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 Comparing Predictive Accuracy
 Francis X. DIEBOLD

 Department of Economics, University of Pennsylvania, Philadelphia, PA 19104-6297, and
 National Bureau of Economic Research, Cambridge, MA 02138

 Roberto S. MARIANO
 Department of Economics, University of Pennsylvania, Philadelphia, PA 19104-6297

 We propose and evaluate explicit tests of the null hypothesis of no difference in the accuracy of
 two competing forecasts. In contrast to previously developed tests, a wide variety of accuracy
 measures can be used (in particular, the loss function need not be quadratic and need not even
 be symmetric), and forecast errors can be non-Gaussian, nonzero mean, serially correlated,
 and contemporaneously correlated. Asymptotic and exact finite-sample tests are proposed,
 evaluated, and illustrated.

 KEY WORDS: Economic loss function; Exchange rates; Forecast evaluation; Forecasting;
 Nonparametric tests; Sign test.

 Prediction is of fundamental importance in all of the sci-
 ences, including economics. Forecast accuracy is of obvi-
 ous importance to users of forecasts because forecasts are
 used to guide decisions. Forecast accuracy is also of ob-
 vious importance to producers of forecasts, whose repu-
 tations (and fortunes) rise and fall with forecast accuracy.
 Comparisons of forecast accuracy are also of importance to
 economists more generally who are interested in discrim-
 inating among competing economic hypotheses (models).
 Predictive performance and model adequacy are inextrica-
 bly linked-predictive failure implies model inadequacy.

 Given the obvious desirability of a formal statistical pro-
 cedure for forecast-accuracy comparisons, one is struck by
 the casual manner in which such comparisons are typically
 carried out. The literature contains literally thousands of
 forecast-accuracy comparisons; almost without exception,
 point estimates of forecast accuracy are examined, with no
 attempt to assess their sampling uncertainty. On reflection,
 the reason for the casual approach is clear: Correlation of
 forecast errors across space and time, as well as several ad-
 ditional complications, makes formal comparison of forecast
 accuracy difficult. Dhrymes et al. (1972) and Howrey, Klein,
 and McCarthy (1974), for example, offered pessimistic as-
 sessments of the possibilities for formal testing.

 In this article we propose widely applicable tests of the null
 hypothesis of no difference in the accuracy of two competing
 forecasts. Our approach is similar in spirit to that of Vuong
 (1989) in the sense that we propose methods for measuring
 and assessing the significance of divergences between models
 and data. Our approach, however, is based directly on predic-
 tive performance, and we entertain a wide class of accuracy
 measures that users can tailor to particular decision-making
 situations. This is important because, as is well known, re-
 alistic economic loss functions frequently do not conform
 to stylized textbook favorites like mean squared predic-
 tion error (MSPE). [For example, Leitch and Tanner (1991)

 and Chinn and Meese (1991) stressed direction of change,
 Cumby and Modest (1987) stressed market and country tim-
 ing, McCulloch and Rossi (1990), and West, Edison, and
 Cho (1993) stressed utility-based criteria, and Clements and
 Hendry (1993) proposed a new accuracy measure, the gen-
 eralized forecast-error second moment.] Moreover, we allow
 for forecast errors that are potentially non-Gaussian, nonzero

 mean, serially correlated, and contemporaneously correlated.
 We proceed by detailing our test procedures in Section 1.

 Then, in Section 2, we review the small extant literature to

 provide necessary background for the finite-sample evalu-
 ation of our tests in Section 3. In Section 4 we provide an
 illustrative application, and in Section 5 we offer conclusions
 and directions for future research.

 1. TESTING EQUALITY OF FORECAST
 ACCURACY

 Consider two forecasts, {it} , and {}fi, of the time
 series {y,}ri. Let the associated forecast errors be {ei,}r,
 and {et},T1. We wish to assess the expected loss associated
 with each of the forecasts (or its negative, accuracy). Of great

 importance, and almost always ignored, is the fact that the
 economic loss associated with a forecast may be poorly as-
 sessed by the usual statistical metrics. That is, forecasts are
 used to guide decisions, and the loss associated with a fore-
 cast error of a particular sign and size is induced directly by
 the nature of the decision problem at hand. When one consid-
 ers the variety of decisions undertaken by economic agents
 guided by forecasts (e.g., risk-hedging decisions, inventory-
 stocking decisions, policy decisions, advertising-expenditure
 decisions, public-utility rate-setting decisions, etc.), it is clear
 that the loss associated with a particular forecast error is in
 general an asymmetric function of the error and, even if sym-
 metric, certainly need not conform to stylized textbook ex-
 amples like MSPE.
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 Thus, we allow the time-t loss associated with a fore-
 cast (say i) to be an arbitrary function of the realization and
 prediction, g(y,,3i,). In many applications, the loss func-
 tion will be a direct function of the forecast error; that is,

 g(y,, i,) = g(ei,). To economize on notation, we write g(ei,)
 from this point on, recognizing that certain loss functions
 (like direction-of-change) do not collapse to g(ei,) form, in

 which case the full g(y,,Y ,) form would be used. The null
 hypothesis of equal forecast accuracy for two forecasts is

 E[g(ei,)] = E[g(ejt)], or E[d,] = 0, where d, - [g(ei,) - g(ejt)]
 is the loss differential. Thus, the "equal accuracy" null hy-
 pothesis is equivalent to the null hypothesis that the popula-
 tion mean of the loss-differential series is 0.

 1.1 An Asymptotic Test

 Consider a sample path {dt}I', of a loss-differential series.
 If the loss-differential series is covariance stationary and short
 memory, then standard results may be used to deduce the
 asymptotic distribution of the sample mean loss differential.
 We have

 T/(d - -) - N(O, 27rfd(O)),
 where

 d = -[g(ei,)- g(et)]

 is the sample mean loss differential,

 1 o0
 fd(O) = Z 7 Yd(r)

 "7T=-00

 is the spectral density of the loss differential at frequency 0,

 Y%(r) = E[(d, - -)(d,_, - I)] is the autocovariance of the
 loss differential at displacement r, and I is the population
 mean loss differential. The formula for fd(0) shows that the
 correction for serial correlation can be substantial, even if
 the loss differential is only weakly serially correlated, due to
 cumulation of the autocovariance terms.

 Because in large samples the sample mean loss differential

 d is approximately normally distributed with mean /t and
 variance 27rfd(O)/T, the obvious large-sample N(O, 1) statistic
 for testing the null hypothesis of equal forecast accuracy is

 $1 =

 T

 wherefd(0) is a consistent estimate offd(0).
 Following standard practice, we obtain a consistent esti-

 mate of 2lrfd(0) by taking a weighted sum of the available
 sample autocovariances,

 2lrfd(0) = 1 ( T) d(7),
 where

 t=1fi+1I

 1(7/S(T)) is the lag window, and S(T) is the truncation lag.

 To motivate a choice of lag window and truncation lag
 that we have often found useful in practice, recall the fa-
 miliar result that optimal k-step-ahead forecast errors are at

 most (k - 1)-dependent. In practical applications, of course,
 (k - 1)-dependence may be violated for a variety of reasons.
 Nevertheless, it seems reasonable to take (k - 1)-dependence
 as a reasonable benchmark for a k-step-ahead forecast error
 (and the assumption may be readily assessed empirically).
 This suggests the attractiveness of the uniform, or rectangu-
 lar, lag window, defined by

 1 =1 for ? S 1 S(T) S(T)
 = 0 otherwise.

 (k - 1)-dependence implies that only (k - 1) sample autoco-
 variances need be used in the estimation of fd(O) because all
 the others are 0, so S(T) = (k - 1). This is legitimate (i.e.,
 the estimator is consistent) under (k - 1)-dependence so long
 as a uniform window is used because the uniform window
 assigns unit weight to all included autocovariances.

 Because the Dirichlet spectral window associated with the
 rectangular lag window dips below 0 at certain locations, the

 resulting estimator of the spectral density function is not guar-

 anteed to be positive semidefinite. The large positive weight
 near the origin associated with the Dirichlet kernel, however,

 makes it unlikely to obtain a negative estimate of fd(0). In
 applications, in the rare event that a negative estimate arises,

 we treat it as 0 and automatically reject the null hypothe-
 sis of equal forecast accuracy. If it is viewed as particularly
 important to impose nonnegativity of the estimated spectral
 density, it may be enforced by using a Bartlett lag window,
 with corresponding nonnegative Fejer spectral window, as in
 the work of Newey and West (1987), at the cost of having to
 increase the truncation lag "appropriately" with sample size.
 Other lag windows and truncation lag selection procedures
 are of course possible as well. Andrews (1991), for example,
 suggested using a quadratic spectral lag window, together
 with a "plug-in" automatic bandwidth selection procedure.

 1.2 Exact Finite-Sample Tests

 Sometimes only a few forecast-error observations are
 available in practice. One approach in such situations is
 to bootstrap our asymptotic test statistic, as done by Mark
 (1995). Ashley's (1994) work is also very much in that spirit.
 Little is known about the first-order asymptotic validity of the

 bootstrap in this situation, however, let alone higher-order
 asymptotics or actual finite-sample performance. Therefore,

 it is useful to have available exact finite-sample tests of pre-
 dictive accuracy, to complement the asymptotic test pre-
 sented previously. Two powerful such tests are based on
 the observed loss differentials (the sign test) or their ranks
 (Wilcoxon's signed-rank test). [These tests are standard, so
 our discussion is terse. See, for example, Lehmann (1975)
 for details.]

 1.2.1 The Sign Test. The null hypothesis is a zero-
 median loss differential: med(g(ei,) - g(ei,)) = 0. Note that
 the null of a zero-median loss differential is not the same
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 as the null of zero difference between median losses; that

 is, med(g(ei,) - g(ej,)) / med(g(ei,)) - med(g(ei,)). For that
 reason, the null differs slightly in spirit from that associated
 with our earlier discussed asymptotic test statistic S1, but it
 nevertheless has an intuitive and meaningful interpretation-

 namely, that P(g(eit) > g(ej,)) = P(g(ei,) < g(ei,)).
 If, however, the loss differential is symmetrically dis-

 tributed, then the null hypothesis of a zero-median loss dif-
 ferential corresponds precisely to the earlier null because
 in that case the median and mean are equal. Symmetry of
 the loss differential will obtain, for example, if the distri-
 butions of g(ej,) and g(ej,) are the same up to a location
 shift. Symmetry is ultimately an empirical matter and may be

 assessed using standard procedures. We have found roughly
 symmetric loss-differential series to be quite common in
 practice.

 The construction and intuition of a test statistic are straight-

 forward. Assuming that the loss-differential series is iid (and

 we shall relax that assumption shortly), the number of pos-
 itive loss-differential observations in a sample of size T has

 the binomial distribution with parameters T and l under the
 null hypothesis. The test statistic is therefore simply

 T

 S2 = +(d,),
 where

 I+(d,) = 1 if d, > 0
 = 0 otherwise.

 Significance may be assessed using a table of the cumula-
 tive binomial distribution. In large samples, the studentized
 version of the sign-test statistic is standard normal:

 S2--.5T a S2a = .., N(O, 1).

 1.2.2 Wilcoxon's Signed-Rank Test. A related distri-
 bution-free procedure that requires symmetry of the loss dif-
 ferential (but can be more powerful than the sign test in that
 case) is Wilcoxon's signed-rank test. We again assume for
 the moment that the loss-differential series is iid. The test
 statistic is

 T

 S3 = I+(d,) rank(Idt),

 the sum of the ranks of the absolute values of the positive
 observations. The exact finite-sample critical values of the
 test statistic are invariant to the distribution of the loss

 differential-it need be only zero-mean and symmetric-and
 have been tabulated. Moreover, its studentized version is

 asymptotically standard normal,

 S3 - (T+)
 S3a 4 N(0, 1).

 / T(T+I)(2T+I)
 V 24

 1.3 Discussion

 Here we highlight some of the virtues and limitations of
 our tests. First, as we have stressed repeatedly, our tests are
 valid for a very wide class of loss functions. In particular,

 the loss function need not be quadratic and need not even be
 symmetric or continuous.

 Second, a variety of realistic features of forecast errors are
 readily accommodated. The forecast errors can be nonzero-
 mean, non-Gaussian, and contemporaneously correlated.
 Allowance for contemporaneous correlation, in particular, is
 important because the forecasts being compared are forecasts
 of the same economic time series and because the informa-

 tion sets of forecasters are largely overlapping so that forecast
 errors tend to be strongly contemporaneously correlated.

 Moreover, the asymptotic test statistic S1 can of course
 handle a serially correlated loss differential. This is poten-
 tially important because, as discussed earlier, even optimal
 forecast errors are serially correlated in general. Serial corre-

 lation presents more of a problem for the exact finite-sample
 test statistics S2 and S3 and their asymptotic counterparts S2,
 and S3a because the elements of the set of all possible re-
 arrangements of the sample loss differential series are not
 equally likely when the data are serially correlated, which
 violates the assumptions on which such randomization tests
 are based. Nevertheless, serial correlation may be handled
 via Bonferroni bounds, as suggested in a different context by
 Campbell and Ghysels (1995). Under the assumption that
 the forecast errors and hence the loss differential are (k - 1)-

 dependent, each of the following k sets of loss differentials

 will be free of serial correlation: {d1y,I, dij,l+k, dij,1+2k ,.. .,

 {dij,2, dij,2+k, dij,2+2k, ...... ., {di,k, dij,2k, dij,3k,.. .}. Thus, a
 test with size bounded by a can be obtained by performing
 k tests, each of size a/k, on each of the k loss-differential
 sequences and rejecting the null hypothesis if the null is re-
 jected for any of the k samples. Finally, it is interesting to
 note that, in multistep forecast comparisons, forecast-error
 serial correlation may be a "common feature," in the termi-
 nology of Engle and Kozicki (1993), because it is induced
 largely by the fact that the forecast horizon is longer than the

 interval at which the data are sampled and may therefore not
 be present in loss differentials even if present in the forecast

 errors themselves. This possibility can of course be checked
 empirically.

 2. EXTANT TESTS

 In this section we provide a brief description of three ex-
 isting tests of forecast accuracy that have appeared in the
 literature and will be used in our subsequent Monte Carlo
 comparison.

 2.1 The Simple F Test: A Naive Benchmark

 If (1) loss is quadratic and (2) the forecast errors are (a) zero
 mean, (b) Gaussian, (c) serially uncorrelated, or (d) contem-
 poraneously uncorrelated, then the null hypothesis of equal
 forecast accuracy corresponds to equal forecast error vari-
 ances [by (1) and (2a)], and by (2b)-(2d), the ratio of sample
 variances has the usual F distribution under the null hypoth-
 esis. More precisely, the test statistic

 F = i i j e ej
 T
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 is distributed as F(T, T), where the forecast error series have

 been stacked into the (T x 1) vectors ei and ej.
 Test statistic F is of little use in practice, however, be-

 cause the conditions required to obtain its distribution are
 too restrictive. Assumption (2d) is particularly unpalatable
 for reasons discussed earlier. Its violation produces corre-
 lation between the numerator and denominator of F, which
 will not then have the F distribution.

 2.2 The Morgan-Granger-Newbold Test

 The contemporaneous correlation problem led Granger
 and Newbold (1977) to apply an orthogonalizing transfor-
 mation due to Morgan (1939-1940) that enables relaxation

 of Assumption (2d). Let x, = (ei, + ej,) and z, = (ei, - ej,), and
 let x = (e; + ei) and z = (ei - ej). Then, under the maintained
 Assumptions (1) and (2a)-(2c), the null hypothesis of equal
 forecast accuracy is equivalent to zero correlation between x
 and z (i.e., px = 0) and the test statistic

 MGN =
 T--I

 is distributed as Student's t with T - 1 df, where

 x'z

 (e.g., see Hogg and Craig 1978, pp. 300-303).
 Let us now consider relaxing the Assumptions (1) and

 (2a)-(2c) underlying the Morgan-Granger-Newbold (MGN)
 test. It is clear that the entire framework depends crucially
 on the assumption of quadratic loss (1), which cannot be
 relaxed. The remaining assumptions, however, can be weak-
 ened in varying degrees; we shall consider them in turn.

 First, it is not difficult to relax the unbiasedness Assump-

 tion (2a), while maintaining Assumptions (1), (2b), and (2c).
 Second, the normality Assumption (2b) may be relaxed,
 while maintaining (1), (2a), and (2c), at the cost of sub-
 stantial tedium involved with accounting for the higher-order
 moments that then enter the distribution of the sample correla-

 tion coefficient (e.g., see Kendall and Stuart 1979, chap. 26).
 Finally, the no-serial-correlation Assumption (2c) may be
 relaxed in addition to the no-contemporaneous-correlation
 Assumption (2d) while maintaining (1), (2a), and (2b), as
 discussed in Subsection 2.3.

 2.3 The Meese-Rogoff Test

 Under Assumptions (1), (2a), and (2b), Meese and Rogoff
 (1988) showed that

 V A N(O, C),

 where ? = x'z/T, C = ,.)__oo=[ ' (r)() + %Y(r)'Y=(7)],
 7Y.(r) = cov(x,, z,,), Y(7r) = cov(z,, x,_,), 7Y(7) =
 cov(xt, xt_,), and y(7r) = cov(z,, z,_,). This is a well-known
 result (e.g., Priestley 1981, pp. 692-693) for the distribution

 of the sample cross-covariance function, cov((s), (u)),
 specialized to a displacement of 0.

 A consistent estimator of E is

 =-S(T)

 where

 Yr)= xz,_, >o 0
 t=7r+I

 = (-7r) otherwise,

 1T

 (T) = ZX __ - 0
 = '(-r7) otherwise,

 -+1

 X(T) = T ztzt-,r

 and the truncation lag S(T) grows with the sample size but at a
 slower rate. Alternatively, following Diebold and Rudebusch
 (1991), one may use the closely related covariance matrix
 estimator,

 S(T)

 Either way, the test statistic is

 MR =

 Under the null hypothesis and the maintained Assumptions
 (1), (2a), and (2b), MR (Meese-Rogoff) is asymptotically
 distributed as standard normal.

 It is easy to show that, if the null hypothesis and Assump-
 tions (1), (2a), (2b), and (2c) are satisfied, then all terms in E

 are 0 except 7 (0) and -y(O) so that MR coincides asymptoti-
 cally with MGN. It is interesting to note also that reformula-
 tion of the test in terms of correlation rather than covariance

 would have enabled Meese and Rogoff to dispense with the
 normality assumption because the sample autocorrelations
 are asymptotically normal even for non-Gaussian time series
 (e.g., Brockwell and Davis 1992, pp. 221-222).

 2.4 Additional Extensions

 In Subsection 2.3, we considered relaxation of Assump-
 tions (2a)-(2c), one at a time, while consistently maintaining
 Assumption (1) and consistently relaxing Assumption (2d).
 Simultaneous relaxation of multiple assumptions is possible
 within the MGN orthogonalizing transformation framework
 but much more tedious. The distribution theory required for
 joint relaxation of (2b) and (2c), for example, is complicated
 by the presence of fourth-order cumulants in the distribution
 of the the sample autocovariances, as shown, for example, by
 Hannan (1970, p. 209) and Mizrach (1991). More impor-
 tantly, however, any procedure based on the MGN orthogo-
 nalizing transformation is inextricably wed to the assumption
 of quadratic loss.
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 3. MONTE CARLO ANALYSIS

 3.1 Experimental Design

 We evaluate the finite-sample size of test statistics F,
 MGN, MR, S1, S2, S2a, S3, and S3a under the null hypoth-
 esis and various of the maintained assumptions. The design
 includes a variety of specifications of forecast-error con-
 temporaneous correlation, forecast-error serial correlation,
 and forecast-error distributions. To maintain applicability of
 all test statistics for comparison purposes, we use quadratic
 loss; that is, the null hypothesis is an equality of MSPE's.
 We emphasize again, however, that an important advantage
 of test statistics S1, S2, S2a, S3, and S3a in substantive eco-
 nomic applications-and one not shared by the others-is
 their direct applicability to analyses with nonquadratic loss
 functions.

 Consider first the case of Gaussian forecast errors. We

 draw realizations of the bivariate forecast-error process,

 {eit, ej,t},, with varying degrees of contemporaneous and
 serial correlation in the generated forecast errors. This is
 achieved in two steps. First, we build in the desired de-
 gree of contemporaneous correlation by drawing a (2 x 1)

 forecast error innovation vector ut from a bivariate standard
 normal distribution, u, ,- N(02,12), and then premultiply-
 ing by the Choleski factor of the desired contemporane-
 ous innovation correlation matrix. Let the desired correlation

 matrix be

 R = P p E[0, 1).

 Then the Choleski factor is

 1 0

 Thus, the transformed (2 x 1) vector v, = Pu, , N(02, R).
 This operation is repeated T times, yielding {vt, vYit}l.
 Second, (moving average) MA(1) serial correlation (with

 parameter 0) is introduced by taking

 eit = _,+ 2it
 eit 0 1+oL ,' t = 1,... j T.

 We use v0 = 0. Multiplication by (1 + 02)-1/2 is done to keep
 the unconditional variance normalized to 1.

 We consider sample sizes of T = 8, 16, 32, 64, 128, 256,
 and 512, contemporaneous correlation parameters of p = 0,
 .5, and .9, and MA parameters of 9 = 0, .5, .9. Simple calcu-
 lations reveal that p is not only the correlation between vy and

 vj, but also the correlation between the forecast errors ei and
 ei so that varying the correlation of vi and vu through [0, .9] ef-
 fectively varies the correlation of the observed forecast errors

 through the same range.

 We also consider non-Gaussian forecast errors. The design
 is the same as for the Gaussian case described previously but

 driven by fat-tailed variates (ut, uj:)' [rather than (ui,, uit)'],
 which are independent standardized t random variables with
 6 df. The variance of a t(6) random variable is 3/2. Thus,

 standardization amounts to dividing the t(6) random variable

 by iV 2.
 Throughout, we perform tests at the a = .1 level. When

 using the exact sign and signed-rank tests, restriction of nom-

 inal size to precisely 10% is impossible (without introducing
 randomization), so we use the obtainable exact size closest
 to 10%, as specified in the tables. We perform at least 5,000
 Monte Carlo replications. The truncation lag is set at 1, re-
 flecting the fact that the experiment is designed to mimic the

 comparison of two-step-ahead forecast errors, with associ-
 ated MA(1) structure.

 3.2 Results

 Results appear in Tables 1-6, which show the empirical
 size of the various test statistics in cases of Gaussian and non-

 Gaussian forecast errors as the degree of contemporaneous
 correlation, the degree of serial correlation, and sample size
 are varied.

 Let us first discuss the case of Gaussian forecast errors.

 The results may be summarized as follows:

 1. F is correctly sized in the absence of both contemporane-
 ous and serial correlation but is missized in the presence
 of either contemporaneous or serial correlation. Serial
 correlation pushes empirical size above nominal size, but
 contemporaneous correlation pushes empirical size drasti-
 cally below nominal size. In combination, and particularly
 for large p and 0, contemporaneous correlation dominates
 and F is undersized.

 2. MGN is designed to remain unaffected by contemporane-
 ous correlation and therefore remains correctly sized so

 long as 0 = 0. Serial correlation, however, pushes empiri-
 cal size above nominal size.

 3. As expected, MR is robust to contemporaneous and serial
 correlation in large samples, but it is oversized in small
 samples in the presence of serial correlation. The asymp-
 totic distribution obtains rather quickly, however, resulting
 in approximately correct size for T > 64.

 4. The behavior of S1 is similar to that of MR. S, is robust to

 contemporaneous and serial correlation in large samples,
 but it is oversized in small samples, with nominal and
 empirical size converging a bit more slowly than for MR.

 5. The Bonferroni bounds associated with S2 and S3 work
 well, with nominal and empirical size in close agreement
 throughout. Moreover, the asymptotics on which S2a and

 S3a depend obtain quickly.

 Now consider the case of non-Gaussian forecast errors.

 The striking and readily apparent result is that F, MGN, and
 MR are drastically missized in large as well as small samples.
 S1, S2a, and S3a, on the other hand, maintain approximately
 correct size for all but the very small sample sizes. In those
 cases, S2 and S3 continue to perform well. The results are
 well summarized by Figure 1, p. 261, which charts the de-
 pendence of F, MGN, MR, and S1 on T for the non-Gaussian

 case with p = 0 = .5.
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 Table 1. Empirical Size Under Quadratic Loss, Test Statistic F

 Gaussian Fat-tailed

 T p 0=.0 0=.5 8=.9 8=.0 0=.5 8=.9

 8 .0 9.85 12.14 14.10 14.28 15.76 17.21
 8 .5 7.02 9.49 11.42 9.61 11.64 13.02
 8 .9 .58 1.26 1.86 .57 1.13 1.79

 16 .0 9.83 12.97 14.85 16.47 18.59 19.78
 16 .5 7.30 10.11 11.89 11.14 13.55 14.94
 16 .9 .47 .99 1.55 .34 .70 1.13

 32 .0 9.88 12.68 14.34 18.06 19.55 20.35
 32 .5 6.98 9.50 11.22 21.30 21.00 21.37
 32 .9 .23 .55 1.00 .01 .07 .23

 64 .0 9.71 13.05 14.62 29.84 29.72 29.96
 64 .5 6.48 9.25 10.62 23.48 23.93 24.15
 64 .9 .16 .47 .79 .02 .12 .29

 128 .0 10.30 13.41 14.99 30.34 30.95 31.26
 128 .5 7.01 10.13 11.64 24.89 25.01 25.16
 128 .9 .16 .50 .74 .11 .44 .73

 256 .0 10.01 13.05 14.65 31.07 31.12 31.24
 256 .5 7.37 10.31 11.78 25.48 25.45 25.70
 256 .9 .19 .51 .80 .51 1.13 1.44

 512 .0 10.22 13.51 15.25 31.45 32.38 32.60
 512 .5 7.53 10.16 11.49 26.35 26.92 16.95
 512 .9 .18 .50 .85 .81 1.58 2.06

 NOTE: T is sample size, p is the contemporaneous correlation between the innovations underlying the forecast errors, and 0 is the
 coefficient of the MA(1) forecast error. All tests are at the 10% level. 10,000 Monte Carlo replications are performed.

 Table 2. Empirical Size Under Quadratic Loss, Test Statistic MGN

 Gaussian Fat-tailed

 T p 0=.0 0=.5 8=.9 0=.0 8=.5 0=.9

 8 .0 10.19 14.14 17.94 18.10 21.89 25.65
 8 .5 9.96 14.66 18.61 16.00 20.51 24.19
 8 .9 9.75 14.53 18.67 11.76 16.31 20.00

 16 .0 10.07 14.34 17.54 20.33 24.54 27.08
 16 .5 9.56 14.37 17.95 37.15 36.18 25.66
 16 .9 10.02 14.70 18.20 12.01 16.76 19.81

 32 .0 9.89 15.04 18.00 22.94 26.32 28.72
 32 .5 10.08 15.11 17.95 20.23 23.76 26.20
 32 .9 9.59 15.32 18.25 12.75 17.78 20.54

 64 .0 10.09 15.37 17.99 24.56 28.15 30.00
 64 .5 9.95 15.18 18.15 21.10 25.18 27.28
 64 .9 10.26 15.67 18.49 12.98 18.09 20.53

 128 .0 9.96 15.09 17.59 26.47 29.50 30.94
 128 .5 10.23 15.07 17.48 23.62 26.82 28.51
 128 .9 10.11 15.05 18.05 14.34 18.89 21.56

 256 .0 10.28 15.62 18.37 27.39 30.74 32.46
 256 .5 10.60 16.02 18.44 23.81 28.38 30.31
 256 .9 10.11 15.48 17.91 14.15 19.43 22.03

 512 .0 10.12 15.34 17.68 27.64 30.55 32.14
 512 .5 10.05 14.96 17.66 24.10 27.40 29.28
 512 .9 9.90 15.09 17.53 14.78 19.16 21.49

 NOTE: T is sample size, p is the contemporaneous correlation between the innovations underlying the forecast errors, and 8 is the
 coefficient of the MA(1) forecast error. All tests are at the 10% level. 10,000 Monte Carlo replications are performed.
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 Table 3. Empirical Size Under Quadratic Loss, Test Statistic MR

 Gaussian Fat-tailed

 T p 0=.0 0= .5 8= .9 0= .0 0= .5 8= .9

 8 .0 9.67 19.33 22.45 16.16 25.26 27.62
 8 .5 9.50 19.00 22.07 14.81 24.50 26.99
 8 .9 9.66 19.51 22.85 11.23 21.28 24.14

 16 .0 9.62 13.92 14.72 19.94 22.56 23.06
 16 .5 10.02 13.88 14.96 17.70 21.04 21.26
 16 .9 10.04 13.82 14.94 11.76 15.68 16.70

 32 .0 9.96 10.98 11.12 22.78 22.86 21.72
 32 .5 9.68 11.46 11.66 19.78 20.32 20.14
 32 .9 9.86 11.62 11.96 12.42 13.54 13.46

 64 .0 10.32 11.02 11.04 24.50 22.60 21.58
 64 .5 9.84 10.56 10.64 21.44 19.48 18.84
 64 .9 9.58 10.58 10.34 13.38 13.38 13.20

 128 .0 9.78 10.54 10.44 25.86 22.90 21.54
 128 .5 10.02 11.04 11.18 22.76 20.26 19.44
 128 .9 10.76 11.28 11.38 13.44 13.52 12.92

 256 .0 10.04 9.90 9.58 27.16 23.74 22.70
 256 .5 10.32 9.92 9.82 24.00 20.50 19.18
 256 .9 9.92 10.16 10.34 13.38 12.70 12.24

 512 .0 9.94 10.48 10.56 26.92 23.40 21.78
 512 .5 9.52 10.56 10.48 23.56 20.52 19.36
 512 .9 9.80 9.82 9.88 13.96 12.98 12.74

 NOTE: T is sample size, p is the contemporaneous correlation between the innovations underlying the forecast errors, and 0 is the
 coefficient of the MA(1) forecast error. All tests are at the 10% level. At least 5,000 Monte Carlo replications are performed.

 Table 4. Empirical Size Under Quadratic Loss, Test Statistic S,

 Gaussian Fat-tailed

 T p 0=.0 0=.5 0=.9 0=.0 0=.5 0=.9

 8 .0 31.39 31.10 31.03 31.62 29.51 29.07
 8 .5 31.37 30.39 29.93 31.21 29.71 29.36
 8 .9 31.08 30.19 30.18 31.18 30.12 29.75

 16 .0 20.39 19.11 18.94 19.26 18.50 18.32
 16 .5 20.43 19.52 18.86 19.57 17.67 17.63
 16 .9 20.90 19.55 19.59 20.15 18.38 18.16

 32 .0 12.42 12.28 12.18 11.30 11.64 11.56
 32 .5 13.32 13.22 12.94 11.54 10.66 10.84
 32 .9 12.60 13.38 13.22 11.16 11.22 11.50

 64 .0 12.47 12.11 11.94 12.44 11.62 11.36
 64 .5 12.76 12.49 12.35 12.10 12.26 12.10
 64 .9 12.21 12.23 12.03 13.00 12.36 12.16

 128 .0 11.72 11.94 12.04 11.48 10.72 10.28
 128 .5 11.44 11.72 11.60 10.84 10.96 10.96
 128 .9 11.76 11.26 11.34 11.50 10.66 10.86

 256 .0 11.11 10.65 10.66 12.06 11.67 11.79
 256 .5 10.90 10.39 10.48 12.16 11.46 11.60
 256 .9 10.69 10.79 10.75 11.51 11.59 11.16

 512 .0 11.15 10.67 10.63 10.06 9.46 9.62
 512 .5 10.90 10.39 10.49 9.94 9.66 9.76
 512 .9 10.31 10.09 10.05 10.12 10.12 10.06

 NOTE: T is sample size, p is the contemporaneous correlation between the innovations underlying the forecast errors, and 9 is the
 coefficient of the MA(1) forecast error. All tests are at the 10% level. At least 5,000 Monte Carlo replications are performed.
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 Table 5. Empirical Size Under Quadratic Loss, Test Statistics S2 and S28

 Gaussian Fat-tailed

 T p 8=.0 8=.5 8=.9 0=.0 0=.5 8=.9

 S2, nominal size = 25%

 8 .0 22.24 22.48 22.38 23.94 23.46 23.34
 8 .5 22.14 23.46 22.16 23.08 24.80 23.06
 8 .9 22.24 23.02 22.66 22.92 23.26 22.86

 S2, nominal size = 14.08%

 16 .0 13.46 13.26 13.14 13.62 13.06 13.76
 16 .5 14.22 13.46 12.92 13.70 13.24 13.62
 16 .9 13.08 13.84 13.28 12.86 13.06 13.20

 S2, nominal size = 15.36%

 32 .0 14.36 14.52 14.28 14.54 14.32 14.30
 32 .5 14.36 14.06 13.94 15.08 14.36 15.02
 32 .9 14.68 14.62 13.46 14.94 14.76 14.52

 S2a, nominal size = 10%

 64 .0 9.72 9.92 9.42 9.68 10.36 10.44
 64 .5 9.66 10.34 9.68 9.52 10.06 10.00
 64 .9 10.84 9.46 10.34 9.40 8.98 10.02

 S2a, nominal size = 10%
 128 .0 11.62 11.62 11.84 12.22 12.20 11.42
 128 .5 11.66 11.62 11.90 12.06 11.94 11.44
 128 .9 11.22 11.72 11.28 12.06 10.76 11.40

 NOTE: T is sample size, p is the contemporaneous correlation between the innovations underlying the forecast errors, and 0 is the
 coefficient of the MA(1) forecast error. At least 5,000 Monte Carlo replications are performed.

 Table 6. Empirical Size Under Quadratic Loss, Test Statistics S3 and S3e

 Gaussian Fat-tailed

 T p 0= .0 = .5 0 = .9 0= .0 = .5 0 = .9

 S3, nominal size = 25%

 8 .0 22.50 22.92 22.90 23.26 23.34 21.96
 8 .5 22.98 22.26 23.06 23.42 23.86 22.88
 8 .9 23.16 22.36 24.24 24.26 23.32 23.34

 S3, nominal size = 10.92%

 16 .0 10.62 10.06 10.40 10.16 10.42 9.84
 16 .5 10.38 10.92 10.32 10.54 10.94 10.34
 16 .9 10.64 10.18 9.62 10.58 10.96 10.64

 S3, nominal size = 10.12%

 32 .0 10.72 10.28 9.30 9.90 10.00 9.98
 32 .5 10.56 10.00 10.02 10.40 10.64 10.30
 32 .9 10.92 10.44 10.30 10.46 9.96 10.70

 Sa, nominal size = 10%
 64 .0 9.38 9.54 9.16 9.64 9.24 8.84
 64 .5 9.80 10.02 9.66 9.58 8.82 8.78
 64 .9 9.90 9.24 9.68 9.92 9.78 10.00

 S3a, nominal size = 10%

 128 .0 9.94 9.70 9.12 9.82 9.04 8.46
 128 .5 9.52 10.00 9.32 10.08 9.24 9.20
 128 .9 9.46 9.64 9.42 9.28 9.22 9.26

 NOTE: T is sample size, p is the contemporaneous correlation between the innovations underlying the forecast errors, and 8 is the
 coefficient of the MA(1) forecast error. At least 5,000 Monte Carlo replications are performed.
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 Figure 1. Empirical Sizeast, Four Test Statistics: Fat-Tailed Case;
 Theta = Rho = .5.

 4. AN EMPIRICAL EXAMPLE

 We shall illustrate the practical use of the tests with an
 application to exchange-rate forecasting. The series to be
 forecast, measured monthlyth forecasts, three-month change in the

 nominal dollar/Dutch guilder end-of-month spot exchange
 rate (in U.S. cents, noon, New York interbank), from 1977.01

 to 1991.12. We assess two forecasts , the "no change" (0)
 forecast associated with a random-walk model and the fore-

 cast implicit in the three-month forward rate (the difference

 between the three-month forward rate and the spot rate).

 The actual and predicted changes are shown in Figure 2.
 The random-walk forecast, of course, is just constant at 0,
 whereas the forward market forecast moves over time. The

 movements in both forecasts, however, are dwarfed by the

 forecast; as one hears so often, "The random walk wins." The

 5.0

 2.5

 S-2.5

 -5.0

 -7.5 ,
 77 78 79 80 818283885868788 8990 91

 Time

 Figure 2. Actual and Predicted Exchange-Rate Changes. The

 solid line is the actual exchange-rate change. The short dashed line

 is the predicted change from the rao oe andom-walk model, and the long

 dashed line is the predicted change implied by the forward rate.
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 Figure 3. Loss Differential (forward--random walk).

 loss-differential series is shown in Figure 3, in which no ob-
 vious nonstationarities are visually apparently. Approximate
 stationarity is also supported by the sample autocorrelation
 function of the loss differential, shown in Figure 4, which
 decays quickly.

 Because the forecasts are three-step-ahead, our earlier ar-
 guments suggest the need to allow for at least two-dependent

 forecast errors, which may translate into a two-dependent
 loss differential. This intuition is confirmed by the sample
 autocorrelation function of the loss differential, in which siz-

 able and significant sample autocorrelations appear at lags 1
 and 2 and nowhere else. The Box-Pierce X2 test of jointly
 zero autocorrelations at lags 1 through 15 is 51.12, which
 is highly significant relative to its asymptotic null distribu-

 tion of X25. Conversely, the Box-Pierce X2 test of jointly
 zero autocorrelations at lags 3 through 15 is 12.79, which is

 insignificant relative to its null distribution of X2'3
 We now proceed to test the null of equal expected loss. F,

 MGN, and MR are inapplicable because one or more of their

 0.5

 0.4

 0.3

 o 0.1

 0.0

 -0.1

 2 4 6 8

 Displacement
 Figure 4. Loss Differential Autocorrelations. The first eight sam-

 ple autocorrelations are graphed, together with Bartlett's approximate
 95% confidence interval.

This content downloaded from 
�������������165.123.34.86 on Mon, 09 Jan 2023 15:10:50 UTC������������� 

All use subject to https://about.jstor.org/terms



 Journal of Business & Economic Statistics, July 1995 143

 maintained assumptions are explicitly violated. We therefore
 focus on our test statistic S1, setting the truncation lag at two

 in light of the preceding discussion. We obtain S1 = -1.3,
 implying a p value of .19. Thus, for the sample at hand, we
 do not reject at conventional levels the hypothesis of equal
 expected absolute error--the forward rate is not a statistically
 significantly worse predictor of the future spot rate than is the

 current spot rate.

 5. CONCLUSIONS AND DIRECTIONS FOR
 FUTURE RESEARCH

 We have proposed several tests of the null hypothesis of
 equal forecast accuracy. We allow the forecast errors to be
 non-Gaussian, nonzero mean, serially correlated, and con-
 temporaneously correlated. Perhaps most importantly, our
 tests are applicable under a very wide variety of loss struc-
 tures.

 We hasten to add that comparison of forecast accuracy is
 but one of many diagnostics that should be examined when
 comparing models. Moreover, the superiority of a particu-
 lar model in terms of forecast accuracy does not necessarily
 imply that forecasts from other models contain no additional
 information. That, of course, is the well-known message of
 the forecast combination and encompassing literatures; see,
 for example, Clemen (1989), Chong and Hendry (1986), and
 Fair and Shiller (1990).

 Several extensions of the results presented here appear to
 be promising directions for future research. Some are obvi-
 ous, such as generalization to comparison of more than two
 forecasts or, perhaps most generally, multiple forecasts for
 each of multiple variables. Others are less obvious and more
 interesting. We shall list just a few:

 1. Our framework may be broadened to examine not only
 whether forecast loss differentials have nonzero mean but

 also whether other variables may explain loss differen-
 tials. For example, one could regress the loss differential
 not only on a constant but also on a "stage of the busi-
 ness cycle" indicator to assess the extent to which relative
 predictive performance differs over the cycle.

 2. The ability to formally compare predictive accuracy
 afforded by our tests may prove useful as a model-
 specification diagnostic, as well as a means to test
 both nested and nonnested hypotheses under nonstan-
 dard conditions, in the tradition of Ashley, Granger, and
 Schmalensee (1980) and Mariano and Brown (1983).

 3. Explicit account may be taken of the effects of uncertainty

 associated with estimated model parameters on the behav-
 ior of the test statistics, as shown by West (1994).

 Let us provide some examples of the ideas sketched in 2.
 First, consider the development of a test of exclusion re-
 strictions in time series regression that is valid regardless
 of whether the data are stationary or cointegrated. The de-
 sirability of such a test is apparent from works like those
 of Stock and Watson (1989), Christiano and Eichenbaum
 (1990), Rudebusch (1993), and Toda and Phillips (1993), in
 which it is simultaneously apparent that (a) it is difficult to

 determine reliably the integration status of macroeconomic
 time series and (b) the conclusions of macroeconometric stud-

 ies are often critically dependent on the integration status of
 the relevant time series. One may proceed by noting that
 tests of exclusion restrictions amount to comparisons of re-
 stricted and unrestricted sums of squares. This suggests es-
 timating the restricted and unrestricted models using part of
 the available data and then using our test of equality of the
 mean squared errors of the respective one-step-ahead fore-
 casts.

 As a second example, it would appear that our test is ap-
 plicable in nonstandard testing situations, such as when a
 nuisance parameter is not identified under the null. This oc-
 curs, for example, when testing for the appropriate number
 of states in Hamilton's (1989) Markov-switching model. In
 spite of the fact that standard tests are inapplicable, certainly
 the null and alternative models may be estimated and their
 out-of-sample forecasting performance compared rigorously,
 as shown by Engel (1994).

 In closing, we note that this article is part of a larger re-
 search program aimed at doing model selection, estimation,
 prediction, and evaluation using the relevant loss function,
 whatever that loss function may be. This article has addressed

 evaluation. Granger (1969) and Christoffersen and Diebold
 (1994) addressed prediction. These results, together with
 those of Weiss and Andersen (1984) and Weiss (1991, 1994)
 on estimation under the relevant loss function will make fea-

 sible recursive, real-time, prediction-based model selection
 under the relevant loss function.
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