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ON THE HOMOTOPY HYPOTHESIS FOR 3-GROUPOIDS

SIMON HENRY, EDOARDO LANARI

Abstract. We show that if the canonical left semi-model structure on the category
of Grothendieck n-groupoids exists, then it satisfies the homotopy hypothesis, i.e. the
associated (∞, 1)-category is equivalent to that of homotopy n-types, thus generalizing
a result of the first-named author. As a corollary of the second named author’s proof of
the existence of the canonical left semi-model structure for Grothendieck 3-groupoids,
we obtain a proof of the homotopy hypothesis for Grothendieck 3-groupoids.

Contents
1 Background 737
2 n-coskeletal and n-truncated models 742
3 Preliminaries on cylinder categories 749
4 Main theorem 759

Introduction
The generalized homotopy hypothesis, formulated in the 80’s by Alexander Grothen-

dieck, roughly states that the homotopy theories of weak n-groupoids and of homotopy
n-types are equivalent. In particular, he conjectured this to be true for a particular kind
of algebraic model of higher groupoids, introduced in [Gr]. Later, Maltsiniotis gave a
more compact definition along the lines of Grothendieck’s one (see [Ma]), and he adapted
it also to the case of (weak) ∞-categories.

Grothendieck ∞-groupoids are defined as Set-valued models of a specific class of
globular theories, called Grothendieck coherators. These have the property of being con-
tractible and cellular: the former provides all the appropriate operations that ought to
exist for a weak ∞-groupoid, while the latter ensures that all the “relations” among the
various operations are encoded by higher homotopies rather than on-the-nose equalities.

In [Lan] and [Lan2], the second author introduces the notion of Grothendieck n-
groupoid and addresses the problem of endowing the corresponding categories with a
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“canonical” left semi-model structure1, i.e. the left semi-model structure whose equiva-
lences are the maps that induce bijections on (suitably defined) homotopy groups, and
the cofibrations are the maps obtained by freely adding arrows with specified source and
target, or by identifying parallel cells of maximal dimension.

In [Lan2], in particular, it is shown that the validity of a certain technical result, called
the pushout lemma, constitutes a necessary and sufficient condition for the existence of the
canonical model structure (see proposition 1.16 for the precise statement), and sufficient
conditions for its validity are given, in terms of a (weaker version of a) path object
construction. A candidate for the underlying globular set of this putative path object is
given in [Lan], and its full construction is achieved for n = 3 in [Lan2], where the category
of Grothendieck 3-groupoids gets endowed with a left semi-model structure.

In [Hen], the first author independently developed tools that enable him to show
that the homotopy hypothesis for Grothendieck ∞-groupoids is valid provided the same
technical result, the pushout lemma, holds true. The main result of the present paper,
theorem 4.8, is an extension of this to the case of n-groupoids for n < ∞ :

Main Theorem. Assuming the canonical left semi-model structure on n-Gpd exists, then
it is equivalent to the model category for homotopy n-types.

We recall in Proposition 1.16 that the validity of the pushout lemma (in dimension
n) implies (actually, it is equivalent to) the existence of the canonical left semi-model
structure. While the existence of the canonical left semi-model structure might seem a
strong assumption, the pushout lemma appears to be a very plausible conjecture.

By putting together the main theorem with the above-mentioned ones in [Lan2], we
obtain the following corollary.

Corollary. Grothendieck 3-groupoids satisfy the generalized homotopy hypothesis and
thus provide an algebraic model for homotopy 3-types.

A similar result in the stricter case of Gray-groupoids was proven by Lack in [Lac2].
One of the main difficulties in adapting the idea of [Hen] to the finite-dimensional

case is that the definition of n-groupoids involves equations in the highest dimension,
while the argument in [Hen] relies on the absence of equations in an essential way. To
solve this problem, we show in Section 2 that n-groupoids can be replaced by a notion of
coskeletal (n + 1)-groupoids, which involves no equations. More precisely, we show that
their homotopy theories are equivalent, even without assuming the existence of the left
semi-model structure, and we show that the existence of the left semi-model structure on
n-groupoids is equivalent to the existence of an analogue of the canonical left semi-model
structure for (n + 1)-coskeletal groupoids.

In Section 3 we revise the tools developed in [Hen], and in Section 4 we show how they
are used to prove (assuming the existence of the left semi-model structure) the equivalence
between (n + 1)-coskeletal groupoids and homotopy n-types, hence obtaining our main
theorem.

1We recall the notion of left semi-model category in Definition 1.14
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A crucial step for this part is the identification of the universal property of the (∞, 1)-
category of homotopy n-types. This can be roughly formulated as follows: the (∞, 1)-
category of homotopy n-types is the free cocomplete (∞, 1)-category on an n-co-truncated
object.

1. Background
This section comprises all the preliminary definitions and constructions needed in the

context of globular (weak) ∞-groupoids. For a more detailed account, see [Ar1] and [Ma].

1.1. Definition. Let G be the category obtained as the quotient of the free category on
the graph

0 1 . . . n n + 1 . . .
σ0

τ0

σ1

τ1

σn

τn

σn+1

τn+1

by the set of relations σk ◦ σk−1 = τk ◦ σk−1, σk ◦ τk−1 = τk ◦ τk−1 for k ≥ 1.
Given integers j > i, define σj

i = σj−1 ◦ σj−1
i , where σi+1

i = σi. The maps τ j
i are

defined similarly.
The category of globular sets is by definition the presheaf category [Gop, Set]. Given

a globular set X, we call X(k) the set of k-cells of X, and we will often denote it by Xk.

1.2. Definition. For 0 ≤ n, we denote with Gn the full subcategory of G generated by
the set of objects {k ∈ G : k ≤ n}.

The category of n-globular sets is by definition the presheaf category [Gop
n , Set].

We now describe more complex shapes, which are a special kind of pasting of globes.
These are needed to express the algebraic structure of n-groupoids. In what follows, we
let 0 ≤ n ≤ ∞, where the case n = ∞ refers to globular sets.

1.3. Definition. We define Θ0 as the cocompletion of G with respect to diagrams of the
form:

i1 i2 i3 . . . im−1 im

i′
1 i′

2 . . . i′
m−1

σ τ σ τ σ τ

Θ0 can thus be realized as a full subcategory of [Gop, Set] (see [Ar1] for a combinatorial de-
scription of this category). We call globular sums the objects of Θ0, and define the height
of the globular sum A associated with the diagram above to be ht(A) = max{ik}k∈{1,..., m}.
Given a globular sum A, we denote with ιA

k the colimit inclusion ik → A, dropping sub-
scripts when there is no risk of confusion.

1.4. Remark. The diagrams we use to describe objects of Θ0 above are from [Ar1]
(chapter 2). It is shown in section 2.3 of [Ar1] how they compare to the objects of
Batanin’s category of trees from [Bat].
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1.5. Notation. It is customary to denote by Di the object of Θ0 corresponding to i ∈ G.
Also, we denote by Θ≤n

0 the full subcategory of Θ0 spanned by globular sums of height less
than or equal to n.

It is not hard to see that there is a fully faithful embedding functor Θ≤n
0 → [Gop

n , Set].
The category Θ≤n

0 plays a similar role for n-groupoids as Θ0 does for ∞-groupoids.

1.6. Definition. An n-truncated globular theory is a pair (E, G), where E is a category
and G : Θ≤n

0 → E is a bijective on objects functor that preserves the colimits of diagrams
of the form (1.3) used to define Θ≤n

0 .
We denote by GlThn the category of n-globular theories and n-globular sums preserv-

ing functors. More precisely, a morphism H : (B, F) → (E, G) is a functor H : B → E
such that G = H ◦ F.

If there is no risk of confusion we will omit the structural map F : Θ≤n
0 → E and simply

denote the globular theory (E, F) by E. This notion of globular theory is also studied
in a more general context in [BMW], where the relation with Batanin’s approach using
globular operads from [Bat] is explained.

1.7. Definition. Given an n-globular theory (E, G), we define the category of its models,
denoted Mod(E), to be the category of functors G : Eop → Set that sends n-globular sums
to limits. Clearly, the Yoneda embedding y : E → [Eop, Set] factors through Mod(E),
and it will still be denoted by y : E → Mod(E). Once again, we will denote the image
of i under y by Di. When it is clear from the context, we denote the structural maps
X (G(σk)) simply by σ, and similarly for the target.

The structural functor G induces a forgetful functor UE : Mod(E) → [Gop
n , Set] to

the category of n-globular sets. When there is no ambiguity, we will drop the subscript
from this notation, simply denoting this forgetful functor by U. Given an E-model X, we
will refer to UX as the underlying n-globular set of X, and to its cells as the cells of X.

Observe that Mod(Θ≤n
0 ) ∼= [Gop

n , Set]. We now record the universal property of the
category of models of an n-globular theory.

1.8. Proposition. Given an n-globular theory E, its category of models Mod(E) enjoys
a universal property: given any cocomplete category D, a cocontinuous functor F : Mod(E)
→ D is determined up to a unique isomorphism by an n-globular sum preserving functor
F : E → D, corresponding to its restriction along the Yoneda embedding. Conversely, any
such functor F : E → D extends in an essentially unique way to a cocontinuous one on
Mod(E).

1.9. Definition. Given an n-globular theory E, we inductively define an E-model ∂Dk

for 0 ≤ k ≤ n + 1 together with a map jk : ∂Dk → Dk for 0 ≤ k ≤ n, which is meant to be
the free E-model on the globular k-sphere (in the same way that Dk actually corresponds
to the free E-model on the k-th globes). We start by setting ∂D0

def= ∅, i.e. the initial
E-model, which by design comes endowed with a map ∂D0 → D0. Next, assume we have
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defined ∂Di and ji for i ≤ k for some k, we define ∂Dk+1 by means of the following
pushout:

∂Dk Dk

Dk ∂Dk+1

jk

jk

uk

lk

where uk and lk can be geometrically interpreted as representing the inclusion of, respec-
tively, the upper hemisphere and the lower hemisphere. It is not hard to prove by induc-
tion that σkjk = τkjk : ∂Dk → Dk+1, so that we get the desired map jk+1 : ∂Dk+1 → Dk+1
thanks to the universal property of pushouts. Moreover, this map satisfies jk+1uk = σk

and jk+1lk = τk.
A pair of k-cells (a, b) of an E-model X is said to be parallel if either k = 0 or

σ(a) = σ(b) and τ(a) = τ(b). We denote the notion of parallelism between cells a, b by
a//b. We can interpret ∂Dk as the free model on a pair of parallel (k − 1)-cells. More
precisely, we have isomorphic sets

Mod(E)(∂Dk, X) ∼= {(a, b) ∈ Xk−1 × Xk−1 | a//b}.

Grothendieck groupoids are defined as models of a certain class of globular theories,
namely the cellular and contractible ones, which we now introduce.

1.10. Definition. Given an n-globular theory E, a globular sum A in E and a pair of
maps (f, g) with f, g : Dk → A representing parallel cells of the representable presheaf
yA, we say that (f, g) is admissible if ht(A) ≤ k + 1. A globular theory (C, F ) is called
contractible if for every admissible pair of maps (f, g) : Dk → A either k = n and f = g,
or k < n and there exists an extension h : Dk+1 → A rendering the following diagram
serially commutative

Dk A

Dk+1

f

g
τkσk

h

The following notion is based on a straightforward variation of the construction ex-
plained in paragraph 4.1.3 of [Ar1], which we record in the following proposition.

1.11. Proposition. Given an n-globular theory E and a set X of admissible pairs of
maps in it, there exists another n-globular theory E[X] equipped with a morphism φ : E →
E[X] in GlThn with the following universal property: given an n-globular theory C, a
morphism H : E[X] → C is uniquely determined up to a unique isomorphism by F

def=
H ◦ φ, together with a choice of an extension to Dk+1 of the image under F of each
admissible pair f, g : Dk → A in X with k < n, or the requirement that F (f) = F (g) if
k = n.

In words, E[X] is obtained from E by universally adding a lift for each pair in X of
non-maximal dimension and by equalizing parallel n-dimensional operations in X.



740 SIMON HENRY, EDOARDO LANARI

1.12. Definition. An n-globular theory E is said to be cellular if there exists a functor
E• : ω → GlThn, where ω is the first infinite ordinal, such that:

1. E0 ∼= Θ≤n
0 ;

2. for every m ≥ 0, there exists a family Xm of admissible pairs of arrows in Em (as
in Definition 1.10) such that Em+1 ∼= Em[Xm];

3. colimm∈ω Em
∼= E.

Equivalently, one can consider arbitrary ordinals γ and assume Xα to be a singleton for
each α < γ.

As anticipated earlier, we now define the class of n-globular theories which are appro-
priate to develop a theory of n-groupoids.

1.13. Definition. An n-truncated (groupoidal) Grothendieck coherator, or, briefly, a
Grothendieck n-coherator, is a cellular and contractible n-globular theory. Given a Gro-
thendieck n-coherator G, the category of n-groupoids of type G is the category Mod(G)
of models of G, which we will sometime simply denote by n-Gpd with no mention of the
coherator itself when there is no risk of ambiguity.

The definition of the homotopy group πn for ∞-groupoids can be found in [Ma] or
[Ar2] and it also applies to n-groupoids. A morphism of n-groupoids is said to be a weak
equivalence if it induces a bijection on these homotopy groups.

It is conjectured that the category of n-groupoids or ∞-groupoids carries a model
category structure. However, for some technical reason, it is more reasonable to conjecture
that it only carries a weakening of Quillen’s notion of a model structure called a left semi-
model category. This notion was introduced in [Spi], see also [Ba] or [Fr]2 for a definition.
They are simply called semi-model structure in [Lan2]. We briefly recall its definition:

1.14. Definition. A left semi-model category is a complete and cocomplete category C
with three classes of maps called weak equivalences, fibrations and cofibrations such that:

• Weak equivalences satisfy 2-out-of-3.

• Cofibrations and trivial fibrations form a weak factorization system.

• Every arrow with a cofibrant domain can be factored as a trivial cofibration followed
by a fibration.

• Every trivial cofibration with a cofibrant domain has the left lifting property against
all fibrations.

• All three classes are closed under retracts.
Essentially, if one were to remove the restriction to arrows with cofibrant domain in

the third and fourth condition, one would recover exactly the definition of Quillen model
category.

2The definition of left-semi-model category in [Fr] is sligtly more general.
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1.15. Definition. We say that a Grothendieck n-coherator G, admits a canonical left
semi-model structure (or canonical model structure for short) if the category of models
of G admits a left semi-model structure whose generating cofibrations are the ∂Dk → Dk

for k ⩽ n and the map ∂Dn+1 → Dn and whose generating trivial cofibrations are the
Dk → Dk+1 for k < n.

Note that if this canonical model structure exists, then all its objects are fibrant as
the generating trivial cofibrations all have retracts. Also, using the usual characterization
of weak equivalence between fibrant objects in a model category in terms of weak lifting
properties against cofibrations (showed for semi and weak model structures in appendix A
of [Hen2]), one easily sees that its weak equivalences are the maps that induce bijections
on all homotopy groups in the sense of [Ar2].

As usual, to prove the existence of this sort of model structure the two hard parts are
to show that weak equivalences satisfy 2-out-of-3 and that the pushouts of the generating
trivial cofibrations are weak equivalences. The first part has been shown for ∞-groupoids
by Ara in [Ar2], and this immediately implies the result for n-groupoids as well. Hence
the existence of the canonical model structure boils down to the following:

1.16. Proposition. Fix a Grothendieck n-coherator G. If for any n-groupoid X of type
G and any morphisms f : Dk → X the natural map

X → X ⨿
Dk

Dk+1

induced by f and σ : Dk → Dk+1 is a weak equivalence, then G admits a canonical left
semi-model structure.

In fact, for the existence of the canonical left semi-model structure, it is sufficient to
check the condition expressed above for n-groupoids X which are “cofibrant” in the sense
of this putative model structure.

This proposition is proved in [Hen] as Theorem 5.3.5 in the case of ∞-groupoids and
the proof can be adapted with almost no changes to the case of n-groupoids.

Alternatively, section 3 of [Lan2], also provides a conditional proof of the existence of
the same left semi-model structure under a slightly different condition: the existence of
well-behaved “path objects” for n-groupoids. The two conditions can easily be deduced
from each other: section 3 of [Lan2] explicitly proves the pushout condition assuming the
existence of path objects. The converse can be shown using the machinery from [Lan],
assuming the pushout lemma one can show that the objects in the image of the functor
Cyl : Θ0 → ∞-Gpd constructed in [Lan] are contractible, which is exactly what we need
to extend this functor to any coherator, and then defining the path-object functor as
PX = Hom(Cyl(_), X).

Finally, in [Lan2] the second named author showed that a large family of Grothendieck
3-coherators admits such a canonical left semi-model category as theorem 4.10. More pre-
cisely, his results apply to all Grothendieck 3-coherators that are constructed by starting
from a coherator for weak 3-categories and then adding to it the structure witnessing the
existence of weak inverses.
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2. n-coskeletal and n-truncated models
In this section we introduce the notion of n-truncated and n-coskeletal model of a

globular theory. We prove that the category of n-groupoids is equivalent to that of n-
truncated ∞-groupoids. We then consider an n-globular theory C≤n suitably obtained
from the n-th stage of a tower for a Grothendieck coherator C for ∞-groupoids, and
we show how to recover the category of its models by looking at the n-coskeletal C-
models. Finally, we show that the homotopy theories modelled by n-groupoids and (n+1)-
coskeletal ∞-groupoids coincide. While fairly elementary, the results of this section are a
key step in the proof of the main theorem as the methods from [Hen] can only be directly
applied to the category of coskeletal ∞-groupoids.

2.1. Definition. Define a functor tn : G → Gn whose action on objects is given by:

tnDk
def=

Dk k ≤ n

Dn k > n

with the unique possible extension to morphisms. This induces an adjunction of the form:

[Gop, Set] [Gop
n , Set]

tn!

⊥

t∗
n

(1)

where t∗
n is given by precomposition and its left adjoint tn! is the left Kan extension Lany(y◦

tn) displayed below:
G Gn [Gop

n , Set]

[Gop, Set]

tn

y

y

tn!

It is easy to prove that one has:

(t∗
nX)k =

Xk k ≤ n

Xn k > n

and for ε = σ, τ we have (t∗
nX)(εk) = X(εk) if k ≤ n and the identity otherwise. Similarly,

we get

(tn!Y )k =
Yk k < n

Yn/ ∼ k = n

where ∼ is the equivalence relation generated by posing that given two n-cells x, y in Y ,
we have that x ∼ y if there is an (n + 1)-cell H : x → y.
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2.2. Definition. A globular set X is called n-truncated if the unit of the adjunction
tn! ⊣ t∗

n is an isomorphism at X, i.e. ηX : X
∼=−→ t∗

n ◦ tn!X.
The following result is straightforward.

2.3. Proposition. The adjunction in (1) restricts to an equivalence of categories between
the category of n-truncated globular sets and that of n-globular sets.

2.4. Definition. Given an n-globular set X and a pair of k-cells a, b ∈ Xk, we define
X(a, b) to be the n − k − 1-globular set of cells from a to b, i.e. we define its set of j-cells
to be

{h ∈ Xk+j+1 | σj+1(h) = a, τ j+1(h) = b},

and we endow it with the globular structure that is inherited from that of X.
We can give the following useful characterization of n-truncated globular sets as fol-

lows.

2.5. Lemma. A globular set X is n-truncated if and only if for each pair of k-cells x, y
in X with k ≥ n one has:

X(x, y) =
1 x = y

∅ x ̸= y

where 1 denotes the terminal globular set.

2.6. Definition. Given a globular theory C, we say that a C-model X is n-truncated if
its underlying globular set is such. We denote the full subcategory of C-models spanned by
n-truncated objects by Mod(C)n-tr.

2.7. Construction. Let C be a Grothendieck coherator for ∞-groupoids. We want to
define an n-truncated Grothendieck coherator out of C, denoted with C

≤n in such a way
that we have an equivalence of categories of the form:

Mod(C)n-tr ≃ Mod(C≤n)

We define it via a tower of length n + 1, in the following manner: consider the defining
tower of C, consisting of a functor C• : ω → GlTh into the category of globular theories
and globular maps. Without loss of generality, we can assume Ck+1 = Ck[Ak] where each
pair (h1, h2) ∈ Ak is of the form ∂Dk+1 → B for some globular sum B. Informally, this
means that we only add (k + 1)-dimensional operation when going from Ck to Ck+1. This
assumption lets us construct a tower of n-globular theories of length n+1 C≤n

• : n + 1 →
GlThn by setting C≤n

k+1
def= C≤n

k [A′
k], where A′

k corresponds to Ak under the identification
of C≤n

k with the full subcategory of Ck on globular sums of dimension less than or equal
to n. This holds since both categories have the same universal property. Finally, set
C≤n = C≤n

n+1
def= C≤n

n [A′
n], i.e. the universal globular theory obtained by identifying pairs

in A′
n.
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2.8. Proposition. There is an equivalence of categories of the form:

Mod(C)n-tr ≃ Mod(C≤n) ≃ n-Gpd (2)

Moreover, this adjunction is compatible with the one depicted in (1) at the level of under-
lying globular sets.
Proof. We prove by induction on k that there is an equivalence of categories of the form
Mod(Ck)n-tr ≃ Mod(C≤n

k ), where we extend the tower of C≤n with identities. When k = 0
this is precisely the content of Proposition 2.3. Now let’s assume the statement holds for k,
and let’s prove it for k + 1. Let 0 < k < n, by definition, an n-truncated Ck+1-model X is
precisely an n-truncated Ck-model together with structural maps X(ϱ) : X(B) → X(k+1)
with s(X(ϱ)) = X(h1) and t(X(ϱ)) = X(h2) for every pair (h1, h2) : ∂Dk+1 → B in Ak.
By inductive assumption, this corresponds exactly to a C≤n

k -model with interpretation of
all maps added as fillers of pairs in A′

k which is by definition a C≤n
k+1-model.

Now let k = n + 1. By definition, an n-truncated Cn+1-model X is precisely an
n-truncated Cn-model together with structural maps X(ϱ) : X(B) → X(n + 1) with
s(X(ϱ)) = X(h1) and t(X(ϱ)) = X(h2) for every pair (h1, h2) : ∂Dn+1 → B in An. But,
since X is n-truncated, we have that both X(σn+1) and X(τn+1) coincide with the identity
on X(n), so that the data correspond, again by inductive assumption, to a C≤n

n -model
which equalizes each pair (h1, h2) in A′

n. This is clearly equivalent to being a C
≤n

n+1-model.
Finally, let k ≥ n + 1. To conclude the proof it is enough to show that the category

of n-truncated Ck+1-models is equivalent to that of n-truncated Ck-models. Arguing as
before, we see that if (h1, h2) is a pair in Ak and X is n-truncated, then in particular
h1 and h2 are parallel, which gives us X(h1) = s(X(h1)) = X(s(h1)) = X(s(h2)) =
s(X(h2)) = X(h2) for dimensionality reasons (since X is n-truncated). Therefore, the
interpretation of X(ϱ) exists and is uniquely given by X(h1) = X(h2). This proves that
Mod(Ck)n-tr ≃ Modn(Ck+1)n-tr, which concludes the proof.

Consider now the inclusion ιn : Gn → G, which induces an adjunction of the form:

[Gop, Set] [Gop
n , Set]

ιn
∗

⊥
ιn∗

(3)

as before. Explicitly, we have:

(ι∗
nX)k = Xk for every k ≤ n

and

(ιn∗X)k =
Xk k ≤ n

{(x, y) ∈ Xk−1 × Xk−1 : x//y} k > n

Informally, in ιn∗X there is exactly one (k + 1)-cell between any pair of parallel k-cells
whenever k ≥ n.
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2.9. Definition. A globular set X is said to be n-coskeletal if the unit of the adjunction
ι∗
n ⊣ ιn∗ is an isomorphism at X, i.e. ηX : X

∼=−→ ιn∗ι
∗
nX.

We record the following straightforward result.

2.10. Proposition. The adjunction in (3) restricts to an equivalence of categories be-
tween the category of n-coskeletal globular sets and that of n-globular sets.

2.11. Definition. Given a globular theory C, we say that a C-model X is n-coskeletal
if its underlying globular set is such. We denote the full subcategory of C-models spanned
by n-coskeletal objects by Mod(C)coskn.

We can give the following useful characterization for the classes of n-coskeletal globular
sets.

2.12. Proposition. A globular set X is n-coskeletal if and only if for each pair of parallel
k-cells x//y in X with k ≥ n one has:

X(x, y) = 1

where 1 denotes the terminal globular set.
Equivalently, the category of n-coskeletal globular sets consists of the full subcategory

of the category of globular sets spanned by the objects which are orthogonal to the set of
maps {jk : ∂Dk → Dk}k≥n+1.

We let C≤n be the n-globular theory obtained by skipping the last step in the con-
struction of C≤n, i.e. the identification of operations in the top dimension.

2.13. Proposition. There is an equivalence of categories between n-coskeletal C-models
and C≤n-models, i.e.

Mod(C)coskn ≃ Mod(C≤n)
Moreover, this adjunction is compatible with the one depicted in (3) at the level of under-
lying globular sets.
Proof. We prove the statement by induction on the stage k of their respective defining
towers, i.e. we prove that Mod(Ck)coskn ≃ Mod(C≤n

k ) for every k (where we extend
the tower of n-globular theories with identities). The case k = 0 has been proven in
Proposition 2.10.

Now suppose it holds for 0 < k < n and let’s prove it for k+1. Observe that, by defini-
tion, a Ck+1 model X precisely corresponds to a Ck model together with an interpretation
X(ϱ) : X(A) → X(k + 1) of every map ϱ added as a filler of (h1, h2) : ∂Dk+1 → A with
(h1, h2) ∈ Ak, satisfying the property that X(σ)◦X(ϱ) = X(h1) and X(τ)◦X(ϱ) = X(h2).
By the inductive hypothesis, if X is n-coskeletal, then it corresponds to a C≤n

k -model with
interpretation for every filler of pairs in A′

k, which is precisely a C≤n
k+1-model.

To conclude the proof, it is enough to show that, for every k ≥ n, the category of
n-coskeletal Ck-models and that of n-coskeletal Ck+1-models are equivalent. Given any
(h1, h2) : ∂Dk+1 → A in Ak, we have to define a map X(ϱ) : X(A) → X(k + 1) satisfying
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the property that X(σ) ◦ X(ϱ) = X(h1) and X(τ) ◦ X(ϱ) = X(h2). This is accomplished
by observing that, by Proposition 2.12, X admits unique fillers of k-spheres.

2.14. Remark. It is possible to build a Grothendieck coherator C for ∞-groupoids given
a Grothendieck coherator C′ for n-groupoids, in such a way that the n-truncation of C
described above coincides with C′. The procedure, which we just sketch, goes as follows:
the first n-steps of the tower for C correspond to those for C′, i.e. we choose the same pairs
to which we add fillers. Then we define Ck for k > n by adding fillers for all possible pairs
of parallel maps in Ck−1. We leave the proof that this indeed produces a Grothendieck
coherator for ∞-groupoids and that its n-truncation coincides with C′ to the interested
reader.

We now turn to examine how n-truncated and n-coskeletal objects are related to one
another.

2.15. Lemma. Every n-truncated globular set is (n + 1)-coskeletal.
Proof. Let X be an n-truncated globular set. Thanks to the previous proposition, it
suffices to show that X(x, y) = 1 for every pair of parallel (n + 1)-cells x, y, which is true
because x//y implies x = y since X is n-truncated.

In particular, the adjunction in (1) restricts to one of the form:

[Gop, Set]cosk(n+1)
[Gop, Set]n-tr

tn!

⊥

t∗
n

(4)

where the category on the left denotes the full subcategory of globular sets spanned by
(n + 1)-coskeletal globular sets, and that on the right denotes the one spanned by n-
truncated globular sets. It is actually possible to extend this adjunction, as we record
here below.

2.16. Proposition. There is an adjunction of the form:

Mod(C)cosk(n+1) Mod(C)n-tr

tn

⊥

in

(5)

which is compatible with the one depicted in (4) at the level of underlying globular sets.
Proof. By definition, given an (n + 1)-coskeletal C-model X, we have:

(tnX)k =
Xk k < n

Xn/ ∼ k ≥ n
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where source and target maps in dimension above n are given by identities. We know that
X is equivalently a Cn+1-model thanks to Proposition 2.13, since it is (n + 1)-coskeletal.
There is a unique structure of Cn+1-model on tnX such that the natural map X → tnX
is a morphism of Cn+1-models (here, we are implicitly identifying (n + 1)-coskeletal C-
models and Cn+1-models). Indeed, a Cn+1-model structure on tnX is equivalent to that
of a C

≤n-model, since tnX is n-truncated by definition. This can be obtained as follows:
given an operation ϱ : Dn → A added in going from Cn−1 to Cn (i.e. ϱ belongs to A′

n−1

in the previously established notation) we set tnX(ϱ)(x) def= [X(ϱ)(x)] for every map
x : A → tnX, where square brackets are used to denote equivalence classes. The fact that
this is well defined can be checked as follows: given any pair (h, h′) : ∂Dn+1 → A in An

with added filler ϱ in Cn+1, we have s(X(ϱ)(x)) = X(h)(x) and t(X(ϱ)(x)) = X(h′)(x),
and therefore X(h)(x) and X(h′)(x) are identified after applying the truncation functor.

Let’s prove that given any f : X → inY there exists a unique map of n-truncated
models f̄ : tnX → Y such that in(f̄) ◦ ηx = f . We know there is a unique map f̄ between
the underlying globular sets thanks to (4), so we only have to prove it preserves operations.
It is enough to show it preserves the generating operations, i.e. the ones added as fillers
in the tower associated with C. In fact, it is enough to prove it for operations ϱ : Dk → A
with ht(A) ≤ k. Consider the square

tnX(A) tnX(k)

Y (A) Y (k)

tnX(ϱ)

f̄ f̄

Y (ϱ)

It certainly commutes if k < n, since in that range of dimensions tnX coincides with
X, and we already know that f is a map of models. If k = n then we can use the fact
that the map of sets (ηX)A : X(A) → tn(X)(A) which sends an element x ∈ X(A) to
the equivalence class it represents, denoted by [x], is surjective, and that tnX(ϱ)([x]) =
[X(ϱ)(x)]. It follows that the diagram commutes since f is a map of models.

Finally, if k > n, then we have (f̄ ◦ tnX(ϱ)) ◦ ε = f̄ ◦ tnX(ϱ ◦ ε) = Y (ϱ ◦ ε) ◦ f̄ =
(Y (ϱ)◦f̄)◦ε where ε = σ, τ . This implies that the square commutes since Y is n-truncated,
and concludes the proof.

2.17. Proposition. Given an (n + 1)-coskeletal C-model X we have

πk(X, a, b) ∼= πk(tnX, a, b)

for every k ≤ n and every pair of (k − 1)-cells a, b in X (or, equivalently, in tnX).
Similarly, its left adjoint in also respects homotopy groups, i.e, for every k ≤ n,

πk(Y, a, b) ∼= πk(inY, a, b).
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Proof. Since (tnX)k = Xk for every k ≤ n−1, the statement clearly holds for k ≤ n−2.
Now consider πn−1(X, a, b): this is the set {[H] : H ∈ Xn−1, H : a → b} where we are
quotienting by the equivalence relation given by H ∼ H ′ if and only if there exists an
α : H → H ′. Clearly, this coincides with πn−1(tnX, a, b), since quotienting n-cells of X
does not affect the equivalence relation.

Finally, since n-cells of tnX are equivalence classes of n-cells of X up to (n + 1)-cells,
we get:

πn(X, a, b) ∼= (tnX(a, b))0 ∼= πn(tnX, a, b)
since, by definition, tnX has no non-identity (n + 1)-cells, i.e. there exists γ : H → H ′ if
and only if H = H ′, when H, H ′ are n-cells.

The proof for in is entirely analogous and therefore it is left to the reader.
We now use the functor:

Mod(C)cosk(n+1)
tn−→ Mod(C)n-tr ≃ n-Gpd

to define two classes of maps W , W ′ in Mod(C)cosk(n+1) . We let W be the class of weak
equivalences of ∞-groupoids between (n + 1)-coskeletal C-models, and W ′ be t−1

n (Wn),
where Wn is the class of weak equivalences of n-groupoids. Since πn+1(X, a, b) is always
trivial for an (n + 1)-coskeletal C-model X, it follows from the previous proposition that:

2.18. Corollary. The two classes of maps W and W ′ introduced above coincide.
The following result allows to transfer the canonical left semi-model structure on n-Gpd

(if it exists) to a Quillen equivalent one on (n + 1)-coskeletal ∞-groupoids. That is, if
similarly to Definition 1.15 we introduce:

2.19. Definition. Given a Grothendieck coherator C, we says that Mod(C)cosk(n+1) ad-
mits a canonical left semi-model structure, if it admits a left semi-model structure whose
generating cofibrations are the ∂Dk → Dk for k ≤ (n + 1) and whose generating trivial
cofibrations are the Dk → Dk+1 for k ≤ n and Dn+1 → ∂Dn+2.
And one has:

2.20. Theorem. Assuming the canonical left semi-model structure on n-Gpd exists, then
the canonical left semi-model structure on the category Mod(C)cosk(n+1) also exists. More-
over, the adjunction in (5) is a Quillen equivalence between these two semi-model struc-
tures.

The converse is also true, but will not be needed in the present paper, and does not
seem very useful.
Proof. We define the set of generating cofibrations and generating trivial cofibrations
of Mod(C)cosk(n+1) as in Definition 2.19 . The class of weak equivalences is defined to be
W , and we observe that tn sends generating cofibrations (resp. trivial cofibrations) to
cofibrations (resp. trivial cofibrations). Moreover, since W = W ′, the only non-trivial
fact that we have to check is that J-inj ∩ W = I-inj, where K-inj denote the class of
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arrows with the right lifting property with respect to a given class of arrows K. It is
clear that a map in Mod(C)cosk(n+1) is a fibration (resp. trivial fibration) if and only if is
such as a map of ∞-groupoids, so we can use the argument for ∞-groupoids to show that
a fibration is a weak equivalence if and only if it is a trivial fibration (see, for instance,
Lemma 3.6 in [Lan2]).

Therefore, tn is a left Quillen functor, and thanks to Proposition 2.17, we have that
both tn and in preserve and detect weak equivalences. This is enough to conclude that the
adjunction is indeed a Quillen equivalence, since we have tn(ηX : X → in ◦ tnX) ∼= IdtnX ,
which implies that ηX is a weak equivalence in Mod(C)cosk(n+1) . The counit happens to
be an isomorphism for every n-groupoid Y so this concludes the proof.

2.21. Remark. We can also observe that the existence of a left semi-model structure on
n-Gpd as described is not necessary to prove that the two homotopy theories modelled by,
respectively, (n + 1)-coskeletal ∞-groupoids and n-groupoids, are equivalent. Indeed, we
still get an adjunction of relative categories of the form:

(Mod(C)cosk(n+1) , W) (n-Gpd, Wn)

tn

⊥

in

(6)

with the property that both the unit and the counit are weak equivalences. It follows
directly from Proposition 7.1.14 of [Cis] that this adjunction must then induce an equiv-
alence of the (∞, 1)-categories associated with these two relative categories.

3. Preliminaries on cylinder categories
In this section we review the theory of cylinder and pre-cylinder categories developed

in [Hen].

3.1. Definition. A pre-cylinder category is a small3 category C together with a class of
arrows called cofibrations and a class of arrows called weak equivalences, satisfying the
following axioms:

1. Cofibrations and equivalences contain isomorphisms and are stable under composi-
tions.

2. Weak equivalences satisfy 2-out-of-6, i.e. if fg and gh are equivalences then f, g, h
and fgh are equivalences as well.

3. C has an initial object and every object is cofibrant.

4. Pushouts of cofibrations exist and are cofibrations.
3Though we will also occasionally consider some large pre-cylinder categories.
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5. Given a diagram:

C A B

C ′ A′ B′

∼ ∼ ∼

where the vertical maps are weak equivalences and the hooked arrows are cofibrations,
the induced map C

∐
A B → C ′ ∐

A′ B′ is a weak equivalence as well.

For example, the category of cofibrant objects in any model category, or more generally
any Brown category of cofibrant objects is a pre-cylinder category. The last axiom is
sometimes called the cube lemma or gluing lemma in that context and says that pushouts
along cofibrations are homotopy pushouts. In pre-cylinder categories, it implies both that
a pushout of a trivial cofibration is again a weak equivalence and that a pushout of a
weak equivalence along a cofibration is a weak equivalence. A proof of that this axiom
holds for categories of cofibrant objects can be found as lemma 1.4.1 in [Rad].

Morphisms of pre-cylinder categories are the functors that preserve cofibrations, weak
equivalences, the initial object and pushout of cofibrations. Pre-cylinder categories form
a 2-category, that, in an appropriate 2-categorical sense, has all limits and colimits (it
is a locally presentable 2-category). It is also possible to develop a theory of “freely
constructed pre-cylinder categories” (also to be interpreted in a 2-categorical sense) for
which we refer to Section 3.2 of [Hen]. Here below we present an example we will use
frequently, while a more general description of free objects will be discussed in remark
3.12:

3.2. Construction. The free pre-cylinder category on an object ∗, denoted F∗, is the
category of finite sets, where cofibrations are the monomorphisms, weak equivalences are
the isomorphisms, and the object ∗ corresponds to the singleton. This is a consequence
of the fact that a morphism X : F∗ → C is entirely determined by the image of ∗, and the
image of a general finite set S is given by:

X(S) =
∐
s∈S

X(∗)

3.3. Definition. A cylinder category is a pre-cylinder category in which:

1. Every trivial cofibration j admits a retraction r, i.e. a map such that rj = Id.

2. Every object X admits a cylinder object, i.e. a cofibration/weak equivalence factor-
ization of its co-diagonal map depicted as

X
∐

X ↪→ IX
∼→ X
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Note that this is essentially the same as a Brown category of cofibrant objects, up to
two differences: the requirement that trivial cofibrations have a retraction, and the fact
that we are requiring the 2-out-of-6 condition instead of the weaker 2-out-of-3 condition.
Our cylinder categories are exactly the duals of the path categories of [MB].

3.4. Example. If M is a left semi-model category (or a Quillen model category) in
which every object is fibrant then the category Cof(M) of cofibrant objects of M , with
its cofibrations and weak equivalences is a (large) cylinder category.

3.5. Remark. Morphisms of cylinder categories are the morphisms of the underlying
pre-cylinder categories. Note that (as they are special case of Brown categories) there is a
good notion of homotopy equivalence between two cylinder categories, i.e. morphisms that
induce an equivalence of categories between the formal localizations of the two cylinder
categories at their set of weak equivalences. Other characterizations of this notion of
homotopy equivalences can be found in section 2.3 of [Hen] (where they are called acyclic
morphisms).

3.6. Construction. Given a (small) pre-cylinder category C, one defines its completion,
or category of models, Mod(C) to be the category of functors:

Cop → Set

that sends the initial object in C to the singleton and pushouts along cofibrations to
pullbacks of sets.

The Yoneda embedding C → Mod(C) defines a functor that sends the initial object to
the initial object and commutes with pushouts along cofibrations. We will always identify
C with its image under this functor.

We consider the weak factorization system on Mod(C) generated by the image (under
the Yoneda embedding) of the cofibrations in C. Therefore, the right class (called trivial
fibrations) consists of the maps with the right lifting property against all cofibrations in
C, and the left class is equivalently described as the class of maps with the left lifting
property against all trivial fibrations. These are the retracts of transfinite compositions
of pushouts of cofibrations in C. We will also use the term “cofibrations” to refer to the
maps in the left class.

For example, it was shown in [Hen] that there is a pre-cylinder category whose models
are Grothendieck’s ∞-groupoids. We will review this construction and generalize it to
n-groupoids in 4.2.

We can now formulate the first main result in [Hen] (see [Ba] for the notion of left/right
(semi) model structure):

3.7. Theorem. If C is a cylinder category, then its category of models admits a left
semi-model structure where:

• The cofibrations/trivial fibrations weak factorization system is generated by the cofi-
brations in C as in 3.6.
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• The trivial cofibrations/fibrations weak factorization system is generated by the triv-
ial cofibrations in C.

• Every object of Mod(C) is fibrant.

If F : C → D is a morphism of cylinder categories, then it induces a Quillen adjunc-
tion:

F! : Mod(C) ⇆ Mod(D) : F ∗

Where F ∗ is composition of functors with F and F! is the left Kan extension of F : C →
D ⊂ Mod(D). If F is a homotopy equivalence in the sense of 3.5, then this Quillen pair
is a Quillen equivalence.

We can formulate a partial converse result to this theorem, asserting that if the cate-
gory of models has a model structure satisfying few additional conditions, then the model
structure is obtained from the construction above. This will be useful later.

3.8. Lemma. Let C be a pre-cylinder category with a set of generating cofibrations I,
in the sense that every cofibration is a finite composite of pushout of arrows in I, and
whose class of weak equivalences is generated by a set J of trivial cofibrations, in the
sense that it is the smallest class of equivalences satisfying definition 3.1 and containing
J . Furthermore, assume that:

• Mod(C) carries a left semi-model structure in which the cofibrations are the usual
cofibrations of the category of models, the generating trivial cofibrations are the ar-
rows in J and every object is fibrant.

• Each generating cofibration A ↪→ B of C admits a relative cylinder object B
∐

A B ↪→
IAB

∼→ B which is also in C.

Then C is a cylinder category.
Proof. The proof is essentially the same as proposition 5.3.6 of [Hen]. The key ob-
servation is that given a cofibration f : A ↪→ B in C which is obtained as an n-times
iterated pushout of the generating cofibrations, one can show by induction on n (using
the model structure on Mod(C)) that it admits a relative cylinder object such that the
map B ↪→ IAB is an iterated pushout of the maps D ↪→ ICD where C ↪→ D are the
generating cofibrations appearing in the construction of A ↪→ B. In particular, every
cofibration of C has a relative cylinder object in C. Every trivial cofibration in C is au-
tomatically a trivial cofibration in Mod(C) as well, so that every object of Mod(C) is
fibrant. This, in turn, implies that every trivial cofibration of C admits a retraction, which
concludes the proof.
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The other main contribution of [Hen] is the construction of a “weak model structure”
on the category of pre-cylinder categories whose fibrant objects are the cylinder categories,
and whose weak equivalences between fibrant objects are the homotopy equivalences of
3.5. We recall in Remark 3.13 what it means to be a weak model category exactly. This
is closely related to the structure of category of fibrant objects on Brown categories of
cofibrant objects constructed by Szumilo in [Szu].

3.9. Remark. The notion of weak model category was later formalized and studied in
[Hen2], but we will not directly need this in the present paper. Note that here we are also
committing a small abuse of language: the structure on pre-cylinder categories is only a
weak model structure in a 2-categorical sense (i.e. all the liftings properties are only up
to coherent isomorphism). As [Hen2] was written long after [Hen], the language of weak
model categories was actually not explicitly used in [Hen], instead all the factorizations
and lifting properties are stated explicitly. We refer the reader to section 4 of [Hen] for
further details.

More about this weak model structure is provided below. But first, let’s introduce the
main example of how this weak model structure can be used to construct and compare
other model categories.

3.10. Definition. A cylinder coherator is a fibrant replacement of F∗, the free pre-
cylinder category on one object, in the weak model structure on pre-cylinder category.
This amounts to a trivial cofibration F∗

∼
↪→ C with C a cylinder category.

It follows from what we have explained so far that:

• The category of models of a cylinder coherator is endowed with a Quillen model
structure. Indeed, cylinder coherators are fibrant pre-cylinder categories, hence
cylinder categories.

• Given two cylinder coherators, there is a canonical Quillen equivalence between their
categories of models. Indeed they are both fibrant replacements of the same object,
so there is a weak equivalence between them, and by the last claim of theorem 3.7
this induces a Quillen equivalence between their category of models.

Moreover, it is shown in [Hen, section 5.2] that a certain cylinder coherator has its
category of models which is Quillen equivalent to the model category of spaces, so by the
observation above they all share this property. This is the key ingredient of the proof in
[Hen] that if the canonical left semi-model structure on Grothendieck ∞-groupoids (for
some Grothendieck coherator) exists, then it must be Quillen equivalent to the model
category of Spaces. It is relatively easy to see that Grothendieck ∞-groupoids (with their
natural notion of cofibration) are the models of a certain pre-cylinder category. Using
lemma 3.8 one can then show that if the model structure exists, then this pre-cylinder
category is a cylinder category. It is relatively easy to show (this argument will be
reproduced in the following section) that if it is fibrant, then it is a cylinder coherator,
and hence its “model category of models” is equivalent to the model category of spaces.
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3.11. Remark. Both notions of “coherator” mentioned in this paper (Grothendieck co-
herators and cylinder coherators) can be thought of as “definition of ∞-groupoids”, though
they have fairly different properties : A Grothendieck coherator describe a notion of ∞-
groupoids which follows globular combinatorics and uses only composition operations
defined as operations between the objects of Θ0. A Cylinder coherator describes a notion
of ∞-groupoid that can use a much more general combinatorics but is constructed in a
way that forces the homotopy hypothesis to hold for this notion. The general strategy we
follow to prove the homotopy hypothesis for Grothendieck ∞-groupoids (discussed in the
next section) is to show that (under some assumptions) the type of definition produced
by Grothendieck coherators can also be obtained by cylinder coherators.

We now give some more precise description of this weak model structure on pre-
cylinder categories:

To begin with, there are three generating cofibrations:

• The map F∗ → F↪→ that “freely adds a cofibration with specified domain”. That is
F∗ is the free pre-cylinder on an object as described in construction 3.2 and F↪→ is
the free pre-cylinder category on two objects with a cofibrations between them. F↪→
can be described explicitly as the category of maps of finite sets X → Y , where a
morphism from f : X → Y to f ′ : X ′ → Y ′ is a commutative square of the form:

X X ′

Y Y ′

f

u

g

d

Cofibrations are the squares as above where both maps (u, d) are monomorphisms.
The “universal” cofibration (which generates F↪→) is given by the unique square with
vertices as follows

∅ ∗

∗ ∗

And the map F∗ → F↪→ sends the generating object of F∗ (i.e. the singleton) to
the domain of the universal cofibration, i.e. (∅ → ∗) ∈ F↪→. Taking a pushout of
pre-cylinder categories along the map F∗ → F↪→ results in freely adding a cofibration
with specified domain to a given pre-cylinder category.

• The map F↪→ → Fr that freely adds a retraction to a given cofibration.

• The map F→ → F∼ that freely turns an arrow into a weak equivalence.
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3.12. Remark. The category of models Mod(C) of a pre-cylinder category C can be
described as the category of morphisms from C to the pre-cylinder category Setop in
which every map is a cofibration and a weak equivalence. In particular, the category
of models of the free pre-cylinder category on a pushout or of a freely constructed pre-
cylinder category is easy to describe, using the universal property of such construction
to describe what are morphisms into Setop. This is exploited in more detail in section
3.2 of [Hen]. For example, if C is a pre-cylinder category, X ↪→ Y is a cofibration in
C and one considers the pre-cylinder category C+ freely obtained from C by adding a
retraction to X ↪→ Y (i.e. taking a pushout along the generating cofibration F↪→ → Fr

mentioned above), then a model of C+ is the same as a model M of C such that the map
M(X) → M(Y ) is endowed with a retraction.

Continuing along these lines a little further, one can show that cofibrant pre-cylinder
categories correspond exactly to Cartmell’s Generalized algebraic theory (see [Cart]) in
which there is no equality axiom but only type introduction axiom and term introduction
axiom.

One has two generating anodyne morphisms of pre-cylinder categories:

• The map that freely adds a retraction to a given trivial cofibration.

• The map that freely adds a factorization as a cofibration followed by a weak equiv-
alence to a given morphism.

Fibrant objects and fibration between fibrant objects are defined by the right lifting
property against the generating anodyne morphisms. Note that the fibrant objects are
exactly the cylinder categories. One then defines trivial cofibrations as the cofibrations
with the left lifting properties against all fibrations between fibrant objects. Finally, the
general fibrations are the morphisms with the right lifting property against all trivial
cofibrations.

3.13. Remark. The fact that this forms a “weak model category” is summarized by the
following properties:

• Trivial fibrations are defined as the maps with the right lifting property against
generating (hence all) cofibrations. Fibrations are defined as having the right lifting
property against all trivial cofibrations. In particular one has all the expected lifting
properties.

• An arrow between fibrant objects, i.e. a functor between cylinder categories, is
an equivalence if and only if it induces an equivalence between their homotopy
categories. An arrow between objects that are either fibrant or cofibrant is an
equivalence if and only if some fibrant replacement of it is an equivalence in the
previous sense.

• For a map with a fibrant target, being a trivial fibration is equivalent to being a
fibration and an equivalence.
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• For a map with a cofibrant domain, being a trivial cofibration is equivalent to being
a cofibration and an equivalence.

• Any morphism with a fibrant target can be factored as a trivial cofibration followed
by a fibration or as a cofibration followed by a trivial fibration.

3.14. Construction. One of the key ingredient in the construction of this weak model
structure is the existence of a “path object” for cylinder categories. In fact, the main
result of this paper will rely more on the existence of this path object than on the
existence of the weak model structure. If C is a cylinder category, one defines Ceq

to be the category whose objects are triple of objects X1, X2, XI ∈ C endowed with
a cofibration X1

∐
X2 ↪→ XI whose two components X1 ↪→ XI and X2 ↪→ XI are

trivial cofibrations. Morphisms are the natural transformation (i.e. triples of maps
(f1 : X1 → X ′

1, f2 : X2 → X ′
2, fI : XI → X ′

I) making the obvious diagram commute). Weak
equivalences are triples of weak equivalences. Cofibrations are the “Reedy cofibrations”,
i.e. the morphism f : (X1, X2, XI) → (Y1, Y2, YI) such that f1 : X1 → Y1 and f2 : X2 → Y2
are cofibrations, and the latching map:

XI

∐
X1

∐
X2

(Y1
∐

Y2) ↪→ YI

is a cofibration.
It is shown in sections 4.2 and 4.3 of [Hen] that Ceq is also a cylinder category, that the

map Ceq → C × C which forgets the XI component is a fibration in the above mentioned
sense, and that both composites Ceq → C with the two projections are trivial fibrations.
Note that in general there is no morphism C → Ceq producing a factorization of the
diagonal map of C, as it is in general not possible to choose XI functorially and in a way
compatible with pushouts of cofibrations. Nevertheless, it is shown in section 4.3 of [Hen]
that such a map exists when C is cofibrant. Hence we obtain path objects for bifibrant
objects, which is the reason why we only get a weak model structure.

3.15. Construction. We will also need to use the “homotopy slice” construction for
cylinder categories, which was developed in [Hen, section 4.4]. In general, the slice C/X is
not a cylinder category, and even if it were, it might not represent the correct homotopy
theory. In order to fix this, we replace them with the so-called homotopy slice CX . This
is the category of pairs of object A, I ∈ C endowed with a cofibration A

∐
X ↪→ I such

that the component X ↪→ I is a trivial cofibration. Morphisms are pairs of maps making
the obvious diagram commute, equivalences are pairs of equivalence and cofibrations are
the Reedy cofibrations defined similarly to what was done in Construction 3.14.

It is shown in section 4.4 of [Hen] that if C is a cylinder category then CX is also a
cylinder category and CX → C is a fibration. More generally, if p : C ↠ D is a fibration
and X ∈ C then CX → DP (X) is also a fibration. Moreover, CX → C is a trivial fibration
if and only if X is h-terminal in the sense of [Hen, Def. 4.4.3], i.e. if any solid diagram as
below admits a filling as indicated by the dotted arrow:
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A X ,

B

Equivalently, this happens if and only if X is a terminal object in the homotopy category.
We conclude this section with two examples of pre-cylinder categories that will be very

important in the next section.

3.16. Construction. Let rGlobn denote the category of reflexive n-globular sets, i.e.
n-globular sets endowed, for each k-cell x with k < n, with the choice of a k + 1-cell
r(x) with x as source and target. The forgetful functor from reflexive n-globular sets to
n-globular sets has a left adjoint that just adds a cell rk(x) for each cell x and positive
integer k. We also denote by ∂Dk+1 and Dk the image via this left adjoint functor of
∂Dk+1 and Dk in the category of globular sets as in Definition 1.9.

We take the morphisms ∂Dk ↪→ Dk to be the generating cofibrations in the category
rGlobn, and it is easy to see that the cofibrations are exactly the monomorphisms in this
case.

We let rGlobf
n be the pre-cylinder category whose underlying category is the category

of finite reflexive n-globular sets, with cofibrations as above, and with weak equivalences
generated by the morphisms between the Dk (i.e. the smallest class of equivalences
containing these arrows and making this category into a pre-cylinder category).

Note that rGlobf
0 is the same as F∗. We also get the following results.

3.17. Lemma.

1. For each n, the natural morphism:

rGlobf
n → rGlobf

n+1

is freely generated by adding a relative cylinder object to the cofibrations ∂Dn ↪→ Dn.
In particular, it is an anodyne morphism.

2. The category of models of rGlobf
n is the category of reflexive n-globular sets, where

the inclusion of rGlobf
n in reflexive n-globular sets is the Yoneda embedding.

3. A morphism rGlobf
n → D into a pre-cylinder category D is given by the choice of

an object X ∈ D and of the so-called first n iterated relative cylinder objects of X,
i.e. a sequence of objects I0X = X, . . . , InX each fitting into a cofibration/weak
equivalence factorization in D:

In−1X
∐

In−2X
∐

In−2X

In−1X ↪→ InX
∼→ In−1X
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More precisely, X is the image of D0 and the factorization above is the image of the
morphism:

∂Dn = Dn−1
∐

∂Dn−1

Dn−1 ↪→ Dn → Dn−1.

Proof. One proves all points by simultaneous induction, using the general description of
free pre-cylinder categories mentioned in 3.12. Assuming (2) and (3) hold up to dimension
n, we consider the pre-cylinder category T obtained by freely adding a relative cylinder
object for ∂Dn ↪→ Dn to rGlobf

n. In particular, a morphism from T into any other pre-
cylinder category D is described as in point 3. (for rGlobf

n+1). Using remark 3.12 that
models of T can be described as morphisms from T to the opposite of the category of
sets, one obtains that the models of T are reflexive (n + 1)-globular sets. Indeed, a model
of T is given by a model X of rGlobf

n, i.e. a reflexive n-globular set, together with a set
Xn+1 fitting into a factorization of the form:

X(Dn) → Xn+1 → X(Dn) ×X(Dn−1)×X(Dn−1) X(Dn)

This is is the same as a reflexive (n + 1)-globular set. The generating cofibration in
Mod(T ) are exactly the generating cofibrations of Mod(rGlobf

n), i.e. the ∂Di ↪→ Di for
i < n and the additional generator, corresponding to this relative cylinder object, which
in the identification above corresponds to ∂Dn+1 ↪→ Dn+1, i.e. exactly the generating
cofibrations fon (n + 1)-globular sets.

Finally, T identifies with the full subcategory of Mod(T ) of models of T that are
finitely generated by pushout of the generating cofibrations, and as we have identified
these generating cofibrations as the ∂Di ↪→ Di for i ⩽ n + 1, those are exactly the
finite (n + 1)-globular sets. The equivalences of T are generated (under the axiom of
pre-cylinder categories) by those of rGlobf

n and the fact that the maps between Dn and
Dn+1 are equivalences (so that Dn+1 is indeed a relative cylinder object as it is supposed
to be), so T is indeed isomorphic to rGlobf

n+1.

3.18. Construction. A construction very similar to the one done above for globular
sets, applied to categories of presheaves over a directed category, is developed in section
4.2 of [Hen]. We will explicitly need the special case of semi-simplicial sets that we briefly
present here.

Let ∆+ be the category of finite non-empty ordinals and injective order-preserving
maps between them. Presheaves on ∆+ are called semi-simplicial sets. We denote by C∆+

0
the pre-cylinder category with the following universal property: for any other pre-cylinder
category D, morphisms from C∆+

0 to D are given by the data of a Reedy cofibrant diagram
∆+ → D such that all maps are sent to equivalences.

Alternatively, it can be described as the category of finite semi-simplicial sets where
the cofibrations are the monomorphisms and the equivalences are the smallest set of
arrows containing the morphisms between representable objects and making C∆+

0 into a
pre-cylinder category.
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It is shown in [Hen, Prop. 5.2.11] that the morphisms F∗ → C∆+
0 corresponding to

∆+[0] is a trivial cofibration.
Note, in [Hen] we have shown that the semi-simplicial horn inclusion Λk

n[n] ↪→ ∆+[n]
are trivial cofibrations in C∆+

0 , in particular, if one freely add a retraction to all of them,
one obtains a new pre-cylinder category denoted C∆+ together with an anodyne morphism
C∆+

0 → C∆+ . The models of C∆+ are the semi-simplicial algebraic Kan complexes (i.e.
semi-simplicial sets endowed with chosen lift against all horn inclusion), and it is proved
in [Hen] proposition 5.2.9 that C∆+ is a cylinder category, and hence as the morphism
F∗ → C∆+ is anodyne, it is a cylinder coherator.

4. Main theorem
The central point of the argument in [Hen] in order to show that if the canonical left

semi-model structure on ∞-groupoids exists then it is equivalent to the model category of
spaces is to show that both these model categories have the homotopy universal property
to be “(homotopically) freely generated by one object”. This is formalized by the notion
of cylinder coherator, i.e. of fibrant replacement of the pre-cylinder category F∗ freely
generated by one object as in Definition 3.10.

In order to adapt this argument to n-groupoids and homotopy n-types one needs to
find a similar universal property for these categories. Our candidate for this property
is that they are “freely generated by a single n-co-truncated object” where the notion of
n-co-truncated object is an object X satisfying the equivalent condition of the proposition
below:

4.1. Proposition. Let M be a model category in which every object is fibrant, and let
X be a cofibrant object in M . The following conditions are equivalent:

1. Given a semi-co-simplicial cofibrant resolution of X, i.e. a morphism F : C∆+
0 → M

sending ∆+[0] to X, the cofibration F (∂∆+[n+2]) ↪→ F (∆+[n+2]) is an equivalence.

2. Given a choice of the first n + 1 iterated relative cylinder objects of X as in lemma
3.17, i.e. a morphism I : rGlobf

n+1 → X sending D0 to X, the morphism I(∂Dn+2)
→ I(Dn+1) (or equivalently any of the two cofibration I(Dn+1) ↪→ I(∂Dn+2)) is an
equivalence.

Moreover, in both cases, the conditions do not depend on the choice of the morphisms
I and F .

As said above, objects satisfying these equivalent conditions will be called n-co-
truncated objects.

One can actually see that these two conditions are both equivalent to the fact that
X is an n-co-truncated4 object in the sense of [Lur] definition 5.5.6.1 in the ∞-category

4by co-truncated, we mean truncated in the opposite category.
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associated with M , and that this even holds without assuming that every object in M is
fibrant. Indeed, for the equivalence with the first point, it essentially follows from lemma
5.5.6.17 of [Lur] together with the fact that F (∂∆[n + 2]) is a model of ∂∆[n + 2] ⊗ X,
and for the second point it follows from lemma 5.5.6.15 of [Lur] together with the fact
that iterated cylinders are model for the iterated codiagonal5 maps.

In order to make this paper more self-contained, we give a different proof relying
instead on the machinery of cylinder coherators.
Proof. Both F∗

∼
↪→ C∆+

0 and F∗
∼
↪→ rGlobf

n+1 are trivial cofibrations of pre-cylinder
categories, which allows for any given object X ∈ M to construct functors F and I as
in the proposition. We will show that given any two such functors, conditions (1) for F
is equivalence to conditions (2) for I, which, in particular, shows that conditions (1) and
(2) do not depend on the choice of F and I. The morphism:

F∗ ↪→ C∆+
0

∐
F∗

rGlobf
n+1

where the coproduct is taken in the category of pre-cylinder categories, is again a trivial
cofibration. One can then construct a fibrant replacement:

F∗
∼
↪→ C∆+

0
∐
F∗

rGlobf
n+1

∼
↪→ T

Any two choices of functors F and I as in the proposition give rise to a morphism

C∆+
0

∐
F∗

rGlobf
n+1 → Cof(M)

which can be extended to a morphism T → Cof(M).
Now T is a cylinder coherator, for it is a fibrant replacement of F∗, hence its category

of models is Quillen equivalent to the category of spaces, with the equivalence given by
any morphisms T → Cof(Spaces) sending ∆[0] (which in T is isomorphic to D0) to the
point. In particular, this functor can be chosen to send ∆+[k] to the standard simplex
and ∂Dk and Dk to the standard spheres and disks.

Condition (1) can be rephrased as the fact that F (∆[n + 1]) → F (∂∆[n + 2]) is
an equivalence, and in the category of spaces the maps: ∆[n + 1] → ∂∆[n + 2], and
Dn+1 → ∂Dn+1 are homeomorphic, hence they are homotopic in T as well. In particular,
their images in M are homotopic, and this proves the equivalence of conditions (1) and
(2).

5The codiagonal map of f : X → Y is the map Y
∐

X Y → Y , the n-th iterated codiagonal map of a
map f is the codiagonal map of its (n − 1)-th iterated codiagonal maps. The iterated codiagonal of an
object X is the iterated codiagonal of the map ∅ → X where ∅ is the initial object. In a model category,
these are modelled by iterated cylinders.
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4.2. Construction. Let C be a cellular globular theory, with defining tower:

Θ0 = C1 → C2 → · · · → Cn → · · · → C

We will construct a sequence of pre-cylinder categories:

F∗ ↪→ C0
a ↪→ · · · ↪→ Cn

a ↪→ · · · ↪→ Ca

such that the Cn
a-models are the same as the n-coskeletal models of C (or, equivalently, of

Cn), with its usual notion of cofibration, and the morphisms above are cofibrations of pre-
cylinder categories (and corresponds to the usual adjunctions induced by the restriction
morphisms). The Cn

a have no equivalences except for isomorphisms.
Explicitly, Cn

a is the category of finitely generated (in a polygraphic sense, i.e. by
pushout of the generating cofibrations) n-coskeletal C-groupoids. One still calls ∂Dk+1
and Dk the object of Cn

a freely generated by the globular sets with the same name.
Assuming one has already proved that Cn

a has all the desired property, one defines Cn+1
a

from Cn
a as follows: first, one freely adds the object Dn+1 with a cofibration ∂Dn+1 ↪→

Dn+1. Then for each of the new (n + 1)-dimensional operation fi appearing in Cn+1 =
Cn[fi], one freely adds an arrow as the dotted arrow fitting in the diagram:

∂Dn+1 P

Dn+1

(fi◦σ,fi◦τ)

fi

where P is the globular sum corresponding to fi.
Assuming by induction that the models of Cn

a are indeed the n-coskeletal models of
Cn, models of Cn+1

a (which is defined above as a free object) have an additional object
of (n + 1)-arrows with source and target map as expected, and all the new generators of
Cn+1 that act on them. By freeness of Cn+1 this makes the models of Cn+1

a exactly the
same as (n + 1)-coskeletal models of Cn+1.

By its free construction, the usual sphere inclusions are generating cofibrations of Cn+1
a ,

and hence the object of Cn+1
a are indeed the finitely freely generated (n + 1)-coskeletal

Cn+1-models.
One now defines Cn

a ↪→ Cn
h by forcing some morphisms to be equivalences (so far, Cn

a

has no equivalences other than the isomorphisms). More precisely the new equivalences
are the morphisms:

s : Dk → Dk+1 (∀k < n)
i0 : Dn → ∂Dn+1

Note that the morphisms Cn
a ↪→ Cn+1

a are not morphisms from Cn
h to Cn+1

h , but the
morphism F∗ → Cn+1

h corresponding to D0 is a cofibration.
In the rest of the article we will always assume that C is contractible, i.e. it is a

Grothendieck coherator for ∞-groupoids. In practice we only ever use Cn+1, so it is
enough to assume contractibility up to dimension n + 1.
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4.3. Proposition. The following are equivalent:

1. Cn+1
h is a cylinder category.

2. The canonical left semi-model structure on (n + 1)-coskeletal C-models exists (in the
sense of Definition 2.19).

Proof. (1) implies (2) follows from the construction of the left semi-model structure on
the models of a cylinder category, as recalled in Theorem 3.7. The converse follows from
lemma 3.8 together with the fact that each generating cofibration ∂Dk+1 → Dk+1 of Cn+1

h

has a relative cylinder object given by:

Dk+1
∐

∂Dk+1

Dk+1 = ∂Dk+2 ↪→ Dk+2
u→ Dk+1 k < n

Dn+1
∐

∂Dn+1

Dn+1 = ∂Dn+2 ↪→ ∂Dn+2 → Dn+1

where u is any “unit” morphism (i.e. a common retraction of σ, τ : Dk+1 → Dk+2) provided
by the contractibility of C.

4.4. Proposition. Let p : A → B be a fibration between cylinder categories. Consider a
lifting problem of the form:

F∗ A

Cn+1
h B

x

p

such that the object x is n-co-truncated. We also assume that

(∗) the objects x and p(x) are both h-terminal, as defined in 3.15 (or [Hen, definition
4.4.3]).

Then the square admits a diagonal lift.
Proof. The proof is exactly the same as lemma 5.3.9 of [Hen], i.e. we first lift the action
of globular sets, then we lift one by one the generating operations of Cn+1

h . The assumption
that x and p(x) are h-terminal allows to construct all the required operations. See also
the proof of lemma 5.3.9 of [Hen] for more details.

The condition that x is n-co-truncated is used to ensure that the morphism that
we constructed this way do send the last generating equivalence Dn+1 → ∂Dn+2 to an
equivalence, i.e. Cn+1

h → A (and not just Cn+1
a → A) is a morphism of pre-cylinder

categories.
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4.5. Proposition. Assuming that the canonical left semi-model structure on n-truncated
C-models exists, then Proposition 4.4 holds even without assuming (∗).
Proof. The proof is the same as the proof of Corollary 5.3.12 of [Hen]. Assuming the
existence of the canonical left semi-model structure, we have shown in Proposition 4.3
that Cn+1

h is a cylinder category. In particular, one can apply the construction of the
“homotopy slice” developed in section 4.4 of [Hen] to it. Moreover, by contractibility of
C, the object D0 in Cn+1

h is equivalent to the terminal object, hence it is h-terminal. In
particular, the morphism:

(Cn+1
h )D0 → Cn+1

h

is a trivial fibration, so it admits a section sending the object D0 to the object (D0, D1) ∈
(Cn+1

h )D0 .
Now, given a square of the form:

F∗ A

Cn+1
h B

x

p

such that the object corresponding to x is (n − 1) co-truncated, using functoriality of the
homotopy slice construction and any choice of lift of x one obtains a new diagram:

F∗ Ax A

Cn+1
h (Cn+1

h )D0 Bp(x) B

x′

p′ p

s

where the map s is the section mentioned above, and x′ is any appropriately chosen lift of
the cylinder object (D0, D1) into a cylinder object for x, which exists since fibrations lift
cylinder objects. The map p′ is a fibration (see 3.15, or [Hen, proposition 4.4.2]), hence
one can apply Proposition 4.4 to get a lift in the first square, which produces a lift of our
initial square and concludes the proof.

4.6. Remark. Proposition 4.4, and its strengthening in Proposition 4.5, produce, assum-
ing that the canonical left semi-model structure for n-groupoids exists, a (homotopical)
universal property for the cylinder category of Cn+1

h . Namely, it is (homotopically) freely
generated by an n-co-truncated object D0. Indeed, given an n-co-truncated object B in
a cylinder category X, the lifting property as in 4.4 and 4.5 applied to X → 1 gives a
morphism Cn+1

h → X sending D0 to B. Now given two such morphisms one can apply
the lifting property to the fibration Xeq → X × X where Xeq is the path object for cylin-
der categories constructed in 4.2.8 of [Hen] to get a homotopy between these two maps.
Similarly, one gets higher homotopies between homotopies by looking at lifting against
iterated path objects.
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The general idea of our main result is that any other cylinder category with the same
property will be equivalent. So we just need to show that any other cylinder category
with the same universal property is equivalent to the category of n-truncated spaces to
conclude the proof. One cannot directly use a Bousfield localization of the category of
spaces or of simplicial sets because they are not “cofibrant”. So, as in [Hen], we use a
semi-simplicial model instead.

4.7. Construction. We start from the pre-cylinder category C∆+
0 . While it is not a

cylinder category, its category of models, the category of semi-simplicial sets, carries a
right semi-model structure whose cofibrations are the monomorphisms (i.e. the natural
cofibration of the category of models) and the fibrations between fibrant objects are char-
acterized by the lifting property against the trivial cofibration of C∆+

0 (see for example
[Hen2]). Moreover, the forgetful functor from simplicial sets to semi-simplicial sets is both
a left and a right Quillen equivalence. Along with the fact that any fibrant semi-simplicial
set can be endowed with the structure of a simplicial set (which, in particular, is a Kan
complex), this allows us to express almost all the homotopy theory of semi-simplicial sets
in terms of simplicial sets.

This right semi-model structure admits6 a Bousfield localization at the morphism
∂∆+[n + 2] ↪→ ∆+[n + 2], whose local objects are the (homotopically) n-truncated semi-
simplicial sets. This Bousfield localization is also a right semi-model category. This
localization is Quillen equivalent to the localization of the category of simplicial sets
at ∂∆[n + 2] ↪→ ∆[n + 2], which is known to be a model for the homotopy theory of
n-truncated spaces, i.e. homotopy n-types.

One then defines the pre-cylinder category C∆+
⩽n by starting from C∆+

0 , forcing ∂∆+[n+
2] ↪→ ∆+[n + 2] to be an equivalence, and finally one adds a retract to each trivial cofi-
bration. In fact, it is enough to add a retract to each of the generating trivial cofibrations
of the localized right semi-model structure mentioned above.

The category of models of C∆+
⩽n is the category of “algebraically fibrant objects” of

the right semi-model structure on semi-simplicial sets modelling n-truncated spaces. In
particular, one can use Nikolaus’s (initially introduced in [Nik]) construction of a model
structure on such categories of algebraically fibrant objects. Here we need to use the
generalized version of Nikolaus construction from [BH] that also applies to weak, right
and left semi-model categories and under weaker assumptions. This gives us a (Quillen)
model structure on Mod(C∆+

⩽n ) in which all objects are fibrant and fibrations and weak
equivalences are the maps which are fibrations or weak equivalence in the model structure
on semi-simplicial sets modelling n-truncated spaces. Moreover, this model structure
is Quillen equivalent to the model structure on semi-simplicial sets modelling n-types
discussed above.

In particular, Lemma 3.8 allows to show that C∆+
⩽n is a cylinder category.

It is also clear that C∆+
⩽n satisfies the lifting property of proposition 4.4 (without as-

6Here we rely on the general theory of Bousfield localization from section 7 of [Hen3] that applies to
weak, right and left semi-model structures without the properness assumption.
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suming the condition (∗)). Indeed, given such a lifting problem, one can first lift C∆+
0 ,

then the assumption that the object above is n-cotruncated implies that the lift will send
∂∆[n + 2] ↪→ ∆[n + 2] to an equivalence, and then the lifting property of fibrations allows
to construct the lift of the retracts of trivial cofibrations.

4.8. Theorem. Assuming the canonical left semi-model structure on (n + 1)-coskeletal
groupoid exists, then any left Quillen functor from it to the model category of spaces
localized at ∂Dn+2 → Dn+2 that sends D0 to the point is a Quillen equivalence. Moreover,
such Quillen functor exists.
Proof. One first shows that the cylinder categories C∆+

⩽n and Cn+1
h are equivalent.

Their respective lifting properties imply that we have morphisms in both directions:

C∆+
⩽n ⇆ Cn+1

h

under which D0 is sent to (the free object on) ∆+[0] and vice-versa. This is the case
because both D0 and ∆+[0] are n-co-truncated. In particular, the composite gives a
morphism f : Cn+1

h → Cn+1
h sending D0 to D0, so that one can construct, using Proposition

4.4 a diagonal lift for the square:

F∗ (Cn+1
h )eq

Cn+1
h Cn+1

h × Cn+1
h

D1

(f ;Id)

h

Here, (C⩽n+1
f )eq is the path object presented in 3.14, and the top arrow (denoted by D1)

corresponds to the object (D0, D0, D1) ∈ (Cn+1
h )eq with the natural cofibration D0

∐
D0 ↪→

D1. A lift in this square shows that f is homotopic to the identity (for instance, its
action on the homotopy category is isomorphic to the identity). Since the same is true
for C∆+

⩽n , this shows that any two morphisms as above are equivalences, and so they
induce Quillen equivalences between the categories of models. In particular, any co-semi-
simplicial resolution of D0 in Cn+1

h , corresponding to a morphism C∆+
0 → Cn+1

h , induces
an equivalence between the model category of coskeletal (n + 1)-groupoids constructed
in 2.20 and the localization of the right semi-model structure of semi-simplicial sets at
∂∆[n + 2] ↪→ ∆[n + 2].

One can explicitly construct a Quillen functor from Cn+1
h to the model category of

spaces localized at ∂Dn+1 ↪→ Dn+1 by sending D0 to D0. In this case, the right adjoint
corresponds to the fundamental n-groupoid construction. It does not quite follow from the
lifting property of proposition 4.4 as not every object is fibrant in the localized category
of spaces, but the construction in the proof of proposition 4.4 still produces a morphism
Cn+1

a → Spaces and one can just check that once the category of spaces is localized at
∂Dn+1 ↪→ Dn+1 this morphism is compatible with equivalences.

Any composite:
C∆+

0 → Cn+1
h → Spaces
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will send the representables to a co-semi-simplicial resolution of the point. All such
resolutions are equivalent and induce equivalences between the category of semi-simplicial
sets and the category of spaces, and all specialize to equivalences between the localization
of semi-simplicial sets at ∂∆[n+2] ↪→ ∆[n+2] and the localization of spaces at ∂Dn+2 →
Dn+2. By the 2-out-of-3 property for Quillen equivalences, this concludes the proof.
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