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1 One Parameter

1.1 Observed and Expected Fisher Information

Equations (7.8.9) and (7.8.10) give two ways to calculate the Fisher infor-
mation in a sample of size n. DeGroot and Schervish don’t mention this but the
concept they denote by In(θ) here is only one kind of Fisher information. To
distinguish it from the other kind, In(θ) is called expected Fisher information.

The other kind
Jn(θ) = −λ′′n(X|θ) (1.1)

is called observed Fisher information. Note that the right hand side of (1.1)
is just the same as the right hand side of (7.8.10) in DeGroot and Schervish,
except there is no expectation.

It is not always possible to calculate expected Fisher information. Sometimes
you can’t do the expectations in (7.8.9) and (7.8.10) in DeGroot and Schervish.
But if you can evaluate the log likelihood, then you can calculate observed Fisher
information. Even if you can’t do the derivatives, you can approximate them
by finite differences. From the definition of limit,

λ′n(X|θ) ≈
λn(X|θ + ε)− λn(X|θ)

ε

for small ε. Applying the same idea again gives approximate second derivatives

Jn(θ) ≈ −
λ′n(X|θ + ε)− λ′n(X|θ)

ε

≈ −λn(X|θ + ε)− 2λn(X|θ) + λn(X|θ − ε)

ε2

(1.2)

Since the last approximation has no actual derivatives, it can be calculated
whenever the log likelihood can be calculated. The formula is a bit messy
for hand calculation. It’s better to use calculus when possible. But this finite
difference approximation is well suited for computers. Many computer statistical
packages don’t know any calculus but can do finite differences just fine.

The relation between observed and expected Fisher information is what
should now be a familiar theme: consistent estimation.
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If we write out what observed Fisher information actually is, we get

Jn(θ) = −
n
∑

i=1

∂2

∂θ2
log f(Xi|θ) (1.3)

Since X1, X2, . . . are assumed to be independent and identically distributed,
the terms of the sum on the right hand side of (1.3) are also independent and
identically distributed and the law of large numbers says their average (not sum,
we need to divide by n to get the average) converges to the expectation of one
term, which by definition is −I(θ), that is,

1

n
Jn(θ)

P−→ I(θ) (1.4)

or in sloppy notation
Jn(θ) ≈ nI(θ) = In(θ)

So we can (for large sample sizes) use Jn(θ) and In(θ) interchangeably.

1.2 Plug-In

Actually, we need another use of plug-in. We don’t know θ (otherwise we
wouldn’t be trying to estimate it). Hence we don’t know either Jn(θ) or In(θ).
We know the functions Jn and In but we don’t know the true value of the
parameter θ where we should evaluate them. However (an old theme again) we
do have a consistent estimator

θ̂n
P−→ θ

which implies by the continuous mapping theorem (Slutsky for a single sequence)
under the additional assumption that In is a continuous function

I(θ̂n)
P−→ I(θ)

or
1

n
In(θ̂n)

P−→ I(θ). (1.5a)

The analogous equation for observed Fisher information

1

n
Jn(θ̂n)

P−→ I(θ). (1.5b)

doesn’t quite follow from Slutsky and continuity of Jn; it really requires that
(1.4) be replaced by a so-called uniform law of large numbers (which is way
beyond the scope of this course). However, in “nice” problems both (1.5a) and
(1.5b) are true, and so both can be used in the plug-in theorem to estimate
asymptotic variance of the maximum likelihood estimator.

Using “sloppy” notation,1 either of the following approximations can be used
to construct confidence intervals based on maximum likelihood estimators

θ̂n ≈ Normal
(

θ, In(θ̂n)
−1
)

(1.7a)

1For those who are interested, the formal, non-sloppy versions of (1.7a) and (1.7b) are

In(θ̂n)
1/2

(

θ̂n − θ
) D
−→ Normal(0, 1) (1.6a)

Jn(θ̂n)
1/2

(

θ̂n − θ
) D
−→ Normal(0, 1) (1.6b)
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The analogous equation for observed Fisher information

θ̂n ≈ Normal
(

θ, Jn(θ̂n)
−1
)

(1.7b)

1.3 Confidence Intervals

The corresponding confidence intervals are

θ̂n ± cIn(θ̂n)
−1/2 (1.8a)

where c is the appropriate z critical value (for example, 1.96 for 95% confi-
dence or 1.645 for 90% confidence). The analogous equation for observed Fisher
information

θ̂n ± cJn(θ̂n)
−1/2 (1.8b)

Example 1.1 (Binomial, Again).
We redo the binomial distribution. The log likelihood is

λn(x, p) = x log(p) + (n− x) log(1− p)

and two derivatives are

λ′n(x, p) =
x

p
− n− x

1− p

and

λ′′n(x, p) = −
x

p2
− n− x

(1− p)2
(1.9)

We know from previous work with maximum likelihood that the MLE is p̂n =
x/n. Plugging in p̂n for p and writing x = np̂n in (1.9) and attaching a minus
sign gives the observed Fisher information

Jn(p̂n) =
x

p̂2
n

+
n− x

(1− p̂n)2

=
np̂n
p̂2
n

+
n− np̂n
(1− p̂n)2

= n

(

1

p̂n
+

1

1− p̂n

)

=
n

p̂n(1− p̂n)

The expected Fisher information calculation is very similar. Taking minus the
expectation of (1.9) using E(X) = np gives

In(p) =
n

p(1− p)

and plugging in the consistent estimator p̂n of p gives

In(p̂n) =
n

p̂n(1− p̂n)

So in this problem Jn(p̂n) = In(p̂n). Sometimes this happens, sometimes ob-
served and expected information are different.
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In this problem either of the confidence intervals (1.8a) or (1.8b) turns out
to be

p̂n ± c

√

p̂n(1− p̂n)

n

where c is the “z” critical value, which is the usual “plug-in” confidence interval
taught in elementary statistics courses.

In our binomial example, we didn’t really need the asymptotics of maximum
likelihood to construct the confidence interval, since more elementary theory
arrives at the same interval. But in complicated situations where there is no
simple analytic expression for the MLE, there is no other way to get the asymp-
totic distribution except using Fisher information. An example is given on the
web page

http://www.stat.umn.edu/geyer/5102/examp/rlike.html

which we looked at before but now has a new section Fisher Information and

Confidence Intervals.

2 Multiple Parameters

2.1 Observed and Expected Fisher Information Matrices

The story for maximum likelihood for multiple parameters is almost the
same. If the parameter is a vector θ, then instead of one first derivative we have
a vector of first partial derivatives, sometimes called

∇λn(X|θ) =













∂λn(X|θ)
∂θ1

∂λn(X|θ)
∂θ2
...

∂λn(X|θ)
∂θd













(2.1)

the gradient vector, and instead of one second derivative we have a matrix of
second partial derivatives

∇2λn(X|θ) =















∂2λn(X|θ)
∂θ2

1

∂2λn(X|θ)
∂θ1∂θ2

· · · ∂2λn(X|θ)
∂θ1∂θd

∂2λn(X|θ)
∂θ2∂θ1

∂2λn(X|θ)
∂θ2

2

· · · ∂2λn(X|θ)
∂θ2∂θd

...
...

. . .
...

∂2λn(X|θ)
∂θd∂θ1

∂2λn(X|θ)
∂θd∂θ2

· · · ∂2λn(X|θ)
∂θ2

d















(2.2)

As in the one-parameter case, we have identities derived by differentiation
under the integral sign. The multiparameter analog of (7.8.5) in DeGroot and
Schervish is

Eθ{∇λn(X|θ)} = 0, (2.3a)
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a vector equation,2 which, if you prefer, can be written instead as d scalar
equations

Eθ

{

∂λn(X|θ)
∂θi

}

= 0, i = 1, . . . , d. (2.3b)

And the multiparameter analog of the equivalence of (7.8.9) and (7.8.10) in
DeGroot and Schervish is

Varθ{∇λn(X|θ)} = −Eθ{∇2λn(X|θ)}, (2.4a)

a matrix equation,3 which, if you prefer, can be written instead as d2 scalar
equations

Eθ

{

∂λn(X|θ)
∂θi

∂λn(X|θ)
∂θj

}

= −Eθ

{

∂2λn(X|θ)
∂θi∂θj

}

, i, j = 1, . . . , d. (2.4b)

We generally prefer the vector and matrix equations (2.3a) and (2.4a) because
they are much simpler to read and write, although we have to admit that this
concise notation hides a lot of details.

As in the one-parameter case, expected Fisher information is defined as
either side of (2.4a)

In(θ) = Varθ{∇λn(X|θ)}
= −Eθ{∇2λn(X|θ)}

(2.5)

The difference between the one-parameter and many-parameter cases is that in
the first the Fisher information is a scalar and in the second it is a matrix.

Similarly, we define the observed Fisher information matrix to be the quan-
tity we are taking the expectation of on the right hand side of (2.4a)

Jn(θ) = −∇2λn(X|θ) (2.6)

We also have the multiparameter analog of equation (7.8.12) in DeGroot and
Schervish

In(θ) = nI1(θ)

and we often write I(θ) with no subscript instead of I1(θ).

2.2 Plug-In

The multiparameter analogs of (1.5a) and (1.5b)

1

n
In(θ̂n)

P−→ I(θ) (2.7a)

and
1

n
Jn(θ̂n)

P−→ I(θ), (2.7b)

2Recall that the mean of a random vector Y = (Y1, . . . , Yd) is a vector µ = (µ1, . . . , µd)
having components that are the expectations of the components of the random vector, that
is, when we write µ = E(Y) we mean the same thing as µi = E(Yi), i = 1, . . . , d.

3Recall that the mean of a random vector Y = (Y1, . . . , Yd) is a matrix M with components
mij that are the covariances of the components of the random vector, that is, when we write
M = Var(Y) we mean the same thing as mij = Cov(Yi, Yj), i, j = 1, . . . , d.
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where θ̂n is the MLE, hold in “nice” situations (and as in the one-parameter
situation we will be vague about exactly what features of a statistical model
make it “nice” for maximum likelihood theory).

This allows us to use the natural plug-in estimators In(θ̂n) and Jn(θ̂n) which
we can calculate in place of In(θ) and Jn(θ) which we can’t calculate because
we don’t know the true value of the parameter θ.

2.3 Multivariate Convergence in Distribution

We didn’t actually say what the convergence in probability in equations
(2.7a) and (2.7b) means, but it is trivial. For any sequence of random vectors
Y1 Y2, . . . and any constant vector a, the statement

Yn
P−→ a

contains no more and no less mathematical content than the d convergence in
probability statements

Yni
P−→ ai, i = 1, . . . , d,

where Yn = (Yn1, . . . , Ynd) and a = (a1, . . . , ad).
The situation with convergence in distribution is quite different. The state-

ment
Yn

D−→ Y, (2.8)

where Y is now a random vector, contains much more mathematical content
than the d convergence in distribution statements

Yni
D−→ Yi, i = 1, . . . , d. (2.9)

When we need to make the distinction, we refer to (2.8) as joint convergence
in distribution and to (2.9) as marginal convergence in distribution. The vector
statement (2.8) can actually be defined in terms of scalar statements, but not
just d such statements. The joint convergence in distribution statement (2.8)
holds if and only if

t′Yn
D−→ t′Y, t ∈ R

d.

What this means is that we must check an infinite set of convergence in distri-
bution statements: for every constant random vector t we must have the scalar

convergence in distribution t′Yn
D−→ t′Y.

However, we don’t actually check an infinite set of statements (that would
be tough). We usually just use the central limit theorem. And the univariate
CLT quite trivially implies the multivariate CLT.

Theorem 2.1 (Multivariate Central Limit Theorem). If X1, X2, . . . is
a sequence of independent, identically distributed random vectors having mean

vector µ and variance matrix M and

Xn =
1

n

n
∑

i=1

Xi
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is the sample mean for sample size n, then

√
n
(

Xn − µ
) D−→ Normal(0,M). (2.10)

The trivial proof goes as follows, Let Y be a random vector having the
Normal(0, t′Mt) distribution so (2.10) can be rewritten

√
n
(

Xn − µ
) D−→ Y. (2.11)

Then for any constant vector t, the scalar random variables t′Xi are indepen-
dent and identically distributed with mean t′µ and variance t′Mt. Hence the
univariate CLT says

√
n
(

t′Xn − t′µ
) D−→ Normal(0, t′Mt),

which can be rewritten

t′
√
n
(

Xn − µ
) D−→ Normal(0, t′Mt), (2.12)

But the distribution of t′Y is Normal(0, t′Mt), so (2.12) can be rewritten

t′
√
n
(

Xn − µ
) D−→ t′Y

since this is true for arbitrary vectors t this means (2.11) holds.

2.4 Asymptotics of Maximum Likelihood

With multivariate convergence theory in hand, we can now explain the
asymptotics of multiparameter maximum likelihood. Actually it look just like
the uniparameter case. You just have to turn scalar quantities into vectors or
matrices as appropriate.

In “nice” situations (again being vague about what “nice” means) the mul-
tiparameter analogs of (1.7a) and (1.7b) are4

θ̂n ≈ Normal
(

θ, In(θ̂n)
−1
)

(2.14a)

and
θ̂n ≈ Normal

(

θ,Jn(θ̂n)
−1
)

(2.14b)

4And the formal, non-sloppy versions of (2.14a) and (2.14b) are

In(θ̂n)
1/2

(

θ̂n − θ
) D
−→ Normal(0, 1) (2.13a)

Jn(θ̂n)
1/2

(

θ̂n − θ
) D
−→ Normal(0, 1) (2.13b)

where the superscript 1/2 is interpreted as the symmetric square root. Any symmetric positive
semi-definite matrix A has a spectral decomposition A = ODO′, where O is orthogonal
and D is diagonal (meaning the off-diagonal elements are zero) and positive semi-definite
(meaning the diagonal elements are nonnegative). For a diagonal matrix D the meaning of
symmetric square root is simple: D1/2 is the diagonal matrix whose elements are the square
roots of the corresponding elements of D. It is easily verified that D1/2 is symmetric and
positive semi-definite and D = D1/2D1/2. Then the symmetric square root of A is defined by
A1/2 = OD−1/2O′. It is easily verified that A1/2 is also symmetric and positive semi-definite
and A = A1/2A1/2.
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The only difference between these equations and the earlier ones being some
boldface type. Here the MLE θ̂n is a vector because the parameter it estimates is
a vector, and the Fisher information matrix, either In(θ̂n) or Jn(θ̂n) as the case
may be is (as the terminology says) a matrix, this means the inverse operation
denoted by the superscript −1 is a matrix inverse. Matrix inversion is hard
when done by hand, but we will generally let a computer do it, do it’s really
not a big deal.

2.5 Confidence Intervals

Confidence intervals analogous to (1.8a) and (1.8b) are a bit tricky. When
the parameter is a vector it doesn’t fit in an “interval” which is a one-dimensional
object. So there are two approaches.

• We can generalize our notion of confidence interval to multidimensional
random sets, which are called confidence sets or confidence regions. Some
theory courses cover this generalization, but I have never seen it actually
applied in an actual application.

• What users actually do in multiparameter situations is to focus on confi-
dence intervals for single parameter or for scalar functions of parameters.

So we will concentrate on linear scalar functions of the parameters, of the
form t′θ, which, of course, we estimate by t′θ̂n. A special case of this is when t
has all components zero except for tj = 1. Then t′θ is just complicated notation

for the j-th component θj , and, similarly, t′θ̂n is just complicated notation for

the j-th component θ̂nj .
So with that said, the confidence intervals for t′θ analogous to (1.8a) and

(1.8b) are

t′θ̂n ± c

√

t′In(θ̂n)−1t (2.15a)

where c is the appropriate z critical value (for example, 1.96 for 95% confidence
or 1.645 for 90% confidence) and

t′θ̂n ± c

√

t′Jn(θ̂n)−1t (2.15b)

When we specialize to t with only one nonzero component tj = 1 we get

θ̂nj ± c

√

(

In(θ̂n)−1
)

jj
(2.16)

and the similar interval with Jn replacing In.
It may not be obvious what the notation in (2.16) for the asymptotic variance

(

In(θ̂n)
−1
)

jj
means, so we explain it in words. First you invert the Fisher

information matrix, and then you take the jj component of the inverse Fisher
information matrix. This can be very different from taking the jj component
of the Fisher information matrix, which is a scalar, and inverting that.

Mostly the material in this section is for computer use. We won’t even bother
with a pencil and paper example. See the web page

http://www.stat.umn.edu/geyer/5102/examp/rlike.html
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