Statistics Complements to

Modern Applied
Statistics with S-Plus

Second edition

by
W. N. Venables and B. D. Ripley
Springer (1997). ISBN 0-387-98214-0

17 February 1999

These complements have been produced to supplement the second edition of
MASS. They will be updated from time to time. The definitive source is
http://www.stats.ox.ac.uk/pub/MASS2/.

© W. N. Venables and B. D. Ripley 1997, 1998, 1999. A licence is granted for
personal study and classroom use. Redistribution in any other formis prohibited.

Selectablelinks are in this colour.
Selectable URLs are in this colour.

http://www.stats.ox.ac.uk/pub/MASS2/

Introduction

These complements are made available on-line to supplement the book making
use of extensionsto S-PLUS in user-contributed library sections.

The general convention isthat material here should be thought of as following
thematerial inthechapter inthe book, so that new sectionsare numbered following
the last section of the chapter, and figures and equations here are numbered
following on from those in the book.

All thelibrariesmentioned are available for Unix and for Windows. Compiled
versions for Windows (for both S-PLUS 3.x and 4.x) are available from either of
the URLs

http://www.stats.ox.ac.uk/pub/SWin/
http://1ib.stat.cmu.edu/D0S/S/SWin/

Most of the Unix sources are available at
http://lib.stat.cmu.edu/S/

and more specific information is given for the exceptions where these are intro-
duced.

There are separate Complements documentsfor programming and for S-PLUS 4.x
avallablefromhttp://www.stats.ox.ac.uk/pub/MASS2/.

http://www.stats.ox.ac.uk/pub/SWin/
http://lib.stat.cmu.edu/DOS/S/SWin/
http://lib.stat.cmu.edu/S/
http://www.stats.ox.ac.uk/pub/MASS2/

Contents

Introduction

5 Distributionsand Data Summaries
55 Dengity estimation
5.6 Bootstrap and permutationmethods

7 Generalized Linear Models
7.1 Functionsfor generalized linear modelling
73 Poissonmodels
75 Gammamodels

9 Non-linear Models
9.4 Confidenceintervalsfor parameters

10 Random and Mixed Effects
10.3 Linear mixed effectsmodels
10.4 Non-linear mixed effectsmodels
10.5 Using 1me with autocorrelateddata

11 Modern Regression
11.1 Additive models and scatterplot smoothers
11.2 Projection-pursuitregressiono
114 Neura networks.

12 Survival Analysis
12.1 Estimatorsof survivalcurves
12.6 Non-parametric modelswith covariates

13 Multivariate Analysis
13.3 Discriminantanalysiso
135 FactoranalySis

Contents ii

14 Tree-based Methods 67
144 Library RPart v v v e e e e e e e e 67
145 Tree-structured survival analysis 79

15 Time Series 86
15.1 Second-order sUMMaries e 86

16 Spatial Statistics 89
16.3 Module S+SPATIALSTATS v o e e e e 89

17 Classification 93
173 Forensicglass 93
17.4 Cross-vaidation 101

References 103

Index 106

Chapter 5

Distributions and Data Summaries

5.5 Density estimation

Simonoff (1996) provides an excellent overview of methods for both smoothing
and density estimation. Bowman & Azzalini (1997) concentrate on providing
an introduction to kernel-based methods, with an easy-to-use S-PLUS library
sm ! This has the unusual ability to compute and plot kernel density estimates of
three-dimensional and spherical data.

Kernel density estimation is a rather simple and usua rapid procedure (al-
though bandwi dth selection need not be). More recently there have been anumber
of alternative approaches which use very much greater amounts of computation.

Spline fitting to log-densities

There are several closely-related proposals® to use a univariate density estimator
of theform

f(y) = expg(y;0) (5.7)

for a parametric family g(-;6) of smooth functions, most often splines. The fit
criterion is maximum likelihood, possibly with a smoothness penalty. The ad-
vantages of (5.7) isthat it automatically provides a non-negative density estimate,
and that it may be more natural to consider ‘ smoothness on arelative rather than
absolute scale. It is necessary to ensure that the estimated density has unit mass,
and thisis most conveniently done by taking

fy) = expg(y:0)/ [exp g(y;) dy (5.8)

The library logspline 3 by Charles Kooperberg implements one variant on
this theme by Kooperberg & Stone (1992), although a later version described in
Stone et al. (1997) is promised to replace it. This uses a cubic spline for ¢ in
(5.8), with smoothness controlled not by a penalty (asin smoothing splines) but

L availablefrom http: //www.stats.gla.ac.uk/~adrian/smand
http://www.stat.unipd.it/dip/homes/azzalini/SW/Splus/sm.

2 see Simonoff (1996, pp. 67—70, 90-92) for others.

3 logsplin on Windows.

http://www.stats.gla.ac.uk/~adrian/sm
http://www.stat.unipd.it/dip/homes/azzalini/SW/Splus/sm

5.5 Density estimation 2

by the number of knots selected. Thereisan AlC-like penalty; the number of the
knotsis chosen to maximize

Zg(yi; 5) —nlog [exp g(y; 5) dy — a x number of parameters (5.9)
i=1

The default value of « is logn (sometimes known as BIC) but this can be set
as an argument of logspline.fit. A Newton method is used to maximize the
log-likelihood given the knot positions. The initial knots are selected at quantiles
of the dataand then deleted one at atime using the Wald criterion for significance.
Finally, (5.9) is used to choose one of the knot sequences considered.

o
N
n
—
o
-

[Te)

o -—

0.0 02 04 06 08 1.0

1 2 3 4 5 6 3.7 3.8 3.9 4.0 4.1 4.2

eruptions bootstrap samples of median

Figure 5.12: Histograms and logspline density plots of (left) the Old Faithful eruptions
data and (right) bootstrap samples of the median of that dataset. Compare with Figures 5.8
(on page 182), Figure 9.4 (page 288) and Figure 5.11 (page 188).

We first try out our two running examples:

library(logspline) # logsplin on Windows
attach(faithful)

faithful.ls <- logspline.fit(eruptions, lbound=0)

x <- seq(1, 6, 1len=200)

truehist (eruptions, nbins=15, xlim=c(1,6), ymax=1.0)
lines(x, dlogspline(x, faithful.ls))

detach()

truehist (tperm, xlab="diff")
tperm.ls <- logspline.fit(tperm)
x <- seq(-5, 5, 1len=200)

lines(x, dlogspline(x, tperm.ls))

sres <- c(sort(tperm), 5); yres <- (0:1024)/1024
plot(sres, yres, type="S8", xlab="diff", ylab="cdf")
lines(x, plogspline(x, tperm.ls))

par (pty="s"

x <= ¢(0.0005, seq(0.001, 0.999, 0.001), 0.9995)

plot(qt(x, 9), qlogspline(x, tperm.ls),
xlab="Quantiles of t on 9 df", ylab="Fitted quantiles",
type="1", xlim=c(-5, 5), ylim=c(-5, 5))

points(qt(ppoints(tperm), 9), sort(tperm))

5.5 Density estimation 3

The functions dlogspline, plogspline and gqlogspline compute the den-
sity, CDF and quantiles of the fitted density, so the final plot is a QQ-plot of the
data and the fitted density against the t9 density. The final plot shows that the
to density is a better fit in the tails; the logspline density estimate always has
exponential tails. (Thefunction logspline.plot will makeasimpleplot of the
density, CDF or hazard estimate.)

— <
—

0.3 0.4
0.6 0.8
2 4

0.2
cdf
0.4
Fitted quantiles
0

-2

0.1
0.2

-4

0.0
0.0

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
diff diff Quantiles of t on 9df

Figure 5.13: Plots of the logspline density estimate of the permutation dataset tperm.
The three panels show the histogram with superimposed density estimate, the empirical
and fitted CDFs and QQ-plots of the data and the fitted density against the conventional tg
distribution.

We can also explore density plots of the bootstrapped median values from
page 187 (which we recall actually has a discrete distribution).

truehist(res, nbins=nclass.FD(res), ymax=20)

x <- seq(3.7, 4.2, 1en=1000)

res.ls <- logspline.fit(res)

lines(x, dlogspline(x, res.ls))

points(res.ls$knots, dlogspline(res.ls$knots, res.ls))
res.ls <- logspline.fit(res, penalty=2)

lines(x, dlogspline(x, res.ls), 1lty=3)
points(res.ls$knots, dlogspline(res.ls$knots, res.ls))

Changing the penalty a to the AIC value of 2 has a small effect. The dots show
where the knots have been placed. (The function logspline.summary shows
details of the selection of the number of knots.)

The resultsfor the galaxies dataarealso instructive.

x <- seq(8000, 35000, 200)

plot(x, dlogspline(x, logspline.fit(galaxies)), type="1",
xlab="velocity of galaxy", ylab="density")

lines(density(galaxies, n=200, window="gaussian",
width=width.SJ(galaxies)), 1lty=3)

Maximum-likelihood methods and hence logspline.fit can easly handle
censored data (see page 55).

5.5 Density estimation 4

density
0.0 0.000050.000100.000150.000200.00025 0.00030

10000 15000 20000 25000 30000 35000
velocity of galaxy

Figure5.14: Logspline (solid line) and kernel density (dashed) estimatesfor the galaxies
data. The bandwidth of the kernel estimate was chosen by width.SJ.

Local polynomial density estimation

The local regression approach of loess can be extended to local likelihood
estimation and hence used for density estimation. One implementation is the
function locpoly inlibrary KernSmooth . This uses afine grid of bins on the
x axis and appliesalocal polynomia smoother to the counts of the binned data.

Loader (1997) introduces his implementation in the locfit package; the
theory for density estimation isin Loader (1996). The default isthat log f(y) is
fitted by a quadratic polynomial: to estimate the density at = we maximize

ZK (455)9(yi: 6(x)) — nlog [K (45*) exp g(y; 6(x)) dy

that is, (5.9) localized near x, and with aquadratic polynomia model for g(y;).
The function K iscontrolled by the argument kern ; by default it isthe tricubic
functionused by loess; kern="gauss" givesaGaussian kernel with bandwidth
2.5 times® the standard deviation. The documentation with the package is sparse:
the Web site

http://cm.bell-labs.com/stat/project/locfit

has the sources and a number of on-line documents from which the details here
were gleaned.

We can use locfit on the eruptions data by

4 ksmooth on Windows. The current Unix sources are at
http://www.biostat.harvard.edu/~mwand
5 density and hence our account in Chapter 5 uses 4x .

http://cm.bell-labs.com/stat/project/locfit
http://www.biostat.harvard.edu/~mwand

5.5 Density estimation 5

library(locfit, first=T)
faithful.lf <- locfit(~ eruptions, data=faithful, flim=c(1,6))
plot(faithful.lf, get.data=T, mpv=200, ylim=c(0,1))

where get .data addstherugand mpv evaluatesat 200 pointsto ensure asmooth
curve. (The £1im parameter asksfor afit to cover that range of = values.)

z
0.00DDDHDAO7

)
10N

0.0 0.2 04 06 08 1.0

~
Lo

1 2 3 4 5 6

eruptions

Figure5.15: locfit density estimates for the faithful dataset. Left: Density of the
duration of eruptions. The solid line is the default, the medium dashed line is from Loader
(1997), the dotted line is a constant bandwidth chosen by AIC, and the long-dashed line
(with asharp peak) is the adaptive bandwidth chosen by a surrogate Poisson model for the
binned data. Right: Joint density of both variables.

Asfor loess we have to choose how much to localize, that is to choose the
bandwidth h, possibly asafunction of x. Thisisdonein locfit by choosing
the larger of a nearest-neighbour-based estimate and a fixed bandwidth. On the
very smilar geyser dataset Loader (1997) suggests

faithful.1f1 <- locfit(~ eruptions, data=faithful, flim=c(1,6),
alpha=c(0.15, 0.9))
lines(faithful.lf1l, m=200, 1ty=3)

but without explai ning wherethesenumberscamefrom. (Thedefaultis c (0.7, 0).
The notes on the Web site havec (0.1, 0.8). Clearly thisis not an automated
choice!) The first number is equivalent to the span parameter of loess; set it
to zero to remove the adaptive part of the bandwidth choice. The second number
is afixed bandwidth; there is also athird argument related to the penalty in (5.9)
which we discuss below.

locfit can handle censored data, and provide estimates of the density or
hazard (see page 55). It can also, in a limited way, handle multidimensional
density estimation. For example, we can produce a perspective plot of the joint
density of the two variablesin the faithful dataset by

plot(locfit(~ eruptions+waiting, data=faithful, alpha=0.25,
scale=c(1,10)), type="persp")

Compare this to the perspective plot of Figure 5.9 on page 185 of the book. One
restriction is that the same bandwidth is chosen in all variables, so the variables

5.5 Density estimation 6

need to be rescaled® to a scale on which such a bandwidth would be acceptable.
(Setting scale=0 forces such a scale to be chosen.) The default is to use a
spherically symmetric kernel, but kt="prod" chooses a product kernel.

Bandwidth salection

Loader advocates alocal version of AIC for bandwidth selection. For a constant
bandwidth he gives a function akaike. We use this for a gaussian kernel with
standard deviation i € (0.1,0.6), remembering that density has 4 times and
locfit 2.5timesthe standard error as the ‘bandwidth’ for a Gaussian kernel.

akaike <- function(formula, alpha, pen=2, ...)
{
m <- nrow(alpha); 11 <- numeric(m); vr <- numeric(m)
for(i in 1:m) {
fit <- locfit(formula, alpha=alphali,], ...)
11[i] <= fit$dp["1k"]; vr[i] <- fit$dp["t0"]
}
cbind(alpha=alpha, LogLik=11, df=vr, AIC=-2%1l+pen*vr)
}
attach(faithful)
akaike(~ eruptions,
alpha = cbind(0, 2.5 * seq(0.1, 0.6, by = 0.05)),

ev = "data", kern = "gauss")

LogLik df AIC
[1,] 0 0.250 -249.8242 21.410054 542.4684
[2,] 0 0.375 -255.1024 14.860509 539.9258
[3,] 0 0.500 -258.1887 11.261502 538.9003
[4,] 0 0.625 -259.1892 9.056460 536.4914
[5,] 0 0.750 -258.8195 7.655461 532.9498
[6,] 0 0.875 -257.7784 6.704812 528.9664
[7,] 0 1.000 -256.5723 6.015671 525.1760
[8,] 0 1.125 -255.8101 5.493791 522.6078
[9,] 0 1.250 -256.2696 5.088088 522.7155
[10,] 0 1.375 -258.7174 4.764574 526.9640
[11,] 0 1.500 -263.6509 4.497959 536.2977

The df term is the local version of the number of parameters. This suggests
h =~ 0.48 , which we can fit by

fit <- locfit(~ eruptions, alpha = c(0, 1.2), flim = c(1, 6),
kern = "gauss", ev = "grid", mg = 200)
lines(fit, m=200, 1lty=2)

The parameter ev controlswherethefitted density isevaluated (and interpolation
from these pointsis used for prediction). To find the AIC we evaluate at the data
points, whereasfor plotting we evaluateat agrid of mg points. The m argument of
lines.locfit isequivaent to mpv, controlling the number of points at which
the curve is plotted.

6 without this the computational shortcuts used by Locfit fail in thisexample

5.5 Density estimation

Loader (1995) suggests an aternative approach, which isto bin the data and
treat the counts as independent Poisson variates (which they are not, but as for
surrogate Poisson GLMs this gives the correct likelihood). We can then use a
local log-linear model to smooth the counts, and allow its bandwidth to be chosen

locally by minimizing thelocal AlIC.

erupt.bin <- data.frame(duration=seq(1.6, 5.1, by=0.05),

count=hist (eruptions, breaks=seq(1.575, 5.125, by=0.05),

plot=F)$counts)
fit2 <- locfit(count ~ duration, data=erupt.bin,
weights=rep(272%0.05, 71),
alpha=c(0, 0, 2), family="poisson")
lines(fit2, m=200, lty=4)

This seems to be the most successful approach.
We can also consider the galaxies data

plot(locfit(~ galaxies, flim=c(8000, 35000)),
get.data=T, ylim=c(0, 0.0003), mpv=200)

akaike(~ galaxies,
alpha=cbind(seq(0.15, 0.7, 0.05), 0),
ev="data", kern="gauss")

[1,]
[2,]
[3,]
[4,]
(5,]
(6,]
[7,]
(s,]
[9,]
[10,]
[11,]
[12,]

O OO O O OO OO oo o

.15
.20
.25
.30
.35
.40
.45
.50
.55
.60
.65
.70

0

O OO OO OO OO oo

-763.
-769.
-772.
-773.
-773.
-774.
-774.
-776.
-776.
-778.
=779.
-780.

8799
8116
8257
0860
8923
1579
7961
1849
7574
5080
3692
3391

22

11

D O N N 0 ©

.344750
17.
14.
13.
.804248
10.
.467591
.304028
. 741446
.316588
.922880
.610473

432047
899450
101204

487591

1572.
1574.
1575.
1572.
1571.
1569.
1568.
1568.
1568.
1571.
1572.
1573.

fit <- locfit(~ galaxies, alpha=0.45,
kern="gauss",
lines(fit, m=200, 1lty=2)

ev="grid",

449
487
450
374
393
291
527
978
998
649
584
899

£1im=c (8000, 35000),

mg=200)

galaxies.bin <- data.frame(velocity=seq(8000, 35000, 500),
count=hist (galaxies, breaks=seq(7750, 35250, 500),
plot=F)$counts)

fit2 <- locfit(count ~ velocity, data=galaxies.bin,
weights=rep(82%500, nrow(galaxies.bin)),
alpha=c(0, 0, 2), family="poisson")
lines(fit2, m=200, lty=3)

Here the choice by local AIC of an adaptive bandwidth fails to work well, and

seems very sensitive to the rounding used.

5.6 Bootstrap and permutation methods 8

density
0.00005 0.00010 0.00015 0.00020 0.00025 0.00030

e | AT : L 1
10000 15000 20000 25000 30000 35000

galaxies

0.0

Figure 516: locfit density estimates for the galaxies dataset. The solid line is the
default, the dotted line has a variable bandwidth chosen by AIC, and the dashed line uses
asurrogate Poisson model.

5.6 Bootstrap and permutation methods

Using library boot

Themain text discusses someof the bootstrap functionsintroducedin S-PLUS 4.0.
In this complement we consider the library boot of Davison & Hinkley (1997).
Thisisincluded on a diskette with the book in both Unix and Windows versions,
and can be downloaded from

http://dmawww.epfl.ch/davison.mosaic/BMA/library.html

> library(boot)

> attach(faithful)

> set.seed(101)

> erupt.boot <- boot(eruptions, function(x,i) median(x[i]),
R=1000)

> erupt.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Bootstrap Statistics :
original bias std. error
t1* 4 -0.014807 0.078703
> boot.ci(erupt.boot, conf=c(0.90, 0.95),
type=c("norm","basic", "perc","bca"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

http://dmawww.epfl.ch/davison.mosaic/BMA/library.html

5.6 Bootstrap and permutation methods 9

Intervals :

Level Normal Basic

90% (3.885, 4.144) (3.908, 4.167)
959% (3.861, 4.169) (3.892, 4.167)
Level Percentile BCa

90% (3.833, 4.092) (3.825, 4.083)
95% (3.833, 4.108) (3.759, 4.083)
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable

Note that the results are similar to those using bootstrap, but not identical as
the random numbers are used in a different way. In this particular example the
BCa confidence intervals are very slow to calcul ate.

Davison & Hinkley’sfunction boot ismuch more general than bootstrap
in that it allows many other types of bootstrap sampling. What is commonly
known as the bootstrap (random sampling with replacement from the original
dataset) is the default but boot can also perform a parametric bootstrap (sam-
pling from a fitted distribution specified by argument ran.gen), and stratified,
weighted, balanced, antithetic and permutational sampling. Functions censboot
and tsboot implement various forms of the bootstrap that have been suggested
for right-censored data and time series respectively.

The function boot.ci calculates confidence intervals of one or more of
five types, the first-order normal approximation, the percentile bootstrap interval
(that found from the percentiles of the bootstrap distribution), the basic bootstrap
interval (the percentileinterval reflected about the estimate) and the BCacorrection
to the basic interval. Finaly, it can calculate a studentized bootstrap interval (a
basic bootstrap interval applied to a studentized statistic), and compute intervals
on atransformed scale.

We also consider bootstrapping residuals from a non-linear regression on
pp. 281-2. We can repeat that analysiswith library boot by avery small change
to the function storm.bf . The bootstrapping here took about 90 seconds, the
confidenceinterval calculationsabout 5 secondseach. (Thetimesfor bootstrap
under 4.x arevery similar.)

> storm.fm <- nls(Time ~ bx*Viscosity/(Wt - c), stormer,
start = c(b=29.401, c=2.2183))
> storm.bf <- function(rs, ind) {
assign("Tim", fitted(storm.fm) + rs[ind], frame = 1)
nls(Tim ~ (b * Viscosity)/(Wt - c), stormer,
start = coef(storm.fm))$parameters

}
> rs <- scale(resid(storm.fm), scale = F)
> storm.boot <- boot(rs, storm.bf, R = 1000)

> storm.boot

Bootstrap Statistics :
original Dbias std. error

5.6 Bootstrap and permutation methods 10

tlx 28.7156 0.71178 0.84350
t2x 2.4799 -0.29007 0.60765

> boot.ci(storm.boot, index=1,

type=c("norm", "basic", "perc", "bca"))
Intervals :
Level Normal Basic
959% (26.35, 29.66) (26.29, 29.63)
Level Percentile BCa

95% (27.80, 31.14) (27.10, 29.66)
Calculations and Intervals on Original Scale
Warning : BCa Intervals used Extreme Quantiles
Some BCa intervals may be unstable

> boot.ci(storm.boot, index=2,

type=c("norm", "basic", "perc", "bca"))
Intervals :
Level Normal Basic
959% (1.579, 3.961) (1.632, 4.111)
Level Percentile BCa

95% (0.848, 3.328) (1.588, 3.802)
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable

The index parameter selects which of the components of the statistic are of
interest. In this example it looks as if the percentile interval has a considerable
bias. For reference, BCa intervals from the bootstrap output are given in
Section 9.4 of these complements.

Using library bootstra

Another, older, set of bootstrap functions written by Rob Tibshirani accompanies
Efron & Tibshirani (1993). Thisisusually installed aslibrary section bootstrap

on a Unix machine but as bootstra on a Windows machine’. This too has a
function bootstrap to perform the bootstrap sampling, and other functions to
find bootstrap confidence intervals which similar code to bootstrap internally.
ThisS codeiswritten less efficiently thanthat in 4.x or boot , and should be used
with care to avoid using excessive amounts of memory.

Thereislittleadvantagein using thisfunction bootstrap for ssimplebootstrap
sampling, as there are no special toolsto analyseits results.

library(bootstra)

attach(faithful)

set.seed(101)

erupt.boot <- bootstrap(eruptions, 1000, median)

vV V V V

7 since S-PLUS 3.x for Windows can only use MSDOS 8+3 filenames.

5.6 Bootstrap and permutation methods 11

> mean(erupt.boot$thetastar - median(eruptions))
[1] -0.014807

> sqrt(var (erupt.boot$thetastar))

[1] 0.078703

However, the function bootstrap also incorporates the ‘jackknife after boot-
strap’ technique.

set.seed(101)
erupt.boot2 <- bootstrap(eruptions, 1000, median, func=mean)
At least one jackknife influence value for func(theta) is
undefined
Increase nboot and try again

Asthis code was already using 25Mb of memory, thisis not practicable advice.

This library has functions bcanon and boott to compute BCa and studen-
tized confidence limits, but the first fails on this example.

set.seed(101)
boott (eruptions, median, perc=c(0.025, 0.05, 0.95, 0.975))
$confpoints:
0.025 0.05 0.95 0.975
[1,] 3.7925 3.8485 4.1219 4.1351

We can also consider the Stormer viscometer data from Section 9.4. There
we bootstrap residuals, so cannot use the jackknife directly and hence bcanon
(which tries to evaluate the function on vectors of size n — 1) fails. We can use
boott, but it is slow (15 minutes), especially so as the bootstrapping has to be
run separately for each component of the parameter.

storm.bfl <- function(rs) {
assign("Tim", fitted(storm.fm) + rs, frame = 1)
nls(Tim ~ (b * Viscosity)/(Wt - c), stormer,
start = coef(storm.fm))$parameters[1]
}
storm.bf2 <- function(rs) {
assign("Tim", fitted(storm.fm) + rs, frame = 1)
nls(Tim ~ (b * Viscosity)/(Wt - c), stormer,
start = coef(storm.fm))$parameters[2]
}
set.seed(101)
boott(rs, storm.bfl, perc=c(0.025, 0.05, 0.95, 0.975))
$confpoints:
0.025 0.05 0.95 0.975
[1,] 26.434 26.825 29.228 29.336
set.seed(101)
boott(rs, storm.bf2, perc=c(0.025, 0.05, 0.95, 0.975))
$confpoints:
0.025 0.05 0.95 0.975
[1,] 1.8939 2.0168 3.6694 3.8459

12

Chapter 7

Generalized Linear Models

7.1 Functions for generalized linear modelling

Estimation of the dispersion parameter ¢

We saw on page 226 that an approximately unbiased estimator of the dispersion
parameter ¢ is

Dy

n—p

This is not, however, the estimator used by summary.glm, which isthe sum of
sguares of the Pearson residuals divided by the residual degrees of freedom. Thus

~_ 1 (yi — fui)?
¢ = n_p; V(i) /A (7.11)

Qo=

where V' (u) is the variance function. (Here p is the number of linearly inde-
pendent parameters.) Notethat ¢ = ¢ for the Gaussian family, but in general
differs.

The estimate of dispersion is only used to compute the estimated standard er-
rorsof the coefficients, and only for thebinomial and Poisson familiesif summary
iscalled with argument dispersion=0. Weexplorefurther the estimation of the
dispersion parameter for a Gamma family in Section 7.5.

7.3 Poisson models

Log-linear models with formulae and data frames

The standard function loglin fits alog-linear model to frequency data by iter-
ative proportional scaling, which can be more computationally efficient than the
surrogate Poisson model approach, particularly for very large frequency arrays.
However, it has several limitations.

7.3 Poisson models 13

e |t canonly handle categorical predictor variables, and the frequencies must
be given asacomplete multiway frequency table. Missing cells(or structural
zeros) can be handled. Notethat thisisnot anecessary restriction; the more
general algorithm developed in Darroch & Ratcliff (1972) can handle both
guantitative and categorical predictors.

e |t cannot discover redundancies in the underlying model matrix. Hence if
therearemissing cells 1loglin may report an incorrect number of error de-
greesof freedom. Thisrestrictionisdifficult to overcome without explicitly
constructing the model matrix, something that iterative proportional scaling
algorithms are designed to avoid.

e Deviances and fitted values are the main products of the algorithm. If the
input frequency array has no missing cells and none with zero fitted values,
constrained parameter estimates relative to a complete dummy variable
model matrix are available, but their standard errors are not.

Neverthelessit isanimportant and useful fitting algorithmfor very large frequency
tables.

Theagorithmisbased on the score equationsfor Poisson datawith the natural
log link. That is, the mean vector, p, must have the appropriate multiplicative
structure and satisfy

XTy=XTp

where X isthemodel matrix. With purely categorical predictorsthisimpliesthat
the arrays of observed frequencies and of thefitted values have identical marginal
totals. Henceit is sufficient to specify the margins over which frequency and fitted
values must have the same totals. For example, for a three-way frequency table,
Fr, the ‘no three-factor-interaction’ model may be specified by

loglin(Fr, list(c(1,2), c(1,3), c(2,3)))

where the second argument specifies that all two-way faces must have the same
marginal totals. If Fr has a dimnames attribute with named components the
marginal faces may be specified using these names, so if we set

names (dimnames (Fr)) <- c("A", "B", "C")
we could specify the no three-factor-interaction model as
loglln(Fr, list(c("A"’"B")’ C("A","C"), C("B","C")))

Note that if the c(1,2) -faceis specified then all faces marginal to it—the first
and second dimensions and the entire array—al so have equal frequency and fitted
valuetotals. These redundant faces may al so be specified, although this may slow
down the algorithm dightly.

Thefunction 1loglm inthe MASS library isdesigned to makecallsto loglin
easier by alowing the fixed margins to be specified by an S formula and the
frequencies to be specified either as an array or as avector in, for example, adata
frame. In the latter case the frequency array will be constructed before calling

7.3 Poisson models 14

loglin. If the frequencies are specified as an array, the formula has an empty
left-hand side and the right-hand side specifies the fixed marginal totals. Thusthe
previous example could be handled by calling either

loglm(~ (1 + 2 + 3)°2, Fr)
or, if the dimnames are present,
loglm(~ (A + B + C)"2, Fr)

Note that the dimensions of the array may always be referred to by number using
the same convention as loglin, and that any multiplicative-liketerm connecting
thefaces, suchas 1:2, 1*2 oreven 1/2, smply implies‘the c(1,2) -face’. In
constructing the call to loglin, loglm finds and uses only the minimal set of
marginal totals which must agree, so it does not matter if (as here) the formula
specifies some redundant margins.

Let us consider the detergent brand preference study on page 238-242 of
Chapter 7, which is a four-way contingency table. We can fit the final model
specified asa GLM on page 240 using the same formulain acall to loglm.

> detg.1ll <- loglm(Fr ~ Brand*M.user*Temp + M.user*Temp*Soft,
data=detg)
> detg.11

Statistics:
X2 df P(> X"2)
Likelihood Ratio 5.6561 8 0.68570
Pearson 5.6500 8 0.68637

This call to loglm actually constructs the iterative proportional scaling fit via
loglin shown as detg.ips on page 241.

For another example, consider the Minnesota school leavers data of 1938.
The frequencies are held in the data frame minn38, but thisis easily converted
into a complete frequency array.

> sapply (minn38, function(x) length(levels(x)))
hs phs fol sex f

3 4 7 20

minn38a <- array(0, c(3,4,7,2), lapply(minn38[, -5], levels))
minn38aldata.matrix(minn38[, -5])] <- minn38$f

minn38.fm <- loglm(~ 1 + 2 + 3 + 4, minn38a)

minn38.fml <- update(minn38.fm, ~."2)

minn38.fm2 <- update(minn38.fm, ~.~3)

V V. V V V

This uses numeric labels for the variables (dimensions) and fits complete 1—, 2—
and 3—factor interaction models. Since this way of constructing the array aso
supplies names for the dimnames attribute, we could have specified the first
model as

minn38.fm <- loglm(~ hs + phs + fol + sex, minn38a)

7.3 Poisson models 15

and subsequent updates would have carried the names forward. The advantage
would have that later output will carry the informative names rather than the
numeric labels. The object resulting from acall to loglm carriesclass loglm,
for which methods for the generic functions summary, print, anova, coef,
deviance, fitted, residuals and update are provided.

The print method displays the object in a succinct way.

> minn38.fm

Statistics:

X"2 d4df P(> X~2)
Likelihood Ratio 3711.9 155 0
Pearson 4161.6 155 0

The default behaviour for the summary method is to give ailmost the same
output, but with the argument fitted=T this will also give tables of observed
and expected frequencies. For example

> summary(minn38.fm2, fitted=T)

Re-fitting to find fitted values

Formula:

~1+2+3+4+1:2+ 1:3+1:4+ 2:3+ 2:4+ 3:4 +
1:2:3 + 1:2:4 + 1:3:4 + 2:3:4

Statistics:
X"2 df P(> X°2)
Likelihood Ratio 47.745 36 0.091137
Pearson 47.184 36 0.100486

Observed (Expected):

, , F1, F

C E N 0
53 (49.5) 13 (16.6) 7 (7.6) 76 (75.4)
163 (163.6) 28 (25.8) 30 (29.1) 118 (120.5)
309 (311.9) 38 (36.6) 17 (17.3) 89 (87.2)

=2

, , F2, F

C E N 0
36 (31.5) 11 (13.9) 16 (13.2) 111 (115.4)
116 (112.8) 53 (47.8) 41 (42.6) 214 (220.8)
225 (232.7) 68 (70.3) 49 (50.2) 210 (198.8)

=2

The model will be re-fitted unless fit=T was specified on the original call to
loglim.

We can compare the models by likelihood-ratio tests using

> anova(minn38.fm, minn38.fml, minn38.fm2)
LR tests for hierarchical log-linear models

7.3 Poisson models 16

Model 1:

~ 1 +2+3+4
Model 2:

~ 1 +2+3+4+1:2+1:3+ 1:4+ 2:3+ 2:4+ 3:4
Model 3:

~ 1 +2+3+4+1:2+1:3+ 1:4+ 2:3+ 2:4+ 3:4

+ 1:2:3 + 1:2:4 + 1:3:4 + 2:3:4
Deviance df Delta(Dev) Delta(df) P(> Delta(Dev))
Model 1 3711.915 155

Model 2 220.043 108 3491.873 a7 0.00000
Model 3 47.745 36 172.298 72 0.00000
Saturated 0.000 0 47.745 36 0.09114

The tail areas refer to the approximate chi-squared distribution under the null
hypothesis. In this instance only the final model appears near reasonable as a
description of the data.

The function loglm is generic with method dispatch based on the second
argument (data) rather than the first. It has a method for objects of class
crosstabs which is the natural way of tabulating frequencies, particularly for
factorsheld in dataframes. For examplethe Cars93 data frame has information
on 93 models of car released in the USA in 1993. Two factors are Type and

Origin.

> attach(Cars93)

> levels(Type)

[1] "Compact" "Large" "Midsize" "Small" "Sporty" "Van"
> levels(Origin)

[1] "Import" "Local"

> detach()

We could check the (unlikely) hypothesis that the proportions of each type of
vehicle are the same for imported and locally manufactured cars using

> form <- ~ Type + Origin
> loglm(form, crosstabs(form, Cars93))

Statistics:
X"2 df P(> X°2)
Likelihood Ratio 18.362 5 0.0025255
Pearson 14.080 5 0.0151101

The Minnesota school |eavers example could be handled without explicitly
constructing the array of frequencies by the call

minn38.fm <- loglm(f ~ ., minn38, fit = T)

Note that argumentsto loglin may be specified onthecall to loglm. Theextra
argument, £it=T, is not needed here but if supplied will cause the fitted values
(and by default the frequencies aswell) to be saved asan array in the fitted model
object. Note that the customary abbreviation, ‘ ., may be used to specify ‘all

7.3 Poisson models 17

other factors in the data frame joined by +’. (Thisisnot possible if the data are
given as an array of frequencies.)

The Quine absenteeism data is an example of a four-way classification with
unegual numbers of observationsin each cell including some completely empty.
The maximum number of observationsin any onecell is11. In caseslikethisthe
frequencieswill be held asafive-way array with thelast dimension, conventionally
labelled .Within. , playing no part in the fitted models. Empty cellsin the five-
way array are handled as structural zeros. The result will be a fitted log-linear
model with correct deviance, but with residual degrees of freedom is sometimes
incorrect.

> quine.loglm <- loglm(Days ~ .~3, quine)
> quine.glm <- glm(Days ~ ."3, poisson, quine)
> c(loglm = deviance(quine.loglm), glm = deviance(quine.glm))
loglm glm
1181 1181
> c(loglm = quine.loglm$df, glm = quine.glm$df)
loglm glm
117 120

Notice that (unlike loglin) loglm does subtract one degree of freedom for
structural zeros, but is unable to detect the extra three degrees of freedom that
result from redundanciesin the model matrix.

How loglm works

Thefunction loglm must beableto convert numericlabelsinformulaetoaformin
which they can be parsed correctly. Thisoperation is done by arecursive function
caled denumerate which convertsanumericlabel 2, say, to theidentifier .v2.

> denumerate
function(object) UseMethod("denumerate")
> denumerate.formula

function(x)
{
if (length(x) == 1) {
if (mode(x) == "numeric" || (mode(x) == "name" &&
any(substring(x, 1, 1) == as.character(1:9))))
x <- as.name(paste(".v", x, sep = ""))
}
else {

x[[2]] <- Recall(x[[2]1)
if (length(x) == 3 && x[[1]] != as.name("""))
x[[3]] <- Recall(x[[3]])

7.5 Gamma models 18

Itisnot intended to be called directly by theuser, but if itis, unlessthe object given
to it isaformulait will issue a (somewhat cryptic) error message. This is one
intended side-effect of making the function generic. The function renumerate

issimilar and converts the encoded identifiersto numeric labels. These functions
provide examples of how operations on the language itself are possible and not
particularly difficult.

7.5 Gamma models

The role of dispersion parameter ¢ in the theory and practice of GLMs is often
confusing (and not just in notation as pointed out on page 226). For a Gaussian
family with identity link the moment estimator used for ¢ isthe usually unbiased
modification of the maximum likelihood estimator (see equations (7.6) and (7.7)).
For binomial and Poisson familieswe usually take ¢ = 1, and when we allow ¢
to vary it isalmost always as an ad hoc adjustment for over-dispersion which does
not correspond precisely to any family of error distributions. (Of course, for the
Poisson family the negative binomial family introduced in Section 7.4 provides a
parametric alternative way of modelling over-dispersion.)

The situation for the Gamma family is rather different. Thisis a parametric
family which can be fitted by maximum likelihood, including its shape parameter
« . Elsewhere we have taken its density as

log f(y) = alog A + (o — 1) logy — Ay — log I'(«)
sothemeanis p = /. If were-parametrizeby (u,) we obtain

log f(y) = a(~y/p —logpn) + alogy + aloga —logy — log I'()

Comparing this with the general form in equation (7.1) (on page 223) we see
that the canonical link is @ = 1/ and ¢ = 1/« isthe dispersion parameter.
For fixed ¢, fitting by glm gives the maximum likelihood estimates of the
parameters in the linear predictor, but ¢ is estimated from the sum of squares
of the deviance residuals, which need not be similar to the maximum likelihood
estimator. Notethat ¢ isused to estimate the standard errorsfor the parametersin
the linear predictor, so appreciable differencesin the estimate can have practical
significance.

Some authors (notably McCullagh & Nelder (1989, pp. 295-6)) have argued
against the maximum likelihood estimator of . The MLE isthe solution to

2n [loga —¢Y(a)] = D

where ¢ = I""/I" isthe digammafunctionand D istheresidual deviance. Then
thecustomary estimator of » = 1/« is D/(n—p) andthe MLE isapproximately*

L for large &

7.5 Gamma models 19

D(6+ D)/(6 +2D) where D = D/n. Both the customary estimator (7.7) and
the MLE are based on the residual deviance

D= —22 log(yi /i) — (yi — fu)/ fui]

and thisis very sensitive to small values of y;. Another argument is that if the
gammaGLM isbeing used asamodel for distributionswith a constant coefficient
of variation, the MLE is inconsistent for the true coefficient of variation except
at the gamma family. These arguments are equally compelling for the customary
estimate; McCullagh & Nelder prefer the moment estimator

0° = A5 > (i —) /]’ (7.12)

for the coefficient of variation o2 which equals ¢ under the gammamodel. This
coincideswith ¢ asquoted by summary.glm (see(7.11) on page 12).

The functions glm.shape and glm.dispersion in library MASS compute
theMLEsof o and ¢ respectively fromafitted Gamma glm object. Weillustrate
these with an example on clotting times of blood taken from McCullagh & Nelder
(1989, pp. 300-2).

> clotting <- data.frame(
u = c¢(5,10,15,20,30,40,60,80,100),
lotl = c¢(118,58,42,35,27,25,21,19,18),
lot2 = ¢(69,35,26,21,18,16,13,12,12))
> clotl <- glm(lotl ~ log(u), data=clotting, family=Gamma)
> summary(clotl, cor=F)
Coefficients:

Value Std. Error t value
(Intercept) -0.016554 0.00092754 -17.848
log(u) 0.015343 0.00041496 36.975

(Dispersion Parameter for Gamma family taken to be 0.00245)

> cloti$deviance/clot1$df .residual
[1] 0.00239

> gamma.dispersion(clotl)

[1] 0.0018583

> clot2 <- glm(lot2 ~ log(u), data=clotting, family=Gamma)
> summary(clot2, cor=F)
Coefficients:
Value Std. Error t value
(Intercept) -0.023908 0.00132645 -18.024
log(u) 0.023599 0.00057678 40.915

(Dispersion Parameter for Gamma family taken to be 0.00181)

> clot2$deviance/clot2$df .residual

7.5 Gamma models 20

[1] 0.0018103
> gamma.dispersion(clot2)
[1] 0.0014076

The differences here are enough to affect the standard errors, but the shape pa-
rameter of the gamma distribution is so large that we have effectively a normal
distribution with constant coefficient of variation.

These functions may also be used for a quasi family with variance propor-
tional to mean squared. We illustrate this on the quine dataset.

> gm <- glm(Days + 0.1 ~ Age*Eth*Sex*Lrn,
quasi(link=log, variance=mu~2), data=quine)
> summary(gm, cor=F)
Coefficients: (4 not defined because of singularities)
Value Std. Error t value
Value Std. Error t value
(Intercept) 3.06105 0.39152 7.818410
AgeF1 -0.61870 0.52528 -1.177863
AgeF2 -2.31911 0.87546 -2.649018
AgeF3 -0.37623 0.47055 -0.799564

(Dispersion Parameter for Quasi-likelihood family taken
to be 0.61315)

Null Deviance: 190.4 on 145 degrees of freedom
Residual Deviance: 128.36 on 118 degrees of freedom

> gamma.shape(gm, verbose=T)
Initial estimate: 1.0603

Iter. 1 Alpha: 1.23840774338543
Iter. 2 Alpha: 1.27699745778205
Iter. 3 Alpha: 1.27834332265501
Iter. 4 Alpha: 1.27834485787226

Alpha: 1.27834
SE: 0.13452
> summary(gm, dispersion = gamma.dispersion(gm), cor=F)
Coefficients: (4 not defined because of singularities)
Value Std. Error t value
(Intercept) 3.06105 .44223 6.921890
AgeF1 -0.61870 .59331 -1.042800
AgeF2 -2.31911 .98885 -2.345261
AgeF3 -0.37623 .563149 -0.707880

O O O O

In this example the McCullagh—-Nelder preferred estimate is given by

> sum((residuals(gm, type="resp")/fitted(gm)) 2/gm$df.residual)
[1] 0.61347

7.5 Gamma models 21

which isthe same as the estimate returned by summary.glm, whereas (7.7) gives

> gm$deviance/gm$df .residual
[1] 1.0878

> gamma.dispersion(gm)

[1] 0.78226

There will also be differences between deviance tests and the AIC used by
step.glm and likelihood-ratio tests and the exact AIC. Making the necessary
modificationsis|eft as an exercise for the reader.

22

Chapter 9

Non-linear Models

9.4 Confidence intervals for parameters

Bootstrapping

In this example the empirical percentile intervals appear biased, especially that
for c¢. Running a different smulation gives

> storm.boot <- bootstrap(rs, storm.bf, seed=101, B=1000)
> summary(storm.boot)

Summary Statistics:

Observed Bias Mean SE
b 28.72 0.6821 29.398 0.8304
c 2.48 -0.2506 2.229 0.6090

Empirical Percentiles:

2.5% 5% 95% 97.5%
b 27.6406 27.989 30.734 30.91
c 0.9906 1.238 3.224 3.43

BCa Percentiles:

2.5% 5% 95% 97.5%
b 26.616 26.661 29.433 29.681
c 1.532 1.724 3.618 3.958

Correlation of Replicates:
b c

b 1.0000 -0.9193

c -0.9193 1.0000

Note that there will be warnings that indicate that the use of jackknifing in this
problem isunreliable, so the BCaintervals are not to be trusted.

A ‘jackknife after bootstrap’ analysis confirms that the bootstrap estimates of
the biasin the least-squares estimates is indicative but not statistically significant.

9.4 Confidence intervals for parameters 23

> jack.after.bootstrap(storm.boot, "Bias")

Functional of Bootstrap Distribution of Parameters:
Func SE.Func

b 0.6821 0.5084

c -0.2506 0.2168

Observations with Large Influence on Functional:
$b:

b
6 -2.371

An aternative approach using thelibrary boot of Davison & Hinkley (1997)
isgivenin Section 5.6 of these Complements.

24

Chapter 10

Random and Mixed Effects

The account in the text used verson 2.1 of the nlme software contained in
S-PLUS 3.4, 4.0, 4.5 and 5.0. A near-final release of version 3.0 (written by
Pinheiro and Bates) is now available from

http://nlme.stat.wisc.edu

for both Unix and Windows versions of S-PLUS 3.x and 4.x, and it is planned that
thiswill beincorporated into forthcoming releases of S-PLUS. In this chapter we
discuss the changes need to make our examples work with version 3.0, and aso
explore some anayses which were not straightforward in earlier versions.

The main innovation in nlme version 3.0 is support of multilevel random
effects, however much of the system has been rewritten and the user interface
re-designed. The new system needs to override the old one, so use

library(nlme3, first=T) # or whatever name is used locally

if the library has been downloaded and added.

10.3 Linear mixed effects models

The main change is how the ‘clusters are specified, which now has to alow
multilevel random effects and is usually done by conditioning the formulain the
random argument in avery similar way to Trellis formul ae.

The method of estimation (REML or maximum likelihood) is specified by the
argument method rather than est.method.

Making these changes to the gasoline data petrol example gives

> Petrol <- petrol
> Petrol[, 2:5] <- scale(as.matrix(Petrol[, 2:5]), scale = F)
> pet3.lme <- lme(Y ~ SG + VP + V10 + EP,
random = ~ 1 | No, data = Petrol)

> summary(pet3.1lme)
Linear mixed-effects model fit by REML
Data: Petrol

AIC BIC 1logLik

http://nlme.stat.wisc.edu

10.3 Linear mixed effects models

166.38 175.45 -76.191

Random effects:

Formula: ~ 1 | No
(Intercept) Resi
StdDev: 1.4447 1.

Fixed effects: Y ~ SG +

Value Std.

(Intercept) 19.707 O
SG 0.219 O

VP 0.546 O

Vio -0.154 O

EP 0.157 O

dual
8722

VP + V10 + EP

Error DF t-value p-value
.56827 21 34.679 <.0001
.14694 6 1.493 0.1860
.52052 6 1.049 0.3347
.03996 6 -3.860 0.0084
.00659 21 28.128 <.0001

25

Note a change in value of BIC (which is no longer qualified as ‘restricted’) and

the changes in the printed output f

> pet3.1lme <- update(pet
> summary(pet3.1lme)

Linear mixed-effects model fit by maximum likelihood

Data: Petrol
AIC BIC 1logLik
149.38 159.64 -67.692

Random effects:

Formula: ~ 1 | No
(Intercept) Resi
StdDev: 0.92889 1.

Fixed effects: Y ~ SG +

Value Std.

(Intercept) 19.694 O
SG 0.221 0

VP 0.549 O

Vio -0.153 O

EP 0.156 O

> pet4.lme <- update(pet3.lme, fixed = Y ~ V10 + EP)

> anova(pet4.lme, pet3.1
Model df AIC
pet4.1lme 1 5 149.61

or the fixed effects.

3.1lme, method = "ML")

dual
8273

VP + V10 + EP
Error DF t-value p-value

.47815 21 41.188 <.0001
.12282 6 1.802 0.1216
.44076 6 1.246 0.2590
.03417 6 -4.469 0.0042
.00687 21 26.620 <.0001

me)

BIC 1logLik Test Lik.Ratio

156.94 -69.806

pet3.1lme 2 7 149.38 159.64 -67.692 1 vs. 2

p-value
peté4.1lme
pet3.1lme 0.1207
> coef (pet4.lme)
(Intercept) V10
A 21.054 -0.21081 0O

EP
.15759

10.3 Linear mixed effects models 26

> petb.lme <- update(petd.lme, random = ~ 1 + EP | No)
> anova(pet4.lme, pet5.lme)
Model df AIC BIC 1logLik Test Lik.Ratio

peté4.1lme 1 5 149.61 156.94 -69.806

pet5.1lme 2 7 153.61 163.87 -69.805 1 vs. 2 0.0025194
p-value

peté4.1lme

pet5.1lme 0.9987

It is possible to handle the oats example as in the text, but this is most
naturally handled by making use of multilevel random effects.

> options(contrasts = c("contr.treatment", "contr.poly"))
> oats.lme <- 1lme(Y ~ N + V, random = ~1 | B/V, data=oats)
> summary(oats.lme)
Data: oats
AIC BIC 1logLik
586.07 605.78 -284.03

Random effects:

Formula: ~ 1 | B
(Intercept)

StdDev: 14.645

Formula: ~ 1 | V %in% B
(Intercept) Residual

StdDev: 10.473 12.75

Fixed effects: Y ~ N + V
Value Std.Error DF t-value p-value

(Intercept) 79.917 8.2203 b1 9.722 <.0001
NO.2cwt 19.500 4.2500 51 4.588 <.0001
NO.4cwt 34.833 4.2500 51 8.196 <.0001
NO.6cwt 44.000 4.2500 51 10.353 <.0001

VMarvellous 5.292 7.0789 10 0.748 0.4720

VVictory -6.875 7.0789 10 -0.971 0.3544

Number of Observations: 72
Number of Groups:

B V %in% B

6 18

Notice that we specify multilevel random effects as a nested model in exactly the
sameway asa Error termina aov model.

The approach via specifying a covariance structure still works: two equivalent
specifications are given by

oats$sp <- model.matrix(~ V - 1, oats)
oatsl.lme <- lme(Y ~ N + V, oats,

10.3 Linear mixed effects models 27

random = list(B = pdBlocked(list(~1, pdIdent(~sp-1)))))
summary (oatsl.1lme)
oats2.lme <- Ime(Y ~ N + V,
random = reStruct(~V - 1 | B, "pdCompSymm"),
data = oats)
summary (oats2.1lme)

It should be clear that these are less than obvious, and we are grateful to Dr
Pinheiro for elucidating the precise forms needed.

The multilevel approach allows usto handle easily the cooperative trial by

lme(Conc ~ 1, random = ~1 | Lab/Bat, data = coop,
subset = Spc=="S1")
Linear mixed-effects model fit by REML
Data: coop
Subset: Spc == "S1"
Log-restricted-likelihood: 21.022
Fixed: Conc ~ 1
(Intercept)
0.50806

Random effects:

Formula: ~ 1 | Lab
(Intercept)

StdDev: 0.24529

Formula: ~ 1 | Bat %in}% Lab
(Intercept) Residual

StdDev: 0.073267 0.079355

Number of Observations: 36
Number of Groups:
Lab Bat %in% Lab

6 18

which agrees with the raov analyss.

Sitka spruce example

There is a problem with the analysis of this example in the text: we misunder-
stood the meaning of the correlation model fitted which was in fact in units of
the meaurement number, not days. We first consider an analysis without serial
correlation.

> sitka.lme <- lme(size ~ treat*ordered(Time),
random = ~1 | tree, data = Sitka)
> summary(sitka.lme)
Linear mixed-effects model fit by REML
Data: Sitka
AIC BIC logLik

10.3 Linear mixed effects models 28

79.901 127.34 -27.95

Random effects:

Formula: ~ 1 | tree
(Intercept) Residual
StdDev: 0.61011 0.16105

Fixed effects: size ~ treat * ordered(Time)
Value Std.Error DF t-value p-value

(Intercept) 4.9851 0.12287 308 40.572 <.0001
treat -0.2112 0.14861 77 -1.421 0.1594
ordered(Time).L 1.1971 0.03221 308 37.166 <.0001
ordered(Time).Q -0.1341 0.03221 308 -4.162 <.0001
ordered(Time).C -0.0409 0.03221 308 -1.268 0.2056
ordered(Time) ~ 4 -0.0273 0.03221 308 -0.848 0.3974
treatordered(Time) .L -0.1786 0.03896 308 -4.583 <.0001
treatordered(Time).Q -0.0264 0.03896 308 -0.679 0.4977
treatordered(Time) .C -0.0142 0.03896 308 -0.366 0.7148
treatordered(Time) ~ 4 0.0124 0.03896 308 0.318 0.7504
> attach(Sitka)
> Sitka$treatslope <- Time * (treat=="ozone")
> detach()
> sitka.lme2 <- update(sitka.lme,

fixed = size ~ ordered(Time) + treat + treatslope)
> summary(sitka.lme2)
Linear mixed-effects model fit by REML
Data: Sitka
AIC BIC 1logLik
69.269 104.92 -25.635

Random effects:

Formula: ~ 1 | tree
(Intercept) Residual
StdDev: 0.61015 0.1604

Fixed effects: size ~ ordered(Time) + treat + treatslope
Value Std.Error DF t-value p-value

(Intercept) 4.9851 0.12287 311 40.572 <.0001
ordered(Time).L 1.1976 0.03204 311 37.372 <.0001
ordered(Time).Q -0.1455 0.01810 311 -8.037 <.0001
ordered(Time).C -0.0506 0.01805 311 -2.804 0.0054

ordered(Time) ~ 4 -0.0167 0.01805 311 -0.926 0.3549
treat 0.2217 0.17561 77 1.262 0.2107
treatslope -0.0021 0.00046 311 -4.626 <.0001

Note that although the model is different, the conclusions are very similar.

Predictions and fitted values are specified somewhat differently in the later
version of 1me. The random effects are now specified by level, with the popul a-

10.3 Linear mixed effects models 29

tion’ valuesat level 0 and the BLUPs used up to thelevel specified (which defaults
to the innermost level). Thus we can examine the fitted mean values by

> fitted(sitka.lme2, level = 0)[1:5]
1 1 1 1 1
4.0606 4.4709 4.8427 5.1789 5.3167
> fitted(sitka.lme2, level = 0) [301:305]
61 61 61 61 61
4.164 4.6213 5.0509 5.4427 5.6467

The names tell us that these correspond to trees 1 and 61, but at level 0 are the
same for al the treesin atreatment group.

We can specify a correlation structure by

lme(size ~ treat*ordered(Time), random = ~1 | tree,
data = Sitka, corr = corCAR1(, ~Time | tree))

but this will not converge properly (the reported correlation coefficient is 0.2,
the default starting value). If we give it abetter initial value it does converge:

> sitka.lme <-
lme(size ~ treat*ordered(Time), random = ~1 | tree,
data = Sitka, corr = corCAR1(0.9, ~Time | tree))
> summary(sitka.lme)
Correlation Structure: Continuous AR(1)
Parameter estimate(s):
Phi
0.9989
Fixed effects: size ~ treat * ordered(Time)
Value Std.Error DF t-value p-value

(Intercept) 4.9851 0.12636 308 39.452 <.0001

treat -0.2112 0.15284 77 -1.382 0.1711

ordered(Time).L 1.1971 0.04907 308 24.396 <.0001
ordered(Time) .Q -0.1341 0.02642 308 -5.073 <.0001
ordered(Time).C -0.0409 0.01979 308 -2.065 0.0398
ordered(Time) ~ 4 -0.0273 0.01673 308 -1.632 0.1037
treatordered(Time) .L -0.1786 0.05935 308 -3.009 0.0028
treatordered(Time).Q -0.0264 0.03196 308 -0.827 0.4086
treatordered(Time) .C -0.0142 0.02394 308 -0.595 0.5521
treatordered(Time) ~ 4 0.0124 0.02023 308 0.613 0.5403

Note that the specification of the correlation structures has atered: see the help
on corClasses for the current form.

The specification of asystematic component to the variances'has also altered,
now using the weights argument; see the help on varClasses.

I mentioned on pages 310 and 312 but not used in our examples

10.4 Non-linear mixed effects models 30
10.4 Non-linear mixed effects models

The changes needed to use nlme are Similar to those for 1lme: specify the
‘clusters’ by conditioning the random effectsformulae, use 1 rather than . isthe
formulae, and the method is specified by method, still defaulting to maximum
likelihood.

For the sitka datawefirst fit without a correlation structure.

> options(contrasts = c("contr.treatment", "contr.poly"))
> sitka.nlme <- nlme(size ~ A + B * (1 - exp(-(Time-100)/C)),
fixed = 1list(A ~ treat, B ~ treat, C ~ 1),
random = A + B~ 1 | tree, data = Sitka,
start = list(fixed = c(2, 0, 4, 0, 100)),
method = "ML", verbose = T)
> summary(sitka.nlme)
Nonlinear mixed-effects model fit by maximum likelihood
Model: size ~ A + B * (1 - exp(- (Time - 100)/C))
Data: Sitka
AIC BIC logLik
-96.275 -60.465 57.138

Random effects:

Formula: list(A ~ 1, B ~ 1)

Level: tree

Structure: General positive-definite
StdDev Corr

A. (Intercept) 0.83561 A.(Int

B. (Intercept) 0.81954 -0.69

Residual 0.10297

Fixed effects: list(A ~ treat, B ~ treat, C ~ 1)
Value Std.Error DF t-value p-value
A.(Intercept) 2.304 0.1995 312 11.547 <.0001

A.treat 0.175 0.2117 312 0.826 0.4096

B. (Intercept) 3.921 0.1808 312 21.687 <.0001
B.treat -0.564 0.2156 312 -2.618 0.0093

C 81.769 4.7270 312 17.299 <.0001

> sitka.nlme2 <- update(sitka.nlme,
fixed = list(A~ 1, B~ 1, C~ 1),
start = list(fixed=c(2.3, 3.9, 79)))
> summary(sitka.nlme2)
Nonlinear mixed-effects model fit by maximum likelihood
Model: size ~ A + B * (1 - exp(- (Time - 100)/C))
Data: Sitka
AIC BIC logLik
-91.588 -63.736 52.794

10.4 Non-linear mixed effects models 31

Fixed effects: list(A~ 1, B~ 1, C ~ 1)
Value Std.Error DF t-value p-value
A 2.421 0.1312 314 18.462 <.0001
B 3.536 0.1079 314 32.775 <.0001
C 81.658 4.6906 314 17.409 <.0001

> anova(sitka.nlme2, sitka.nlme)

Model df AIC BIC logLik Test Lik.Ratio
sitka.nlme?2 1 7 -91.588 -63.736 52.794
sitka.nlme 2 9 -96.275 -60.465 57.138 1 vs. 2 8.6869
p-value

sitka.nlme?2
sitka.nlme 0.013

We can now allow a correlation, and do get sensible results:

> sitka.nlme3 <- update(sitka.nlme,
corr = corCAR1(0.9, ~Time | tree))

> summary(sitka.nlme3)
Nonlinear mixed-effects model fit by maximum likelihood

Model: size ~ A + B * (1 - exp(- (Time - 100)/C))
Data: Sitka

AIC BIC logLik
-104.5 -64.715 62.252

Random effects:

Formula: list(A ~ 1, B ~ 1)

Level: tree

Structure: General positive-definite
StdDev Corr

A. (Intercept) 0.81602 A. (Int

B. (Intercept) 0.76069 -0.674

Residual 0.13068

Correlation Structure: Continuous AR(1)
Parameter estimate(s):
Phi
0.96751
Fixed effects: list(A ~ treat, B ~ treat, C ~ 1)
Value Std.Error DF t-value p-value
A. (Intercept) 2.313 0.2052 312 11.271 <.0001

A.treat 0.171 0.2144 312 0.796 0.4267

B. (Intercept) 3.892 0.1813 312 21.466 <.0001
B.treat -0.564 0.2162 312 -2.607 0.0096

C 80.901 5.2920 312 15.288 <.0001

This does correspond to acorrelation of 0.9675126-° ~ 0.4 at the average spacing
between observations.

10.4 Non-linear mixed effects models

Blood pressure in rabbits

32

There have been considerable changesin self-starting nls modelswhich are also
incorporated inthe nlme library. We make use of the supplied self-starting model

SSfpl.

> R.nlsList <- nlsList(

BPchange ~ SSfpl(log(Dose), A, B, 1d50, scal) | Run,

d

> M1
> M1

C1
Cc2
Cc3
c4
C5
M1
M2
M3
M4
M5

> fixed.effects(R.nlsList)
scal

e

ata

A

.8095
.4840
.5994
.4077
.4146
.1295
.3676

NA

.9063

NA

A

Rabbit)
<- coef(R.nlsList)

34.
29.
23.
34.
19.

41

28.

24.

B
787
683
759
198
023
.817
612

NA
148
NA

B

A W Ww W W

4.

1450

.5610
.0382
.85681
.8426
.5374
.4688
.6049

NA
7032
NA

1450
1.5148 29.504 4.0768 0.28136

O OO O O O O

scal

.30918
.27792
.26935
.305602
.22890
.41052
.18381

NA

.26616

NA

Thisis essentialy as before, but the rolesof A and B are reversed. The rest of
the preliminary analysis is unchanged.

> R.nls <- nls(BPchange ~ A[Run] + (B - A[Runl)/

(1 + exp((log(Dose) - 1d50[Run])/scal)), data = Rabbit,

list(A=rep(29.5, 10), B=1.5, 1d50=rep(4.1, 10),
scal=0.28))

start

> b <- as.vector(coef(R.nls))

> M2 <- cbind(b[1:10], b[11], b[12:21], b[22])

> dimnames (M2) <- dimnames(M1)
> M2

C1
Cc2
Cc3
c4
C5
M1
M2
M3
M4
M5

Using thisas aninitial object for nlme fails, asthefitting process fails.
We can fit nlme modelsto the separate treatment groups by

34.
29.
23.
33.
19.
37.
30.
27.
24.
21.

A
351
646
804
876
335
592
682
672
276
402

e e e T R =

B

.6515
.6515
.6515
.6515
.6515
.6515
.6515
.6515
.6515
.6515

AR R R DWW W W

1450

.5481
.0417
.8613
.8468
.5630
.3883
.6632
.2249
.6994
. 7547

O OO O OO O O oo

scal

.27383
.27383
.27383
.27383
.27383
.27383
.27383
.27383
.27383
.27383

10.4 Non-linear mixed effects models 33

Fpl <- deriv(~ A + (B-A)/(1 + exp((log(d) - 1d50)/th)),

c("A","B","1d450","th"), function(d, A, B, 1450, th) {})
cl <- fixed.effects(R.nlsList); c1[2:1] <- c1[1:2]
Rc.nlme <- nlme(BPchange ~ Fpl(Dose, A, B, 1d50, th),

fixed = list(A ~ 1, B~ 1, 1d50 ~ 1, th ~ 1),

random = A + 1d50 ~ 1 | Animal, data = Rabbit,

subset = Treatment=="Control",

start = list(fixed=c1))
Rm.nlme <- update(Rc.nlme, subset = Treatment=="MDL")

> Rc.nlme
Nonlinear mixed-effects model fit by maximum likelihood
Model: BPchange ~ Fpl(Dose, A, B, 1d50, th)
Data: Rabbit
Subset: Treatment == "Control"
Log-likelihood: -66.502
Fixed: 1list(A ~ 1, B~ 1, 1d50 ~ 1, th ~ 1)
A B 1450 th
28.332 1.5134 3.7744 0.28957

Random effects:
Formula: list(A ~ 1, 1d50 ~ 1)
Level: Animal
Structure: General positive-definite
StdDev Corr
A 5.76889 A
1d50 0.17953 0.112
Residual 1.36735

> Rm.nlme
Nonlinear mixed-effects model fit by maximum likelihood
Model: BPchange ~ Fpl(Dose, A, B, 1d50, th)
Data: Rabbit
Subset: Treatment == "MDL"
Log-likelihood: -65.422
Fixed: 1list(A ~ 1, B~ 1, 1d50 ~ 1, th ~ 1)
A B 1450 th
27.521 1.7839 4.5257 0.24236

Random effects:
Formula: list(A ~ 1, 1d50 ~ 1)
Level: Animal
Structure: General positive-definite
StdDev Corr
A 5.36549 A
1d50 0.18999 -0.594
Residual 1.44172

We can now combine the groups. As we have a means to handle multilevel
random effects, we will make use of them.

10.4 Non-linear mixed effects models 34

> options(contrasts=c("contr.treatment", "contr.poly"))
> cl <- c(28, 1.6, 4.1, 0.27, 0)
> R.nlmel <- nlme(BPchange ~ Fpl(Dose, A, B, 1d50, th),
> fixed = 1list(A ~ Treatment, B ~ Treatment,
1d50 ~ Treatment, th ~ Treatment),
random = A + 1d50 ~ 1 | Animal/Run, data = Rabbit,
start = list(fixed=c1[c(1,5,2,5,3,5,4,5)]1))
> summary(R.nlmel)
Nonlinear mixed-effects model fit by maximum likelihood
Model: BPchange ~ Fpl(Dose, A, B, 1450, th)
Data: Rabbit
AIC BIC 1logLik
292.63 324.04 -131.31

Random effects:
Formula: list(A ~ 1, 1d50 ~ 1)
Level: Animal
Structure: General positive-definite
StdDev Corr
A. (Intercept) 4.6063 A.(Int
1d50. (Intercept) 0.0626 -0.166

Formula: list(A ~ 1, 1d50 ~ 1)
Level: Run %in% Animal
Structure: General positive-definite
StdDev Corr
A. (Intercept) 3.2489 A.(Int
1d50. (Intercept) 0.1707 -0.348
Residual 1.4113

Fixed effects: list(A ~ Treatment, B ~ Treatment,
1d50 ~ Treatment, th ~ Treatment)
Value Std.Error DF t-value p-value

A. (Intercept) 28.326 2.7802 43 10.188 <.0001
A.Treatment -0.727 2.5184 43 -0.288 0.7744

B. (Intercept) 1.525 0.5155 43 2.958 0.0050
B.Treatment 0.261 0.6460 43 0.405 0.6877
1d50. (Intercept) 3.778 0.0955 43 39.579 <.0001
1d50.Treatment 0.747 0.1286 43 5.809 <.0001
th. (Intercept) 0.290 0.0323 43 8.957 <.0001
th.Treatment -0.047 0.0459 43 -1.020 0.3135

> R.nlme2 <- update(R.nlmel,
fixed = list(A ~ 1, B ~ 1, 1d50 ~ Treatment, th ~ 1),
start = list(fixed=c1[c(1:3,5,4)]))
> anova(R.nlme2, R.nlmel)
Model df AIC BIC 1logLik Test Lik.Ratio
R.nlme2 1 12 287.29 312.43 -131.65
R.nlmel 2 15 292.63 324.04 -131.31 1 vs. 2 0.66905

> summary(R.nlme2)

10.5 Using 1me with autocorrelated data 35

Random effects:
Formula: list(A ~ 1, 1d50 ~ 1)
Level: Animal
Structure: General positive-definite
StdDev Corr
A 4.668022 A
1d50. (Intercept) 0.072652 -0.116

Formula: list(A ~ 1, 1d50 ~ 1)
Level: Run %in% Animal
Structure: General positive-definite
StdDev Corr
A 3.15072 A
1d50. (Intercept) 0.17128 -0.376
Residual 1.42791

Fixed effects: list(A ~ 1, B ~ 1, 1d50 ~ Treatment, th ~ 1)
Value Std.Error DF t-value p-value
A 28.170 2.4909 46 11.309 <.0001

B 1.667 0.3069 46 5.433 <.0001

1d50. (Intercept) 3.779 0.0921 46 41.036 <.0001
1d50.Treatment 0.759 0.1217 46 6.233 <.0001
th 0.271 0.0226 46 11.964 <.0001

The results differ in detail, but the conclusions are the same. Finally, we can plot
by

xyplot (BPchange ~ log(Dose) | Animal * Treatment, Rabbit,
xlab = "log(Dose) of Phenylbiguanide",
ylab = "Change in blood pressure (mm Hg)",
subscripts = T, aspect = "xy", panel =
function(x, y, subscripts) {
panel.grid()
panel.xyplot(x, y)
sp <- spline(x, fitted(R.nlme2) [subscripts])
panel.xyplot(spx, spy, type="1")
b

10.5 Using 1me with autocorrelated data

We also used 1me in Section 15.6 to fit regressions with autocorrelated data. This
ismost easily done by the new function gls inthe nlme library.

> beav2.gls <- gls(temp ~ activ, data = beav2,
corr = corAR1(), method = "ML")
> summary(beav2.gls)

Correlation Structure: AR(1)

10.5 Using lme with autocorrelated data

Parameter estimate(s):

Phi
0.87318
Coefficients:
Value Std.Error t-value p-value
(Intercept) 37.19 0.11 328.75 0
activ 0.61 0.11 5.65 0

> summary(update(beav2.gls, subset=6:100))

Correlation Structure: AR(1)
Parameter estimate(s):
Phi
0.83803
Fixed effects: temp ~ activ
Value Std.Error DF t-value p-value
(Intercept) 37.25 0.1 93 386.68 0
activ 0.60 0.1 93 6.07 0

Here REML isthe default method, asfor 1me.

36

37

Chapter 11

Modern Regression

11.1 Additive models and scatterplot smoothers

Scatterplot smoothing

Simonoff (1996) providesan excellent overview of methodsfor smoothing whereas
Bowman & Azzalini (1997) concentrate on providing an introduction to the kernel
approach, with an easy-to-use S-PLUS library sm?. They concentrate on using a
local linear smoother implemented in their function sm.regression, which can
produce smooth functions of one or two covariates.

The methods expounded by Wand & Jones (1995) are implemented in Wand's
library KernSmooth?. We can apply their local polynomial smoother to the
simulated motorcycle example by

library(KernSmooth) # ksmooth on Windows

attach(mcycle)

plot(times, accel)

lines(locpoly(times, accel, bandwidth=dpill(times,accel)))

lines(locpoly(times, accel, bandwidth=dpill(times,accel),
degree=2), 1lty=3)

detach()

This appliesfirst a local linear and then alocal quadratic fit. The bandwidth is
chosen by the method of Ruppert et al. (1995).

The package locfit (Loader, 1997) also uses loca polynomial fitting, of
one or more covariates. The documentation with the package is sparse: the Web
stehttp://cm.bell-labs.com/stat/project/locfit hasthesources® and
anumber of on-line documents, including some analyses of the mcycle dataset.
A smpleanalysisis

library(locfit, first=T)
fit <- locfit(accel ~ times, alpha = 0.3, data=mcycle)
plot(fit, se.fit=T, get.data=T)

I availablefromhttp: //www.stats.gla.ac.uk/~adrian/smand
http://www.stat.unipd.it/dip/homes/azzalini/SW/Splus/sm

2 ksmooth on Windows. The current Unix sourcesare at
http://www.biostat.harvard.edu/~mwand

3 for Unix; our port to Windows is later and more complete than that there.

http://cm.bell-labs.com/stat/project/locfit
http://www.stats.gla.ac.uk/~adrian/sm
http://www.stat.unipd.it/dip/homes/azzalini/SW/Splus/sm
http://www.biostat.harvard.edu/~mwand

11.1 Additive models and scatterplot smoothers 38

50
50 100

accel
0

-50
accel

-100
-100

50

accel
-50

-100

10 20 30 40 50

times

Figure 11.11: Smooths by local polynomial fits of the mcycle data. The bottom is by
locpoly, with alocal linear (solid line) and local quadratic (dashed line) model. The
top row are by locfit with an assumed constant variance (left) and estimated variance
(right). The dashed lines are + a standard error.

wherethevalueof o waschosen by trial-and-error. We could use local AIC to set
the bandwidth, but as Figure 11.1 or 11.11 show, an assumption of constant noise
variance is not tenable. So we need a smooth estimate of the noise variance. A
simpleideaisto under-smooth dightly, fit asmooth curveto the squared residuals
and use thisfor a variance estimate. However, this proves to be far too low at the
beginning, so we increase it somewhat to avoid choosing the bandwidth to fit the
first few observations.

fit2 <- locfit(accel ~ times, ev="data", alpha=0.2, data=mcycle)

y <- resid(fit2)

fit3 <- locfit(log(y~2) ~ times, deg=1, alpha=1, ev="data",

data=mcycle)

va <- pmax(exp(fitted(£fit3)), 20)

fit <- locfit(accel ~ times, alpha=c(0,0,2), weights=1/va,
ev="grid", mg=200, data=mcycle)

plot(fit, se.fit=T, get.data=T)

Thedegree of smoothnesschosenisrather sensitiveto the precisevariance estimate
used.
Fitting additive models

Other waysto fit additive modelsin S-PLUS are available from the contributions
of users. These are generally more ambitious than gam and step.gam in their

11.1 Additive models and scatterplot smoothers 39

choice of termsand the degree of smoothness of each term, and by relying heavily
on compiled code can be very substantially faster. All of these methods can fit to
multiple responses (by using the total sum of squares as thefit criterion).

Library mda of Hastie and Tibshirani provides functions bruto and mars.
The method BRUTO is described in Hastie & Tibshirani (1990); it fits additive
models with smooth functions selected by smoothing splines and will choose
between a smooth function, a linear term or omitting the variable atogether.
The function mars implements the MARS method of Friedman (1991) briefly
mentioned on page 341 of the book. By default thisis an additive method, fitting
splines of order 1 (piecewise linear functions) to each variable; again the number
of pieces is selected by the program so that variables can be entered linearly,
non-linearly or not at all.

Thelibrary polymars of Kooperberg and O’ Connor implements a restricted
form of MARS (for example, alowing only pairwise interactions) suggested by
Kooperberg et al. (1997).

An example: the cpus data

As a running example for various types of non-linear regression we consider
the data frame cpus (Ein-Dor & Feldmesser, 1987) which contains computer
performance data on mainframe cpus described on page 419 of the book. We
randomly select 100 examples for fitting the models and test the performance on
theremaining 109 examples. (Thisisrelated to but not identical to the experiments
in Ripley, 1994a.) We use alinear model as a benchmark.

set.seed(123)
cpusO <- cpus[, 2:8] # excludes names, authors’ predictions
for(i in 1:3) cpusO[,i] <- logl0(cpusO[,il])
samp <- sample(1:209, 100)
cpus.lm <- 1m(loglO(perf) ~ ., data=cpusO[samp,])
test <- function(fit)
sqrt (sum((logl0(cpusO[-samp, "perf"]) -
predict(fit, cpusO[-samp,]))"2)/109)
test (cpus.1lm)
[1] 0.21295

cpus.lm2 <- step(cpus.lm, trace=F)
cpus.1lm2$anova

Initial Model:
logl0O(perf) ~ syct + mmin + mmax + cach + chmin + chmax

Final Model:
loglO(perf) ~ mmin + mmax + cach + chmin + chmax

Step Df Deviance Resid. Df Resid. Dev AIC
1 93 3.2108 3.6942
2 - syct 1 0.013177 94 3.2240 3.6383

11.1 Additive models and scatterplot smoothers 40

test (cpus.1lm2)
[1] 0.21271

Now we consider BRUTO and MARS models. These need matrices (rather
than formulae and data frames) as inputs.

Xin <- as.matrix(cpusO[samp,1:6])
library(mda)
test2 <- function(fit) {
Xp <- as.matrix(cpusO[-samp,1:6])
sqrt (sum((logl0(cpusO[-samp, "perf"]) -
predict (fit, Xp))~2)/109)
}
cpus.bruto <- bruto(Xin, logl0(cpusO[samp,7]))
test2(cpus.bruto)
[1] 0.21336

cpus.bruto$type
[1] excluded smooth linear smooth smooth linear
cpus.bruto$df
syct mmin mmax cach chmin chmax
0 1.5191 1 1.0578 1.1698 1

examine the fitted functions
par (mfrow=c(3,2))
Xp <- matrix(sapply(cpusO[samp, 1:6], mean), 100, 6, byrow=T)
for(i in 1:6) {

xr <- sapply(cpusO, range)

Xpl <- Xp; Xpi1l[,i] <- seq(xr[1,il, xr[2,i], len=100)

Xf <- predict(cpus.bruto, Xpl)

plot (Xpi[,i], Xf, xlab=names(cpusO) [i], ylab="", type="1")
}

The result (not shown) indicates that the non-linear terms have a very dight
curvature, as might be expected from the equivalent degrees of freedom that are
reported.

We can use mars to fit a piecewise linear model with additive terms,

cpus.mars <- mars(Xin, logl0(cpusO[samp,7]))
showcuts <- function(obj)
{

tmp <- obj$cuts[obj$sel,]

dimnames (tmp) <- list(NULL, dimnames(Xin) [[2]])

tmp
}
> showcuts (cpus.mars)

syct mmin mmax cach chmin chmax

[1,] 0 0.0000 0.0000 0 0 0
[2,] 0 0.0000 3.6021 0 0 0

11.1 Additive models and scatterplot smoothers 41

[3,]
[4,]
(5,]
(6,]

0 0.0000 3.6021 0 0 0
0 3.1761 0.0000 0 0 0
0 0.0000 0.0000 0 8 0
0 0.0000 0.0000 0 0 0

> test2(cpus.mars)
[1] 0.21366
examine the fitted functions
Xp <- matrix(sapply(cpusO[samp, 1:6], mean), 100, 6, byrow=T)
for(i in 1:6) {
xr <- sapply(cpusO, range)
Xpl <- Xp; Xpil[,i] <- seq(xr[1,il, xr[2,i], 1len=100)
Xf <- predict(cpus.mars, Xpl)
plot(Xpi[,i], Xf, xlab=names(cpusO) [i], ylab="", type="1")

}

> cpus.mars2 <- mars(Xin, loglO(cpusO[samp,7]), degree=2)
> showcuts (cpus.mars2)
syct mmin mmax cach chmin chmax

[1,]
[2,]
[3,]
[4,]
(5,]

0 0.0000 0.0000 0 0 0
0 0.0000 3.6021 0 0 0
0 1.9823 3.6021 0 0 0
0 0.0000 0.0000 16 8 0
0 0.0000 0.0000 0 0 0

> test2(cpus.mars?2)

[1] 0.21495

> cpus.mars6 <- mars(Xin, loglO(cpusO[samp,7]), degree=6)
> showcuts (cpus.mars6)

[1,]
[2,]
[3,]
[4,]
(5,]
(6,]
[7,]
(s,]

NN NO OO OO

0.

.0000 0.0000 0.0000 0 0 0
.0000 1.9823 3.6021 0 0 0
.0000 0.0000 0.0000 16 8 0
.0000 0.0000 0.0000 16 8 0
.0000 0.0000 3.6990 0 8 0
.3979 0.0000 0.0000 16 8 0
.3979 0.0000 3.6990 16 8 0
0000 0.0000 0.0000 0 0 0

syct mmin mmax cach chmin chmax

> test2(cpus.mars6)
[1] 0.20604

Allowing pairwise interaction terms (by degree=2) or allowing arbitrary inter-
actions make little difference to the effectiveness of the predictions.

We can use these results to indicate a possible scopefor step.gam. Thiswas
not covered in the main text, as we have found it to be too slow for routine use.
It fitsa series of gam models, at each stage selecting one term from a list. Here
we allow each variable to be dropped, entered linearly or taken as a smooth term
with 2 or 4 (equivalent) degrees of freedom.

cpus.gam <- gam(loglO(perf) ~ ., data=cpusO[samp, 1)
cpus.gam? <- step.gam(cpus.gam, scope=list(
"syct" =~ 1 + syct + s(syct, 2) + s(syct),
"mmin" =~ 1 + mmin + s(mmin, 2) + s(mmin),

11.1 Additive models and scatterplot smoothers 42

N
Sy -
[N
o
o o
© (\i
i
L
© i
-
< @
Fi -
15 2.0 25 3.0 2.0 25 3.0 35 4.0 45
syct mmin
o
o
o N
o N
-
0 o
- o
N
S i
—
@
i
2.0 25 3.0 35 4.0 45 0 50 100 150 200 250
mmax cach
N
'53. o
-
o o
@ N
—
n
N~ 0
o -
<]
~
i ©
wn —
©
= <
© i
= 0 10 20 30 40 50 0 50 100 150
chmin chmax

Figure 11.12: Plots of the additive functions used by cpus.mars.

"mmax" = ~ 1 + mmax + s(mmax, 2) + s(mmax),
"cach" =~ 1 + cach + s(cach, 2) + s(cach),
"chmin" = ~ 1 + chmin + s(chmin, 2) + s(chmin),
"chmax" = ~ 1 + chmax + s(chmax, 2) + s(chmax)

)
> print(cpus.gam2$anova, digits=3)

Initial Model:
loglO(perf) ~ syct + mmin + mmax + cach + chmin + chmax

Final Model:
logl0(perf) ~ s(mmin, 2) + mmax + s(cach, 2) + s(chmax, 2)

Scale: 0.034525

From To Df Deviance Resid. Df Resid. Dev AIC
1 93 3.21 3.69
2 mmin s(mmin, 2) -1 -0.160 92 3.05 3.60
3 syct 1 0.019 93 3.07 3.55
4 cach s(cach, 2) -1 -0.115 92 2.95 3.51
5 chmax s(chmax, 2) -1 -0.095 91 2.86 3.48
6 chmin 1 0.055 92 2.91 3.47

Vv

test (cpus.gam?2)
[1] 0.20377

11.1 Additive models and scatterplot smoothers 43

Thisgivesaresult similar to that of BRUTO. Wecouldinclude pairwiseinteraction
termsusing lo, but thiswill not allow any extrapolation and so prediction of our
test set will fall.

For comparison, the regression tree procedure of Chapter 14 will give

cpus.ltr <- tree(loglO(perf) ~ ., data=cpusO[samp,])
plot(cv.tree(cpus.ltr,, prune.tree))

cpus.ltrl <- prune.tree(cpus.ltr, best=10)

test (cpus.ltrl)

[1] 0.24126

Other methods are considered later in this chapter.

Local likelihood models

Local likelihood provides a different way to extend models such as GLMs to
use smooth functions of the covariates. In the local likelihood approach the
prediction at = is made by fitting a fully parametric model to the observations
in a neighbourhood of . More formally, a weighted likelihood is used, where
the weight for observation 7 isadecreasing function of the ‘distance’ of z; from
x . (We have aready seen this approach for density estimation.) Note that in this
approach we are compelled to have predictionswhich are a smooth function of all
the covariates jointly and so it is only suitable for a small number of covariates,
usually not more than two. In principle the computational load will be daunting,
but thisis reduced (as in loess) by evaluating the prediction at a judiciousy
chosen set of points and interpolating.

The library sm of Bowman & Azzalini (1997) implements this approach for
a single covariate in functions sm.logit (a Binomia log-linear model) and
sm.poisson (@ Poisson log-linear model). For example, we can consider the
effect of the mother’s age on the probability of a low birthweight in the dataset
birthwt by

library(sm)

attach(birthwt)

sm.logit(age, low, h=5, display="se")
detach()

Here the bandwidth h isthe standard deviation of the Gaussian kernel used.

Library locfit provides afunction locfit with much greater flexibility.
It can fit Gaussian, binomial, Poisson, gamma and negative binomial GLMs with
identity, log, logit, inverse and square root links and one or more (in practice,
two or three) covariates, and choose the bandwidth based on the &k = an nearest
neighbours or fixed or chosen by alocal AIC criterion (as we saw for a Poisson
model on page 7). We can try this for the joint response to age and lwt in
birthwt.

11.2 Projection-pursuit regression 44

1.0

250

Pr{low}
0.6 0.8
wt
200

0.4
150

0.2
100

0.0

15 20 25 30 35 40 45 15 20 25 30 35 40 45
age age

Figure 11.13: Probability of low birthweight in dataset birthwt. Left: Against mother's
age, by sm.logit, with pointwise confidence intervals shown by dashed lines. Right:
Against mother's age and last weight, by locfit.

library(locfit, first=T)

bwt.1lf <- locfit(low ~ age+lwt, data=birthwt, family="binomial",
deg=1, scale=0, alpha=c(0,0,2))

plot(bwt.lf, get.data=T)

Note that the use of scale=0 is essentia as in density estimation. We chose
alocal linear fit as the data are few and quadratic fitting (the default) has little
theoretical advantage over linear fitting.

Asasecond example, consider the dataset Pima.tr of diabeteson 200 Pima
Indians. Previous studies (Wahbaet al., 1995; Ripley, 1996) have suggested that
the two continuous variables glu (plasma glucose level) and bmi (body mass
index) have the most discriminatory effect. We consider alocal logistic regression
on these two variables

pima.lf <- locfit(I(type=="Yes") ~ glu + bmi, data=Pima.tr,
family="binomial", scale=0, alpha=c(0,0,2))

par (mfrow=c(1,2), pty="s")

plot(pima.lf, get.data=T); plot(pima.lf, type="persp")

shown in Figure 11.14.

11.2 Projection-pursuit regression

An aternative way to fit projection pursuit regression models is to use BDR's
library ppr* which is (like ppreg) based on the SMART program described in
Friedman (1984). This provides a formula-based interface and the ability to use
smoothing splines (based on the code for smooth.spline) for the smoothing of
the ridge functions.

We can demonstrate this on the rock example.

4 Available from www. stats. ox.ac.uk in directory /pub/S (Unix) and /pub/SWin (Windows).

11.2 Projection-pursuit regression

[T9)

<

o

<

0
—_— o
£ 0

o

™

o |

N 1o

o

N

60 80 100 120 140 160 180 200

glu

A
00.20.40.60.8 1

45

R

o
KK
S

,6:
X
X
&K

3

XX

=
5
g =
7 g
sk
7 5258
QX

XX
QR
S5
$0 00!
SR
S5
SEKK
55
5
’\‘

“"

%
SRIDS
R
5%
S5
S

<O

O

S

2%

3R

38

S
OSSS
S

X

55
S
SEX

%

%

X
555
v
S5
55
%

o

=
S
5
S
%
=
X

5

KK
53
=5

%

2500 %
S
2%
2252020595

2

0“

<
S eSS S S SO R IS IS R SN SIS IS IEITTITISS
<5 R S S S SRS
S SIS
SRS

Figure 11.14: Plots of the probability surface fitted to the Pima.tr dataset by locfit

using alocal logistic regression.

> library(ppr)
> attach(rock)

> rockl <- data.frame(area=area/10000, peri=peri/10000,
shape=shape, perm=perm)

> detach()

> rock.ppr <- ppr(log(perm) ~ area + peri + shape, data=rockl,
nterms=2, max.terms=5)

> rock.ppr

Call:

ppr.formula(formula =
shape, data

Goodness of fit:

2 terms 3 terms 4 terms 5 terms
11.2196 7.1895 6.4565 5.8592

log(perm) ~ area + peri +
rockl, nterms = 2, max.terms = 5)

Thisessentially reproducesthefit on page 332 of the book (on adifferent OS; both
ppreg and ppr arevery sensitiveto theorder and precision of calculations). The
summary method gives alittle more information.

> summary(rock.ppr)
Call:

ppr.formula(formula = log(perm) ~ area + peri +

shape, data

Goodness of fit:

2 terms 3 terms 4 terms 5 terms
11.2196 7.1895 6.4565 5.8592

Projection direction vectors:

term 1 term 2
area 0.319492 0.435617

rockl, nterms = 2, max.terms = 5)

11.2 Projection-pursuit regression 46

-15 -1.0 -05 0.0 05 1.0
1

-0.15 -0.10 -0.05 0.0 0.05 0.10 0.15 .0 01 0.2 0.3
term 1 term 2

o

-15 -1.0 -05 0.0 05 1.0 15

-0.10 -0.05 0.0 0.05 0.10 0.15 0.20 -0.10 -0.05 0.0 0.05 0.10 0.15 0.20
term 1 term 2

-0.10 -0.05 0.0 0.05 0.10 0.15 0.20 -0.10 -0.05 0.0 0.05 0.10 0.15 0.20
term 1 term 2

Figure 11.15: Plots of the ridge functions for three 2-term projection pursuit regressions
fitted to the rock dataset. The top two fits used supsmu, whereas the bottom fit used
smoothing splines.

peri -0.945544 -0.866757
shape 0.062226 0.242839

Coefficients of ridge terms:
term 1 term 2
1.00638 0.72915

The added information is the direction vectors «;, and the coefficients 3;; in
M
Y, = a0 + Zﬁ” fj (an) + € (11.10)
j=1

Note that thisis the extension of (11.5) to multiple responses, and so we separate
the scalings from the smooth functions f; (which are scaled to have zero mean
and unit variance over the projections of the dataset).

We can examine the fitted functions f; by

par (mfrow=c(3,2))

plot (rock.ppr)

plot (update(rock.ppr, bass=5))
plot(update(rock.ppr, sm.method="gcv", gcvpen=2))

We first increase the amount of smoothing in the * super smoother’ supsmu to fit
a smoother function, and then change to using a smoothing spline with smooth-

11.2 Projection-pursuit regression 47

ness chosen by GCV (generalized cross-validation) with an increased complexity
penalty. We can then examine the details of thisfit by

rock.ppr2 <- update(rock.ppr, sm.method="gcv", gcvpen=2)
summary (rock.ppr2)

Goodness of fit:
2 terms 3 terms 4 terms 5 terms
21.335 21.669 21.615 0.000

Projection direction vectors:
term 1 term 2
area 0.31407 0.42179
peri -0.94203 -0.86766
shape 0.11803 -0.26317

Coefficients of ridge terms:
term 1 term 2
0.87673 0.21402

Equivalent df for ridge terms:
term 1 term 2
2 3.06

This fit is substantially slower since the effort put into choosing the amount of
smoothing is much greater. Note that here only two effective terms could be
found, and that area and peri dominate. We can arrange to view the surface
for atypical value of shape.

summary(rockl) # to find the ranges of the variables
Xp <- expand.grid(area=seq(0.1,1.2,0.05),
peri=seq(0,0.5,0.02), shape=0.2)
trellis.device()
rock.grid <- cbind(Xp,fit=predict(rock.ppr2, Xp))
wireframe(fit ~ areat+peri, rock.grid, screen=1list(z=160,x=-60),
aspect=c(1,0.5), drape=T)

An example: the cpus data

We can also consider the cpus test problem. Our experience suggests that
smoothing the terms rather more that the default for supsmu isagood idea.

cpus.ppr <- ppr(loglO(perf) ~ ., data=cpusO[samp,],
nterms=2, max.terms=10, bass=5)
> cpus.ppr
Call:
ppr.formula(formula = loglO(perf) ~ ., data = cpusO[samp, 1,
nterms = 2, max.terms = 10, bass = 5)

11.2 Projection-pursuit regression 48

fit

area

Figure 11.16: A two-dimensiona fitted section of a projection pursuit regression surface
fitted to the rock data. Compare this with Figure 11.5. Note that the prediction extends
the ridge functions as constant beyond the fitted functions, hence the planar regions shown.
For display on paper we set drape=F.

Goodness of fit:

2 terms 3 terms 4 terms 5 terms 6 terms 7 terms 8 terms
2.70334 2.37041 1.96751 1.56136 1.45629 1.06552 0.87165
9 terms 10 terms

0.81152 0.73181

cpus.ppr <- ppr(loglO(perf) ~ ., data=cpusO[samp,],
nterms=7, max.terms=10, bass=5)
test (cpus.ppr)
[1] 0.18809
> ppr(loglO(perf) ~ ., data=cpusO[samp,],
nterms=2, max.terms=10, sm.method="spline")
Goodness of fit:
2 terms 3 terms 4 terms 5 terms 6 terms 7 terms 8 terms
2.6218 2.2941 2.2842 1.8223 1.7465 1.4952 1.3857
9 terms 10 terms
1.3276 1.2924
> cpus.ppr2 <- ppr(loglO(perf) ~ ., data=cpusO[samp,],
nterms=5, max.terms=10, sm.method="spline")
> test(cpus.ppr2)
[1] 0.19201
> cpus.ppr3 <- ppr(loglO(perf) ~ ., data=cpusO[samp,],
nterms=3, max.terms=10, sm.method="spline")
> test(cpus.ppr3d)
[1] 0.20901

In these experiments projection pursuit regression outperformed al the additive
models, but not by much. A different S-PLUS platform gave similar results but a
different ranking of the smoothing methods.

11.4 Neural networks 49

Are these results actually better than those for the linear model? We can test
whether the prediction errorsare smaller on the test set by apaired statistical test:
asit ismoot whether to use the absolute error or squared error, and neither isclose
to normally distributed, we use arank test.

resl <- loglO(cpusO[-samp, "perf"]) -
predict(cpus.lm, cpusO[-samp,])
res2 <- loglO(cpusO[-samp, "perf"]) -
predict (cpus.ppr2, cpusO[-samp,])
> wilcox.test(resl1”2, res2”2, paired=T, alternative="greater")

Wilcoxon signed-rank test

data: resl”2 and res2”2
signed-rank normal statistic with correction Z = 0.8979,
p-value = 0.1846

Remember there is a selection effect here: we have tested one of the best fits we
found. Much larger reductionsin the prediction variance are needed for statistical
(or practical) significance.

11.4 Neural networks

In this complement we provide more details of the functionsin the current version
of library nnet . This has both enhanced functionality and improvements in the
output.

Using formulae with nnet

Since the book was written we have made nnet into a generic function, with a
default method nnet .default that reproducesthe previous behaviour. Thereis
anew logical argument Hess that addsacall to nnet.Hess from within the call
to nnet , with the Hessian contained in the Hessian component of the returned
object.

Themethod nnet . formula providesan additional way to specify the network
that may combine moreeasily with other model-based procedures. Theinterfaceis
smilar to that of the multinom function (which fits multiple logistic regressions
via a call to nnet.default), but has less specidlized print and summary
methods. The formulashould be of the form

type ~ varl + var2 + ...

where interactions are alowed on the right-hand side but will not normally be
useful. The response variableis normally afactor, but it could aso be avector or
matrix. (Vector and matricesare passed unchangedto nnet . default .) Response
factors are treated in one of two ways, after having any unused levels removed.
If the reduced factor has just two levels, nnet.default iscalled with y asthe

11.4 Neural networks 50

indicator function of the second level, and with entropy=T. If there are more
than two levels, y is set to the indicator matrix of the factor (in which each row
is zero except in the column for the level which occurred) and softmax is used.
These are sensible defaults when (as is usual) the neural network is being used a
non-linear logistic discriminant.

We can use aformulato simplify slightly the specification of the example on
page 340 of the book.

attach(rock)

rockl <- data.frame(perm, area=areal, peri=peril, shape)

rock.nnl <- nnet(log(perm) ~ area + peri + shape, data=rockl,
size=3, decay=1e-3, linout=T, skip=T, maxit=1000)

summary (rock.nn1)

sum((log(perm) - predict(rock.nnl))"2)

detach(rock)

Neural nets specified by a formula will most often be used for prediction.
If the response is a factor, the default return value from predict.nnet isthe
predicted probabilitiesfor each class (or of one of the classesif thereareonly two).
However, the option type="class" returnsthe class with the highest predicted
probability.

Thisform makes it easier to view the fitted surface for the rock dataset. We
can use essentially the same code as we used for the fitsby ppr.

Xp <- expand.grid(area=seq(0.1,1.2,0.05),
peri=seq(0,0.5,0.02), shape=0.2)
trellis.device()
rock.grid <- cbind(Xp,fit=predict(rock.nnl, Xp))
wireframe(fit ~ area + peri, rock.grid, screen=1list(z=160,x=-60),
aspect=c(1,0.5), drape=T)

Multiple logistic regression and discrimination

The function multinom isawrapper function that uses nnet.default tofit a
multiple logistic regression. There was once a separate library multinom, but
this has been merged with library nnet inthelibrariesfor the second edition.

There are close similarities between nnet.formula and multinom, but
multinom adds the class multinom to the object it returns and has specialized
methods for the generic functions print, summary, predict, coef, vcov,
add1, dropl and extractAIC?®.

The model is specified by a formula. The response can be either a matrix
giving the number of occurrences of each classat that particular x value, or (more
commonly) a factor giving the observed class. The right-hand side specifies the
design matrix in the usual way. If theresponse Y isafactor with just two levels,
the model fitted is

logitp(Y =1|X =) =p"=

5 the method-dependent part of stepAIC.

11.4 Neural networks 51

This is a logistic regression, and is fitted as a neural network with skip-layer
connections and no unitsin the hidden layer. Thereisa potential problem in that
both the bias unit and an intercept in & may provide an intercept term: thisis
avoided by constraining the bias coefficient to be zero. The entropy measure of fit
is used; thisis equivalent to maximizing the likelihood.

For afactor response with morethat two levels or amatrix response the model
fitted is
p(Y =c| X =)
p(Y =1]|X =x)

where 3; = 0. Once again the parameters are chosen by maximum likelihood.
(Thisisachieved by using the softmax option of nnet.default.)

Approximate standard errorsof the coefficientsarefoundfor vcov.multinom
and summary.multinom by invertingtheHessan of the (negative) log-likelihood
at the maximum likelihood estimator.

It is possible to add weight decay by setting a non-zero value for decay
on the call to multinom. Beware that because the coefficients for class one are
constrained to be zero, thishasarather asymmetric effect (unlike nnet . formula)
and that the quoted standard errorsare no longer appropriate. Using weight decay
has an effect closely analogous to ridge regression, and will often produce better
predictions than using stepwise selection of the variables.

In all these problems the measure of fit is convex, so there is a unique global
minimum. This is attained at a single point unless there is collinearity in the
explanatory variables or the minimum occurs at infinity (which can occur if the
classes are partialy or completely linearly separable).

log =B

Internal details of nnet.default

The C code onwhich nnet.default isbased isquite general and caninfact be
used for networkswith an arbitrary pattern of feed-forward connections. Internally
the nodes are numbered so that all connections are from lower to higher numbers;
the biasunit has number O, theinputsnumbers1to m , say, and the output unitsare
the highest-numbered units. The codein summary.nnet shows how to ‘unpack’
the connections. These are stored in vectors, so the weights are stored inasingle
vector. The connections are sorted by their destination so that all connections to
unit ¢ precede those to unit ¢ + 1. The vector conn gives the source unit, and
nconn iSan index vector for the first connection to that destination. An example
will make thisclearer:

> rock.nn$nconn
(1] 0 0 0 0 0 4 812 19
> rock.nn$conn
(11 0123012301230456123
> summary(rock.nn)
a 3-3-1 network with 19 weights
options were - skip-layer connections 1linear output units
decay=0.001

11.4 Neural networks 52

b->h1 i1->h1 i2->h1 i3->hil

4.47 -11.16 15.31 -8.78
b->h2 i1->h2 i2->h2 i3->h2

9.15 -14.68 18.45 -22.93
b->h3 i1->h3 i2->h3 i3->h3

1.22 -9.80 7.10 -3.77

b->0 hl->0 h2->0 h3->0 il->0 1i2->0 1i3->0
8.78 -16.06 8.63 9.66 -1.99 -4.15 1.65

UnitOisthebias("b"), units1to 3 aretheinputs, 4 to 6 the hidden unitsand 7 the
output. The vectors conn and nconn follow the C indexing convention, starting
with zero. Thus unit h1 (4) has connections from units 0, 1, 2 and 3. The vector
nconn hasafinal element giving the total number of connections.

These connection vectors are normally constructed by the function add.net ;
this automatically adds a connection to a bias unit whenever a unit gets its first
incoming connection.

An example: the cpus data

To use the nnet software effectively it is essential to scale the problem. A
preliminary run with alinear model demonstrates that we get essentially the same
results as the conventional approach to linear models.

attach(cpus0)

cpusl <- data.frame(syct=syct-2, mmin=mmin-3, mmax=mmax-4,
cach=cach/256, chmin=chmin/100, chmax=chmax/100, perf=perf)
detach()

test <- function(fit)
sqrt (sum((loglO(cpusl [-samp, "perf"]) -
predict(fit, cpusi[-samp,]))"2)/109)
cpus.nnl <- nnet(loglO(perf) ~ ., data=cpusl[samp,], linout=T,
skip=T, size=0)
test (cpus.nnl)
[1] 0.21295

We now consider adding non-linear termsto the model.

cpus.nn2 <- nnet(loglO(perf) ~ ., data=cpusl[samp,], linout=T,
skip=T, size=4, decay=0.01, maxit=1000)

final value 2.369581

test (cpus.nn2)

[1] 0.21132

cpus.nn3 <- nnet(loglO(perf) ~ ., data=cpusl[samp,], linout=T,
skip=T, size=10, decay=0.01, maxit=1000)

final value 2.338387

test (cpus.nn3)

[1] 0.21068

cpus.nn4 <- nnet(loglO(perf) ~ ., data=cpusl[samp,], linout=T,
skip=T, size=25, decay=0.01, maxit=1000)

11.4 Neural networks 53

final value 2.339850
test (cpus.nn4)
[1] 0.23

This demonstrates that the degree of fit is amost completely controlled by the
amount of weight decay rather than the number of hidden units (provided there
are sufficient). We have to be able to choose the amount of weight decay without
looking at the test set. To do so we borrow the ideas of Chapter 17, by using
cross-validation and by averaging across multiple fits.

CVnn.cpus <- function(formula, data=cpusl[samp,],
size = ¢c(0, 4, 4, 10, 10),
lambda = c(0, rep(c(0.003, 0.01), 2)),
nreps = 5, nifold = 10, ...)

{
CVnnl <- function(formula, data, nreps=1, ri, ...)
{
truth <- logl0O(data$perf)
res <- numeric(length(truth))
cat(" fold")
for (i in sort(unique(ri))) {
Cat(" ", i, sep=" ")
for(rep in 1l:nreps) {
learn <- nnet(formula, datalri !=i,], trace=F, ...)
res[ri == i] <- res[ri == i] +
predict(learn, datalri == i,])
}
}
Cat("\n")
sum((truth - res/nreps) "2)
}
choice <- numeric(length(lambda))
ri <- sample(nifold, nrow(data), replace=T)
for(j in seq(along=lambda)) {
cat(" size =", sizel[j], "decay =", lambdal[jl, "\n")
choice[j] <- CVnnl(formula, data, nreps=nreps, ri=ri,
size=size[j], decay=lambdaljl, ...)
}
cbind(size=size, decay=lambda, fit=sqrt(choice/100))
}

CVnn.cpus(loglO(perf) ~ ., data=cpusi[samp,],
linout=T, skip=T, maxit=1000)
size decay fit
[1,] 0 0.000 0.19746
[2,] 4 0.003 0.23297
[3,] 4 0.010 0.20404
[4,] 10 0.003 0.22803
(5,] 10 0.010 0.20130

11.4 Neural networks 54

This took around 6 Mb and 15 minutes on the PC. The cross-validated results
seem rather insensitive to the choice of model. We show how to use one of the
non-linear models, even though non-linearity does not seem justified.

testnn <- function(nreps=1, ...)
{
res <- numeric(109)
cat(" rep")
for (i in 1l:nreps) {
Cat(" ", i, sep=" ")
fit <- nnet(loglO(perf) ~ ., data=cpusl[samp,],
trace=F, linout=T, ...)
res <- res + predict(fit, cpusl[-samp,])
}
Cat ("\n")
sqrt (sum((loglO(cpusl [-samp, "perf"]) - res/nreps) ~2)/109)
}
testnn(nreps=5, skip=T, maxit=1000, size=10, decay=0.01)
[1] 0.20638

55

Chapter 12

Survival Analysis

12.1 Estimators of survival curves

In the text we concentrated on wholly non-parametric estimators of the survivor
function S and cumulative hazard H ; the resulting estimators were not smooth,
indeed discontinuous. There are analogues of density estimation for survival data
in which we seek smooth estimates of the survival function S, the density f or
(especialy) the hazard function . There seem no current S-PLUS implementa-
tions of the kernel-based approaches (Wand & Jones, 1995, 86.2.3, 6.3).

Likelihood-based approaches

Censoring iseasy toincorporatein maximum-likelihood estimation; thelikelihood
is given by (12.1) on page 344. One approach to using a smooth estimator is
to fit a very flexible parametric family and show the density / hazard/ survivor
function evaluated at the maximum likelihood estimate. This is the approach of
the logspline library that we considered in Chapter 5 of these complements.
Consider the gehan dataset.

library(logspline) # logsplin on Windows
gl <- gehan[gehan$treat=="control",]
g2 <- gehan[gehan$treat=="6-MP",]
logspline.plot(
logspline.fit(uncensored=gi[gi$cens==1,"time"],
right=gl[gl$cens==0,"time"], lbound=0),
what="s", xlim=c(0,35))
g2.1ls <- logspline.fit(uncensored=g2[g2$cens==1,"time"],
right=g2[g2$cens==0,"time"], lbound=0)
xx <- seq(0, 35, 1len=100)
lines(xx, 1 - plogspline(xx, g2.1ls), lty=3)

As there is no function for plotting lines, we have to add the second group by
hand. Small changes allow us to plot the density or hazard function.

Once again thereisalocal likelihood approach (see, for example Hjort, 1997)
to hazard estimation, in which the terms are weighted by their proximity to ¢.

12.1 Estimators of survival curves 56

0.8 1.0

0.6
hazard
0.0 0.05 0.10 0.15 0.20 0.25 0.30

0.4

0.2

0.0

time

Figure 12.1: Smooth survival (left, by logspline.fit) and hazard (right, by locfit)
fitsto the gehan dataset. The solid line indicates the control group, the dashed line that
receiving 6-MP.

The full log-likelihood is

Z logh(t;) — Z/ i h(u)du
ti:0;,=1 i 70

and we insert weighting terms as before. Thisisimplemented in Loader’s library
locfit: using alocally polynomial (by default quadratic) hazard.

library(locfit, first=T)
plot(locfit(~ time, cens=1-cens, data=gl, family="hazard",
alpha=0.5, x1im=c(0, 1e10)),
x1lim=c(0, 35), ylim=c(0, 0.3))
lines(locfit(~ time, cens=1-cens, data=g2, family="hazard",
alpha=0.5, x1lim=c(0, 1e10)), 1lty=3)

The x1im=c (0, 1e10) argument setsalower bound (only) on the support of the
density.

Both there approaches can have difficultiesin the right tail of the distribution,
whereuncensored observationsmay berare. Theright tail of adistributionfitted by
logspline.fit necessarily isexponential beyondthelast observation. InHEFT
(Hazard Estimation with Flexible Tails; Kooperberg et al., 1995a). a cubic spline
model is used for the log hazard, but with two additional terms 6 logt/(t + ¢)
and 6, log(t + ¢) where ¢ isthe upper quartilefor the uncensored data. Then the
space of fitted hazards includes the functions

h(t) = e%t% (t 4 ¢)% %
which includes the Weibull family and the Pareto density

beb
f(t) = (EEE

for given c¢. Thus there is some hope that the tail behaviour can be captured
within this parametric family. This is implemented in function heft.fit in
library heft . Toillustratethis, let us consider the whole of the Australian AIDS
dataset Aids.

12.6 Non-parametric modelswith covariates 57

n
) 3
- S
o
[ee]
° S
© 8
o o
< 7o)
S 8
o 3
o
o o
o o
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Figure 12.2: Survivor curve and hazard fitted to Aids by heft.fit.
library (heft)
attach(Aids2)

aids.heft <- heft.fit(death-diag+0.9, status=="D")
heft.summary (aids.heft)

par (mfrow=c(2,2))

heft.plot(aids.heft, what="s", ylim=c(0,1))
heft.plot(aids.heft)

This is rather dow (20 seconds). The sharp rise at 0 of the hazard reflects the
small number of patients diagnosed at death. Notethat thisisthe marginal hazard
and its shape need not be at al similar to the hazard fitted in a (parametric or Cox)
proportional hazards model.

12.6 Non-parametric models with covariates

There have been a number of approaches to model the effect of covariates on
survival without a parametric model. Perhaps the ssimplest is alocalized version
of the Kaplan-Meier estimator

Sitley =] [1_ w(z; —)

t;<t,6;=1 ZJGR(ti) w<$j —)

which includes observations with weights depending on the proximity of their
covariates to =. This does not smooth the survivor function, but the function
sm.survival in library sm (Bowman & Azzaini, 1997) plots quantiles as a
function of x by smoothing the inverse of the survival curve and computing
quartiles of the smoothed fit. Following them, we can plot the median survival
time after transplantation in the Stanford heart transplant data heart by

library(sm)

attach(heart [heart$transplant==1,])

sm.survival (age+48, loglO(stop - start), event, h=5, p=0.50)
detach()

12.6 Non-parametric modelswith covariates 58

0.015 0.02

A

o 0005 001

S
S

SN

ard Rate
0 00‘(’)‘531001 0.015 0.02

N

Figure 12.3: Smooth hazard functions (in days) as afunction of age post-transplantation in

the Stanford heart-transplant study. Left: by locfit andright: by hazcov using loca
scoring.

This shows some evidence of a decline with age, which can also be seen in the
Cox analysis.

Thelocal likelhood approach easily generalizesto localizing in covariate space

too: in locfit thisisrequested by adding covariate termsto the right-hand-side
of the formula.

library(locfit)
attach(heart [heart$transplant==1,])
td <- stop - start; Age <- age+48
plot(locfit(~ td + Age, cens=1-event, scale=0,alpha=0.5,
xlim=1list (td=c(0,1e10)), flim=1list(td=c(0,365))),
type="persp")

Gray (1996, 1994) takes a smilar but less formal approach, using loess to
smooth a discretized version of the problem. Thisisimplemented in his function
hazcov in library hazcov. First the data are grouped on the covariate values,
using quantiles of the marginal distributionsor factor levels. Then timeisdivided
into intervals and the number of events and total follow-up time computed for
each interval for each covariate combination. In the default method described
in the 1996 paper, the numbers of events and the follow-up totals are separately

smoothed using loess function, and the hazard estimate formed by taking ratios.
We can try this by

library(hazcov)

heart.hc <- hazcov(Surv(td, event) ~ Age, span=0.5)
plot(heart.hc)

persp.hazcov(Hazard.Rate ~ Time*Age, heart.hc)

The loess span was chosen by guesswork. Gray describes an approximate
version of C), to help select the span which we can use by

heart.50 <- hazcov(Surv(td, event) ~ Age, span=0.5,
trace.hat="exact")
for(alpha in seq(0.1, 1, 0.1))

12.6 Non-parametric modelswith covariates 59

{

heart.tmp <- hazcov(Surv(td, event) ~ Age, span=alpha,
trace.hat="exact")

print (wcp(heart.tmp, heart.50))

}

This indicatesa minimum at « = 0.2, but very little difference over the range
[0.2,0.5].

The aternative method (Gray, 1994: ‘local scoring’ invoked by 1s=T), the
counts are viewed aindependent Poisson variateswith mean total follow-up times
hazard, and a local log-linear Poisson GLM is fitted by IWLS, using loess to
smooth the log-hazard estimates.

heart.hc <- hazcov(Surv(td, event) ~ Age, span=0.5, 1s=T)
plot(heart.hc)
persp.hazcov(Hazard.Rate ~ Time*Age, heart.hc)

Spline approaches

HARE (HAzard Rate Estimation; Kooperberg et al., 19953a) fits a linear tensor-
splinemodel for thelog hazard function conditional on covariates, thatis log h(t | x) =
n(t, z;0) isaMARS-likefunction of (¢,x) jointly. Thefitting procedureissim-
ilar to that for logspline and lspec: an initia set of knots is chosen, the
log-likelihood is maximized given the knots by a Newton algorithm, and knots
and terms are added and deleted in a stepwise fashion. Finally, the model returned
isthat amongst those considered that maximizesa penalized likelihood (by default
with penalty logn timesthe number of parameters).

It remains to describe just what structures are allowed for 7(¢,z). Thisis
alinear combination of linear spline basis functions and their pairwise products,
that isalinear combination of termslike ¢, t, (t — ¢)4, zj, (x; — ¢)+, tx;, (tr; —
¢)+,x;Tk, (Tjzr — c)4 Wherethe ¢ are generic constants. The product terms
are restricted to products of simple terms already in the model, and wherever a
non-linear term occurs, that term also occurs with the non-linear term replaced by
alinear term in the same variable. Thusthisisjust aMARS model inthe p + 1
variables restricted to pairwise interactions.

The model for the hazard function will be a proportional hazards model if
(and only if) there are no products between ¢ and covariate terms. In any case
it has a rather restricted ability to model non-constant hazard functions, and it
is recommended to transform time to make the marginal distribution close to
exponential (with constant hazard) before applying HARE.

HARE is implemented in library hare by function hare.fit. The paper
contains an analysis of the dataset cancer.vet which we can reproduce by

VA is constructed on page 363

> attach(VA)

> library(HARE)

> options(contrasts=c("contr.treatment", "contr.poly"))

12.6 Non-parametric modelswith covariates

> VAx <- model.matrix(~ treat+age+Karn+cell+prior, VA)[,-1]
> VA.hare <- hare.fit(stime, status, VAx)

> hare.summary(VA.hare)

the present optimal number of
penalty(AIC) was the default:

dimil

Constant

Co-3 1linear
Co-5 1linear
Co-4 1linear
Time 1.56e+02
Time 1.56e+02
Co-3 2.00e+01
Co-3 1linear
Time 1.56e+02

dim2

Co-5

Co-4
Co-3

linear

linear
linear

dimensions is 9.

BIC=log(samplesize): log(137)=4.92

beta

.83e+00
.50e-01
.43e+00
.39e+00
.25e-02
.45e-02
.60e-01
.87e-02
.33e-04

©O© = O oD N

SE

.26e+00
.08e-01
.72e-01
.35e-01
.50e-03
.84e-03
.08e-01
.12e-02
.58e-05

Wald

0.010
!

0.008
!

0.006
!

0.004

Weibull-transformed

Figure 12.4: The marginal distribution of lifetime in the cancer.vet dataset. Left:
Hazard asfitted by heft.fit. Right: Time astransformed by the distribution fitted by
heft.fit and by afitted Weibull distribution.

We found that an exponential model for the residual hazard was adequate,
but Kooperberg et al. (1995a) explore the marginal distribution by HEFT and
conclude that the time-scale could usefully be transformed. They used

library (HEFT)

HEFT-transformed

VA.heft <- heft.fit(stime, status, leftlog=0)
heft.plot(VA.heft, what="h")

nstime <- -log(l - pheft(stime, VA.heft))
In fact the transformation used is close to that from fitting a Weibull distribution

survreg(Surv(stime, status) ~ 1, data=VA)

Coefficients:
(Intercept)
4.793146

.35
.31
.15
.20
17
.20
.41
.46
.52

12.6 Non-parametric modelswith covariates 61

Dispersion (scale) = 1.173592

plot(sort(nstime),
-log(1-pweibull(sort(stime), 1/1.1736, exp(4.973))),
type="1", xlab="HEFT-transformed", ylab="Weibull-transformed")

It doesseem undesirabletoignorethehighly significant covariate effectsin making
such a transformation; this is illustrated in this example by the change in the
Weibull shape parameter from 1.174 to 0.928 (foot of page 364) on fitting linear
termsin the survival regression model.

Having transformed time, we can re-fit the model.

> VA.hare2 <- hare.fit(nstime, status, VAx)

hare.summary (VA.hare2)

the present optimal number of dimensions is 10.

penalty(AIC) was the default: BIC=log(samplesize): log(137)=4.92

dimil dim?2 beta SE Wald
Constant -7.06e+00 2.60e+00 -2.72
Co-3 1linear 2.72e-01 1.10e-01 2.47
Co-5 1linear 5.54e+00 1.15e+00 4.81
Time 2.67e+00 2.24e+00 6.22e-01 3.60
Time 2.67e+00 Co-5 1linear -2.00e+00 5.40e-01 -3.70
Time 2.67e+00 Co-3 1linear -4.21e-02 9.54e-03 -4 .42
Co-4 1linear -1.16e+00 6.53e-01 -1.77
Co-3 8.50e+01 -2.73e-01 1.17e-01 -2.33
Co-3 1linear Co-4 1linear 3.39e-02 1.15e-02 2.94
Co-3 2.00e+01 -2.31e-01 1.08e-01 -2.13

Allowing for the time transformation, the fitted model is quite similar. Covariate
3istheKarnofsky score, and 4 and 5 are the contrasts of cell type adeno and small
with squamous. It is not desirable to have a variable selection process that is so
dependent on the coding of the factor covariates.

This example was used to illustrate the advantages of HARE/HEFT method-
ology by their authors, but seems rather to show up its limitations. We have
already seen that the marginal transformation of time is quite different from that
suggested for the conditional distribution. In our analysis via Cox proportional
hazards models we found support for models with interactions where the main
effects are not significant (such modelswill never be found by aforward selection
procedure such as used by HARE) and the suspicion of time-dependence of such
interactions (which would need a time cross covariate cross covariate interaction
which HARE excludes).

62

Chapter 13

Multivariate Analysis

13.3 Discriminant analysis

Correspondence analysis (continued)

There are many waysto look at correspondence analysis and corresponding plots,
and as Gower & Hand (1996, p. 183) point out®

‘It isimportant that any published graphics make it clear just which of these,
or other, representations is being represented.

We considered correspondence analysis for an r x ¢ table N = (n;;) viathe
singular value decomposition of Dy '/*(N/n)D;"/? = UAVT where n =

n.., D, = \/diag(n;./n) and D. = /diag(n.;/n). We dropped the first

component which corresponds to columns of one; we can now eliminate this
component by considering n;;/n — (n;./n)(n.; /n); we then have the singular-
value decomposition of

. _ Mig/n— (ni/n)(ng/n) _ ni —nric
ij —

\/(nz/n)(n]/n) O ongT c;
where r; = n;./n and ¢; = n.;/n arethe proportionsin each row and column.
Oneviewistosee > | Xis —XjS}Q asasquared ‘ distance’ fromrow 4 to column
7.

In this form the simple correspondence analysis corresponds to selecting the
first singular value and left and right singular vectors of X;; and rescaling by

D% and D;Y? respectively?. Can we make use of the subsequent singular

values? Inwhat Gower & Hand call ‘classical CA’ we consider A = D, /2UA
and B = D;?VA. Then the first columns of A and B are what we have
termed the row and column scores scaled by p, the first canonical correlation.
More generally, we can see distances between the rows of A as approximating

(in the % -distance) the distances between the row profiles (rows rescaled to unit

I although they neglect to follow their own advice; for example their figures 4.2 and 9.1 have no
axes and no indication of what precisely has been plotted.
2 and that is how the code now works.

13.3 Discriminant analysis 63

symmetric rows columns

05 0.0 0.5 1.0 -1 0 1 2 15 -1.0 0.5 0.0 0.5 1.0 15

05
05

light 2

0.0

0.0
B3
s

05

=
15
5

0.4 0.2 0.0 0.2 0.4 0.6 1 0 1 2 15 -1.0 05 0.0 05 1.0 15

Figure 13.15: Three variants of correspondence analysis plots from Fisher’s data on people
in Caithness.

sum) of the the table NV, and analogously for the rows of B and the column
profiles.

Classical CA plots the first two columns of A and B on the same fig-
ure. Thisisaform of a biplot and is obtained with our software by plotting a
correspondence analysis object with nf > 2 or as the default for the method
biplot.correspondence. Note that thisis not a standard biplot as the inner
products

ABT — D;l/QUAQVTDc_l/Q

have no simpleinterpretation. Thisis sometimes known as a‘symmetric’ plot.

Other authors (for example Greenacre, 1992) advocate ‘asymmetric’ plots.
The asymmetric plot for the rowsisaplot of thefirst two columnsof A with the

column labelsplotted at thefirst two columnsof T' = D */?V'; the corresponding

plot for the columns has columns plotted a B and row labelsat & = D, '/*U .
The most direct interpretation for the row plot isthat

A=DI'NT

0 A is aplot of the row profiles (the rows normalized to sum to one) as
convex combinations of the column vertices given by I'. The asymmetric
plots are produced by giving plot oOr biplot argument type="rows" oOr
type="columns".

By default corresp only retains one-dimensional row and column scores;
then plot.corresp plotsthese scoresand indicatesthe size of the entriesin the
table by the area of circles. The two-dimensional forms of the plot are shown in
Figure 13.15 for Fisher’sdata on people from Caithness. These were produced by

caith <- read.table("Fisher.dat")

dimnames(caith)[[2]] <- C("F", an’ "M", "D", an)

par (mfcol=c(1,3))

plot(corresp(caith, nf=2)); title("symmetric")
plot(corresp(caith, nf=2), type="rows"); title("rows")
plot(corresp(caith, nf=2), type="col"); title("columns")

13.3 Discriminant analysis 64

Note that the symmetric plot (left) has the row points from the asymmetric row
plot (middle) and the column points from the asymmetric column plot (right)
superimposed on the same plot (but with different scales).

Multiple correspondence analysis

Multiple correspondence analysis (MCA) is (confusingly!) a method for visual-
izing the joint properties of p > 2 categorical variables that does not reduce to
correspondence analysis(CA) for p = 2, although the methods are closely related
(see, for example, Gower & Hand, 1996, §10.2).

Supposewe have n observationsonthe p factorswith ¢ total levels. Consider
G, the n x ¢ indicator matrix whose rows give the levels of each factor for each
observation. Then all the row sums are p. MCA is often (Greenacre, 1992)
defined as CA applied to the table G, that is the singular-value decomposition of
DG/ Y, 9i5)De? = UAVT . Notethat D, = pI sinceall therow sums

are p,and Y, g;; = np, so thisamountsto the SVD of p~'/2GD;"/* /pn®

An alternative point of view isthat MCA is aprincipal components analysis
of the datamatrix X = G(pD.)~'/?; with PCA it is usual to centre the data but
it transpires that the largest singular value is one and the corresponding singular
vectors account for the means of the variables. Thusasimple plot for MCA isto
plot the first two principal components of X . It will not be appropriate to add
axes for the columns of X asthe possible valuesareonly {0, 1}, but it is usual
to add the positionsof 1 on each of these axes, and label these by the factor level.
(The*axis points are plotted at the appropriate row of (pD.)~'/2V.) The point
plotted for each observation is the vector sum of the ‘axis points for the levels
taken of each of the factors. Gower and Hand seem to prefer (e.g. their figure
4.2) to rescale the plotted pointsby p, so they are plotted at the centroid of their
levels. Thisis exactly the asymmetric row plot of the CA of G, apart from an
overal scale factor of p\/n .

We can apply this to the example of Gower & Hand (1996, p. 75) by

farms.mca <- mca(farms, abbrev=T) # Use levels as names
plot (farms.mca, cex=rep(0.7,2))

Sometimes it is desired to add rows or factors to an MCA plot. Adding
rowsis easy: the observations are placed at the centroid of the *axis points for
levels that are observed. Adding factors (so-called supplementary variables) is
less obvious. The ‘axis points are plotted at the rows of (pD.)~/2V . Since
UAVT = X = G(pD.)"'/?, V = (pD.)~"*?GTUA~" and

(pD.)" Y2V = (pD,)*GTUA™?

Thistellsusthat the*axis' pointscan befound by taking the appropriate column of
G, scaling to total 1/p and then taking inner products with the second and third
columns of UA~!. This procedure can be applied to supplementary variables
and so provides a way to add them to the plot. The predict method for class
"mca" allowsrows or supplementary variablesto be added to an MCA plot.

3 Gower & Hand (1996) omit the divisor pn .

13.5 Factor analysis 65

13.5 Factor analysis

Rotation of principal components

The usual aim of both PCA and factor analysis studiesis to find an interpretable
smaller set of new variables that explain the original variables. Factor rota-
tion is a very appealing way to achieve interpretability, and it can also be ap-
plied in the space of the first m principal components. The S-PLUS function
rotate.princomp appliesrotation to the output of a princomp analysis. For
example, if we varimax rotate the first two principal components of ir.pca
(page 383 of the text) wefind

> loadings(rotate(ir.pca, n=2))
Comp. 1 Comp. 2 Comp. 3 Comp. 4
Sepal.L 0.596 0.324 0.709 0.191

Sepal.W 0.935 -0.331
Petal.L 0.569 -0.102 -0.219 -0.786
Petal.W 0.560 -0.583 0.580

Note that only the first two components have been rotated, although all four are
displayed.

It isimportant to consider normalization carefully when applying rotation to
aprincipal component analysis, which is not scale-invariant.

() Using argument cor=T to princomp ensures that the original variables are
rescaled to unit variance when the principal components (PCs) are sel ected.

(b) The‘loadings matrix given by princomp isthe orthogonal matrix V' which
transformsthe variables X to the principal components Z = XV ,s0 X =
ZV'T .| Thisisnot theusua loadingsmatrix considered for rotationin principal
component analysis (Basilevsky, 1994, p. 258), although it is sometimes used
(Jolliffe, 1986, 87.4). The loadings of afactor analysis correspond to a set of
factorsof unit variance; normalizing the principal componentsto unit variance
correspondsto X = Z*AT for A= VA and Z* = ZA~'. where (ason
page 304) A denotesthe diagonal matrix of singular values. The matrix A is
known as the correlation loadings. since A;; isthe correlation between the
i th variable and the j th PC (provided the variables were normalized to unit
variance). Orthogonal rotations of Z* remain uncorrelated and correspond
to orthogonal rotations of the correlation loadings.

(c) TheS-PLUS default for rotationssuch as varimax isto normalize theloadings
as at (13.8) so the sum of squares for each row (variable) is one. Thus
(standardized) variables which are fitted poorly by the first m PCs are given
the same weight as those which are fitted well. This seems undesirable for
PCs (Basilevsky, 1994, p. 264), so it seems preferable not to normalize.

Taking these points into account we have

13.5 Factor analysis 66

> A <- loadings(ir.pca) %*, diag(ir.pca$sdev)
> dimnames (A) [[2]] <- names(ir.pca$sdev)
> B <- rotate(A[, 1:2], normalize=F)$rmat
> print.loadings(B)
Comp. 1 Comp. 2
Sepal.L 0.963
Sepal.W -0.153 0.981
Petal.L 0.924 -0.350
Petal.W 0.910 -0.342

which does have a clear interpretation as dividing the variables into two nearly
digoint groups. It does seem that one common use of rotation in both principal
component and factor analysis is to cluster the original variables, which can of
course also be done by acluster analysisof X7 .

67

Chapter 14

Tree-based Methods

14.4 Library RPart

Thelibrary section rpart by Beth Atkinsonand Terry Therneau (Therneau & Atkinson,
1997) provides an alternativeto tree for tree-based methodsin S-PLUS which

is both more and less flexible: the original code is available from statlib. We
describe here the version released in March 19981,

Theunderlying philosophy of rpart (which standsfor Recursive Partitioning)
is dightly different from that of tree, and is closer to that of Breiman et al.
(1984) and the CART program. There is one function, rpart, that both grows
and computes whereto prune atree; although thereisafunction prune.rpart it
merely further prunes the tree at points already determined by the call to rpart,
which has itself done some pruning. It is aso possible to print a pruned tree
by giving a pruning parameter to print.rpart. Notethat (by default) rpart
runs a 10-fold cross-validation akin to cv.tree and the results are stored in the
rpart object to alow the user to choose the degree of pruning at alater stage.

The rpart system was designed to be easily extended to new types of re-
sponses. At present it has the following types, selected by the argument method .

"anova" A regression tree, with the impurity criterion the reduction in sum of
sguares on creating a binary split of the data at that node. The criterion
R(T) used for pruning is the mean square error of the predictions of the
tree on the current dataset (that is, the residual mean square).

"class" A classification tree, with a categorical or factor response and default
impurity criterion the Gini index (p. 418). The deviance-based approach
takenby tree correspondstothe’entropy’ or ‘information’ index, selected
by the argument parms=list(split="information"). The pruning
criterion R(T') isthe predicted loss, normally the error rate. (Note that the
default for prune.tree, deviance-based pruning, is not available.)

"poisson" in which the response is the number of events NV; in a specified
duration ¢; of observation. Deviance-based criteria are used to splitting

I Available from http://www.stats.ox.ac.uk/pub/S/rpart.sh.gz (Unix) and the usual lo-
cations for Windows

http://www.stats.ox.ac.uk/pub/S/rpart.sh.gz

14.4 Library RPart 68

and for pruning, assuming a Poisson-distributed number of events with
mean \;t; wheretherate dependson thenode ¢. Theresponseis specified
as either atwo-column matrix of (IV;,t;) or just avector of N; (inwhich
case the time intervals are taken to be of unit length for al observations).

"exp" A survival treein which the response must be a survival object, normally
generated by Surv. Thisisavariant of the "poisson" method. Suppose
that an exponential distributionwas appropriatefor the survival times. Then
by the duality between views of a Poisson process the observed number of
events(0or 1) intheduration to censoring or death can betaken to be Poisson
distributed, and the "poisson" method will give the correct likelihood. In
genera the exponential distribution is not appropriate, but it can perhaps
be made so by non-linearly transforming time by the cumulative hazard
function, and this is done estimating the cumulative hazard from the date?.
This gives a proportional hazards model with the baseline hazard fixed as
the estimated marginal hazard.

If the method argument is missing an appropriate type is inferred from the
response variable in the formula.

It will be helpful to consider afew examples. First we consider aregression
tree for the cpus data, then aclassfication tree for the iris data. The precise
meaning of the argument cp is explained later; it is proportional to « in the
cost-complexity measure.

library(Rpart)

set.seed(123)

cpus.rp <- rpart(loglO(perf) ~ ., cpus[,2:8], cp=1e-3)
cpus.rp

node), split, n, deviance, yval

* denotes terminal node

vV V V V

1) root 209 43.000 1.8
2) cach<27 143 12.000 1.5
4) mmax<6100 78 3.900 1.4
8) mmax<1750 12 0.780 1.1
9) mmax>1750 66 1.900 1.4
18) mmax<2500 17 0.570 1.
19) mmax>2500 49 1.100 1.

*

= o= =01 W

38) chmax<4.5 14 0.350 1.4 *
39) chmax>4.5 35 0.570 1.5
78) syct<110 9 0.077 1.4 %

79) syct>110 26 0.390 1.5 %
5) mmax>6100 65 4.000 1.7
10) syct>360 7 0.130 1.3 *
11) syct<360 58 2.500 1.8

2 Note that this transformation is of the marginal distribution of survival times, although an expo-
nential distribution would normally be assumed for the distribution conditional on the covariates. This
isthe samecriticism aswe saw for theHARE/HEFT methodology. RPart followsLeBlanc & Crowley
(1992) in this ‘one-step’ approach.

14.4 Library RPart 69

22) chmin<5.5 46 1.200 1.7
44) cach<0.5 11 0.200 1.5 *
45) cach>0.5 35 0.620 1.8
90) chmin>1.5 15 0.260 1.7 *
91) chmin<1.5 20 0.260 1.8
182) mmax<14000 13 0.088 1.8 *
183) mmax>14000 7 0.110 1.9 =*
23) chmin>5.5 12 0.550 2.0 *
3) cach>27 66 7.600 2.2
6) mmax<28000 41 2.300 2.1
12) cach<96.5 34 1.600 2.0

24) mmax<11240 14 0.420 1.8 *
25) mmax>11240 20 0.380 2.1
50) chmax<14 10 0.078 2.0 *
51) chmax>14 10 0.120 2.2 %
13) cach>96.5 7 0.170 *

7) mmax>28000 25 1.500
14) cach<56 7 0.069 2.
15) cach>56 18 0.650 2.7 *

w NN
* O W

> ird <- data.frame(rbind(irisl[,,1], irisl[,,2],iris[,,3]),
Species=c(rep("s",50), rep("c",50), rep("v",50)))
> ir.rp <- rpart(Species ~ ., data=ird, method="class", cp=1le-3)
> ir.rp
node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 150 100 ¢ (0.33 0.33 0.33)
2) Petal.L.>2.45 100 50 ¢ (0.50 0.00 0.50)
4) Petal.W.<1.7554 5 ¢ (0.91 0.00 0.092)
5) Petal . W.>1.7546 1 v (0.02 0.00 0.98)
3) Petal.L.<2.4550 0 s (0.00 1.00 0.00) =

0
0

The output from the print method is very similar to that from print.tree,
although the deviance is omitted for classification trees (only). The tree for the
cpus dataislarger than that shown in Figure 14.6; the tree for the iris datais
one node smaller than that shown in Figure 14.5. (Note that neither rpart tree
has yet been pruned to final size))

We can now consider pruning by using printcp to print out the information
stored in the rpart object.

> printcp(cpus.rp)

Regression tree:
rpart (formula = loglO(perf) ~ ., data = cpus[, 2:8], cp = 0.001)

Variables actually used in tree construction:
[1] cach chmax chmin mmax syct

14.4 Library RPart 70

Root node error: 43.1/209 = 0.206

CP nsplit rel error xerror xstd

1 0.54927 0 1.000 1.005 0.0972
2 0.08934 1 0.451 0.480 0.0487
3 0.03282 3 0.274 0.322 0.0322
4 0.02692 4 0.241 0.306 0.0306
5 0.01856 5 0.214 0.278 0.0294
6 0.00946 9 0.147 0.288 0.0323
7 0.00548 10 0.138 0.247 0.0289
8 0.00440 12 0.127 0.245 0.0287
9 0.00229 13 0.123 0.242 0.0284
10 0.00141 15 0.118 0.240 0.0282
11 0.00100 16 0.117 0.238 0.0279

The columns xerror and xstd are random, depending on the random partition
used inthecross-validation. We can seethe sameoutput graphically (Figure 14.10)
by acall to plotcp.

plotcp(cpus.rp)

size of tree
1 2 4 5 6 10 11 13 14 16 17

1.2

X-val Relative Error

Inf 0.2 0.054 0.03 0.022 0.013 0.0072 0.0049 0.0032 0.0018 0.0012
cp

Figure 14.10: Plot by plotcp of the rpart object cpus.rpl.

We first need to explain the complexity parameter cp; thisis just the cost-
complexity parameter o divided by the number R(T,) for the root tree®. A
10-fold cross-validation has been done within rpart to compute the entries®
xerror and xstd; the complexity parameter may then be chosen to minimize
xerror. An aternative procedure is to use the 1-SE rule, the largest value with
xerror Withinone standard deviation of the minimum. Inthiscasethe 1-SE rule

3 thus for most measures of fit the complexity parameter liesin [0, 1].
4 all the errors are scaled so the root tree haserror R(T) scaled to one.

14.4 Library RPart 71

gives 0.238 + 0.0279, so we choose line 7, a tree with 10 splits and hence 11
leaves®. We can examine this by

> print(cpus.rp, cp=0.006, digits=3)
node), split, n, deviance, yval
* denotes terminal node

1) root 209 43.1000 1.75
2) cach<27 143 11.8000 1.52
4) mmax<6100 78 3.8900 1.37
8) mmax<1750 12 0.7840 1.09 *
9) mmax>1750 66 1.9500 1.43 *
5) mmax>6100 65 4.0500 1.70
10) syct>360 7 0.1290 1.28 *
11) syct<360 58 2.5000 1.76
22) chmin<5.5 46 1.2300 1.70
44) cach<0.5 11 0.2020 1.53 *
45) cach>0.5 35 0.6160 1.75 *
23) chmin>5.5 12 0.5510 1.97 *
3) cach>27 66 7.6400 2.25
6) mmax<28000 41 2.3400 2.06
12) cach<96.5 34 1.5900 2.01
24) mmax<11240 14 0.4250 1.83 *
25) mmax>11240 20 0.3830 2.14 *
13) cach>96.5 7 0.1720 2.32 *
7) mmax>28000 25 1.5200 2.56
14) cach<56 7 0.0693 2.27 *
15) cach>56 18 0.6540 2.67 *

or

> cpus.rpl <- prune(cpus.rp, cp=0.006)
> plot(cpus.rpl, branch=0.4, uniform=T)
> text(cpus.rpl, digits=3)

The plot is shown in Figure 14.11.

The function xpred.rpart runsa V -fold cross-validation separately and
returns the cross-validation predictions, so can be used to study cross-validation
in more detail.

For the iris datawe have
> printcp(ir.rp)

Variables actually used in tree construction:
[1] Petal.L. Petal.W.

Root node error: 100/150 = 0.66667

CP nsplit rel error xerror xstd

5 The number of leaves is always one more than the number of splits.

14.4 Library RPart 72

Figure 14.11: Plot of the rpart object cpus.rpl.

1 0.500 0 1.00 1.13 0.0528
2 0.440 1 0.50 0.58 0.0596
3 0.001 0.06 0.12 0.0332

which suggests no pruning, but that too small atree has been grown since xerror
has not reached its minimum.

The summary method, summary.rpart, produces much more output that
summary.tree:

> summary(ir.rp)

Call:

rpart(formula = Species ~ ., data = ird, method = "class",
cp = 0.001)

CP nsplit rel error xerror xstd

1 0.500 0 1.00 1.13 0.053
2 0.440 1 0.50 0.58 0.060
3 0.001 2 0.06 0.12 0.033
Node number 1: 150 observations, complexity param=0.5

predicted class= ¢ expected loss= 0.67
class counts: 50 50 50
probabilities: 0.33 0.33 0.33
left son=2 (100 obs) right son=3 (50 obs)
Primary splits:
Petal.L. < 2.5 to the right, improve=50, (0 missing)
Petal.W. < 0.8 to the right, improve=50, (0 missing)
Sepal.L. < 5.4 to the left, improve=34, (0 missing)
Sepal.W. < 3.3 to the left, improve=19, (0 missing)
Surrogate splits:
Petal.W. < 0.8 to the right, agree=1.00, (0 split)
Sepal.L. < 5.4 to the right, agree=0.92, (0 split)
Sepal.W. < 3.3 to the left, agree=0.83, (0 split)

S oo

Node number 2: 100 observations, complexity param=0.44

14.4 Library RPart 73

predicted class= ¢ expected loss= 0.5
class counts: 50 0 50
probabilities: 0.5 0.0 0.5
left son=4 (54 obs) right son=5 (46 obs)
Primary splits:
Petal.W. < 1.8 to the left, improve=39.0, (0 missing)
Petal.L. < 4.8 to the left, improve=37.0, (0 missing)
Sepal.L. < 6.1 to the left, improve=11.0, (0 missing)
Sepal.W. < 2.5 to the left, improve= 3.6, (0 missing)
Surrogate splits:
Petal.L. < 4.8 to the left, agree=0.91, (0 split)
Sepal.L. < 6.1 to the left, agree=0.73, (0 split)
Sepal.W. < 3 to the left, agree=0.67, (0 split)

— 00

Node number 3: 50 observations
predicted class= s expected loss= 0
class counts: 050 O
probabilities: 0 1 O

Node number 4: 54 observations
predicted class= ¢ expected loss= 0.093
class counts: 49 0 5
probabilities: 0.91 0.00 0.09

Node number 5: 46 observations
predicted class= v expected loss= 0.022
class counts: 1 0 45
probabilities: 0.02 0.00 0.98

Theinitial tableisthat givenby printcp . Thesummary method givesthetop few
(default up tofive) splitsand their reduction inimpurity, plusup to five surrogates,
splits on other variables with a high agreement with the chosen split. (These can
be used to handle missing valuesif desired. Seethe subsection on*missing values
below.) In thiscase the limit on tree growth is the restriction on the size of child
nodes (which by default must cover at least seven cases).

The output from summary.rpart can be voluminous. Two arguments can
help: aswith print.rpart the argument cp effectively prunesthe tree before
analysis, and the argument file allows the output to be redirected to afile (via
sink).

Fine control

The function rpart.control isusually used to collect together arguments for
the control parameter of rpart just asfor tree, although the defaults differ.
The parameter minsplit islike minsize giving the smallest node that will be
considered for asplit: thisdefaultsto 20. Parameter minbucket islike mincut,
the minimum number of observations in a daughter node, which defaults to 7
(minsplit /3, rounded up).

14.4 Library RPart 74

The analogue of the parameter mindev of tree.control isthe parameter
cp which defaultsto 0.01. If asplit does not result in abranch 7} with R(7}) at
least cp x |T3| x R(Tp) itisnot considered further. Thisisaformof ‘ pre-pruning’;
the tree presented has been pruned to this value and the knowledge that this will
happen can be used to stop tree growth®. In many of our examples the minimum
of xerror occursfor values of cp lessthan 0.01, so we choose a smaller value.

Parameters maxcompete and maxsurrogate givesthe number of good at-
tributes and surrogatesthat areretained. Set maxsurrogate tozeroif itisknown
that missing values will not be encountered.

The number of cross-validationsis controlled by parameter xval, default 10.
This can be set to zero at early stages of exploration, since thiswill produce avery
significant speedup.

Notethat these parametersmay al so be passed directly to rpart . For example
for the iris datawe have

> ir.rpl <- rpart(Species ~ ., ird, cp=0, minsplit=5,
maxsurrogate=0)
> printcp(ir.rpl)

Root node error: 100/150 = 0.667

CP nsplit rel error xerror xstd

1 0.50 0 1.00 1.18 0.0502
2 0.44 1 0.50 0.63 0.0604
3 0.02 2 0.06 0.08 0.0275
4 0.01 3 0.04 0.08 0.0275
5 0.00 4 0.03 0.07 0.0258

> print(ir.rpl, cp=0.015)
node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 150 100 ¢ (0.33 0.33 0.33)
2) Petal.L.>2.45 100 50 ¢ (0.50 0.00 0.50)
4) Petal.W.<1.75654 5 ¢ (0.91 0.00 0.09)
8) Petal.L.<4.9548 1 c (0.98 0.00 0.02) *
9) Petal.L.>4.956 2 v (0.33 0.00 0.67) *
5) Petal.W.>1.7546 1 v (0.02 0.00 0.98) *
3) Petal.L.<2.4550 0 s (0.00 1.00 0.00) *
which suggests atree with 4 leaves asin Figure 14.5.

Survival data

Now let ustry asurvival example: wereturntothe VA cancer dataset cancer.vet
we considered in Chapter 12.

61f R(T;) > 0, splitsof nodeswith R(t) < cpR(Ty) will always be pruned.

14.4 Library RPart 75

size of tree
1 2 3 4 6 8 9 10 11

N
-

X-val Relative Error

0.6

Inf 0.13 0.056 0.035 0.026 0.02 0.018 0.014 0.012
cp

Figure 14.12: Plot by plotcp of the rpart object VA.rp.
> set.seed(123)
> VA.rp <- rpart(Surv(stime, status) ~ ., data=VA, minsplit=10)
> plotcp(VA.rp)
> printcp(VA.rp)

Root node error: 158/137 = 1.15

CP nsplit rel error xerror xstd

1 0.1923 0 1.000 1.014 0.1034
2 0.0829 1 0.808 0.830 0.1071
3 0.0380 2 0.725 0.766 0.1067
4 0.0319 3 0.687 0.787 0.1102
5 0.0210 5 0.623 0.820 0.1045
6 0.0189 7 0.581 0.848 0.1060
7 0.0164 8 0.562 0.828 0.0982
8 0.0123 9 0.546 0.809 0.0966
9 0.0110 10 0.533 0.825 0.0999

> print (VA.rp, cp=0.09)
node), split, n, deviance, yval
* denotes terminal node

1) root 137 160 1.0
2) Karn>45 99 81 0.8 %
3) Karn<45 38 46 2.5 *

Here yval istherelative hazard ratefor that node; we have a proportional hazards
model and thisis the estimated proportional factor.

In our experienceitiscommon for tree-based methodsto find little structurein
cancer prognosis datasets: what structure there is depends on subtle interactions

14.4 Library RPart 76

between covariates.

Plots

Thereareplot methodsfor useonastandard S-PLUS graphicsdevice(plot.rpart
and tree.rpart), plusamethod for post ’ for plotsin POSTSCRIPT. Note that
unlike post.tree, post.rpart isjustawrapper for callsto plot.rpart and
text.rpart ona postscript device.

The function plot.rpart hasawide range of optionsto choose the layout
of the plotted tree. Let us consider some examples®.

plot(VA.rp, branch=0.2); text(VA.rp, digits=3)
post (VA.rp, horizontal=F, pointsize=8)

Theargument branch controlsthe slope of the branches: 1 givesthoseinthestyle
of plot.tree and 0.2 (closeto) the style of post.tree. Arguments uniform
and compress control whether the spacing reflects the importance of the fits (by
default it does) and whether a compact styleis used. The call to tree.rpart
may have additional arguments all which gives the value at all nodes (not just
the leaves) and use.n whichif true givesthe numbers of cases reaching the node
(and for classification trees the number of errors, for survival trees the number of
uncensored val ues)

0.356 0.756

Figure 14.13: Plotsof VA.rp. Theleft plot isfrom plot.rpart and text.rpart, the
right from post.rpart.

The function snip.rpart worksin avery smilar way to snip.tree to
allow interactive pruning of plotted trees.

Further examples

We can re-analyse the two remaining examples from Chapter 14.

7 and the generic function: only post.tree existsin S-PLUS
8 Using S-PLUS 3.3 under Windows it will be necessary to set the filename argument, asthe
default filename, VA.rp.ps, isnot alega MS-DOS name.

14.4 Library RPart

Forensic glass
set.seed(123)

fgl.rp <~ rpart(type ~

plotcp(fgl.rp)
printcp(fgl.rp)

Classification tree:
rpart (formula = type ~

Variables actually used in tree construction:

., fgl, cp=0.001)

*

[1] Al Ba Ca Fe Mg Na RI

data =

Root node error: 138/214 = 0.645

vV N O O W N
O O O O O O

0.

CP nsplit rel error xerror

.2065
.0725
.05680
.0362
.0326
.0109
0010

0

~N O WwN

9

1.
.587
.514
.457
.420
.355
.333
print(fgl.rp, cp=0.02)

O O O O O O

000

1.
.594
.587
.5561
.536
.478
.500

O O O O O O

000

fgl, cp = 0.001)

O OO O O O o

xstd

.0607
.0515
.0614
.0607
.0504
.0490
.0495

node), split, n, loss, yval, (yprob)

1) root 214 140 WinNF (0.33 0.36 0.07 0.06 0.04 0.14)

* denotes terminal node

77

2) Ba<0.335 185 110 WinNF (0.37 0.41 0.09 0.06 0.04 0.01)
4) Al<1.42 113 50 WinF (0.56 0.27 0.12 0.00 0.02 0.01)
38 WinF (0.62 0.21 0.13 0.00 0.02 0.02)
16) RI>-0.93 85 25 WinF (0.71 0.20 0.07 0.00 0.01 0.01)
18 WinF (0.77 0.14 0.06 0.00 0.01 0.0
2 WinNF (0.12 0.75 0.12 0.00 0.00 O.
9 Veh (0.19 0.25 0.44 0.00 0.06 0.06
2 WinNF (0.00 0.83 0.00 0.08 0.08 0.00
5) A1>1.42 72 28 WinNF (0.08 0.61 0.05 0.15 0.08 0.01)

8) Ca<10.48 101

9) Ca>10.48 12

10) Mg>2.26 52
11) Mg<2.26 20

3) Ba>0.335 29

32) Mg<3.865 77
33) Mg>3.865 8
17) RI<-0.93 16

11 WinNF (0.12 0.79 0.07 0.00 0.01 0.00) =*

9 Con (0.00 0.15 0.00 0.55 0.25 0.05)

22) Na<13.495 12
23) Na>13.495 8

0
)
)

1
0
*
*

1 Con (0.00 0.08 0.00 0.92 0.00 0.00) =*
3 Tabl (0.00 0.25 0.00 0.00 0.62 0.12) =*
3 Head (0.03 0.03 0.00 0.03 0.00 0.90) =

This suggests atree of size 8, plotted in

fgl.rp2 <- prune(fgl.rp, cp=0.02)

plot(fgl.rp2); text(fgl.rp2)

Low birth weights

Thisis afairly small dataset, so the sequence of splits is sensitive to the precise
minimum splits allowed. We can come close to copying tree by

) *
) *

14.4 Library RPart 78

set.seed(123)

bwt.rp <- rpart(low ~ ., bwt, cp=0.001, minsplit=10,
minbucket=5)

plotcp(bwt.rp)

which (on thiscross-validation run) suggests that no split at all isbest. Thistreeis
grown using the Gini criterion, and differsdlightly from that grown using entropy;
we can get the same splitsas tree (but to different depths) by

bwt.rp2 <- rpart(low ~ ., bwt, cp=0.0, xval=0, minsplit=10,
minbucket=5, parms=list(split="information"))

Missing data

If thecontrol parameter maxsurrogate ispositive(andtheparameter usesurrogate
has not been altered), the surrogates are used to handle missing cases bothin train-
ing and in prediction (including cross-validation to choose the complexity). Each
of the surrogate splitsis examined in turn, and if the variable is avail able that split
is used to decide whether to send the case |eft or right. If no surrogate isavailable
or none can be used, the case is sent with the maority unless usesurrogate
< 2 when it isleft at the node.

The default na.action duringtrainingis na.rpart, which excludes cases
only if the response or all the explanatory variablesaremissing. (Thislookslikea
sub-optimal choice, ascaseswith missing response are useful for finding surrogate
variables.)

When missing values are encountered in considering a split they are ignored
and the probabilities and impurity measures are calculated from the non-missing
values of that variable. Surrogate splits are then used to allocate the missing cases
to the daughter nodes.

Surrogate splits are chosen to match as well as possible the primary split
(viewed as a binary classification), and retained provided they send at least two
cases down each branch, and agree as well as the rule of following the majority.
The measure of agreement is the number of cases that are sent the same way,
possibly after swapping ‘left’ and ‘right’ for the surrogate. (Asfar aswe can tell,
missing values on the surrogate are ignored, so this measure is biased towards
surrogate variables with few missing values.)

Losses and priors

In a classification problem it is quite common to assign losses L;; of declaring
class j when class i is true, and for these to differ from the default choice of
L;; = I(j = i). How to make optimal decisions when losses are present is
discussed in detail in Ripley (1996, Chapter 2). In principle there is a clean
separation; we find the posterior probabilities p(c | x) and use these to choose the
class that minimizesthe expected conditional loss >, L;; p(i| x). Inpracticewe
have to estimate the posterior probabilities, and where we concentrate our effort
depends on the use to which they will be put.

145 Tree-structured survival analysis 79

A similar argument appliesto priors. Sometimeswe know that thetraining set
isunrepresentative of thetarget population (medical studieswill often havetoo few
normal patients, for example), and it is easy to adjust the posterior probabilities
to take account of this (Ripley, 1996, p. 59). There are strong arguments with just
two classes (given in that reference) for a form of weighted fitting with unequal
losses that corresponds to adjusting the prior.

Ideally the target prior probabilities and the losses should be used to choose
both the splitsin the tree and its complexity. However, rpart just useslossesin
choosing the splits, athough it appearsto use priorsin the definition of R(7") and
hencein the pruning phase. The formal definitionof R(T) =), p: > .picLe,c,
wherethe sum isover leaves ¢, and the declared class C; ischosen to minimized
the expected loss at that node. Of course p; isestimated by 7, /n, the proportion
of casesreaching that node, and p;. isusually estimated by n,./n. ,theproportion
of class ¢ cases reaching that node. However, if we have a specified prior (r.),
we estimate p. by pic = [menue/n.c] / > [mine/n.i]. We leave the reader
to check that with no specified prior and the zero-one loss, R(7") becomes the
overall error rate, number of misclassifications divided by .

A prior is specified by avector of length the number of classes as component
prior of thelist argument parms. A loss matrix can be specified by component
loss of thislist: the prior isthen taken to be

T Z . Lij
Z”Wsz‘j

14.5 Tree-structured survival analysis

Survival data are usually continuous, but are characterized by the possibility
of censored observations. There have been various approaches to extending
regression trees to survival data in which the prediction at each leaf is a survival
distribution.

The deviance approach needs a common survival distribution with just one
parameter (say the mean) varying between nodes. As the survival distribution
has otherwise to be known completely, we would need to take, for example, a
Weibull distribution with a specific «c. Thus this approach has most often been
used with an exponential distribution (it goes back at least to Ciampi et al., 1987
and is expounded in detail by Davis & Anderson, 1989). This is related to the
approach of the rpart library described in the previous section.

Another family of approaches has been viaimpurity indices, which we recall
measure the decrease in impurity on splitting the node under consideration. This
can be replaced by a ‘goodness-of-split’ criterion measuring the difference in
survival distribution in the two candidate daughter nodes. In regression trees
the reduction in sum of squares can be seen as a goodness-of-split criterion, but a
more natural candidate might be the unpooled (Welch) ¢ -test between the samples
passed to the two daughters. Given this change of viewpoint we can replace the

145 Tree-structured survival analysis 80

t -test by atest which takes censoring into account and is perhaps more appropriate
for the typical shape of survival curves. The split selected at a node is then the
candidate split with the most significant test of difference.

Library tssa

This approach isoutlined by Segal (1988), who considers afamily of statisticsin-
troduced by Tarone & Ware (1977) whichincludesthelog-rank (Mantel-Haenszel)
and Gehan tests and Prentice’s generalization of the Wilcoxon test. His approach
isimplemented in the tssa library of Segal and Wager. Thisuses tssa asthe
main function, and generates objects of class "tssa" which inherits from class
"tree". A member of the family of test statistics is selected by the argument
choice. Splitting continues until there are maxnodes nodes (default 50) or no
leaf has as many as minbuc cases (default 30) and a proportion at least propn
(default 15%) of uncensored cases.

We consider the VA lung cancer data of Section 12.4. Since tssa cannot
currently handle multi-level factors, we have to omit the variable cell.

> library(tssa, first=T)
> VA.tssa <- tssa(stime ~ treat + age + Karn + diag.time + prior,
status, data=VA, minbuc=10)
> VA.tssa
node), split, (n, failures), km-median, split-statistic
* denotes terminal node, choice is Mantel-Haenzel

1) root (137,128) 76.5 6.67
2) Karn<45 (38,37) 19.5 2.71
4) diag.time<10.5 (28,27) 21.0 2.08
8) age<62.5 (14,13) 18.0 x
9) age>62.5 (14,14) 33.0 *
5) diag.time>10.5 (10,10) 8.0 *
3) Karn>45 (99,91) 110.5 2.74
6) Karn<82.5 (90,84) 104.0 2.22
12) age<67.5 (74,69) 111.5 1.34
24) prior<1.5 (50,48) 104.0 1.55
48) age<b9 (24,23) 110.0 1.22
96) age<46.5 (13,13) 99.0 *
97) age>46.5 (11,10) 127.0 *
49) age>b59 (26,25) 95.0 0.91
98) diag.time<3.5 (11,11) 91.0 *
99) diag.time>3.5 (15,14) 98.5 *
25) prior>1.5 (24,21) 139.5 1.10
50) treat<1.5 (14,13) 122.0 *
51) treat>1.5 (10,8) 145.5 *
13) age>67.5 (16,15) 72.0 *
7) Karn>82.5 (9,7) 234.5 *

> summary(VA.tssa)
Survival tree:

145 Tree-structured survival analysis 81

tssa(formula = stime ~ treat + age + Karn + diag.time + prior,
delta = status, data = VA, minbuc = 10)

Number of terminal nodes: 11

> tree.screens()

plot (VA.tssa)

text (VA.tssa)

km.tssa(VA.tssa)

close.screen(all=T)

vV V V V

It can be helpful to examine more than just the mean at each node; the function
km.tssa will plot the Kaplan-Meier estimates of survival curves for the two
daughters of a non-terminal node. Interactive exploration® shows that there is

Karn<45
1

Karn<82.5

age<67.5

13/14 14/14 nnolrz<1.5 1

treat<1.5
25

5 5
13/14 8/10

0.8

0.4

13 12
0 200 400 600 800 100C

0.0

Figure 14.14: Treefitted by tssa tothe cancer.vet dataset. The bottom screen shows
the output from km.tssa when node 6 was selected.

very little differencein survival between nodes at (Figure 14.14) or below node 6.

The change from a goodness-of-fit to a goodness-of-split view is not helpful
for pruning a tree. Segal (1988) replaced optimizing a measure of the fit of the
tree (as in cost-complexity pruning) with a stepwise approach.

(i) Grow avery largetree.

(if) Assign to each non-terminal node the largest split statistic in the subtree
rooted at that node. (This can be done in asingle upwards pass on the tree.)

9 thisrelieson erase.screen which isbrokenin S-PLUS 4.0; it ‘erases’ by overplotting with a
polygon filled with colour 0 whichis no longer the background colour, and is normally transparent.

145 Tree-structured survival analysis 82

(iif) Obtain a sequence of pruned trees by repeatedly pruning at the remaining
node(s) with the smallest assigned values.

(iv) Select one of these trees, perhaps by plotting the minimum assigned value
against tree size and selecting the tree at an *elbow’.

This is implemented in prune.tssa. Like snip.tree (and snip.tssa), a
valueis selected by afirst click (on the lower screen), and the tree pruned at that
value on the second click. For our example we can use

tree.screens()
plot (VA.tssa)
prune (VA.tssa)
close.screen(all=T)

The only clear-cut pruning point (Figure 14.15) is at a single split. There is

12

24 25

49

Szplit—statistic
123456

6
Number of Terminal Nodes

Figure 14.15: Treefitted by tssa tothe cancer.vet dataset. The bottom screen shows
the prune sequence from prune.tssa.

a function post.tssa the equivaent of (and modified from) post.tree for
tssa trees.

Library survcart

The library survcart ° is sparsely documented, but appears to implement the
strategy of LeBlanc & Crowley (1993). Like Segal, LeBlanc & Crowley use a

10 glso known as CART_SD .

145 Tree-structured survival analysis 83

goodness of split criterion for growing the tree, in this case the log-rank statistic
with some adjustment for selecting the maximal statistic over all possible splits of
continuousvariables. However, thepruning strategy differsfrom tssa. Associate
to each non-terminal nodethegoodness-of-split statistic G(¢) , taking G tobezero
at the terminal nodes. Then LeBlanc & Crowley apply cost-complexity pruning

to the measure of fit
R(T)=-> G(0)
LeT

This is not a sum over cases, but as it is defined additively over branches the
standard pruning algorithm (Breiman et al., 1984; Ripley, 1996) is still justified.
(The ‘deviance’ quoted by prune.survtree is > ,G(¢).) The measure of fit
can be computed on avalidation set based down the optimally pruned tree sequence
(T}), but asit is not a measure of performance there is no justification for then
choosing the best fit; indeed R(7") decreases monotonically asthe treeis grown,
since G(¢) > 0. The suggestion of LeBlanc & Crowley isto choose the pruning
minimizing R, (7") on the validation set for o € [2,4]. (LeBlanc & Crowley
also discuss using bootstrapping to bias-correct R(7") computed on the training
et prior to pruning.)

Library survcart canbevery memory-hungry: it comeswith aninformative
demonstration that needs over 50Mb* of virtual memory to run.

We can try our VA cancer example by

library(survcart, first=T)
VA.st <- survtree(stime ~ treat + age + Karn + diag.time +
cell + prior,
data=VA, status, fact.flag=c(¥,T,T,T,F,F))
plot (prune.survtree(VA.st))

Theargument fact.flag sayswhich variablesshould be regarded as not factors
and included in the adjustment of the log-rank statistic for continuous variates
(although a factor with many levels will give rise to very many more possible
splits). The ‘deviance is —R(Ty) — ax(|Tk| — 1)!

We can reserve avalidation set and use thisfor pruning by

set.seed(123); tr <- sample(nrow(VA), 90)
VA1 <- VA[tr,]; VA2 <- VA[-tr,]
VA.stl <- update(VA.st, data=VA1l)
VA.stl.pr <- prune.survtree(VA.stl, newdata=VA2,
zensor .newdata=VA2$status)
VA.stl.pr
$size:
[1] 121110 9 8 5 4 3 2 1 0
$dev:
[1] 36.6986 36.0633 35.1245 24.2267 24.2514 13.5163
[7] 15.7134 15.5296 -16.7492 -8.2354 0.0000

11 on each of S-PLUS 3.3 for Windows and on Sun Solaris; over 100Mb on S-PLUS 4.0 for
Windows

145 Tree-structured survival analysis 84

$k:
[1] 0.000000 0.033653 0.048377 0.709060 0.733988 2.595874
[7] 2.692954 3.346168 12.984497 13.469285 19.090138

Note that the size is the number of splits, one less than the number of leaves. We
need to convert thisto a split-complexity measure:

attach(VA.stl.pr)

dev <- dev + k*size

> dev - 2%*size
[1] 12.6986 14.4335 15.6082 12.6082 14.1233 16.4956 18.4853
[8] 19.5681 5.2198 3.2339 0.0000

> dev - 4x*size
[1] -11.3014 -7.5665 -4.3918 -5.3918 -1.8767 6.4956
[7] 10.4853 13.5681 1.2198 1.2339 0.0000

detach()

which suggests atree with three splits

> prune(VA.stl, k=4)

1) root 90 19
2) cell:2,3 49 13
4) prior:0 40 0 *
5) prior:10 9 0 *
3) cell:1,4 41 13
6) Karn<45 8 0 *
7) Karn>45 33 0 *

Note how the selection penalty on continuous variables such as Karn reduces
their prominence.

We can explore the spread of predictions over splits in a manner similar to
km.tssa by picking valuesof £ in

VA.st.tmp <- prune.survtree(VA.st, k=2)
plot(surv.fit(VA$stime, VA$status, factor(VA.st.tmp$where)))

Thisshowsthe Kaplan-Meier estimates of survival at all theleaves, and by succes-
sively reducing £ we can see when the range of variation is no longer essentially
covered.

The function graph.survtree allows various aspects of the tree model to
be plotted. The following call plotsthe median survival by node

graph.survtree (prune(VA.st, k=3.5), VA$stime, VA$status,
xtile=0.5, interactive=F)

but it can also show the survival probability at afixed time.

145 Tree-structured survival analysis

Karn>45

" cellL g

~51

."a_ge<6‘5».5

.ége>4\0(5

/7 Kamb65
Karii<65 : |

4@8

0 50 100 150 200 250

time with survival-rate 0.5

Figure 14.16: Plot of median survival by graph.survtree.

85

86

Chapter 15

Time Series

15.1 Second-order summaries

Spectral analysis

The most common approach to estimating a spectral density is to use a kernel
smoother, as implemented by spectrum, but there are alternatives, including
the use of fitted high-order AR processes (page 448). One promising lineisto
use some of the alternative methods of estimating a probability density function
function, since a spectral density isjust afinite multiple of a pdf.

Thelibrary 1spec by Charles Kooperbergimplementsthelogspline approach
described in Section 5.5 of these complements. Its application to spectral esti-
mation is described in Kooperberg et al. (1995b); note that it is able to estimate
mixed spectra that have purely periodic components. We will illustrate this by
estimating the spectra of our running examples 1h and deaths as well as the
accdeaths and nottem Series.

For 1h we have

> library(lspec)

> lh.1ls <- lspec.fit(1lh)

> lspec.summary(lh.1ls)
Logspline Spectral Estimation

The fit was obtained by the command:

lspec.fit(data = 1lh)

A spline with 3 knots, was fitted; there were no lines in the model.
The log-likelihood of the model was 60.25 which corresponds to an
AIC value of -110.96 .

The program went though 1 updown cycles, and reached a stable
solution. Both penalty (AIC) and minmass were the default
values. For penalty this was log(n)=log(24)= 3.18 (as in BIC)
and for minmass this was 0.0329. The locations of the knots were:
1.178 2.749 3.142
> lspec.plot(lh.ls, log="y")
> lspec.plot(lh.ls, what="p")

15.1 Second-order summaries 87

0.05
0.20 0.30

0.10

0.01
0.0

00 05 10 15 20 25 30 -3 -2 -1 0 1 2 3

Figure 15.25: Spectral density (left) and cumulative spectral distribution function (right)
for the series 1h computed by library 1spec.

(Figure 15.25). Note that rather different conventions are used for the spectrum,
whichistakentorunover (—m, 7| rather thanin cycles, and theamplitudeisgiven
in the normal units, not decibels. The spectral density and cumulative spectrum
can befound by dlspec and plspec respectively.

deaths.ls <- lspec.fit(deaths)

lspec.plot(deaths.ls, log="y", main="deaths")
lspec.plot(deaths.ls, what="p")

accdeaths.ls <- lspec.fit(accdeaths)
lspec.plot(accdeaths.ls, log="y", main="accdeaths")
lspec.plot(accdeaths.ls, what="p")

nott.ls <- lspec.fit(window(nottem, end=c(1936,12)))
lspec.plot(nott.ls, log="y", main="nottem")
lspec.plot(nott.ls, what="p")

(Figure 15.26). Note how 1spec.fit findsthe discrete component at frequency
m/12 in al three cases, but is fooled by harmonics in the last two. We can
allow lspec.fit to fit more discrete components by reducing the value of its
argument minmass (whose default can be found from 1spec.summary). Inthe
accdeaths examplewe can pick up all but one of the harmonics by

lspec.plot(1lspec.fit(accdeaths, minmass=7000), log="y")
lspec.plot(lspec.fit(accdeaths, minmass=1000), log="y")

but reducing minmass introduces discrete components at non-harmonic frequen-
cies (Figure 15.27).

Thefunctions clspec and rlspec compute the autocovariance (or autocor-
relation) sequence corresponding to the fitted spectrum and ssmulate a Gaussian
time series with the fitted spectrum respectively.

15.1 Second-order summaries 88

deaths accdeaths nottem

20000
500000

5.0

500000000

9000

500010000

=
S
R o
=} pi
S
S
e
Q
S
=}
0 10
o
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0
9
8
o
8 S
=3 S Q
g s 8
&
=
S
S
S
§ © o
g] g
o]
S
S
S
<
=}

8 o o
g g 8
S
<
o) o

3 2 1 0 1 2 3 3 2 1 0 1 2 3 3 2 1 0 1 2 3

Figure 15.26: Spectral density (top) and cumulative spectral distribution function (bottom)
for the series deaths, accdeaths and nottem.

500000
500000
500000

50000100000

5000000000
50000 100000

500010000
5000 10000

- \l

0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0

5000 10000

Figure 15.27. Spectrafor nottem with minmass as (Ieft to right) 77000, 7000 and 1000.

89

Chapter 16

Spatial Statistics

16.3 Module S+SPATIALSTATS

The first release of the S-PLUS module S+SPATIALSTATS was released in mid-
1996. That has a comprehensive manual (published as Kaluzny & Vega, 1997),
which we do not aim to duplicate, but rather to show how our examples in
Chapter 16 can be done using S+SPATIALSTATS.

The module S+SPATIALSTATS is attached and made operational by
module (spatial)

which we will assume has been done. Unfortunately the name is the same as our
library (as are some of the function names); modules take priority over libraries.

Kriging

The kriging functions use a dight extension of the model formulalanguage. The
function loc isused to specify the two spatial coordinates of the points, which
are used to find the covariance matrix in kriging. Universal kriging is specified by
adding other terms to form a linear model. Thus we can specify the model used
in the bottom row of Figure 16.5 by

> topo.kr <- krige(z ~ loc(x, y) + x +y + X"2 + x*y + y~2,
data=topo, covfun=exp.cov, range=0.7, sill=770)
> topo.kr

Coefficients:
constant X y x"2 Xy y~2
808.3 -12.896 -64.486 62.137 1.6332 6.3442

> prsurf <- predict(topo.kr, se.fit = T,
grid = list(x=c(0, 6.5, 50), y=c(0, 6.5, 50)))
> topo.pltl <- contourplot(fit ~ x*y, data=prsurf, pretty=F,
at=seq(700, 1000, 25), aspect=1,
panel = function(...){
panel.contourplot(...)
points(topo)

16.3 Module S+SPATIALSTATS 90

D

> topo.plt2 <- contourplot(se.fit ~ x*y, data=prsurf, pretty=F,
at=c(20, 25), aspect=1)

> print(topo.pltl, split=c(1,1,2,1), more=T)

> print(topo.plt2, split=c(2,1,2,1))

(The sill valueis explained below.) We can of course obtain a least-squares
trend surface by giving a covariance function that drops to zero immediately, for
example exp.cov with range = 0, but there seems no simple way to obtain a
trend surfacefitted by GLS. The predict methodfor krige objectstakeseither
a newdata argument or a grid argument as used here. The grid argument
must be a list with two components with names matching those given to loc

and specifying the minimum, maximum and number of points. (Thisis passed to
expand.grid to compute adataframefor newdata.)

Analogues of the fits shown in Figure 16.6 may be obtained by

topo.kr2 <- krige(z ~ loc(x, y) + x +y + x"2 + xxy + y~2,
data = topo, covfun = gauss.cov,
range = 1, sill = 600, nugget = 100)

topo.kr3 <- krige(z ~ loc(x, y), data = topo,
covfun = gauss.cov, range = 2, sill = 6500, nugget = 100)

Various functions are provided to fit variograms and correlograms. We start
by fitting a variogram to the original data.

topo.var <- variogram(z ~ loc(x, y), data=topo)
model.variogram(topo.var, gauss.vgram, range=2,
$111=6500, nugget=100)

The function model .variogram plots the variogram object (which may aso
be plotted directly) and draws a theoretical variogram. It then prompts the user
to alter the parameters of the variogram to obtain a good fit by eye. It this
case range = 3.5 seemsindicated. The parametrization isthat nugget isthe
increment at the origin, and sill isthe change over the range of increase of the
variogram. (In geostatistical circles the sum of ‘nugget’ and ‘sl is caled the
sll.) Thusthe alph of our covariancefunctionsis nugget/(sill + nugget) .

There are functions correlogram and covariogram which can be usedin
the same way (including with model.variogram).

topo.cov <- covariogram(z ~ loc(x, y), data=topo)
model .variogram(topo.cov, gauss.cov, range=2,
$111=4000, nugget=2000)

We can now explain how we chose the the parameters of the exponential
covariance in thefirst plot. Anobject of class "krige" containsresiduals, so we
can use

topo.ls <- krige(z ~ loc(x, y) + x + y + X"2 + x*y + y~°2,
data=topo, covfun=exp.cov, range=0)

topo.res <- residuals(topo.ls)

topo.var <- variogram(topo.res ~ loc(x, y), data=topo)

model .variogram(topo.var, exp.vgram, range=1, sill=1000)

16.3 Module S+SPATIALSTATS 91

8000

6000

gamma

4000 -

2000

T T T T T
0 1 2 3 4
distance
0 1 2 3 4
. | | |

1500

1000 +

gamma

500

T T T T T
0 1 2 3 4

distance

Figure 16.10: Directional variograms for the topo dataset. The top pair is for the raw
data, the bottom pair of residuals from aquadratic trend surface. The left plots are vertical
variograms, the right plots are horizontal ones. (The strip coverage is mideading, only
showing the positive part of the angular tolerance.)

This suggests a sill of about 800. The kriging predictions do not depend on the
sll, and our spatial library relieson thistowork throughout with correlograms
and to fit the overall scale factor when plotting the standard errors. Knowledge of
our code allowed us to read off the value 770. 1t would be a good idea to repeat
the forming of the residuals, thistime from the GL S trend surface. We can choose
the covariogram for the Gaussian case in the same way.

topo.var <- covariogram(topo.res ~ loc(x, y), data=topo)
model .variogram(topo.var, gauss.cov, range=1, sill=210,
nugget=90)

Spatial anisotropy

The geostatistical functions in S+SPATIALSTATS have considerable support for
studying anisotropy of smooth spatial surfaces, and to correct for geometrical
anisotropy (anisotropy which can be removed by ‘squeezing’ the plot in some
direction). The function loc hastwo additional parameters angle and ratio
to removegeometrical anisotropy. Thefunctions variogram, correlogram and
covariogram all allow multiple plots for pairs of distances in angular sectors.
For example

plot(variogram(z ~ loc(x, y), data=topo, azimuth = c(0, 90),
tol.azimuth = 45), aspect=0.7, layout=c(2,1))
plot(variogram(topo.res ~ loc(x, y), data=topo,

16.3 Module S+SPATIALSTATS 92

azimuth = c(0, 90), tol.azimuth = 45),
aspect=0.7, layout=c(2,1))

They show vertical and horizontal variograms (for pairs within a tolerance of
+45°) of the raw topo data and then the residuals from the quadratic trend
surface. (As these produce and print Trellis plots, none of the normal ways to
put two plots on one page are possible and Figure 16.10 is assembled from two
S-PLUS plots.)

Point process functions

Spatial point patterns are objects of class "spp" , with constructor function spp.
We can convert our pines.dat toa spp object by

library(spatial) # our library, for next line only.
pines <- data.frame(ppinit("pines.dat")[c("x", "y")1)
pines <- spp(pines, "x", "y", bbox(c(0,9.6), c(0, 10)), drop=T)
attributes(pines)

$class:

(1] "spp" "data.frame"

$coords:

[1] "X" "y"

$boundary:

$boundary$x:

[1] 0.0 0.0 9.6 9.6

$boundary$y:

[1] 10 0 0 10

Anobject of class "spp" isadataframewith two attributes, "coords" declares
which columns give the spatial coordinates, and "boundary" which gives the
boundary of a polygon within which the pattern was observed. (This defaultsto
the bounding rectangle aligned with the axes, but the use of that is not advisable.)
We can reproduce Figure 16.8 quite closely by
par(pty = "s", mfrow=c(2,2))

plot(pines, boundary = T)
Lhat(pines, maxdist = 5)

Lenv(pines, 25, process = "binomial", maxdist=5)
Lhat(pines, maxdist =1.5)
Lenv(pines, 100, process = "Strauss", maxdist = 1.5,

cpar = 0.2, radius = 0.7)

As this code shows, Lenv can simulate from several point process models: it
does so by calling the function make . pattern whose functionality is equivalent
to that of our functions Psim, SSI and Strauss plus certain Poisson cluster
processes.

There isno way to estimate parameters of point process modelsin the current
release of S+SPATIALSTATS, but it does have functions Fhat and Ghat to use
nearest neighbour methods, and function intensity to estimate the intensity
function of a heterogeneous point process. (Thisis closely related to bivariate
density estimation.)

93

Chapter 17

Classification

17.3 Forensic glass

Neural networks

The recently-added method nnet.formula allows us to write some general
functionsfor testing neural network models by V-fold cross-validation. First we
re-scale the dataset so the inputs have range [0, 1].

fgll <- lapply(fgl[, 1:9], function(x)
{r <- range(x); (x-r[1])/diff(x)})
fgll <- data.frame(fgll, type=fgl$type)

Then we can experiment with multiple logistic regressions.

res.multinom <- CVtest(
function(x, ...) multinom(type ~ ., fgli[x,]l, ...),
function(obj, x) predict(obj, fglill[x,]1,type="class"),
maxit=1000, trace=F)

con(fgl$type, res.multinom)

We can now use amodest amount of weight decay as ' ridgeregression’, to reduce
the effects of any irrelevant inputs.

res.mult2 <- CVtest(
function(x, ...) multinom(type ~ ., fgli[x,]l, ...),
function(obj, x) predict(obj, fglil[x, 1, type="class"),
maxit=1000, trace=F, decay=1e-3)

> con(fgl$type, res.mult2)

error rate = 36.45 Y%
and also try out subset selection by

res.mult3 <- CVtest(

function(xsamp, ...) {
assign("xsamp", xsamp, frame=1)
obj <- multinom(type ~ ., fgll[xsamp,], trace=F, ...)

stepAIC(obj)

17.3 Forensic glass 94

},
function(obj, x) predict(obj, fglil[x,],type="class"),
maxit=1000, decay=1e-3)
> con(fgl$type, res.mult3)

error rate = 41.12 %

In our runs the variables RI, Na, Mg, Al and Si wereretained in all 10 folds,
and Ca inall but one, the only onein which K and Ba were retained.

It isstraightforward to fit afully specified neura network in the same way.

res.nn <- CVtest(
function(x, ...) nnet(type ~ ., fgli[x,1, ...),
function(obj, x) predict(obj, fglil[x, 1, type="class"),
maxit=1000, size=6, decay=0.01, trace=F)

> con(fgl$type, res.nn)

error rate = 29.91 Y%

We will, however, want to average across several fits

CVnn <- function(nreps=1, ...)
{
res <- matrix(0, 214, 6)
dimnames (res) <- list(NULL, levels(fgl$type))
for (i in sort(unique(rand))) {
cat("fold " i, "\p" , sep=” "
for(rep in 1l:nreps) {
learn <- nnet(type ~ ., fgli[rand !=i,], trace=F, ...)
res[rand == i,] <- res[rand == i,] +
predict(learn, fglil[rand==i,])
}
}
max.col(res/nreps)
}
> res.nn <- CVnn(maxit=1000, size=6, decay=0.01)
> con(fgl$type, res.nn)

error rate = 29.44 Y%

and to choose the number of hidden units and the amount of weight decay by an
inner cross-validation. To do so we wrote fairly general function that can easily
be used or modified to suit other problems.

CVnn2 <- function(formula, data,
size = rep(6,2), lambda = c(0.001, 0.01),
nreps = 1, nifold = 5, verbose = 99, ...)
{
CVnnl <- function(formula, data, nreps=1, ri, verbose, ...)
{
truth <- datal,deparse(formulal[[2]])]

17.3 Forensic glass 95

res <- matrix(0, nrow(data), length(levels(truth)))
if (verbose > 20) cat(" inner fold")
for (i in sort(unique(ri))) {
if (verbose > 20) cat(" ", i, sep="")
for(rep in 1l:nreps) {
learn <- nnet(formula, datalri !=i,], trace=F, ...)
res[ri == 1i,] <- res[ri == 1i,] +
predict(learn, datalri == i,])

}
if (verbose > 20) cat("\n")
sum(unclass (truth) != max.col(res/nreps))
}
truth <- datal,deparse(formulal[[2]])]
res <- matrix(0, nrow(data), length(levels(truth)))
choice <- numeric(length(lambda))
for (i in sort(unique(rand))) {
if (verbose > 0) cat("fold ", i,"\n", sep="")
ri <- sample(nifold, sum(rand!=i), replace=T)
for(j in seq(along=lambda)) {
if (verbose > 10)
cat(" size =", sizel[j], "decay =", lambdal[jl, "\n")

choice[j] <- CVnnl(formula, datal[rand != i,], nreps=nreps,
ri=ri, size=sizel[j], decay=lambdalj],
verbose=verbose, ...)
}

decay <- lambda[which.is.max(-choice)]
csize <- size[which.is.max(-choice)]
if (verbose > 5) cat(" #errors:", choice, " ")
if (verbose > 1) cat("chosen size = ", csize,
" decay = ", decay, "\n", sep="")
for(rep in 1l:nreps) {

learn <- nnet(formula, datal[rand '= i,], trace=F,
size=csize, decay=decay, ...)
res[rand == i,] <- res[rand == i,] +
predict(learn, datalrand == i,])
}

}
factor(levels (truth) [max.col(res/nreps)],
levels = levels(truth))
}
> res.nn2 <- CVnn2(type ~ ., fgll, skip=T, maxit=500, nreps=10)
> con(fgl$type, res.nn2)
WinF WinNF Veh Con Tabl Head

WinF 57 10 3 0 0 0
WinNF 16 51 3 4 2 0
Veh 8 3 6 0 0 0
Con 0 3 0 9 0 1
Tabl 0 1 0 1 5 2
Head 0 3 0 1 0 25

17.3 Forensic glass 96

error rate = 28.5 %

This fits a neural network 1000 times, and so is fairly slow (6 hours on the PC)
and memory-intensive (about 20 Mb).

This code chooses between neural nets on the basis of their cross-validated
error rate. An alternative is to use logarithmic scoring, which is equivalent to
finding the deviance on the validation set. Rather than count O if the predicted
classis correct and 1 otherwise, we count — log p(c|z) for thetrueclass c. We
can easily code this variant by replacing theline

sum(unclass(truth) != max.col(res/nreps))

by

sum(-log(res[cbind(seq(along=truth) ,unclass(truth))]/nreps))

Learning vector quantization

For LVQ asfor k -nearest neighbour methods we have to select a suitable metric.
The following experiments used Euclidean distance on the original variables, but
the rescaled variables or Mahalanobis distance could also be tried.

cd0 <- 1lvqinit(£fgl0, fgl$type, prior=rep(1,6)/6,k=3)
cdl <- olvql(fglo, fgl$type, cd0)
con(fgl$type, lvqtest(cdl, £gl0))

We set an even prior over the classes as otherwise there are too few representatives
of the smaller classes. Our initialization code follows Kohonen's in selecting the
number of representatives: in this problem 24 points are selected, four from each
class.

CV.lvq <- function()
{
res <- fgl$type
for(i in sort(unique(rand))) {
cat("doing fold",i,"\n")
cd0 <- lvqinit(fglO[rand != i,], fgl$typelrand != i],
prior=rep(1,6)/6, k=3)
cdl <- olvql(fglO[rand != i,], fgl$typelrand '= i], cd0)
cdl <- 1lvq3(fglO[rand != i,], fgl$typelrand != i],
cdl, niter=10000)
res[rand == i] <- lvqgtest(cdl, fglO[rand == i,])
}
res
}
con(fgl$type, CV.1lvq())
WinF WinNF Veh Con Tabl Head
WinF 59 10 1 0 0 0
WinNF 10 61 1 2 2 0
Veh 6 8 3 O 0 0

17.3 Forensic glass 97

Con 0 2 0 6 2 3
Tabl 0 0 0 2 7 0
Head 3 2 0 1 1 22

error rate = 26.17 Y

Try Mahalanobis distance
fgl0 <- scale(princomp(fgl[,-10])$scores)
con(fgl$type, CV.1lvq())

error rate = 35.05 ¥

The initialization is random, so your results are likely to differ.

Additive and tensor-spline models

The additive models discussed in Section 11.1 of these complements can also
be used for classification problems. Three approaches to using a flexible family
g(z;0) of functionsfor classification are discussed in Ripley (1996, Chapter 4),
and we can use each of them for this problem.

Least-squares fitting to indicator functions

In this approach the K classes generatean N x K indicator matrix Y, whichis
regressed on the flexible family. The indicator matrix can easily be generated by
thefunction class.ind inlibrary nnet . Thuswe can use BRUTO by

library(mda); library(nnet)

levs <- levels(fgl$type)

fgl.bruto <- bruto(fgll[, 1:9], class.ind(fgl$type))

bruto.class <- max.col(predict(fgl.bruto, as.matrix(fgl[, 1:91)))
con(fgl$type, factor(levs[bruto.class], levels=levs))

Inthisapproachitisconventional to classify by predicting the classwhoseindicator
is nearest to the vector prediction: elementary algebra shows that thisisthe same
as choosing the largest of the predictions.

To obtain comparable results we need to use cross-validation.

res.bruto <- CVtest(
function(xsamp, ...)
bruto(fgl [xsamp, 1:9], class.ind(fgl$type) [xsamp,], ...),
function(obj, x)
factor(levs[max.col(predict(obj,
as.matrix(fgllx, 1:9]1)))], levels=levs)

)
con(fgl$type, res.bruto)

error rate = 34.11 Y%

Class Veh was never selected.

Almost exactly the same code can be used with MARS. We try additive
models, then pairwise and then general tensor products.

17.3 Forensic glass 98

res.mars <- CVtest(
function(xsamp, ...)
mars (as.matrix(fgl [xsamp, 1:9]),
class.ind(fgl$type) [xsamp,], ...),
function(obj, x)
factor(levs[max.col(predict(obj,
as.matrix(fgllx, 1:9]1)))], levels=levs)

)
con(fgl$type, res.mars)

error rate = 35.98 Y

res.mars2 <- CVtest(degree=2,
function(xsamp, ...)
mars (as.matrix(fgl [xsamp, 1:9]1),
class.ind(fgl$type) [xsamp,], ...),
function(obj, x)
factor(levs[max.col(predict(obj,
as.matrix(fgllx, 1:9]1)))], levels=levs)

)
con(fgl$type, res.mars2)

error rate = 33.64 Y%

res.mars9 <- CVtest(degree=9,
function(xsamp, ...)
mars (as.matrix(fgl [xsamp, 1:9]),
class.ind(fgl$type) [xsamp,], ...),
function(obj, x)
factor(levs[max.col(predict(obj,
as.matrix(fgllx, 1:91)))], levels=levs)

)
con(fgl$type, res.mars9)

error rate = 34.11 Y%

Thelibrary polymars of Kooperberg and O’ Connor implementsarestrictive
form of MARS (for example, allowing only pairwise interations) suggested by
Kooperberg et al. (1997), but will automatically generate the necessary indicator
functions.

Prediction followed by linear discriminant analysis

Breiman & Ihaka (1984) had an ideato use aflexiblefamily within linear discrim-
inant analysis. This was picked up by Hastie et al. (1994) and Ripley (1994b); a
full explanation of the connectionsisgivenin Ripley (1996). Theideaamountsto
using aleast-sgquares prediction as above, but using linear discriminant analysison
the outputs, rather than choosing the largest output. Hastie et al. call this*flexible
discriminant analysis'.

17.3 Forensic glass 99

The function fda in library mda can be used to implement this procedure.
This does use formul ae.

library(mda)
res.bruto.fda <- CVtest(method=bruto,
function(xsamp, ...)
fda(type ~ ., data=fgl[xsamp,], ...),

function(obj, x) predict(obj, fgllx, 1)
)
con(fgl$type, res.bruto.fda)

error rate = 34.58 Y

res.mars.fda <- CVtest(method=mars,
function(xsamp, ...)
fda(type ~ ., data=fgl[xsamp,], ...),
function(obj, x) predict(obj, fgllx, 1)
)
con(fgl$type, res.mars.fda)

error rate = 35.51 Y%

res.mars2.fda <- CVtest(method=mars, degree=2,
function(xsamp, ...)
fda(type ~ ., data=fgl[xsamp,], ...),
function(obj, x) predict(obj, fgllx, 1)
)
con(fgl$type, res.mars2.fda)

error rate = 38.32 Y%

res.mars9.fda <- CVtest(method=mars, degree=9,
function(xsamp, ...)
fda(type ~ ., data=fgl[xsamp,], ...),
function(obj, x) predict(obj, fgllx, 1)
)
con(fgl$type, res.mars9.fda)

error rate = 34.58 Y,

Non-linear logistic discrimination
The third approach isanon-linear logistic model, that is

exp ge(x; 0)
i exp gi(;0)
This isthe approach taken by nnet with argument softmax=T . Note that there
is some redundancy in (17.2) since the fitted probabilities depend only on the
differences between the coordinates of g .

Library polyclass?® by Charles Kooperberg fits (17.2) by additive models

p(C=c|X =1z)=

(17.2)

I polyclas onWindows.

17.3 Forensic glass 100

with linear splines and can also include pairwise interactions. (Thus its space of
non-linear functions is the same as that used by MARS with degree=2.) The
redundancy isresolved by taking gx = 0. The methodology isdescribed in more
detail by Kooperberg et al. (1997) and Stone et al. (1997).

Fits using the polyclass library can be very slow. In the following code
we reduce the maximum dimension of model fitted to achieve a more reasonable
response time (about 2 minutes) after monitoring some preliminary runs (with
parameter silent=F).

library(polyclass)
res.polycl <- CVtest (maxdim=50,
function(xsamp, ...)
poly.fit(unclass(fgl$type) [xsamp],
as.matrix(fgl [xsamp, 1:91), ...),
function(obj, x)
factor(levs[max.col(ppoly(fit=obj,
cov=as.matrix(fgllx, 1:91)))1,
levels=levs)

)
con(fgl$type, res.polycl)

error rate = 34.58 Y,

By default poly.fit usesapenalty onthenumber of termsused, inasimilar way
to logspline. If theargument cv issetto V it uses V -fold cross-validation
to choose the complexity.

res.polycl2 <- CVtest (maxdim=50, cv=10, seed=123,
function(xsamp, ...)
poly.fit(unclass(fgl$type) [xsamp],
as.matrix(fgl [xsamp, 1:91), ...),
function(obj, x)
factor(levs[max.col(ppoly(fit=obj,
cov=as.matrix(fgllx, 1:91)))1,
levels=levs)
)
con(fgl$type, res.polycl2)

error rate = 31.78 Y,

Thisfit took 17 minutes on the PC. The answer depends on the random partition;
thisisselected by the seed parameter (see the help page for the details).

Thefunction poly.summary providesextensive informationon afitted poly-
classmodel, and poly.beta and poly.plot plotsaspects of the model.
Mixture discriminant analysis

‘Mixturediscriminant analysis (Hastie & Tibshirani, 1996) isavariant on plug-in
linear discriminant analysis in which a mixture of normalsis fitted to each class,

17.4 Cross-validation 101

all normalshaving acommon covariance matrix. This can befitted by thefunction
mda inlibrary mda. We chose varying numbersof components depending on the
prevalence of each class. Theinitialization is random, so your results may differ.

library(class) # needed for the initialization
res.mda <- CVtest(subclasses=c(6,6,3,3,2,4),
function(xsamp, ...)
mda(type ~ ., data=fgll[xsamp,], ...),
function(obj, x) predict(obj, fgllx, 1)
)
con(fgl$type, res.mda)

error rate = 30.84 Y%

This took about 4 minutes.

17.4 Cross-validation

We have several uses of V-fold cross-validation in this chapter, as well as in
selecting the complexity parameter when pruning classification trees. The code
given on page 493 is reasonably general, and can be used for cross-validation of
any procedure with afitting function and a predict method that returnsarelatively
smple result (such as a classifcation factor or a matrix of probabilities. We can
use something like

rand <- sample(V, nrow(data), replace=T)
CVtest <- function(fitfn, predfn, ...)
{
res <- data$response
for (i in sort(unique(rand))) {
cat("fold " i, "\n" , sep=” "

learn <- fitfn(rand != i, ...)
res[rand == i] <- predfn(learn, rand==i)
NULL

}

res

}

(We added a NULL at the end of theloop asin sp 3.x this can help in minimizing
memory usage.) For example, to find cross-validated posterior probabilities for
linear discriminant anaysis of the iris datawe would use

ir <- rbind(irisl(,,1], irisl[,,2], iris[,,3])
ir.species <- c(rep("s",50), rep("c",50), rep("v",50))

V <- 10

rand <- sample(V, nrow(ir), replace=T)
CVtest <- function(fitfn, predfn, ...)
{

res <- matrix(nrow=nrow(ir), ncol=3)

17.4 Cross-validation 102

for (i in sort(unique(rand))) {
cat("fold " ,i, "\n" , sep=” ")

learn <- fitfn(rand != i, ...)
res[rand == i,] <- predfn(learn, rand==i)
NULL
}
res
}
res.lda <- CVtest(
function(x, ...) lda(ir.species, ir, subset=x, ...),

function(obj, x) predict(obj, ir[x, , drop=F])$post)
)

In general such cross-validated results can be quite variable, and we say for the
use of cross-validation with classification trees, it can be helpful to average the
results across a several different random partitionsif CPU time permits.

What may not be obvious is that exactly the same code can be used for the
earlier technique of leave-one-out cross-validation: just use

rand <- 1:nrow(ir)

Leave-one-out cross-validation is not generally to be recommended: it has con-
siderable disadvantages, principally in giving highly-variableresults and for some
fitting proceduresin not making a sufficient perturbation to the problem, for exam-
ple when variable selection isused. Nevertheless, it may be of historical interest,
and as for programming exercise we have added an argument CV=T to both 1da
and qda that invokes the fast updating formulae given? in Ripley (1996, p. 100).

L eave-one-out cross-validationisof much greater interest for anearest-nei ghbour
classifier. Thefunction knn.cv inlibrary class implementsthisinthe straight-
forward way (by removing to considering each point when searching for itsneigh-
bours).

2 seeits Errata for typographical corrections

103

References

Basilevsky, A. (1994) Satistical Factor Analysis and Related Methods. New York: John
Wiley and Sons. 65

Bowman, A. and Azzalini, A. (1997) Applied Smoothing Techniques for Data Analysis:
The Kernel Approach with S-Plus Illustrations. Oxford: Oxford University Press. 1,
37,43, 57

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984) Classification and
Regression Trees. Monterey: Wadsworth and Brooks/Cole. 67, 83

Breiman, L. and Ihaka, R. (1984) Nonlinear discriminant analysis via ACE and scaling.
Technical Report 40, Dept of Statistics, University of California, Berkeley. 98

Ciampi, A., Chang, C.-H., Hogg, S. and McKinney, S. (1987) Recursive partitioning: a
versatile method for exploratory data analysis in biostatistics. In Biostatistics, eds|. B.
McNeil and G. J. Umphrey, pp. 23-50. New York: Reidel. 79

Darroch, J. N. and Ratcliff, D. (1972) Generalized iterative scaling for log-linear models.
Annals of Mathematical Statistics 43, 1470-1480. 13

Davis, R. and Anderson, J. (1989) Exponential survival trees. Satistics in Medicine 8,
947-961. 79

Davison, A. C. and Hinkley, D. V. (1997) Bootstrap Methods and Their Application.
Cambridge: Cambridge University Press. 8,9, 23

Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap. New York: Chapman
and Hall. 10

Ein-Dor, P. and Feldmesser, J. (1987) Attributes of the performance of central processing
units: A relative performance prediction model. Communications of the ACM 30,
308-317. 39

Friedman, J. H. (1984) SMART user’s guide. Technical Report 1, Laboratory for Compu-
tational Statistics, Dept of Statistics, Stanford University. 44

Friedman, J. H. (1991) Multivariate adaptive regression splines (with discussion). Annals
of Satistics 19, 1-141. 39

Gower, J. C. and Hand, D. J. (1996) Biplots. London: Chapman & Hall. 62, 64

Gray, R. J (1994) Hazard estimation with covariates. agorithms for di-
rect estimation, local scoring and backfitting. Technical Report 784Z,
Dana-Farber Cancer Ingtitute, Division of Biogtatistics. [Available from
ftp://farber.harvard.edu/stats/gray/784Z.ps.Z]. 58,59

Gray, R. J (1996) Hazard rate regression using ordinary nonparametric regression
smoothers. J. Comp. Graph. Satist. 5, 190-207. 58

Greenacre, M. (1992) Correspondence analysis in medical research. Satistical Methods in
Medical Research 1, 97-117. 63, 64

Hastie, T. and Tibshirani, R. (1996) Discriminant analysis by Gaussian mixtures. Journal
of the Royal Statistical Society series B 58, 158-176. 100

ftp://farber.harvard.edu/stats/gray/784Z.ps.Z

References 104

Hastie, T., Tibshirani, R. and Buja, A. (1994) Flexible discriminant analysis by optimal
scoring. Journal of the American Statistical Association 89, 1255-1270. 98

Hastie, T. J. and Tibshirani, R. J. (1990) Generalized Additive Models. London: Chapman
and Hall. 39

Hjort, N. L. (1997) Dynamic likelihood hazard rate estimation. Biometrika 84, XXX—XXX.
55

Jolliffe, 1. T. (1986) Principal Component Analysis. New York: Springer-Verlag. 65

Kauzny, S. and Vega, S. C. (1997) S+ SPATIALSTATS New York: Springer-Verlag. 89

Kooperberg, C., Bose, S. and Stone, C. J. (1997) Polychotomous regression. Journal of the
American Satistical Association 92, 117-127. 39, 98, 100

Kooperberg, C. and Stone, C. J. (1992) Logspline density estimation for censored data.
Journal of Computational and Graphical Satistics 1, 301-328. 1

Kooperberg, C., Stone, C. J. and Truong, Y. K. (1995a8) Hazard regression. J. Amer. Satist.
Assoc. 90, 78-94. 56, 59, 60

Kooperberg, C., Stone, C. J. and Truong, Y. K. (1995b) Logspline estimation for apossible
mixed spectral distribution. Journal of Time Series Analysis 16, 359-388. 86

LeBlanc, M. and Crowley, J. (1992) Relativerisk treesfor censored survival data. Biometrics
48, 411-425. 68

LeBlanc, M. and Crowley, J. (1993) Survival trees by goodness of split. Journal of the
American Satistical Association 88, 857-867. 82, 83

Loader, C. R. (1995) Old faithful erupts. Bandwidth selection reviewed. Tech-
nical Report 95.9, Bell Laboratories, Murray Hill, NJ. [Avalable from
http://cm.bell-labs.com/stat/doc/95.9.ps]. 7

Loader, C. R. (1996) Loca likelihood density estimation. Annals of Satistics 24, 1602—
1618. 4

Loader, C. R. (1997) Locfit: Anintroduction. Satistical Computing and Graphics Newd et-
ter [Availablefromhttp://cm.bell-1labs.com/stat/project/locfit]. 4,5,37

McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models. Second Edition.
London: Chapman and Hall. 18, 19

Ripley, B. D. (1994a) Neural networks and flexible regresson and discrimination. In
Satistics and Images 2, ed. K. V. Mardia, volume 2 of Advances in Applied Statistics,
pp. 39-57. Abingdon: Carfax. 39

Ripley, B. D. (1994b) Neural networks and related methods for classification (with discus-
sion). Journal of the Royal Statistical Society series B 56, 409-456. 98

Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge: Cambridge
University Press. 44, 78, 79, 83, 97, 98, 102

Ruppert, D., Sheather, S. J. and Wand, M. P. (1995) An effective bandwidth selector for
local least sgquares regression. Journal of the American Statistical Association 90,
1257-1270. 37

Segal, M. R. (1988) Regression trees for censored data. Biometrics 44, 35-47. 80, 81, 82

Simonoff, J. S. (1996) Smoothing Methods in Satistics. New York: Springer. 1, 37

Stone, C. J., Hansen, M., Kooperberg, C. and Truong, Y. K. (1997) Polynomial splines and
their tensor products in extended linear modelling. Annals of Satistics 25, 1371-1470.
1,100

Tarone, R. E. and Ware, J. (1977) On distribution-free tests for the equality of survival
distributions. Biometrika 64, 156-160. 80

http://cm.bell-labs.com/stat/doc/95.9.ps
http://cm.bell-labs.com/stat/project/locfit

References 105

Therneau, T. M. and Atkinson, E. J. (1997) Anintroduction to recursive partitioning using
the RPART routines. Technical report, Mayo Foundation. [Distributed in PostScript
with the RPART package.]. 67

Wahba, G., Gu, C., Wang, Y. and Chappell, R. (1995) Soft classification ak.a risk es-
timation via penalized log likelihood and smoothing spline analysis of variance. In
The Mathematics of Generalization, ed. D. H. Wolpert, pp. 331-359. Reading, MA:
Addison-Wedey. 44

Wand, M. P. and Jones, M. C. (1995) Kernel Smoothing. Chapman & Hall. 37, 55

106

Index

Entriesinthis font are namesof S objects.

accdeaths, seeDatasets Aids, 56, 57
additive models, 37, 97-100 birthwt, 43, 44
Aids, see Datasets cancer.vet, 59, 60, 74, 81, 82
Cars93, 16
BCaconfidence intervals, 9 coop, 27
bcanon, 11 cpus, 39, 47, 68, 69
BIC, 25 deaths, 86, 88
biplot, 63 faithful, 2,5
biplot.correspondence, 63 fgl,93
birthwt, Ssee Datasets galaxies, 3,4,7,8
boot, 8-10 gehan, 55, 56
boot.ci, 8,9 heart, 57
bootstrap, 8, 22 iris, 68, 69, 74, 101
parametric, 9 1h, 86, 87
bootstrap, 9-11 mcycle, 37, 38
boott, 11 minn38, 14
bruto, 39,40 nottem, 88
oats, 26
cancer.vet, See Datasets petrol, 24
Cars93, seeDatasets Pima, 44
censboot, 9 quine, 17, 20
class.ind, 97 rock, 45, 46, 48-50
clspec, 87 sitka, 27, 30
coop, See Datasets topo, 89, 91, 92
corClasses, 29 deaths, seeDatasets
correlogram, 90 density estimation
correlogram, 90,91 local polynomial, 4-7
corresp, 63 logspline, 1-3
correspondence analysis, 62 denumerate, 17
multiple, 64 digamma function, 18
plots, 63 discriminant analysis
covariogram, 90,91 flexible, 98
cpus, see Datasets mixture, 100
cross-validation, 93, 94, 101 dispersion parameter, 18
leave-one-out, 102 dlogspline, 3
crosstabs, 16 dlspec, 87

cv.tree, 67
erase.screen, 81
Datasets expand.grid, 90
accdeaths, 86-88 experiments

ndex

split-plot, 26

faithful, seeDatasets

fda, 98

fgl, seeDatasets

Fhat, 92

flexible discriminant analysis, 98
forensic glass, 93

galaxies, seeDatasets
gam, 41
gamma family, 18
gehan, see Datasets
generalized linear models
gamma family, 18
Ghat, 92
glm.dispersion, 19
glm.shape, 19
gls, 35
graph.survtree, 84,85

hare.fit, 59
hazcov, 58

heart, seeDatasets
heft.fit, 56,57,60

iris, 71
iris, seeDatasets
iterative proportional scaling, 12

km.tssa, 81,84

knn.cv, 102
krige, 89
kriging, 89

learning vector quantization, 96

Lenv, 92

library
boot, 8,9, 23
bootstra, 10
class, 102
hare, 59
hazcov, 58
heft, 56
KernSmooth, 4, 37
ksmooth, 4, 37
locfit, 4, 37, 43, 56
logspline, 1, 55
lspec, 86, 87
MASS, 13, 19

107

mda, 39, 98, 100
multinom, 50
nlme, 24, 32, 35
nnet, 49, 50, 97
polyclass, 99, 100
polymars, 39, 98
ppr, 45
rpart, 67,79
sm, 1, 37, 43, 57
survcart, 82, 83
tssa, 80
linear mixed effects models, 24-29
lme, 24-29, 35, 36
loadings, 65
correlation, 65
loc, 89,91
locfit, 4-8, 38,43, 44, 56, 58
locpoly, 4,38
loess, 43,58
log-linear models, 12
logarithmic scoring, 96
logistic regression, 93
loglin, 12-14,16, 17
loglm, 13-17
logspline.fit, 2, 3,56
logspline.plot, 3
logspline.summary, 3
lspec.fit, 86,87
lspec.plot, 86
lspec.summary, 87

LVQ, 9

mars, 39,40

mca, 64

mcycle, seeDatasets

mda, 100

minn38, see Datasets

mixed effects models
linear, 24-29
non-linear, 30-35

mixture discriminant analysis, 100

model formulae, 89

model.variogram, 90

multinom, 49,50

na.rpart, 78
nearest-neighbour, 102
neural networks, 49, 93
nlme, 30, 32

nls, 32

ndex

nnet, 49,52, 99
nnet.default, 49,51
nnet.formula, 4951, 93
nnet.Hess, 49
non-linear mixed effects models, 30—
35
non-linear models
self-starting, 32
nottem, See Datasets

oats, See Datasets

petrol, see Datasets
Pima, see Datasets
plogspline, 3
plot.corresp, 63
plot.rpart, 76
plotcp, 70,75
plspec, 87
point processes, 92
Poisson log-linear model, 12
poly.beta, 100
poly.fit, 100
poly.plot, 100
poly.summary, 100
polyclass models, 100
post, 76
post.rpart, 76
post.tree, 76
post.tssa, 82
ppreg, 45
predict, 90
princomp, 65
print.tree, 69
printcp, 69,73
projection pursuit
regression, 45
prune.rpart, 67
prune.survtree, 83
prune.tree, 67
prune.tssa, 82

qlogspline, 3
quine, see Datasets

random effects, 24-35
multilevel, 26, 33
regression
projection-pursuit, 45
REML, 24

renumerate,
rlspec, 87

18

rock, seeDatasets
rotate.princomp,

rotation

in principal components, 65

65

rpart, 67,70,74,79
rpart.control,

S+SPATIALSTATS, 89-92
scatterplot smoothers, 37

73

sitka, seeDatasets
sm.logit, 43,44

sm.poisson,

43

sm.regression,

sm.survival
snip.rpart,

spectral analysis, 86, 87

, 57

76

spectrum, 86
splines, 1-3, 39, 45, 86, 87, 97-100

split-plot experiments, 26

37

spp, 92

SSfpl, 32
step.gam, 41
summary.glm, 12,19
summary.rpart, 73

supsmu, 46
Surv, 68

survival analysis

tree-structured, 79-83

time series

spectral analysis, 86, 87

topo, SeeDatasets

tree, 67,73
tree.rpart,
trees, 67

76

108

in survival analysis, 68, 74, 75, 79—

83

pruning, 67, 73, 81-83

tsboot, 9
tssa, 80-82

Unix, 1i,4,8, 10, 24,37, 67

VA, seeDatasets, cancer.vet

varClasses,

variance components, 24-35

29

variogram, 90

variogram,

91

I ndex 109

vcov.multinom, 51
vector quantization
learning, 96

Windows, i, 1,4, 8,10, 24, 37, 67, 76,
83, 99

xpred.rpart, 71

	Introduction
	Contents
	Distributions and Data Summaries
	Density estimation
	Bootstrap and permutation methods

	Generalized Linear Models
	Functions for generalized linear modelling
	Poisson models
	Gamma models

	Non-linear Models
	Confidence intervals for parameters

	Random and Mixed Effects
	Linear mixed effects models
	Non-linear mixed effects models
	Using lme with autocorrelated data

	Modern Regression
	Additive models and scatterplot smoothers
	Projection-pursuit regression
	Neural networks

	Survival Analysis
	Estimators of survival curves
	Non-parametric models with covariates

	Multivariate Analysis
	Discriminant analysis
	Factor analysis

	Tree-based Methods
	Library RPart
	Tree-structured survival analysis

	Time Series
	Second-order summaries

	Spatial Statistics
	Module S+SpatialStats

	Classification
	Forensic glass
	Cross-validation

	References
	Index

