20 20

Transactions on
Data Privacy
Foundations and Technologies

http://www.tdp.cat


Articles in Press

Accepted articles here

Latest Issues

Year 2025

Volume 18 Issue 2
Volume 18 Issue 1

Year 2024

Volume 17 Issue 3
Volume 17 Issue 2
Volume 17 Issue 1

Year 2023

Volume 16 Issue 3
Volume 16 Issue 2
Volume 16 Issue 1

Year 2022

Volume 15 Issue 3
Volume 15 Issue 2
Volume 15 Issue 1

Year 2021

Volume 14 Issue 3
Volume 14 Issue 2
Volume 14 Issue 1

Year 2020

Volume 13 Issue 3
Volume 13 Issue 2
Volume 13 Issue 1

Year 2019

Volume 12 Issue 3
Volume 12 Issue 2
Volume 12 Issue 1

Year 2018

Volume 11 Issue 3
Volume 11 Issue 2
Volume 11 Issue 1

Year 2017

Volume 10 Issue 3
Volume 10 Issue 2
Volume 10 Issue 1

Year 2016

Volume 9 Issue 3
Volume 9 Issue 2
Volume 9 Issue 1

Year 2015

Volume 8 Issue 3
Volume 8 Issue 2
Volume 8 Issue 1

Year 2014

Volume 7 Issue 3
Volume 7 Issue 2
Volume 7 Issue 1

Year 2013

Volume 6 Issue 3
Volume 6 Issue 2
Volume 6 Issue 1

Year 2012

Volume 5 Issue 3
Volume 5 Issue 2
Volume 5 Issue 1

Year 2011

Volume 4 Issue 3
Volume 4 Issue 2
Volume 4 Issue 1

Year 2010

Volume 3 Issue 3
Volume 3 Issue 2
Volume 3 Issue 1

Year 2009

Volume 2 Issue 3
Volume 2 Issue 2
Volume 2 Issue 1

Year 2008

Volume 1 Issue 3
Volume 1 Issue 2
Volume 1 Issue 1


Volume 16 Issue 1


A Survey on Privacy in Human Mobility

Anna Monreale(a), Roberto Pellungrini(a),(*)

Transactions on Data Privacy 16:1 (2023) 51 - 82

Abstract, PDF

(a) Department of Computer Science, University of Pisa, Pisa, Italy.

e-mail:anna.monreale @unipi.it; roberto.pellungrini @di.unipi.it


Abstract

In the last years we have witnessed a pervasive use of location-aware technologies such as vehicular GPS-enabled devices, RFID based tools, mobile phones, etc which generate collection and storing of a large amount of human mobility data. The powerful of this data has been recognized by both the scientific community and the industrial worlds. Human mobility data can be used for different scopes such as urban traffic management, urban planning, urban pollution estimation, etc. Unfortunately, data describing human mobility is sensitive, because people's whereabouts may allow re-identification of individuals in a de-identified database and the access to the places visited by individuals may enable the inference of sensitive information such as religious belief, sexual preferences, health conditions, and so on. The literature reports many approaches aimed at overcoming privacy issues in mobility data, thus in this survey we discuss the advancements on privacy-preserving mobility data publishing. We first describe the adversarial attack and privacy models typically taken into consideration for mobility data, then we present frameworks for the privacy risk assessment and finally, we discuss three main categories of privacy-preserving strategies: methods based on anonymization of mobility data, methods based on the differential privacy models and methods which protect privacy by exploiting generative models for synthetic trajectory generation.

* Corresponding author.


ISSN: 1888-5063; ISSN (Digital): 2013-1631; D.L.:B-11873-2008; Web Site: http://www.tdp.cat/
Contact: Transactions on Data Privacy; Vicenç Torra; Umeå University; 90187 Umeå (Sweden); e-mail:[email protected]
Note: TDP's web site does not use cookies. TDP does not keep information neither on IP addresses nor browsers. For the privacy policy access here.

 


Vicenç Torra, Last modified: 23 : 18 January 31 2023.