫ +∞

−∞

−(1 + 2t) dt

(1 + t2)(1 + t+ t2)
=
√

3− 2.

Example 6.4 (a Hermitian heptadiagonal matrix) Let finally

a(t) = 24 + (−12− 3i)t+ (−12 + 3i)t−1 + it3 − it−3,

g(x) = 48 sin2 x

2
+ 8 sin3 x.

To obtain w0, we applied a numerical rootfinder to the polynomial z3a(z) on the
one hand and numerically computed the first of the integrals in Remark 2.3 with
g′′(0) = 24 and g′′(0) = 48 on the other. Both methods give the same value
w0 ≈ −0.2919. The tables contain more numerical results.

n = 10 n = 20 n = 50 n = 100 n = 150

∆
(n)
∗ 6.6 · 10−6 1.2 · 10−10 7.6 · 10−24 1.4 · 10−45 3.3 · 10−67

n = 10 n = 100 n = 1000 n = 10000

∆
(n)
1 1.0 · 10−2 1.4 · 10−4 1.5 · 10−6 1.5 · 10−8

∆
(n)
2 3.2 · 10−4 5.8 · 10−7 5.9 · 10−10 5.9 · 10−13

∆
(n)
3 1.4 · 10−5 2.4 · 10−9 2.5 · 10−13 2.6 · 10−17
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n = 10 n = 100 n = 1000 n = 10000 n = 100000

∆
(n)
1,W 5.149 7.344 7.565 7.587 7.589

∆
(n)
2,W 4.106 7.386 7.623 7.645 7.647

∆
(n)
3,W 2.606 7.370 7.633 7.656 7.658
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[2] A. Böttcher, S. Grudsky, E. A. Maksimenko, and J. Unterberger, The first
order asymptotics of the extreme eigenvectors of certain Hermitian Toeplitz
matrices, Integral Equations Operator Theory, to appear.
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Albrecht Böttcher, Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz,
Germany

aboettch@mathematik.tu-chemnitz.de

Sergei M. Grudsky, Departamento de Matemáticas, CINVESTAV del I.P.N.,
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grudsky@math.cinvestav.mx

Egor A. Maksimenko, Departamento de Matemáticas, CINVESTAV del I.P.N.,
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emaximen@math.cinvestav.mx

29


