
Classification of finite rotation groups

If an object is positioned in R3 with its centre of gravity at the origin then its rotational
symmetry group is a subgroup of SO3(R).
In this section we will classify all possible finite subgroups of SO3(R).

Let us start with a 2-dimensional result.

Theorem Let G be a finite subgroup of O2(R). Then G is isomorphic to precisely one of
the following groups:

Cn (n ≥ 1), D2n (n ≥ 2).

Proof: Let G be a finite (non-trivial) subgroup of O2(R).
Suppose first that G ≤ SO2(R). Then every element of G is a rotation in the plane. Write
rθ for the rotation anticlockwise by θ (where 0 ≤ θ < 2π) around the origin (0, 0). Choose
rφ ∈ G with φ as small as possible (ok as G is finite) and φ > 0 (ok as G is non-trivial). We
claim that every other rotation in G is of the form

rmφ = (rφ)m

for some m. Let rθ ∈ G then θ = mφ+ ψ where 0 ≤ ψ < φ and m ∈ N. Now

rθ = rmφ+ψ = (rφ)mrψ

So rψ = (rφ)−mrθ ∈ G and 0 ≤ ψ < φ. But as φ was the smallest non-zero angle we must
have ψ = 0 and θ = mφ as required. Therefore, G is generated by rφ and so G is cyclic.

Now suppose that G contains a reflection s (in particular s2 = e). Set

H = G ∩ SO2(R).

Then H is a subgroup of SO2(R) and by the first case H is cyclic. So we have

H = {e, r, r2, . . . , rn−1}

for some positive integer n. Take any reflection s′ ∈ G. Then s′s is a rotation, so s′s = ri

for some i. Thus we get s′ = ris−1 = ris. This shows that

G = {e, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s}

and satisfies
rn = I, s2 = I, sr = rn−1s

Hence we get that G ∼= D2n. �

Now we turn to the classification of finite 3-dimensional rotation groups.
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Theorem Let G be a finite subgroup of SO3(R). Then G is isomorphic to precisely one of
the following groups:

Cn, (n ≥ 1): rotational symmetry group of an n-pyramid
D2n, (n ≥ 2): rotational symmetry group of an n-prism
A4: rotational symmetry group of a regular tetrahedron
S4: rotational symmetry group of a cube (or a regular octahedron)
A5: rotational symmetry group of a regular dodecahedron (or a regular icosahedron).

Proof: Let G be a finite subgroup of SO3(R). Each element of G (other than e) represents
a rotation in R3 around an axis passing through the origin. Take the unit sphere centered
at the origin (0, 0, 0). Then each rotation gives two poles on the unit sphere which are the
intersection of the axis of rotation with the unit sphere. Let X denote the set of all poles of
all the elements in G \ {e}. We claim that G acts on the set X. To see this, let g ∈ G and
let x ∈ X. Say that x is a pole for h ∈ G (i.e. h(x) = x). Then we have

(ghg−1)(g(x)) = gh(g−1g)(x) = gh(x) = g(x).

So we have that g(x) is a pole for ghg−1 and so g(x) ∈ X.

Now the idea of the proof is to apply Burnside Counting theorem to the action of G on
X and show that X has to be a particularly ‘nice’ configuration of points on the sphere.

Let N be the number of orbits of G in X. Choose a representative from each orbit
x1, x2, . . . , xN . Now the identity e fixes every pole and each g 6= I fixes exactly two poles.
So using Burnside Counting theorem we get

N =
1

|G|
(|X|+ (|G| − 1)2)

=
1

|G|

(
2(|G| − 1) +

N∑
i=1

|OrbG(xi)|

)
.

Rearranging and using the Orbit-Stabilizer theorem we get

2(1− 1

|G|
) = N − 1

|G|

N∑
i=1

|OrbG(xi)|

= N −
N∑
i=1

|OrbG(xi)|
|G|

= N −
N∑
i=1

1

|Gxi |

=
N∑
i=1

(1− 1

|Gxi |
).

Now assuming that G 6= {I} we have

1 ≤ 2(1− 1

|G|
) < 2.
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And each |Gxi | ≥ 2 as it contains at least e and one rotation so we have

1

2
≤ 1− 1

|Gxi |
< 1

for 1 ≤ i ≤ N . This implies that 2 ≤ N < 4 and hence N = 2 or 3.

If N = 2 then we get
|OrbG(x1)|+ |OrbG(x2)| = 2,

each orbit contains one pole, and we have two poles in total. Thus each rotation has the
same axis. The plane passing through the origin and perpendicular to this axis is preserved
by G. So G is isomorphic to a subgroup of SO2(R). Using the previous Theorem we see
that G ∼= Cn for some n.

If N = 3 the situation is more complicated. Write x = x1, y = x2, z = x3. Then we get

1 +
2

|G|
=

1

|Gx|
+

1

|Gy|
+

1

|Gz|
> 1.

So we have four possible cases:
(a) 1

|Gx| = 1
2
, 1
|Gy | = 1

2
, 1
|Gz | = 1

n
for n ≥ 2.

(b) 1
|Gx| = 1

2
, 1
|Gy | = 1

3
, 1
|Gz | = 1

3
.

(c) 1
|Gx| = 1

2
, 1
|Gy | = 1

3
, 1
|Gz | = 1

4
.

(d) 1
|Gx| = 1

2
, 1
|Gy | = 1

3
, 1
|Gz | = 1

5
.

We will consider each of these in turn.

Case (a):
If |Gx| = |Gy| = |Gz| = 2 then we get |G| = 4. We have already seen that, up to isomorphism,
there are only two groups of order 4, namely C4 and D4.
If |Gx| = |Gy| = 2 and |Gz| = n ≥ 3 then we get |G| = 2n. Consider Gz the subgroup of all
rotations with axis passing through z and −z. This group is cyclic of order n, so

Gz = {e, g, g2, . . . , gn−1}

for some g ∈ G. We claim that x, g(x), g2(x), . . . , gn−1(x) are all distinct. To see this suppose
that gi(x) = gj(x) for some i > j. Then gi−j(x) = x. But z and −z are the only points fixed
by Gz and x 6= −z (as |Gx| = 2 and |Gz| = |G−z| = n ≥ 3).
Now we have

|x− g(x)| = |g(x)− g2(x)| = . . . = |gn−1 − x|
and |z−x| = |z−gi(x)| for all i = 1, 2, . . . , n−1. This means that the points x, g(x), . . . , gn−1(x)
all lie in the same plane and form a regular n-gon P .

Now we have that |OrbG(x)| = |G|
|Gx| = n, and so OrbG(x) = {x, g(x), . . . , gn−1(x)}. Thus

G maps P to P and we get a homomorphism

φ : G −→ G′

where G′ denotes the 3-dimensional rotational symmetries of P . Now every non-trivial
rotation in G has only two fixed points in X and so doesn’t fix P . This means that Kerφ =
{e}. Now as |G| = 2n = |G′| = |D2n|, we see that φ is an isomorphism and G ∼= G′ ∼= D2n.
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Case (b): |Gx| = 2, |Gy| = |Gz| = 3.
Then we have that |G| = 12 and |OrbG(z)| = 4. Let u ∈ OrbG(z) with |z − u| < 2 (this is
always possible as all poles lie on the unit sphere and |OrbG(z)| > 2). So u 6= −z. As |Gz| = 3
we have that Gz

∼= C3. Choose g ∈ Gz with 〈g〉 = Gz. Then u, g(u), g2(u) are all distinct
(same argument as in Case (a)). As g preserves distances, they form an equilateral triangle
and are all equidistant from z. Now the orbit OrbG(z) = {z, u, g(u), g2(u)} is preserved
under the action of G. For h ∈ Gu we have h(u) = u and h permutes z, g(u), g2(u). As h
preserves distances we see that the distances from u to z, g(u) and g2(u) are all equal. Hence
we have that {z, u, g(u), g2(u)} form a regular tetrahedron T and we have a homomorphism

φ : G −→ G′

where G′ is the rotational symmetry group of T . No rotation (other than e) fixes T , so
Ker φ = {e} and φ is one-to-one. Now as |G| = |G′| = 12 we have that φ is an isomorphism
and G ∼= G′ ∼= A4.

Case (c): |Gx| = 2, |Gy| = 3 and |Gz| = 4.
Here we get that |G| = 24 and |OrbG(z)| = 6. Now choose u ∈ OrbG(z) with u 6= z,−z.
As Gz

∼= C4 we have Gz = {I, g, g2, g3} for some g ∈ G. We can show as before that
u, g(u), g2(u), g3(u) form a square equidistant from z. As −z /∈ OrbG(x) or OrbG(y) (other-
wise |G−z| = |Gx| or |Gy|) we have

OrbG(z) = {z,−z, u, g(u), g2(u), g3(u)}.

Now, −u ∈ OrbG(z) (as |G−u| = |Gu| = |Gz|) and −u 6= z,−z (as u 6= z,−z). Also we have
that |g(u) − u| = |g3(u) − u| < 2 as u, g(u), g2(u), g3(u) form a square. Thus −u = g2(u).
This shows that z,−z, u, g(u), g2(u), g3(u) form the vertices of a regular octahedron. Let G′

be the rotational symmetry group of this regular octahedron. Then we get a homomorphism

φ : G −→ G′

with Kerφ = {e}. So φ is one-to-one and as |G| = |G′| = 24 we have that φ is an isomorphism
and we have

G ∼= G′ ∼= S4.

Case (d): |Gx| = 2, |Gy| = 3 and |Gz| = 5. Then we get that |G| = 60 and |OrbG(z)| = 12.
As Gz

∼= C5 we can find g ∈ G with Gz = {e, g, g2, g3, g4}. It can be shown that we can pick
u ∈ OrbG(z) with u 6= z,−z, and v ∈ OrbG(z) with v 6= z,−z, u, g(u), g2(u), g3(u), g4(u).
Moreover one can check that

{z,−z, u, g(u), g2(u), g3(u), g4(u), v, g(v), g2(v), g3(v), g4(v)}

form a regular icosahedron. Using the same argument as before, if we denote by G′ the rota-
tional symmetry group of this regular icosahedron, then we get a one-to-one homomorphism
from G to G′ and as |G| = |G′| = 60 this is in fact an isomorphism. Thus we get that

G ∼= G′ ∼= A5.
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