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Introduction

These complements are made available on-line to supplement the book making
use of extensions to S-PLUS in user-contributed library sections.

The general convention is that material here should be thought of as following
the material in the chapter in the book, so that new sections are numbered following
the last section of the chapter, and figures and equations here are numbered
following on from those in the book.

All the libraries mentioned are available for Unix and for Windows. Compiled
versions for Windows (for both S-PLUS 3.x and 4.x) are available from either of
the URLs

http://www.stats.ox.ac.uk/pub/SWin/
http://lib.stat.cmu.edu/DOS/S/SWin/

Most of the Unix sources are available at

http://lib.stat.cmu.edu/S/

and more specific information is given for the exceptions where these are intro-
duced.

There are separate Complements documents for programming and for S-PLUS 4.x
available from http://www.stats.ox.ac.uk/pub/MASS2/.

http://www.stats.ox.ac.uk/pub/SWin/
http://lib.stat.cmu.edu/DOS/S/SWin/
http://lib.stat.cmu.edu/S/
http://www.stats.ox.ac.uk/pub/MASS2/
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Chapter 5

Distributions and Data Summaries

5.5 Density estimation

Simonoff (1996) provides an excellent overview of methods for both smoothing
and density estimation. Bowman & Azzalini (1997) concentrate on providing
an introduction to kernel-based methods, with an easy-to-use S-PLUS library
sm 1 This has the unusual ability to compute and plot kernel density estimates of
three-dimensional and spherical data.

Kernel density estimation is a rather simple and usual rapid procedure (al-
though bandwidth selection need not be). More recently there have been a number
of alternative approaches which use very much greater amounts of computation.

Spline fitting to log-densities

There are several closely-related proposals2 to use a univariate density estimator
of the form

f(y) = exp g(y; θ) (5.7)

for a parametric family g(·; θ) of smooth functions, most often splines. The fit
criterion is maximum likelihood, possibly with a smoothness penalty. The ad-
vantages of (5.7) is that it automatically provides a non-negative density estimate,
and that it may be more natural to consider ‘smoothness’ on a relative rather than
absolute scale. It is necessary to ensure that the estimated density has unit mass,
and this is most conveniently done by taking

f(y) = exp g(y; θ)/
∫

exp g(y; θ) dy (5.8)

The library logspline 3 by Charles Kooperberg implements one variant on
this theme by Kooperberg & Stone (1992), although a later version described in
Stone et al. (1997) is promised to replace it. This uses a cubic spline for g in
(5.8), with smoothness controlled not by a penalty (as in smoothing splines) but

1 available from http://www.stats.gla.ac.uk/~adrian/sm and
http://www.stat.unipd.it/dip/homes/azzalini/SW/Splus/sm.

2 see Simonoff (1996, pp. 67–70, 90–92) for others.
3 logsplin on Windows.

http://www.stats.gla.ac.uk/~adrian/sm
http://www.stat.unipd.it/dip/homes/azzalini/SW/Splus/sm
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by the number of knots selected. There is an AIC-like penalty; the number of the
knots is chosen to maximize

n∑
i=1

g(yi; θ̂) − n log
∫

exp g(y; θ̂) dy − a× number of parameters (5.9)

The default value of a is log n (sometimes known as BIC) but this can be set
as an argument of logspline.fit . A Newton method is used to maximize the
log-likelihood given the knot positions. The initial knots are selected at quantiles
of the data and then deleted one at a time using the Wald criterion for significance.
Finally, (5.9) is used to choose one of the knot sequences considered.
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Figure 5.12: Histograms and logspline density plots of (left) the Old Faithful eruptions
data and (right) bootstrap samples of the median of that dataset. Compare with Figures 5.8
(on page 182), Figure 9.4 (page 288) and Figure 5.11 (page 188).

We first try out our two running examples:

library(logspline) # logsplin on Windows
attach(faithful)
faithful.ls <- logspline.fit(eruptions, lbound=0)
x <- seq(1, 6, len=200)
truehist(eruptions, nbins=15, xlim=c(1,6), ymax=1.0)
lines(x, dlogspline(x, faithful.ls))
detach()

truehist(tperm, xlab="diff")
tperm.ls <- logspline.fit(tperm)
x <- seq(-5, 5, len=200)
lines(x, dlogspline(x, tperm.ls))

sres <- c(sort(tperm), 5); yres <- (0:1024)/1024
plot(sres, yres, type="S", xlab="diff", ylab="cdf")
lines(x, plogspline(x, tperm.ls))

par(pty="s")
x <- c(0.0005, seq(0.001, 0.999, 0.001), 0.9995)
plot( qt(x, 9), qlogspline(x, tperm.ls),

xlab="Quantiles of t on 9 df", ylab="Fitted quantiles",
type="l", xlim=c(-5, 5), ylim=c(-5, 5))

points( qt(ppoints(tperm), 9), sort(tperm) )
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The functions dlogspline , plogspline and qlogspline compute the den-
sity, CDF and quantiles of the fitted density, so the final plot is a QQ-plot of the
data and the fitted density against the t9 density. The final plot shows that the
t9 density is a better fit in the tails; the logspline density estimate always has
exponential tails. (The function logspline.plot will make a simple plot of the
density, CDF or hazard estimate.)
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Figure 5.13: Plots of the logspline density estimate of the permutation dataset tperm .
The three panels show the histogram with superimposed density estimate, the empirical
and fitted CDFs and QQ–plots of the data and the fitted density against the conventional t9
distribution.

We can also explore density plots of the bootstrapped median values from
page 187 (which we recall actually has a discrete distribution).

truehist(res, nbins=nclass.FD(res), ymax=20)
x <- seq(3.7, 4.2, len=1000)
res.ls <- logspline.fit(res)
lines(x, dlogspline(x, res.ls))
points(res.ls$knots, dlogspline(res.ls$knots, res.ls))
res.ls <- logspline.fit(res, penalty=2)
lines(x, dlogspline(x, res.ls), lty=3)
points(res.ls$knots, dlogspline(res.ls$knots, res.ls))

Changing the penalty a to the AIC value of 2 has a small effect. The dots show
where the knots have been placed. (The function logspline.summary shows
details of the selection of the number of knots.)

The results for the galaxies data are also instructive.

x <- seq(8000, 35000, 200)
plot(x, dlogspline(x, logspline.fit(galaxies)), type="l",

xlab="velocity of galaxy", ylab="density")
lines(density(galaxies, n=200, window="gaussian",

width=width.SJ(galaxies)), lty=3)

Maximum-likelihood methods and hence logspline.fit can easily handle
censored data (see page 55).
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Figure 5.14: Logspline (solid line) and kernel density (dashed) estimates for the galaxies
data. The bandwidth of the kernel estimate was chosen by width.SJ .

Local polynomial density estimation

The local regression approach of loess can be extended to local likelihood
estimation and hence used for density estimation. One implementation is the
function locpoly in library KernSmooth 4. This uses a fine grid of bins on the
x axis and applies a local polynomial smoother to the counts of the binned data.

Loader (1997) introduces his implementation in the locfit package; the
theory for density estimation is in Loader (1996). The default is that log f(y) is
fitted by a quadratic polynomial: to estimate the density at x we maximize

n∑
i=1

K
(

yi−x
b

)
g(yi; θ(x)) − n log

∫
K

(
y−x

b

)
exp g(y; θ(x)) dy

that is, (5.9) localized near x , and with a quadratic polynomial model for g(y; θ) .
The function K is controlled by the argument kern ; by default it is the tricubic
function used by loess ; kern="gauss" gives a Gaussian kernel with bandwidth
2.5 times5 the standard deviation. The documentation with the package is sparse:
the Web site

http://cm.bell-labs.com/stat/project/locfit

has the sources and a number of on-line documents from which the details here
were gleaned.

We can use locfit on the eruptions data by

4 ksmooth on Windows. The current Unix sources are at
http://www.biostat.harvard.edu/~mwand

5 density and hence our account in Chapter 5 uses 4× .

http://cm.bell-labs.com/stat/project/locfit
http://www.biostat.harvard.edu/~mwand
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library(locfit, first=T)
faithful.lf <- locfit(~ eruptions, data=faithful, flim=c(1,6))
plot(faithful.lf, get.data=T, mpv=200, ylim=c(0,1))

where get.data adds the rug and mpv evaluates at 200 points to ensure a smooth
curve. (The flim parameter asks for a fit to cover that range of x values.)
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Figure 5.15: locfit density estimates for the faithful dataset. Left: Density of the
duration of eruptions. The solid line is the default, the medium dashed line is from Loader
(1997), the dotted line is a constant bandwidth chosen by AIC, and the long-dashed line
(with a sharp peak) is the adaptive bandwidth chosen by a surrogate Poisson model for the
binned data. Right: Joint density of both variables.

As for loess we have to choose how much to localize, that is to choose the
bandwidth h , possibly as a function of x . This is done in locfit by choosing
the larger of a nearest-neighbour-based estimate and a fixed bandwidth. On the
very similar geyser dataset Loader (1997) suggests

faithful.lf1 <- locfit(~ eruptions, data=faithful, flim=c(1,6),
alpha=c(0.15, 0.9))

lines(faithful.lf1, m=200, lty=3)

but without explaining where these numbers came from. (The default is c(0.7, 0) .
The notes on the Web site havec(0.1, 0.8) . Clearly this is not an automated
choice!) The first number is equivalent to the span parameter of loess ; set it
to zero to remove the adaptive part of the bandwidth choice. The second number
is a fixed bandwidth; there is also a third argument related to the penalty in (5.9)
which we discuss below.

locfit can handle censored data, and provide estimates of the density or
hazard (see page 55). It can also, in a limited way, handle multidimensional
density estimation. For example, we can produce a perspective plot of the joint
density of the two variables in the faithful dataset by

plot(locfit(~ eruptions+waiting, data=faithful, alpha=0.25,
scale=c(1,10)), type="persp")

Compare this to the perspective plot of Figure 5.9 on page 185 of the book. One
restriction is that the same bandwidth is chosen in all variables, so the variables
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need to be rescaled6 to a scale on which such a bandwidth would be acceptable.
(Setting scale=0 forces such a scale to be chosen.) The default is to use a
spherically symmetric kernel, but kt="prod" chooses a product kernel.

Bandwidth selection

Loader advocates a local version of AIC for bandwidth selection. For a constant
bandwidth he gives a function akaike . We use this for a gaussian kernel with
standard deviation h ∈ (0.1, 0.6) , remembering that density has 4 times and
locfit 2.5 times the standard error as the ‘bandwidth’ for a Gaussian kernel.

akaike <- function(formula, alpha, pen=2, ...)
{

m <- nrow(alpha); ll <- numeric(m); vr <- numeric(m)
for(i in 1:m) {
fit <- locfit(formula, alpha=alpha[i,], ...)
ll[i] <- fit$dp["lk"]; vr[i] <- fit$dp["t0"]

}
cbind(alpha=alpha, LogLik=ll, df=vr, AIC=-2*ll+pen*vr)

}
attach(faithful)
akaike( ~ eruptions,

alpha = cbind(0, 2.5 * seq( 0.1, 0.6, by = 0.05)),
ev = "data", kern = "gauss")

LogLik df AIC
[1,] 0 0.250 -249.8242 21.410054 542.4684
[2,] 0 0.375 -255.1024 14.860509 539.9258
[3,] 0 0.500 -258.1887 11.261502 538.9003
[4,] 0 0.625 -259.1892 9.056460 536.4914
[5,] 0 0.750 -258.8195 7.655461 532.9498
[6,] 0 0.875 -257.7784 6.704812 528.9664
[7,] 0 1.000 -256.5723 6.015671 525.1760
[8,] 0 1.125 -255.8101 5.493791 522.6078
[9,] 0 1.250 -256.2696 5.088088 522.7155

[10,] 0 1.375 -258.7174 4.764574 526.9640
[11,] 0 1.500 -263.6509 4.497959 536.2977

The df term is the local version of the number of parameters. This suggests
h ≈ 0.48 , which we can fit by

fit <- locfit(~ eruptions, alpha = c(0, 1.2), flim = c(1, 6),
kern = "gauss", ev = "grid", mg = 200)

lines(fit, m=200, lty=2)

The parameter ev controls where the fitted density is evaluated (and interpolation
from these points is used for prediction). To find the AIC we evaluate at the data
points, whereas for plotting we evaluate at a grid of mg points. The m argument of
lines.locfit is equivalent to mpv , controlling the number of points at which
the curve is plotted.

6 without this the computational shortcuts used by locfit fail in this example
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Loader (1995) suggests an alternative approach, which is to bin the data and
treat the counts as independent Poisson variates (which they are not, but as for
surrogate Poisson GLMs this gives the correct likelihood). We can then use a
local log-linear model to smooth the counts, and allow its bandwidth to be chosen
locally by minimizing the local AIC.

erupt.bin <- data.frame(duration=seq(1.6, 5.1, by=0.05),
count=hist(eruptions, breaks=seq(1.575, 5.125, by=0.05),

plot=F)$counts)
fit2 <- locfit(count ~ duration, data=erupt.bin,

weights=rep(272*0.05, 71),
alpha=c(0, 0, 2), family="poisson")

lines(fit2, m=200, lty=4)

This seems to be the most successful approach.

We can also consider the galaxies data.

plot(locfit(~ galaxies, flim=c(8000, 35000)),
get.data=T, ylim=c(0, 0.0003), mpv=200)

akaike( ~ galaxies,
alpha=cbind(seq( 0.15, 0.7, 0.05), 0),
ev="data", kern="gauss")

[1,] 0.15 0 -763.8799 22.344750 1572.449
[2,] 0.20 0 -769.8116 17.432047 1574.487
[3,] 0.25 0 -772.8257 14.899450 1575.450
[4,] 0.30 0 -773.0860 13.101204 1572.374
[5,] 0.35 0 -773.8923 11.804248 1571.393
[6,] 0.40 0 -774.1579 10.487591 1569.291
[7,] 0.45 0 -774.7961 9.467591 1568.527
[8,] 0.50 0 -776.1849 8.304028 1568.978
[9,] 0.55 0 -776.7574 7.741446 1568.998

[10,] 0.60 0 -778.5080 7.316588 1571.649
[11,] 0.65 0 -779.3692 6.922880 1572.584
[12,] 0.70 0 -780.3391 6.610473 1573.899

fit <- locfit(~ galaxies, alpha=0.45, flim=c(8000, 35000),
kern="gauss", ev="grid", mg=200)

lines(fit, m=200, lty=2)

galaxies.bin <- data.frame(velocity=seq(8000, 35000, 500),
count=hist(galaxies, breaks=seq(7750, 35250, 500),

plot=F)$counts)
fit2 <- locfit(count ~ velocity, data=galaxies.bin,

weights=rep(82*500, nrow(galaxies.bin)),
alpha=c(0, 0, 2), family="poisson")

lines(fit2, m=200, lty=3)

Here the choice by local AIC of an adaptive bandwidth fails to work well, and
seems very sensitive to the rounding used.
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Figure 5.16: locfit density estimates for the galaxies dataset. The solid line is the
default, the dotted line has a variable bandwidth chosen by AIC, and the dashed line uses
a surrogate Poisson model.

5.6 Bootstrap and permutation methods

Using library boot

The main text discusses some of the bootstrap functions introduced in S-PLUS 4.0.
In this complement we consider the library boot of Davison & Hinkley (1997).
This is included on a diskette with the book in both Unix and Windows versions,
and can be downloaded from

http://dmawww.epfl.ch/davison.mosaic/BMA/library.html

> library(boot)
> attach(faithful)
> set.seed(101)
> erupt.boot <- boot(eruptions, function(x,i) median(x[i]),

R=1000)
> erupt.boot

ORDINARY NONPARAMETRIC BOOTSTRAP
....

Bootstrap Statistics :
original bias std. error

t1* 4 -0.014807 0.078703
> boot.ci(erupt.boot, conf=c(0.90, 0.95),

type=c("norm","basic","perc","bca"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

http://dmawww.epfl.ch/davison.mosaic/BMA/library.html
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Intervals :
Level Normal Basic
90% ( 3.885, 4.144 ) ( 3.908, 4.167 )
95% ( 3.861, 4.169 ) ( 3.892, 4.167 )

Level Percentile BCa
90% ( 3.833, 4.092 ) ( 3.825, 4.083 )
95% ( 3.833, 4.108 ) ( 3.759, 4.083 )
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable

Note that the results are similar to those using bootstrap , but not identical as
the random numbers are used in a different way. In this particular example the
BCa confidence intervals are very slow to calculate.

Davison & Hinkley’s function boot is much more general than bootstrap
in that it allows many other types of bootstrap sampling. What is commonly
known as the bootstrap (random sampling with replacement from the original
dataset) is the default but boot can also perform a parametric bootstrap (sam-
pling from a fitted distribution specified by argument ran.gen ), and stratified,
weighted, balanced, antithetic and permutational sampling. Functions censboot
and tsboot implement various forms of the bootstrap that have been suggested
for right-censored data and time series respectively.

The function boot.ci calculates confidence intervals of one or more of
five types, the first-order normal approximation, the percentile bootstrap interval
(that found from the percentiles of the bootstrap distribution), the basic bootstrap
interval (the percentile interval reflected about the estimate) and the BCa correction
to the basic interval. Finally, it can calculate a studentized bootstrap interval (a
basic bootstrap interval applied to a studentized statistic), and compute intervals
on a transformed scale.

We also consider bootstrapping residuals from a non-linear regression on
pp. 281–2. We can repeat that analysis with library boot by a very small change
to the function storm.bf . The bootstrapping here took about 90 seconds, the
confidence interval calculations about 5 seconds each. (The times for bootstrap
under 4.x are very similar.)

> storm.fm <- nls(Time ~ b*Viscosity/(Wt - c), stormer,
start = c(b=29.401, c=2.2183))

> storm.bf <- function(rs, ind) {
assign("Tim", fitted(storm.fm) + rs[ind], frame = 1)
nls(Tim ~ (b * Viscosity)/(Wt - c), stormer,

start = coef(storm.fm))$parameters
}

> rs <- scale(resid(storm.fm), scale = F)
> storm.boot <- boot(rs, storm.bf, R = 1000)
> storm.boot

....
Bootstrap Statistics :

original bias std. error
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t1* 28.7156 0.71178 0.84350
t2* 2.4799 -0.29007 0.60765

> boot.ci(storm.boot, index=1,
type=c("norm", "basic", "perc", "bca"))

....
Intervals :
Level Normal Basic
95% (26.35, 29.66 ) (26.29, 29.63 )
Level Percentile BCa
95% (27.80, 31.14 ) (27.10, 29.66 )
Calculations and Intervals on Original Scale
Warning : BCa Intervals used Extreme Quantiles
Some BCa intervals may be unstable

> boot.ci(storm.boot, index=2,
type=c("norm", "basic", "perc", "bca"))

....
Intervals :
Level Normal Basic
95% ( 1.579, 3.961 ) ( 1.632, 4.111 )
Level Percentile BCa
95% ( 0.848, 3.328 ) ( 1.588, 3.802 )
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable

The index parameter selects which of the components of the statistic are of
interest. In this example it looks as if the percentile interval has a considerable
bias. For reference, BCa intervals from the bootstrap output are given in
Section 9.4 of these complements.

Using library bootstra

Another, older, set of bootstrap functions written by Rob Tibshirani accompanies
Efron & Tibshirani (1993). This is usually installed as library section bootstrap
on a Unix machine but as bootstra on a Windows machine7. This too has a
function bootstrap to perform the bootstrap sampling, and other functions to
find bootstrap confidence intervals which similar code to bootstrap internally.
This S code is written less efficiently than that in 4.x or boot , and should be used
with care to avoid using excessive amounts of memory.

There is little advantage in using this function bootstrap for simple bootstrap
sampling, as there are no special tools to analyse its results.

> library(bootstra)
> attach(faithful)
> set.seed(101)
> erupt.boot <- bootstrap(eruptions, 1000, median)

7 since S-PLUS 3.x for Windows can only use MSDOS 8+3 filenames.
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> mean(erupt.boot$thetastar - median(eruptions))
[1] -0.014807
> sqrt(var(erupt.boot$thetastar))
[1] 0.078703

However, the function bootstrap also incorporates the ‘jackknife after boot-
strap’ technique.

set.seed(101)
erupt.boot2 <- bootstrap(eruptions, 1000, median, func=mean)
At least one jackknife influence value for func(theta) is

undefined
Increase nboot and try again

As this code was already using 25 Mb of memory, this is not practicable advice.
This library has functions bcanon and boott to compute BCa and studen-

tized confidence limits, but the first fails on this example.

set.seed(101)
boott(eruptions, median, perc=c(0.025, 0.05, 0.95, 0.975))
$confpoints:

0.025 0.05 0.95 0.975
[1,] 3.7925 3.8485 4.1219 4.1351

We can also consider the Stormer viscometer data from Section 9.4. There
we bootstrap residuals, so cannot use the jackknife directly and hence bcanon
(which tries to evaluate the function on vectors of size n − 1 ) fails. We can use
boott , but it is slow (15 minutes), especially so as the bootstrapping has to be
run separately for each component of the parameter.

storm.bf1 <- function(rs) {
assign("Tim", fitted(storm.fm) + rs, frame = 1)
nls(Tim ~ (b * Viscosity)/(Wt - c), stormer,

start = coef(storm.fm))$parameters[1]
}

storm.bf2 <- function(rs) {
assign("Tim", fitted(storm.fm) + rs, frame = 1)
nls(Tim ~ (b * Viscosity)/(Wt - c), stormer,

start = coef(storm.fm))$parameters[2]
}

set.seed(101)
boott(rs, storm.bf1, perc=c(0.025, 0.05, 0.95, 0.975))
$confpoints:

0.025 0.05 0.95 0.975
[1,] 26.434 26.825 29.228 29.336
set.seed(101)
boott(rs, storm.bf2, perc=c(0.025, 0.05, 0.95, 0.975))
$confpoints:

0.025 0.05 0.95 0.975
[1,] 1.8939 2.0168 3.6694 3.8459
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Chapter 7

Generalized Linear Models

7.1 Functions for generalized linear modelling

Estimation of the dispersion parameter ϕ

We saw on page 226 that an approximately unbiased estimator of the dispersion
parameter ϕ is

ϕ̂ =
DM

n− p

This is not, however, the estimator used by summary.glm , which is the sum of
squares of the Pearson residuals divided by the residual degrees of freedom. Thus

ϕ̃ =
1

n− p

∑
i

(yi − µ̂i)2

V (µ̂i)/Ai
(7.11)

where V (µ) is the variance function. (Here p is the number of linearly inde-
pendent parameters.) Note that ϕ̃ = ϕ̂ for the Gaussian family, but in general
differs.

The estimate of dispersion is only used to compute the estimated standard er-
rors of the coefficients, and only for the binomial and Poisson families if summary
is called with argument dispersion=0 . We explore further the estimation of the
dispersion parameter for a Gamma family in Section 7.5.

7.3 Poisson models

Log-linear models with formulae and data frames

The standard function loglin fits a log-linear model to frequency data by iter-
ative proportional scaling, which can be more computationally efficient than the
surrogate Poisson model approach, particularly for very large frequency arrays.
However, it has several limitations.
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• It can only handle categorical predictor variables, and the frequencies must
be given as a complete multiway frequency table. Missing cells (or structural
zeros) can be handled. Note that this is not a necessary restriction; the more
general algorithm developed in Darroch & Ratcliff (1972) can handle both
quantitative and categorical predictors.

• It cannot discover redundancies in the underlying model matrix. Hence if
there are missing cells loglin may report an incorrect number of error de-
grees of freedom. This restriction is difficult to overcome without explicitly
constructing the model matrix, something that iterative proportional scaling
algorithms are designed to avoid.

• Deviances and fitted values are the main products of the algorithm. If the
input frequency array has no missing cells and none with zero fitted values,
constrained parameter estimates relative to a complete dummy variable
model matrix are available, but their standard errors are not.

Nevertheless it is an important and useful fitting algorithm for very large frequency
tables.

The algorithm is based on the score equations for Poisson data with the natural
log link. That is, the mean vector, µ , must have the appropriate multiplicative
structure and satisfy

XT y = XT µ

where X is the model matrix. With purely categorical predictors this implies that
the arrays of observed frequencies and of the fitted values have identical marginal
totals. Hence it is sufficient to specify the margins over which frequency and fitted
values must have the same totals. For example, for a three-way frequency table,
Fr , the ‘no three-factor-interaction’ model may be specified by

loglin(Fr, list(c(1,2), c(1,3), c(2,3)))

where the second argument specifies that all two-way faces must have the same
marginal totals. If Fr has a dimnames attribute with named components the
marginal faces may be specified using these names, so if we set

names(dimnames(Fr)) <- c("A", "B", "C")

we could specify the no three-factor-interaction model as

loglin(Fr, list(c("A","B"), c("A","C"), c("B","C")))

Note that if the c(1,2) -face is specified then all faces marginal to it—the first
and second dimensions and the entire array—also have equal frequency and fitted
value totals. These redundant faces may also be specified, although this may slow
down the algorithm slightly.

The function loglm in the MASS library is designed to make calls to loglin
easier by allowing the fixed margins to be specified by an S formula and the
frequencies to be specified either as an array or as a vector in, for example, a data
frame. In the latter case the frequency array will be constructed before calling
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loglin . If the frequencies are specified as an array, the formula has an empty
left-hand side and the right-hand side specifies the fixed marginal totals. Thus the
previous example could be handled by calling either

loglm(~ (1 + 2 + 3)^2, Fr)

or, if the dimnames are present,

loglm(~ (A + B + C)^2, Fr)

Note that the dimensions of the array may always be referred to by number using
the same convention as loglin , and that any multiplicative-like term connecting
the faces, such as 1:2 , 1*2 or even 1/2 , simply implies ‘the c(1,2) -face’. In
constructing the call to loglin , loglm finds and uses only the minimal set of
marginal totals which must agree, so it does not matter if (as here) the formula
specifies some redundant margins.

Let us consider the detergent brand preference study on page 238–242 of
Chapter 7, which is a four-way contingency table. We can fit the final model
specified as a GLM on page 240 using the same formula in a call to loglm .

> detg.ll <- loglm(Fr ~ Brand*M.user*Temp + M.user*Temp*Soft,
data=detg)

> detg.ll
....

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 5.6561 8 0.68570
Pearson 5.6500 8 0.68637

This call to loglm actually constructs the iterative proportional scaling fit via
loglin shown as detg.ips on page 241.

For another example, consider the Minnesota school leavers’ data of 1938.
The frequencies are held in the data frame minn38 , but this is easily converted
into a complete frequency array.

> sapply(minn38, function(x) length(levels(x)))
hs phs fol sex f
3 4 7 2 0

> minn38a <- array(0, c(3,4,7,2), lapply(minn38[, -5], levels))
> minn38a[data.matrix(minn38[, -5])] <- minn38$f
> minn38.fm <- loglm(~ 1 + 2 + 3 + 4, minn38a)
> minn38.fm1 <- update(minn38.fm, ~.^2)
> minn38.fm2 <- update(minn38.fm, ~.^3)

This uses numeric labels for the variables (dimensions) and fits complete 1–, 2–
and 3–factor interaction models. Since this way of constructing the array also
supplies names for the dimnames attribute, we could have specified the first
model as

minn38.fm <- loglm(~ hs + phs + fol + sex, minn38a)
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and subsequent updates would have carried the names forward. The advantage
would have that later output will carry the informative names rather than the
numeric labels. The object resulting from a call to loglm carries class loglm ,
for which methods for the generic functions summary , print , anova , coef ,
deviance , fitted , residuals and update are provided.

The print method displays the object in a succinct way.

> minn38.fm
....

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 3711.9 155 0
Pearson 4161.6 155 0

The default behaviour for the summary method is to give almost the same
output, but with the argument fitted=T this will also give tables of observed
and expected frequencies. For example

> summary(minn38.fm2, fitted=T)
Re-fitting to find fitted values
Formula:
~ 1 + 2 + 3 + 4 + 1:2 + 1:3 + 1:4 + 2:3 + 2:4 + 3:4 +

1:2:3 + 1:2:4 + 1:3:4 + 2:3:4

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 47.745 36 0.091137
Pearson 47.184 36 0.100486

Observed (Expected):

, , F1, F
C E N O

L 53 ( 49.5) 13 ( 16.6) 7 ( 7.6) 76 ( 75.4)
M 163 (163.6) 28 ( 25.8) 30 ( 29.1) 118 (120.5)
U 309 (311.9) 38 ( 36.6) 17 ( 17.3) 89 ( 87.2)

, , F2, F
C E N O

L 36 ( 31.5) 11 ( 13.9) 16 ( 13.2) 111 (115.4)
M 116 (112.8) 53 ( 47.8) 41 ( 42.6) 214 (220.8)
U 225 (232.7) 68 ( 70.3) 49 ( 50.2) 210 (198.8)

....

The model will be re-fitted unless fit=T was specified on the original call to
loglm .

We can compare the models by likelihood-ratio tests using

> anova(minn38.fm, minn38.fm1, minn38.fm2)
LR tests for hierarchical log-linear models
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Model 1:
~ 1 + 2 + 3 + 4

Model 2:
~ 1 + 2 + 3 + 4 + 1:2 + 1:3 + 1:4 + 2:3 + 2:4 + 3:4

Model 3:
~ 1 + 2 + 3 + 4 + 1:2 + 1:3 + 1:4 + 2:3 + 2:4 + 3:4

+ 1:2:3 + 1:2:4 + 1:3:4 + 2:3:4
Deviance df Delta(Dev) Delta(df) P(> Delta(Dev))

Model 1 3711.915 155
Model 2 220.043 108 3491.873 47 0.00000
Model 3 47.745 36 172.298 72 0.00000

Saturated 0.000 0 47.745 36 0.09114

The tail areas refer to the approximate chi-squared distribution under the null
hypothesis. In this instance only the final model appears near reasonable as a
description of the data.

The function loglm is generic with method dispatch based on the second
argument (data ) rather than the first. It has a method for objects of class
crosstabs which is the natural way of tabulating frequencies, particularly for
factors held in data frames. For example the Cars93 data frame has information
on 93 models of car released in the USA in 1993. Two factors are Type and
Origin .

> attach(Cars93)
> levels(Type)
[1] "Compact" "Large" "Midsize" "Small" "Sporty" "Van"
> levels(Origin)
[1] "Import" "Local"
> detach()

We could check the (unlikely) hypothesis that the proportions of each type of
vehicle are the same for imported and locally manufactured cars using

> form <- ~ Type + Origin
> loglm(form, crosstabs(form, Cars93))

....
Statistics:

X^2 df P(> X^2)
Likelihood Ratio 18.362 5 0.0025255

Pearson 14.080 5 0.0151101

The Minnesota school leavers’ example could be handled without explicitly
constructing the array of frequencies by the call

minn38.fm <- loglm(f ~ ., minn38, fit = T)

Note that arguments to loglin may be specified on the call to loglm . The extra
argument, fit=T , is not needed here but if supplied will cause the fitted values
(and by default the frequencies as well) to be saved as an array in the fitted model
object. Note that the customary abbreviation, ‘. ’, may be used to specify ‘all
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other factors in the data frame joined by + ’. (This is not possible if the data are
given as an array of frequencies.)

The Quine absenteeism data is an example of a four-way classification with
unequal numbers of observations in each cell including some completely empty.
The maximum number of observations in any one cell is 11. In cases like this the
frequencies will be held as a five-way array with the last dimension, conventionally
labelled .Within. , playing no part in the fitted models. Empty cells in the five-
way array are handled as structural zeros. The result will be a fitted log-linear
model with correct deviance, but with residual degrees of freedom is sometimes
incorrect.

> quine.loglm <- loglm(Days ~ .^3, quine)
> quine.glm <- glm(Days ~ .^3, poisson, quine)
> c(loglm = deviance(quine.loglm), glm = deviance(quine.glm))
loglm glm
1181 1181

> c(loglm = quine.loglm$df, glm = quine.glm$df)
loglm glm
117 120

Notice that (unlike loglin ) loglm does subtract one degree of freedom for
structural zeros, but is unable to detect the extra three degrees of freedom that
result from redundancies in the model matrix.

How loglm works

The function loglm must be able to convert numeric labels in formulae to a form in
which they can be parsed correctly. This operation is done by a recursive function
called denumerate which converts a numeric label 2 , say, to the identifier .v2 .

> denumerate
function(object) UseMethod("denumerate")
> denumerate.formula
function(x)
{

if(length(x) == 1) {
if(mode(x) == "numeric" || (mode(x) == "name" &&
any(substring(x, 1, 1) == as.character(1:9))))
x <- as.name(paste(".v", x, sep = ""))

}
else {
x[[2]] <- Recall(x[[2]])
if(length(x) == 3 && x[[1]] != as.name("^"))
x[[3]] <- Recall(x[[3]])

}
x

}
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It is not intended to be called directly by the user, but if it is, unless the object given
to it is a formula it will issue a (somewhat cryptic) error message. This is one
intended side-effect of making the function generic. The function renumerate
is similar and converts the encoded identifiers to numeric labels. These functions
provide examples of how operations on the language itself are possible and not
particularly difficult.

7.5 Gamma models

The role of dispersion parameter ϕ in the theory and practice of GLMs is often
confusing (and not just in notation as pointed out on page 226). For a Gaussian
family with identity link the moment estimator used for ϕ is the usually unbiased
modification of the maximum likelihood estimator (see equations (7.6) and (7.7)).
For binomial and Poisson families we usually take ϕ = 1 , and when we allow ϕ
to vary it is almost always as an ad hoc adjustment for over-dispersion which does
not correspond precisely to any family of error distributions. (Of course, for the
Poisson family the negative binomial family introduced in Section 7.4 provides a
parametric alternative way of modelling over-dispersion.)

The situation for the Gamma family is rather different. This is a parametric
family which can be fitted by maximum likelihood, including its shape parameter
α . Elsewhere we have taken its density as

log f(y) = α log λ+ (α− 1) log y − λy − log Γ(α)

so the mean is µ = α/λ . If we re-parametrize by (µ, α) we obtain

log f(y) = α(−y/µ − log µ) + α log y + α logα − log y − log Γ(α)

Comparing this with the general form in equation (7.1) (on page 223) we see
that the canonical link is θ = 1/µ and ϕ = 1/α is the dispersion parameter.
For fixed ϕ , fitting by glm gives the maximum likelihood estimates of the
parameters in the linear predictor, but ϕ is estimated from the sum of squares
of the deviance residuals, which need not be similar to the maximum likelihood
estimator. Note that ϕ̂ is used to estimate the standard errors for the parameters in
the linear predictor, so appreciable differences in the estimate can have practical
significance.

Some authors (notably McCullagh & Nelder (1989, pp. 295–6)) have argued
against the maximum likelihood estimator of ϕ . The MLE is the solution to

2n [logα − ψ(α)] = D

where ψ = Γ′/Γ is the digamma function and D is the residual deviance. Then
the customary estimator of ϕ = 1/α is D/(n−p) and the MLE is approximately1

1 for large α̂
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D̄(6 + D̄)/(6 + 2D̄) where D̄ = D/n . Both the customary estimator (7.7) and
the MLE are based on the residual deviance

D = −2
∑

i

[log(yi/µ̂i) − (yi − µ̂i)/µ̂i]

and this is very sensitive to small values of yi . Another argument is that if the
gamma GLM is being used as a model for distributions with a constant coefficient
of variation, the MLE is inconsistent for the true coefficient of variation except
at the gamma family. These arguments are equally compelling for the customary
estimate; McCullagh & Nelder prefer the moment estimator

σ̂2 = 1
n−p

∑
[(yi − µ̂i)/µ̂i]

2 (7.12)

for the coefficient of variation σ2 which equals ϕ under the gamma model. This
coincides with ϕ̃ as quoted by summary.glm (see (7.11) on page 12).

The functions glm.shape and glm.dispersion in library MASS compute
the MLEs of α and ϕ respectively from a fitted Gamma glm object. We illustrate
these with an example on clotting times of blood taken from McCullagh & Nelder
(1989, pp. 300–2).

> clotting <- data.frame(
u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12) )

> clot1 <- glm(lot1 ~ log(u), data=clotting, family=Gamma)
> summary(clot1, cor=F)
Coefficients:

Value Std. Error t value
(Intercept) -0.016554 0.00092754 -17.848

log(u) 0.015343 0.00041496 36.975

(Dispersion Parameter for Gamma family taken to be 0.00245 )

> clot1$deviance/clot1$df.residual
[1] 0.00239
> gamma.dispersion(clot1)
[1] 0.0018583

> clot2 <- glm(lot2 ~ log(u), data=clotting, family=Gamma)
> summary(clot2, cor=F)
Coefficients:

Value Std. Error t value
(Intercept) -0.023908 0.00132645 -18.024

log(u) 0.023599 0.00057678 40.915

(Dispersion Parameter for Gamma family taken to be 0.00181 )

> clot2$deviance/clot2$df.residual
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[1] 0.0018103
> gamma.dispersion(clot2)
[1] 0.0014076

The differences here are enough to affect the standard errors, but the shape pa-
rameter of the gamma distribution is so large that we have effectively a normal
distribution with constant coefficient of variation.

These functions may also be used for a quasi family with variance propor-
tional to mean squared. We illustrate this on the quine dataset.

> gm <- glm(Days + 0.1 ~ Age*Eth*Sex*Lrn,
quasi(link=log, variance=mu^2), data=quine)

> summary(gm, cor=F)
Coefficients: (4 not defined because of singularities)

Value Std. Error t value
Value Std. Error t value

(Intercept) 3.06105 0.39152 7.818410
AgeF1 -0.61870 0.52528 -1.177863
AgeF2 -2.31911 0.87546 -2.649018
AgeF3 -0.37623 0.47055 -0.799564

....

(Dispersion Parameter for Quasi-likelihood family taken
to be 0.61315 )

Null Deviance: 190.4 on 145 degrees of freedom
Residual Deviance: 128.36 on 118 degrees of freedom

> gamma.shape(gm, verbose=T)
Initial estimate: 1.0603
Iter. 1 Alpha: 1.23840774338543
Iter. 2 Alpha: 1.27699745778205
Iter. 3 Alpha: 1.27834332265501
Iter. 4 Alpha: 1.27834485787226

Alpha: 1.27834
SE: 0.13452

> summary(gm, dispersion = gamma.dispersion(gm), cor=F)
Coefficients: (4 not defined because of singularities)

Value Std. Error t value
(Intercept) 3.06105 0.44223 6.921890

AgeF1 -0.61870 0.59331 -1.042800
AgeF2 -2.31911 0.98885 -2.345261
AgeF3 -0.37623 0.53149 -0.707880

....

In this example the McCullagh–Nelder preferred estimate is given by

> sum((residuals(gm, type="resp")/fitted(gm))^2/gm$df.residual)
[1] 0.61347
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which is the same as the estimate returned by summary.glm , whereas (7.7) gives

> gm$deviance/gm$df.residual
[1] 1.0878
> gamma.dispersion(gm)
[1] 0.78226

There will also be differences between deviance tests and the AIC used by
step.glm and likelihood-ratio tests and the exact AIC. Making the necessary
modifications is left as an exercise for the reader.
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Chapter 9

Non-linear Models

9.4 Confidence intervals for parameters

Bootstrapping

In this example the empirical percentile intervals appear biased, especially that
for c . Running a different simulation gives

> storm.boot <- bootstrap(rs, storm.bf, seed=101, B=1000)
> summary(storm.boot)

....
Summary Statistics:

Observed Bias Mean SE
b 28.72 0.6821 29.398 0.8304
c 2.48 -0.2506 2.229 0.6090

Empirical Percentiles:
2.5% 5% 95% 97.5%

b 27.6406 27.989 30.734 30.91
c 0.9906 1.238 3.224 3.43

BCa Percentiles:
2.5% 5% 95% 97.5%

b 26.616 26.661 29.433 29.681
c 1.532 1.724 3.618 3.958

Correlation of Replicates:
b c

b 1.0000 -0.9193
c -0.9193 1.0000

Note that there will be warnings that indicate that the use of jackknifing in this
problem is unreliable, so the BCa intervals are not to be trusted.

A ‘jackknife after bootstrap’ analysis confirms that the bootstrap estimates of
the bias in the least-squares estimates is indicative but not statistically significant.
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> jack.after.bootstrap(storm.boot, "Bias")
....

Functional of Bootstrap Distribution of Parameters:
Func SE.Func

b 0.6821 0.5084
c -0.2506 0.2168

Observations with Large Influence on Functional:
$b:

b
6 -2.371

An alternative approach using the library boot of Davison & Hinkley (1997)
is given in Section 5.6 of these Complements.
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Chapter 10

Random and Mixed Effects

The account in the text used version 2.1 of the nlme software contained in
S-PLUS 3.4, 4.0, 4.5 and 5.0. A near-final release of version 3.0 (written by
Pinheiro and Bates) is now available from

http://nlme.stat.wisc.edu

for both Unix and Windows versions of S-PLUS 3.x and 4.x, and it is planned that
this will be incorporated into forthcoming releases of S-PLUS. In this chapter we
discuss the changes need to make our examples work with version 3.0, and also
explore some analyses which were not straightforward in earlier versions.

The main innovation in nlme version 3.0 is support of multilevel random
effects; however much of the system has been rewritten and the user interface
re-designed. The new system needs to override the old one, so use

library(nlme3, first=T) # or whatever name is used locally

if the library has been downloaded and added.

10.3 Linear mixed effects models

The main change is how the ‘clusters’ are specified, which now has to allow
multilevel random effects and is usually done by conditioning the formula in the
random argument in a very similar way to Trellis formulae.

The method of estimation (REML or maximum likelihood) is specified by the
argument method rather than est.method .

Making these changes to the gasoline data petrol example gives

> Petrol <- petrol
> Petrol[, 2:5] <- scale(as.matrix(Petrol[, 2:5]), scale = F)
> pet3.lme <- lme(Y ~ SG + VP + V10 + EP,

random = ~ 1 | No, data = Petrol)
> summary(pet3.lme)
Linear mixed-effects model fit by REML
Data: Petrol

AIC BIC logLik

http://nlme.stat.wisc.edu
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166.38 175.45 -76.191

Random effects:
Formula: ~ 1 | No

(Intercept) Residual
StdDev: 1.4447 1.8722

Fixed effects: Y ~ SG + VP + V10 + EP
Value Std.Error DF t-value p-value

(Intercept) 19.707 0.56827 21 34.679 <.0001
SG 0.219 0.14694 6 1.493 0.1860
VP 0.546 0.52052 6 1.049 0.3347
V10 -0.154 0.03996 6 -3.860 0.0084
EP 0.157 0.00559 21 28.128 <.0001

....

Note a change in value of BIC (which is no longer qualified as ‘restricted’) and
the changes in the printed output for the fixed effects.

> pet3.lme <- update(pet3.lme, method = "ML")
> summary(pet3.lme)
Linear mixed-effects model fit by maximum likelihood
Data: Petrol

AIC BIC logLik
149.38 159.64 -67.692

Random effects:
Formula: ~ 1 | No

(Intercept) Residual
StdDev: 0.92889 1.8273

Fixed effects: Y ~ SG + VP + V10 + EP
Value Std.Error DF t-value p-value

(Intercept) 19.694 0.47815 21 41.188 <.0001
SG 0.221 0.12282 6 1.802 0.1216
VP 0.549 0.44076 6 1.246 0.2590
V10 -0.153 0.03417 6 -4.469 0.0042
EP 0.156 0.00587 21 26.620 <.0001

....
> pet4.lme <- update(pet3.lme, fixed = Y ~ V10 + EP)
> anova(pet4.lme, pet3.lme)

Model df AIC BIC logLik Test Lik.Ratio
pet4.lme 1 5 149.61 156.94 -69.806
pet3.lme 2 7 149.38 159.64 -67.692 1 vs. 2 4.2285

p-value
pet4.lme
pet3.lme 0.1207
> coef(pet4.lme)

(Intercept) V10 EP
A 21.054 -0.21081 0.15759
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....
> pet5.lme <- update(pet4.lme, random = ~ 1 + EP | No)
> anova(pet4.lme, pet5.lme)

Model df AIC BIC logLik Test Lik.Ratio
pet4.lme 1 5 149.61 156.94 -69.806
pet5.lme 2 7 153.61 163.87 -69.805 1 vs. 2 0.0025194

p-value
pet4.lme
pet5.lme 0.9987

It is possible to handle the oats example as in the text, but this is most
naturally handled by making use of multilevel random effects.

> options(contrasts = c("contr.treatment", "contr.poly"))
> oats.lme <- lme(Y ~ N + V, random = ~1 | B/V, data=oats)
> summary(oats.lme)
Data: oats

AIC BIC logLik
586.07 605.78 -284.03

Random effects:
Formula: ~ 1 | B

(Intercept)
StdDev: 14.645

Formula: ~ 1 | V %in% B
(Intercept) Residual

StdDev: 10.473 12.75

Fixed effects: Y ~ N + V
Value Std.Error DF t-value p-value

(Intercept) 79.917 8.2203 51 9.722 <.0001
N0.2cwt 19.500 4.2500 51 4.588 <.0001
N0.4cwt 34.833 4.2500 51 8.196 <.0001
N0.6cwt 44.000 4.2500 51 10.353 <.0001

VMarvellous 5.292 7.0789 10 0.748 0.4720
VVictory -6.875 7.0789 10 -0.971 0.3544
....

Number of Observations: 72
Number of Groups:
B V %in% B
6 18

Notice that we specify multilevel random effects as a nested model in exactly the
same way as a Error term in a aov model.

The approach via specifying a covariance structure still works: two equivalent
specifications are given by

oats$sp <- model.matrix(~ V - 1, oats)
oats1.lme <- lme(Y ~ N + V, oats,
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random = list(B = pdBlocked(list(~1, pdIdent(~sp-1)))))
summary(oats1.lme)
oats2.lme <- lme(Y ~ N + V,

random = reStruct(~ V - 1 | B, "pdCompSymm"),
data = oats)

summary(oats2.lme)

It should be clear that these are less than obvious, and we are grateful to Dr
Pinheiro for elucidating the precise forms needed.

The multilevel approach allows us to handle easily the cooperative trial by

lme(Conc ~ 1, random = ~1 | Lab/Bat, data = coop,
subset = Spc=="S1")

Linear mixed-effects model fit by REML
Data: coop
Subset: Spc == "S1"
Log-restricted-likelihood: 21.022
Fixed: Conc ~ 1

(Intercept)
0.50806

Random effects:
Formula: ~ 1 | Lab

(Intercept)
StdDev: 0.24529

Formula: ~ 1 | Bat %in% Lab
(Intercept) Residual

StdDev: 0.073267 0.079355

Number of Observations: 36
Number of Groups:
Lab Bat %in% Lab
6 18

which agrees with the raov analysis.

Sitka spruce example

There is a problem with the analysis of this example in the text: we misunder-
stood the meaning of the correlation model fitted which was in fact in units of
the meaurement number, not days. We first consider an analysis without serial
correlation.

> sitka.lme <- lme(size ~ treat*ordered(Time),
random = ~1 | tree, data = Sitka)

> summary(sitka.lme)
Linear mixed-effects model fit by REML
Data: Sitka

AIC BIC logLik
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79.901 127.34 -27.95

Random effects:
Formula: ~ 1 | tree

(Intercept) Residual
StdDev: 0.61011 0.16105

Fixed effects: size ~ treat * ordered(Time)
Value Std.Error DF t-value p-value

(Intercept) 4.9851 0.12287 308 40.572 <.0001
treat -0.2112 0.14861 77 -1.421 0.1594

ordered(Time).L 1.1971 0.03221 308 37.166 <.0001
ordered(Time).Q -0.1341 0.03221 308 -4.162 <.0001
ordered(Time).C -0.0409 0.03221 308 -1.268 0.2056

ordered(Time) ^ 4 -0.0273 0.03221 308 -0.848 0.3974
treatordered(Time).L -0.1786 0.03896 308 -4.583 <.0001
treatordered(Time).Q -0.0264 0.03896 308 -0.679 0.4977
treatordered(Time).C -0.0142 0.03896 308 -0.366 0.7148

treatordered(Time) ^ 4 0.0124 0.03896 308 0.318 0.7504
....

> attach(Sitka)
> Sitka$treatslope <- Time * (treat=="ozone")
> detach()
> sitka.lme2 <- update(sitka.lme,

fixed = size ~ ordered(Time) + treat + treatslope)
> summary(sitka.lme2)
Linear mixed-effects model fit by REML
Data: Sitka

AIC BIC logLik
69.269 104.92 -25.635

Random effects:
Formula: ~ 1 | tree

(Intercept) Residual
StdDev: 0.61015 0.1604

Fixed effects: size ~ ordered(Time) + treat + treatslope
Value Std.Error DF t-value p-value

(Intercept) 4.9851 0.12287 311 40.572 <.0001
ordered(Time).L 1.1976 0.03204 311 37.372 <.0001
ordered(Time).Q -0.1455 0.01810 311 -8.037 <.0001
ordered(Time).C -0.0506 0.01805 311 -2.804 0.0054

ordered(Time) ^ 4 -0.0167 0.01805 311 -0.926 0.3549
treat 0.2217 0.17561 77 1.262 0.2107

treatslope -0.0021 0.00046 311 -4.626 <.0001
....

Note that although the model is different, the conclusions are very similar.
Predictions and fitted values are specified somewhat differently in the later

version of lme . The random effects are now specified by level, with the ‘popula-
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tion’ values at level 0 and the BLUPs used up to the level specified (which defaults
to the innermost level). Thus we can examine the fitted mean values by

> fitted(sitka.lme2, level = 0)[1:5]
1 1 1 1 1

4.0606 4.4709 4.8427 5.1789 5.3167
> fitted(sitka.lme2, level = 0)[301:305]

61 61 61 61 61
4.164 4.6213 5.0509 5.4427 5.6467

The names tell us that these correspond to trees 1 and 61, but at level 0 are the
same for all the trees in a treatment group.

We can specify a correlation structure by

lme(size ~ treat*ordered(Time), random = ~1 | tree,
data = Sitka, corr = corCAR1(, ~Time | tree))

but this will not converge properly (the reported correlation coefficient is 0.2 ,
the default starting value). If we give it a better initial value it does converge:

> sitka.lme <-
lme(size ~ treat*ordered(Time), random = ~1 | tree,

data = Sitka, corr = corCAR1(0.9, ~Time | tree))
> summary(sitka.lme)
Correlation Structure: Continuous AR(1)
Parameter estimate(s):

Phi
0.9989

Fixed effects: size ~ treat * ordered(Time)
Value Std.Error DF t-value p-value

(Intercept) 4.9851 0.12636 308 39.452 <.0001
treat -0.2112 0.15284 77 -1.382 0.1711

ordered(Time).L 1.1971 0.04907 308 24.396 <.0001
ordered(Time).Q -0.1341 0.02642 308 -5.073 <.0001
ordered(Time).C -0.0409 0.01979 308 -2.065 0.0398

ordered(Time) ^ 4 -0.0273 0.01673 308 -1.632 0.1037
treatordered(Time).L -0.1786 0.05935 308 -3.009 0.0028
treatordered(Time).Q -0.0264 0.03196 308 -0.827 0.4086
treatordered(Time).C -0.0142 0.02394 308 -0.595 0.5521

treatordered(Time) ^ 4 0.0124 0.02023 308 0.613 0.5403

Note that the specification of the correlation structures has altered: see the help
on corClasses for the current form.

The specification of a systematic component to the variances1has also altered,
now using the weights argument; see the help on varClasses .

1 mentioned on pages 310 and 312 but not used in our examples
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10.4 Non-linear mixed effects models

The changes needed to use nlme are similar to those for lme : specify the
‘clusters’ by conditioning the random effects formulae, use 1 rather than . is the
formulae, and the method is specified by method , still defaulting to maximum
likelihood.

For the sitka data we first fit without a correlation structure.

> options(contrasts = c("contr.treatment", "contr.poly"))
> sitka.nlme <- nlme(size ~ A + B * (1 - exp(-(Time-100)/C)),

fixed = list(A ~ treat, B ~ treat, C ~ 1),
random = A + B ~ 1 | tree, data = Sitka,
start = list(fixed = c(2, 0, 4, 0, 100)),
method = "ML", verbose = T)

> summary(sitka.nlme)
Nonlinear mixed-effects model fit by maximum likelihood
Model: size ~ A + B * (1 - exp( - (Time - 100)/C))

Data: Sitka
AIC BIC logLik

-96.275 -60.465 57.138

Random effects:
Formula: list(A ~ 1, B ~ 1)
Level: tree
Structure: General positive-definite

StdDev Corr
A.(Intercept) 0.83561 A.(Int
B.(Intercept) 0.81954 -0.69

Residual 0.10297

Fixed effects: list(A ~ treat, B ~ treat, C ~ 1)
Value Std.Error DF t-value p-value

A.(Intercept) 2.304 0.1995 312 11.547 <.0001
A.treat 0.175 0.2117 312 0.826 0.4096

B.(Intercept) 3.921 0.1808 312 21.687 <.0001
B.treat -0.564 0.2156 312 -2.618 0.0093

C 81.769 4.7270 312 17.299 <.0001
....

> sitka.nlme2 <- update(sitka.nlme,
fixed = list(A ~ 1, B ~ 1, C ~ 1),
start = list(fixed=c(2.3, 3.9, 79)))

> summary(sitka.nlme2)
Nonlinear mixed-effects model fit by maximum likelihood
Model: size ~ A + B * (1 - exp( - (Time - 100)/C))

Data: Sitka
AIC BIC logLik

-91.588 -63.736 52.794
....
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Fixed effects: list(A ~ 1, B ~ 1, C ~ 1)
Value Std.Error DF t-value p-value

A 2.421 0.1312 314 18.462 <.0001
B 3.536 0.1079 314 32.775 <.0001
C 81.658 4.6906 314 17.409 <.0001

....
> anova(sitka.nlme2, sitka.nlme)

Model df AIC BIC logLik Test Lik.Ratio
sitka.nlme2 1 7 -91.588 -63.736 52.794
sitka.nlme 2 9 -96.275 -60.465 57.138 1 vs. 2 8.6869

p-value
sitka.nlme2
sitka.nlme 0.013

We can now allow a correlation, and do get sensible results:

> sitka.nlme3 <- update(sitka.nlme,
corr = corCAR1(0.9, ~Time | tree))

> summary(sitka.nlme3)
Nonlinear mixed-effects model fit by maximum likelihood
Model: size ~ A + B * (1 - exp( - (Time - 100)/C))

Data: Sitka
AIC BIC logLik

-104.5 -64.715 62.252

Random effects:
Formula: list(A ~ 1, B ~ 1)
Level: tree
Structure: General positive-definite

StdDev Corr
A.(Intercept) 0.81602 A.(Int
B.(Intercept) 0.76069 -0.674

Residual 0.13068

Correlation Structure: Continuous AR(1)
Parameter estimate(s):

Phi
0.96751

Fixed effects: list(A ~ treat, B ~ treat, C ~ 1)
Value Std.Error DF t-value p-value

A.(Intercept) 2.313 0.2052 312 11.271 <.0001
A.treat 0.171 0.2144 312 0.796 0.4267

B.(Intercept) 3.892 0.1813 312 21.466 <.0001
B.treat -0.564 0.2162 312 -2.607 0.0096

C 80.901 5.2920 312 15.288 <.0001

This does correspond to a correlation of 0.9675126.5 ≈ 0.4 at the average spacing
between observations.
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Blood pressure in rabbits

There have been considerable changes in self-starting nls models which are also
incorporated in the nlme library. We make use of the supplied self-starting model
SSfpl .

> R.nlsList <- nlsList(
BPchange ~ SSfpl(log(Dose), A, B, ld50, scal) | Run,
data = Rabbit)

> M1 <- coef(R.nlsList)
> M1

A B ld50 scal
C1 1.8095 34.787 3.5610 0.30918
C2 1.4840 29.683 4.0382 0.27792
C3 1.5994 23.759 3.8581 0.26935
C4 1.4077 34.198 3.8426 0.30502
C5 1.4146 19.023 3.5374 0.22890
M1 1.1295 41.817 4.4688 0.41052
M2 1.3676 28.612 4.6049 0.18381
M3 NA NA NA NA
M4 1.9063 24.148 4.7032 0.26616
M5 NA NA NA NA
> fixed.effects(R.nlsList)

A B ld50 scal
1.5148 29.504 4.0768 0.28136

This is essentially as before, but the roles of A and B are reversed. The rest of
the preliminary analysis is unchanged.

> R.nls <- nls(BPchange ~ A[Run] + (B - A[Run])/
(1 + exp((log(Dose) - ld50[Run])/scal)), data = Rabbit,
start = list(A=rep(29.5, 10), B=1.5, ld50=rep(4.1, 10),

scal=0.28))
> b <- as.vector(coef(R.nls))
> M2 <- cbind(b[1:10], b[11], b[12:21], b[22])
> dimnames(M2) <- dimnames(M1)
> M2

A B ld50 scal
C1 34.351 1.6515 3.5481 0.27383
C2 29.646 1.6515 4.0417 0.27383
C3 23.804 1.6515 3.8613 0.27383
C4 33.876 1.6515 3.8468 0.27383
C5 19.335 1.6515 3.5630 0.27383
M1 37.592 1.6515 4.3883 0.27383
M2 30.682 1.6515 4.6632 0.27383
M3 27.672 1.6515 4.2249 0.27383
M4 24.276 1.6515 4.6994 0.27383
M5 21.402 1.6515 4.7547 0.27383

Using this as an initial object for nlme fails, as the fitting process fails.
We can fit nlme models to the separate treatment groups by
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Fpl <- deriv(~ A + (B-A)/(1 + exp((log(d) - ld50)/th)),
c("A","B","ld50","th"), function(d, A, B, ld50, th) {})

c1 <- fixed.effects(R.nlsList); c1[2:1] <- c1[1:2]
Rc.nlme <- nlme(BPchange ~ Fpl(Dose, A, B, ld50, th),

fixed = list(A ~ 1, B ~ 1, ld50 ~ 1, th ~ 1),
random = A + ld50 ~ 1 | Animal, data = Rabbit,
subset = Treatment=="Control",
start = list(fixed=c1))

Rm.nlme <- update(Rc.nlme, subset = Treatment=="MDL")

> Rc.nlme
Nonlinear mixed-effects model fit by maximum likelihood

Model: BPchange ~ Fpl(Dose, A, B, ld50, th)
Data: Rabbit
Subset: Treatment == "Control"
Log-likelihood: -66.502
Fixed: list(A ~ 1, B ~ 1, ld50 ~ 1, th ~ 1)

A B ld50 th
28.332 1.5134 3.7744 0.28957

Random effects:
Formula: list(A ~ 1, ld50 ~ 1)
Level: Animal
Structure: General positive-definite

StdDev Corr
A 5.76889 A

ld50 0.17953 0.112
Residual 1.36735

> Rm.nlme
Nonlinear mixed-effects model fit by maximum likelihood

Model: BPchange ~ Fpl(Dose, A, B, ld50, th)
Data: Rabbit
Subset: Treatment == "MDL"
Log-likelihood: -65.422
Fixed: list(A ~ 1, B ~ 1, ld50 ~ 1, th ~ 1)

A B ld50 th
27.521 1.7839 4.5257 0.24236

Random effects:
Formula: list(A ~ 1, ld50 ~ 1)
Level: Animal
Structure: General positive-definite

StdDev Corr
A 5.36549 A

ld50 0.18999 -0.594
Residual 1.44172

We can now combine the groups. As we have a means to handle multilevel
random effects, we will make use of them.



10.4 Non-linear mixed effects models 34

> options(contrasts=c("contr.treatment", "contr.poly"))
> c1 <- c(28, 1.6, 4.1, 0.27, 0)
> R.nlme1 <- nlme(BPchange ~ Fpl(Dose, A, B, ld50, th),
> fixed = list(A ~ Treatment, B ~ Treatment,

ld50 ~ Treatment, th ~ Treatment),
random = A + ld50 ~ 1 | Animal/Run, data = Rabbit,
start = list(fixed=c1[c(1,5,2,5,3,5,4,5)]))

> summary(R.nlme1)
Nonlinear mixed-effects model fit by maximum likelihood

Model: BPchange ~ Fpl(Dose, A, B, ld50, th)
Data: Rabbit

AIC BIC logLik
292.63 324.04 -131.31

Random effects:
Formula: list(A ~ 1, ld50 ~ 1)
Level: Animal
Structure: General positive-definite

StdDev Corr
A.(Intercept) 4.6063 A.(Int

ld50.(Intercept) 0.0626 -0.166

Formula: list(A ~ 1, ld50 ~ 1)
Level: Run %in% Animal
Structure: General positive-definite

StdDev Corr
A.(Intercept) 3.2489 A.(Int

ld50.(Intercept) 0.1707 -0.348
Residual 1.4113

Fixed effects: list(A ~ Treatment, B ~ Treatment,
ld50 ~ Treatment, th ~ Treatment)
Value Std.Error DF t-value p-value

A.(Intercept) 28.326 2.7802 43 10.188 <.0001
A.Treatment -0.727 2.5184 43 -0.288 0.7744

B.(Intercept) 1.525 0.5155 43 2.958 0.0050
B.Treatment 0.261 0.6460 43 0.405 0.6877

ld50.(Intercept) 3.778 0.0955 43 39.579 <.0001
ld50.Treatment 0.747 0.1286 43 5.809 <.0001
th.(Intercept) 0.290 0.0323 43 8.957 <.0001
th.Treatment -0.047 0.0459 43 -1.020 0.3135

> R.nlme2 <- update(R.nlme1,
fixed = list(A ~ 1, B ~ 1, ld50 ~ Treatment, th ~ 1),
start = list(fixed=c1[c(1:3,5,4)]))

> anova(R.nlme2, R.nlme1)
Model df AIC BIC logLik Test Lik.Ratio

R.nlme2 1 12 287.29 312.43 -131.65
R.nlme1 2 15 292.63 324.04 -131.31 1 vs. 2 0.66905
> summary(R.nlme2)
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Random effects:
Formula: list(A ~ 1, ld50 ~ 1)
Level: Animal
Structure: General positive-definite

StdDev Corr
A 4.668022 A

ld50.(Intercept) 0.072652 -0.116

Formula: list(A ~ 1, ld50 ~ 1)
Level: Run %in% Animal
Structure: General positive-definite

StdDev Corr
A 3.15072 A

ld50.(Intercept) 0.17128 -0.376
Residual 1.42791

Fixed effects: list(A ~ 1, B ~ 1, ld50 ~ Treatment, th ~ 1)
Value Std.Error DF t-value p-value

A 28.170 2.4909 46 11.309 <.0001
B 1.667 0.3069 46 5.433 <.0001

ld50.(Intercept) 3.779 0.0921 46 41.036 <.0001
ld50.Treatment 0.759 0.1217 46 6.233 <.0001

th 0.271 0.0226 46 11.964 <.0001

The results differ in detail, but the conclusions are the same. Finally, we can plot
by

xyplot(BPchange ~ log(Dose) | Animal * Treatment, Rabbit,
xlab = "log(Dose) of Phenylbiguanide",
ylab = "Change in blood pressure (mm Hg)",
subscripts = T, aspect = "xy", panel =

function(x, y, subscripts) {
panel.grid()
panel.xyplot(x, y)
sp <- spline(x, fitted(R.nlme2)[subscripts])
panel.xyplot(sp$x, sp$y, type="l")

})

10.5 Using lme with autocorrelated data

We also used lme in Section 15.6 to fit regressions with autocorrelated data. This
is most easily done by the new function gls in the nlme library.

> beav2.gls <- gls(temp ~ activ, data = beav2,
corr = corAR1(), method = "ML")

> summary(beav2.gls)
....

Correlation Structure: AR(1)
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Parameter estimate(s):
Phi

0.87318

Coefficients:
Value Std.Error t-value p-value

(Intercept) 37.19 0.11 328.75 0
activ 0.61 0.11 5.65 0

> summary(update(beav2.gls, subset=6:100))
....

Correlation Structure: AR(1)
Parameter estimate(s):

Phi
0.83803

Fixed effects: temp ~ activ
Value Std.Error DF t-value p-value

(Intercept) 37.25 0.1 93 386.68 0
activ 0.60 0.1 93 6.07 0

Here REML is the default method, as for lme .
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Chapter 11

Modern Regression

11.1 Additive models and scatterplot smoothers

Scatterplot smoothing

Simonoff (1996) provides an excellent overview of methods for smoothing whereas
Bowman & Azzalini (1997) concentrate on providing an introduction to the kernel
approach, with an easy-to-use S-PLUS library sm 1. They concentrate on using a
local linear smoother implemented in their function sm.regression , which can
produce smooth functions of one or two covariates.

The methods expounded by Wand & Jones (1995) are implemented in Wand’s
library KernSmooth 2. We can apply their local polynomial smoother to the
simulated motorcycle example by

library(KernSmooth) # ksmooth on Windows
attach(mcycle)
plot(times, accel)
lines(locpoly(times, accel, bandwidth=dpill(times,accel)))
lines(locpoly(times, accel, bandwidth=dpill(times,accel),

degree=2), lty=3)
detach()

This applies first a local linear and then a local quadratic fit. The bandwidth is
chosen by the method of Ruppert et al. (1995).

The package locfit (Loader, 1997) also uses local polynomial fitting, of
one or more covariates. The documentation with the package is sparse: the Web
site http://cm.bell-labs.com/stat/project/locfit has the sources3 and
a number of on-line documents, including some analyses of the mcycle dataset.
A simple analysis is

library(locfit, first=T)
fit <- locfit(accel ~ times, alpha = 0.3, data=mcycle)
plot(fit, se.fit=T, get.data=T)

1 available from http://www.stats.gla.ac.uk/~adrian/sm and
http://www.stat.unipd.it/dip/homes/azzalini/SW/Splus/sm.

2 ksmooth on Windows. The current Unix sources are at
http://www.biostat.harvard.edu/~mwand

3 for Unix; our port to Windows is later and more complete than that there.

http://cm.bell-labs.com/stat/project/locfit
http://www.stats.gla.ac.uk/~adrian/sm
http://www.stat.unipd.it/dip/homes/azzalini/SW/Splus/sm
http://www.biostat.harvard.edu/~mwand
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Figure 11.11: Smooths by local polynomial fits of the mcycle data. The bottom is by
locpoly , with a local linear (solid line) and local quadratic (dashed line) model. The
top row are by locfit with an assumed constant variance (left) and estimated variance
(right). The dashed lines are ± a standard error.

where the value of α was chosen by trial-and-error. We could use local AIC to set
the bandwidth, but as Figure 11.1 or 11.11 show, an assumption of constant noise
variance is not tenable. So we need a smooth estimate of the noise variance. A
simple idea is to under-smooth slightly, fit a smooth curve to the squared residuals
and use this for a variance estimate. However, this proves to be far too low at the
beginning, so we increase it somewhat to avoid choosing the bandwidth to fit the
first few observations.

fit2 <- locfit(accel ~ times, ev="data", alpha=0.2, data=mcycle)
y <- resid(fit2)
fit3 <- locfit(log(y^2) ~ times, deg=1, alpha=1, ev="data",

data=mcycle)
va <- pmax(exp(fitted(fit3)), 20)
fit <- locfit(accel ~ times, alpha=c(0,0,2), weights=1/va,

ev="grid", mg=200, data=mcycle)
plot(fit, se.fit=T, get.data=T)

The degree of smoothness chosen is rather sensitive to the precise variance estimate
used.

Fitting additive models

Other ways to fit additive models in S-PLUS are available from the contributions
of users. These are generally more ambitious than gam and step.gam in their
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choice of terms and the degree of smoothness of each term, and by relying heavily
on compiled code can be very substantially faster. All of these methods can fit to
multiple responses (by using the total sum of squares as the fit criterion).

Library mda of Hastie and Tibshirani provides functions bruto and mars .
The method BRUTO is described in Hastie & Tibshirani (1990); it fits additive
models with smooth functions selected by smoothing splines and will choose
between a smooth function, a linear term or omitting the variable altogether.
The function mars implements the MARS method of Friedman (1991) briefly
mentioned on page 341 of the book. By default this is an additive method, fitting
splines of order 1 (piecewise linear functions) to each variable; again the number
of pieces is selected by the program so that variables can be entered linearly,
non-linearly or not at all.

The library polymars of Kooperberg and O’Connor implements a restricted
form of MARS (for example, allowing only pairwise interactions) suggested by
Kooperberg et al. (1997).

An example: the cpus data

As a running example for various types of non-linear regression we consider
the data frame cpus (Ein-Dor & Feldmesser, 1987) which contains computer
performance data on mainframe cpus described on page 419 of the book. We
randomly select 100 examples for fitting the models and test the performance on
the remaining 109 examples. (This is related to but not identical to the experiments
in Ripley, 1994a.) We use a linear model as a benchmark.

set.seed(123)
cpus0 <- cpus[, 2:8] # excludes names, authors’ predictions
for(i in 1:3) cpus0[,i] <- log10(cpus0[,i])
samp <- sample(1:209, 100)
cpus.lm <- lm(log10(perf) ~ ., data=cpus0[samp,])
test <- function(fit)

sqrt(sum((log10(cpus0[-samp, "perf"]) -
predict(fit, cpus0[-samp,]))^2)/109)

test(cpus.lm)
[1] 0.21295

cpus.lm2 <- step(cpus.lm, trace=F)
cpus.lm2$anova

Initial Model:
log10(perf) ~ syct + mmin + mmax + cach + chmin + chmax

Final Model:
log10(perf) ~ mmin + mmax + cach + chmin + chmax

Step Df Deviance Resid. Df Resid. Dev AIC
1 93 3.2108 3.6942
2 - syct 1 0.013177 94 3.2240 3.6383
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test(cpus.lm2)
[1] 0.21271

Now we consider BRUTO and MARS models. These need matrices (rather
than formulae and data frames) as inputs.

Xin <- as.matrix(cpus0[samp,1:6])
library(mda)
test2 <- function(fit) {

Xp <- as.matrix(cpus0[-samp,1:6])
sqrt(sum((log10(cpus0[-samp, "perf"]) -

predict(fit, Xp))^2)/109)
}
cpus.bruto <- bruto(Xin, log10(cpus0[samp,7]))
test2(cpus.bruto)
[1] 0.21336

cpus.bruto$type
[1] excluded smooth linear smooth smooth linear
cpus.bruto$df
syct mmin mmax cach chmin chmax

0 1.5191 1 1.0578 1.1698 1

# examine the fitted functions
par(mfrow=c(3,2))
Xp <- matrix(sapply(cpus0[samp, 1:6], mean), 100, 6, byrow=T)
for(i in 1:6) {

xr <- sapply(cpus0, range)
Xp1 <- Xp; Xp1[,i] <- seq(xr[1,i], xr[2,i], len=100)
Xf <- predict(cpus.bruto, Xp1)
plot(Xp1[ ,i], Xf, xlab=names(cpus0)[i], ylab="", type="l")

}

The result (not shown) indicates that the non-linear terms have a very slight
curvature, as might be expected from the equivalent degrees of freedom that are
reported.

We can use mars to fit a piecewise linear model with additive terms.

cpus.mars <- mars(Xin, log10(cpus0[samp,7]))
showcuts <- function(obj)
{

tmp <- obj$cuts[obj$sel, ]
dimnames(tmp) <- list(NULL, dimnames(Xin)[[2]])
tmp

}
> showcuts(cpus.mars)

syct mmin mmax cach chmin chmax
[1,] 0 0.0000 0.0000 0 0 0
[2,] 0 0.0000 3.6021 0 0 0
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[3,] 0 0.0000 3.6021 0 0 0
[4,] 0 3.1761 0.0000 0 0 0
[5,] 0 0.0000 0.0000 0 8 0
[6,] 0 0.0000 0.0000 0 0 0
> test2(cpus.mars)
[1] 0.21366
# examine the fitted functions
Xp <- matrix(sapply(cpus0[samp, 1:6], mean), 100, 6, byrow=T)
for(i in 1:6) {

xr <- sapply(cpus0, range)
Xp1 <- Xp; Xp1[,i] <- seq(xr[1,i], xr[2,i], len=100)
Xf <- predict(cpus.mars, Xp1)
plot(Xp1[ ,i], Xf, xlab=names(cpus0)[i], ylab="", type="l")

}
> cpus.mars2 <- mars(Xin, log10(cpus0[samp,7]), degree=2)
> showcuts(cpus.mars2)

syct mmin mmax cach chmin chmax
[1,] 0 0.0000 0.0000 0 0 0
[2,] 0 0.0000 3.6021 0 0 0
[3,] 0 1.9823 3.6021 0 0 0
[4,] 0 0.0000 0.0000 16 8 0
[5,] 0 0.0000 0.0000 0 0 0
> test2(cpus.mars2)
[1] 0.21495
> cpus.mars6 <- mars(Xin, log10(cpus0[samp,7]), degree=6)
> showcuts(cpus.mars6)

syct mmin mmax cach chmin chmax
[1,] 0.0000 0.0000 0.0000 0 0 0
[2,] 0.0000 1.9823 3.6021 0 0 0
[3,] 0.0000 0.0000 0.0000 16 8 0
[4,] 0.0000 0.0000 0.0000 16 8 0
[5,] 0.0000 0.0000 3.6990 0 8 0
[6,] 2.3979 0.0000 0.0000 16 8 0
[7,] 2.3979 0.0000 3.6990 16 8 0
[8,] 0.0000 0.0000 0.0000 0 0 0
> test2(cpus.mars6)
[1] 0.20604

Allowing pairwise interaction terms (by degree=2 ) or allowing arbitrary inter-
actions make little difference to the effectiveness of the predictions.

We can use these results to indicate a possible scope for step.gam . This was
not covered in the main text, as we have found it to be too slow for routine use.
It fits a series of gam models, at each stage selecting one term from a list. Here
we allow each variable to be dropped, entered linearly or taken as a smooth term
with 2 or 4 (equivalent) degrees of freedom.

cpus.gam <- gam(log10(perf) ~ ., data=cpus0[samp, ])
cpus.gam2 <- step.gam(cpus.gam, scope=list(

"syct" = ~ 1 + syct + s(syct, 2) + s(syct),
"mmin" = ~ 1 + mmin + s(mmin, 2) + s(mmin),
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Figure 11.12: Plots of the additive functions used by cpus.mars .

"mmax" = ~ 1 + mmax + s(mmax, 2) + s(mmax),
"cach" = ~ 1 + cach + s(cach, 2) + s(cach),
"chmin" = ~ 1 + chmin + s(chmin, 2) + s(chmin),
"chmax" = ~ 1 + chmax + s(chmax, 2) + s(chmax)

))
> print(cpus.gam2$anova, digits=3)

Initial Model:
log10(perf) ~ syct + mmin + mmax + cach + chmin + chmax

Final Model:
log10(perf) ~ s(mmin, 2) + mmax + s(cach, 2) + s(chmax, 2)

Scale: 0.034525

From To Df Deviance Resid. Df Resid. Dev AIC
1 93 3.21 3.69
2 mmin s(mmin, 2) -1 -0.160 92 3.05 3.60
3 syct 1 0.019 93 3.07 3.55
4 cach s(cach, 2) -1 -0.115 92 2.95 3.51
5 chmax s(chmax, 2) -1 -0.095 91 2.86 3.48
6 chmin 1 0.055 92 2.91 3.47
> test(cpus.gam2)
[1] 0.20377
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This gives a result similar to that of BRUTO. We could include pairwise interaction
terms using lo , but this will not allow any extrapolation and so prediction of our
test set will fail.

For comparison, the regression tree procedure of Chapter 14 will give

cpus.ltr <- tree(log10(perf) ~ ., data=cpus0[samp,])
plot(cv.tree(cpus.ltr,, prune.tree))
cpus.ltr1 <- prune.tree(cpus.ltr, best=10)
test(cpus.ltr1)
[1] 0.24126

Other methods are considered later in this chapter.

Local likelihood models

Local likelihood provides a different way to extend models such as GLMs to
use smooth functions of the covariates. In the local likelihood approach the
prediction at x is made by fitting a fully parametric model to the observations
in a neighbourhood of x . More formally, a weighted likelihood is used, where
the weight for observation i is a decreasing function of the ‘distance’ of xi from
x . (We have already seen this approach for density estimation.) Note that in this
approach we are compelled to have predictions which are a smooth function of all
the covariates jointly and so it is only suitable for a small number of covariates,
usually not more than two. In principle the computational load will be daunting,
but this is reduced (as in loess ) by evaluating the prediction at a judiciously
chosen set of points and interpolating.

The library sm of Bowman & Azzalini (1997) implements this approach for
a single covariate in functions sm.logit (a Binomial log-linear model) and
sm.poisson (a Poisson log-linear model). For example, we can consider the
effect of the mother’s age on the probability of a low birthweight in the dataset
birthwt by

library(sm)
attach(birthwt)
sm.logit(age, low, h=5, display="se")
detach()

Here the bandwidth h is the standard deviation of the Gaussian kernel used.

Library locfit provides a function locfit with much greater flexibility.
It can fit Gaussian, binomial, Poisson, gamma and negative binomial GLMs with
identity, log, logit, inverse and square root links and one or more (in practice,
two or three) covariates, and choose the bandwidth based on the k = αn nearest
neighbours or fixed or chosen by a local AIC criterion (as we saw for a Poisson
model on page 7). We can try this for the joint response to age and lwt in
birthwt .
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Figure 11.13: Probability of low birthweight in dataset birthwt . Left: Against mother’s
age, by sm.logit , with pointwise confidence intervals shown by dashed lines. Right:
Against mother’s age and last weight, by locfit .

library(locfit, first=T)
bwt.lf <- locfit(low ~ age+lwt, data=birthwt, family="binomial",

deg=1, scale=0, alpha=c(0,0,2))
plot(bwt.lf, get.data=T)

Note that the use of scale=0 is essential as in density estimation. We chose
a local linear fit as the data are few and quadratic fitting (the default) has little
theoretical advantage over linear fitting.

As a second example, consider the dataset Pima.tr of diabetes on 200 Pima
Indians. Previous studies (Wahba et al., 1995; Ripley, 1996) have suggested that
the two continuous variables glu (plasma glucose level) and bmi (body mass
index) have the most discriminatory effect. We consider a local logistic regression
on these two variables

pima.lf <- locfit(I(type=="Yes") ~ glu + bmi, data=Pima.tr,
family="binomial", scale=0, alpha=c(0,0,2))

par(mfrow=c(1,2), pty="s")
plot(pima.lf, get.data=T); plot(pima.lf, type="persp")

shown in Figure 11.14.

11.2 Projection-pursuit regression

An alternative way to fit projection pursuit regression models is to use BDR’s
library ppr 4 which is (like ppreg ) based on the SMART program described in
Friedman (1984). This provides a formula-based interface and the ability to use
smoothing splines (based on the code for smooth.spline ) for the smoothing of
the ridge functions.

We can demonstrate this on the rock example.

4 Available from www.stats.ox.ac.uk in directory /pub/S (Unix) and /pub/SWin (Windows).
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Figure 11.14: Plots of the probability surface fitted to the Pima.tr dataset by locfit
using a local logistic regression.

> library(ppr)
> attach(rock)
> rock1 <- data.frame(area=area/10000, peri=peri/10000,

shape=shape, perm=perm)
> detach()
> rock.ppr <- ppr(log(perm) ~ area + peri + shape, data=rock1,

nterms=2, max.terms=5)
> rock.ppr
Call:
ppr.formula(formula = log(perm) ~ area + peri +

shape, data = rock1, nterms = 2, max.terms = 5)

Goodness of fit:
2 terms 3 terms 4 terms 5 terms
11.2196 7.1895 6.4565 5.8592

This essentially reproduces the fit on page 332 of the book (on a different OS; both
ppreg and ppr are very sensitive to the order and precision of calculations). The
summary method gives a little more information.

> summary(rock.ppr)
Call:
ppr.formula(formula = log(perm) ~ area + peri +

shape, data = rock1, nterms = 2, max.terms = 5)

Goodness of fit:
2 terms 3 terms 4 terms 5 terms
11.2196 7.1895 6.4565 5.8592

Projection direction vectors:
term 1 term 2

area 0.319492 0.435617
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Figure 11.15: Plots of the ridge functions for three 2-term projection pursuit regressions
fitted to the rock dataset. The top two fits used supsmu , whereas the bottom fit used
smoothing splines.

peri -0.945544 -0.866757
shape 0.062226 0.242839

Coefficients of ridge terms:
term 1 term 2

1.00638 0.72915

The added information is the direction vectors αk and the coefficients βij in

Yi = αi0 +
M∑

j=1

βijfj(αT
j X) + ε (11.10)

Note that this is the extension of (11.5) to multiple responses, and so we separate
the scalings from the smooth functions fj (which are scaled to have zero mean
and unit variance over the projections of the dataset).

We can examine the fitted functions fj by

par(mfrow=c(3,2))
plot(rock.ppr)
plot(update(rock.ppr, bass=5))
plot(update(rock.ppr, sm.method="gcv", gcvpen=2))

We first increase the amount of smoothing in the ‘super smoother’ supsmu to fit
a smoother function, and then change to using a smoothing spline with smooth-
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ness chosen by GCV (generalized cross-validation) with an increased complexity
penalty. We can then examine the details of this fit by

rock.ppr2 <- update(rock.ppr, sm.method="gcv", gcvpen=2)
summary(rock.ppr2)

....

Goodness of fit:
2 terms 3 terms 4 terms 5 terms
21.335 21.669 21.615 0.000

Projection direction vectors:
term 1 term 2

area 0.31407 0.42179
peri -0.94203 -0.86766

shape 0.11803 -0.26317

Coefficients of ridge terms:
term 1 term 2

0.87673 0.21402

Equivalent df for ridge terms:
term 1 term 2

2 3.06

This fit is substantially slower since the effort put into choosing the amount of
smoothing is much greater. Note that here only two effective terms could be
found, and that area and peri dominate. We can arrange to view the surface
for a typical value of shape .

summary(rock1) # to find the ranges of the variables
Xp <- expand.grid(area=seq(0.1,1.2,0.05),

peri=seq(0,0.5,0.02), shape=0.2)
trellis.device()
rock.grid <- cbind(Xp,fit=predict(rock.ppr2, Xp))
wireframe(fit ~ area+peri, rock.grid, screen=list(z=160,x=-60),

aspect=c(1,0.5), drape=T)

An example: the cpus data

We can also consider the cpus test problem. Our experience suggests that
smoothing the terms rather more that the default for supsmu is a good idea.

cpus.ppr <- ppr(log10(perf) ~ ., data=cpus0[samp,],
nterms=2, max.terms=10, bass=5)

> cpus.ppr
Call:
ppr.formula(formula = log10(perf) ~ ., data = cpus0[samp, ],

nterms = 2, max.terms = 10, bass = 5)
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Figure 11.16: A two-dimensional fitted section of a projection pursuit regression surface
fitted to the rock data. Compare this with Figure 11.5. Note that the prediction extends
the ridge functions as constant beyond the fitted functions, hence the planar regions shown.
For display on paper we set drape=F .

Goodness of fit:
2 terms 3 terms 4 terms 5 terms 6 terms 7 terms 8 terms
2.70334 2.37041 1.96751 1.56136 1.45629 1.06552 0.87165
9 terms 10 terms
0.81152 0.73181

cpus.ppr <- ppr(log10(perf) ~ ., data=cpus0[samp,],
nterms=7, max.terms=10, bass=5)

test(cpus.ppr)
[1] 0.18809
> ppr(log10(perf) ~ ., data=cpus0[samp,],

nterms=2, max.terms=10, sm.method="spline")
Goodness of fit:
2 terms 3 terms 4 terms 5 terms 6 terms 7 terms 8 terms
2.6218 2.2941 2.2842 1.8223 1.7465 1.4952 1.3857
9 terms 10 terms
1.3276 1.2924

> cpus.ppr2 <- ppr(log10(perf) ~ ., data=cpus0[samp,],
nterms=5, max.terms=10, sm.method="spline")

> test(cpus.ppr2)
[1] 0.19201
> cpus.ppr3 <- ppr(log10(perf) ~ ., data=cpus0[samp,],

nterms=3, max.terms=10, sm.method="spline")
> test(cpus.ppr3)
[1] 0.20901

In these experiments projection pursuit regression outperformed all the additive
models, but not by much. A different S-PLUS platform gave similar results but a
different ranking of the smoothing methods.
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Are these results actually better than those for the linear model? We can test
whether the prediction errors are smaller on the test set by a paired statistical test:
as it is moot whether to use the absolute error or squared error, and neither is close
to normally distributed, we use a rank test.

res1 <- log10(cpus0[-samp, "perf"]) -
predict(cpus.lm, cpus0[-samp,])

res2 <- log10(cpus0[-samp, "perf"]) -
predict(cpus.ppr2, cpus0[-samp,])

> wilcox.test(res1^2, res2^2, paired=T, alternative="greater")

Wilcoxon signed-rank test

data: res1^2 and res2^2
signed-rank normal statistic with correction Z = 0.8979,

p-value = 0.1846

Remember there is a selection effect here: we have tested one of the best fits we
found. Much larger reductions in the prediction variance are needed for statistical
(or practical) significance.

11.4 Neural networks

In this complement we provide more details of the functions in the current version
of library nnet . This has both enhanced functionality and improvements in the
output.

Using formulae with nnet

Since the book was written we have made nnet into a generic function, with a
default method nnet.default that reproduces the previous behaviour. There is
a new logical argument Hess that adds a call to nnet.Hess from within the call
to nnet , with the Hessian contained in the Hessian component of the returned
object.

The method nnet.formula provides an additional way to specify the network
that may combine more easily with other model-based procedures. The interface is
similar to that of the multinom function (which fits multiple logistic regressions
via a call to nnet.default ), but has less specialized print and summary
methods. The formula should be of the form

type ~ var1 + var2 + ...

where interactions are allowed on the right-hand side but will not normally be
useful. The response variable is normally a factor, but it could also be a vector or
matrix. (Vector and matrices are passed unchanged to nnet.default .) Response
factors are treated in one of two ways, after having any unused levels removed.
If the reduced factor has just two levels, nnet.default is called with y as the
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indicator function of the second level, and with entropy=T . If there are more
than two levels, y is set to the indicator matrix of the factor (in which each row
is zero except in the column for the level which occurred) and softmax is used.
These are sensible defaults when (as is usual) the neural network is being used a
non-linear logistic discriminant.

We can use a formula to simplify slightly the specification of the example on
page 340 of the book.

attach(rock)
rock1 <- data.frame(perm, area=area1, peri=peri1, shape)
rock.nn1 <- nnet(log(perm) ~ area + peri + shape, data=rock1,

size=3, decay=1e-3, linout=T, skip=T, maxit=1000)
summary(rock.nn1)
sum((log(perm) - predict(rock.nn1))^2)
detach(rock)

Neural nets specified by a formula will most often be used for prediction.
If the response is a factor, the default return value from predict.nnet is the
predicted probabilities for each class (or of one of the classes if there are only two).
However, the option type="class" returns the class with the highest predicted
probability.

This form makes it easier to view the fitted surface for the rock dataset. We
can use essentially the same code as we used for the fits by ppr .

Xp <- expand.grid(area=seq(0.1,1.2,0.05),
peri=seq(0,0.5,0.02), shape=0.2)

trellis.device()
rock.grid <- cbind(Xp,fit=predict(rock.nn1, Xp))
wireframe(fit ~ area + peri, rock.grid, screen=list(z=160,x=-60),

aspect=c(1,0.5), drape=T)

Multiple logistic regression and discrimination

The function multinom is a wrapper function that uses nnet.default to fit a
multiple logistic regression. There was once a separate library multinom , but
this has been merged with library nnet in the libraries for the second edition.

There are close similarities between nnet.formula and multinom , but
multinom adds the class multinom to the object it returns and has specialized
methods for the generic functions print , summary , predict , coef , vcov ,
add1 , drop1 and extractAIC 5.

The model is specified by a formula. The response can be either a matrix
giving the number of occurrences of each class at that particular x value, or (more
commonly) a factor giving the observed class. The right-hand side specifies the
design matrix in the usual way. If the response Y is a factor with just two levels,
the model fitted is

logitp(Y = 1 |X = x) = βT x

5 the method-dependent part of stepAIC .
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This is a logistic regression, and is fitted as a neural network with skip-layer
connections and no units in the hidden layer. There is a potential problem in that
both the bias unit and an intercept in x may provide an intercept term: this is
avoided by constraining the bias coefficient to be zero. The entropy measure of fit
is used; this is equivalent to maximizing the likelihood.

For a factor response with more that two levels or a matrix response the model
fitted is

log
p(Y = c |X = x)
p(Y = 1 |X = x)

= βT
c x

where β1 ≡ 0 . Once again the parameters are chosen by maximum likelihood.
(This is achieved by using the softmax option of nnet.default .)

Approximate standard errors of the coefficients are found for vcov.multinom
and summary.multinom by inverting the Hessian of the (negative) log-likelihood
at the maximum likelihood estimator.

It is possible to add weight decay by setting a non-zero value for decay
on the call to multinom . Beware that because the coefficients for class one are
constrained to be zero, this has a rather asymmetric effect (unlike nnet.formula )
and that the quoted standard errors are no longer appropriate. Using weight decay
has an effect closely analogous to ridge regression, and will often produce better
predictions than using stepwise selection of the variables.

In all these problems the measure of fit is convex, so there is a unique global
minimum. This is attained at a single point unless there is collinearity in the
explanatory variables or the minimum occurs at infinity (which can occur if the
classes are partially or completely linearly separable).

Internal details of nnet.default

The C code on which nnet.default is based is quite general and can in fact be
used for networks with an arbitrary pattern of feed-forwardconnections. Internally
the nodes are numbered so that all connections are from lower to higher numbers;
the bias unit has number 0, the inputs numbers 1 to m , say, and the output units are
the highest-numbered units. The code in summary.nnet shows how to ‘unpack’
the connections. These are stored in vectors, so the weights are stored in a single
vector. The connections are sorted by their destination so that all connections to
unit i precede those to unit i + 1 . The vector conn gives the source unit, and
nconn is an index vector for the first connection to that destination. An example
will make this clearer:

> rock.nn$nconn
[1] 0 0 0 0 0 4 8 12 19
> rock.nn$conn
[1] 0 1 2 3 0 1 2 3 0 1 2 3 0 4 5 6 1 2 3

> summary(rock.nn)
a 3-3-1 network with 19 weights
options were - skip-layer connections linear output units
decay=0.001
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b->h1 i1->h1 i2->h1 i3->h1
4.47 -11.16 15.31 -8.78
b->h2 i1->h2 i2->h2 i3->h2
9.15 -14.68 18.45 -22.93
b->h3 i1->h3 i2->h3 i3->h3
1.22 -9.80 7.10 -3.77
b->o h1->o h2->o h3->o i1->o i2->o i3->o
8.78 -16.06 8.63 9.66 -1.99 -4.15 1.65

Unit 0 is the bias ("b"), units 1 to 3 are the inputs, 4 to 6 the hidden units and 7 the
output. The vectors conn and nconn follow the C indexing convention, starting
with zero. Thus unit h1 (4) has connections from units 0, 1, 2 and 3. The vector
nconn has a final element giving the total number of connections.

These connection vectors are normally constructed by the function add.net ;
this automatically adds a connection to a bias unit whenever a unit gets its first
incoming connection.

An example: the cpus data

To use the nnet software effectively it is essential to scale the problem. A
preliminary run with a linear model demonstrates that we get essentially the same
results as the conventional approach to linear models.

attach(cpus0)
cpus1 <- data.frame(syct=syct-2, mmin=mmin-3, mmax=mmax-4,
cach=cach/256, chmin=chmin/100, chmax=chmax/100, perf=perf)
detach()

test <- function(fit)
sqrt(sum((log10(cpus1[-samp, "perf"]) -

predict(fit, cpus1[-samp,]))^2)/109)
cpus.nn1 <- nnet(log10(perf) ~ ., data=cpus1[samp,], linout=T,

skip=T, size=0)
test(cpus.nn1)
[1] 0.21295

We now consider adding non-linear terms to the model.

cpus.nn2 <- nnet(log10(perf) ~ ., data=cpus1[samp,], linout=T,
skip=T, size=4, decay=0.01, maxit=1000)

final value 2.369581
test(cpus.nn2)
[1] 0.21132
cpus.nn3 <- nnet(log10(perf) ~ ., data=cpus1[samp,], linout=T,

skip=T, size=10, decay=0.01, maxit=1000)
final value 2.338387
test(cpus.nn3)
[1] 0.21068
cpus.nn4 <- nnet(log10(perf) ~ ., data=cpus1[samp,], linout=T,

skip=T, size=25, decay=0.01, maxit=1000)
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final value 2.339850
test(cpus.nn4)
[1] 0.23

This demonstrates that the degree of fit is almost completely controlled by the
amount of weight decay rather than the number of hidden units (provided there
are sufficient). We have to be able to choose the amount of weight decay without
looking at the test set. To do so we borrow the ideas of Chapter 17, by using
cross-validation and by averaging across multiple fits.

CVnn.cpus <- function(formula, data=cpus1[samp, ],
size = c(0, 4, 4, 10, 10),
lambda = c(0, rep(c(0.003, 0.01), 2)),
nreps = 5, nifold = 10, ...)

{
CVnn1 <- function(formula, data, nreps=1, ri, ...)
{
truth <- log10(data$perf)
res <- numeric(length(truth))
cat(" fold")
for (i in sort(unique(ri))) {
cat(" ", i, sep="")
for(rep in 1:nreps) {
learn <- nnet(formula, data[ri !=i,], trace=F, ...)
res[ri == i] <- res[ri == i] +

predict(learn, data[ri == i,])
}

}
cat("\n")
sum((truth - res/nreps)^2)

}
choice <- numeric(length(lambda))
ri <- sample(nifold, nrow(data), replace=T)
for(j in seq(along=lambda)) {
cat(" size =", size[j], "decay =", lambda[j], "\n")
choice[j] <- CVnn1(formula, data, nreps=nreps, ri=ri,

size=size[j], decay=lambda[j], ...)
}

cbind(size=size, decay=lambda, fit=sqrt(choice/100))
}
CVnn.cpus(log10(perf) ~ ., data=cpus1[samp,],

linout=T, skip=T, maxit=1000)
size decay fit

[1,] 0 0.000 0.19746
[2,] 4 0.003 0.23297
[3,] 4 0.010 0.20404
[4,] 10 0.003 0.22803
[5,] 10 0.010 0.20130
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This took around 6 Mb and 15 minutes on the PC. The cross-validated results
seem rather insensitive to the choice of model. We show how to use one of the
non-linear models, even though non-linearity does not seem justified.

testnn <- function(nreps=1, ...)
{

res <- numeric(109)
cat(" rep")
for (i in 1:nreps) {
cat(" ", i, sep="")
fit <- nnet(log10(perf) ~ ., data=cpus1[samp,],

trace=F, linout=T, ...)
res <- res + predict(fit, cpus1[-samp,])

}
cat("\n")
sqrt(sum((log10(cpus1[-samp, "perf"]) - res/nreps)^2)/109)

}
testnn(nreps=5, skip=T, maxit=1000, size=10, decay=0.01)
[1] 0.20638



55

Chapter 12

Survival Analysis

12.1 Estimators of survival curves

In the text we concentrated on wholly non-parametric estimators of the survivor
function S and cumulative hazard H ; the resulting estimators were not smooth,
indeed discontinuous. There are analogues of density estimation for survival data
in which we seek smooth estimates of the survival function S , the density f or
(especially) the hazard function h . There seem no current S-PLUS implementa-
tions of the kernel-based approaches (Wand & Jones, 1995, §6.2.3, 6.3).

Likelihood-based approaches

Censoring is easy to incorporate in maximum-likelihoodestimation; the likelihood
is given by (12.1) on page 344. One approach to using a smooth estimator is
to fit a very flexible parametric family and show the density / hazard / survivor
function evaluated at the maximum likelihood estimate. This is the approach of
the logspline library that we considered in Chapter 5 of these complements.
Consider the gehan dataset.

library(logspline) # logsplin on Windows
g1 <- gehan[gehan$treat=="control",]
g2 <- gehan[gehan$treat=="6-MP",]
logspline.plot(

logspline.fit(uncensored=g1[g1$cens==1,"time"],
right=g1[g1$cens==0,"time"], lbound=0),

what="s", xlim=c(0,35))
g2.ls <- logspline.fit(uncensored=g2[g2$cens==1,"time"],

right=g2[g2$cens==0,"time"], lbound=0)
xx <- seq(0, 35, len=100)
lines(xx, 1 - plogspline(xx, g2.ls), lty=3)

As there is no function for plotting lines, we have to add the second group by
hand. Small changes allow us to plot the density or hazard function.

Once again there is a local likelihood approach (see, for example Hjort, 1997)
to hazard estimation, in which the terms are weighted by their proximity to t .
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Figure 12.1: Smooth survival (left, by logspline.fit) and hazard (right, by locfit )
fits to the gehan dataset. The solid line indicates the control group, the dashed line that
receiving 6-MP.

The full log-likelihood is

∑
ti:δi=1

logh(ti) −
∑

i

∫ ti

0

h(u) du

and we insert weighting terms as before. This is implemented in Loader’s library
locfit : using a locally polynomial (by default quadratic) hazard.

library(locfit, first=T)
plot(locfit( ~ time, cens=1-cens, data=g1, family="hazard",

alpha=0.5, xlim=c(0, 1e10)),
xlim=c(0, 35), ylim=c(0, 0.3))

lines(locfit( ~ time, cens=1-cens, data=g2, family="hazard",
alpha=0.5, xlim=c(0, 1e10)), lty=3)

The xlim=c(0, 1e10) argument sets a lower bound (only) on the support of the
density.

Both there approaches can have difficulties in the right tail of the distribution,
where uncensored observations may be rare. The right tail of a distribution fitted by
logspline.fit necessarily is exponential beyond the last observation. In HEFT
(Hazard Estimation with Flexible Tails; Kooperberg et al., 1995a). a cubic spline
model is used for the log hazard, but with two additional terms θ1 log t/(t + c)
and θ2 log(t+ c) where c is the upper quartile for the uncensored data. Then the
space of fitted hazards includes the functions

h(t) = eθ0tθ1(t+ c)θ2−θ1

which includes the Weibull family and the Pareto density

f(t) =
bcb

(t+ c)b+1

for given c . Thus there is some hope that the tail behaviour can be captured
within this parametric family. This is implemented in function heft.fit in
library heft . To illustrate this, let us consider the whole of the Australian AIDS
dataset Aids .
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Figure 12.2: Survivor curve and hazard fitted to Aids by heft.fit .

library(heft)
attach(Aids2)
aids.heft <- heft.fit(death-diag+0.9, status=="D")
heft.summary(aids.heft)
par(mfrow=c(2,2))
heft.plot(aids.heft, what="s", ylim=c(0,1))
heft.plot(aids.heft)

This is rather slow (20 seconds). The sharp rise at 0 of the hazard reflects the
small number of patients diagnosed at death. Note that this is the marginal hazard
and its shape need not be at all similar to the hazard fitted in a (parametric or Cox)
proportional hazards model.

12.6 Non-parametric models with covariates

There have been a number of approaches to model the effect of covariates on
survival without a parametric model. Perhaps the simplest is a localized version
of the Kaplan-Meier estimator

Ŝ(t |x) =
∏

ti6t,δi=1

[
1 − w(xi − x)∑

j∈R(ti)
w(xj − x)

]

which includes observations with weights depending on the proximity of their
covariates to x . This does not smooth the survivor function, but the function
sm.survival in library sm (Bowman & Azzalini, 1997) plots quantiles as a
function of x by smoothing the inverse of the survival curve and computing
quartiles of the smoothed fit. Following them, we can plot the median survival
time after transplantation in the Stanford heart transplant data heart by

library(sm)
attach(heart[heart$transplant==1,])
sm.survival(age+48, log10(stop - start), event, h=5, p=0.50)
detach()
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Figure 12.3: Smooth hazard functions (in days) as a function of age post-transplantation in
the Stanford heart-transplant study. Left: by locfit and right: by hazcov using local
scoring.

This shows some evidence of a decline with age, which can also be seen in the
Cox analysis.

The local likelhood approach easily generalizes to localizing in covariate space
too: in locfit this is requested by adding covariate terms to the right-hand-side
of the formula.

library(locfit)
attach(heart[heart$transplant==1,])
td <- stop - start; Age <- age+48
plot(locfit(~ td + Age, cens=1-event, scale=0,alpha=0.5,

xlim=list(td=c(0,1e10)), flim=list(td=c(0,365))),
type="persp")

Gray (1996, 1994) takes a similar but less formal approach, using loess to
smooth a discretized version of the problem. This is implemented in his function
hazcov in library hazcov . First the data are grouped on the covariate values,
using quantiles of the marginal distributions or factor levels. Then time is divided
into intervals and the number of events and total follow-up time computed for
each interval for each covariate combination. In the default method described
in the 1996 paper, the numbers of events and the follow-up totals are separately
smoothed using loess function, and the hazard estimate formed by taking ratios.
We can try this by

library(hazcov)
heart.hc <- hazcov(Surv(td, event) ~ Age, span=0.5)
plot(heart.hc)
persp.hazcov(Hazard.Rate ~ Time*Age, heart.hc)

The loess span was chosen by guesswork. Gray describes an approximate
version of Cp to help select the span which we can use by

heart.50 <- hazcov(Surv(td, event) ~ Age, span=0.5,
trace.hat="exact")

for(alpha in seq(0.1, 1, 0.1))
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{
heart.tmp <- hazcov(Surv(td, event) ~ Age, span=alpha,

trace.hat="exact")
print(wcp(heart.tmp, heart.50))

}

This indicates a minimum at α = 0.2 , but very little difference over the range
[0.2, 0.5] .

The alternative method (Gray, 1994: ‘local scoring’ invoked by ls=T ), the
counts are viewed a independent Poisson variates with mean total follow-up times
hazard, and a local log-linear Poisson GLM is fitted by IWLS, using loess to
smooth the log-hazard estimates.

heart.hc <- hazcov(Surv(td, event) ~ Age, span=0.5, ls=T)
plot(heart.hc)
persp.hazcov(Hazard.Rate ~ Time*Age, heart.hc)

Spline approaches

HARE (HAzard Rate Estimation; Kooperberg et al., 1995a) fits a linear tensor-
spline model for the log hazard function conditional on covariates, that is log h(t |x) =
η(t, x; θ) is a MARS-like function of (t, x) jointly. The fitting procedure is sim-
ilar to that for logspline and lspec : an initial set of knots is chosen, the
log-likelihood is maximized given the knots by a Newton algorithm, and knots
and terms are added and deleted in a stepwise fashion. Finally, the model returned
is that amongst those considered that maximizes a penalized likelihood (by default
with penalty logn times the number of parameters).

It remains to describe just what structures are allowed for η(t, x) . This is
a linear combination of linear spline basis functions and their pairwise products,
that is a linear combination of terms like c, t, (t− c)+, xj , (xj − c)+, txj , (txj −
c)+, xjxk, (xjxk − c)+ where the c are generic constants. The product terms
are restricted to products of simple terms already in the model, and wherever a
non-linear term occurs, that term also occurs with the non-linear term replaced by
a linear term in the same variable. Thus this is just a MARS model in the p + 1
variables restricted to pairwise interactions.

The model for the hazard function will be a proportional hazards model if
(and only if) there are no products between t and covariate terms. In any case
it has a rather restricted ability to model non-constant hazard functions, and it
is recommended to transform time to make the marginal distribution close to
exponential (with constant hazard) before applying HARE.

HARE is implemented in library hare by function hare.fit . The paper
contains an analysis of the dataset cancer.vet which we can reproduce by

# VA is constructed on page 363
> attach(VA)
> library(HARE)
> options(contrasts=c("contr.treatment", "contr.poly"))
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> VAx <- model.matrix( ~ treat+age+Karn+cell+prior, VA)[,-1]
> VA.hare <- hare.fit(stime, status, VAx)
> hare.summary(VA.hare)

....
the present optimal number of dimensions is 9.
penalty(AIC) was the default: BIC=log(samplesize): log(137)=4.92

dim1 dim2 beta SE Wald
Constant -9.83e+00 2.26e+00 -4.35
Co-3 linear 2.50e-01 1.08e-01 2.31
Co-5 linear 2.43e+00 4.72e-01 5.15
Co-4 linear -1.39e+00 6.35e-01 -2.20
Time 1.56e+02 Co-5 linear -1.25e-02 4.50e-03 -2.77
Time 1.56e+02 2.45e-02 5.84e-03 4.20
Co-3 2.00e+01 -2.60e-01 1.08e-01 -2.41
Co-3 linear Co-4 linear 3.87e-02 1.12e-02 3.46
Time 1.56e+02 Co-3 linear -4.33e-04 9.58e-05 -4.52
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Figure 12.4: The marginal distribution of lifetime in the cancer.vet dataset. Left:
Hazard as fitted by heft.fit . Right: Time as transformed by the distribution fitted by
heft.fit and by a fitted Weibull distribution.

We found that an exponential model for the residual hazard was adequate,
but Kooperberg et al. (1995a) explore the marginal distribution by HEFT and
conclude that the time-scale could usefully be transformed. They used

library(HEFT)
VA.heft <- heft.fit(stime, status, leftlog=0)
heft.plot(VA.heft, what="h")
nstime <- -log(1 - pheft(stime, VA.heft))

In fact the transformation used is close to that from fitting a Weibull distribution

survreg(Surv(stime, status) ~ 1, data=VA)
....

Coefficients:
(Intercept)

4.793146
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Dispersion (scale) = 1.173592

plot(sort(nstime),
-log(1-pweibull(sort(stime), 1/1.1736, exp(4.973))),
type="l", xlab="HEFT-transformed", ylab="Weibull-transformed")

It does seem undesirable to ignore the highly significant covariate effects in making
such a transformation; this is illustrated in this example by the change in the
Weibull shape parameter from 1.174 to 0.928 (foot of page 364) on fitting linear
terms in the survival regression model.

Having transformed time, we can re-fit the model.

> VA.hare2 <- hare.fit(nstime, status, VAx)
hare.summary(VA.hare2)
the present optimal number of dimensions is 10.
penalty(AIC) was the default: BIC=log(samplesize): log(137)=4.92

dim1 dim2 beta SE Wald
Constant -7.06e+00 2.60e+00 -2.72
Co-3 linear 2.72e-01 1.10e-01 2.47
Co-5 linear 5.54e+00 1.15e+00 4.81
Time 2.67e+00 2.24e+00 6.22e-01 3.60
Time 2.67e+00 Co-5 linear -2.00e+00 5.40e-01 -3.70
Time 2.67e+00 Co-3 linear -4.21e-02 9.54e-03 -4.42
Co-4 linear -1.16e+00 6.53e-01 -1.77
Co-3 8.50e+01 -2.73e-01 1.17e-01 -2.33
Co-3 linear Co-4 linear 3.39e-02 1.15e-02 2.94
Co-3 2.00e+01 -2.31e-01 1.08e-01 -2.13

Allowing for the time transformation, the fitted model is quite similar. Covariate
3 is the Karnofsky score, and 4 and 5 are the contrasts of cell type adeno and small
with squamous. It is not desirable to have a variable selection process that is so
dependent on the coding of the factor covariates.

This example was used to illustrate the advantages of HARE / HEFT method-
ology by their authors, but seems rather to show up its limitations. We have
already seen that the marginal transformation of time is quite different from that
suggested for the conditional distribution. In our analysis via Cox proportional
hazards models we found support for models with interactions where the main
effects are not significant (such models will never be found by a forward selection
procedure such as used by HARE) and the suspicion of time-dependence of such
interactions (which would need a time cross covariate cross covariate interaction
which HARE excludes).
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Chapter 13

Multivariate Analysis

13.3 Discriminant analysis

Correspondence analysis (continued)

There are many ways to look at correspondence analysis and corresponding plots,
and as Gower & Hand (1996, p. 183) point out1

‘It is important that any published graphics make it clear just which of these,
or other, representations is being represented.’

We considered correspondence analysis for an r × c table N = (nij) via the

singular value decomposition of D
−1/2
r (N/n)D−1/2

c = UΛV T where n =
n·· , Dr =

√
diag(ni·/n) and Dc =

√
diag(n·j/n) . We dropped the first

component which corresponds to columns of one; we can now eliminate this
component by considering nij/n − (ni·/n)(n·j/n) ; we then have the singular-
value decomposition of

Xij =
nij/n− (ni·/n)(n·j/n)√

(ni·/n)(n·j/n)
=
nij − n ri cj
n
√
ri cj

where ri = ni·/n and cj = n·j/n are the proportions in each row and column.

One view is to see
∑

s

∣∣Xis−Xjs

∣∣2 as a squared ‘distance’ from row i to column
j .

In this form the simple correspondence analysis corresponds to selecting the
first singular value and left and right singular vectors of Xij and rescaling by

D
−1/2
r and D

−1/2
c respectively2. Can we make use of the subsequent singular

values? In what Gower & Hand call ‘classical CA’ we consider A = D
−1/2
r UΛ

and B = D
−1/2
c V Λ . Then the first columns of A and B are what we have

termed the row and column scores scaled by ρ , the first canonical correlation.
More generally, we can see distances between the rows of A as approximating
(in the χ2 -distance) the distances between the row profiles (rows rescaled to unit

1 although they neglect to follow their own advice; for example their figures 4.2 and 9.1 have no
axes and no indication of what precisely has been plotted.

2 and that is how the code now works.
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Figure 13.15: Three variants of correspondence analysis plots from Fisher’s data on people
in Caithness.

sum) of the the table N , and analogously for the rows of B and the column
profiles.

Classical CA plots the first two columns of A and B on the same fig-
ure. This is a form of a biplot and is obtained with our software by plotting a
correspondence analysis object with nf > 2 or as the default for the method
biplot.correspondence . Note that this is not a standard biplot as the inner
products

ABT = D−1/2
r UΛ2V TD−1/2

c

have no simple interpretation. This is sometimes known as a ‘symmetric’ plot.

Other authors (for example Greenacre, 1992) advocate ‘asymmetric’ plots.
The asymmetric plot for the rows is a plot of the first two columns of A with the
column labels plotted at the first two columns of Γ = D

−1/2
c V ; the corresponding

plot for the columns has columns plotted at B and row labels at Φ = D
−1/2
r U .

The most direct interpretation for the row plot is that

A = D−1
r NΓ

so A is a plot of the row profiles (the rows normalized to sum to one) as
convex combinations of the column vertices given by Γ . The asymmetric
plots are produced by giving plot or biplot argument type="rows" or
type="columns" .

By default corresp only retains one-dimensional row and column scores;
then plot.corresp plots these scores and indicates the size of the entries in the
table by the area of circles. The two-dimensional forms of the plot are shown in
Figure 13.15 for Fisher’s data on people from Caithness. These were produced by

caith <- read.table("Fisher.dat")
dimnames(caith)[[2]] <- c("F", "R", "M", "D", "B")
par(mfcol=c(1,3))
plot(corresp(caith, nf=2)); title("symmetric")
plot(corresp(caith, nf=2), type="rows"); title("rows")
plot(corresp(caith, nf=2), type="col"); title("columns")
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Note that the symmetric plot (left) has the row points from the asymmetric row
plot (middle) and the column points from the asymmetric column plot (right)
superimposed on the same plot (but with different scales).

Multiple correspondence analysis

Multiple correspondence analysis (MCA) is (confusingly!) a method for visual-
izing the joint properties ofp > 2 categorical variables that does not reduce to
correspondence analysis (CA) for p = 2 , although the methods are closely related
(see, for example, Gower & Hand, 1996, §10.2).

Suppose we have n observations on the p factors with ` total levels. Consider
G , the n × ` indicator matrix whose rows give the levels of each factor for each
observation. Then all the row sums are p . MCA is often (Greenacre, 1992)
defined as CA applied to the table G , that is the singular-value decomposition of
D

−1/2
r (G/

∑
ij gij)D

−1/2
c = UΛV T . Note that Dr = pI since all the row sums

are p , and
∑

ij gij = np , so this amounts to the SVD of p−1/2GD
−1/2
c /pn 3

An alternative point of view is that MCA is a principal components analysis
of the data matrix X = G(pDc)−1/2 ; with PCA it is usual to centre the data but
it transpires that the largest singular value is one and the corresponding singular
vectors account for the means of the variables. Thus a simple plot for MCA is to
plot the first two principal components of X . It will not be appropriate to add
axes for the columns of X as the possible values are only {0, 1} , but it is usual
to add the positions of 1 on each of these axes, and label these by the factor level.
(The ‘axis’ points are plotted at the appropriate row of (pDc)−1/2V .) The point
plotted for each observation is the vector sum of the ‘axis’ points for the levels
taken of each of the factors. Gower and Hand seem to prefer (e.g. their figure
4.2) to rescale the plotted points by p , so they are plotted at the centroid of their
levels. This is exactly the asymmetric row plot of the CA of G , apart from an
overall scale factor of p

√
n .

We can apply this to the example of Gower & Hand (1996, p. 75) by

farms.mca <- mca(farms, abbrev=T) # Use levels as names
plot(farms.mca, cex=rep(0.7,2))

Sometimes it is desired to add rows or factors to an MCA plot. Adding
rows is easy: the observations are placed at the centroid of the ‘axis’ points for
levels that are observed. Adding factors (so-called supplementary variables) is
less obvious. The ‘axis’ points are plotted at the rows of (pDc)−1/2V . Since
UΛV T = X = G(pDc)−1/2 , V = (pDc)−1/2GTUΛ−1 and

(pDc)−1/2V = (pDc)−1GTUΛ−1

This tells us that the ‘axis’ points can be found by taking the appropriate column of
G , scaling to total 1/p and then taking inner products with the second and third
columns of UΛ−1 . This procedure can be applied to supplementary variables
and so provides a way to add them to the plot. The predict method for class
"mca" allows rows or supplementary variables to be added to an MCA plot.

3 Gower & Hand (1996) omit the divisor pn .
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13.5 Factor analysis

Rotation of principal components

The usual aim of both PCA and factor analysis studies is to find an interpretable
smaller set of new variables that explain the original variables. Factor rota-
tion is a very appealing way to achieve interpretability, and it can also be ap-
plied in the space of the first m principal components. The S-PLUS function
rotate.princomp applies rotation to the output of a princomp analysis. For
example, if we varimax rotate the first two principal components of ir.pca
(page 383 of the text) we find

> loadings(rotate(ir.pca, n=2))
Comp. 1 Comp. 2 Comp. 3 Comp. 4

Sepal.L 0.596 0.324 0.709 0.191
Sepal.W 0.935 -0.331
Petal.L 0.569 -0.102 -0.219 -0.786
Petal.W 0.560 -0.583 0.580

Note that only the first two components have been rotated, although all four are
displayed.

It is important to consider normalization carefully when applying rotation to
a principal component analysis, which is not scale-invariant.

(a) Using argument cor=T to princomp ensures that the original variables are
rescaled to unit variance when the principal components (PCs) are selected.

(b) The ‘loadings’ matrix given by princomp is the orthogonal matrix V which
transforms the variables X to the principal components Z = XV , so X =
ZV T . This is not the usual loadings matrix considered for rotation in principal
component analysis (Basilevsky, 1994, p. 258), although it is sometimes used
(Jolliffe, 1986, §7.4). The loadings of a factor analysis correspond to a set of
factors of unit variance; normalizing the principal components to unit variance
corresponds to X = Z∗AT for A = V Λ and Z∗ = ZΛ−1 . where (as on
page 304) Λ denotes the diagonal matrix of singular values. The matrix A is
known as the correlation loadings. since Aij is the correlation between the
i th variable and the j th PC (provided the variables were normalized to unit
variance). Orthogonal rotations of Z∗ remain uncorrelated and correspond
to orthogonal rotations of the correlation loadings.

(c) The S-PLUS default for rotations such as varimax is to normalize the loadings
as at (13.8) so the sum of squares for each row (variable) is one. Thus
(standardized) variables which are fitted poorly by the first m PCs are given
the same weight as those which are fitted well. This seems undesirable for
PCs (Basilevsky, 1994, p. 264), so it seems preferable not to normalize.

Taking these points into account we have
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> A <- loadings(ir.pca) %*% diag(ir.pca$sdev)
> dimnames(A)[[2]] <- names(ir.pca$sdev)
> B <- rotate(A[, 1:2], normalize=F)$rmat
> print.loadings(B)

Comp. 1 Comp. 2
Sepal.L 0.963
Sepal.W -0.153 0.981
Petal.L 0.924 -0.350
Petal.W 0.910 -0.342

which does have a clear interpretation as dividing the variables into two nearly
disjoint groups. It does seem that one common use of rotation in both principal
component and factor analysis is to cluster the original variables, which can of
course also be done by a cluster analysis of XT .
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Chapter 14

Tree-based Methods

14.4 Library RPart

The library section rpart by Beth Atkinson and Terry Therneau (Therneau & Atkinson,
1997) provides an alternative to tree for tree-based methods in S-PLUS which
is both more and less flexible: the original code is available from statlib . We
describe here the version released in March 19981.

The underlying philosophy of rpart (which stands for Recursive Partitioning)
is slightly different from that of tree , and is closer to that of Breiman et al.
(1984) and the CART program. There is one function, rpart , that both grows
and computes where to prune a tree; although there is a function prune.rpart it
merely further prunes the tree at points already determined by the call to rpart ,
which has itself done some pruning. It is also possible to print a pruned tree
by giving a pruning parameter to print.rpart . Note that (by default) rpart
runs a 10-fold cross-validation akin to cv.tree and the results are stored in the
rpart object to allow the user to choose the degree of pruning at a later stage.

The rpart system was designed to be easily extended to new types of re-
sponses. At present it has the following types, selected by the argument method .

"anova" A regression tree, with the impurity criterion the reduction in sum of
squares on creating a binary split of the data at that node. The criterion
R(T ) used for pruning is the mean square error of the predictions of the
tree on the current dataset (that is, the residual mean square).

"class" A classification tree, with a categorical or factor response and default
impurity criterion the Gini index (p. 418). The deviance-based approach
taken by tree corresponds to the ‘entropy’ or ‘information’ index, selected
by the argument parms=list(split="information") . The pruning
criterion R(T ) is the predicted loss, normally the error rate. (Note that the
default for prune.tree , deviance-based pruning, is not available.)

"poisson" in which the response is the number of events Ni in a specified
duration ti of observation. Deviance-based criteria are used to splitting

1 Available from http://www.stats.ox.ac.uk/pub/S/rpart.sh.gz (Unix) and the usual lo-
cations for Windows

http://www.stats.ox.ac.uk/pub/S/rpart.sh.gz
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and for pruning, assuming a Poisson-distributed number of events with
mean λtti where the rate depends on the node t . The response is specified
as either a two-column matrix of (Ni, ti) or just a vector of Ni (in which
case the time intervals are taken to be of unit length for all observations).

"exp" A survival tree in which the response must be a survival object, normally
generated by Surv . This is a variant of the "poisson" method. Suppose
that an exponential distribution was appropriate for the survival times. Then
by the duality between views of a Poisson process the observed number of
events (0 or 1) in the duration to censoring or death can be taken to be Poisson
distributed, and the "poisson" method will give the correct likelihood. In
general the exponential distribution is not appropriate, but it can perhaps
be made so by non-linearly transforming time by the cumulative hazard
function, and this is done estimating the cumulative hazard from the data2.
This gives a proportional hazards model with the baseline hazard fixed as
the estimated marginal hazard.

If the method argument is missing an appropriate type is inferred from the
response variable in the formula.

It will be helpful to consider a few examples. First we consider a regression
tree for the cpus data, then a classification tree for the iris data. The precise
meaning of the argument cp is explained later; it is proportional to α in the
cost-complexity measure.

> library(Rpart)
> set.seed(123)
> cpus.rp <- rpart(log10(perf) ~ ., cpus[ ,2:8], cp=1e-3)
> cpus.rp
node), split, n, deviance, yval

* denotes terminal node

1) root 209 43.000 1.8
2) cach<27 143 12.000 1.5
4) mmax<6100 78 3.900 1.4
8) mmax<1750 12 0.780 1.1 *
9) mmax>1750 66 1.900 1.4
18) mmax<2500 17 0.570 1.3 *
19) mmax>2500 49 1.100 1.5
38) chmax<4.5 14 0.350 1.4 *
39) chmax>4.5 35 0.570 1.5
78) syct<110 9 0.077 1.4 *
79) syct>110 26 0.390 1.5 *

5) mmax>6100 65 4.000 1.7
10) syct>360 7 0.130 1.3 *
11) syct<360 58 2.500 1.8

2 Note that this transformation is of the marginal distribution of survival times, although an expo-
nential distribution would normally be assumed for the distribution conditional on the covariates. This
is the same criticism as we saw for the HARE / HEFT methodology. RPart follows LeBlanc & Crowley
(1992) in this ‘one-step’ approach.
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22) chmin<5.5 46 1.200 1.7
44) cach<0.5 11 0.200 1.5 *
45) cach>0.5 35 0.620 1.8
90) chmin>1.5 15 0.260 1.7 *
91) chmin<1.5 20 0.260 1.8
182) mmax<14000 13 0.088 1.8 *
183) mmax>14000 7 0.110 1.9 *

23) chmin>5.5 12 0.550 2.0 *
3) cach>27 66 7.600 2.2
6) mmax<28000 41 2.300 2.1
12) cach<96.5 34 1.600 2.0
24) mmax<11240 14 0.420 1.8 *
25) mmax>11240 20 0.380 2.1
50) chmax<14 10 0.078 2.0 *
51) chmax>14 10 0.120 2.2 *

13) cach>96.5 7 0.170 2.3 *
7) mmax>28000 25 1.500 2.6
14) cach<56 7 0.069 2.3 *
15) cach>56 18 0.650 2.7 *

> ird <- data.frame(rbind(iris[,,1], iris[,,2],iris[,,3]),
Species=c(rep("s",50), rep("c",50), rep("v",50)))

> ir.rp <- rpart(Species ~ ., data=ird, method="class", cp=1e-3)
> ir.rp
node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 150 100 c ( 0.33 0.33 0.33 )
2) Petal.L.>2.45 100 50 c ( 0.50 0.00 0.50 )
4) Petal.W.<1.75 54 5 c ( 0.91 0.00 0.092 ) *
5) Petal.W.>1.75 46 1 v ( 0.02 0.00 0.98 ) *

3) Petal.L.<2.45 50 0 s ( 0.00 1.00 0.00 ) *

The output from the print method is very similar to that from print.tree ,
although the deviance is omitted for classification trees (only). The tree for the
cpus data is larger than that shown in Figure 14.6; the tree for the iris data is
one node smaller than that shown in Figure 14.5. (Note that neither rpart tree
has yet been pruned to final size.)

We can now consider pruning by using printcp to print out the information
stored in the rpart object.

> printcp(cpus.rp)

Regression tree:
rpart(formula = log10(perf) ~ ., data = cpus[, 2:8], cp = 0.001)

Variables actually used in tree construction:
[1] cach chmax chmin mmax syct
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Root node error: 43.1/209 = 0.206

CP nsplit rel error xerror xstd
1 0.54927 0 1.000 1.005 0.0972
2 0.08934 1 0.451 0.480 0.0487
3 0.03282 3 0.274 0.322 0.0322
4 0.02692 4 0.241 0.306 0.0306
5 0.01856 5 0.214 0.278 0.0294
6 0.00946 9 0.147 0.288 0.0323
7 0.00548 10 0.138 0.247 0.0289
8 0.00440 12 0.127 0.245 0.0287
9 0.00229 13 0.123 0.242 0.0284

10 0.00141 15 0.118 0.240 0.0282
11 0.00100 16 0.117 0.238 0.0279

The columns xerror and xstd are random, depending on the random partition
used in the cross-validation. We can see the same output graphically (Figure 14.10)
by a call to plotcp .

plotcp(cpus.rp)
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Figure 14.10: Plot by plotcp of the rpart object cpus.rp1 .

We first need to explain the complexity parameter cp ; this is just the cost-
complexity parameter α divided by the number R(T∅) for the root tree3. A
10-fold cross-validation has been done within rpart to compute the entries4

xerror and xstd ; the complexity parameter may then be chosen to minimize
xerror . An alternative procedure is to use the 1-SE rule, the largest value with
xerror within one standard deviation of the minimum. In this case the 1-SE rule

3 thus for most measures of fit the complexity parameter lies in [0, 1] .
4 all the errors are scaled so the root tree has error R(T∅) scaled to one.
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gives 0.238 + 0.0279 , so we choose line 7, a tree with 10 splits and hence 11
leaves5. We can examine this by

> print(cpus.rp, cp=0.006, digits=3)
node), split, n, deviance, yval

* denotes terminal node

1) root 209 43.1000 1.75
2) cach<27 143 11.8000 1.52
4) mmax<6100 78 3.8900 1.37
8) mmax<1750 12 0.7840 1.09 *
9) mmax>1750 66 1.9500 1.43 *

5) mmax>6100 65 4.0500 1.70
10) syct>360 7 0.1290 1.28 *
11) syct<360 58 2.5000 1.76
22) chmin<5.5 46 1.2300 1.70
44) cach<0.5 11 0.2020 1.53 *
45) cach>0.5 35 0.6160 1.75 *

23) chmin>5.5 12 0.5510 1.97 *
3) cach>27 66 7.6400 2.25
6) mmax<28000 41 2.3400 2.06
12) cach<96.5 34 1.5900 2.01
24) mmax<11240 14 0.4250 1.83 *
25) mmax>11240 20 0.3830 2.14 *

13) cach>96.5 7 0.1720 2.32 *
7) mmax>28000 25 1.5200 2.56
14) cach<56 7 0.0693 2.27 *
15) cach>56 18 0.6540 2.67 *

# or
> cpus.rp1 <- prune(cpus.rp, cp=0.006)
> plot(cpus.rp1, branch=0.4, uniform=T)
> text(cpus.rp1, digits=3)

The plot is shown in Figure 14.11.

The function xpred.rpart runs a V -fold cross-validation separately and
returns the cross-validation predictions, so can be used to study cross-validation
in more detail.

For the iris data we have

> printcp(ir.rp)
....

Variables actually used in tree construction:
[1] Petal.L. Petal.W.

Root node error: 100/150 = 0.66667

CP nsplit rel error xerror xstd

5 The number of leaves is always one more than the number of splits.



14.4 Library RPart 72

|cach<27

mmax<6100

mmax<1750 syct>360

chmin<5.5

cach<0.5

mmax<28000

cach<96.5

mmax<11240

cach<56

1.09 1.43 1.28

1.53 1.75
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2.32 2.27 2.67

Figure 14.11: Plot of the rpart object cpus.rp1 .

1 0.500 0 1.00 1.13 0.0528
2 0.440 1 0.50 0.58 0.0596
3 0.001 2 0.06 0.12 0.0332

which suggests no pruning, but that too small a tree has been grown since xerror
has not reached its minimum.

The summary method, summary.rpart , produces much more output that
summary.tree :

> summary(ir.rp)
Call:
rpart(formula = Species ~ ., data = ird, method = "class",

cp = 0.001)

CP nsplit rel error xerror xstd
1 0.500 0 1.00 1.13 0.053
2 0.440 1 0.50 0.58 0.060
3 0.001 2 0.06 0.12 0.033

Node number 1: 150 observations, complexity param=0.5
predicted class= c expected loss= 0.67

class counts: 50 50 50
probabilities: 0.33 0.33 0.33

left son=2 (100 obs) right son=3 (50 obs)
Primary splits:

Petal.L. < 2.5 to the right, improve=50, (0 missing)
Petal.W. < 0.8 to the right, improve=50, (0 missing)
Sepal.L. < 5.4 to the left, improve=34, (0 missing)
Sepal.W. < 3.3 to the left, improve=19, (0 missing)

Surrogate splits:
Petal.W. < 0.8 to the right, agree=1.00, (0 split)
Sepal.L. < 5.4 to the right, agree=0.92, (0 split)
Sepal.W. < 3.3 to the left, agree=0.83, (0 split)

Node number 2: 100 observations, complexity param=0.44
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predicted class= c expected loss= 0.5
class counts: 50 0 50
probabilities: 0.5 0.0 0.5

left son=4 (54 obs) right son=5 (46 obs)
Primary splits:

Petal.W. < 1.8 to the left, improve=39.0, (0 missing)
Petal.L. < 4.8 to the left, improve=37.0, (0 missing)
Sepal.L. < 6.1 to the left, improve=11.0, (0 missing)
Sepal.W. < 2.5 to the left, improve= 3.6, (0 missing)

Surrogate splits:
Petal.L. < 4.8 to the left, agree=0.91, (0 split)
Sepal.L. < 6.1 to the left, agree=0.73, (0 split)
Sepal.W. < 3 to the left, agree=0.67, (0 split)

Node number 3: 50 observations
predicted class= s expected loss= 0

class counts: 0 50 0
probabilities: 0 1 0

Node number 4: 54 observations
predicted class= c expected loss= 0.093

class counts: 49 0 5
probabilities: 0.91 0.00 0.09

Node number 5: 46 observations
predicted class= v expected loss= 0.022

class counts: 1 0 45
probabilities: 0.02 0.00 0.98

The initial table is that given by printcp . The summary method gives the top few
(default up to five) splits and their reduction in impurity, plus up to five surrogates,
splits on other variables with a high agreement with the chosen split. (These can
be used to handle missing values if desired. See the subsection on ‘missing values’
below.) In this case the limit on tree growth is the restriction on the size of child
nodes (which by default must cover at least seven cases).

The output from summary.rpart can be voluminous. Two arguments can
help: as with print.rpart the argument cp effectively prunes the tree before
analysis, and the argument file allows the output to be redirected to a file (via
sink ).

Fine control

The function rpart.control is usually used to collect together arguments for
the control parameter of rpart just as for tree , although the defaults differ.
The parameter minsplit is like minsize giving the smallest node that will be
considered for a split: this defaults to 20. Parameter minbucket is like mincut ,
the minimum number of observations in a daughter node, which defaults to 7
(minsplit /3, rounded up).
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The analogue of the parameter mindev of tree.control is the parameter
cp which defaults to 0.01. If a split does not result in a branch Tt with R(Tt) at
least cp×|Tt|×R(T∅) it is not considered further. This is a form of ‘pre-pruning’;
the tree presented has been pruned to this value and the knowledge that this will
happen can be used to stop tree growth6. In many of our examples the minimum
of xerror occurs for values of cp less than 0.01, so we choose a smaller value.

Parameters maxcompete and maxsurrogate gives the number of good at-
tributes and surrogates that are retained. Set maxsurrogate to zero if it is known
that missing values will not be encountered.

The number of cross-validations is controlled by parameter xval , default 10.
This can be set to zero at early stages of exploration, since this will produce a very
significant speedup.

Note that these parameters may also be passed directly to rpart . For example
for the iris data we have

> ir.rp1 <- rpart(Species ~ ., ird, cp=0, minsplit=5,
maxsurrogate=0)

> printcp(ir.rp1)
....

Root node error: 100/150 = 0.667

CP nsplit rel error xerror xstd
1 0.50 0 1.00 1.18 0.0502
2 0.44 1 0.50 0.63 0.0604
3 0.02 2 0.06 0.08 0.0275
4 0.01 3 0.04 0.08 0.0275
5 0.00 4 0.03 0.07 0.0258

> print(ir.rp1, cp=0.015)
node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 150 100 c ( 0.33 0.33 0.33 )
2) Petal.L.>2.45 100 50 c ( 0.50 0.00 0.50 )
4) Petal.W.<1.75 54 5 c ( 0.91 0.00 0.09 )
8) Petal.L.<4.95 48 1 c ( 0.98 0.00 0.02 ) *
9) Petal.L.>4.95 6 2 v ( 0.33 0.00 0.67 ) *

5) Petal.W.>1.75 46 1 v ( 0.02 0.00 0.98 ) *
3) Petal.L.<2.45 50 0 s ( 0.00 1.00 0.00 ) *

which suggests a tree with 4 leaves as in Figure 14.5.

Survival data

Now let us try a survival example: we return to the VA cancer dataset cancer.vet
we considered in Chapter 12.

6 If R(Tt) > 0 , splits of nodes with R(t) < cpR(T∅) will always be pruned.
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Figure 14.12: Plot by plotcp of the rpart object VA.rp .

> set.seed(123)
> VA.rp <- rpart(Surv(stime, status) ~ ., data=VA, minsplit=10)
> plotcp(VA.rp)
> printcp(VA.rp)

....
Root node error: 158/137 = 1.15

CP nsplit rel error xerror xstd
1 0.1923 0 1.000 1.014 0.1034
2 0.0829 1 0.808 0.830 0.1071
3 0.0380 2 0.725 0.766 0.1067
4 0.0319 3 0.687 0.787 0.1102
5 0.0210 5 0.623 0.820 0.1045
6 0.0189 7 0.581 0.848 0.1060
7 0.0164 8 0.562 0.828 0.0982
8 0.0123 9 0.546 0.809 0.0966
9 0.0110 10 0.533 0.825 0.0999

> print(VA.rp, cp=0.09)
node), split, n, deviance, yval

* denotes terminal node

1) root 137 160 1.0
2) Karn>45 99 81 0.8 *
3) Karn<45 38 46 2.5 *

Here yval is the relative hazard rate for that node; we have a proportional hazards
model and this is the estimated proportional factor.

In our experience it is common for tree-based methods to find little structure in
cancer prognosis datasets: what structure there is depends on subtle interactions
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between covariates.

Plots

There are plot methods for use on a standard S-PLUS graphics device (plot.rpart
and tree.rpart ), plus a method for post 7 for plots in POSTSCRIPT. Note that
unlike post.tree , post.rpart is just a wrapper for calls to plot.rpart and
text.rpart on a postscript device.

The function plot.rpart has a wide range of options to choose the layout
of the plotted tree. Let us consider some examples8.

plot(VA.rp, branch=0.2); text(VA.rp, digits=3)
post(VA.rp, horizontal=F, pointsize=8)

The argument branch controls the slope of the branches: 1 gives those in the style
of plot.tree and 0.2 (close to) the style of post.tree . Arguments uniform
and compress control whether the spacing reflects the importance of the fits (by
default it does) and whether a compact style is used. The call to tree.rpart
may have additional arguments all which gives the value at all nodes (not just
the leaves) and use.n which if true gives the numbers of cases reaching the node
(and for classification trees the number of errors, for survival trees the number of
uncensored values)
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Figure 14.13: Plots of VA.rp . The left plot is from plot.rpart and text.rpart , the
right from post.rpart .

The function snip.rpart works in a very similar way to snip.tree to
allow interactive pruning of plotted trees.

Further examples

We can re-analyse the two remaining examples from Chapter 14.
7 and the generic function: only post.tree exists in S-PLUS
8 Using S-PLUS 3.3 under Windows it will be necessary to set the filename argument, as the

default filename, VA.rp.ps , is not a legal MS-DOS name.
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Forensic glass

set.seed(123)
fgl.rp <- rpart(type ~ ., fgl, cp=0.001)
plotcp(fgl.rp)
printcp(fgl.rp)

Classification tree:
rpart(formula = type ~ ., data = fgl, cp = 0.001)

Variables actually used in tree construction:
[1] Al Ba Ca Fe Mg Na RI

Root node error: 138/214 = 0.645

CP nsplit rel error xerror xstd
1 0.2065 0 1.000 1.000 0.0507
2 0.0725 2 0.587 0.594 0.0515
3 0.0580 3 0.514 0.587 0.0514
4 0.0362 4 0.457 0.551 0.0507
5 0.0326 5 0.420 0.536 0.0504
6 0.0109 7 0.355 0.478 0.0490
7 0.0010 9 0.333 0.500 0.0495
> print(fgl.rp, cp=0.02)
node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 214 140 WinNF ( 0.33 0.36 0.07 0.06 0.04 0.14 )
2) Ba<0.335 185 110 WinNF ( 0.37 0.41 0.09 0.06 0.04 0.01 )
4) Al<1.42 113 50 WinF ( 0.56 0.27 0.12 0.00 0.02 0.01 )
8) Ca<10.48 101 38 WinF ( 0.62 0.21 0.13 0.00 0.02 0.02 )
16) RI>-0.93 85 25 WinF ( 0.71 0.20 0.07 0.00 0.01 0.01)
32) Mg<3.865 77 18 WinF ( 0.77 0.14 0.06 0.00 0.01 0.0 1 ) *
33) Mg>3.865 8 2 WinNF ( 0.12 0.75 0.12 0.00 0.00 0.0 0 ) *

17) RI<-0.93 16 9 Veh ( 0.19 0.25 0.44 0.00 0.06 0.06 ) *
9) Ca>10.48 12 2 WinNF ( 0.00 0.83 0.00 0.08 0.08 0.00 ) *

5) Al>1.42 72 28 WinNF ( 0.08 0.61 0.05 0.15 0.08 0.01 )
10) Mg>2.26 52 11 WinNF ( 0.12 0.79 0.07 0.00 0.01 0.00 ) *
11) Mg<2.26 20 9 Con ( 0.00 0.15 0.00 0.55 0.25 0.05 )
22) Na<13.495 12 1 Con ( 0.00 0.08 0.00 0.92 0.00 0.00) *
23) Na>13.495 8 3 Tabl ( 0.00 0.25 0.00 0.00 0.62 0.12) *

3) Ba>0.335 29 3 Head ( 0.03 0.03 0.00 0.03 0.00 0.90 ) *

This suggests a tree of size 8, plotted in

fgl.rp2 <- prune(fgl.rp, cp=0.02)
plot(fgl.rp2); text(fgl.rp2)

Low birth weights

This is a fairly small dataset, so the sequence of splits is sensitive to the precise
minimum splits allowed. We can come close to copying tree by
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set.seed(123)
bwt.rp <- rpart(low ~ ., bwt, cp=0.001, minsplit=10,

minbucket=5)
plotcp(bwt.rp)

which (on this cross-validation run) suggests that no split at all is best. This tree is
grown using the Gini criterion, and differs slightly from that grown using entropy;
we can get the same splits as tree (but to different depths) by

bwt.rp2 <- rpart(low ~ ., bwt, cp=0.0, xval=0, minsplit=10,
minbucket=5, parms=list(split="information"))

Missing data

If the control parameter maxsurrogate is positive (and the parameter usesurrogate
has not been altered), the surrogates are used to handle missing cases both in train-
ing and in prediction (including cross-validation to choose the complexity). Each
of the surrogate splits is examined in turn, and if the variable is available that split
is used to decide whether to send the case left or right. If no surrogate is available
or none can be used, the case is sent with the majority unless usesurrogate
< 2 when it is left at the node.

The default na.action during training is na.rpart , which excludes cases
only if the response or all the explanatory variables are missing. (This looks like a
sub-optimal choice, as cases with missing response are useful for finding surrogate
variables.)

When missing values are encountered in considering a split they are ignored
and the probabilities and impurity measures are calculated from the non-missing
values of that variable. Surrogate splits are then used to allocate the missing cases
to the daughter nodes.

Surrogate splits are chosen to match as well as possible the primary split
(viewed as a binary classification), and retained provided they send at least two
cases down each branch, and agree as well as the rule of following the majority.
The measure of agreement is the number of cases that are sent the same way,
possibly after swapping ‘left’ and ‘right’ for the surrogate. (As far as we can tell,
missing values on the surrogate are ignored, so this measure is biased towards
surrogate variables with few missing values.)

Losses and priors

In a classification problem it is quite common to assign losses Lij of declaring
class j when class i is true, and for these to differ from the default choice of
Lij = I(j = i) . How to make optimal decisions when losses are present is
discussed in detail in Ripley (1996, Chapter 2). In principle there is a clean
separation; we find the posterior probabilities p(c |x) and use these to choose the
class that minimizes the expected conditional loss

∑
i Lij p(i |x) . In practice we

have to estimate the posterior probabilities, and where we concentrate our effort
depends on the use to which they will be put.
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A similar argument applies to priors. Sometimes we know that the training set
is unrepresentative of the target population (medical studies will often have too few
normal patients, for example), and it is easy to adjust the posterior probabilities
to take account of this (Ripley, 1996, p. 59). There are strong arguments with just
two classes (given in that reference) for a form of weighted fitting with unequal
losses that corresponds to adjusting the prior.

Ideally the target prior probabilities and the losses should be used to choose
both the splits in the tree and its complexity. However, rpart just uses losses in
choosing the splits, although it appears to use priors in the definition of R(T ) and
hence in the pruning phase. The formal definition of R(T ) =

∑
t pt

∑
c ptcLc,Ct

where the sum is over leaves t , and the declared class Ct is chosen to minimized
the expected loss at that node. Of course pt is estimated by nt/n , the proportion
of cases reaching that node, and ptc is usually estimated by ntc/nt , the proportion
of class c cases reaching that node. However, if we have a specified prior (πc) ,
we estimate ptc by p̃tc = [πcntc/n·c]

/ ∑
i[πinti/n·i] . We leave the reader

to check that with no specified prior and the zero-one loss, R(T ) becomes the
overall error rate, number of misclassifications divided by n .

A prior is specified by a vector of length the number of classes as component
prior of the list argument parms . A loss matrix can be specified by component
loss of this list: the prior is then taken to be

πi

∑
j Lij∑

i,j πiLij

14.5 Tree-structured survival analysis

Survival data are usually continuous, but are characterized by the possibility
of censored observations. There have been various approaches to extending
regression trees to survival data in which the prediction at each leaf is a survival
distribution.

The deviance approach needs a common survival distribution with just one
parameter (say the mean) varying between nodes. As the survival distribution
has otherwise to be known completely, we would need to take, for example, a
Weibull distribution with a specific α . Thus this approach has most often been
used with an exponential distribution (it goes back at least to Ciampi et al., 1987
and is expounded in detail by Davis & Anderson, 1989). This is related to the
approach of the rpart library described in the previous section.

Another family of approaches has been via impurity indices, which we recall
measure the decrease in impurity on splitting the node under consideration. This
can be replaced by a ‘goodness-of-split’ criterion measuring the difference in
survival distribution in the two candidate daughter nodes. In regression trees
the reduction in sum of squares can be seen as a goodness-of-split criterion, but a
more natural candidate might be the unpooled (Welch) t -test between the samples
passed to the two daughters. Given this change of viewpoint we can replace the
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t -test by a test which takes censoring into account and is perhaps more appropriate
for the typical shape of survival curves. The split selected at a node is then the
candidate split with the most significant test of difference.

Library tssa

This approach is outlined by Segal (1988), who considers a family of statistics in-
troduced by Tarone & Ware (1977) which includes the log-rank (Mantel-Haenszel)
and Gehan tests and Prentice’s generalization of the Wilcoxon test. His approach
is implemented in the tssa library of Segal and Wager. This uses tssa as the
main function, and generates objects of class "tssa" which inherits from class
"tree" . A member of the family of test statistics is selected by the argument
choice . Splitting continues until there are maxnodes nodes (default 50) or no
leaf has as many as minbuc cases (default 30) and a proportion at least propn
(default 15%) of uncensored cases.

We consider the VA lung cancer data of Section 12.4. Since tssa cannot
currently handle multi-level factors, we have to omit the variable cell .

> library(tssa, first=T)
> VA.tssa <- tssa(stime ~ treat + age + Karn + diag.time + prior,

status, data=VA, minbuc=10)
> VA.tssa
node), split, (n, failures), km-median, split-statistic

* denotes terminal node, choice is Mantel-Haenzel

1) root (137,128) 76.5 6.67
2) Karn<45 (38,37) 19.5 2.71
4) diag.time<10.5 (28,27) 21.0 2.08
8) age<62.5 (14,13) 18.0 *
9) age>62.5 (14,14) 33.0 *

5) diag.time>10.5 (10,10) 8.0 *
3) Karn>45 (99,91) 110.5 2.74
6) Karn<82.5 (90,84) 104.0 2.22
12) age<67.5 (74,69) 111.5 1.34
24) prior<1.5 (50,48) 104.0 1.55
48) age<59 (24,23) 110.0 1.22
96) age<46.5 (13,13) 99.0 *
97) age>46.5 (11,10) 127.0 *

49) age>59 (26,25) 95.0 0.91
98) diag.time<3.5 (11,11) 91.0 *
99) diag.time>3.5 (15,14) 98.5 *

25) prior>1.5 (24,21) 139.5 1.10
50) treat<1.5 (14,13) 122.0 *
51) treat>1.5 (10,8) 145.5 *

13) age>67.5 (16,15) 72.0 *
7) Karn>82.5 (9,7) 234.5 *

> summary(VA.tssa)
Survival tree:
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tssa(formula = stime ~ treat + age + Karn + diag.time + prior,
delta = status, data = VA, minbuc = 10)

Number of terminal nodes: 11
> tree.screens()
> plot(VA.tssa)
> text(VA.tssa)
> km.tssa(VA.tssa)
> close.screen(all=T)

It can be helpful to examine more than just the mean at each node; the function
km.tssa will plot the Kaplan-Meier estimates of survival curves for the two
daughters of a non-terminal node. Interactive exploration9 shows that there is
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Figure 14.14: Tree fitted by tssa to the cancer.vet dataset. The bottom screen shows
the output from km.tssa when node 6 was selected.

very little difference in survival between nodes at (Figure 14.14) or below node 6.

The change from a goodness-of-fit to a goodness-of-split view is not helpful
for pruning a tree. Segal (1988) replaced optimizing a measure of the fit of the
tree (as in cost-complexity pruning) with a stepwise approach.

(i) Grow a very large tree.

(ii) Assign to each non-terminal node the largest split statistic in the subtree
rooted at that node. (This can be done in a single upwards pass on the tree.)

9 this relies on erase.screen which is broken in S-PLUS 4.0; it ‘erases’ by overplotting with a
polygon filled with colour 0 which is no longer the background colour, and is normally transparent.
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(iii) Obtain a sequence of pruned trees by repeatedly pruning at the remaining
node(s) with the smallest assigned values.

(iv) Select one of these trees, perhaps by plotting the minimum assigned value
against tree size and selecting the tree at an ‘elbow’.

This is implemented in prune.tssa . Like snip.tree (and snip.tssa ), a
value is selected by a first click (on the lower screen), and the tree pruned at that
value on the second click. For our example we can use

tree.screens()
plot(VA.tssa)
prune(VA.tssa)
close.screen(all=T)

The only clear-cut pruning point (Figure 14.15) is at a single split. There is
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Figure 14.15: Tree fitted by tssa to the cancer.vet dataset. The bottom screen shows
the prune sequence from prune.tssa .

a function post.tssa the equivalent of (and modified from) post.tree for
tssa trees.

Library survcart

The library survcart 10 is sparsely documented, but appears to implement the
strategy of LeBlanc & Crowley (1993). Like Segal, LeBlanc & Crowley use a

10 also known as CART SD .
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goodness of split criterion for growing the tree, in this case the log-rank statistic
with some adjustment for selecting the maximal statistic over all possible splits of
continuous variables. However, the pruning strategy differs from tssa . Associate
to each non-terminal node the goodness-of-split statistic G(`) , taking G to be zero
at the terminal nodes. Then LeBlanc & Crowley apply cost-complexity pruning
to the measure of fit

R(T ) = −
∑
`∈T

G(`)

This is not a sum over cases, but as it is defined additively over branches the
standard pruning algorithm (Breiman et al., 1984; Ripley, 1996) is still justified.
(The ‘deviance’ quoted by prune.survtree is

∑
`G(`) .) The measure of fit

can be computed on a validation set based down the optimally pruned tree sequence
(Tr) , but as it is not a measure of performance there is no justification for then
choosing the best fit; indeed R(T ) decreases monotonically as the tree is grown,
since G(`) > 0 . The suggestion of LeBlanc & Crowley is to choose the pruning
minimizing Rα(T ) on the validation set for α ∈ [2, 4] . (LeBlanc & Crowley
also discuss using bootstrapping to bias-correct R(T ) computed on the training
set prior to pruning.)

Library survcart can be very memory-hungry: it comes with an informative
demonstration that needs over 50Mb11 of virtual memory to run.

We can try our VA cancer example by

library(survcart, first=T)
VA.st <- survtree(stime ~ treat + age + Karn + diag.time +

cell + prior,
data=VA, status, fact.flag=c(F,T,T,T,F,F))

plot(prune.survtree(VA.st))

The argument fact.flag says which variables should be regarded as not factors
and included in the adjustment of the log-rank statistic for continuous variates
(although a factor with many levels will give rise to very many more possible
splits). The ‘deviance’ is −R(Tk) − αk(|Tk| − 1) !

We can reserve a validation set and use this for pruning by

set.seed(123); tr <- sample(nrow(VA), 90)
VA1 <- VA[tr,]; VA2 <- VA[-tr,]
VA.st1 <- update(VA.st, data=VA1)
VA.st1.pr <- prune.survtree(VA.st1, newdata=VA2,

zensor.newdata=VA2$status)
VA.st1.pr
$size:
[1] 12 11 10 9 8 5 4 3 2 1 0

$dev:
[1] 36.6986 36.0633 35.1245 24.2267 24.2514 13.5163
[7] 15.7134 15.5296 -16.7492 -8.2354 0.0000

11 on each of S-PLUS 3.3 for Windows and on Sun Solaris; over 100Mb on S-PLUS 4.0 for
Windows
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$k:
[1] 0.000000 0.033653 0.048377 0.709060 0.733988 2.595874
[7] 2.692954 3.346168 12.984497 13.469285 19.090138

Note that the size is the number of splits, one less than the number of leaves. We
need to convert this to a split-complexity measure:

attach(VA.st1.pr)
dev <- dev + k*size
> dev - 2*size
[1] 12.6986 14.4335 15.6082 12.6082 14.1233 16.4956 18.4853
[8] 19.5681 5.2198 3.2339 0.0000

> dev - 4*size
[1] -11.3014 -7.5665 -4.3918 -5.3918 -1.8767 6.4956
[7] 10.4853 13.5681 1.2198 1.2339 0.0000

detach()

which suggests a tree with three splits

> prune(VA.st1, k=4)

1) root 90 19
2) cell:2,3 49 13
4) prior:0 40 0 *
5) prior:10 9 0 *

3) cell:1,4 41 13
6) Karn<45 8 0 *
7) Karn>45 33 0 *

Note how the selection penalty on continuous variables such as Karn reduces
their prominence.

We can explore the spread of predictions over splits in a manner similar to
km.tssa by picking values of k in

VA.st.tmp <- prune.survtree(VA.st, k=2)
plot(surv.fit(VA$stime, VA$status, factor(VA.st.tmp$where)))

This shows the Kaplan-Meier estimates of survival at all the leaves, and by succes-
sively reducing k we can see when the range of variation is no longer essentially
covered.

The function graph.survtree allows various aspects of the tree model to
be plotted. The following call plots the median survival by node

graph.survtree(prune(VA.st, k=3.5), VA$stime, VA$status,
xtile=0.5, interactive=F)

but it can also show the survival probability at a fixed time.
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Chapter 15

Time Series

15.1 Second-order summaries

Spectral analysis

The most common approach to estimating a spectral density is to use a kernel
smoother, as implemented by spectrum , but there are alternatives, including
the use of fitted high-order AR processes (page 448). One promising line is to
use some of the alternative methods of estimating a probability density function
function, since a spectral density is just a finite multiple of a pdf.

The library lspec by Charles Kooperberg implements the logspline approach
described in Section 5.5 of these complements. Its application to spectral esti-
mation is described in Kooperberg et al. (1995b); note that it is able to estimate
mixed spectra that have purely periodic components. We will illustrate this by
estimating the spectra of our running examples lh and deaths as well as the
accdeaths and nottem series.

For lh we have

> library(lspec)
> lh.ls <- lspec.fit(lh)
> lspec.summary(lh.ls)
Logspline Spectral Estimation
=============================
The fit was obtained by the command:
lspec.fit(data = lh)
A spline with 3 knots, was fitted; there were no lines in the model.
The log-likelihood of the model was 60.25 which corresponds to an
AIC value of -110.96 .

The program went though 1 updown cycles, and reached a stable
solution. Both penalty (AIC) and minmass were the default
values. For penalty this was log(n)=log( 24 )= 3.18 (as in BIC)
and for minmass this was 0.0329. The locations of the knots were:
1.178 2.749 3.142

> lspec.plot(lh.ls, log="y")
> lspec.plot(lh.ls, what="p")
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Figure 15.25: Spectral density (left) and cumulative spectral distribution function (right)
for the series lh computed by library lspec .

(Figure 15.25). Note that rather different conventions are used for the spectrum,
which is taken to run over (−π, π] rather than in cycles, and the amplitude is given
in the normal units, not decibels. The spectral density and cumulative spectrum
can be found by dlspec and plspec respectively.

deaths.ls <- lspec.fit(deaths)
lspec.plot(deaths.ls, log="y", main="deaths")
lspec.plot(deaths.ls, what="p")
accdeaths.ls <- lspec.fit(accdeaths)
lspec.plot(accdeaths.ls, log="y", main="accdeaths")
lspec.plot(accdeaths.ls, what="p")
nott.ls <- lspec.fit(window(nottem, end=c(1936,12)))
lspec.plot(nott.ls, log="y", main="nottem")
lspec.plot(nott.ls, what="p")

(Figure 15.26). Note how lspec.fit finds the discrete component at frequency
π/12 in all three cases, but is fooled by harmonics in the last two. We can
allow lspec.fit to fit more discrete components by reducing the value of its
argument minmass (whose default can be found from lspec.summary ). In the
accdeaths example we can pick up all but one of the harmonics by

lspec.plot(lspec.fit(accdeaths, minmass=7000), log="y")
lspec.plot(lspec.fit(accdeaths, minmass=1000), log="y")

but reducing minmass introduces discrete components at non-harmonic frequen-
cies (Figure 15.27).

The functions clspec and rlspec compute the autocovariance (or autocor-
relation) sequence corresponding to the fitted spectrum and simulate a Gaussian
time series with the fitted spectrum respectively.
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Figure 15.26: Spectral density (top) and cumulative spectral distribution function (bottom)
for the series deaths , accdeaths and nottem .
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Figure 15.27: Spectra for nottem with minmass as (left to right) 77 000, 7000 and 1000.
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Chapter 16

Spatial Statistics

16.3 Module S+SPATIALSTATS

The first release of the S-PLUS module S+SPATIALSTATS was released in mid-
1996. That has a comprehensive manual (published as Kaluzny & Vega, 1997),
which we do not aim to duplicate, but rather to show how our examples in
Chapter 16 can be done using S+SPATIALSTATS.

The module S+SPATIALSTATS is attached and made operational by

module(spatial)

which we will assume has been done. Unfortunately the name is the same as our
library (as are some of the function names); modules take priority over libraries.

Kriging

The kriging functions use a slight extension of the model formula language. The
function loc is used to specify the two spatial coordinates of the points, which
are used to find the covariance matrix in kriging. Universal kriging is specified by
adding other terms to form a linear model. Thus we can specify the model used
in the bottom row of Figure 16.5 by

> topo.kr <- krige(z ~ loc(x, y) + x + y + x^2 + x*y + y^2,
data=topo, covfun=exp.cov, range=0.7, sill=770)

> topo.kr
....

Coefficients:
constant x y x^2 xy y^2

808.3 -12.896 -64.486 62.137 1.6332 6.3442
....

> prsurf <- predict(topo.kr, se.fit = T,
grid = list(x=c(0, 6.5, 50), y=c(0, 6.5, 50)))

> topo.plt1 <- contourplot(fit ~ x*y, data=prsurf, pretty=F,
at=seq(700, 1000, 25), aspect=1,
panel = function(...){

panel.contourplot(...)
points(topo)
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})
> topo.plt2 <- contourplot(se.fit ~ x*y, data=prsurf, pretty=F,

at=c(20, 25), aspect=1)
> print(topo.plt1, split=c(1,1,2,1), more=T)
> print(topo.plt2, split=c(2,1,2,1))

(The sill value is explained below.) We can of course obtain a least-squares
trend surface by giving a covariance function that drops to zero immediately, for
example exp.cov with range = 0 , but there seems no simple way to obtain a
trend surface fitted by GLS. The predict method for krige objects takes either
a newdata argument or a grid argument as used here. The grid argument
must be a list with two components with names matching those given to loc
and specifying the minimum, maximum and number of points. (This is passed to
expand.grid to compute a data frame for newdata .)

Analogues of the fits shown in Figure 16.6 may be obtained by

topo.kr2 <- krige(z ~ loc(x, y) + x + y + x^2 + x*y + y^2,
data = topo, covfun = gauss.cov,
range = 1, sill = 600, nugget = 100)

topo.kr3 <- krige(z ~ loc(x, y), data = topo,
covfun = gauss.cov, range = 2, sill = 6500, nugget = 100)

Various functions are provided to fit variograms and correlograms. We start
by fitting a variogram to the original data.

topo.var <- variogram(z ~ loc(x, y), data=topo)
model.variogram(topo.var, gauss.vgram, range=2,

sill=6500, nugget=100)

The function model.variogram plots the variogram object (which may also
be plotted directly) and draws a theoretical variogram. It then prompts the user
to alter the parameters of the variogram to obtain a good fit by eye. It this
case range = 3.5 seems indicated. The parametrization is that nugget is the
increment at the origin, and sill is the change over the range of increase of the
variogram. (In geostatistical circles the sum of ‘nugget’ and ‘sill’ is called the
sill.) Thus the alph of our covariance functions is nugget/(sill + nugget) .

There are functions correlogram and covariogram which can be used in
the same way (including with model.variogram ).

topo.cov <- covariogram(z ~ loc(x, y), data=topo)
model.variogram(topo.cov, gauss.cov, range=2,

sill=4000, nugget=2000)

We can now explain how we chose the the parameters of the exponential
covariance in the first plot. An object of class "krige" contains residuals, so we
can use

topo.ls <- krige(z ~ loc(x, y) + x + y + x^2 + x*y + y^2,
data=topo, covfun=exp.cov, range=0)

topo.res <- residuals(topo.ls)
topo.var <- variogram(topo.res ~ loc(x, y), data=topo)
model.variogram(topo.var, exp.vgram, range=1, sill=1000)
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Figure 16.10: Directional variograms for the topo dataset. The top pair is for the raw
data, the bottom pair of residuals from a quadratic trend surface. The left plots are vertical
variograms, the right plots are horizontal ones. (The strip coverage is misleading, only
showing the positive part of the angular tolerance.)

This suggests a sill of about 800. The kriging predictions do not depend on the
sill, and our spatial library relies on this to work throughout with correlograms
and to fit the overall scale factor when plotting the standard errors. Knowledge of
our code allowed us to read off the value 770. It would be a good idea to repeat
the forming of the residuals, this time from the GLS trend surface. We can choose
the covariogram for the Gaussian case in the same way.

topo.var <- covariogram(topo.res ~ loc(x, y), data=topo)
model.variogram(topo.var, gauss.cov, range=1, sill=210,

nugget=90)

Spatial anisotropy

The geostatistical functions in S+SPATIALSTATS have considerable support for
studying anisotropy of smooth spatial surfaces, and to correct for geometrical
anisotropy (anisotropy which can be removed by ‘squeezing’ the plot in some
direction). The function loc has two additional parameters angle and ratio
to remove geometrical anisotropy. The functions variogram , correlogram and
covariogram all allow multiple plots for pairs of distances in angular sectors.
For example

plot(variogram(z ~ loc(x, y), data=topo, azimuth = c(0, 90),
tol.azimuth = 45), aspect=0.7, layout=c(2,1))

plot(variogram(topo.res ~ loc(x, y), data=topo,
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azimuth = c(0, 90), tol.azimuth = 45),
aspect=0.7, layout=c(2,1))

They show vertical and horizontal variograms (for pairs within a tolerance of
±45◦ ) of the raw topo data and then the residuals from the quadratic trend
surface. (As these produce and print Trellis plots, none of the normal ways to
put two plots on one page are possible and Figure 16.10 is assembled from two
S-PLUS plots.)

Point process functions

Spatial point patterns are objects of class "spp" , with constructor function spp .
We can convert our pines.dat to a spp object by

library(spatial) # our library, for next line only.
pines <- data.frame(ppinit("pines.dat")[c("x", "y")])
pines <- spp(pines, "x", "y", bbox(c(0,9.6), c(0, 10)), drop=T)
attributes(pines)
$class:
[1] "spp" "data.frame"
$coords:
[1] "x" "y"
$boundary:
$boundary$x:
[1] 0.0 0.0 9.6 9.6
$boundary$y:
[1] 10 0 0 10

An object of class "spp" is a data frame with two attributes, "coords" declares
which columns give the spatial coordinates, and "boundary" which gives the
boundary of a polygon within which the pattern was observed. (This defaults to
the bounding rectangle aligned with the axes, but the use of that is not advisable.)

We can reproduce Figure 16.8 quite closely by

par(pty = "s", mfrow=c(2,2))
plot(pines, boundary = T)
Lhat(pines, maxdist = 5)
Lenv(pines, 25, process = "binomial", maxdist=5)
Lhat(pines, maxdist =1.5)
Lenv(pines, 100, process = "Strauss", maxdist = 1.5,

cpar = 0.2, radius = 0.7)

As this code shows, Lenv can simulate from several point process models: it
does so by calling the function make.pattern whose functionality is equivalent
to that of our functions Psim , SSI and Strauss plus certain Poisson cluster
processes.

There is no way to estimate parameters of point process models in the current
release of S+SPATIALSTATS, but it does have functions Fhat and Ghat to use
nearest neighbour methods, and function intensity to estimate the intensity
function of a heterogeneous point process. (This is closely related to bivariate
density estimation.)
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Chapter 17

Classification

17.3 Forensic glass

Neural networks

The recently-added method nnet.formula allows us to write some general
functions for testing neural network models by V -fold cross-validation. First we
re-scale the dataset so the inputs have range [0, 1] .

fgl1 <- lapply(fgl[, 1:9], function(x)
{r <- range(x); (x-r[1])/diff(r)})

fgl1 <- data.frame(fgl1, type=fgl$type)

Then we can experiment with multiple logistic regressions.

res.multinom <- CVtest(
function(x, ...) multinom(type ~ ., fgl1[x,], ...),
function(obj, x) predict(obj, fgl1[x, ],type="class"),
maxit=1000, trace=F)

con(fgl$type, res.multinom)

We can now use a modest amount of weight decay as ‘ridge regression’, to reduce
the effects of any irrelevant inputs.

res.mult2 <- CVtest(
function(x, ...) multinom(type ~ ., fgl1[x,], ...),
function(obj, x) predict(obj, fgl1[x, ], type="class"),
maxit=1000, trace=F, decay=1e-3)

> con(fgl$type, res.mult2)
....

error rate = 36.45 %

and also try out subset selection by

res.mult3 <- CVtest(
function(xsamp, ...) {
assign("xsamp", xsamp, frame=1)
obj <- multinom(type ~ ., fgl1[xsamp,], trace=F, ...)
stepAIC(obj)
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},
function(obj, x) predict(obj, fgl1[x, ],type="class"),
maxit=1000, decay=1e-3)

> con(fgl$type, res.mult3)
....

error rate = 41.12 %

In our runs the variables RI , Na , Mg , Al and Si were retained in all 10 folds,
and Ca in all but one, the only one in which K and Ba were retained.

It is straightforward to fit a fully specified neural network in the same way.

res.nn <- CVtest(
function(x, ...) nnet(type ~ ., fgl1[x,], ...),
function(obj, x) predict(obj, fgl1[x, ], type="class"),
maxit=1000, size=6, decay=0.01, trace=F )

> con(fgl$type, res.nn)
....

error rate = 29.91 %

We will, however, want to average across several fits

CVnn <- function(nreps=1, ...)
{

res <- matrix(0, 214, 6)
dimnames(res) <- list(NULL, levels(fgl$type))
for (i in sort(unique(rand))) {
cat("fold ",i,"\n", sep="")
for(rep in 1:nreps) {
learn <- nnet(type ~ ., fgl1[rand !=i,], trace=F, ...)
res[rand == i,] <- res[rand == i,] +
predict(learn, fgl1[rand==i,])

}
}
max.col(res/nreps)

}
> res.nn <- CVnn(maxit=1000, size=6, decay=0.01)
> con(fgl$type, res.nn)

....
error rate = 29.44 %

and to choose the number of hidden units and the amount of weight decay by an
inner cross-validation. To do so we wrote fairly general function that can easily
be used or modified to suit other problems.

CVnn2 <- function(formula, data,
size = rep(6,2), lambda = c(0.001, 0.01),
nreps = 1, nifold = 5, verbose = 99, ...)

{
CVnn1 <- function(formula, data, nreps=1, ri, verbose, ...)
{
truth <- data[,deparse(formula[[2]])]
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res <- matrix(0, nrow(data), length(levels(truth)))
if(verbose > 20) cat(" inner fold")
for (i in sort(unique(ri))) {
if(verbose > 20) cat(" ", i, sep="")
for(rep in 1:nreps) {
learn <- nnet(formula, data[ri !=i,], trace=F, ...)
res[ri == i,] <- res[ri == i,] +
predict(learn, data[ri == i,])

}
}
if(verbose > 20) cat("\n")
sum(unclass(truth) != max.col(res/nreps))

}
truth <- data[,deparse(formula[[2]])]
res <- matrix(0, nrow(data), length(levels(truth)))
choice <- numeric(length(lambda))
for (i in sort(unique(rand))) {
if(verbose > 0) cat("fold ", i,"\n", sep="")
ri <- sample(nifold, sum(rand!=i), replace=T)
for(j in seq(along=lambda)) {
if(verbose > 10)
cat(" size =", size[j], "decay =", lambda[j], "\n")

choice[j] <- CVnn1(formula, data[rand != i,], nreps=nreps,
ri=ri, size=size[j], decay=lambda[j],
verbose=verbose, ...)

}
decay <- lambda[which.is.max(-choice)]
csize <- size[which.is.max(-choice)]
if(verbose > 5) cat(" #errors:", choice, " ")
if(verbose > 1) cat("chosen size = ", csize,

" decay = ", decay, "\n", sep="")
for(rep in 1:nreps) {
learn <- nnet(formula, data[rand != i,], trace=F,

size=csize, decay=decay, ...)
res[rand == i,] <- res[rand == i,] +

predict(learn, data[rand == i,])
}

}
factor(levels(truth)[max.col(res/nreps)],

levels = levels(truth))
}
> res.nn2 <- CVnn2(type ~ ., fgl1, skip=T, maxit=500, nreps=10)
> con(fgl$type, res.nn2)

WinF WinNF Veh Con Tabl Head
WinF 57 10 3 0 0 0

WinNF 16 51 3 4 2 0
Veh 8 3 6 0 0 0
Con 0 3 0 9 0 1

Tabl 0 1 0 1 5 2
Head 0 3 0 1 0 25
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error rate = 28.5 %

This fits a neural network 1000 times, and so is fairly slow (6 hours on the PC)
and memory-intensive (about 20 Mb).

This code chooses between neural nets on the basis of their cross-validated
error rate. An alternative is to use logarithmic scoring, which is equivalent to
finding the deviance on the validation set. Rather than count 0 if the predicted
class is correct and 1 otherwise, we count − log p(c |x) for the true class c . We
can easily code this variant by replacing the line

sum(unclass(truth) != max.col(res/nreps))

by

sum(-log(res[cbind(seq(along=truth),unclass(truth))]/nreps))

Learning vector quantization

For LVQ as for k -nearest neighbour methods we have to select a suitable metric.
The following experiments used Euclidean distance on the original variables, but
the rescaled variables or Mahalanobis distance could also be tried.

cd0 <- lvqinit(fgl0, fgl$type, prior=rep(1,6)/6,k=3)
cd1 <- olvq1(fgl0, fgl$type, cd0)
con(fgl$type, lvqtest(cd1, fgl0))

We set an even prior over the classes as otherwise there are too few representatives
of the smaller classes. Our initialization code follows Kohonen’s in selecting the
number of representatives: in this problem 24 points are selected, four from each
class.

CV.lvq <- function()
{

res <- fgl$type
for(i in sort(unique(rand))) {
cat("doing fold",i,"\n")
cd0 <- lvqinit(fgl0[rand != i,], fgl$type[rand != i],

prior=rep(1,6)/6, k=3)
cd1 <- olvq1(fgl0[rand != i,], fgl$type[rand != i], cd0)
cd1 <- lvq3(fgl0[rand != i,], fgl$type[rand != i],

cd1, niter=10000)
res[rand == i] <- lvqtest(cd1, fgl0[rand == i,])

}
res

}
con(fgl$type, CV.lvq())

WinF WinNF Veh Con Tabl Head
WinF 59 10 1 0 0 0

WinNF 10 61 1 2 2 0
Veh 6 8 3 0 0 0
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Con 0 2 0 6 2 3
Tabl 0 0 0 2 7 0
Head 3 2 0 1 1 22

error rate = 26.17 %

# Try Mahalanobis distance
fgl0 <- scale(princomp(fgl[,-10])$scores)
con(fgl$type, CV.lvq())

....
error rate = 35.05 %

The initialization is random, so your results are likely to differ.

Additive and tensor-spline models

The additive models discussed in Section 11.1 of these complements can also
be used for classification problems. Three approaches to using a flexible family
g(x; θ) of functions for classification are discussed in Ripley (1996, Chapter 4),
and we can use each of them for this problem.

Least-squares fitting to indicator functions

In this approach the K classes generate an N ×K indicator matrix Y , which is
regressed on the flexible family. The indicator matrix can easily be generated by
the function class.ind in library nnet . Thus we can use BRUTO by

library(mda); library(nnet)
levs <- levels(fgl$type)
fgl.bruto <- bruto(fgl[, 1:9], class.ind(fgl$type))
bruto.class <- max.col(predict(fgl.bruto, as.matrix(fgl[, 1:9])))
con(fgl$type, factor(levs[bruto.class], levels=levs))

In this approach it is conventional to classify by predicting the class whose indicator
is nearest to the vector prediction: elementary algebra shows that this is the same
as choosing the largest of the predictions.

To obtain comparable results we need to use cross-validation.

res.bruto <- CVtest(
function(xsamp, ...)
bruto(fgl[xsamp, 1:9], class.ind(fgl$type)[xsamp,], ...),

function(obj, x)
factor(levs[max.col(predict(obj,

as.matrix(fgl[x, 1:9])))], levels=levs)
)
con(fgl$type, res.bruto)

....
error rate = 34.11 %

Class Veh was never selected.
Almost exactly the same code can be used with MARS. We try additive

models, then pairwise and then general tensor products.
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res.mars <- CVtest(
function(xsamp, ...)
mars(as.matrix(fgl[xsamp, 1:9]),

class.ind(fgl$type)[xsamp,], ...),
function(obj, x)
factor(levs[max.col(predict(obj,

as.matrix(fgl[x, 1:9])))], levels=levs)
)
con(fgl$type, res.mars)

....
error rate = 35.98 %

res.mars2 <- CVtest(degree=2,
function(xsamp, ...)
mars(as.matrix(fgl[xsamp, 1:9]),

class.ind(fgl$type)[xsamp,], ...),
function(obj, x)
factor(levs[max.col(predict(obj,

as.matrix(fgl[x, 1:9])))], levels=levs)
)
con(fgl$type, res.mars2)

....
error rate = 33.64 %

res.mars9 <- CVtest(degree=9,
function(xsamp, ...)
mars(as.matrix(fgl[xsamp, 1:9]),

class.ind(fgl$type)[xsamp,], ...),
function(obj, x)
factor(levs[max.col(predict(obj,

as.matrix(fgl[x, 1:9])))], levels=levs)
)
con(fgl$type, res.mars9)

....
error rate = 34.11 %

The library polymars of Kooperberg and O’Connor implements a restrictive
form of MARS (for example, allowing only pairwise interations) suggested by
Kooperberg et al. (1997), but will automatically generate the necessary indicator
functions.

Prediction followed by linear discriminant analysis

Breiman & Ihaka (1984) had an idea to use a flexible family within linear discrim-
inant analysis. This was picked up by Hastie et al. (1994) and Ripley (1994b); a
full explanation of the connections is given in Ripley (1996). The idea amounts to
using a least-squares prediction as above, but using linear discriminant analysis on
the outputs, rather than choosing the largest output. Hastie et al. call this ‘flexible
discriminant analysis’.
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The function fda in library mda can be used to implement this procedure.
This does use formulae.

library(mda)
res.bruto.fda <- CVtest(method=bruto,

function(xsamp, ...)
fda(type ~ ., data=fgl[xsamp,], ...),

function(obj, x) predict(obj, fgl[x, ])
)
con(fgl$type, res.bruto.fda)

....
error rate = 34.58 %

res.mars.fda <- CVtest(method=mars,
function(xsamp, ...)
fda(type ~ ., data=fgl[xsamp,], ...),

function(obj, x) predict(obj, fgl[x, ])
)
con(fgl$type, res.mars.fda)

....
error rate = 35.51 %

res.mars2.fda <- CVtest(method=mars, degree=2,
function(xsamp, ...)
fda(type ~ ., data=fgl[xsamp,], ...),

function(obj, x) predict(obj, fgl[x, ])
)
con(fgl$type, res.mars2.fda)

....
error rate = 38.32 %

res.mars9.fda <- CVtest(method=mars, degree=9,
function(xsamp, ...)
fda(type ~ ., data=fgl[xsamp,], ...),

function(obj, x) predict(obj, fgl[x, ])
)
con(fgl$type, res.mars9.fda)

....
error rate = 34.58 %

Non-linear logistic discrimination

The third approach is a non-linear logistic model, that is

p(C = c |X = x) =
exp gc(x; θ)∑
i exp gi(x; θ)

(17.2)

This is the approach taken by nnet with argument softmax=T . Note that there
is some redundancy in (17.2) since the fitted probabilities depend only on the
differences between the coordinates of g .

Library polyclass 1 by Charles Kooperberg fits (17.2) by additive models
1 polyclas on Windows.
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with linear splines and can also include pairwise interactions. (Thus its space of
non-linear functions is the same as that used by MARS with degree=2 .) The
redundancy is resolved by taking gK ≡ 0 . The methodology is described in more
detail by Kooperberg et al. (1997) and Stone et al. (1997).

Fits using the polyclass library can be very slow. In the following code
we reduce the maximum dimension of model fitted to achieve a more reasonable
response time (about 2 minutes) after monitoring some preliminary runs (with
parameter silent=F ).

library(polyclass)
res.polycl <- CVtest(maxdim=50,

function(xsamp, ...)
poly.fit(unclass(fgl$type)[xsamp],

as.matrix(fgl[xsamp, 1:9]), ...),
function(obj, x)
factor(levs[max.col(ppoly(fit=obj,

cov=as.matrix(fgl[x, 1:9])))],
levels=levs)

)
con(fgl$type, res.polycl)

....
error rate = 34.58 %

By default poly.fit uses a penalty on the number of terms used, in a similar way
to logspline . If the argument cv is set to V it uses V -fold cross-validation
to choose the complexity.

res.polycl2 <- CVtest(maxdim=50, cv=10, seed=123,
function(xsamp, ...)
poly.fit(unclass(fgl$type)[xsamp],

as.matrix(fgl[xsamp, 1:9]), ...),
function(obj, x)
factor(levs[max.col(ppoly(fit=obj,

cov=as.matrix(fgl[x, 1:9])))],
levels=levs)

)
con(fgl$type, res.polycl2)

....
error rate = 31.78 %

This fit took 17 minutes on the PC. The answer depends on the random partition;
this is selected by the seed parameter (see the help page for the details).

The function poly.summary provides extensive information on a fitted poly-
class model, and poly.beta and poly.plot plots aspects of the model.

Mixture discriminant analysis

‘Mixture discriminant analysis’ (Hastie & Tibshirani, 1996) is a variant on plug-in
linear discriminant analysis in which a mixture of normals is fitted to each class,
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all normals having a common covariance matrix. This can be fitted by the function
mda in library mda . We chose varying numbers of components depending on the
prevalence of each class. The initialization is random, so your results may differ.

library(class) # needed for the initialization
res.mda <- CVtest(subclasses=c(6,6,3,3,2,4),

function(xsamp, ...)
mda(type ~ ., data=fgl[xsamp,], ...),

function(obj, x) predict(obj, fgl[x, ])
)
con(fgl$type, res.mda)

....
error rate = 30.84 %

This took about 4 minutes.

17.4 Cross-validation

We have several uses of V-fold cross-validation in this chapter, as well as in
selecting the complexity parameter when pruning classification trees. The code
given on page 493 is reasonably general, and can be used for cross-validation of
any procedure with a fitting function and a predict method that returns a relatively
simple result (such as a classifcation factor or a matrix of probabilities. We can
use something like

rand <- sample(V, nrow(data), replace=T)
CVtest <- function(fitfn, predfn, ...)
{

res <- data$response
for (i in sort(unique(rand))) {

cat("fold ",i,"\n", sep="")
learn <- fitfn(rand != i, ...)
res[rand == i] <- predfn(learn, rand==i)
NULL

}
res

}

(We added a NULL at the end of the loop as in sp 3.x this can help in minimizing
memory usage.) For example, to find cross-validated posterior probabilities for
linear discriminant anaysis of the iris data we would use

ir <- rbind(iris[,,1], iris[,,2], iris[,,3])
ir.species <- c(rep("s",50), rep("c",50), rep("v",50))
V <- 10
rand <- sample(V, nrow(ir), replace=T)
CVtest <- function(fitfn, predfn, ...)
{

res <- matrix(nrow=nrow(ir), ncol=3)
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for (i in sort(unique(rand))) {
cat("fold ",i,"\n", sep="")
learn <- fitfn(rand != i, ...)
res[rand == i,] <- predfn(learn, rand==i)
NULL

}
res

}
res.lda <- CVtest(

function(x, ...) lda(ir.species, ir, subset=x, ...),
function(obj, x) predict(obj, ir[x, , drop=F])$post )

)

In general such cross-validated results can be quite variable, and we say for the
use of cross-validation with classification trees, it can be helpful to average the
results across a several different random partitions if CPU time permits.

What may not be obvious is that exactly the same code can be used for the
earlier technique of leave-one-out cross-validation: just use

rand <- 1:nrow(ir)

Leave-one-out cross-validation is not generally to be recommended: it has con-
siderable disadvantages, principally in giving highly-variable results and for some
fitting procedures in not making a sufficient perturbation to the problem, for exam-
ple when variable selection is used. Nevertheless, it may be of historical interest,
and as for programming exercise we have added an argument CV=T to both lda
and qda that invokes the fast updating formulae given2 in Ripley (1996, p. 100).

Leave-one-out cross-validation is of much greater interest for a nearest-neighbour
classifier. The function knn.cv in library class implements this in the straight-
forward way (by removing to considering each point when searching for its neigh-
bours).

2 see its Errata for typographical corrections
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Entries in this font are names of S objects.

accdeaths, see Datasets
additive models, 37, 97–100
Aids, see Datasets

BCa confidence intervals, 9
bcanon, 11
BIC, 25
biplot, 63
biplot.correspondence, 63
birthwt, see Datasets
boot, 8–10
boot.ci, 8, 9
bootstrap, 8, 22

parametric, 9
bootstrap, 9–11
boott, 11
bruto, 39, 40

cancer.vet, see Datasets
Cars93, see Datasets
censboot, 9
class.ind, 97
clspec, 87
coop, see Datasets
corClasses, 29
correlogram, 90
correlogram, 90, 91
corresp, 63
correspondence analysis, 62

multiple, 64
plots, 63

covariogram, 90, 91
cpus, see Datasets
cross-validation, 93, 94, 101

leave-one-out, 102
crosstabs, 16
cv.tree, 67

Datasets
accdeaths, 86–88

Aids, 56, 57
birthwt, 43, 44
cancer.vet, 59, 60, 74, 81, 82
Cars93, 16
coop, 27
cpus, 39, 47, 68, 69
deaths, 86, 88
faithful, 2, 5
fgl, 93
galaxies, 3, 4, 7, 8
gehan, 55, 56
heart, 57
iris, 68, 69, 74, 101
lh, 86, 87
mcycle, 37, 38
minn38, 14
nottem, 88
oats, 26
petrol, 24
Pima, 44
quine, 17, 20
rock, 45, 46, 48–50
sitka, 27, 30
topo, 89, 91, 92

deaths, see Datasets
density estimation

local polynomial, 4–7
logspline, 1–3

denumerate, 17
digamma function, 18
discriminant analysis

flexible, 98
mixture, 100

dispersion parameter, 18
dlogspline, 3
dlspec, 87

erase.screen, 81
expand.grid, 90
experiments
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split-plot, 26

faithful, see Datasets
fda, 98
fgl, see Datasets
Fhat, 92
flexible discriminant analysis, 98
forensic glass, 93

galaxies, see Datasets
gam, 41
gamma family, 18
gehan, see Datasets
generalized linear models

gamma family, 18
Ghat, 92
glm.dispersion, 19
glm.shape, 19
gls, 35
graph.survtree, 84, 85

hare.fit, 59
hazcov, 58
heart, see Datasets
heft.fit, 56, 57, 60

iris, 71
iris, see Datasets
iterative proportional scaling, 12

km.tssa, 81, 84
knn.cv, 102
krige, 89
kriging, 89

learning vector quantization, 96
Lenv, 92
library

boot, 8, 9, 23
bootstra, 10
class, 102
hare, 59
hazcov, 58
heft, 56
KernSmooth, 4, 37
ksmooth, 4, 37
locfit, 4, 37, 43, 56
logspline, 1, 55
lspec, 86, 87
MASS, 13, 19

mda, 39, 98, 100
multinom, 50
nlme, 24, 32, 35
nnet, 49, 50, 97
polyclass, 99, 100
polymars, 39, 98
ppr, 45
rpart, 67, 79
sm, 1, 37, 43, 57
survcart, 82, 83
tssa, 80

linear mixed effects models, 24–29
lme, 24–29, 35, 36
loadings, 65

correlation, 65
loc, 89, 91
locfit, 4–8, 38, 43, 44, 56, 58
locpoly, 4, 38
loess, 43, 58
log-linear models, 12
logarithmic scoring, 96
logistic regression, 93
loglin, 12–14, 16, 17
loglm, 13–17
logspline.fit, 2, 3, 56
logspline.plot, 3
logspline.summary, 3
lspec.fit, 86, 87
lspec.plot, 86
lspec.summary, 87
LVQ, 96

mars, 39, 40
mca, 64
mcycle, see Datasets
mda, 100
minn38, see Datasets
mixed effects models

linear, 24–29
non-linear, 30–35

mixture discriminant analysis, 100
model formulae, 89
model.variogram, 90
multinom, 49, 50

na.rpart, 78
nearest-neighbour, 102
neural networks, 49, 93
nlme, 30, 32
nls, 32
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nnet, 49, 52, 99
nnet.default, 49, 51
nnet.formula, 49–51, 93
nnet.Hess, 49
non-linear mixed effects models, 30–

35
non-linear models

self-starting, 32
nottem, see Datasets

oats, see Datasets

petrol, see Datasets
Pima, see Datasets
plogspline, 3
plot.corresp, 63
plot.rpart, 76
plotcp, 70, 75
plspec, 87
point processes, 92
Poisson log-linear model, 12
poly.beta, 100
poly.fit, 100
poly.plot, 100
poly.summary, 100
polyclass models, 100
post, 76
post.rpart, 76
post.tree, 76
post.tssa, 82
ppreg, 45
predict, 90
princomp, 65
print.tree, 69
printcp, 69, 73
projection pursuit

regression, 45
prune.rpart, 67
prune.survtree, 83
prune.tree, 67
prune.tssa, 82

qlogspline, 3
quine, see Datasets

random effects, 24–35
multilevel, 26, 33

regression
projection-pursuit, 45

REML, 24

renumerate, 18
rlspec, 87
rock, see Datasets
rotate.princomp, 65
rotation

in principal components, 65
rpart, 67, 70, 74, 79
rpart.control, 73

S+SPATIALSTATS, 89–92
scatterplot smoothers, 37
sitka, see Datasets
sm.logit, 43, 44
sm.poisson, 43
sm.regression, 37
sm.survival, 57
snip.rpart, 76
spectral analysis, 86, 87
spectrum, 86
splines, 1–3, 39, 45, 86, 87, 97–100
split-plot experiments, 26
spp, 92
SSfpl, 32
step.gam, 41
summary.glm, 12, 19
summary.rpart, 73
supsmu, 46
Surv, 68
survival analysis

tree-structured, 79–83

time series
spectral analysis, 86, 87

topo, see Datasets
tree, 67, 73
tree.rpart, 76
trees, 67

in survival analysis, 68, 74, 75, 79–
83

pruning, 67, 73, 81–83
tsboot, 9
tssa, 80–82

Unix, i, 4, 8, 10, 24, 37, 67

VA, see Datasets, cancer.vet
varClasses, 29
variance components, 24–35
variogram, 90
variogram, 91
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vcov.multinom, 51
vector quantization

learning, 96

Windows, i, 1, 4, 8, 10, 24, 37, 67, 76,
83, 99

xpred.rpart, 71
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