
TRANSACTIONS ON DATA PRIVACY 4 (2011) 167–187

Privacy Preserving Aggregation of Secret
Classifiers
Gérald Gavin∗, Julien Velcin∗∗, Philippe Aubertin∗∗∗

∗ERIC Lab - University of Lyon - 5, avenue Pierre Mendès France

E-mail: gavin@univ-lyon1.fr
∗∗ERIC Lab - University of Lyon - 5, avenue Pierre Mendès France

E-mail: julien.velcin@univ-lyon2.fr
∗∗∗Axopen, 17, lot colline du Châtel, 01120 Dagneux, France

E-mail: aubertinp@gmail.com

Abstract. In this paper, we address the issue of privacy preserving data-mining. Specifically, we
consider a scenario where each member j of T parties has its own private database. The party j
builds a private classifier hj for predicting a binary class variable y. The aim of this paper consists of
aggregating these classifiers hj in order to improve individual predictions. More precisely, the parties
wish to compute an efficient linear combination over their classifier in a secure manner.

1 Introduction

We consider a scenario where T parties with private databases wish to cooperate by com-
puting a data-mining algorithm for the union of these databases. Since the databases are all
confidential, no party wishes to divulge any content to any other. Let us detail a concrete
scenario making our approach particularly relevant where a database is vertically1 parti-
tioned. Each party only knows a subset of explicative variables for all the instances and
the class value y for few instances. We assume that each party j has inferred a prediction
function (classifier) hj to predict y. These parties could be interested in collaborating to
improve each individual prediction performance. A solution would consist of aggregating
the different classifiers hj to build an overall better one h. The simplest way to combine
these classifiers consists of predicting the majority class. This approach is naive when, for
instance, most of the parties have almost the same low quality classifier. The aim of this
paper is to propose a more appropriate approach. The natural evolution of the previous
approaches consists of using linear combinations, i.e. weighted votes. Many ways are pro-
posed in the literature to build such combinations. The most famous algorithm is certainly
Adaboost. This algorithm builds convex combinations maximizing margins [20]. In [21],
the authors propose upper-bounds on the generalization error independent of the combi-
nation size.

A key problem that arises in any collection of data is confidentiality. The need for privacy
is sometimes due to legal requirements (e.g., medical databases) or can be motivated by

1More general scenarii can be imagined where data are both horizontally and vertically partitioned: the only
constraint is that each pair of parties (j, k) ∈ {1, ..., T}2 can compute respectively hj(i) and hk(i) for all instances
i belonging to a common subset. This general case is not studied in this paper but it is discussed in section 9.

167

168 Gérald Gavin, Julien Velcin, Philippe Aubertin

business interests. In this paper, the parties do not wish to share any information about
their private data or their classifier hj . Efficient cryptographic primitives [6] allow to ef-
ficiently evaluate any distributed arithmetical circuit2. To use these cryptographic primi-
tives, the choice of the aggregating algorithm should be restricted: it should be essentially
"arithmetic", meaning that the only allowed operations are addition and multiplication.
This excludes, for instance, the algorithm Adaboost which requires logarithmic and expo-
nential computations. In order to satisfy both machine learning and privacy constraints, we
choose to minimize the quadratic error on a convex C. This quadratic error is close to the
exponential error minimized by Adaboost. In addition, this optimization can be done with
a simple descent gradient algorithm. However, the projection operator is not "arithmetic"
if C is the set of the convex combinations. To overcome this issue, the convexity constraint
is partially removed, i.e. the positivity constraint on the coefficients αi is released. In other
words, the parties will build a linear combination hα = α1h1 + ... + αT hT minimizing the
quadratic error under the constraint

∑T
j=1 αj = 1.

In Section 3, we propose an algorithm, called QEM (Quadratic Error Minimization), that
achieves this optimization process. This algorithm is experimented in Section 4: it is shown
that this weighting scheme can be dramatically better than the naive one (equivalent to a
simple vote). In Section 7, we present the protocol SMEM (Secure Multi-party Error Min-
imization) that allows the parties to securely implement this scheme. The cryptographic
tools used in this paper are threshold homomorphic encryption schemes [10], [9] allowing
any arithmetical circuit to be computed securely [6]. These tools are presented in Section
6. SMEM is shown to be secure against any polynomial adversary. Extensions to the mul-
ticlass case are presented in section 8.

2 Problem Statement

In [23, 25, 5] the authors propose two-party protocols to build a decision tree, an SVM or
a neural network. In these papers, it is assumed that a database is horizontally or verti-
cally partitioned. Parties then jointly infer a classifier from the whole database. However,
intermediate computations are made public, leaking information about private data. For
instance, in [23], the entropy computations are public. In [25], the authors assume that par-
ties do not collude, i.e. an adversary controls at most one party. Pinkas and Lindell [16]
focus on the problem of decision tree learning with the popular ID3 algorithm. Their pro-
tocol is shown secure against passive (semi-honest) adversaries. In [11], authors propose
protocols that allow two or more participants to construct a boosting classifier without ex-
plicitly sharing their data sets. However, these protocols are not private, even against pas-
sive adversaries. In [14], the authors extend the notion of privacy preservation, or secure
multi-party computation, to gradient-descent-based techniques. However, the proposed
two-party protocols are costly and they are not shown secure against active adversaries.
The protocols of this paper are shown to be correct and private against any active polyno-
mial adversary.

Let us concretely precise the setup where the main protocol SMEM of this paper is appli-
cable. Let us suppose that T parties wish collaborating in a prediction problem where the
class variable is denoted by y. They first should agree on a list L of n instances. It can be
assumed that each party j knows an explicative variables tuple xij for each instance i ∈ L

2More general results (see [17]) state that any function can be securely computed with computational security
in presence of a static, active adversary corrupting less than n/2 parties. However the evaluation of the resulting
SMC circuit is too expensive in the real-life.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Aggregation of Secret Classifiers 169

and the class value yij only for a subset zj of instances. In this case, the party j can infer
a classifier hj on the training set3

{(xij , yij)|i ∈ zj}

The prediction of the party j on any instance i ∈ L is denoted by hj(i). The Parties wish to
build an efficient aggregating classifier without revealing about their private data (includ-
ing the classifier hj). In SMEM, parties send encryptions of their prediction hj(i) and their
value yij (by convention yij = 0 if this value is not known).

First of all the parties should agree on a class value. Indeed, they are not ensured to own
the same class value yij (because of errors or because of missing information). Thus, they
should build a common class value νi by aggregating the values yij . The first intuitive
idea consists of choosing the most represented value νi among the (yij)i=1,...,T . SMEM
implements this choice but other choices can be also relevant in some applications. Let us
consider, for instance, a credit approval case where different banks are combining previous
default loans on the same customer base. A customer i may have defaulted on his loan with
bank B1 (yi1 = 1) and not with other banks (Bj)j=1,...,T (yij = −1 for all j = 2, ..., T). In this
case, −1 is the most represented class but it could be more relevant to state νi = 1 (meaning
that there is a problem with the customer i) or to transform this problem in a multi-class
problem. SMEM can be straightforwardly adapted to any choice of νi (provided it exists
efficient cryptographic protocols to compute encryptions of νi given encryptions of yij).

Parties then compute an encryption of the common error mjk (within a multiplicative
factor) between each pair (hj , hk), i.e.

mjk =
4
n
|{i ∈ {1, ...n}|hj(i) = hk(i) 6= yi}|

In the next section, it is shown that the quadratic error of a linear combination can be
expressed with these values mjk. We propose an arithmetical algorithm QEM minimizing
this error (over a well-chosen set C of linear combinations) which is securely implemented
in SMEM. More general scenarii, where hj(i) cannot be computed on all the instances of L,
could be considered. Indeed, the estimation of the common errors between hj and hk only
requires that there exists a subset of L such that hj(i) and hk(i) can be computed. It will be
discussed in Section 9.

3 Quadratic Error Minimization

Let us suppose that the parties agree on a sample zn of n instances. Let yi ∈ {−1, 1} be the
class of the instance i and xij the information (e.g. a predictive variables vector) known by
party j about instances i. We also suppose that parties have inferred a classifier hj in order
to predict the class variable y. We will denote by hj(i) ∈ {−1, 1} the class predicted by the
classifier hj on the instance i. In this section, we propose to build a linear combination over
the classifiers hj minimizing the quadratic error, noting that this error is close to the one
minimized by Adaboost, i.e. the exponential error4. Minimizing quadratic error under con-
vexity constraints can be done in polynomial time with gradient descent algorithms. How-
ever the convexity constraint implies a projection phase which is not "arithmetic". Thus,

3In fact, our scheme is more general in the sense that it is only required that each party is able to produce a
prediction, via an expert for instance, for each instance i ∈ L.

4The exponential error is equal to 1
n

nP
i=1

e−hα(i)yi

TRANSACTIONS ON DATA PRIVACY 4 (2011)

170 Gérald Gavin, Julien Velcin, Philippe Aubertin

the classical cryptographic tools are not adapted for this algorithm. The solution that we
propose consists of relaxing this convexity constraint. For concreteness, the positivity con-
straint is removed and we propose to find a linear combination hα = α1h1 + ... + αT hT

minimizing the quadrating error under the constraint
∑T

j=1 αj = 1. By removing the posi-
tivity constraint,

∑T
i=1 |αi| can be larger than 1. The performance could be degraded if this

sum is too large [1]. To overcome this, we penalize large weight combinations5 by adding
a regularization term γ

∑T
i=1 α2

i to the quadratic error where γ ∈ R+ is a parameter.

3.1 Quadratic Error

In this section, we denote by H the set of these classifiers, i.e. H = {hj |j = 1, ..., T}. I will
denote the identity matrix of size T and C will denote the following convex set

C =

α ∈ RT | ∀j ∈ {1, ..., T} αj ∈ R ;
T∑

j=1

αj = 1


In other words, C is simply the hyperplane α1 + ... + αT = 1 of RT . For any α ∈ C, the
linear combination hα =

∑T
j=1 αjhj can be classically transformed into a binary classifier

_
hα by applying the function sign, i.e.

_
hα = sign(hα). As discussed previously, this section

proposes an algorithm to minimize the quadratic error of hα denoted erH(α)6 as defined
by,

erH(α) =
1
n

n∑
i=1

(hα(i)− yi)2 + γ

T∑
j=1

α2
j

In the next lemma, it is shown that for any h ∈ C, erH(α) only depends on the values7

(mjk)(j,k)∈{1,...,T}2 defined by

mjk =
1
n

n∑
i=1

(hj(i)− yi) (hk(i)− yi)

These coefficients are related to the common error between hj and hk, i.e.

mjk =
4
n
|{i ∈ {1, ...n}|hj(i) = hk(i) 6= yi}|

Let us observe that mjk ≤ mjj and mjj = 4.erzn
(hj) where erzn

(hj) designates the empiri-
cal error of hj . In the following lemma, M will denote the T × T matrix of the coefficients
mjk, i.e. M = [mjk].

Lemma 1. Let γ ∈ R be a regularization parameter. M is symmetric, defined positive and for any
α ∈ C,

erH(α) = αT (M + γI)α

5Directly inspired of the weight decay method for the artificial neural networks.
6erH(α) upper-bounds the classification error of

_
hα.

7The evaluation of mjk only requires that parties j and k have common instances.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Aggregation of Secret Classifiers 171

Proof. Let α ∈ C. First, let us consider the quantity

Q(α) = 1
n

n∑
i=1

(
T∑

j=1

αjhj(i)− yi

)2

By using the fact that
∑T

j=1 αj = 1 we can state

Q(α) = 1
n

n∑
i=1

(
T∑

j=1

αj (hj(i)− yi)

)2

By developing and by inverting sums, we get

Q(α) =
T∑

j=1

T∑
k=1

αjαk

(
1
n

n∑
i=1

(hj(i)− yi) (hk(i)− yi)
)

= αT Mα

The result is obtained by noticing that erH(α) = Q(α) + αT (γI)α
�

In the next section, we propose a gradient descent algorithm to minimize the function
erH .

3.2 Algorithm QEM

In this section, we are looking for an algorithm minimizing erH(α). In next sections, this
algorithm will be transformed for observing a secure multi-party protocol. In order to use
classical cryptographic primitives, the only allowed computations are arithmetic operators
(+ and ×). It excludes, for example, algorithms requiring normalization steps. In this sec-
tion, we consider the algorithm QEM which minimizes erH(α) over the convex C (defined
in the previous section) with a gradient descent algorithm. Let us detail its principle. First,
the gradient ∇erH of erH should be computed

∂erH

∂αj
(α) = 2

(
T∑

k=1

mjkαk + γmjjαj

)

Thus, p = (M + γI)α = ∇erH(α)/2. QEM iteratively updates α by computing

αnew = PC

(
α +

ρ

2
∇erH(α)

)
where ρ ∈ Q is a parameter (called sometimes learning rate in datamining) and PC the
projection operator over C. Because the vector u = (1,, 1) ∈ RT is orthogonal to C, PC

simply consists of adding the same value Vα to each component, i.e.

αnew = α +
ρ

2
∇erH(α) + Vαu

with Vα chosen such that αnew belongs to the convex C, here Vα = ρ
T

∑T
i=1 pi. We notice

that all the steps of QEM are arithmetical (ρ
T can be pre-computed).

Proposition 2. Let λ1 be the greatest eigenvalue of M +γI . For any 0 < ρ < 2
λ1

, QEM converges
to the combination which minimizes the quadratic error over the convex C.

Proof. (Sketch.) First, let us check that QEM is a projected gradient descent algorithm where
the projection is done over C.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

172 Gérald Gavin, Julien Velcin, Philippe Aubertin

Algorithm QEM

Inputs: K ∈ N, γ ∈ Q and ρ ∈ Q

1. α = (1/T)j=1,...,T

2. For k = 1 to K

(a) p = (M + γI)α

(b) αj = αj + ρ
T

∑T
i=1(pj − pi)

3. output α

αj + ρ
T

(∑T
i=1(pj − pi)

)
= αj + ρpj + ρ

T

∑T
i=1 pi

= αj + ρ
2∇erH(α) + Vαu with Vα = ρ

T

∑T
i=1 pi and u = (1, ..., 1) ∈ QT

Then, it suffices to prove that Vα is well-chosen by verifying that the updated coefficient
vector α belongs to the convex C. Indeed,∑T

j=1

(
αj + ρ

T

(∑T
i=1(pj − pi)

))
=
∑T

j=1

(
αj + ρpj − ρ

T

∑T
i=1 pi

)
=
∑T

j=1 αj

= 1
As M + γI is positive definite, the associated bilinear form is elliptic. Thus, the projected

gradient algorithm QEM converges if ρ is small enough, i.e. 0 < ρ < 2
λ1

.
�

4 Experiments

In this section, we experimentally compare our weighting scheme to other weighting
schemes. In all of our experiments, γ = 0. Let us discuss the choice of the learning rate
ρ. During the protocol SMEM, the coefficients mjk are kept secret and parties have only
access to their encryptions. ρ can be chosen a priori without taking into account of these
values (for instance as λ1 ≤ 4T , we can choose ρ = 1/2T ≤ 2/λ1). In order to converge
faster, it would be better to consider values of ρ as close as possible of 2/λ1. If the choice of
ρ is dependent on the value mjk, it cannot be public (otherwise it would reveal information
about M) and consequently SMEM could only deal with encryptions of ρ. It seems difficult
to secretly and efficiently compute an encryption of λ1 with classical cryptographic primi-
tives only given encryptions of mjk. However, as M is a nonnegative symmetric matrix, it
is well-known that

max
j=1,...,T

T∑
k=1

mjk ≥ λ1 ≥ min
j=1,...,T

T∑
k=1

mjk

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Aggregation of Secret Classifiers 173

Name Variables number Instances number
Ionosphere 34 351
BreastW 31 569
Clean 167 476
CreditG 25 1000
Spambase 57 4608

Figure 1: Description of the databases used in our experiments.

In our experiments, we assumed that λ1 ≈ 1
T

∑T
j=1

∑T
k=1 mjk. This naturally leads to

choose

ρ = 2T/

T∑
j=1

T∑
k=1

mjk

This way to choose ρ can be integrated in SMEM (see remark 1). The tests are made on clas-
sical benchmarks used in machine learning (they can be found on the UC Irvine Machine
Learning Repository)

In our problem, each party has a partial view of the learning set zn (it is implicitly as-
sumed that the parties agreed on the list L of the n instances of zn). In the following, n
designates the number of instances and p designates the number of explicative variables.
In our experiments, each party j only knows a (randomly chosen) subset of p′ explicative
variables. Each party j knows the values of these p′ variables for all instances but the class
value yi is known only for a (randomly chosen) subset zj of n′ instances, i.e. |zj | = n′. By
summary, each party j knows the values of p′ explicative variables for n′ labeled instances
(zj) and n− n′ unlabeled instances.

Then each party j builds a decision tree hj with the classical method C4.5 [19]. The clas-
sifier hj is learnt on the learning set zj : zj contains n′ instances, each one being described
by p′ explicative variables and the class value y. We denote by H the set of these classifiers,
i.e. H = {hj |j = 1, ..., T}. Because of the unlabeled instances of zn \ zj , each party j can
compute hj(i) for all the instances of zn.

The coefficients mjk (let us recall that mjk represents the common error between the clas-
sifiers hj and hk) are computed over

⋃T
j=1 zj (≈ zn the whole training set when Tn′ � n):

it is implicitly assumed that the parties start pooling their class values. This will be also
done, with privacy preserving, in SMEM.

The parameters of these experiments will be the number of parties T , the number p′ of
variables and the number n′ of class values known by each party. The generalization error
is estimated with 10-fold cross-validation. We compare the 4 following methods:

• SV: Simple vote, i.e. the classifiers hj are uniformly weighted by 1/T

• QEM[K]: see previous section. K refers to the number of iterations.

• QEMC[K]: This algorithm is a gradient descent algorithm. It minimizes the quadratic
error on the set of convex combinations over H , i.e co(H). To achieve this, it suffices
to adapt the projection operator PC of QEM.

• Adaboost[K] : K iterations of the algorithm Adaboost where the weak classifiers set
is H . Note that the number of non-zeros coefficients in the output combination is
smaller than K.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

174 Gérald Gavin, Julien Velcin, Philippe Aubertin

n′ = n/3 SV QEM[10] QEM[50] QEMC[50] Adaboost[10]
Clean 26.77 18.33 18.12 18.12 18.33
Credit 31.10 27.90 29.15 28.00 30.00
SpamBase 14.74 8.38 8.26 8.51 9.44
BreastW 7.46 5.79 6.14 6.32 6.58
Ionosphere 9.58 6.90 7.46 7.61 8.59

n′ = n/5 SV QEM[10] QEM[50] QEMC[50] Adaboost[10]
Clean 34.27 24.17 24.01 25.00 24.74
Credit 30.95 28.00 27.95 27.40 29.98
SpamBase 15.47 11.02 9.91 10.09 10.98
BreastW 8.68 6.67 6.54 6.14 6.62
Ionosphere 14.01 10.49 10.14 10.70 11.06

n′ = n/7 SV QEM[10] QEM[50] QEMC[50] Adaboost[10]
Clean 34.22 25.73 25.26 25.26 25.47
Credit 30.47 27.38 28.03 27.42 27.68
SpamBase 14.17 9.47 9.57 9.71 10.81
BreastW 7.94 6.18 6.27 6.62 7.24
Ionosphere 13.03 9.93 10.07 10.42 10.85

Figure 2: 10-cross validation error of SV, QEM, QEMC, Adaboost for the parameters T = 10;
p′ = p/10; n′ = n/3, n/5, n/7

Results. In all of our experiments, the generalization error significantly and sometimes
drastically decreased with the number of iterations in QEM. At convergence, the error
rate is sometimes half of the error rate during the first iteration. Secondly, convergence
is reached quickly. After 10 iterations, approximately 50% of the improvements are already
done. Figures 2 and 3 summarize the performances of SV, QEM, QEMC and Adaboost.
We see that the performance of the Simple Vote is significantly lower than the performance
of the three other methods. This justifies the interest in weighting methods. The second
experimental conclusion is that QEM is not significantly worse than the other weighting
methods Adaboost and QEMC. In fact, QEM seems even better than these methods. In our
opinion, it is just because negative weights are permitted in QEM (we do not see other ex-
planation for the comparison between QEMC and QEM). To confirm this, one could run
Adaboost by choosing H

⋃
−H as set of weak classifiers (we did not experiment this) and

compare performance. Moreover, when the quality of the classifiers hj decreases, e.g. the
size n′ of the learning set zj decreases, improvements provided by QEM with respect to SV
become more significative. It clearly appears by comparing error rates mentioned in figure
3.

5 Security Definitions

In this section, we present classical definitions of Security for Multi-party Computation
(SMC). For sake of simplicity, technical tools are omitted [16, 17] and we focus on intuitive
ideas behind formal existing security definitions.

Basic properties. Let us start by listing natural intuitive properties that a relevant security
definition should encapsulate.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Aggregation of Secret Classifiers 175

n = n′ SV QEM[10] QEM[50] QEMC[50] Adaboost[10] Adaboost[20] Adaboost[100]
Clean 11.87 12.08 11.04 11.87 12.92 12.08 9.79
Credit 30.50 24.90 24.20 23.30 28.40 26.90 27.00
SpamBase 7.55 5.48 4.89 4.67 4.94 4.94 4.89
BreastW 5.26 5.35 5.09 6.14 5.79 5.61 5.26
Ionosphere 10.70 10.70 9.86 9.86 9.86 9.30 9.30

n′ = n/5 SV QEM[10] QEM[50] QEMC[50] Adaboost[10] Adaboost[20] Adaboost[100]
Clean 16.60 16.53 15.21 15.83 19.37 15.76 15.35
Credit 29.43 26.23 25.57 26.30 27.63 27.20 27.20
SpamBase 8.34 6.58 6.04 6.17 8.14 8.12 8.12
BreastW 5.50 5.67 4.97 4.80 5.20 4.74 4.74
Ionosphere 7.89 7.51 6.85 7.89 8.36 7.89 8.26

n′ = n/15 SV QEM[10] QEM[50] QEMC[50] Adaboost[10] Adaboost[20] Adaboost[100]
Clean 23.68 22.78 21.39 23.26 24.10 21.67 19.93
Credit 29.25 27.00 25.20 25.55 27.40 27.05 26.70
SpamBase 9.93 7.27 6.59 7.05 8.65 8.61 8.57
BreastW 5.35 5.35 4.47 5.09 5.88 5.88 5.79
Ionosphere 11.41 9.58 8.73 10.42 9.86 9.72 10.99

n′ = /50 SV QEM[10] QEM[50] QEMC[50] Adaboost[10] Adaboost[20] Adaboost[100]
Clean 27.81 26.87 22.29 25.47 26.67 25.42 22.24
Credit 29.65 28.35 24.30 25.08 27.20 26.27 25.60
SpamBase 12.34 7.56 6.70 7.13 7.75 7.85 7.71
BreastW 7.15 6.75 5.13 6.23 7.06 5.66 5.48
Ionosphere 9.15 7.61 6.76 7.89 8.38 7.96 7.89

n′ = n/70 SV QEM[10] QEM[50] QEMC[50] Adaboost[10] Adaboost[20] Adaboost[100]
Clean 38.15 32.16 25.39 27.07 27.86 25.78 25.91
Credit 29.81 28.00 26.50 26.75 26.50 26.88 26.69
SpamBase 11.59 9.07 7.97 8.40 9.93 9.91 9.91
BreastW 12.85 6.36 5.32 6.45 5.79 5.18 5.09
Ionosphere 38.59 16.76 11.34 13.87 11.48 10.77 11.27

Figure 3: 10-cross validation error of SV, QEM, QEMC, Adaboost for the parameters T =
100 ; p′ = p/10; n′ = n, n/5, n/15, n/50, n/70

TRANSACTIONS ON DATA PRIVACY 4 (2011)

176 Gérald Gavin, Julien Velcin, Philippe Aubertin

• Correctness: each party is guaranteed that the output it receives is correct (note that it
is not guaranteed to receive an output).

• Privacy: parties do not learn anything other than the result and what can be inferred
from the result and their input.

• Independence of inputs: private inputs must be chosen independently by the involved
parties. In particular, corrupted parties cannot choose their inputs as a function of
honest parties’inputs.

Other natural properties could be considered (e.g. fairness,...). However, a security defi-
nition cannot be a list properties to satisfy: nothing would ensure that failures cannot be
derived from missing properties.

Adversarial power. Let π be a T -party protocol. We look at the situation where the pro-
tocol is executed on an open broadcast network in presence of an polynomial adversary A,
i.e. A is allowed to run in probabilistic polynomial-time. It is assumed that there is subset
of t < T parties which are corrupted by A. The adversary A is assumed static, meaning
that the subset of parties controlled by A remains unchanged during the protocol. It is also
assumed active, meaning that the corrupted parties can arbitrarily deviate from the proto-
col specification, according to the adversary’s instructions. In particular, an adversary can
replace corrupted parties’inputs with other ones, abort the protocol, send wrong values,
etc...

The Ideal/real paradigm. In order to prove security in the Multi-Party Computation
(SMC) model, the real execution of a protocol is compared to an ideal one. In the ideal
model, we assume the existence of an uncorrupted oracle. Parties send their private inputs
to the oracle which correctly and securely computes the outputs and sends them to the
participating parties. In the ideal/real paradigm, the security is reached if the ideal model
adversary can simulate real executions (complete transcripts of the execution) of the proto-
col. An important issue for datamining applications consists of noticing that an adversary
can replace the corrupted parties’ inputs with arbitrary other ones in the ideal model. It
implies that an adversary controlling parties during the execution of a secure protocol can
also replace the inputs of the corrupted parties. It is an important limitation of this pa-
per and many others dealing with SMC applied to datamining. This will be discussed in
section 9.

The (g1, ..., gl)−hybrid model. In the (g1, ..., gl)−hybrid model [3] the execution of a pro-
tocol π proceeds as in the real-life model, except, that the parties have access to a trusted
party for evaluating the T−party functions g1, ..., gl. In [3], an important modular compo-
sition theorem was proven. If a protocol π is proven secure in the (g1, ..., gl)−hybrid model
and if there exists UC-secure8 protocols πgi for evaluating the functions gi then the protocol
π remains secure if the trusted party is replaced by the execution of the protocol πi. The
use of this composition theorem greatly simplifies proofs of security. Instead of analyzing
a large protocol and proving reductions to subprotocols, it suffices to analyze the security
of the large protocol in an idealized model.

8Here UC stands for universally composable, which denotes that if a protocol is UC-secure according to the
formal definition, then it is secure to use in any context (where it would have been secure to use the ideal func-
tionality).

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Aggregation of Secret Classifiers 177

6 Cryptographic Tools

Homomorphic encryption schemes (El Gamal [9], Paillier [18], Boneh [2]...) have been
shown relevant for secure multi-party computation. The most famous of them is attributed
to Paillier. This encryption scheme is probabilistic, the public key is a k-bit RSA modulus
µ chosen at random and an element g ∈ Z∗

µ2 of order divisible by µ. The plaintext space
for this system is Zµ. In [7], the cryptosystem is generalized to have plaintext space Zµs for
any s smaller than the factor of µ and g has order divisible by µs. To encrypt a ∈ Zµs , one
chooses r ∈ Zµs at random and computes the ciphertext as Epk(a) = garµs

mod µs+1. The
private key sk is the factorization of n, i.e. λ(µ) or equivalent information. This encryption
scheme is shown semantically secure9 under the well-known DCRA assumption [18]. This
encryption scheme is additively homomorphic. Indeed the product of two encryptions is
an encryption of the sum of the encrypted value, i.e. Epk(a)Epk(b) mod µ2 is an encryp-
tion of a + b. Several threshold versions have been proposed in the literature [10]. In these
versions, the public key pk is known by all parties but the private key sk is shared between
parties such that the decryption can be done only if at least t + 1 parties (t < T) agree on
it. In the following, we say that S is a (t + 1, T)−threshold encryption scheme if the secret
key is shared between T parties such that the decryption requires at least t + 1 parties. In
other words, t (dishonest) parties cannot decrypt. Consequently, t should upper-bound the
number of parties controlled by an adversary A. To build the main protocols of this paper,
additional protocols Mult, Sign and EncryptBit are needed.

Definition 3. Let S be a (t+1, T)−threshold homomorphic encryption scheme semantically
secure. The encryption function is denoted by Epk and we assume the existence of UC-
secure protocols Mult, Sign and EncryptBit defined by:

1. Mult. Given public encryptions a and b, honest parties can securely compute an
encryption of ab

2. Sign. Let ξ a security parameter. Given a public encryption of x such that |x| <
µ/2ξ+1, honest parties can securely compute an encryption of the sign of x.

sign(x) =
{

1, if x ≥ 0
0, if x < 0

3. EncryptBit. A party j builds an encryption B of a bit b ∈ {0, 1}. EncryptBit is a
Σ−protocol [13] allowing the party j to prove (to honest parties) that B encrypts a
value belonging to {0, 1} without revealing it.10

A version of protocol Mult can be found in [6]. The protocol Sign can be found in [12] and
[22]. Concretely, let X be an encryption of |x| < bµ/2ξ+1c. Parties compute encryptions
of each bit of the binary decomposition of v = x + bµ/2ξ+1c ∈ {0, ..., dµ/2ξe} with the
protocol BITREP found in [22] itself based on Mult. Then, parties compare v with bµ/2ξ+1c
with a comparison protocol found in [12]. A version of EncryptBit can be found in [7]. The
communication cost and the time complexity of these protocols are linear with respect to
the parties numbers, i.e. O(T). The security of all the protocols in this paper will be
proven secure in the (Mult, Sign, EncryptBit)-hybrid model.

9Encryptions cannot be distinguished from random values in polynomial time.
10At the end of the execution of EncryptBit, each honest party i 6= j is convinced that B encrypts a value

b ∈ {0, 1} without learning b, i.e. if b is randomly chosen then the party i cannot guess b with a probability
significantly better than 1/2.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

178 Gérald Gavin, Julien Velcin, Philippe Aubertin

If a party fails to complete a step during any of the (sub)protocols (e.g., if a proof fails),
then that party is simply discarded and the (sub)protocol is rerun by the remaining parties.
We will not describe this explicitly for the protocols in this paper. For 0 ≤ t < n/2, the case
of a dishonest minority, the above protocols can be directly applied. For n/2 ≤ t < n, the
case of a dishonest majority, adaptations are required to achieve various degrees of fairness.

Notation. Let X, Y be encryptions of x, y, i.e. X = Epk(x) and Y = Epk(y). X ⊕ Y and
X 	 Y will denote an encryption of x + y and x − y. These encryptions can be obtained by using
the homomorphic properties of the encryption scheme S. In the same way, X ⊗ Y will denote an
encryption of xy. This encryption is obtained by invoking Mult.

7 The Protocols

In this section, we assume that the parties have jointly generated a pairwise (pk, sk) by in-
voking the function Generation of a (t+1, T)−threshold homomorphic encryption scheme
S satisfying the definition 1. The domain of Epk is assumed to be the ring Zµ. Let us assume
the existence of an adversary A controlling less than t parties. A knows private data of all
controlled parties and it can replace any controlled party in the protocol. Here, adversaries
can be active, meaning that they can deviate from the protocol in any way [17]. In this sec-
tion, the protocols are shown secure against any polynomial adversary: it implies that they
are correct and private against any adversary. Intuitively, a protocol is said to be correct
if an honest party outputs the correct value (or does not output anything if the protocols
fails). A protocol is said to be private against an adversary A if A cannot learn anything
about the private data of an honest party (except what it can learn with the output and its
own private data). In our case, A will not learn anything about the classifiers hj and the
class values yij of the honest parties. In particular, A will not learn the coefficients mjk and
the coefficients αj output by QEM.

7.1 Protocol SMEM

Informally, SMEM aims to securely compute encryptions ∆j of the coefficients αj output
by QEM. More precisely, SMEM outputs encryptions ∆j of CKαj mod µ with CK ∈ N.

A pre-prepossessing task consists of computing encryptions Mjk of the coefficients mjk.
Let us suppose that each party j has a private database Dj containing a binary variable y.
Each party j has built a private classifier hj to predict a class variable y. Here, it is assumed
that parties agree on an instances list11. Given an instance i ∈ {1, ..., n}, hj(i) denotes the
predicted class of hj and yij denotes the class value of the instance i in the private database
Dj . By convention, yij = 0 if this value is missing in Dj . At the beginning of the protocol
SMEM, each party j broadcasts encryptions Hij and Yij respectively hj(i) and yij for each
instance i = 1, ..., n. Note that to prove that hj(i) ∈ {−1, 1} and yij ∈ {−1, 0, 1}, it suffices
to check that (hj(i) + 1)/2 and y2

ij belong to {0, 1}. This will be used in step 1 of SMEM.
As discussed in Section 2, yij can differ from the true class value yi (if it exists), i.e. yij 6= yi.

For these reasons, on each instance i, the parties must agree on a class value νi computed
with respect to the values yij

12. We propose to define νi as the class the most represented

among the values (yij)j=1,...,T , i.e. νi = sign
(∑T

j=1 yij

)
. Note that νi = 0 if the classes

are equally represented or if this value is unknown by all the parties, i.e. yij = 0 for all

11The method for this is not explained here.
12Note that νi could differ from yi.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Aggregation of Secret Classifiers 179

j = 1, ..., T : in this case, the instance i is discarded. Other aggregating choices could be
considered (see section 2). SMEM starts by computing an encryption Yi of νi. It is done in
step 3 of SMEM by using homomorphic properties and by invoking the protocol Sign.

Let E be the set of instances for which the class νi is defined, i.e. E = {i | νi 6= 0}.
By noticing that |E| =

∑n
i=1 ν2

i , an encryption U of |E| is computed in the step 3. In the
following of the protocol, the instances i /∈ E are implicitly discarded. Parties then must
securely compute encryptions of the coefficients mjk (these errors are computed over E).
More precisely, parties compute encryptions Mjk of the integers |E|mjk defined by

|E|mjk =
∑
i∈E

(hj(i)− νi)(hk(i)− νi) =
n∑

i=1

ν2
i (hj(i)− νi)(hk(i)− νi)

In QEM, each output αj can be written as an arithmetical expression of the inputs. Step
6 of SMEM is simply the transposition of QEM in the encrypted world. The main difficulty
is that QEM manipulates rational numbers while our cryptographic primitives are defined
on the finite ring Zµ. To overcome this, we consider integers a and v such that

∼
γ = γa

and
∼
ρ = vρ/T are integers. At each iteration k in the loop of step 6, instead of computing

an encryption ∆[k]
j of α

[k]
j (where (α[k]

j)j=1,...,T is the tuple computed at the kth iteration in

QEM), ∆[k]
j encrypts α

′[k]
j = T (a|E|v)kα

[k]
j mod µ .

Remark 4. The learning rate ρ is chosen a priori by parties. We do not explicit this choice.
For instance, they can jointly choose ρ = 1/2T ≤ 2/λ1. This choice does not reveal any in-
formation about the coefficients mjk but larger values of ρ (close to 2/λ1) would reduce the
number of iterations K required to reach the convergence. In our experiments (presented
in section 4), ρ = 2T/

∑T
j=1

∑T
k=1 mjk. This choice can be integrated in SMEM. Indeed, it

suffices to state
∼
ρ = 2 and V = Epk

(∑T
j=1

∑T
i=k mjk

)
where V can be computed after step

4 by simply using homomorphic properties.

Remark 5. The regularization parameter γ is chosen a priori by parties. This parameter
should be adjusted in order to resist against overfitting. Here, we do not precise how this
choice is done.

Proposition 6. Let (α)j=1,...,T be the vector output by QEM. Assume the (t + 1, T)−threshold
homomorphic encryption scheme S semantically secure. SMEM is secure, in the (Mult, Sign,
EncryptBit)-hybrid model, against any polynomial adversary controlling less than t parties. More-
over, SMEM outputs encryptions ∆j of α′j = CKαj mod µ with CK < T (avn)K .

Proof. Assuming correctness of the protocols Mult, Sign and EncryptBit, it is easy to check
that the five first steps are correct (we just have to notice that Si =

⊕
Yij encrypts a value

smaller than T < µ/2ξ (µ > 21024 � T)). At the beginning of step 6, ∆j encrypts 1 (T
times the initial coefficients αj of QEM), U encrypts |E|, Mjk encrypts |E|mjk for (j, k) ∈
{1, ..., T}2,

For any k ∈ N, let us denote by α
′[k]
j the encrypted value by ∆j at the end of the kth

iteration in the loop of step 6. Let k ∈ N∗. Let us assume that it exists a constant Ck such
that α

′[k]
j = Ckα

[k]
j where α

[k]
j is the current value of αj in QEM at the end of the step k.

Because
∼
γ = aγ, P

[k+1]
j (the current encryption Pj at the (k + 1)th iteration) encrypts a

TRANSACTIONS ON DATA PRIVACY 4 (2011)

180 Gérald Gavin, Julien Velcin, Philippe Aubertin

Protocol SMEM

Let K ∈ N, γ ∈ Q, ρ ∈ Q be parameters chosen a priori. Let a, v ∈ N be integers such that
∼
γ = γa ∈ N and

∼
ρ = vρ/T ∈ N. Let A, V, Γ,Υ be encryptions of a, v,

∼
γ,

∼
ρ Each party has

computed a classifier hj . For each i = 1, ..., n, each party j = 1, ..., T computes and broadcasts
encryptions Yij ,Hij of yij , hj(i).

Public inputs: K, Γ, Υ, A, V , Yij , Hij , (i, j) ∈ {1, ..., n} × {1, ..., T}.

1. Each party j prove that Yij and Hij encrypt a value belonging respectively to {−1, 1}
and {−1, 0, 1} by invoking EncryptBit for all i = 1...n on respectively (Hij⊕Epk(1))⊗
Epk(2−1) and Yij ⊗ Yij .

2. U = Epk(0)

3. for i = 1 to n

(a) Si =
⊕T

j=1 Yij

(b) Yi = Sign (Si)	 Sign (Epk(−1)⊗ Si)

(c) U = U ⊕ Yi ⊗ Yi

4. compute for (j, k) ∈ {1, ..., T}2

Mjk =
n⊕

i=1

Yi ⊗ Yi ⊗ (Hij 	 Yi)⊗ (Hik 	 Yi)

5. ∆j = Epk(1) for all j = 1, ..., T

6. for k = 1 To K

(a) Pj = A⊗
(⊕T

j′=1 Mjj′ ⊗∆j′

)
⊕ (Γ⊗Mjj ⊗∆j) for all j = 1...T

(b) ∆j = (V ⊗A⊗ U ⊗∆j)⊕
(⊕T

k=1(Pj 	 Pk)
)
⊗Υ for all j = 1...T

7. output ∆j for j = 1, ..., T

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Aggregation of Secret Classifiers 181

value p
′[k+1]
j equal to

p
′[k+1]
j = a|E|

(
T∑

i=1

mjiα
′[k]
k + γmjjα

′[k]
j

)
= Cka|E|p[k+1]

j

where p
[k+1]
j is the value of pj in QEM at the (k + 1)th iteration. Then

α
′[k+1]
j = Ck

(
av|E|α[k]

j + av|E| ρ
T

T∑
i=1

(
p
[k]
j − p

[k]
i

))
= Ckav|E|α[k+1]

j

It follows that
Ck+1 = av|E|Ck

As C0 = T (∆j initially encrypts Tα
[0]
j), we show by induction that SMEM outputs encryp-

tions of
T (av|E|)Kα

[K]
j mod µ

It proves correctness. To argue that no information on the private values yij and hj(i), let
us slightly modify the protocol allowing parties to output all public encryptions (inputs
and intermediate computed encryptions). Let us denote this new protocol as SMEMm.
Assuming that the encryption scheme S is semantically secure, the honest parties cannot
deduce anything more about the encrypted value by ∆j (the corrupted parties can output
these encryptions in SMEM anyway). Thus, it suffices to prove security of SMEMm

Let us build a polynomial simulator S which produces a simulated transcript statistically,
indistinguishable from the complete transcript of the execution of SMEMm. This simulator
is given as input the start-state of the adversary A (in particular it is assumed to know the
auxiliary input z), the public key pk, the encryptions input by the honest parties and the
expected output of the honest parties (i.e. all the encryptions computed during by SMEM)
but of course the simulator does not know private data and private decryption shares of the
honest parties. In the (Mult, Sign, EncryptBit)-hybrid model, the (polynomial) simulators
of Mult, Sign, EncryptBit can be used by S. These simulators should input the encryptions
input and output by the honest parties in the real-life execution13. These encryptions are
known by the simulators because all the intermediate encryptions are assumed known by
S. Thus, each real-life execution (in SMEMm) of Mult or Sign can be achieved by S by in-
voking the simulators of Mult and Sign. It implies that SMEMm itself can be (polynomially)
simulated.
�

7.2 Protocol Prediction

In this section, it is assumed that parties have already executed SMEM and they have en-
cryptions ∆j of CKαj mod µ with CK ≤ T (avn)K , for all j = 1, ..., T (see previous sec-
tion). Let x be a new instance. To securely compute the sign of α1h1(x) + ... + αT hT (x),
each party j computes hj(x) and broadcasts its encryption Yj . Then parties jointly com-
pute an encryption C of CK .(α1h1(x) + ... + αT hT (x)) mod µ by applying Mult. Then, by
invoking the protocol Sign, the parties get an encryption of the predicted class. Finally, the
parties can decide to decrypt it or to input it into other protocols. Nevertheless, correctness

13EncryptBit is a Σ-protocol. Its simulator only inputs the encryption input in the real-life execution [6].

TRANSACTIONS ON DATA PRIVACY 4 (2011)

182 Gérald Gavin, Julien Velcin, Philippe Aubertin

Protocol Prediction

SMEM(K, Γ, Υ, A, V , Yij , Hij , (i, j) ∈ {1, ..., n} × {1, ..., T}) should have been invoked: parties
have output an encryption ∆j of CKαj . Let x be a new instance. Each party j computes yj = hj(x).

Public inputs: encryptions Yj = Epk(yj) and ∆j for j = 1, ..., T ,

1. each party j proves that Yj encrypts a value belonging to {−1, 0, 1} by invoking En-
cryptBit on Yij ⊗ Yij

2. compute C =
⊕T

j=1 ∆j ⊗ Yj

3. output Y =Sign(C)

is ensured only if µ is large enough. According to the specifications of the protocol Sign
(see definition 1), Sign(C) is correct if

µ > 2ξ+1|CK .(α1h1(x) + ... + αT hT (x))|

Proposition 7. Let ξ ∈ N be a security parameter and NK be the Manhattan norm (‖.‖1) of the vec-
tor α output by QEM. Assume the (t+1, T)−threshold homomorphic encryption scheme S seman-
tically secure and µ > 2ξ+1T (avn)KNK , Prediction is secure, in the (Mult, Sign, EncryptBit)-
hybrid model, against any polynomial adversary controlling less than t parties.

Remark 8. In all our experiments, NK ≈ 1 meaning that the absolute values of the negative
coefficients are small.

Proof. As EncryptBit and Mult are correct steps 1 and 2 are correct. To prove correctness
of step 3, it suffices to see that absolute value of the encrypted value by C is smaller than
T (avn)KNK . As µ > 2ξ+1T (avn)KNK , the protocol Sign is secure (see definition 1). Thus,
the output is correct.

The security proof in the (Mult,Sign,EncryptBit)-hybrid model exactly follows the security
proof of proposition 2.
�

Thus, by assuming NK ≈ 1 (according to remark 3), in order to ensure correctness of
SMEM+Prediction it suffices that µ � 2ξ+1T (avn)K .

7.3 Complexity

The number of encryptions/decryptions/modular exponentiations is linear with respect to
T in the protocols Sign, EncryptBit and Mult. The number of invocations of Sign, EncryptBit
and Mult is equal to O(nT 2 +KT). Thus, the number of encryptions/decryptions/modular
exponentiations computations is equal to

O(nT 3 + KT 2)

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Aggregation of Secret Classifiers 183

Furthermore, we noted in the previous section that the domain size dlog2 µe is linear (ne-
glecting logarithm factors) in K (log µ = O(log T + ξ + K log w′)). As the complexities of
the encryptions/decryptions/modular exponentiations are in O(log3 µ) for classical homo-
morphic encryption schemes (Paillier, El Gamal), the complexity of SMEM is

O
(
K3T 2(nT + K)

)
The protocol Mult is invoked T times by Prediction. Thus, the number of encryptions/decry-

ptions/modular exponentiations is quadratic with respect to T in Prediction. By taking the
domain size into account, the complexity is

O
(
K3T 2

)
These computational costs are not relevant for many real applications. Truncations would

be interesting in order to reduce domain size expansion (dlog µe). In [15], the authors pro-
pose a secure multi-party protocol to compute x mod a and x/a (integer division) given
a public divisor a and an encryption of x. This protocol could be used to compute trunca-
tions.

8 Multiclass Extension

The main protocol of this paper intrinsically deals with binary class variable. Our protocol
cannot be directly extended to multi-class learning problems. Dietterich et Bakiri [8] have
proposed an elegant methodology to transform a multiclass problem in several bi-class
problems. The principle consists of affecting to each class u ∈ {1, ...,M} with a binary code

cu = (cu(1), ..., cu(l))

of length l = O(M) where M is the number of classes. The process of building this code is
detailed in [8] (it is inspired by corrector codes). Thus, l learning processes are done. In the
vth learning process the classes cu such that cu(v) = 1 are regrouped. We denote the binary
classifier generated in the vth learning process by hv . For an explicative variables vector x,
we denote as ex the l−bit vector

ex = (h1(x), ..., hl(x))

The predicted class ux is the class whose the code is nearest to ex with respect to the Ham-
ming distance, i.e.

ux = argmin
u=1,...M

(
l∑

v=1

|cu(v)− ex(v)|

)
= argmin

u=1,...M
(‖cu − ex‖1)

In practice, this algorithm has good performance. Minor modifications to our scheme are
needed in order to integrate this. Let us roughly outlines these modifications. First of all,
the parties agree on a (public) class code. In MultiSMEM, each party j sends 2 × l × n
encryptions of hvj(i) and yvji where hvj(i) ∈ {−1, 1} is the prediction of the vth classifier
hvj of the party j on the instance i. If the party j believes (knows) that class k of this instance
j satisfies ck(v) = 1 (resp. ck(v) = −1) and yvji = 1 (resp. yvji = −1) and yvji = 0 if party
j does not have this information. They then build l combinations αv1hv1 + ... + αvT hvT for
v = 1, ..., l by invoking l times SMEM. They get the l × T encryptions ∆vj of αvj .

TRANSACTIONS ON DATA PRIVACY 4 (2011)

184 Gérald Gavin, Julien Velcin, Philippe Aubertin

In MultiPrediction, more significant modifications are required. Indeed, parties jointly
compute an encryption of each component of the vector ex in the same way as done in
Prediction. However they should then compute an encryption of

argmin
u=1,...M

(‖cu − ex‖1)

As the components of the vectors cu(v) and ex are binary,

‖cu − ex‖1 = ‖cu − ex‖2 =
l∑

v=1

(cu(v)− ex(v))2

Thus, computing encryptions Du of ‖cu − ex‖1 is done in step 3 by using the homomor-
phic properties of the underlined homomorphic encryption scheme (e.g. Paillier) and the
protocol Mult. The index ux such that ux = argminu=1,...M (‖cu − ex‖1) can also be found
by using only addition and multiplication and the function Sign. Let z1, ..., zk−1 be k − 1
values such that zm = minu=1,...,k−1(zu) for m ∈ {1, ..., k− 1} and zk a new value. It can be
seen that

argmin
u=1,...,k

(zu) = Sign(zk − zm)m + (1− Sign(zk − zm))k

This simple idea is used in step 6 to compute an encryption of ux. At each iteration of the
loop, Min encrypts zm, and I encrypts argminu=1,...,k (zu).

Proposition 9. Assume the (t + 1, T)−threshold homomorphic encryption scheme S semanti-
cally secure and µ sufficiently large. The protocol MultiPrediction is secure, in the (Mult, Sign,
EncryptBit)-hybrid model, against any polynomial adversary controlling less than t parties. The
complexity of this protocol is

O(M(M + T))

9 Discussion and Future Work

SMEM and Prediction were shown secure against any polynomial adversary. However a
"malicious" adversary A can always alter its inputs. It can choose "malicious" inputs in
order to get relatively large weights αj for the parties it controls. To get relatively large
weights, A is interested in choosing a classifier hj with a low empirical error (even if hj has
a very bad generalization error). In other words, if it knows the class value for a majority
of instances, it could input a classifier with a low empirical error. Thus our scheme is not
robust against an adversary which knows a large number of class values.

Furthermore, to predict the class of a new instance x, each party j should input an encryp-
tion of hj(x) into Prediction. An adversary could input a wrong value in order to change
the prediction of the aggregated classifier.

To overcome this issue, the classifiers hj should belong to a restricted class whose VC-
dimension [24] should be adapted to the number of instances. For instance, parties could
only propose decision trees or neural networks of size lower than a given size. To ensure
this, classifiers hj should be committed such that any party can compute an encryption of
the predicted class. However, in this case, information about individual classifiers would
be leaked. Another way to proceed would consist of imposing statistical controls on in-
puts. It should be also interesting to consider the regret minimization setting of online
learning where several experts can be combined to make an aggregate prediction in spite
of adversaries [4].

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Aggregation of Secret Classifiers 185

Protocol MultiPrediction

MultiSMEM(K, Γ,Υ, (Yvji,Hvji)(v,j,i)∈{1,...,l}×{1,...,T}×{1,...,n}) should have been invoked: par-
ties have output encryptions ∆vj of CKαvj . Let x be a new instance. Each party j computes
yvj = hvj(x).

Public inputs: encryptions Yvj = Epk(yvj) and ∆vj for j = 1, ..., T , and v = 1, ..., l

1. Each party j proves that Yvj encrypts a value belonging to {−1, 0, 1} by invoking
EncryptBit on Yij ⊗ Yij .

2. Ex(v) =Sign
(⊕T

j=1 ∆vj ⊗ Yvj

)
for all v = 1, ..., l

3. for u = 1 to M

(a) Du = Epk(0)

(b) for v = 1 to l

Du = Du ⊕ (Ex(v)	 Epk(cu(v)))⊗ (Ex(v)	 Epk(cu(v)))

4. I = Epk(1)

5. Min = D1

6. for u = 2 to M

(a) S = Sign (Min	Du)

(b) Min = S ⊗Min⊕ (Epk(1)	 S)⊗Du

(c) I = S ⊗ I ⊕ (Epk(1)	 S)⊗ Epk(u)

7. output I

TRANSACTIONS ON DATA PRIVACY 4 (2011)

186 Gérald Gavin, Julien Velcin, Philippe Aubertin

Finally, it would be interesting to consider more general applications where the database
is both horizontally and vertically partitioned. In this case, hj(i) cannot be computed over all
the instances. However, the evaluation of the coefficients mjk only requires that the parties
j and k knows a common subset of instances such that hj(i) and hk(i) can be computed for
all the instances i of this subset. If all these subsets have the same size, the adaptation of
SMEM is straightforward. How to modify SMEM in the other cases?

Acknowledgements. The authors thank the reviewers for their helpful comments.

References

[1] Peter L. Bartlett. For valid generalization the size of the weights is more important than the size
of the network. In NIPS, pages 134–140, 1996.

[2] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In TCC,
pages 325–341, 2005.

[3] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS, pages 136–145, 2001.

[4] Nicolò Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Minimizing regret with label efficient
prediction. IEEE Transactions on Information Theory, 51(6):2152–2162, 2005.

[5] Tingting Chen and Sheng Zhong. Privacy-preserving backpropagation neural network learn-
ing. Trans. Neur. Netw., 20(10):1554–1564, 2009.

[6] R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from threshold homomorphic
encryption. In EUROCRYPT, pages 280–299, 2001.

[7] I. Damgård and M. Jurik. A generalisation, a simplification and some applications of paillier’s
probabilistic public-key system. In Public Key Cryptography, pages 119–136, 2001.

[8] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-
correcting output codes. CoRR, cs.AI/9501101, 1995.

[9] T. Elgamal. A public key cryptosystem and a signature sheme based on discrete logarithms. In
IEEE transactions on Information Theory, pages 31:469–472, 1985.

[10] P. Fouque and J. Stern. Fully distributed threshold rsa under standard assumptions. In IACR
Cryptology ePrint Archive: Report 2001/2008, February 2001.

[11] Sébastien Gambs, Balázs Kégl, and Esma Aïmeur. Privacy-preserving boosting. Data Min.
Knowl. Discov., 14(1):131–170, 2007.

[12] Juan A. Garay, Berry Schoenmakers, and José Villegas. Practical and secure solutions for integer
comparison. In Public Key Cryptography, pages 330–342, 2007.

[13] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In STOC, pages 291–304, 1985.

[14] Shuguo Han, Wee Keong Ng, Li Wan, and Vincent C. S. Lee. Privacy-preserving gradient-
descent methods. IEEE Trans. Knowl. Data Eng., 22(6):884–899, 2010.

[15] J.Guajardo J, B.Mennink, and B.Schoenmakers. Modulo reduction for paillier encryptions and
application to secure statistical analysis. In Financial Cryptography and Data Security - 14th Inter-
national Conference, FC 2010, Lecture Notes in Computer Science, Springer-Verlag, 8 pages, 2010.

[16] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In CRYPTO, pages 36–54,
2000.

[17] O.Goldreich, S.Michali, and A.Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Aggregation of Secret Classifiers 187

[18] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EURO-
CRYPT, pages 223–238, 1999.

[19] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[20] Robert E. Schapire. Theoretical views of boosting. In EuroCOLT, pages 1–10, 1999.

[21] Robert E. Schapire, Yoav Freund, Peter Barlett, and Wee Sun Lee. Boosting the margin: A new
explanation for the effectiveness of voting methods. In ICML, pages 322–330, 1997.

[22] Berry Schoenmakers and Pim Tuyls. Efficient binary conversion for paillier encrypted values.
In EUROCRYPT, pages 522–537, 2006.

[23] Jaideep Vaidya, Chris Clifton, Murat Kantarcioglu, and A. Scott Patterson. Privacy-preserving
decision trees over vertically partitioned data. TKDD, 2(3), 2008.

[24] Vladimir Vapnik. Principles of risk minimization for learning theory. In NIPS, pages 831–838,
1991.

[25] Hwanjo Yu, Jaideep Vaidya, and Xiaoqian Jiang. Privacy-preserving svm classification on ver-
tically partitioned data. In PAKDD, pages 647–656, 2006.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

