
ALGOL 68 IMPLEMENTATION

IFIP Working Conference on ALGOL 68 Implementation
Munich, Germany, July 20-24,1970

organized by

IFIP Technical Committee 2, Programming Languages

International Federation for Information Processing

Organizing Committee

F.L. Bauer (Chairman), A. Caracciolo, M. Paul,

J.E.L. Peck, T.B. Steel, H. Zemanek

~It
1M
~
1971

NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM· LONDON

ALGOL 68 Implementation

Proceedings of the
IFIP Working Conference on ALGOL 68 Implementation

Munich, July 20-24, 1970

edited by

J. E. L. PECK
University of British Columbia, Vancouver, Canada

~c
~
~
1~71

NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM· LONDON

© IFIP, 1971

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, without the prior permission of the Copyright owner.

Library of Congress Catalog Card Number: 79-146198
ISBN: 0720420458

Published by

NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM

NORTH-HOLLAND PUBLISHING COMPANY, LTD. - LONDON

PRINTED IN THE NETHERLANDS

PREFACE

From 1963, Working Group 2.1 on ALGOL of the International Federa
tion for Information Processing has discussed the development of a new
language as a su~essor to ALGOL 60. Eventually A. van Wijngaarden was
commissioned to prepare a document defining a new language. This docu
ment, designed in collaboration with B. J. Mailloux, J. E. L. Peck and
C. H. A. Koster, was accepted as a defining document for the language
ALGOL 68 by a meeting of the Working Group held in Munich in December
of 1968. It was reviewed by Technical Committee 2 and finally recom
mended by the General Assembly of IFIP for widespread publication. It now
appears as "Report on the Algorithmic Language ALGOL 68" (see the bib- .
liography) .

. In order to stimulate the production of ALGOL 68 compilers and thus to
put the new language to the test of use, Technical Committee 2 agreed to
hold a Working Conference on ALGOL 68 Implementation in Munich in July
of 1970. Some forty persons were present, by invitation, and twenty papers
were presented. These papers discussed various aspects of implementation
and ranged from the examination of detailed facets of compiler construction
to the more general questions. There were also two panel discussions.

The conference was intended to reveal the current status of implementa
tion efforts in many countries and to provide for the interplay of ideas. Of
particular interest was the fact that a working compiler for ALGOL 68-R,
a variant of ALGOL 68, was already in operation at the Royal Radar Estab
lishment in Malvern, England.

That the conference was a success, can be seen from the lively discus
sions which followed the presentation of the papers. Naturally, numerous
contacts were made and ideas exchanged outside of the meeting rooms. It
was held at the Mathematical Institute of the Technical University of Mu
nich. All sessions were carefully recorded. The participants were grateful
for the excellence of the facilities and the hospitality provided by the local
organizing committee.

The material in this volume has been edited in an attempt to make it
more readable. To this end, all references to the participants, during the
discussions, are by last name only, but, of course, many first names were
used, while others preferred to use titles where appropriate. The editor
must therefore apologize to those participants who find themselves ad
dressing their long-time friends by the last name and to those young par
tiCipants who may be surprised to read that they addressed their superiors
with apparent disrespect. The discussion following each of the presenta
tions keeps as closely as possible to that which is recorded, but, in some
cases, much work was done to make it intelligible to one who was not pres
ent. Thus, some illustrative examples now appear, of which the confer-

v

------~~~~~~~----~-------------------

vi PREFACE

ence participants did not, at the time, have the benefit. The editor is
grateful for the help of those participants who made these revisions possi
ble.

The members of the organizing committee, and especially Professor
F. L. Bauer and Professor M. Paul. are to be thanked for the excellent ar
rangements for recording and transcribing the conference. It made the edi
torial work much lighter. The use of the facilities of the Technical Univer
sity of Munich for later editorial work eased the burden even more. For
the excellence of the dual set of recordings, the conference is indebted to
Mr. Hellmuth Haag and Mr. Udo Schampel, and for assistance in the trans
cription, to Mr. Th. Strohlein. Special thanks should go to Miss Margot
Vogg and to a band of typists whom she supervised. Her good humour and
dedicated efficiency were much appreciated.

Because of the desire to have this volume in the hands of the reader as
soon as pOSSible, an upper limit was set on its size and some papers pre
sented at the conference could not be included. Moreover, limitations of
time, prescribed by this goal, meant that many pieces of ALGOL 68 pro
grams included here could not be put to the test of syntactic analysis or
compilation.

A bibliography, current at the time of going to press, and prepared with
the help of participants, is included.

J. E. L. Peck,
Vancouver,
November 1970.

CONTENTS

Preface
Opening Session

Session 1 (Chairman: M. Paul)

A symbol table with scope recognition for the B-6500
H. J. Bowlden

ALGOL 68-R
I. F. Currie, Susan G. Bond, J. D. Morison

Session 2 (Chairman: J. E. L. Peck)

Analysis of the parenthesis structure of ALGOL 68
P. Branquart, J. Lewi, J. P. Cardinael

An implementation of identifier tables in a multipass
ALGOL 68 compiler based on a hash-code technique

J. Kral, J. Moudry
Syntax and mode check in an ALGOL 68 compiler

H. Scheidig

Session 3 (Chairman: B. J. Mailloux)

Affix grammars
C. H. A. Koster

On identification of operators in ALGOL 68
H. W6ssner

An attempted definition of an extensible system
L. Trilling, J. P. Verjus

Session 4 (Chairman: A. van Wijngaarden)

A multilanguage programming system oriented to
language description and universal optimization algorithms

A. P. Ershov
On description of syntax of ALGOL 68 and its national variants

A. A. Blihrs, A. P. Ershov, A. F. Rar
Some problems in compiling ALGOL 68

G. Goos,

Session 5 (Chairman: C.B.A.Koster)

A scheme of storage allocation and garbage collection
for ALGOL 68

P. Branquart, J. Lewi
An ALGOL 68 garbage collector

S. Marshall

vii

v
ix

1

21

37

77

83

95

111

119

143

199

239

viii CONTENTS

Methods of garbage collection for ALGOL 68
P. L. Wodon

Session 6 (Chairman: G. Goos)

Panel discussion - ALGOL 68 sublanguages (Part 1)
Some ALGOL 68 sublanguages

C. H. Lindsey
Panel discussion - ALGOL 68 sublanguages (Part 2)

Session 7 (Chairman: A. P. Ershov)

A garbage collector to be implemented on a CDC 3100
P. Goyer

Session 8 (Chairman: F. L. Bauer)

Panel discussion - Implementation

Session 9 (Chairman: W. L. van der Poel)

Making the hardware suit the language
C. H. Lindsey

Conference participants
Bibliography

245

265

283
289

303

321

347

367
369

OPENING SESSION

Bauer (Conference chairman):
Ladies and Gentlemen, welcome to Munich, welcome to this conference.

I welcome all the participants. This is a restricted conference, and we
have only invited participants here. I hope it will be for the benefit of the
conference. We are a small group, your discussion can be very open, very
lively, and we will do our best to record it so that everything you say may
be used, for or against you! My particular greetings go to Professor
Zemanek from Vienna, IFIP-Vice-President. I should also give you the
greetings of the Rector of the Technische Universitlit Miinchen. He asks me
to convey his very best wishes for the success of this conference.

Munich is not a new place for IFIP activities. We have had the IFIP con
gress here. With the start of the IFIP working group 2. 1 activities, we
have had a meeting (I think it was 1964) in Tutzing, near Munich and we
have had the dramatic meeting of December 1968. We have a certain tra
dition. We are glad to have you here. In some sense you are all tied into
the ALGOL activity, although not all of you belong to the working group. As
those who have been here before may have noticed, we have moved into a
new building, the building in which you are now. We are very happy that not
only do we have better rooms but we can have a conference in nicer rooms
than before. You may observe that opposite this building, another building
is under construction and is about finished. It is the new Leibniz computing
center building, and it will be open in a few weeks.

Before I ask Professor Zemanek to open the conference, I would like
first to mention one thing. I have had the help of Professor Paul in prepar
ing this conference to such a large extent that I personally consider him to
be more the chairman of the conference than myself, and I would like to
express my thanks to him now, at this moment, quite clearly. Our thanks
also go to our colleague members of the organizing committee, A. Carac
ciolo, M. Paul, J. E. L. Peck, T. B. Steel and H. Zemanek.

Zemanek:
Mr. Chairman, Ladies and Gentlemen, Dear Friends,

The President of IFIP has charged me to represent him- at this working
conference and to give you the greetings of IFIP. As the responsible Vice
President, it is my great personal pleasure to be here and to wish you a
successful week. Most of you know that this is the fourth of this type of
working conference organized by TC -2:

ix

x

Vienna/Baden
Pisa
Oslo
Munich

1964
1966
1967
1970

OPENING SESSION

Formal Language Definition Language
Symbol Manipulation
Simulation
ALGOL 68 Implementation.

In fact, these working conferences are much more than their titles con
vey. They play an important role in the general development of program
ming languages. It is generally true that our conferences take place only
partly in the meeting rooms. Sometimes the even more important section
happens in the corridors, parks and coffeeshops. Working conferences of
our type are intended to create a family of scientists or to develop such a
family further. This is why we usually invite an abstract community: one
formed by mutual reading of publications and Singular visits. At the work
ing conference, the abstract community is turned into a real community.

With ALGOL, everything is more dense. A kind of community already
existed before IFIP, and we only had the opportunity to host it under the
IFIP umbrella. But then it grew, extended the field of ALGOL 60 and de
cided to start work on ALGOL X and Y. This is not the spot to tell the
ALGOL 68 story. I have invited the former chairman of WG 2. 1 to write
this story and I hope that all his obligations will one day allow him time to
do it.

Like any good scientific creation, ALGOL 68 initiates discussions and
controversy. If I were more cynical, I would say that if controversy were
a measure of its scientific value, ALGOL 68 has outstanding value. I think,
however, that WG 2. 1, by developing ALGOL 68, has become a focus-point
of the programming language problematics and if the controversy has not
been a measure of the importance of the ALGOL 68 of today, it is a meas
ure of the creativity of the ALGOL community.

WG 2.1 and WG 2.3 will now have to elaborate the outcome of the dis
cussions. WG 2. 1 will deal with ALGOL 68 and WG 2.3 will have to show
what else can be done.

In the opening letter of TC-2 for the ALGOL 68 report, we said that
ALGOL 68 has to pass "the crucial tests of implementation and subsequent
use by the computing community".

Since the publishing of the ALGOL 68 report, this conference is the first
important step in the direction TC-2 and WG 2. 1 are hoping our language
is going to take. I am particularly grateful to Professor Bauer, chairman
of the conference, and Dr. Paul. chairman of WG 2. 1. and the other orga
nizers of this working conference. who bore all the burdens of preparing
our meeting, which is to be a working conference where the accent is on
working.

A language, whether natural or constructed, is a social tool. A one
user language is no real language. and the importance of a language is di
rectly proportionate to the number of its users. This number naturally in
creases with the successful applications of the language - and this again
depends on the availability and the quality of the compilers for that lan
guage. ALGOL 68 implementation, therefore. is the most important sub
ject for the growth of the ALGOL 68 community at this time.

OPENING SESSION xi

There is a long list of places where implementation of ALGOL 68 is in
tended. The future of ALGOL 68 will depend very much on the success of
these implementation groups. And the present working conference has the
first purpose of supporting these groups and - consequently - the success
of ALGOL 68.

It is therefore not only a polite remark or pleasure expressed ex officio
to wish all of you a good working conference, in my own name, on behalf of
the IFIP President and for IFIP as a whole .. Because, as I always say,
IFIP consists only of the work of its people, the remainder is overhead.
You are the active part of IFIP this week. Make good use of it and enjoy it.

68 IMPLEMENTATION

I. F. Currie. Susan G. Bond and J. D. Morison. Implementers of ALGOL 68-R

68 IMPLEMENTATION

SESSION 1

(Chairman: M.Paul)

68 IMPLEMENTATION

A SYMBOL TABLE WITH SCOPE RECOGNITION

FOR THE B-6500

HENRY J. BOWLDEN
Westinghouse Res.Labs., Pittsburgh, Pennsylvania, USA

INTRODUCTION

The Burroughs B-6500 provides a specialized environment for computer
programs, including compilers. The following three significant features of
this environment are of concern here:
a) the stack hardware makes a recursive program organization feasible

(with respect to efficiency), but at the same time restricts certain capa
bilities, such as "deep-stack" addressing;

b) the character manipulation hardware influences the design of source
scanners;

c) the multiprogrammed operating system allocates space for a program
entirely on demand, and therefore suggests a symbol table organization
which is dynamic, and in which the "inner loops" of searches are con
fined to a small and isolated portion of the symbol table space.
The algorithms which we present here have been designed to operate ef

ficiently in this specialized environment. Special consideration has also
been given to the demands of a recognizer for a class of languages, includ
ing ALGOL 60 [lJ, Extended Algol for the B-6500 [2J, and ALGOL 68 [3J.
The recognizer is also suitable for LISP [4J, and with a few modifications
in the source scanner could be made to handle other languages, such as
FORTRAN and PL/I.

The algorithms are presented in ALGOL 68, partly to test the suitability
of this language for applications of this type, but primarily as a phase of a
project to bootstrap an implementation of ALGOL 68 for the B-6500 written
in ALGOL 68. A primary purpose of the formalization of this paper is to
illustrate the manner in which the use of a general-purpose language can be
combined with a knowledge of the computing environment to produce effi
cient programs.

The algorithms included in this paper are those for source scanning and
symbol table handling. The method by which the scope concept is treated is
designed to simplify the "identification" problem of ALGOL 68.

OVERVIEW AND SUMMARY

The presentation emphasizes a number of points which should be item
ized.

1

2 H.J.BOWLDEN

In the first place, the design of a package such as this needs to take into
account special hardware features of a given computer which may be ap
plied to the problem. Any language which is to be suitable for efficiently
implementing such a package must allow the programmer to establish con
trol over such features. The scanner described here leans heavily on the
character manipulation features of the B-6500; any clumsiness observed in
the statements controlling these features may indicate a language deficiency
in these areas. In many compilers, the "atoms" which are considered Me
the individual source characters, and the innermost level of the defining
grammar governs the composition of characters into significant elements
(identifiers, etc.). The B-6500 hardware, by its provision of efficient meth
ods for isolating such elements, leads us away from that level and towards
the level described here.

The ability to pack information (fields of structured data) into machine
words for reasons of efficient handling or storage economy is important.
This topic has not been considered in detail here, because extensions to the
language would be required to handle it properly; the only change in the al
gorithm would, however, be in the declarations of the data modes.

In the organization of the tables, it is important that the search strategy
should not be required to perform complicated tests too frequently. The
tasks of high frequency should be made as simple as possible. Another ex
ample of the use of knowledge of the hardware to improve efficiency is con
tained in the organization of the various dictionaries into arrays containing
elements of static size. This enables efficient referencing of an entry and
packing of a reference as a subscript value. It also relieves the system of
considerable overhead, letting the compiler (which knows the structural
characteristics of its data base) handle the allocation.

The algorithms described here have been coded in Burroughs Extended
Algol and the basic efficiency of the organization has been justified on a
preliminary basis by the results of tests.

DESIGN OF THE SOURCE SCANNER

The scanner, which is presented in detail in Appendix B, must depend
heavily on the character-handling capabilities of the B-6500. Its design al
so reflects some of the characteristics of the class of languages for which
it is to be used. It treats the source as a continuous string of characters,
broken arbitrarily into records or "lines" by the demands of the hardware.
This source string is made up of the following "basic atoms".

identifier: letters and/or digits beginning with a letter. Blanks mayor
may not be embedded, depending on a global flag.

integer: digits; embedded blanks are allowed.
string: a sequence of characters beginning with lqch and ending with

rqch. These global quantities are assumed to contain the de
sired string delimiters.

symbol: a) a sequence of characters beginning with lsymbch and end
ing with rsymbch. If lsymbch contains a blank, no symbols of

SYMBOL TABLE FOR THE B-6500 3

this type exist. If rsymbch contains a blank, then the sequence
is terminated by any character not a member of symbcset.
b) any single character other than a letter or digit, or lqch,
lsymbch, or eorch.

The scanner is provided with two parameters, a pointer into a fixed
string to which the scanned atom is to be moved, and the address of an in
teger variable in which the number of characters moved is to be stored.
The scanner returns an integer result whose value indicates the class of
atom:

0= end-of-file, 1 = identifier, 2 = integer, 3 = string, 4 = symbol.

The details of the fetch routine are very much dependent on the external
medium and hardware. The routine given in Appendix A assumes that source
records contain 80 characters, of which the last eight are used as an identi
fication field and are not part of the source program string. On the B-6500,
this field is used as a control for merging separate streams of input rec
ords ("patch decks").

Two global variables, the pointer iptr and the integer icnt, are used to
keep track of the scan position in the input record. The procedure rescan
enables atoms to be restored to the input. It is not always possible simply
to back up the pointer, because an atom may be split over more than one
record. The fetch routine is therefore designed to move the records to the
right-hand end of a fairly large fixed string in which the scanning is per
formed, allowing a reasonable amount of space for backing up the input
pointer.

DESIGN OF THE DICTIONARY

The details of this dictionary and its lookup routines are given in Appen
dix C. Many techniques have been proposed for organizing a dictionary or
"symbol table" [5]. The dynamiC nature of the dictionary requirement for
a compiler gives preference to hashing (scrambling) techniques for the
table-lookup. This consists of the generation of a fairly small integer by
some manipulation of the characters of the character string being consid
ered, for use as an index into the table. ·Since this transformation cannot
be unique, some mechanism is required to handle conflicts. The envi
ronment of the B-6500, in which data space is not allocated until requested,
and in which "pages" are maintained in a "virtual memory" organization for
recall to core on demand, suggests that the primary table in which search
ing is to be performed should be kept as small as possible. We accomplish
this goal by two basic techniques. In the first place, entries in the basic
table are designed so that they can be packed into a single word. In the sec
ond place, the scramble index is confined to a value less than the size of a
single page. Conflicts are handled by chaining additional entries in an
overflow area. Space for the latter is provided by the Operating System in
page-size chunks, only as the program requires it. The entries in this
basic table also contain the first few (one or more, depending on the word

4 H.J.BOWLDEN

and byte size) characters of the representation. This assures rapid retriev
al of short atoms, which tend to predominate in typical programs of the con
templated language class. and also decreases the frequency of required ref
erences to the main dictionary.

A "main dictionary" is provided in which the full representation of the
entry is maintained. This dictionary also contains controls to allow the
lookup routines. operating in conjunction with the scanner. to collect the
components of "complex symbols". such as := in ALGOL. by a recursive
look-ahead technique with rescan provided in the case of failure.

SCOPE ANALYSIS AND IDENTIFICATION

The languages of the contemplated class all have some concept of
"scope". which allows a single source atom (specifically, an identifier, al
though ALGOL 68 extends the capability to symbols) to take on more than
one meaning within a program. We refer to the portion of a program which
controls scope as a "range". Its actual identity depends on the specific lan
guage (a block in ALGOL 60. a subprogram in FORTRAN, a range in AL
GOL 68). We regard these ranges as forming a recursive nest; in some
languages this degenerates into two levels only. global (e.g. FORTRAN
COMMON) and local. We can now provide a separate entry. for any given
atom. for each range in which it occurs. These entries are kept in a sep
arate table. formulated as the "ragged array" info (a two-dimensional ar
ray with rows of varying lengths) with one row for each range.

Appendix D includes declarations of the two procedures, rangebegin and
rangend. which maintain the scope analysis. They are called by the recog
nizer under appropriate conditions. These procedures develop a tree struc
ture of ranges. with each range being linked to its father. first and last
son. and nearest brother on each side. Info rows for completed ranges are
copied into the file slack and removed from main memory.

In rangend each info entry for the range just completed which is not
flagged as local (meaning that no defining occurrence has been processed)
is copied back into the surrounding range if an entry does not already exist
in that range. Also, all entries from this range are delinked from the main
diet entry. This guarantees that each maindict entry will point directly to
the most immediate info entry. The intermediate string created by the rec
ognizer for use by subsequent passes contains pointers to info entries. In
all cases. except for "reserved" (non-redeclarable) words, these will point
to an entry belonging to the current range. The process of "identification"
(3, sec. 4.1. 2) then consists of linking back from this entry until one is
found which is flagged as local.

After the first pass. the maindicl entries are used only for regenerating
the representation (in diagnostic messages. for example), and are recov
ered from the mainlink field of the info entries. It is therefore never nec
essary to reconstitute the range and link fields in the maindict during the
following passes.

SYMBOL TABLE FOR THE B-6500

THE DICTIONARY ROUTINES

The routines appearing in Appendix B are driven by the procedure next,
which returns. at each call, the class field of the proper info entry for the
next atom in the source. It also ensures that a pointer to this info entry is
stored in the global variable /hisinfo.

5

The coding shows the three separate basic tables iddic/, symbdict and
dendict which contain entries for atoms recognized by the scanner as iden
tifiers, symbols and denotations respectively. The particular table name is
passed via parameters to the procedure find. The primary purpose of these
multiple tables is to expedite the search for symbols, which are usually
fewer in number but occur more frequently.

The process for handling complex symbols is incorporated, making use
of the procedure explore. This procedure provides a recursive look-ahead
under table control.

If an info entry is not found in the present range, a new entry is made
automatically unless the global boolean stopentry is true. The use of this
feature is not illustrated here; it would be used, for example, in scanning
comments. The complete structure of the info entry is dependent on con
siderations outside the scope of this paper; other fields may be added to
those shown as required for a specific application.

The algorithms provide for special context-dependent meanings applied
to words; an example is the special use of words like SKIP and SPACE in
write statements in B-6500 Extended Algol; these words have specialized
interpretations which are not connected with any declared identification.
The global variable context, if non-zero, causes an exhaustive search of
the info entries for one whose class has the value contx and WhOSE mode is
equal to the value of context. Otherwise, the operation of the procedure
rangebegin and rangend ensures that the first info entry belongs to the cur
rent range if any does.

ABSTRACT

The algorithms which are presented in this working paper are designed
to provide an efficient source scanner and symbol table for a recognizer for
a class of languages including those of the ALGOL family. The design cri
teria take into account the environmental characteristics of the B-6500, for
which this recognizer is being developed. The mechanism for handling
scopes is described, and the solution of the identification problem is out
lined.

6 H.J.BOWLDEN

APPENDIX A. ,CHARACTER MANIPULATION ON THE B-6500

A.1. Introduction
The character manipulation facilities of the B-6500 are described in de

tail elsewhere [6]. A set of "library declarations" will be developed, giving
to the ALGOL 68 programmer the ability to control these features. The
purpose of this appendix is to provide sufficient tutorial background to en
able the reader to understand the scanner presented in Appendix B. The
formulas presented here do not represent an addition to ALGOL 68; they
are implemented within the ALGOL 68 extension framework, and any
clumsiness which is observed may be attributed to the fact that the hardware
operators are basically non-procedural in nature (providing as many as
three result values, apart from the side effects of transferring characters).

A.2. Pointers and pointer arithmetic
The basic data mode pointer is a reference to an element of a string. A

pointer value can be created by a formula of the form pointer (S, I), where
S and I are of modes ref string (or ref [] char) and int respectively.

The pointer value generated by pointer (x, 5) is a reference to the fifth
character of the string x. Given a pointer P, the formula P+I gives a ref
erence to the character which is abs(I) characters to the right of that re
ferred to by P. Similarly, P-I moves the reference point to the left by
abs(I). The formula Pl-P2, where Pl and P2 are pointers, has an integer
value (n) such that P2+n and Pl refer to the same character position.

A.3. Relations and character sets
The standard ALGOL 68 syntax provides character comparisons accord

ing to an unspecified table of binary equivalents (R2.2.3.lf) *. We extend
these comparisons to pointers; for example, Pl=P2 has the same value as
Cl=C2, where Cl and C2 are the characters referenced by Pl and P2 re
spectively. The formula P=C compares the indicated characters, and the
formula P=S compares the characters beginning at P with the characters
of S. In the above, the equal sign may be replaced by any of the relational

,operators.
We provide "character-sets" (mode charset) such that any character is

either among or notin a given set. Built-in sets are letters, digits, alpha
(= letters or digits) and blanks. The programmer may also create addition
al sets.

The operator abs of ALGOL 68 is extended, and several more are pro
vided, for obtaining numeric values from strings. The formula abs p,
where p stands for a pointer primary, gives the same results as abs ap
plied to the character pointed to by p. The procedure extract, given two
parameters, a pointer and an integer, yields a reference to the slice of
the string beginning at the pointer and containing the designated number of
characters. The formula abs s, where s denotes a string (or slice), yields
an integer value uniquely derived from the first N characters of the string,
where N is implementation-dependent.

* References in this form are to sections in the ALGOL 68 Report [3).

SYMBOL TABLE FOR THE B-6500

The formula s mod n, where s is a string and n is an integral value,
yields an integer k (0 ~ k < n) derived in some appropriate manner from
the characters of the string. The formula pckar (P) yields a value of mode
!!!l char designating the same character designated by the pointer p.

A.4. Scanning a source string

7

The operators §Jd1J1 and seek are used to scan a substring. The clause
scan blanks source (P, I) save (pp, n) will scan the substring of I characters
beginning at P until it finds a character not in the ckarset blanks. The oper
ator seek is used in plaf!e of §2!E1 for a character which is in a set. In
other words, seek not blanks is equivalent to §2!E1 blanks. In this connection,
the phrase not "x' may be used, but this is not efficient in other contexts.
The variables pp (mode ref pointer) and n (mode ref int) in the above ex
ample receive a pointer to the character at whichthescan stops and the
number of characters remaining in the source, respectively. The save
clause may be replaced by save pp or §!!!!!}. n or omitted entirely depending
upon what information is to be retained. The right operand of source may
be a string name (in which case the entire string is used) or a pointer (in
which case the portion of the string beginning at the pointer is used). In
these cases, no "remaining number of characters" is available so only the
save pp form is meaningful.

If the above scans are terminated by the end of the substring (P, I) the
global boolean variable toggle is set to true (otherwise, it is set false).
This value may be tested programmatically. The corresponding action for
a source string or pointer (only) is undefined.

A.5. Character transfers
Characters are transferred into a destination string by the operator

receives (which may be abbreviated rcv).
For example, the formula

p receives "abc"

causes the transfer of the characters "abc" to the character positions be
ginning with that referenced by p. The value of the formula, which may be
used for further transfers, is a reference to the position in the destination
string following those which have been altered. The formula

dp receives (sP, n)

transfers n characters starting at sp.
The formula

dp receives digits source (sP, n)

transfers digits (maximum = n) from sp to dp. The variations described
above for the scan statements are acceptable here.

As an example, the following sequence finds the first identifier in the
80 characters beginning at iptr and transfers it to acp, followed by three
blanks. The value left in iptr refers to the character following the identi
fier, the value left in icnt is the number of characters unscanned, and the

8 H. J. BOWLDEN

value in length is the number of characters in the identifier. Embedded
blanks are not considered in this simplified example.

sf3ek Zettel'S sourae (iptr. 80) ~ (iptr. i);

Clap ~ aZpha ~ (iptr.i) ~ (iptr.iant)J:E1!.. "~";

if toggZe then iant:=O fi; Zength := i - iant;

APPENDIX B. THE SOURCE SCANNING ROUTINES

The basic scanning facilities are incorporated in the procedures scan and
fetch which are presented in this appendix, together with the global declara
tions which are assumed. The procedure fetch is a basic skeleton which as
sumes that the input string is presented in 80 character lines (records) of
which only the first 72 contain source characters. The remaining 8 charac
ters are used on the B-6500 as a control for merging separate files ("patch
decks").

booZ

int

int

eoftog
bZan1<.s deZimit
q2
min string

Zength
bsz = 1000

[1:b8z] ahar inbuff;
ahar Zqah

rqah
Z8ymbah
r8ymbah
eorah

ahareet 8ymba8et=aZpha
int iant;
int ma:r:iant = bsz -8;
pointer iptr;
pro: .fetah =booZ:

9 end-of-fiZe fiag 9.
9 bZanks deZimit identifiers 9.
9 "" is the 'quote-image' 9;
9 shortest 8tring-thi8 many aharacters are

taken without ·e~nation 9.
9 Zength of current atom 9;
9 8uffiaientZy Zarge 80 that the "undefined"

path in re8aan doe8 not oacur 9;

9 "Zeft-quote" 9.
9 "right-quote" 9.
9 "8hift-to-boZd-faae" 9.
9 "8hift-to'-Zight-faae" 9.
9 end-of-reaord aharaater 9;
9 aZlowed aharaatere in Symbol8 9;

. :f:t. eoftog I ~ I :
logiaal file ended (standin) leoftog :=ti'Ue

el8e read (inbuff [b8z-79:bszl);
--rptr := pointer (inbuff.bsz-79);

iant := 72;
faZse

ill
proa resaan = (pointer p.int n) :

. :f:t.(iant ~ld n+1) > ma:ciant then
undef'l-ne

el8e
-riptr :- iptr - (n+l)) ~ (p.n) ~ ".:-"
ill

[1:1001ahar aaaum;
--rZimita identifie'1'8 and de,notations. aould be inareased 9

pointer aaptr :- pointer (aaaum.O);

SYMBOL TABLE FOR THE B-6500

E1'OC; Bcan = (pointer BP. M int n) int :
£!!Jl!::!!.

¢scans "element" starting at Bp and returns report as follows:
failure 0 (end-of-fi1e)
identifier : 1 (deb1anks if not bZanks deZimit)
integer : 2 (always deb1anks)
string : 3 (delimited by Zqch and rqch. minimum length given

by minst1'ing. If q2 then treats rqch Zqch combination as
"quote-image").

symbol : 4 (single character or group delimited by Zsymbch and
rsymbch. If Zsymbch = nuZZ ch=ter then there are no
group symbols. If psymbch = nuZZ character then the
chapset Bymbcset specifies allowed characters in symbols.
Group symbols must exist iI. a single record.)

eorch is the end-of-record character and is treated as a blank.
¢

int resuZt :~ O.i;
'Cihar ch; pointer p :"' BP;
n := 0;
(icnt <11 :fetch 1 :z:t);

debZ: Bcan bZanks source (i~tr.icnt) save (iptr.i);
f:.f.. toggZe then (fetchl=ldebZ)fi; --
f:.f.. (ch : .. pchar(iptr)) ~ Jigits then

reBuZt := 2; ¢ integer found 9
int: p:- p rcv digits source (ipt1'.i) save (iptr.icnt);

f:.f.. toggZethen --- --
n pZ, i;
(fetel:z:t);
i := icnt;
fl£. to int

ill
n p~, i - icnt;

dbn: f:.f.. a :- pchar(iptr)) = ".!,." then
~ bZank ~ (iptr.icnt) ~ (iptr.i);
~ toggZe then (fetchl=li := icnt;tibn)ill
f:t (ch I':' pchar(iptr))among digits then int ill
1.-cnt := 1.-

fj:;
f:.f.. ch .. eorch then (fetchl:z:tli := icnt;int)fi;
fl£. to :z:t

ill
f:.f.. ch i g aZpha then

resu t := 1; ¢ identifier found ¢
id: p:= p ~ aZpha ~ (iptr.i) ~ (ipt1'.icnt);

f:.f.. toggZe then
n pZus i;
(fetchl:z:t);
i :- icnt;
fl£. to id

ill
n ¥Zus i - icnt·
(b anks deZimit1:z:t);

tibi: f:.f.. (ch := pchar(ipt1')) = ".!,." then
Bcan bZanks source (iPtr1iimt) ~ (iptr.i);
~ toggZe then (fetchl= i := icnt;tibi) ill
it (ch :- pchar(ipt1')) !!!!!£!!:fl. aZpha then fl£. to id ill
1-cnt :- i

9

10 H.J.BOWLDEN

ti;
it tp = eorah then (fetahlxtli := iant;id)ji;
fiE.. to xt

t;i;
it ah = lqah then

result := 3; ¢ quoted string ¢
p := p rav (iptr,l) save iptr;
it min string> 0 then

it (iant := i-min string) < 1 then
iti> 1 then

p := p rev (iptr,i-1) save iptr;
i := min-Btring +l-i

else i := min string
ji;
(fetah Ixt)

else i := min string
ji;
p := p rav (iptr,i) save iptr;
n := min string +2

else n := 2
ti;

qs: (iant < 21 (fetahlxt); i := iantli := iant -1);
p := p rav not rqah sourae (iptr,i) save (iptr,iant);
(togglelnp1US i; qs-r;- --
n plus i-iant;
p := p rav (iptr,l) save iptr;
it (iant minus 1) > 0 and q21 :iptr = Zqah then

p := p rev (iptr,l) save iptr;
n plus 1; --
qs

ji;
fiE.. to xt

fu -
result := 4; ¢ symbol found ¢
it ah = lsymbah and i > 1 I: iptr + 1 among symbaset then

it rsymbah = null aharaater then
p := p rav symbaset sourae (iptr+1,i-1)save(iptr,iant)

else p := pr;av not rsymbah sourae (iptr+1, i-1)
save (iptr,"Uiiit)" ---

ti;
(toggleliant := 0);
n := i-1-iant;
fiE.. to xt

ti;
(ah = eorahlresult := 0; (fetahlxxldebl));
¢ simple speaial aharaater ¢

spea: p rev (iptr, n := 1J~ iptr;
iant := i-1;

xx: iant := 0;
xt: result

end ¢ saan proaedure ¢;

SYMBOL TABLE FOR THE B-6500 11

APPENDIX C. THE DICTIONARY STRUCTURES AND ALGORITHMS

The procedure next given here, with its auxiliary routines, yields as
"atoms" the identifiers, integral-denotations, string-denotations and sym
bols of the source. The method of handling comments and pragmats is
shown, indicating that they are triggered by symbols with class = symbolv
and mode = lcomv or lpragv respectively. The scanners, commenter and
pragmatter, are not given in full. They make use of the context feature.

In the actual processor, integral- and real-denotations are handled by a
special version of find which performs the necessary look-aheads, making
use of globally defined variables for recognizing the decimal-point, the
powers-of-ten-symbol, and the plusminus. The format-denotations of AL
GOL 68 could be handled either by making the scan procedure recognize
them as it does with strings, or by having next recognize the formatter
symbol and calling a special routine. The latter is probably more satisfac
tory, since the syntax of formats is more complex than that of strings.

Some of the fields and values are used for parsing purposes. The range
and level values are manipulated by procedures called for the purpose. The
algorithms presented here show only the portion of this mechanism which
is pertinent to the dictionary. An efficient first-pass table-driven parser
will be described separately.

¢ the following declarations set up the dictionaries and their scanning
algorithms. It is assumed that certain entries are set into the dic
tionaries initially; the most flexible method involves the reading of
a "language" file from tape or disk ¢

struct firs tent = (int firstchars ¢ contains first charaqters ¢,
mainZink ¢ index into maindict ¢,
Zink ¢ list-link for hash conflicts

mainent = (bool reserved ¢ not redeclarable ¢,
cxf ¢ context definition exists ¢,
csymbf ¢ look-ahead activator ¢,

int backup ¢ return look-ahead ¢,
length ¢ length of repr ¢,
range ¢ current entry¢,
Zink ¢ addr. of current entry¢,

Eti[1 ahar repr ¢ representation ¢),
info (int class ¢ primary class ¢,

mode ¢ mode pointer or subclass ¢,
rngZink ¢ range of prevo entry ¢,
range ¢ range of this entry ¢,
level ¢ lexical level of entry ¢,
Zink ¢ addr. for prevo entry ¢,

bool local ¢ declared in current range ¢);

int maxsd, maxdd, maxid, maxmain, maxrange, maxinf
~hese values are set by the implementation to control table sizes.

If the operating system can handle it, they may be left small with
provision for automatic lengthening as needed ¢;

¢),

12 H.J.BOWLDEN

[0 :7T/a.1:8d] firs tent symbdict;
[0 :m=dd] firs tent dendict;
[O:maxid] firs tent iddict;
[l:m~ain] mainent maindict;
[O:m=nge] !:Ef. [1:0 ~] info info;

int ne:x:tsd := scram;
int ne:x:tdd := scram;
int ne:x:tid :- scram;
int ne:x:tmain := 1;
int ne:x:trange := 1;

¢ range "0" contains the preludes and postludes ¢

int scrum = 125 9 the hash modu1.us 9,
int range := 0 9 CUI'rent range va1.ue 9,
-1.e:x:1.eve1. := 0 9 current 1.e:x:ica1. (ro:nge) Zeve1. 9,

ne:x:tinfo := 1 9 for CUI'I'ent range 9,
conte:x:t := 0 9 contro1.s "conte:x:t" searches 9;

!:Ef. info thisinfo 9 most recently scanned atom 9,
boo1. conte:x:tog 9 signals success of "conte:x:t" search 9.
--stopent!'1f 9 prevents new table entries 9;
inf¢ eofinf 9 specially initialized end-of-file symbol 9;

the fo1.1.owing va1.ues of cZass are somewhat arbitI'aI'i1.y chosen 9
int denotv = 369 denotations "1.oca1." 9,

dec1.v 169 mode-indications 9.
tI'ansym 129 t:ro:nsition symbo1.s for parser 9.
opsym 109 operato~indication 9,
cont:x: 99 conte:x:t-dependent definition 9,
symbo1.v B¢ other symbo1.s 9,
1.oca1.v 49 may be "oI'-ed" with others 9,
fOnJardv = 2¢ "fonJard" decZaration 9,
identv ,,0;

proc addinfo = (!:Ef. mainent mde. int c, m) ~ info:
begin

int ir " range 9l. mde. iadd " Unk 9l. mde;
int c1. = (c'" symbo1.v ~ ir + iadd = olcl

c Zass 5!!.. info [iI'][iadd]) ;
int i := ninf [range];
runge 9l. mde :.. range;
Unk 9l. mde : = ne:x:tinfo;
info [range] [ne:x:tinfo] := (ch,m,iI',I'ange,Ze:x:1.eve1.,iadd,fa1.se);
ne:x:tinfo +: .. 1

end 9 addinfo PI'OC 9;
proc e:x:pZore ., (pointer p, int nn) int:
begin

int j, resuZt, n := nn;
(scan (p+n,j) = 0Ibu1);
!;!!.t;. [] char s - e:x:tract (p, (n := n+1»;
~nt fc " ahs s[1:2];
int i := s mod scrum, mp;
!:Ef. mainent mde;
ref firs tent [de := symbdict [i];
~ :=: ni1.lrescan(p+n-j,j); I'esu1.t :- 0; :x:t);
mp : .. main'Fnk 9l. fde;

1.fc: if. fiI'stchaI's Ei. fde .. fc then
mde :.. maindict [mp] ;
if. 1.ength Ei. mde = n then

(n < slfin);
(rep I' £f. mde = sl fin)

Ii

SYMBOL TABLE FOR THE B-6500

fi;
m := Zink Ei. fde) > Olfde : .. fd[i]; 7,fa);

but.: resaan (p+n-j.j); .
o e:x:it

1m: (not asyrr1Jf Ei. mde l7,as);
(rr-:= e;p7,ol'B (p.n)) = OI7,as);
(i > Olill'Bsaan(p+n-j.j);i+1) e:x:it

7,as: ((i := baakup Ei. mde) .. Olmpll'Bsaan(p+n-j.j);l-i) e:x:it
xt: resu"lt --
end ¢ e:x:p 7,0l'B proa ¢;

proa find = (pointer P. int n. m. a. M int nd. M [] fi:pstent fd) int:

begin
:Pe i[] aha!' s .. extmat (P. n) ;
tnt fa m (n > 11abs s[1:2] abs s[l]);
'Trit i :- 13 mod sc;r;(im. mp. 1';
M.. fi:pstent fde :- fd[i];
~ ma:lnent mde;
~ 1:!!1£. t;
aonte:::tog := fa7,se;
(fde :=: nit :stopentry 1= Inmd);
mp := mainunk Ei. fde;

7,fa: :!:t. firstaha!'s Ei. fde = fa then
mde := maindiat[mp];
:!:t. "length Ei. mde = n then

(n < 311m);
(l'Bpr Ei. mde .. slim)

Ii
*~ := Zink Ei. fde) > Olfde : .. fd[i]; 7,fa);
(s topentry 1=) ;
Zink Ei. fde :- nd;
fde := fd[nd];
nd := nd+-1;

nmd: (M.. firs tent fde) := (fa.nextmain.O);
mde : .. maindiat [nextmain];
(M.. mainent:mde) := (fa"lse.fa"lse.fa7,se.O.n.o.O.s);
nextmain := neztmain+1;
thisinfo := addinfo (mde.a.m);
fiE. to xt;

1m: :!:t. asyrr1J f Ei. mde then
((j := e:x:p7,ol'B (p.n)) > Olmde := maindiat[(mp := j)])

Ii;
:!:t. aontezt > 0 ~ axf Ei. mde then

l' :- l'ange Ei. mde; i :'" Zink?mde;
~hi7,e r+i > 0 db bee{n -

a7,ass Ei. (th1.sinfo :'" info [1'] [ill .. aontxl:
aon te:::tog : .. mode 5!l.. t .. aon te:::t I :::t) ;

l' : .. mgZink of thisinfo;
i : .. Zink Ei. tnisinfo

end

13

~~sinfo :- i~fo [range Ei. mde] [Zink Ei. mde];
(!'ese!'Ved of mde I zt) ;
(l'ange E1.tnisinfo '" mngel:not stopentrylthisinfo :- addinfo (mde.a.m));

14

xt: dass !d. this info exit
xn: -1
end ¢ find proc ¢;
proc next = int:
begin

H. J. BOWLDEN

int cl, m;
~ere we can handle the end-comment and extended parameter separators

of ALGOL 60 by looking at previous item scanned ¢
cc: case scan (aaptr, length)+l in

cl := class !d. (thisinfo := eofinf),
cl := find (aaptr,length,unknownv,identv,nextid,iddict),
cl := find (aaptr,length,intv,denotv,nextdd,dendict),
cl := find (aaptr,length,stringv,denotv,nextdd,dendict),
cl := find (aaptr,length,unknownv,symbolv,nextsd,symbdict)

esac;
it cl = symbolv then

((m := mode !d. thisinfo) = lcomvlcommenter; cc);
(m = lpragvlpragmatter; cc)

fi;
d

end ¢ next proc ¢;
int ¢ arbitrary values for certain modes ¢

unknown = 0,
intv 1,
realv 2,
stringv 3;

APPENDIX D. RANGES AND SCOPES

The procedures range b egin and rangend represent the mechanism for the
handling of ranges in the first pass. The struct called range maintains all
the useful information about a range. These are kept in the row-of-range
ranges. The fields have the following interpretations.

nextinfo The value of the global nextinfo for this range (valid in
first pass only when it is not the current range).

proclevel The procedure nesting level.
rnglevel The range nesting level.

firstson Th f' ld t . b d l'nk th lastson . ese le s can am range num ers, an 1 e ranges
father 1
oldbrother mto a tree.

youngbrother
stackpos Beginning of the entry in the scratch file stack for this

present
actual

range (set in rangend).
Indicates presence of the row of info in core.
If true, the range has at least one local identifier. (Valid
in first pass only when the range is not current.)

The coding in range begin saves the values of nextinfo and actualrange and

SYMBOL TABLE FOR THE B-6500 15

creates and properly links an entry for the new range. Ranges are serially
numbered, using nextrange as the counter.

The coding in rangend completes the range fields. It also locates all info
entries for the range which are not marked local (i. e. no defining occurrence
was found in the range) and copies them, with necessary adjustments, into
the containing range if necessary. The maindictentry for every info entry
in the range is then altered to point to the previous info entry. The info row
is written into the scratch file stack and the core space is returned. Values
of nextinfo, aCtualrange and proclevel are "popped", restoring the context
of the containing range.

Recursion is not used for range manipulation because of the occasional
need to reference the surrounding range. This requires a "deep-stack" ad
dressing capability, in whictl it would be necessary for one level of a rou
tine to address stack cells belonging to a lower level of the same routine.
Neither the language nor the hardware provides such a capability.

Rows of info are written into the file stack for two reasons. In the first
place, this makes it possible to return the memory space to the system. In
the second place, the contents of this file may be preserved, along with the
other tables and the intermediate program string, for use by other routines
(for example, cross-reference programs, documentation programs, and the
compiler itself).

~ ~ = (int ne:ctinfo, p1'oaZeveZ, mgZeveZ, fathe1', fi1'staon,
Zastson, oZdbrothe1', youngbrothe1',8taakpos, booZ p1'esent,
aatuaZ);

[O:ma:cmnge] !'d.nge 1'anges;
p1'oa !'a.rtgebegin = (boo Z aat):
begin

int m .. !'a.rtge;
!:!d range !'!' = !'a.rtges [m];
int bro .. lastaon Ef. 1'1';

ne:ctinfo Ef. 1'1' : = ne:ctinfo;
aatuaZ Ef. 1'1' :- aatuaZ!'a.rtge;
!'a.rtge :- ne:ct!'a.rtge;
ne:ct!'a.rtge +:= 1;
((Ze:cZeveZ +:= 1) > ZVZontJZvZont := Ze:cZeveZ);
(b1'o > 0 lyoungb1'other Ef. !'a.rtges[bro] :- !'a.rtge

Ifi1'stson Ef. 1'1' := !'a.rtge);
las tson Ef.!'!' : '" 1'ange;
1'anges[1'ange] := (l,proaZeveZ,Ze:cZeveZ.m,O,O,b1'o,O,O,trUB,

(aatuaZ!'a.rtge :- aat));
info[1'ange] :- l1:ma:cinf] info;
ne:ctinfo :- 1

end !'a.rtgebegin;

p1'oa !'a.rtgend =:
begin

int 1',it,md;
!:!d[]info infol - info[!'a.rtge];
~ !'a.rtge 1'1' = !'a.rtges [!'a.rtge];
ref info ip; .
I!ii n .. ne:ctinfo -1, m = !'a.rtge;

16 H.J.BOWLDEN

aatuaZ £i. l'1' := ootuaZrange;
ne:ctinfo £i. 1'1' := ne:ctinfo;
range := father£i. l'1';

~ ~ rf = ranges [range];
p1'Oati3ve(; := proaZeveZ£i. rf;
Ze:x:1..eveZ :- rngZeveZ £i. rf;
ne:x:tinfo := ne:x:tinfo £i. rf;
ootuaZrange :'" aatuaZ £i. rf;
~[Jinfo info2 .. info[range];
~itondo
begin

md := mainZink £i. (ip := infol[i]);
(1..oaaZ £i. ipliZ := infoUnk£i. ip;r :- rngUnk £i. ip
I :rngUnk £i. ip = (1' :- range) liZ :'" infoUnk £i. ip
linfo2 [fa :- ne:x:tinfo)] :- ip;

range £i. info2[iZ] := range;
1..eveZ £i. info2[iZ] :- 1..e:x:ZeveZ;
ne:x:tinfo +:= 1);

Zink £i. maindiat[md] := iZ;
range £i. maindiat[md] :- l'

end;
s tookpos £i. 1'1' : = s taakpos;
present £i. 1'1' := faZse;
putbin (stook, infol[l:n]);
staakpos +:= n;
inform] := ¢ empty row ¢

end rangend;

REFERENCES

[I] Naur, P. (Editor), Revised report on the algorithmic language ALGOL 60, Comm.
ACM 6 (1963) 1.

[2] B 6500/B 7500 Extended ALGOL reference manual, Rep. No. 1039559, Detroit
(Burroughs Corp.), January 1970.

[3] Van Wijngaarden, A. (Editor), Report on the algorithmic language ALGOL 68,
Numer. Math. 14 (1969) 80-218.

[4] LISP 1.5 Programmer's Manual, Cambridge (MIT Press) 1966.
[5] Morris, R., Scatter storage techniques, Comm. ACM 11 (1968) 38.
[6] B 6500 Reference Manual, Rep. No. 1043676, Detroit (Burroughs Corp.) rev.

January 1970.

DIS CUSS ION

Paul:
You have pointed out that modularity is one of the strong pros for high

level languages. Is there any place for thinking of having a compiler modu
lar, not only in order to get a better oversight over it, not only to get a

SYMBOL TABLE FOR THE B-6500 17

good documentation, but also to get clues for finding those modules that
later on, if you define a new language, can serve as basic bricks in building
a new compiler for another language that relates somehow to this language
that you had compiled before. In other words, I would think of some future
in which you are not satisfied with having one high level language that does
every job but where you would have many more or less specialized lan
guages, very special and restricted in some cases, in other cases maybe
more flexible and less restricted. To do this of course, you would have to
find the problem solver for getting all these compilers without using always
six or ten man-years to produce such a thing. You would try, consequent
ly, to relate a new language in some way to parts of languages for which
you have constructed compilers before. And there I think you find another
aspect of compiler modularity that may become very important.

Bowlden:
Well, we have done something like this. We have developed a preproces

sor with essentially a macro facility added to ALGOL to translate into AL
GOL, a preprocessor which is ALGOL-like (the declaration structure of the
thing is ALGOL-like), and it is a string manipulation language basically.
You can scan part of texts; you can mix them up, you can change them
around, you can keep them and collect them and spit them out later. You
can do anything you want pretty well. You can set compile time variables
and test them. It is a very flexible affair. We have used it for implement
ing a simulation language. It runs out of tables which are stored on disk,
and one mode of operation is to say, "All right, I have gotten up to this
point. Dump me some new tables". It then produces a set of tables on disk,
and you can use those as a starting point for future compilation. Indeed this
process is working. The same thing I am sure can be done in ALGOL 68.
Now when you come to this kind of generality, enabling people to twist
strings around to this extent, I think it defies the idea of producing a syn
tactic description of the resulting beast. It might be an interesting task.

Liiulsey:
If you consider injo[5], for example, which you can extend one unit at a

time as you discover new identifiers, this is a thing which in your hard
ware you can do very easily. How do you describe that in ALGOL 68? Have
you got some operator in your library prelude? I presume you declare
these things to be flexible? Have you defined some operator for saying,
"Add a new element into this multiple value"?

Bowlden:
This is one place where we intend to cheat. We intend to let the operat

ing system do the job. It has the facilities for an interrupt on invalid index,
and we intend to teach it that if the thing is one more than the current upper
bou.nd, it is intended to increase the array. Now it does not increase it by
1 of course; it would increase it by, say, 256 or something like that.

Lindsey:
When you declared that injo[5] for example, did you declare it with

some remark to the operating system that it was to be interpreted in this
way

18 H.J.BOWLDEN

Bowlden:
This we have not decided yet, how we intend to communicate. I think

probably simply saying flex on the upper bound will tell the system what is
necessary. That is our intent. It may not be enough, I do not know yet.

Lindsey:
So all you do in fact is to assign something to an element which does not

exist yet, and 10 and behold, it appears!

Bowlden:
That is right.

Prentice:
You say you are prepared to sacrifice machine independence, and you

have described some ways of doing this. What would be your feelings about
allowing procedure bodies in code, or in line code say, as a unitary-clause
in ALGOL 68?

Bowlden:
I guess that depends on what you mean by code, you see. My background

prohibits me from even thinking of this because there is not any, For ex
ample, our biggest goal that we are asking for at the moment on the 6500
is the ability to include ALGOL procedures, to link ALGOL procedures with
all programs. That is our code.

Lindsey:
You have invented some operators which will cause code to be generated.

How do you create these operators in your library-prelude?

Bowlden:
It is clear that the compiler must generate code. That is correct. What

we have done, for example, on the 5500, which is where we have been doing
this until we got our 6500, is that there are provided intrinsic procedures,
in other words, library-prelude procedures. The 5500 does not have the
same character manipulation hardware at all. It is entirely different, and
so there are provided a set of procedures and the code that is generated
for these statements calls on these procedures. It is of course much less
efficient. NOW, you ask what the body of these procedures is written in. It
is written in ALGOL. Again, the ALGOL was extended on the 5500 to give
control over the character manipulations on the 5500. It is a different kind
of extension. I agree, somewhere down the line there is a point beyond
which you cannot go. There is a point at which you have to be able to say,
"Here we produce code". We produce code, we do not write code. For ex
ample, on the 6500 there are a number of facilities which are provided in
the .executive system, for example, to control interrupts, which the typical
programmer is not about to use. And so there is a special compiler for the
executive system. That is, it is the same ALGOL compiler with a few
extra procedure identifiers stored in its tables initially. These are param
eterless or sometimes one or more parameter procedures. The point is,
you see, that bad code cannot be produced by an unwary programmer. You
cannot hang the system. And indeed we just do not have system hangs,

SYMBOL T A~LE FOR THE B-6500 19

caused by programmer's producing bad code, because they cannot produce
code except through the compilers. Now, of course when you are testing a
compiler, that is another game because there you are testing the code that
it produces.

Lindsey:
So, your compiler would, in fact, eventually produce something in the

core?

Bowlden:
Eventually it produces machine code, and essentially what is done here

is to provide a set of constant declarations which give mnemonic names to
. the various op codes, which are passed as parameters to an emit proce
dure.

Paul:
You said that after the first pass you do not need the identifiers. You

are using only the pointers, and that is fine. But I take it that information
about the identifiers will go into lists for post mortem dump routines in
case of a breakdown at runtime.

Bowlden:
This part is not entirely planned. I can tell you how it is currently being

done in the extended ALGOL compiler. We planned to do something similar,
although it is not as easy. The addresses in the generated code are printed
in the compilation listing beside the source. If a person wishes, he can pro
duce a table of the display register relative assignments for his variables.
And thus the dump can be read. The error terminate message gives the
segment number and relative address in his programs, so normally he
does not have to read the dump at all.

Paul:
But still, I should say it is very interesting if you can produce, so to

speak, a dump on the spot in case of a runtime failure. Your breakdown
happens somewhere in the dynamic structure of your program, and what
you want is not a complete core image. What you really wish to see is only
a listing of those variables that are living at this point and you want their
names and their values in some way. So providing something of this sort,
I think, should still be a goal for a compiler, and that is what I could call
a comfortable post-mortem dump.

Bowlden:
I think indeed this is desirable. We have given some thought to it and

have not got very far. What this would mean is carrying some of these ta
bles over into the run. Of course, there are systems that do this sort of
thing, and I see no reason why it could not be done. But the point is that it
is not needed for the rest of the compilation.

ALGOL 68-R

I. F. CURRIE, SUSAN G. BOND and J. D. MORISON
Royal Radar Establishment, Great Malvern, Wares., England

ALGOL 68-R is a language based on ALGOL 68. It has been implemented
for the general service computer at the Royal Radar Establishment, an ICL
1907F. It is intended that 68-R shall be the main language for the computing
service, and all local software support will be directed towards its use. At
RRE, programmers are mainly scientific, but there is also a requirement
for business data processing such as payrolls and stock control.

ALGOL 68-R was chosen because we felt it could be implemented so as
to produce reasonably efficient object code for number-crunching, while
possessing some advanced features for more sophisticated users.

THE LANGUAGE

The context-free shape of a 68-R program is given by the included syn
tax. The main differences between ALGOL 68 and 68-R are:

1. Identifiers, modes and operators must be specified before use. (To
declare mutually recursive modes X and Y we have to say "MODE X;" be
fore the declaration of Y.)

2. No automatic proceduring. This leads to the use of a 68 cast as a
68-R routine-denotation while the 68-R cast is Mode VAL Clause.

3. The mode VOID is explicit.
4. Formal-declarers are the same as virtual-declarers.
5. No parallel processing.
6. GOfO may not be omitted.
7. Uniting is only applicable in strong pOSitions.
Other minor differences exist; whether these can be considered as bugs

in the compiler is largely a matter of taste.

THE COMPILER (MARK 1)

The Mark 1 compiler is written in a local dialect of ALGOL 60 with only
integer types and some peculiar features to aid address manipulation and
list-processing. It is a one-pass compiler, translating a source text seg
ment directly into a form of relocatable binary suitable for subsequent load
ing into core with linkage to other independently compiled segments.

The compiler makes use of a package of routines which allow stack ma-

21

22 1. F. CURRIE, S. G. BOND and J. D. MORISON

nipulation (independent of the normal ALGOL 60 stack).and a heap of chunks
of core which are kept alive by special list pointers or by pointers in the
stack or in other chunks.

The compiler operates as follows. A pre-processor reads in text char
acters and transforms them into terminal symbols which are fed to the syn
tax analyser. The syntax analyser operates on a one-track syntax (Knuth's
LR(l)), with embedded functions to perform the necessary compiling actions
of producing code, setting up declarations lists and so on. The terminal
symbols produced by the pre-processor can be affected by the actions per
formed in the syntax; for example, an operator in an applied occurrence
produces its priority as a terminal symbol.

The syntax actually used has the same effect as the syntax included with
this paper. With the present choice of terminal symbols, this syntax cannot
be transformed into LR(l) .and yet still preserve a reasonable structure for
eml;>edding the functions. The syntax therefore incorporates a look-ahead,
which does nothing but queue terminal symbols and their associated values
until a decision-point has been reached, whereupon it reverts to the normal
analysis. This look-ahead is expressed using the same analyser and is in
voked by function-calls embedded at critical points in the syntax. The LR(l)
syntax is produced from a more legible syntax by the program SID which
transforms an input syntax (with embedded functions) and produces an LR(l)
analyser for that syntax.

A mode is held in the compiler as a unique entry in an array which con
tains the description of the mode. The particular representation we chose
is not a very good one. All the mode information is in the array itself, mak
ing it necessary to use a different representation for incomplete modes
(with attendant difficulties in identification etc.). As a further complication,
we also made it a rule that mode M must be inserted before REF M, PROC
M or []M. This ordering makes it easier to do balancing etc. with the lim
ited 68-R coercions, but whether it is worthwhile depends on which part of
the compiler one is writing.

The compiler runs in 32K of 24-bit words. About 20K of this is program,
which we feel is too large. Next time we could reduce it considerably and
also produce a more elegant compiler. A Mark 2 version is still little more
than a twinkle in its implementers' eyes, but we hope that its conception
will be complete by July and that its delivery will be early next year.

THE OBJECT CODE

The Object Code produced by the Mark 1 compiler produces a new en
vironment on the stack for each block (routine-denotation or serial-clause)
entered. Each environment consists of a space whose length can be deter
mined at compile time (e.g. for locals) and above that, space which can be
grabbed dynamically. As well as the normal pointers to other environments
for non-local accessing (etc.), the environment contains a word which points
to a map which determines which of the entries in the compile-time known
space of this environment are volatile (e.g. references which could point to

I

ALGOL 68-R 23

the heap). The map is a fixed area of core which consists of control infor
mation (e.g. skip the next few entries) and words which give a key and a
displacement from the base of the environment for each current volatile
entry. The key consists of information giving the level of refs in the entry
and what is to be found at the end of the ref chain (e.g. array, structure or
union). Each structure-mode which can contain volatile fields has a portion
of map to itself, and in the first word of each structure of that mode there
is a pointer to that portion of the map. Each array descriptor contains the
key for the elements of that array and each united value has the key for its
current value.

Chunks of core ar~ grabbed from the heap (by generators etc.) in stack
fashion from the other end of the store. At each grab the address of the end
of the chunk is noted in a limit-area, which is a special chunk in the heap.
The limit-area thus consists of a monotonic sequence of addresses delimit
ing the chunks grabbed from the heap since the last garbage collection.

When the stack meets the end of the heap, the heap is scavenged by (1)
tracing through the volatile entries in the stack and their consequences,
marking the words in the limit-area corresponding to chunks encountered
in the trace, (2) computing the amount that each chunk can be moved, (3) re
tracing to update the volatile elements before (4) compacting the live chunks
in the heap (and of course the marked words in the limit area).

As a large number of programs will not require the heap, considerable
care is taken by the compiler to make sure that code concerned with heap
manipulation, map pointer updating and scavenging is not included in any
program which does not need it. This implies that the relocatable binary
code produced by the compiler is capable of dealing with the optional omis
sion (and insertion) of code on loading. The same feature is used to provide
load-time diagnostic options. Also in the relocatable binary is diagnostic
information used by the loader to construct a storage map of the loaded
program. This map is used by fault routines to provide meaningful diag
nostic information on errors at run-time.

Any comparison of efficiency of object program is difficult, but the com
piler compares favourably with ALGOL 60 compilers for programs which
use only ALGOL 60 features - procedure calls being considerably faster
and simpler. Only array indexing (in positions where the array could be a
slice) compares unfavourably as fixed point multiplication is slow on the
1907F.

LIBRARY AND ALBUMS

As mentioned above, the unit of compilation is a segment. Identifiers,
modes and operators declared globally can be "kept" by mentioning them
in a "KEEP-list" at the end of the segment text. This segment can then be
loaded and run, or included in an album. An album is a hierarchy of files
of segments where both the relocatable binary code of segments and the
specifications of their kept names are held. The kept names of any segment
in an album are then available without further declaration to any further

24 I.F.CURRIE, S.G.BOND andJ.D.MORISON

segments which have included the name of the segment in their "WITH
lists". A segment, with any included segments, is loaded and run in the
natural order, remembering that the rule of no usage before declaration is
adhered to rigorously.

The hierarchy of files in an album means that we can have an album in
side another album, provided that segments within the inner album do not
refer to segments in the outer album. Albums can therefore be shared be
tween users. The only criterion for inserting a segment into an album is
that the segment must have been compiled using either that album or one of
its included albums. The base-level of every album is the system library,
segments from which need not be prespecified.

The operating system environment is GEORGE 3, albums being GEORGE
files. At present the compiling system is driven by GEORGE macros, but
it is hoped that subsyst~ms will be written to provide more efficient ma
chine usage for various operating needs, such as batch-processing.

68-R SYNTAX
Things inside II are optional.
Words starting with a capital are expanded.
Words in lower-case are explained elsewhere.

means repeatable from last unmatched I (or [
-.--- last entity may be repeated (with comma separation)
--.--- last two entitles may be repeated etc
---.--- last three etc

MEntityM is word. symbol. thing inside II. or repeated entity.
Upper-case words and other symbols stand for themselves.

Segment seglWITH seg-.--- FROM albuml(Sec)IKEEP name-.---I

Sec

Unclist

Uno

Expn

Primary

IDec: IUnc:---I---}Unclist

Illabel:IUnc:---lllabel: IUnclEXIT label: Unclistl

Expn :_ Uno
Expn 1:- Unc
Expn I: Unc
Expn IS Unc
Expn ISNT Unc
IFOR idllFROM UncllBY UncI ITO UncllWHILE SeclDO Unc
Routineden
Mode VAL Unc
Expn

formula
Primary

id
den
Primary(Unc-.---)

Dec

Aoutineden

B oundmode

Boundsingle

Mode

Single

Simplemode

Abbreviations:

ALGOL 68-R

Primary[indexers]
selector OF Primary*
{LOCAL }Boundmode
IF Sec THEN Sec {ELSE Sec} FI**
CASE Sec IN Sec-.--- {OUT Sec} ESAC
(Sec)
(Sec.Sec-.---)

GOTO label

Roundmode id {:* Unc}--.--
PROC id := Routineden
'~ode id = Unc---.---
PROC id = Routineden
~ODE modename = Boundmode---.--
PRIO,AITY op = digit---.---
DP op = Aoutineden
OP(Mode){Mode}op = Unc
OP(Mode.'~ode)I'Aode}op = Unc

'Aode:(Sec)
(Mode id-.--- --.---){Mode}:(Sec)

[Unc:Unc{FLEX}----.---]Boundsingle
'loundsingle

STRUCT(Boundmode selector-.--- --.---)
Simplemode·

[(.}---]Single
Single

STRUCT(Mode selector-,--- --.---)
Simplemode

primitivemode
modenii\me
VOID
REF Mode
PAOC Mode
PROC(Mode-.---) {Mode}
UNION (\~ode-.---)

den
Expn
id
op
Routineden
Sec
Unc
Unclist

(...)

denotation
Expression
identifier
operator
Routine denotation
Serial clause
Unitary clause
List of Unitary clauses

may be written BEGIN ••• END

* 8'rackets bind more tightly than OF.

** "THEN IF
"ELSE IF

FI FI" may be written
FI FI" may he written

"THEF
"ELSF

FI"
FI"

25

26 I. F. CURRIE, S. G. BO ND and J. D. MORISON

EXAMPLES OF ALGOL 68-R IN ACTION

program 11p10

BEGIN

OP I - ([] REAL a. b) REAL:
{the value of alb is that of the continued fraction

a1 I (b1 + a2 I (b2 + • • • + an I bn ••• » }
« UP B a - 0 : 0 : a[1] I (b[1] + a[2 :] I b[2 :]»):

FOR n BY 2 TO 25 DO
BEGIN

[1: n] REAL a:
FOR i TO n DO a[i] :_ 1:
print « a I a. newline»

END:

print«newline.

END
FINISH

"should approach (sqrt(5) - 1) I 2 _" (sqrt(5)-1)/2.
newline))

10.31.33_ compile program11p10
10.31.55 4.07 CORE GIVEN 32768

4.11 :HALTED: COMPILED PROGRAM11P10
10.32.23_ online *lpO (identify)
10.32.33_ execute
10.32.51 4.13 CORE GIVEN 5888
OISPLA Y : LO
*LPO +1.0000000000& +0
*LPO +6.6666666667&-1
*LPO +6.2500000000&-1
*LPO +6.1904761905&-1
*LPO +6.1818181818&-1
*L PO +6.1805555556&-1
*L PO +6.1803713528&-1
*LPO +6.1803444782&-1
*LPO +6.1803405573&-1
*L PO +6.18Q3399852&-1
*LPO +6.1803399017&-1
*LPO +6.1803398896&-1
*LPG +6.1803398878&-1
*LPO
*LPO SHOULD APPROACH (SQRT(5) - 1) I 2 = +6.1803398875&-1
*LPO

program 11p4

BEGIN

PRoe innerprod3 _ (REF INT i. INT n. PRoe REAL xi. yi) REAL
BEGIN

HEAL a :_ 0;
FUR k TO n DO (i :_ k; a PLUS xi * yi);
s

END;

[1: B] REAL x 1 : _ (1. 2. 3. 4. 5. 6.7. 8);
[2:9] REAL y1 :_ x1[AT 2];
INT j. n;

print«newline.
innerprod3(j. 8. REAL: (x1[,j]). REAL
newline. newline»;

PRoe ncos - REAL (cos(twopi * j / n»;
PRoe nsin _ REAL (ain(twopi * j / n»;

FOR i TO 20 DU

(y1[j+1]».

print«i. " • innerprod3(j. n:_i. nain. ncoa). newline»

END
FINISH

10.15.25_ compile program11p4
10.15.49 2.21 CORE GIVEN 32768

2.26 :HALTED: COMPILED PROGRAM11P4
10.16.32';:" online *lpO (identi"fy)
10~16.46_ execute
10.17.06 2.27
DISPLAY: LD

CORE 81 VEN 69 \2

*LPO
*LPO
*LPD
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO
*LPO

+2.04nooOOOOO& +2

+1
+2
+3
+4
+5
+6
+7
+8
+9

+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20

+0.0000000000& +0
+0.0000000000& +0
+1.8189894036&-11
+0.0000000000& +0
-1.8189894036&-11
+1.4551915228&-11
+9.5070358763&-11
+4.3655745686&-11
-3.6379788071&-11
-4.0017766878&-11
+2.9103830457&-11
+6.9121597336&-11
+1.4551915228&-11
+1~4236408325&-10
+1.7098500393&~10
+5.4569682'107&-11.
+1.2369127944&:"10
-4.7293724492&-11
+1.1641~2183&-10
+0.0000000000& +0

" " .~

28 1. F. CURRIE. S. G. BOND and J. D. MORISON

INTRODU CT IONS

Woodward:
I would like to int~oduce to you Mr. Ian Currie, who with Miss Bond and

Mr. Morison has written our compiler at the Royal Radar Establishment -
a government laboratory which has a centralized computing service serving
about 200 regular programmers. Mr. Currie has told me he would prefer
to stimulate a discussion on his implementation of ALGOL 68 rather than
give a formal lecture, but I will leave that to him. I suppose that our im
plementation should strictly be described as a "variant" because there are
several ways in which the language differs from the formal definition. Mr.
Currie will be telling you about this. The reason we are so glad to be here
in Munich is our ~nthusiasm for ALGOL 68; we have called our version
ALGOL 68-R, and it is now in everyday use at RRE. We already have some
experience. not only of the compiler writing problems, but of users' reac
tions. It may interest you that I have myself found little difficulty in teach
ing the language to users: what may interest you far more is the way the
users have become keener and keener on ALGOL 68 once they have started
using it on real applications. Their initial difficulties were much eased by
the fact that they had all been brought up on ALGOL 60. Our recent history
is this: we started working in ALGOL with a compiler for ALGOL 60 which
we wrote ourselves at RRE, and began using in 1963. For seven years,
ALGOL 60 has been the sole language for our scientific and engineering
U8ers. This era will end in October of this year, when our old computer
goes out of service. Our new machine opened operations in April of this
year (1970). Two years previously, we had to decide what language in fu
ture to support. It was quite clear that we needed something more powerful
than ALGOL 60, and there seemed little choice but to go for ALGOL 68. It
was not an easy decision to make at the time, but we decided to go ahead.
In the event, we were able to open operations in April this year with a ser
vicable ALGOL 68-R compiler. I would like to stress the fact that we at
RRE are not language theorists. We are concerned with practical utility,
and with questions of maximizing throughput. This has meant that whenever
we could see ways of reducing compilation time or improving object code
efficiency in some obvious way, we felt bound to do something about it, if
we could do so without departing from the spirit of the language. We aimed,
in fact, that ALGOL 68-R should be a sublanguage of ALGOL 58, but I am
sure that minor transgressions can be discovered. The compiler was
started in January 1969, and during the overlap period between ALGOL 60
on the old computer and ALGOL 58-R on the new one, we are getting the
cream of our clientele - users with rather big problems who need the bigger
language and the bigger machine. In October this year, we shall be present
ing our entire Establishment with little option but to program in ALGOL
68-R, as this will be the only language we shall actively support.

Currie:
Ido not think I can add much more to what Mr. Woodward has said as

far as the history is concerned, except for the facts, by way of explanation,

ALGOL 68-R 29

as to why we started off doing the ALGOL 68 compiler in the way that we
did. The ALGOL 60 compiler that we had on our old machine, was a one
pass compiler written all in machine code. Since then, we have written
several compilers for a variety of different machines. They have all had
the property that they were essentially one-pass. i.e .. going from one
source text to some kind of relocatable binary to load into the machine. So
virtually all of our experience has been in writing one-pass compilers. I
would not know how to set about writing a multi-pass compiler. I would re
gard it as a major intellectual exercise. not the least of which is having to
work out n more intermediate codes. The writing of a one-pass compiler,
influenced us quite a lot in the subset of ALGOL 68 that we wanted to im
plement.

(The paper was presented, by Currie, at this point.)

DISCUSSION

Griffiths:
You have just said that there is no parallel processing. I deduce that

means you have no semaphores.

Currie:
No semaphores. right.

Griffiths:
Do you make use of the fact that the user might put commas instead of

semicolons?

Currie:
No.

Van der Poel:
How do you do your explicit proceduring? What sort of operator do you

use to procedure?

Currie:
Remember that in MR93 we had a thing called val. We have extended that

slightly so that you write, for instance. (real: 2 x random) for a routine
denotation. To make a cast, you replace the cast-of-symbol by val. It
comes back to ALGOL 68 proper if you translate that val as a colon.

Van der Poel:
Why do you find independent compilation of procedures so difficult ?

Gurrie:
I did not say that. I want independent compilation of rather more than

procedures. I do not think independent compilation of procedures is enough.
I think you have got to be able to compile structures and all the rest of it

30' 1. F. CURRIE. S. G. BOND and J. D. MORISON

independently, as well as procedures. If you have only got procedures, then
you find that writing packages to insert into the library is very difficult. It
means. that the users have always got to do something other than just de
claring something.

Mailloux:
You said that declaration before use is not much of a restriction. I

wonder if you handle mutually recursive procedures?

Currie:
Well, it is not really much of a restriction, is it? Of course, we handle

mutually recursive procedures. We just put an extra reference in, e.g.:

proc pl.ql;
proc p = void:·(... ;ql; ... J;
proc q = void: (... ;pl; ... J.
pl := p; ql := q; .. .

It is not nearly the same restriction as it was in ALGOL 60. In ALGOL 60
you always had to declare one procedure withi.n the other procedure in our
implementations, which always got a bit messy with scopes. But in ALGOL
68 it makes so little difference. You assign the procedure later instead of
declaring it.

Mailloux:
What do you do with mutually recursive modes?

Currie:
We have extended the language slightly. You see, to declare mutually

recursive modes ~ and~, we have to say mode ~ somewhere, e.g.:

mode x;
mode i =struct (int a;M ~ :;;J;
mode :£ -.~ (reaL r.M Ji. yJ

It is not strictly necessary.

Paul:
It is just a warning for the compiler then?

Currie:
Yes, that is right. It just helps in some of the bookkeeping inside the

compiler.

Mailloux:
I notice, in some of your sample programs, that you are not underlining

or stropping anything. Is this significant?

Currie:
We use two different representations. For the usual bold-face you can

use upper case, with normal identifiers in lower case, or else make it case
independent and put bold-face between primes, e.g., 'begin'.

ALGOL 68-R 31

Mailloux:
I would be interested to know how you do. coercions, in particular balanc

ing, all in one pass.

Currie:
Balancing in our subset is far easier than in full ALGOL 68. In most po

sitions you are only doing either dereferencing or deproceduring in order to
find the mode that you are trying to get to. You do not have to try uniting
and proceduring as well, all at the same time. There is always a goal mode
to look for and you can just apply your total coercions to the whole lot.

Mailloux:
You deviate from the official definition though?

Currie:
I am not so sure what you mean by deviation. I have said I have deviated

already. I do not allow automatic proceduring at all.

Mailloux:
Well, for instance, do you allow a jump as one half of a conditional

clause? For example:

x + it y ;" 0 then sqrt(y) else goto aZarm Ii

Currie:
That is O.K. That still comes by the same method. When you are in any

position at which there is some element of balancing to go on, with this set
of coercions, then all you need ever do is to take off rejs and fJrocs until
you reach something that satisfies you.

Mailloux:
Well, what about widening?

Currie:
That is the one that is done at the base level, as it were. You cannot go

any further down after widening. Perhaps if you would write down some
thing.

Mailloux:
Well consider: random + it x > 0 then i eZse z Ii

Clearly, given the standard prelude, this + is the one operating on a real as
left operand and a compl as right operand. Thus, the left operand must be
deprocedured, but the right operand is more difficult - i must be derefer
enced to int widened to real and widened again to compl, whereas z need
only be dereferenced to compl: that is to say, a different number of ma
chine instructions will almost certainly be required to perform each of
these coercions. Now space must be left in the object-code stream for each
of these coercions, but, in a single scan, we cannot determine which coer
cions, and hence, how much space, until the scan has advanced to the ji.

Currie:
Let us write down the input text and the corresponding code produced as

it is read in. .

32

input

random
+
if
x
>

I. F. CURRIE, S. G. BOND and J. D. MORISON

code

o Load x
then Branch <=0 to II
i

Load reference i
else Branch to l2
z ll:
fi (At thi.s point we can balance the if-clause to complex since

68-R allows only dereferencing and deproceduring of operands)
Load complex z
*Branch to l3
l2: Dereference and widen ref int to complex in register
l3: (We can now identify the + as operating between real and

complex)
*Store complex in wI
Deprocedure random
Add real result and complex in wI

In this "translation" there are two extra "instructions" marked with a *
which can be regarded as the one-pass penalty. Both of these instructions
could be avoided by re-ordering the evaluation in a way which cannot be
done in one pass. Of course, the presence or absence of the extra store in
struction probably depends more on the availability of sufficient hardware
registers.

Paul:
I should say the hard core of Mailloux's question of course is not that

anyone doubts that everything can be done in one pass if you just make it
complex enough, but the question is, how complex does it have to be in or
der to insist on doing it in one pass. I think the main flavour of your ans
wer is that your restrictions allow you to cut down the complexity in a con
siderable way, but it is still somewhat unclear to me that the complexity is
so much cut down.

Currie:
Consider what would happen if I allowed uniting in this position. Then we

could not have reduced the operands to single values before identifying the
operator. If there had been conditional-clauses on both sides of the oper
ator, then none of the branches in the conditionals (like the one to l2 in the
example) could be resolved until all the formula had been absorbed and the
operator identified. Besides being against one-pass philosophy, this would
produce a terrible complexity of branches in fairly simple situations.

These restrictions in the coercions do not help much in evaluating col-

ALGOL 68-R

lateral-clauses since, except in trivial situations, a branch is required
from each element to do the necessary coercions etc., and then a branch
back to evaluate the rest of the collateral.

Van der Meulen:

33

Could you please explain why automatic proceduring is so difficult in one
pass compiling. You have already partly answered it, but I should just like
to know the difficulty in automatic proceduring as such.

Currie:
There are two main reasons for this difficulty. First, it is difficult to

avoid obeying the code of expressions that are to be procedured. This im
plies that branches must be inserted before expressions which require pro
ceduring and a lot of messiness occurs in getting rid of branches which
are not required. Secondly, because of a shortage of index registers, I
produce markedly different code for accessing locals and non-locals. Lo
cals are accessed simply as a displacement on an index register, while
non-locals require several instructions to get to the correct level. Since
automatic proceduring would alter the local level, you can see the diffi
culties that would arise in attempting to produce efficient coue compatible
to the two situations.

Mailloux:
Let me give an example to see whether I understand correctly.

begin real, a.b. c;
proc real, p;

p:=a+bxc;

:r::=p;

end

Here, the routine created by proceduring a+bxc is "smuggled" into the
inner range by the variable p, and elaborated there. The variables a, band
c in the routine would be accessed as specific displacements on the "most
local" index register, this register being updated at entry to, and exit from,
each range. The call of the routine in the inner range then malfunctions,
since this register then contains the address appropriate for accessing
most-local variables like x, y and z, whereas the coding of the routine de
pends upon the register containing the address appropriate to the outer
range. Is this the problem?

34 1. F. CURRIE. S. G. BOND and J. D. MORISON

Currie:
Yes.

Mailloux:
Thus, in a machine sufficiently richly endowed with index registers that

it is possible to allocate a different one to each depth of range nesting, the
whole problem vanishes, even for one-pass compilation.

Currie:
Yes, except for getting rid of the branches inserted to avoid obeying the

code, in the cases where you do want to obey the code at this pOint.

Branquart:
I should like to point out that the difficulty of proceduring in a one-pass

compiler is less in a strong position. In other positions you can have bal
ancing and if you are allowed to mix proceduring and deproceduring you
have to wait until having in hand all modes of the balanced clauses before
taking a decision. I think it one of the main reasons why it is difficult.

Currie:
There is a point that nobody has raised, and that is why proceduring

anyway?

Paul:
I would like to hear the answer to this provocative question, but I should

say that all those who have used more than one pass have not been so wrong
after all because they have gained some better handling of complex things.
You cannot postpone decisions very easily in a one-pass compiler because
you have to put information into some lists and then to struggle your way
through those lists back up again. You save that if you do the compiling by
two or three or more passes.

Currie:
You struggle your way through three or four different representations

instead.

SESSION 2

(Chairman: J.E.L.Peck)

---------~----------------.... --

ANALYSIS OF THE PARENTHESIS STRUCTURE

OF ALGOL 68

P. BRANQUART, J. LEWI and J. P. CARDINAEL
MBLE. Res. Lab .• Brussels. Belgium

1. INTRODUCTION

For the time being, no mechanical solution, directly using the definition
of ALGOL 68 [1] has been found for solving the problem of syntactic analy
sis of this language. However, from this definition, it is rather easy to de
duce a context-free syntax [7] describing a superset of the language; such a
syntax defines a very useful structure for the compiler builder.

It remains to find out a deterministic algorithm of analysis based on this
syntax, but this seems difficult to be done in a completely automatic way.
The difficulty comes from the high degree of recursivity in which all pro
gram constructions are defined and from a lack of redundancy at the level
of the representation language.

One solution consists in researching more ad hoc processes of analysis,
which, among other things, try to split the problem into more simple ones.
As far as we are concerned, we tried to use an algorithm generating
bounded-context decision tables, already used for an ALGOL 60 compiler
[3-6]. The results yielded have obviously not solved the whole problem of
analysis for ALGOL 68 but they have given interesting information which
has guided the choice of more ad hoc solutions. These solutions are based
on the considerations given below.

Roughly speaking, the context-free structure of ALGOL 68 can be split
up into three parts:
(i) The edition structure which separates entities of information such as

identifiers, indications, some denotations and tokens.
(ii) The parenthesis structure which Closely corresponds with the parenthe

ses * used in the language.
(iii) The operator structure which corresponds with program constructions

generally associated with language defined operators (:=, :=:, ...) or
with program defined operators (formulas).

The edition structure is rather easy to detect by means of a finite state
automaton.

* Throughout this note, the stress has been laid on parentheses proper; the other
tokens playing a similar part have been treated as well; such are: "begin", "end",
".if" "fi" "~" "~" "[" "1" "th!l.n" "~" "..tlJ&!". "~,, "in" "Qldt" "I" and '''1:"-' , ", , , , , -' ,

37

38 P.BRANQUART. J.LEWlandJ.P.CARDINAEL

The parenthesis structure is partly explicit, because it corresponds with
the parentheses of the language, and partly hidden, because the same paren
thesis tokens are used for surrounding many kinds of syntactic construc
tions; the goal of this note is precisely to develop a method for allowing the
recognition of these constructions and to add this information to the corre
sponding parentheses. These may then be regarded as phrase markers.

The further detection of the operator structure is straightforward and is
easily obtained in a deterministic way.

Though apparently trivial, the problem of recognition of parentheses is
rather intricate if it is solved in its whole generality and in the absence of
entirely mechanical solutions. For this reason, the solution described in
this note cannot be qualified as fool-proof and we would be only too glad to
acknowledge any kind of corrections and ameliorations.

However that may be, our purpose is twofold: on the one hand, to propose
a particular solution issued from the experience gained [2] in closely fol
lowing the evolution of ALGOL X, and on the other hand to produce a docu
ment displaying the complications inherent to the problem.

Finally we should like to recall that some aspects of this problem have
already been treated [8); the approach which is given here has been devel
oped independently.

2. CRITERIA

The method of recognition which is developed in this note applies to the
most general ALGOL 68 programs, only supposing they have been edited
beforehand; thus, it admits all kinds of representations allowed in [1], even
inconsistently mixed, and it does not suppose that the mode and operator
indications can be distinguished. This last assumption is at the origin of
some intrinsic indeterminations about the nature oLparentheses; these in
determinations are solved in a trivial way during the next phases of the
compilation.

The method uses three criteria which are based on specific syntactic
features of the language. In practice, these criteria are not independently
used, and in particular, the order in which they are applied is relevant.
(i) The first criterium is based on the bounded-contexts surrounding left

and right parentheses; it has been checked starting from a context-free
syntax [7] by means of an algorithm generating bounded-context deci
sion tables [3, 5,6].
Examples: - in "struct (int i, real r)", the context "struct" of the left
parenthesis determines its nature (FIELDS declarator pack);

- in "(int i, real r)g: ... " the contexts "real r" and "Q.:"
of the right parenthesis determine the nature of the construction: for
mal PARAMETERS pack.

(ii) The second criterium is based on particular characters of the program
texts comprised between left and corresponding right parentheses, to
the exclusion of the texts surrounded by inner parentheses; such char
acters are the comma, the colon and the semicolon.

ANALYSIS OF THE PARENTHESIS STRUCTURE 39

Example: - in "begin a, b end" the appearance of a comma determines
the nature of the construction, collateral CLAUSE, as opposed to "be
gin a; b end" which is a 'closed CLAUSE'.

(iii) The thirdcriterium is intended to take the extensions into account, by
which the characters "struct", "union" and "op" need not always be re
peated inside some program constructions (collateral declarations, for
mal PARAMETERS, FIELDS declarators). This problem is solved by
setting up some states when the characters "struct", "union" and "2.£"
appear in the programs under certain circumstances. These states are
reconsidered each time a comma or a semicolon is met.
Example: - in "struct~ = (real a, b), 1.. = (int i, real r), ... " the na
ture of the last left parenthesis (FIELDS declarator pack) depends on
the state dictat~d by the presence of "struct".

The above criteria are not sufficient to eliminate all indeterminations on
parentheses; two kinds of indetermination do subsist:
(i) The first kind corresponds with making the difference on the one hand

between 'ROWS rower' or 'formal PARAMETERS pack' and 'CLOSED
clause', on the other hand between 'ROWS rower' and 'routine denota
tion', in some difficult contexts:

[~)Qi cast
,------'

formula

[
((a a):3) 1l. b

:routine denO~ation
formula

and

and

[

(int : 2) Q i
I I

declarer

~dentity de~laration

[

((a a) :3) 12 b
! ,

declarer

I identity dec l~ration

and also between 'void cast pack' and 'ROWS rower':

(: 3).Q a= . .. and (:3).Qa= .. ,
L--.I

void cast pack
\ I

declarer

formula identity declaration

These indeterminations can always be solved when the nature of one
single indication appearing in the bounded contexts of a right parenthe
sis is known; a fortiori, it can be solved as soon as a table of indication
declarations is available; such a table can be built up at the same time
as the present algorithm is performed; this one already deals with a
number of extensions of mode declarations, thus facilitating the con
struction of the table. Among these indeterminations, some are com
pletely unsolvable without knowing the nature of the indications:
"((Ga) :3)Q b" or "(int :2).Q i"; other ones could be solvable at the price
of introducing intricate complications in the criteria: "(3 :x+y*z)lL b".

(ii) The second kind of indetermination corresponds with making the differ-

40 P.BRANQUART, J.LEWI and J.P.CARDINAEL

ence between 'slices' and 'calls': it will be solved during the processing
of modes and coercions. In some cases it is impossible to solve these
indeterminations before this last process has been performed: "a(3)" or
fIb (int: 3)"; in other cases they could be solved at the price of changing
the criteria: "a(3 : 4)".

Remark finally that the criteria which are generally very specific could
be misleading when errors appear in programs. Obviously some redundan
cies can be introduced by combining several criteria or by enlarging the
contexts, or even by finding out other criteria. Nevertheless the difficulties
of the problem of error handling seem to be inherent to the language. This
problem has not been tackled here.

3. GENERAL FORM OF THE ALGORITHM

The algorithm of recognition proceeds in a single left to right pass
through the programs, without backtracking.

Given the nested structure of parentheses, the paSSing on of the informa
tion issued from the three criteria can be performed by means of a push
down stack. The elements of this stack may be regarded as structured val
ues having as many fields as there are informations of different nature. For
example, the informations resulting from the contexts of the left parenthe~
ses, from the states, the commas, the colons and the semicolons, have to
be transmitted to the right until the corresponding right parenthesis is met;
to each of these informations corresponds a field in the stack elements.
Conversely the informations available at the right parenthesis should be
transmitted to the corresponding left parenthesis; this can be obtained either
by storing the address of the left parenthesis in a new field of the stack ele
ments or by performing a further right to left pass. For reasons of simplic
ity the transmission of informations to the left parenthesis has not been im
plemented in the sequel of this note.

The general form of the algorithm is the following:
(i) At each left parenthesis its context is analyzed; this generally allows

one to restrict the class to which this parenthesis belongs; a new stack
element is then set up, where in particular, information about the class
of the left parenthesis is stored.

(ii) To the field 'state' of the upper stack element, an appropriate state is
assigned in the following cases:
a) the state 'op', when the character ".2£" is met
b) the state 'structm' or 'unionm' when the character "struct" or

"union" followed by a mode indication is met
c) the state 'structd' or 'uniond', when the right parenthesis of a de-

clarer 'struct(...)' or 'union(...)' followed by an identifier is met.
This field is analyzed when a comma is met at the same level of the
nested structure. The context of the comma sometimes indicates if an
extension corresponding with the state is present. In some difficult
cases such as

ANALYSIS OF THE PARENTHESIS STRUCTURE 41

struct (int i, real r) s, (int i, boo I b) t, ...
and

struct (int i, real r) s, (int: 2)!!:. a, . ..

the decision has to be postponed (to the last right parenthesis in the ex
amples).

(iii) The appearance of a comma, colon and semicolon brings about the
overwriting of the corresponding field in the upper stack element.

(iv) At each right parenthesis, the information accumulated in the upper stack
element, and possibly some context are examined in order to deter-
mine with more precision the class to which the parenthesis belongs.
As said above, there may remain some indeterminations.

The explicit algorithm of recognition is given in section 5 by means of
an ALGOL 68 program. This program uses the table of section 6 where all
situations are displayed. It must be emphasized that this table has to be
consulted in a sequential order. On the other hand, in a practical imple
mentation, a less interpretive and consequently more efficient algorithm
can easily be deduced from the table.

We remark at last that the introduction of some restrictions simplifies
the problem a great deal (see appendix); for example the following restric
tions can be envisaged:
(i) The use of square brackets as 'sub' and 'bus symbols' can be required
(ii) More consistency in the use of the representations may be required (as

already done in the language in the use of the pairs"[,]", "(I,i)" and
"(,)" for the 'sub' and 'bus symbols').

(iii) The possibility of recognizing mode indications from operator indica
tions may be required, for example by means of a preliminary pass.

4. THE USE OF THE ALGORITHM IN A COMPILER

In the compiler under implementation in our laboratory, the syntactic
analysis of ALGOL 68 programs has been split up into three parts as ex
plained above: the edition structure, the parenthesis structure and the oper
ator structure.

This compiler proceeds in six phases, where no backtracking is allowed:
(i) The first phase takes place during the loading of the program, it com

prises the detection of the edition structure, and of the parenthesis
structure, using the algorithm described in this note. Moreover, a ta
ble of indication declarations is established. This table is intended to
be used for performing the identification process of indications during
the next phase; hence, these declarations have to be connected with a
range. The trouble is that the ranges cannot be detected before paren
theses have been recognized; a solution consists in regarding all paren
theses as defining a kind of range which, though not corresponding with
the ranges of the language, can however be used for identifying the in
dications. These ranges differ from those of the language in two re
spects: some constructions such as 'collateral clauses' and 'formal

42 P.BRANQUART. J.LEWI and J.P. CARDINAEL

PARAMETERS' are regarded as ranges but the 'routine denotations',
the parentheses of which have been dropped, are not. This does not
bring about any problem, because no one of these constructions may
have constituent indication dec larations.

(ii) The second phase has the table of indication declarations at its dispos
al, and is able from the outset to identify the indications and to elimi
nate the first kind of remaining indeterminations on parentheses. More
over, the previous recognition of the parentheses of the 'formal PARAM
ETERS packs' easily allows one to restore the parentheses of the routine
denotations which have been dropped; some distinctions among routine
denotations, made in the preceding phase. allow one to detect the drop
ping of the 'plans' in the procedure and operator declarations (see sec
tion 7 - 15). This phase is systematized by means of a deterministic
top-down syntac tic analyzer, which can be easily obtained once paren
theses have been recognized. Such an analyzer detects the operalor
structure and inserts in the program texts the corresponding phrase
markers in postfix form. The detection of 'empty' as rowed coercend
is also performed and this 'empty' is replaced by a special symbol,
greatly facilitating the performance of the next phases. At last, during
the second phase a table of declarers and of identity declarations is
established, and the ranges which have no constituent declarations are
marked in a special way.

(iii) The main goal of the third phase is to insert the markers correspond
ing with the operator structure in prefix form: this phase proceeds
from right to left and is also systematized by means of a top-down
analyzer. In this way, the coercions and thereafter the translation
proper can be performed each during a single left to right pass. The
identification of identifiers is also performed during this phase.

(iv) The fourth phase deals with modes, coercions and performs the iden
tification of operators [9]. It also eliminates the second kind of inde
termination on parentheses (difference between 'slices' and 'calls') and
collects information for scope checking.

(v) The fifth phase translates the program into an intermediate code close
ly depending on the storage allocation scheme which has been adopted
[11-161·

(vi) At last the sixth phase translates the intermediate code into machine
code while some optimizations are performed.

5. THE ALGORITHM OF RECOGNITION

begin
c;omment

1. This algorithm accepts ALGOL 68 'source programs', and transforms
them into equivalent 'object programs' where supplementary information
has been attached to parentheses, thus connecting each of them with a
particular class. These classes correspond with the following program
constructions, the parentheses of which will be given a charcteristic re
presentation:

ANALYSIS OF THE PARENTHESIS STRUCTURE 43

FIELDS declarator pack (s)s

IProcedure symbol, virtual
PARAMETERS pack

(p)p

loperation symbol, virtual
PARAMETERS pack

(0)0

I LMOODS MOOD and box pack
open LMOODS MOOD and box pack

(u)u

I sub symbol, VICT AL ROWS rower,
bus symbol

(b)b

formal PARAMETERS pack (f)f

routine denotation (r)r or (rl)rl

I sub symbol, ROWS leaving ROWSETY
indexer, bus symbol

(sl)sl

actual PARAMETERS pack (call)call

void cast pack (v)v

closed CLAUSE (cl)cl

collateral CLAUSE (col)col

conditional CLAUSE !! then else ii thef elsf

case CLAUSE case in out esac (*

After the process, some indeterminations on right parentheses remain
between:

)b and)col
)b and)cl

)b and)rl
)f and)cl

)sl and)call
)b and)v

2. The following conventions will be used throughout this program:

v: indicant
IJ.: mode indication
p: ADIC indication
Ii : identifier

)*

ex: any character a declarer may begin with in the source program,
with the exception of "(", "[" and "v". These characters are:

~ char union bytes
int format struct string
real proc compl sema
bool ref bits file

they determine without any context consideration the presence

44 P. BRANQUART, J. LEWI and J. P. CARDINAEL

of a declarer in the source program; only long may also begin a
denotation or an operator, but this can be detected in a trivial
way.

w: any character a declarer may end with in the object program
with the exception of "v". These characters are

int format)s string
real proc compl serna
bool)p. bits file
char)u bytes

they determine without context consideration the presence of a
declarer in the object program

IT : any character a primary may end with in the object program,
with the exception of the characters representing right paren
theses on which some indetermination subsists; IT represents
the following set, the elements of which, that must not end the
primary of a slice or of a call, have been crossed out; actually,
these elements need not to be considered:

)cl esac pll X·
)cof.}*' /}) r
!!)sl ~)rl
PLAIN getfotation
BITS geDotation
row of character denotation
format g.ertotation

3. The characters K, S, and F represent each a single parenthesis on
which some indetermination subsists; the indetermination associated
with each such character is described hereafter by enumerating the pos
sible specific parentheses it may represent:

K: (col, (cl, if, case, (b, (f
S:)sl,)call
F:)f,)cl

com_ment
char rchar co rchar possesses a name which refers to the last edited

character which has been read in co;
proc EDIT = (rchar := co the next edited character of the source program co)

comment
EDIT works as a finite state automaton; it reads ALGOL
68 source programs sequentially from left to right and it
groups their characters into atoms of information from a
semantical point of view. Comments, spaces, carriage
returns and other irrelevant characters are disregarded.

comment

ANALYSIS OF THE PARENTHESIS STRUCTURE

Those regarded as atoms are:
- the identifiers
- the indications
- the denotations except the routine denotations and the

dynamic replications of format denotations
- the action tokens
- the declaration tokens
- the syntactic tokens
- the sequencing tokens
- the hip tokens
- the extra tokens

45

Actually, "identifiers", "indications", and "denotations"
are transformed into structures with two fields: a 'class
field' (identifier, indication or denotation) and a 'specifi
cation field' where a pointer to a table is stored. In this
table more specific information can be found: alphanumeri
cal representations for identifiers and indications, and
machine representations of the values possessed by deno
tations.
The present algorithm is only concerned with the first
field which is regarded as the character delivered by
EDIT.

proc STORE = (char c) : co stores c into the object program 0!;
mode stackelem = struct (char parenthesis,
~- --- -- state,

comment

consistency,
bool comma,

colon,
semicolon)

'stackelement' represents the mode of the elements which are
stored on the stack used in this program.

- in the field 'parenthesis' is stored a character representative of
the information available at each left parenthesis; such characters
are

(s (p Ji out (sl
(u (col then while
(0 (: else thenin standing for then or in
(b (* in ifcase standing for if or case
(slcall standing for (sl or (call
(bsl " " (b or (sl
(bsc " " (b, (sl or (call
(rb " " (r, (b or (rl
(colcl " (color (cl
(sb " (s or (b
(ub " (u or (b

46 P.BRANQUART, J.LEWI andJ.P.CARDINAEL

(ob
(r
(cr
(c
(ck
(c2

standing for
" ff

" "
"

" "
"

(0 or (b
(r or (rl
(col, (cl, it. case, (b, (f, (r or (rl
(col, (cl, ii, case, (b or (f
(col. (cl, li, case, (b, (r or (rl
(col, (cl, ii, case or (b

- in the field 'state' is stored a character representative of the in
formation allowing one to take some of the extentions 9.2 of [1] in
to account; such characters are:

structm
unionm
op

structd
uniond
empty

- in the field 'consistency' is stored the source program token of
each left parenthesis; it is intended to give the possibility of
checking an abusive mixing of representations of parentheses, for
example "begin a)".

- the fields 'comma', 'semicolon' and 'colon' indicate whether, re
spectively, at least one comma, one semicolon or one colon has
been met after the last encountered left parenthesis, disregarding
the text comprised between inner parentheses.

corrrnent ;

rode stack - [1:~ stackeLem ;

stack S :- ;

struct context - (string Zeft. char char. string right);

~ conditions ~ (char

parenthesis.

state.

context context.

boo 1, COImla.

semicoLon.

coLon);

~actions. part action.

parenthesis.

state.

cLasses J;

ANALYSIS OF THE PARENTHESIS STRUCTURE 47

struat tab lee'lern = (aondi tions aondi tions,

actions actions);

int n;

nvde tab le = [1: n] tab lee lern;

table TABLE
co TABLE (see section 6) will be interpreted by the present algo

rithm, it is composed of a number of elements (lines) which are
scanned sequentially. Each element consists of a number of exe
cution of a number of actions. The entry points in T ABLE corre
spond with the last edited characters; such characters are:

struct union
()

op
1 I:

[]
begin end
while do
if then else fi
thef elsf
case in out esac

The following declarations define procedures which will be used in
TABLE

pmc INS = (:(E:£ add one element at the top of S co

[1: rS+1] stackelem IT;

IT [1: f s]:- S;

IT [fS+l] := (llempty", "empty", "empty",

false, false, false)

E:£ empty is regarded as one characterE:£;

S := IT));

pmc OUTS .. S :- S[l: rS-1] E:£delete one element from S~;

pma OPEN" (: (INS;

48 P.BRANQUART, J.LEWI and J. P. CARDINAEL

aonsistenay £is[r S] := rahar));

proa CLOSE .. (: (OUTS;

i1 r s=o then stop fi;

i1 parenthesis.£i S[r S] .. "(ar"

then parenthesis £i s[r S] :- "(a" fi));

proa CLOPElJ .. (: (CLOSE; OPEN));

proa SUPSam .. (boot b) aorruna £i S[r S] : .. b;

proa SUPSan." (boot b) aoton £i S[r S] : .. b;

proa SUPSsa .. (boot b) semiaoton £i s[r S] :- b;

proa ROUT .. (ahar a) : (OUTS;

i1 r 8"'0 then stop Ii;

i1 parenthesis £i S[r S] .. "(ar"

V parenthesis £i S[r SJ .. "(ak"

then parenthesis £i S[r S] :- "(0" ti);

proa EXTD" (:(STORE (",");

SUPSam (true);

EDIT;

OPEN));

proa EXTM" (ahar a) (STORE (",");

SUPSam (true);

rahar := a);

££ the algorithm proper is the following: ao

newahar : EDIT;

i££. I 1£ n do

(tabteetem T .. TABLE [I];

aonditions aonditions .. aonditions £i T;

aations aations a aations £i T;

ANALYSIS OF THE PARENTHESIS STRUCTURE

i1 (l'ahar £f. aonditions ~ IIskipll ££. see section 6, step 6 ao

V rahar £f. aonditions D rahar)

&(parenthesis £f. aonditions = IIskip"

V parenthesis £f. aondi tions = paren thesis £f. S [r s J)
&(state £f. aonditions = "skip"

V state £f. aondi tions - state £f. s [r S] j

&(teft £f. aontext £f. aonditions = "skip"

V Zeft £f. aontext £f. aonditions = ££. the string aorresponding

with the Zast aharaaters stored in the objeat

progrOJl1, in nwnber eqyaZ to the nwnber of

amraaters in "Zeft £f. aontext £f. aonditions II

££.)

&(right £f. aontext £f. aonditions = "skip II

V right £f. aontext £f. aonditions = ££. the string aorresponding

with the next al.araaters to be read in the

sourae program, in nwnber equaZ to the num

ber of aharaaters in "right £f. aontext £f.

aonditions" ao)

&(aorruna £f. aonditions = "skip"

V aorruna £f. aondi tions • aorruna £f. S [r s J)
&(aoZon £f. aonditions = "skip"

V aoZon £f. aonditions = aoZon of s[r s])

& (semiao Zon £f. aondi tions = "skip"

V semiaoZon £f. aonditions = semiaoZon £f. s[r SJ)

then proa EXECUTE. (string s) : ££. aonsider s as an AZgol 68 program

and eZaborate it EEl

ao here aan be performed a aheak of aonsistenay between rahar and

aonsistenay £f. S [r s J ££.

EXECUTE (part aation £f. actions);

49

50 P. BRANQUART. J. LEW! and J. P. CARDINAEL

:!:1 parenthesis 9.f.. aaUons '" "skip"

then parenthesis 9.f.. S[r S] :- parenthesis 9.f.. actions

:!:1 state 9.f.. aations " "skip"

then state 9.f.. S[r S] :- state 9.f.. actions

ii;
if. cZasses £1 actions = "skip"

then STORE: (rchar) ;

nBlt'char

eLse STORE (cLasses 9.f.. actions);

newchar

ii
fi);

STORE (rehar);

newehar •

stop : ££. end of the process ££.

comment

The problem of error detection and recovery has not been treated,
no alarm is provided

eomment

6. THE DECISION TABLE

The table below is a condensed form of the decision table to be used by
the algorithm described in section 5. This condensed form has the advan
tage of making some combinations apparent and Of being more synthetic. On
the other hand the algorithm is much simpler if a complete form of the ta
ble is used. It is rather easy to deduce the complete table from its con
densed form, though the following rules to be applied for performing the
transformation might seem intricate.
Step 1: delete the last column NO (this column is only constituted by num-

r
I

ANALYSIS OF THE PARENTHESIS STRUCTURE 51

bers referring to the examples of section 7); go to step 2.
Step 2: if several characters (lines) appear in one same rectangle of the

column classes, replace these characters by a single one represen
tative of the set of original ones (the characters of the set have been
enumerated in order to make the indeterminations more clear) and
go to step 2; otherwise go to step 3.

Step 3: if a symbol Ci, w or 1T which stands for n (n" 1) characters. appears
in some line of some rectangle of the table. replace in this rectan
gle, this line by n lines. These lines are copies of the original line
where the symbol Ci, w or 1T has been replaced in the n respective
lines by the respective n characters for which this symbol stands,
go to step 3; otherwise go to step 4.

Step 4: if n lines of text (n>l) appear in the same rectangle. combine each
of these lines with all rectangles at the right of the original one. go
to step 4; otherwis~ go to step 5.

example, [a [: [: [; [become, a b d f
e g

c d f
e g

Step 5: if a rectangle, now necessarily containing at most one line of text,
corresponds with n (n>l) rectangles at its right, divide the original
one into n rectangles at the height of the right ones, repeat the line
of text in each of the new rectangles, and go to step 5; otherwise go
to step 6.

example: becomes
a b d a b d

I--
e a b e

c d a c d
-

e a c e

step 6: if a rectangle is empty, write "skip" in it, and go to step 6, other
wise the process is finished.

NB. Vertical dotted lines appearing in the table will be explained in the ap
pendix.

TABLE I

condi tions actions

context semi-
colon action parenthe- ". rchar parenthe- state comrr:a

colon part state classes
sis left char right sis

~ ~ ~ ~ I

union ~ ~ unioum 2 --
~ ~ ~ 3

(struct (OPE;;; .(. (5 4

5truc4J~ (OPEN (5 (5 4'

Wlion (OPEN (u (u 5

union lJ = (OPE" (u (u 5'

2J!. (OPEN (0 (0 6

proc ()
;

OPEN (b (b 7

I
(OPEN (p (p 6

~ (OPE" (col (col 9

1T (OPEN (sleall (51 10
S (call

r (OPEN (bsc (b II
(51

(call

(: OPE;, (: (v 12
(b

TAJILE II

conditions actions

context seni-
~:o rchar parenthe- state COIT'JlI8

colon colon part action parenthe- state lasses
sis left char right sis

((.... OPEN (.... (H- 13

(l*- OPEN (,.. (- 14

((OPE!\ (cr (col 15
(el
if -case
(b
(f
(r
(rl

OPEl> (e (col 16
(el
if -case
(b
(f

I (e true false CLOPE).1 in in 17
i(e2 --- - -
ifcase CLOPEN thenin then 18 ---

in

if CLopn: - then then 19

thenin true false r.LOPE~ out out 20

then CLOPCN else else 21
thenin --

ill CLOPE~ ~ out 21'

TABLE III

conditions actions

context setri - :1 0 rchar parellthe- state con1!'.a. colon part action parenthe- state classes
sis left char right colon

sis

I: (c CLOPEIl if thef 22 -, (c2
ifcase

if

~ CLOPEl'! if e15f 23 - --
thenin

) ..) CLOSE) ... 24
*/

(b5C) (l ROlT ("{r"))b 25
v:

I) ROm C' (c2 "))51 26
) 51

26' ROUT{"{c2")) call

(b CLOSE)b 27

(s) 0 CLOSE 5tructd)5 26

CLOSE)5 28'

(u) 0 CLOSE uniond)u 29 ---
CLOSE)u 29'

(p CLOSE)p 30

{o CLOSe)0 31

then CLOSE fi 32 -
else --

TABLE IV

conditions

context sCDi-
rchar parenthe state comma

sis left char right colon

in

out

thenin true false ---

(col

(slcall

(colel true false

(:) a

v

(c /)

I:) a

, IV:
) a

:v:

actions

colon part action parenthe- state
sis

CLOSE

CLOSE

CLOSE

CLOSE

CLOSr:

CLOSE

CLOSE

CLOSr:

CLOSr.

CLOSE

CLOSF

C'LOSE

CLOSE

true CLOSE

classes

esac

csac

fi

) col

)sl

~ sl
call

)col

)cl

)b

)b
)v

)v

)b

)h

)b

N°

33

34

35

36

37

3€

39

40

41

41 '

1.2

43

4/,

45
en
en

TABLE V

conditions actions

context semi.-rchar parenthe- state comma
colon colon part action parenthe- state classes N°

sis left cllar right sis

) (c) Cl ROUT C' (r"))f 46

i v:

, ,
i .-.-) v CLOSE)b 47

.) v CLOSr.)b 48
) col

) v true false false CLOSE)col 49

false CLOSE)cl 50

true false true CLOSE)b 51
) col

true CLOSE)b 52
)cl

,0) : ROUT("(r"))f 53
(
[

w6) : ROUT("(r"))f 54
(

[
I

v6) ROl'T (" (rb "))f 55 I :
1

) cl I
I
I
I

t ROUT("(ck"))f 56 I
I

) cl I

TABLE VI

conditions actions

context semi-
rchar parenthe- state comma colon

colon part action parenthe- state classes N°
sis left char right sis

) (c true false CLOSE)col 57

CLOSE) cl 58

I (c2) '" SLOSI':)b 59

) \I ~ false false CLOSE)col 60

false CLOSE)cl 61

~ false ~ CLOSE)b 62

)col

true CLOSE)b 63

I
) cl

~ false CLOSE)col 64

CLOSE) cl 65

(sb) 6 CLOSE)8 66

CLOSE ~)b 67

(u!;) 6 CLOSE)u 68

CLOSE empty)b 69

conditions

context
rchar parenthc- state

sis left char right

) (ob ()

i

(r) ,
;

,
)~ I (ru a I

I

I v
I
I , ,
I
I
I ; .
I .
I
I
I
I

[proc [

[...
1f [
S

I F [I

TABU: VII

actions

semi--
conIDIa colon colon part action parenthe-

sis

CLOSE

true CLOS!:

CLOSE

CLOSE

CLOSE

CLOSE

CLOSE

CLOSE

CLOSE

OPEN (b

OPEN (*

OPEN (sl

OPEN (bs1

OPEN (b

state classes

~)b

~)b

)0

)r

) rl

)b

) rl
)b

)1:

)rl

(b

(.

(51

(b
(61

(b

,,0

"

70

71

72

73

74

75

76

77

76

79

00

Sl

82

83

tn
00

TAtLE VIII

conditions actions

l'OnlL' >-t . semi- N° rchar parenthe- state comma colon part action parenthe- state classes

sis Ie ft char r.i fll t
colon sis

] ... ,
oJ CLOSE) 84

(sl CLOSE)sl 85

1 (bs 1
1

" BOIIT (" (r"))b 86
I

.J

: v:

I
I ROL"T("(c2"))sl 87 I
I

(b CLOSE)b 88

!>egin ~ begirt' OPEl, (col (col 89

OPEN (colel (col 90
(cl

end (col CLOSE)col 91

(c true false CLOSE I) col 92 --
(c2

(colel CLOSE)cl 93

while OPEl, whi Ie while 94

do CLOSE do 95
--

if OPI':I ifcasc if 96 --
cas"e case

TABLE IX

conditions actions

context serni-
rchal" parenthe- state comma colon colon part action parenthe- state classes N°

sis left char right sis

then !! CLOPEN ~ then 97 ..-
!!.

ifcase ~ false CLOPEN in in 98
-(-c--

(c2 CLOPEN thenin then 99
In

else in CLOPEN ~ out 100
out

then CLOPEN else else 101

thenin true false CLOPEN ~ ~ 102

CLOPEN else else 103

fi in CLOSE esae 104 - --
~

~ CLOSE fi 105

out CLOSE ~ 106

else CLOSE fi 107

ttlenin ~ .!!.!.!.!. CLOSE ~ J08

CLOSE fi 109

~ CLOPEN if thef 110

elsf CLOPEN if elsf 111

'IABLE X

condi tions actions

context seni-rchr parenthe state comma colon part action parenthe- state classes N°
sis left char right colon sis

: Sl:J'S (t rue) 112
cn--

; Sl:1'S (true) c.pty 113 sc--

. ~ · \.I -
n."'I~'("n ruct") 114

unionm · \.I a E}""'Il·'("union ") 115

structd · (EX'ID (sb (s 116
(b

· <I Sll'S (true) 116 ' cm--

uniond · (EX'ID (ub (u 117
(b

· <I Sll'S (true) cm-- 117 '

~ · p - FXT~~("£E.") 118

· (EXTD (ob (0 119
(b

Sll'Scm(true) ~ 120

62 P. BRANQUART. J. LEWI and J. P. CARDINAEL

7. EXAMPLES

In this section are given a few examples relevant to a number of situa
tions which may occur when trying to recognize the parentheses of a pro
gram. These examples are linked to the table of section 6 by means of their
numbers which correspond with the column NO. They are intended to facili
tate the understanding of the table but by no means do they represent an ex
haustive study.

Information about parentheses has been added under the examples and
the underlined arrows point to the characters which are supposed to have
been read last.

1) (struct s = (int i. real r), -y--- -

2) (union 11 = (int, real} •...
1

3) (¥ Q = ((real x) real: - x).

(¥- (real) real Q = ((real x) real: - x).

4) WIuct ant i. real r) s. 1 .
s

5) (union (int, real) u
i
u

6) op (real) real 0 = ((real x) real: -x);
-1---- - --

o
7) proc (: ,) intp;

6
8) proc (real) int P';
--1--

p
9) par (a, b, c);
-1

col
10) a (3); a (3) (4);

h ~l ~l h
call call call call

11) (
1
r
cl
col
b
if
case

(Q a) (...
T 1 1
f f b
cl cl sl

call

[1 : 31 int a; a (3);

sf
proc (int) a; a (3);

ckll

ANALYSIS OF THE PARENTHESIS STRUCTURE 63

[fp!jf': «~5f
QP. !!:.. = , , , , !;.. = , , , ; mode 1. = , , , ;
((g a) (1: 3) £ 7 : 5) f a;
t i ill i-
b cl cl sl sl b

call call

[? 7 ;~')' T ~ ~ '3' ') 1. ~ '7';'l ~;d)e 1 =a~' , ;
iii 1 i i
cl cl cl sl sl cl

call call

The indetermination between, on the one hand "bound" and on the other
hand "slice/call" could be solved without identifying the indications, but not
always by using the criteria defined in section 2 (see also 26 and 27 in this
section), However, the indetermination is more intrinsic in "a (3)" and
"a (Q :3)" which may be either "slices" or "calls",

12) 1: 3 .. ,

v
b

13) (* x, y :: w *);
1 i

(: 3);
1 r
v
(: 3) int a = , ..
1 r
b b

(* *) not allowed?

14) (/ * x, y :: w * I);
I r
(* *) not allowed?

15) (((1, 2 ,(3,4));
IIi

col col col
i T
col col cbl bOl

cl
ii
case
b
f
r
rl

((1,2));
1 i T i
cl col col cl

((b = true) I 3 I 4) ;

fr dl cil li
((i+1)13,41 5)
1 i T r

case cl cl esac

((i + 1) : 4) int;
1 T T i
b cl cl b

64 P. BRANQUART, J. LEWI and J. P. CARDINAEL

i (((,) int x) real : ...) ;

l ~I6ti I ~
(«) int x) real : ...) (3) ;

ri f b J 1 Jt 6all 6all

NB. The differentiation between '(r' and '(r1' will be useful to detect exten
sion 9.2.e in the next phase:
proc p = ((real x) :...); corresponding to

i i
r r proc (real) p = •.•

proc p = ((real x) : . ..) (3.14); no extension.
-- i -- i

r1 r1

16) See 15 except '{rf and '{r1' because these parentheses are necessarily
followed by another one: '(f'

17) {x, y :: z I '" parenthesis of S[rS] = {c
J-
in

if x, y :: z 1 ...
in

{(ga) (1l:3)
iii i i
if cl cl sl sl

call call

Q. 7, Y :: Z I
;.
m

parenthesis Q! S[rS] = ifcase

parenthesis Q! S[rS] = (c2

18) (b ~ parenthesis of S[rS] = (c

then
in

19) (b I : d I
i 1

thef then

20) (x I 3 , 4 I '"
i '-1

then out
in

21) (x I 3 I ..•
i 1

then else
ill

21') (x, y :: z I 3, 4 I .. ,
T 1
III out

22) (x I : ..•

tAef

ANALYSIS OF THE PARENTHESIS STRUCTURE

23) (x I 3 I

t~en ersf
in

24) see 13 and 14

25) ((II a) (12 : 3) £.
1 1
b b
sl
call

see also 11

26) ((Q a) (12 : 3) £. a ...

~ ~l
sl call
call

27) see 7

28) see 4

29) see 5

30) see 8

31) see 6

32) (b I : die) ;

then h
33) (x, y :: z I 3 , 4) ;

J 1
ill esac

34) (x I 3 , 4) ;
i 1

then esac
in

35) (x I 3) ;
i 1

then fi
in

36) see 9

37) a V 3/1;
slice slice
call

38) see 10

(see 19)

(see 17)

(see 18)

(see 18)

65

66
P. BRANQUART. J.LEWI and J. P. CARDINAEL

39) begin x, Y) ;
-1- 1

col col
cl

40) beyin xl;
col cl

cl

41) (: 3) int a = ...
1 1
b b

41') (:3)ga = .. ,
1 1
b b
v v

42) see 12

43) ; (.. ' /) .,.

£
44) () int a = ...

1 1
kb

45) (3 : 4) int a ;
1-
b

46) { (int x) int : 3
1 1
r f

(intx) a
1-
f

47) () g a = ...
1
b

48) (.Q : a ,) g b

6
col

49) (3 , 4) [! a
1
col

50) (3) f! a;
1
cl

51) (Q : 4, f : 5) f! a
1
b

col

see 15 and 16

ANALYSIS OF THE PARENTHESIS STRUCTURE

52) (12 : 4) fl a

1
b

cl

53) (Q a , Q b) : ...
1
f

(aa,bb)(...
- - 1

f

67

no collateral clause neither as strict lower bound nor in weak position,
nor as primary of a call.

54) (!L a ; int b) : . .. ;... (fl a ; int b) () int : ...
1 1
f f

no declaration at the end of a closed clause

55) ((g a) : ...

~ f
b cl

56)((ga)(...

~ol l-
cl cl
if

case
b
r

57) (a , b)
1

col

58) (a) ;
1
cl

mode fl ~ . .. ; ((!L a) : ...
1 1
r f

QQg~ ... ;((11.a): ...
1 1
b cl

mode !1. ~ • •. ; ((!L a) () int : ...
1 1
r f

op !L ~ ... ; ((Q a) (3
- lIT

b cl sl
call

59) ((Q a) (1 : 3) S2 7: 5) int ...
T T TTl
cl cl cl sl 81 b

col call call
b

60) ((Q a) (1: 3) S2 7.5) !l 3
t T T TTl
cl cl cl sl 81 col

col call call
b

68 P.BRANQUART. J.LEWIandJ.P.CARDINAEL

61) (g a) (1: 3) £ 7) 4 3
TIl TTL
cl cl cl sl sl cl

col call call
b

62) ((If. a (1 : 3) c 7: 5, 1: 2) d ...
T T T TTL
c 1 cl c 1 s 1 sIb

col call call col
b

(ga) (Q:3){27,!l:2) fl..3
1

col
-n-.

63) similar to 62

64) ((If. a) (Q: 3) {2 7, 2) 4. 3 ...
1

col

65) ((g a) (Q : 3) {2 7) 4 3
1
cl

66) struct (...) a, (...) b,
T 1
s s
b

67) struct (...) a, (...) int b,
1 1
s b
b

68) similar to 66

69) similar to 67

70) QE •.. , (, ,) int a
t 1-
o b
b

71) QQ . •• , (3 : 4) int a
T 1
o b
b

72) op ... , (int) int Q '" .•.
T 1
o 0

b

73) ((int a) :...)
1
r

... [the distinction between '(b' and
'(col' is not possible using the
criteria of section 2.

ANALYSIS OF THE PARENTHESIS STRUCTURE

74) ((int a) : ...) (3)
1
r1

see remark under 15

75) ((ga): ...) int ...
t t t .t
r f , f b
b cl cl

76) ((ga): ...) Q b ...
t t t h r f f
b cl cl b

77) ((.ga): ...); ...
t t t 1
r f f r
b cl cl

78) ((ga): ...) (...
t } } h r
b cl cl

79) proc [",] ...

t
80) [* x, y :: z *] ;

F
81) a ~ 3] ; a (3) 14] ;

sl sl

82) (!l. a I ~ ...
cl sl

83) (p ...
b

84) see 80

85) see 81

86) (!l. a ~ ~'" lint: ...
f b b

87) (1! a) [•..] ;

il
88) see 79

89) to 113) obvious

, ... (g a) [,',] Q : ...

IJ If

69

70 P.BRANQUART. J.LEWI andJ.P.CARDINAEL

114) struct fl. = (int i, real r) , Q = (...
1

115) similar to 114

116) struct Ciill. i, real r)

117) similar to 116

118) qp~ = ... ,.p.= ...
1

119) ~ ~ = •.. , (••.
1
o
b

8. CONCLUSION

a, (...
1
s
b

The results of this study have shown that it is possible to detect the al
most complete parenthesis structure bf the most general ALGOL 68 pro
grams in a deterministic way during the first pass of the compilation. The
remaining context-free structure, i.e. the operator structure, can then be
obtained in a rather trivial way.

In the whole this study has not been easy at all and the absence of me
chanical solutions does not allow one to guarantee its correctness in an ab
solute way. Moreover, the problem of error detection and recovery, which
has not been treated here, seems to be still more difficult. These problems
are simplified a great deal by the introducing simple syntactic restrictions.

ACKNOWLEDGMENTS

The authors wish to acknowledge the invaluable contributions of their
colleagues J. P. Delescaille and M. Vanbegin in the programming and debug
ging of the algorithm.

ABSTRACT

First the part played by parentheses in the syntactic structure of ALGOL
68 and the problem of their recognition are settled, then the criteria used
for solving this last problem are explained (section 2). Thereafter, the
main lines of the algorithm of recognition are sketched (section 3) and this
is placed in the general frame of a compiler (section 4).

The algorithm is then expressed under the form of an ALGOL 68 pro-

ANALYSIS OF THE PARENTHESIS STRUCTURE 71

gram (sectiop 5). This algorithm uses a decision table which is displayed
(section 6) while a few examples illustrating the most difficult cases are
given (section 7). At last, the simplifications subsequent to some restric
tions are enumerated (appendix).

REFERENCES

fl1VanWijngaarden, A .. (Editor), Mailloux, B,J .. Peck, J.E.L.andKoster.C.H.A.,
Report on the algorithmic language ALGOL 68, Mathematisch Centrum, Amster
dam, 1969.

[21 Sintzoff. M .. (Editor), Branquart, P., Lewi, J. and Wodon, P. L .. Remarks on
the Draft Reports on ALGOL 68, Report R96, MBLE Res. Lab .. Brussels,
January 1969.

[3] Branquart, P., A program generating a decision table for a bounded-context syn
tactic analyzer, (The algorithm of Eickel), Technical Note N31, MBLE Res. Lab ..
Brussels, May 1967.

[4] BranquarL P., The ALGOL 60 - P3 compiler, Report R73, MBLE res. Lab ..
Brussels, Januarv 1968.

[5] Loeckx. J., An algorithm for the construction of bounded-context parsers, Re
port R99, MBLE Res. Lab., Brussels, March 1969.

[6] Branquart, P., Delescaille, J. P. and Lewi, J., An implementation of an algo
rithm for the construction of bounded-context decision tables I Technical Note
N52, MBLE Res. Lab., Brussels, April 1969 .

[7] Branquart, P. and Lewi, J., A context-free syntax of ALGOL 68, Internal Note,
MBLE Res. Lab., Brussels, September 1968.

[8] Koch, F., The recognition of ranges in ALGOL 68, Thesis, University of Cal
gary, September 1969.

[~] Branquart, P. and Lewi, J .. On the implementation of coercions in ALGOL 68,
Report R123, MBLE Res. Lab .. Brussels, January 1970. (Presented at the
"International Computing Symposium", Bonn, May 1970.)

[10] Sintzoff, M., Calculating properties of programs by evaluations on specific
models, MBLE Res. Lab., Brussels, April 1970.

[11] Branquart, P. and Lewi, J .. On object language and storage allocation, Pro
ceedings of an Informal Conference onALGOL 68 Implementation, University of
British Columbia, August 1969.

[12] Branquart, P. and Lewi, J .. A scheme of storage allocation r;nd garbage collec
tionforALGOL 68, MBLE Res. Lab .. Brussels, April 1970.

[13] Wodon, P. L .. Methods of garbage collection for ALGOL 68, MBLE Res. Lab ..
Brussels, April 1970.

[14] Branquart, P. and Lewi, J .. On the implementation of local names in ALGOL 68,
Report R121, MBLE Res. Lab .. Brussels. November 1969. (Presented at the
International Computing Symposium, Bonn, Mav 1970.)

[15] Branquart, P. and Lewi, J., Structure d'un compilateur ALGOL 68, MBLE Res.
Lab., Brussels, April 1970 (presented at the AFCET Congress, Paris 1970).

[16] Branquart, P. and Lewi, J., Local generators and the ALGOL 68 working stack I
Technical Note N62, MBLE Res. Lab., Brussels, April 1970.

APPENDIX: SIMPLIFIED TABLE

The simplifications to the table of section 6, given below, are obtained
by supposing that the mode and operator indications are distinguished.

72 P. BRANQUART. J. LEWI and J. P. CARDINAEL

1. Modifications to the conventions:
(Y stands for the union of the old set (Y and 11
w stands for the union of the old set wand 11

2) Modifications to the table
{- the numbers between parentheses are references to the column NO of

the table:
- the arrows stand for "has to be replaced by":
- the lines which have to disappear are marked in the table with vertical

dotted lines}
(11). (25), (26), (26'), (41'). (47) to (52), (55). (56), (59) to (65).
(75) to (78), (82), (86). (87)---+
in (17), (18). (22). (92). (93), (98), (99): (c2-
in (44). (45). (46): r:--

DISCUSSION

Mailloux:
I am going to try and hang myself I think by asking whether, on the basis

of your study, you can come to any conclusion about how many different
kinds of brackets would have been necessary or highly desirable as distinct
kinds. supposing we had round ones, square ones, braces, and so on.

Branquarl:
I think if you drop the possibility of using normal parentheses instead ·of

square brackets. it would greatly simplify the problem.

Mailloux:
I think you still have the difficulty of discovering whether you have a rou

tine denotation or not. which has always bothered me.

Branquarl:
Yes, but it would be less difficult if specific square brackets were used.

van der Melilen:
As a matter of fact. the square bracket is in the language. and replaCing

it by a round bracket is an extension, isn't it?

Branqllart:
But for descriptive reasons, I think.

van der Meulen:
Yes, but the trouble arises from using an extension that nobody will use,

I hope.

ANALYSIS OF THE PARENTHESIS STRUCTURE

Branquart:
I am not sure that nobody will use it.

Mailloux:
I do not have square brackets on my keypunch (Amusing rejoinders

about manufacturers.)

Peck:

73

Your methods of analysis of the parenthesis structure involves using a
stack, and I think this stack contains six elements in it. Do you think that
this could possibly be simplified. that some of these stack elements might
be left out and that the remaining analysis could be left to the parsing stage?

Branquar{:
Some of the stack elements are only useful in very particular cases.

which perhaps can be treated in the following passes, I agree.

van Wijngaarden:
May I make one remark in defense of the ALGOL 68 Report? It has been

said that the sub-symbol. or the bus-symbol may be represented by an or
dinary opening and a closing parenthesis by virtue of the extensions and not
the representations. As far as I remember. it is only in the extensions for
purely aesthetical reasons. namely to prevent a programmer from using a
square opening parenthesis combined with a round closing parenthesis. But
as far as I can see, there is no problem whatsoever for the computer. It is
just an aesthetical problem rather than any problem of substance.

Branquarl:
Moreover the problem of brackets is not the only problem arising from

the extensions; if you drop all extensions, the whole compiler will be sim
plified a great deal. (Laughter.)

Lindsey:
On this same subject. there is another remark one could make. Gener

ally speaking, if you meet an opening parenthesis and you are not sure what
is going to follow, then it does not particularly matter if you do not know.
provided that things that may follow are roughly similar in nature. General
ly speaking, what is going to follow, for example after an if or an elsf in a
conditional, is some sort of serial-clause. and what is going to foHow after
an open bracket in a closed-clause is some sort of serial-clause and it does
not really matter terribly. You are not sure which is at this stage. But
where it does matter is where the beast which is about to follow may turn
out to be something very unlike a serial-clause. such as where it turns out
that what you are embarking on is in fact a row-of-mode-declarer. So there
are some cases, and I think this is one of them, which are going to be
rather embarrassing, as Branquart has said. I think there are other cases
where it does not matter particularly that you do not know. But certainly
this opening round parenthesis, which turns out to be a row-of-mode
declarer is an unpleasant thing to have to deal with. It is a pity. but it is
there. Are there any observations to make upon the case where you get an
opening round bracket followed by a slash, which means that you are either

74 P. BRANQUART. J. LEWI and J. P. CARDINAEL

starting on a thing where the slash is a monadic-operator, or it may be that
you are starting simply on another representation of the sub-symbol.

Branquart:
I think that the use of a round bracket followed by a slash facilitates the

solution of the problem, compared to the use of only square brackets with
out the slash.

Lindsey:
Yes, but if you have a round bracket followed by a slash, it may be a

round bracket followed by a monadic-operator slash, and you do not know
until you get to the matching bracket.

Branquart:
Yes O.K., but in many cases of recognition of parenthesis, you have to

wait until the right parenthesis is met, and parenthesis-slash is only a par
ticular case, which enters into our system without difficulty. The principal
advantage of having recognized parentheses is that you have more informa
tion in prefix form, and the further use of a deterministic top-down syntact
ic analyzer is very much simplified thereafter.

Lindsey:
Can you give us a summary of the passes you are going to have and into

which pass this particular recognition process fits?

Branquart:
Well, we have a six pass compiler, the first of which takes place during

the reading of the program. During this first pass we recognize a part of
the parenthesis structure in the most difficult cases; the reason is that dur
ing the next pass we want to recognize the ranges of the program and to
make a table of the declarers. For that purpose we have to recognize the
routine-denotations, the formal-parameters-packs and the bounds-packs
beforehand. During the second pass, the remaining parentheses are recog
nized, but this becomes rather trivial. Moreover, in thia pass we are able to
recornize the operator structure of the program and to put the correspond
ing phrasemarkers in postfix form. Then we have a right to left pass in
which these phrasemarkers are put in prefix form, and this permits us to
deal with the coercions in one single left to right pass, I cannot say without
backtracking but with a rather restricted backtracking only dealing with
modes. The last two phases are related to the translation into machine code.

Prentice:
If a person who is rather perverse chooses to write a program, perhaps

unintentionally, which has one of these constructions, and the whole of his
program is one procedure, you could end up with a very large amount of
material on your stack. Will this not present problems?

Branquart:
The length of the stack only depends on the depth of the nesting of paren

theses; practically such a depth cannot be so large as to cause storage
problems. So we store the stack in the core store but the program in the

ANALYSIS OF THE PARENTHESIS STRUCTURE

backing store. The storage problem is now how to add complementary in
formation to the left parentheses already stored in the backing store: you
can imagine two solutions. The first is to make a right to left pass after

75

the first pass. Of course, this is time-consuming. The second one consists
in storing in the program, not refined parentheses. but pointers to a part of
the core store where the refined information is stored.

program:

refined information: I parenthe~is of
bounds

We have the same features when dealing with coercions. which after all. are
also discovered after a whole coercend has been treated. And it is impor
tant to have this information in prefix form in case of proceduring.

Prentice:
The thing that slightly worries me is that if I had done something like

this. someone would find a construction which my decision table did not
take account of. and that using the same sort of entries in the decision ta
ble, I could not resolve it. Is it that you have tried enough cases to con
vince yourself that this is all right or have you got some sort of a more for
mal way of demonstrating this?

Branquart:
No. We have learned the language for a long period, but we are not sure

of our table of decision. The proof is that we found two errors recently.
However, I can say we are more and more sure.

Griffiths:
The trouble surely goes a lot deeper than this because like most imple

menters, Or at least most of the ones I know, you are using a grammar
which is not the grammar written in the Report. We have thus no formal
proof that the grammar we start with contains the grammar that is in the
Report. However, it is reasonably simple to prove from your grammar that
what you are doing is correct. that is to say that the character on which you
perform discrimination is actually sufficient. The only formal problem
would then be to prove that ALGOL 68 is properly contained in the language
defined by your context-free grammar.

Branquarl:
I can say we are more convinced of the correctness of our starting

grammar than of the correctness of our decision-table. Because after all
you have already a context-free frame in the Report. However, I am not at
all convinced that it is so easy to prove the correctness of our decision ta
ble.

76 P. BRANQUART. J. LEWI and J. P. CARDINAEL

Peck:
Could I ask whether, as a result of this study, there is one single thing

you would like to have changed in the language in order to make this analy
sis easier?

Branquarl:
My answer would be rather trivial: to impose the use of a specific sym

bol for some kind of parenthesis. in the case of 'sub' and 'bus symbols' for
example.

Goos:
May I answer your question? We should recognize that language parsing

is from left to right and that the right context in parsing has not the same
weight as the left context. Some of these parentheses use some kind of
"postfix" to distinguish between the different meanings. They do not use a
"prefix" form and that IS what is really wanted for the parsing.

Branquarl:
In my opinion. it would be very difficult to make it possible to discrim

inate parentheses by means of left context, without imposing the use of
specific brackets in most of the cases.

AN IMPLEMENTATION OF IDENTIFIER TABLES

IN A MULTIPASS ALGOL 68 COMPILER

BASED ON A HASH-CODE TECHNIQUE
, ,

J. KRAL and J. MOUDRY
Prague Tech. Univ. and Czech.Acad.Sci., Prague

1. TERMINOLOGY

We shall use tl)e terminology of the ALGOL 68 Report. By the 'meaning'
of an identifier Id in its applied occurrence 0 we shall understand the mode
associated with it at its defining occurrence 01 identified by O. We shall
say that the identifier Id is declared on the level of the range R. if R is the
least range containing 01. We shall assume that each pass scans its input
(or source) text from left to right. We shall say that the compiler enters
(leaves) a range R if it reads the first (last) symbol of R.

In this paper the question of whether the boundary symbols belong to the
range R is not important.

2. MAIN FEATURES OF THE COMPILER

The compiler under discussion will be of three-pass type (it is not ex
cluded, however. that the third pass will be split into more passes). The
compiler will translate a source program into an assembly language. A
rough description of the compiler is given below. Only the details important
for the technique discussed are given.

Pass 1
1a. Range enumeration. An integer j, the range number of R. is associated

with each range R. In the following. Rj is a range with range number j.
(In [2], j is called a 'cumulative block number'). A range is uniquely
determined by its range number. Ranges are numbered from left to
right according to the occurences of their left most symbols.

lb. Transformation of tokens into an inte rnal representation.
1c. Elaboration of mode- and operation-declarations.
1d. Substitution of implicit identifiers for denotations.
1e. Syntactic analysis I (context conditions for modes, bracketing. form of

denotations) .
If. Transformation of identifiers into 'standard form'.

Pass 2
2a. Elaboration of identity declarations (Le., construction of identifier ta

bles, including the meaning of identifiers).

77

78 J. KRAL and J. MOUDRY

2b. Syntactical analysis II (context conditions for identifiers).
Pass 3
Translation into assembly language (including the search for the mean

ing of all identifiers at their applied occurrences).

3. TRANSFORMATION OF IDENTIFIERS IN PASS 1

The basic idea of a 'standard form' of an identifier is to make as easy
(and as quick) as possible any search in identifier tables (which will be
constructed later). This is achieved by renaming the identifiers used. New
identifiers form a sequence Ql. Q2 . .. Q'k'. where Q'k' means an identi
fier. obtained as a result of the concatenation of letter Q and the current
numerical value of k. A hash table may be used to perform the transfor
mation efficiently.

The meaning of any ALGOL 68 program P does not change if identifiers
in P are systematically changed. provided a one-to-one correspondence
between the original and the changed identifiers exists. Let T =
{TO. Tl· .. TN} be a hash table containing all the identifiers occurring in
the program P. Let the structure Ti = {Idi. Ni} be a pair consisting of an
identifier and a positive integer. which will be used in the transformation

Idi ~ Q'Nj.

The number Ni is associated with the identifier Idi at its first occurrence;
its value is equal to (number of distinct identifiers met so far) -1.

A simple program

begin !eal i, j, k;

will be transformed into

(int i. j) end

begin real Q1. Q2. Q3 ; (int Ql, Q2) end

The transformation algorithm may be described in ALGOL 68 as follows:

begin int NID := 0 ; i. NID wiU oontain the number of identifie1'B in

the program i.

struot item = (bytes id, int n) ;

[1:1023] item T ;

for i from 0 to 1023 do T til := (empty bytes, 0) ;

bytes empty bytes = ~ any pattern whioh oannot oorrespond to an

identifier ~ ;

proo hash = (bytes a) int : ~ a prooedure generating a nonnegative

integer Zess than 1024 ~ ;

AN IMPLEMENTATION OF IDENTIFIER TABLES

proa transformation = (string orig) string :

begin bytes a = atb orig ; int i := hash (a) ;

e: :!:.1 id £,f T [i 1 = a then i : = n Ef. T [i 1

ds f id Ef. T [i 1 = empty bytes then r/ new

identifier I

NID := NID + 1 ;

T [il := (a, NID); i:= NID

79

, else i := h(i) this a funation determining what item of

T will be examined in the next step p ;

"Q" + int string (i, 4, 10)

Here, of course, only the procedures implementing the basic features of
the idea are given. The generalisation is not complicated. For example, it is
quite easy to allow identifiers and the table T to be of variable length and
so on. To each identifier in the source program the procedure transjorma
tion is applied.

4. CONSTRUCTION OF DECLARATION LISTS (PASS TWO)

In pass two, for each range Rj, a declaration list Lj is constructed.
Each list Lj is a sequence of pairs (Q' k', M), where Q' k' is an identifier
in the standard form declared on the level Rj and M its meaning (a pointer
to the corresponding 'mode descriptor'). For the sample program given
above the declaration lists may be written in and ad hoc notation as fol
k>ws:

Ll {(Ql, real), (Q2, real), (Q3, real) }

L2 {(Qt, int) , (Q2, int) }

When leaving a range Rj the corresponding list Lj may be transferred into
an auxiliary memory. The symbols Q are clearly redundant in Lj lists and
can be omitted. The construction of Lj is straightforward and causes no
problem.

80 J.KRAL and J.l\WUDRY

5. THE USE OF DECLARATION LISTS (PASS THREE)

In pass three a table Tl of the size NID is created (NID has the value
obtainea in pass one. the value of NID is therefore equal to the number of
different identifiers in the program). Elements of TI are the 'meanings' of
identifiers and the 'addresses' associated with them. At the start of pass
three all the members of Tl have a value indicating that the meaning of the
corresponding identifier is yet undefined. When a range Rj is entered, its
declaration list Lj is transferred into the main memory. For each item
I(Q'i'. M) in Lj the value of M in I and the value of TI [i J are exchanged
(note that the value of i is given in Q'i'). When leaving the range Rj the re
verse change is made so that after the completion of the elaboration of Rj .
Tl has its initial contents. It can easily be verified that during the elabora
tion of Rj the meaning of any identifier Q'k' in all its applied occurrences
may be found in TI [kJ (note again that k is given in Q'k').

Another very similar technique stores a pointer to a list structure in
Tl [k]. This structure contains the meanings of Q'k' from all the ranges
entered but not left up to now. The last (i.e .. valid) meaning of Q'k' is in
front of £>k. Handling of such structures may be described as follows. At
the start of pass three each member of Tl contains nil. When a range Rj is
entered the following transformation is performed. For each item t =
(Q'k' ,211) in Lj a copy of M is placed in front of £>k. When leaving Rj the re
verse transformation is performed. i.e., the lists £>k are made to have the
content before entering Rj. The reverse transformation can easily be made
by a systematic examination of the first members in aU £> k or using the
list Lj again.

It can be shown that the technique discussed can be applied to the hand
ling of mode tables and that there are modifications of it USing ideas de
scribed in [2].

SUMMARY

A simple straightforward technique for the construction of the identifier
tables,is given. The technique is particularly efficient in multipass com
pilers. It will be used in a three-pass ALGOL 68 compiler for the TESLA
200 computer. The search time is independent of the number of identifiers
in a program and needs no complicated machinery.

REFERENCES

[lJ Van Wijngaarden, A., Mailloux. B. J .. Peck. J. E. L .. and Koster, C.M. A., Re
port on the algorithmic language ALGOL 68, MR101, Mathematisch Centrum,
Amsterdam. 1969.

[2J Kanner, H., Kosinski, P .. and Robinson, C. L., The structure of yet another
ALGOL compiler, in: Programming systems and languages, S.Rosen (Ed.),
McGraw-Hill, New York, 1967.

[3J Morris. R., Scatter storage techniques, Comm. of ACM, Vol. 11 No.1 (1968)
pp. 38-44.

AN IMPLEMENTATION OF IDENTIFIER TABLES 81

[4] Kral. J .. Some very effective methods of searching in tables. Aplikace matema
tiky. Vol. 14. No.1 (1969).

[5] Mailloux. B.J .. The implementation of ALGOL 68, Thesis. Mathematisch Cen
trum, Amsterdam. 1967.

I

SYNTAX AND MODE CHECK IN AN ALGOL 68 COMPILER

INTRODUCTION

H. SCHEIDIG
Technical University, Munich

The major tasks which must be dealt with by an ALGOL 68 compiler are
syntax check and mode check - apart from the activities which serve to pre
pare the run-time organisation.

In short. we give here a summary of how these problems are treated in
the Munich implementation of ALGOL 68.

1. SYNTAX CHECK

If we consider the methods of syntax checking which are developed - for
example for ALGOL 60 - and ask for the most efficient methods amongst
these, we will no doubt get to the methods working with some kind of tran
sition matrices. In general, the condition which a language has to fulfil to
make this technique acceptable is that the language is (1. 1)-context bounded.
This condition is not fulfilled in the case of ALGOL 68 - in ALGOL 68 the
context which is needed to identify a syntactic construction can be of any
length; in certain critical cases, namely, if we have to handle a so called
alternative component a we cannot come to any decision without the knowl
edge of whether the indication ind constituting this alternative component a.
is a mode-indication or an operator-indication (a can be a dec laration, a
generator, a parameter or a formula, see [1 j). Therefore. the task to
make a syntax check for ALGOL 68 is divided into two tasks:
1. the handling of alternative components, the syntactic correctness of

which we can not check without further 'semantic' information and
2. the check of all other constructions of the language for syntactic correct

ness.

1.1. The handling of alternative components.
To handle the alternative components, Mailloux makes the obvious pro

posal to have a preliminary run before the syntax check which collects all
mode-declarations. By this collection the syntax checker in the next pass
immediately comes to the appropriate decisions.

The advantage of this method is that the syntax check can then handle the
alternative components in a very simple manner; the obvious disadvantage
is that the compiler will be lengthened by one pass.

In the Munich implementation we have taken another way:

83

84 H.SCHEIDIG

a) Each alternative component a which is found during the run of the syntax
check is treated as a declaration (this means. that the indication(s) con
stituting a is (are) considered as a mode-indicant(s».

Moreover. certain additional information is collected which allow us
to regenerate the original language construction (i. e. the formula) in the
next pass, that is. after the syntax check is finished, and especially
after all (mode) dec larations are elaborated. if a is not a declaration
(generator, formal-parameter: generators and formal-parameters are
treated like declarations in this part of the compiler).

b) For the further pass of the syntax check we have to guarantee that, al
though we cannot identify the alternative components. all syntactic errors
will be detected. Also at this point the error recognition is to be re
covered in pass 2 for some well defined kinds of errors (for example, if
a is the last element of a closed serial-clause then a may not be a decla
ration).
,The disadvantage of this method is that the syntax check is complicated

and much lengthened by this treatment of alternative components and that
the following pass has to recover certain activities: on the other hand, we
save a complete pass.

Practical experience and comparison of these methods will have to point
out which of them is the better.

1.2. Syntax check for the other language cons/rue/ions.
As remarked in the introduction. the method of using a transition matrix

for the syntax check cannot, or at least not immediately and in a simple
manner, be transferred to ALGOL 68 (experiments in this direction seem
to be useful first after we have more experience of the language and of com
pilers for the language respectively).

In the Munich implementation of ALGOL 68 the basis for the syntax
check is the so called Floyd-Evans Production Language (see r2 j, [3]). The
syntax check is a program in this language and this means an ordered se
quence of productions PI,' .. ,Pn.

At execution of this program the productions PI, . ..• Pn are examined
for 'applicability';

let Pi (1 < i < n) be the first applicable production (such a production al
ways exists) then this production fulfils the following condition:

the first n symbols in the stack are the same as the n 'state'-symbols
given in Pi (these symbols can be ALGOL 68 symbols or local sym
bols).

If such a production Pi is found then the following is done:
1. The first n symbols in the stack are replaced by m symbols given in

Pi (m:" 0).
2. So called 'semantic routines' given in Pi are executed.
3. If speCified in Pi the next symbol of the program string is read into

the stack.
4. Either. the execution of the program is finished after execution of Pi

or in Pi is given a j (l~ j~ n). so that the examination of applicabil
ity begins at production Pj-

SYNTAX AND MODE CHECK 85

By means of this method we can hold in the stack a context of any length
to come to decisions, and the semantic routines perform the further activi
ties (such as making entries in lists and so on).

Apart from this. a program in the Floyd-Evans Production Language
yields a good and well readable documentation of the syntax check.

2. MODE CHECK

In ALGOL 68 the task of making the mode chack is equivalent to the task
of making the syntax check with regard to the extent as well as the difficulty
of these problems. But. the problem of mode checking appears in ALGOL
68 for the first time. whereas the methods for making a syntax check are
(at least partly) well established.

Therefore. one of the most important goals of the Munich implementa
tion of ALGOL 68 is to find an efficient method for mode checking: we de
scribe shortly the method which we have developed.

2.1. Coercing ins/rue/ions.
The following elements we denote as coercing instructions:

a) operators.
b) the elements of

PI = {for-symbol. from-symbol. by-symbol. to-symbol. case-symbol}
and

P2 = {if-symbol. while-symbol. thef-symbol. elsf-symbol}
c) slices and calls.

Always, when in an ALGOL 68-program the 'own modes' ml• mk are
connected by coercing instructions coercing operations are produced.

We denote as operators:
(i) standard operators and operators defined in the program by operation

dec larations.
(ii) internal operators out of

1= {:=, :=:, :t:, ::. ::=,oj,: (cast-symbol). = (in declarations)}.

2.2. Coercing junctions.
Each coercion A is a mapping - depending of the coercing instruction x

which produces A - which transforms the own modes mI mk into the
'target modes' mi, m'k:

A(x, ml_' .. ,mk' mi,·· . ,mk) : mI" .. , mk --> mi··· .. mk

(if k > 2 this transformation proceeds simultaneously and not independently
for all modes ml,' ..• mk).

The target modes mi (i = 1, ... ,k) either are given directly (in the cases
x E PI : int or x E P2 : bool) or they are to be determined from the corre
sponding operator-declaration (procedure declaration. row-of ... dec lara- .
tion; we do not say anything here about operator identification).

We call A(x. mI' mk' mI' m;) a coercing function; the result of
such a function are k 'coercing sequences' CSl CSk each of which con
sists of a sequence of 'coercing words'.

86 H.SCHEIDIG

Coercing words serve to denote the single elementary coercions such as
dereferencing. deproceduring, proceduring and so on.

2.3. The coercing funclion A(:=, m1." . , mk. mi, . .. , mk)'
First of all. let us consider the simplest case k = 2 with m1 as 'left own

mode' (that is. m1 appears on the left-hand side of :=) and m2 as 'right own
mode' (that is. m2 appears on the right-hand side of :=).

2.3.1. The following elements are denoted as mode-indicators:

I Joid, inl, real. campI, bool. bils, byles, char. siring.
format, file, union(u1 , un) with n " 1, slrucl(fl, .. · .fn)
with n" 0, proc(P1,'" 'Pn) with n 30, [... J.
ref(n) = !!1. .. !!!1 with n' 0 and long(n) = l!!!!g . .• long

n n
with n :- O.

Each element out of the set of admissible ALGOL 68 modes consists of a
sequence of mode-indicators.

2.3.2. The coerCing matrix W.
The row and column entries of Ware the mode-indicators introduced

above apart from Wand long.
Each matrix element 9!i,j is a pair (9J.t,j,I)(~,j) with:

G(k _ k k \) k _ k k
<. . - CS .. S.. or ,(.. - S .. CS .. ,

1,) t,} 2,} I.} 1, .1 1, }
k = 1.2;

thereby CS~ . is a coercing sequence (possibly empty) and S~ . is empty or
2,} t,}

a statement.

2.3.3. Definition of the coercing function A(:=, m1' m2' m~, m;).
If we remove the prefix from m1 and m2. that is, some long's or ref's

in front of them. then the first following mode-indicator of m1 and m2
specifies exactly one matrix element Wi. j of 2:(; the function A selects this

element: if 2:(i }. contains a statement S~ .• then this statement is elaborated;
, t.}

in the normal case the effect of S~ . is a new call of the function A and this
1, }

means a new access to the matrix 9(, In this way the coercing sequences

CS 1 and CS 2 for m 1 and m 2 are determined by successive rowing of the co

ercing sequences CS~ I given in 2:(i }. in the corresponding order.
t,} ,

Example: Let the assignation x := y be given, let m1 be the own mode of
x and m2 the own mode of y and let:

m1 = ref(n) proc m1
m2 = ref(m) w1 ... wr with w1 cj: {proc, [...]},

then all matrix elements 9{i,j have the form:

SYNT AX AND MODE CHECK 87

j(cb, proceduring A2(:=, m1' m2' m], mil)), if n = 1

Gt (A1(- -") . A2(- -" ;ai j = :=, ml , m2, m1, m2 deprocedurmg, :=, m1, m2, m1, m2))
, ifn=O

undefined in all other cases.

Thereby, Ai (i = 1, 2) denotes the ith element of the pair which is the result
of A. This means the following:

If the prefix of m1 is ref then we have to apply the operation 'procedur
ing' after we have found some further coercing words, if any, which
must be determined recursively. If the prefix of m2 contains no refer
ence symbol then the operation 'deproceduring' is to apply to m1 and
then some further operations which are still to be found. In each of the
other cases the assignation is not allowed.

In this way the definition of the matrix elements 9Xi, j succeeds for all com
binations of modes" with the exception of union modes alone; for union
modes a special treatment must take place.

2.3.4. The coercing function A(:=, m1, ... , mk, mi, . .. ,mk) for k > 2.
Let mb' .. , mZ be the left modes and mZ+b' .. , mk the right modes.

then the following holds:
a) Let m* E {m1.' .. , mZ} be a special mode, the so called 'soft mode',

which meets the following conditions:
(i) There exists an mr E {mV' .. , mZ} with:

fr(mr) = m*, whereby fr is a soft coercion.
(ii) fi(mi) = m*, for i = 1, ... , Z (i", r). whereby fi are strong coercions.

(iii) m* = ref(n) m (with n '> 0).
b) The function A(:=, m1,'" ,mk, mi, ... • mk) is then defined in the follow

ing way:
A(:=, mb' .. , mk, mi,· .. , mk) =

jA(:=, .. refm*,mi,ref.m*,mf), i=1 •... ,Z
LA(:=, m*, mi' m*. mil. i = Z+1, .. . ,k .

. It is easy to see that we can find an algorithm which determines a soft
mode out of a set of modes {m1,' .. ,mZ}. Thus. the function
A(:=, m1,' .. ,mk. mi, ... , mk) is reduced to the functions
A(:=, m, mi' m', mil, i = 1, ... , k.

2.3.5. Definition of the functions A(x, mb' .. ,mk, ml. . .. , mk) for the co
ercing instructions x ~ :=.

In each case, that is, for each other coercing instruction x, the function
A(x, m1, . .. ,mk, mi, ... , mk) succeeds in reducing them to the functions
A(:=, m*, mi' m*, mil, i = 1, . .. , k, whereby m* is a special mode which is
to be determined in a similar way as the soft mode. For example, this is
simple to see for x E Pi (i = 1, 2). Here we define:

A(x, m1"" ,mk, mi,· .. ,mk) = A(:=, m, m1 •... • mk. m, mi,··· , mk)

with the 'left mode' m = ref int or m = ref booZ for x E P1 and x E P2. re
spectively.

By this we first get a lucid description of all coercions and second a
very efficient method to implement them.

H.SCHEIDIG

REMARK

The functions A(x, mb ... , mk, mi, ... , m1) also depend on the syntactic
structure t1. ... , tk of the objects the own modes of which are ml, ... , mk.
This means, more precisely, that they depend on whether or not the ti are
collateral. The decisions between collateral 'carriers' ti and non-collateral
carriers ti is easy to take into consideration by the definition of
A(x, ml"" ,mk, mi, ... ,m1); we do not however give details of that in this
informal description.

REFERENCES

[1] Mailloux, B.J., On the implementation of ALGOL 68, Mathematisch Centrum,
Amsterdam, 1968.

[2] Floyd, R. W., A descriptive language for symbol manipulation, J.ACM. 8 (1961) 579.
[3] Evans, A .. An ALGOL 60 compiler, Annual Review in Automatic Programming,

Vol. 4, ed. by R.Goodman (Pergamon Press, Oxford, 1964).

DISCUSSION

Currie:
I am a bit confused about the size of the coercion array. Does it contain

all possible modes?

Scheidig:
No, I would say it is a twenty by twenty matrix. You can make it smaller,

perhaps twelve by twelve, by coalescing such matrix-elements as belong to
modes, the handling of which is similar. We have for instance, that the
elements nil, skiP and the jumps may be treated as special modes. We can,
therefore, collapse the matrix by superimposing these elements.

Currie:
I was not clear, from what you are saying, whether or not you had litter

ally one row or column per mode. Is it one row and column per primitive
mode and so on?

Scheidig:
Of course you have entries in this matrix for the primitive modes: void,

int, real, ... , file, and union(. ..), struct (...), proc (...), [...] Then
we can have references in front, or longs in front. To determine the matrix
entry for the two modes, we remove the prefix and then we always have a
mode of this sort. Of course this function must be recursive, because we
can have a row of procs, refs, and so on.

SYNTAX AND MGDE CHECK 89

Van Gils:
Do you determine the process of coercion of the left side and the right

side of an assignation at the same moment? It seems to me it would be
easier to deduce the mode of an assignation by deducing the mode of the left
hand side first and using this to give the mode of the right hand side. Why
have you combined these two processes?

Scheidig:
Well, in the first place, we have only soft operations on the left hand

side of an assignation. Thus, only deproceduring is possible. We can do it
beforehand or we can do it at the same time, it does not matter which. In
the second place, it is simple to reduce all coercing functions to this par
ticular function. Therefore we have a matrix for exactly the soft coercions
on the left hand side and the strong coercions on the right hand side. But it
is not difficult to separate them.

Van Gils:
How do you determine your soft mode?

Scheidig:
It is quite obvious what you must do if we have only one mode on the left

hand side, but also in the general case we can easily determine the soft
mode to which we can apply the function A (:=, ...).

Van Gils:
How do you reduce the weak coercion to this scheme?

Scheidig:
It seems to me that it would be better if I explain the scheme for deter

mining our soft mode. The determination of the "weak" mode proceeds in
quite a similar manner. Let M = {ml, ... , mm} be the left hand side modes,
the soft mode of which is to be determined. Now we see whether we have to
apply the operation deproceduring on the modes mi E M. If we have to, then
we do it; in consequence, no·mode mi E M begins with proc (proc without
parameters). Then we see whether a union mode mi = Pi union (. ..) exists
(Pi is the prefix consisting of!.fls andE!Qfs, but not beginning withE!Qf).
If we find only one union mode mi, then we take this mode mi. If we have
more than one union mode, then we take the one with the maximum number
of components. If we have more than one with the same (maximum) number
of components, then we consider the length of the prefixes and take the union
mode with the longest prefix. Now if we have more than one union mode with
these properties, then we take that with the minimum number of references
in front of it.

We have a similar method if we find row modes instead of union modes;
in this case we consider the dimension of the multiple values instead of the
number of components. Of course, we have to combine these two processes
if we have modes in M of the kind Pi[. ..] . .. union(... }. If we find in M
neither union modes nor row modes, then we first introduce an "order" for
the other modes in the following way:

90

modes

p void
p int
p real

p file
p struet
p proe(.. .)

H. SCHEIDIG

counting number

o
1
2

Now. we take the mode with the highest corresponding counting number (the
prefix p does not influence the ordering process) and after this we consider
the length of p in the Same way as above.

For a mode m* which we have determined in this way the following holds:
(1) the function A(:o=, ml, ...• mn• mI, mr • mi, . ..• m'n. mi, m~) can

be reduced to the functions
Al 0= A(:o=, Tef m*. mi. Te[m*, mil for the left hand side modes mi (i 0=

1, ... , n) and
A2 0= A(:o=, m*, mi' m*, mil for the right hand side modes mi (i 0= 1 ,n).

(2) if the assignation is not correct (in the sense of the Report), then one of
the following cases can occur:
(a) m* does not have any reference before it: then Al is possibly defined

but not A2.
(b) M contains two non-compatible modes, for instance ref int and ref

real: then the determination of m* always works, but Alis not de
fined.

Thus. if we determine m* in this way, we get all coercions if the assig
nation is correct. Otherwise we get an error message. Moreover, to m*
only soft coercions can be applied since to each other mode mi E M strong
coercions can be applied.

Peck:
May I ask you about your syntax checker which is written in the Floyd

Evans language. Did you obtain this by mechanical means from a context
free syntax, or did you develop the reduction rules by hand?

Seheidig:
We have an assembler which accepts a program in Floyd-Evans produc

tion language. By means of these productions you can express the syntax of
ALGOL 68.

Peck:
But from what did you get the reduction rules?

Seheidig:
From our heads in the same way as the decision tables of Brap.quart.

Branquarl:
I have one more question about the Floyd-Evans production language.

You said that you are allowed to take contexts of any length into account.

SYNTAX AND MODE CHECK 91

That is to say that you are provided with a look ahead. If you take the right
context of any length into account. I think you have the equivalent of a look
ahead. Have you an idea about the relative efficiency of such a look-ahead
and of a compiler which would do the same job in two passes? We had to
make the same choice. That is why I am asking this question.

Scheidig:
Well, that is an interesting question. especially in connection with what

we call "alternative components". and in connection with the use of brackets.
I can say only that I would be glad to hear about other methods. for instance
the method which was proposed by Mailloux. and to compare these methods.
For myself, I can say nothing about efficiency.

Branquart:
Do you analyze your program completely during the first pass?

Scheidig:
Yes, in the first pass.

Branquart:
When you meet an alternative component. it is treated as a declaration.

What do you mean by treated as a declaration? To what extent does this as
sumption influence the object program of your first pass?

Scheidig:
Of course, it does. Therefore we have to collect some other information

to regenerate the original language construction if we detect that this con
struction was not r~ally a declaration. Moreover, if we treat this construc
tion as a declaration it means that we make entries in some lists which
contain the mode of this entity and the name and so on.

Branquart:
Is it a trick ~hlch allows your parser to come to the end of the program?

When you have an expression such as ~ a you can imagine that a context
free parser would be ambiguous. You could choose, let's say, one alterna
tive of this ambiguity, for example, a declaration. My question is, what is
the further influence of such a decision?

Scheidig:
It is not only a trick. Perhaps I should explain it. First, if we handle an

alternative component like a declaration then we are right in 50% of the
cases. Moreover, the organization of our first two passes makes it neces
sary to generate an entry in our declaration list of a declaration which oc
curs. So, we cannot take the other possibility, namely, to do nothing if we
cannot decide during the syntax check whether an alternative component is
a declaration or not. At least, this handling of an alternative component is
very easy. The only thing we have to do is to collect some information
which allows us to regenerate the original construction if it is a formula.
This information is small and we do not have any trouble at all in Connec
tion with this method. Apart from this, we have trouble in connection with
alternative components, but this fact does not depend on which method we

92 H.SCHEIDIG

use to handle them. If we have a construction such as (intIl xl, ind2 x2, . •. ,
indn xn) then it can be a formal-parameters-pack for instance, or it can be
a collateral-clause. What is not allowed is that it is a closed-declaration.
We cannot detect that in the first pass. We can detect it instantly after we
have collected all mode declarations. That is, after the syntax check in
our pass 2.

Peck:
Have you a context-free syntax for ALGOL 68?

Scheidig:
We have tried to get a context-free syntax and we have done this by

means of the language called Euler. Goos has written a compiler for it and
one of the first large jobs was to read in context-free productions. But this
approach did not work because we have a relatively small machine and,
moreover, at this time we has no possibility in Euler to save information
in backing store.

SESSION 3

(Chairman: BJ.Mailloux)

INTRODUCTION

AFFIX-GRAMMARS

C.H.A.KOSTER
Mathematisch Centrum. Amsterdam

The purpose of this paper is to present a type of two -level grammar.
akin to that used in ti.le definition of ALGOL 68, but better suited for syn
tax-directed parsing techniques.

1. DEFINITION AG

An affix grammar AG is a 9-tuple

(Vn' Vt,An,At , Q. E. R. S. p), where

Vn = a finite nonempty set of nonlerminal symbols.
Vt = a finite nonempty set of terminal symbols,
An = a finite set of symbols, the nonterminal affixes.
At = a finite set of symbols, the terminal affixes,

Q = a finite set of symbols, the primitive predicate symbols.

(Vn' Vt. An. At and Q are mutually disjoint, and do not include the symbol
w, theforbidden symbol.)

E = the initial symbol E Vn •
R = affix rules, a finite subset of An x (An UA t)*,

(Observe that for every a EAn, the 4-tuple Ga = (An. At. a. R) forms a
CF grammar. Define for a EAn, La = £(Ga)'
Let L = U La')

aEAn

S = control, a collection of 5-tuples Sx = (x. Nx . Cl'x. Cl'x' F x>, one for every
XE Q U Vn , where:

x = head EQ U Vn•
Nx = number of affixpositions EN,
TX = types of the affixpositions E rrNx {5, l}, where 5 and l are special

symbols
Cl'x = domain of the affixpositions E rrNx An •
F x = associated junction, a total recursive function

Fx : LCl' X LCl' X ... X Lrv ~ {E, w}.
x,I x,2 -x,Nx

(When x E Vn , then this function is irrelevant.)

95

96 C.R.A.KOSTER

P = rules, a finite collection of pairs (CUC)J), where everyCU is of the form
(v, ab a2, aN) where v E Vn and ai = Clv,i of Sv' and where every

C)J is of the form (ml. m2, ...• mk) where k'" 0 and mi E M. where M =

(Q U Vn) x I1*(An U L), the set of affix expressions.

2. NOTATION

When (x, y) E R where Y = Yl Y2 ... Yn' then we write i

x : Yl Y2 ... Yn- .

When (x,y) EPwhere Y = (yt,Y2, '" ,Yn). then we write

x : Yl,Y2' ... ,Yn' .

When x E Mwhere x = (xO'Yl'Y2' ... 'Yn). then we write

Xo + Yl + Y2 + ... + Yn for x.

When both x :Yl'. and x :Y2' we write x :Yl;Y2'

3. TERMINOLOGY

For strings x, Y and z, let subst (x, y, z) denote the result of substituting
x for every occurrence of Y in z.

When Cf(= S(: cy., then we term S(the left hand side and cy the right hand
side of the rule or affix-rule Cf(

The right hand side of a rule or affix-rule whose left hand side is S(is
termed an alternative for S(

When an affix expression S(= x + Yl + Y2 + ... + Yn then x is termed the
head of S(and Yi its ith affix-position.

When all affix positions of an affix expression S(are members of L, then
sr is termed a concrete affix expression.

In particular, the initial symbol E is a concrete affix expression.
A predicate is either a concrete affix expression, and is then termed

productive, or is a terminal symbol, or is the forbidden symbol w, or is
empty.

The direct production of a concrete affix expression sr whose head is a
primitive predicate symbol ']J is the value of the function associated with ']J
evaluated with as its ith parameter the ith affix position of S(. A direct
production of a concrete affix expression sr whose head is a nonterminal
symbol, is a list of predicates cy such that there is a rule Cf(= CU : C)J. and
there are terminal production iii l, iii 2, ... ,iiin of the nonterminal affixes
ab a2' ... , an occurring in cf(such that

subst(ml,al, subst(m2,a2, ... subst(mn,an,CU) ...)) = S(, and

subst(ml, ab subst(m2, a2, ... subst(mn , an,C)J) . ..)) = cy.

r
AFFIX -GRAMMARS 97

If a predicate other than a terminal symbol or empty has no direct pro
duction, then it is termed a blind alley.

A produ6tion of a concrete affix expression :x is either a direct produc
tion of :x or a list of predicates obtained by replacing in a production of :x
some productive predicate cy by a direct production of cy.

A terminal production of a concrete affix expression :x is a production
of:X all of whose predicates are either a terminal symbol or empty.

A sentence of an AG tiJ is any terminal production of the initial symbol of
9. The language of tiJ is the set of sentences of tiJ.

4. PROPERTIES

. Let us call a Finite State grammar all of whose rules are of the form
A -> a, where A is nonterminal and a is terminal, a Finite Choice grammar
Fe.

We thus have a hierarchy of grammars

Fe C FS C CF C CS.

If in some AG grammar tiJ, for every aEAn , Ga is a grammar of type CJ, we
will indicate tiJ as a (6F) grammar.

Proposition 4. 1. For every (~~) grammar tiJ there exists a (weakly) equiv
alent CF grammar.

The nonterminal axis x can be removed from tiJ by expanding every rule
in which it occurs into as many rules as x has terminal productions (which
is a finite number).

Proposition 4. 2. For every Turing Machine CJ = (Q, S, qo, R) there exists a
(g~) grammar tiJ which generates the language recognized by CJ.

This can be demonstrated by Simulating CJ as follows:

Its tape
blank 1 s--n 1 ...

can be contained in two strings

and
L 1 s --n 1 ... 1 s_1 I sol

R = 1 sl 1 s2 I· .. 1 sm 1

The control of tiJ contains:

(attach, 3, (L,L,O), (C,s,C),Fattach>'

(detach,3, (L,O, 0), (C,s, C),Fdetach) and

(equal, 2, (L,L), (s, s), ~qual> where

1 sm 1 blank

98 C. H. A. KOSTER

sand Care nonterminal affixes with as terminal productions the symbols
S and the strings over S respectively, and where

Fattach = >--XEL AYEL AZEL [xy = Z ~ E, xY *- Z ~ w] esc

Fdetach = AXELc AYELs AZELC [x = zY ~ E, X *- zY ~ w]

Fequal = AX, YELs [x = Y ~ E, x*- Y ~ w].
The rules of ~ are transliterations of the rules of ':T along the following
pattern:

':T -rule ~ -rule

effect:

effect:

effect:

qi + L + R:
detach + L + s + L', equal + s + Si,
attach + L' +Sf+ L", qf+ L" + R.

qi + L + R:
detach + L + s + L', equal + s + Si '
attach +R+Sf+R', qf+L'+R'.

qi + L + R:
detach + L + s + L', equal + s + Si,
attach + L' + Sf + L", detach + R + x + R I ,

attach + L" + x + L ''', qf + L'" +R'.

In this way ~ can be constructed.
It is clear that the power of an AG depends to a great extent on the func

tions occurring in its control. Therefore it is interesting that the simple
functions detaching one symbol from a string, attaching a symbol to a
string and comparing two symbols suffice for realizing a Turing Machine.

5. ADDITIONAL TERMINOLOGY

Any nonterminal affix which occurs in the left hand side of some rule
is termed a bound affix of C'fl.

Any nonterminal affix which occurs in the right hand side of some rule
and which is not a bound affix ofC'fl is termed a free affix ofC'fl.
An affix expression :x occurring in the right hand side of some rule is

termed an application of the rule C'fl if the head of :x is the same as the head
of the left hand side of C'fl.

AFFIX-GRAMMARS 99

The ith bound affix of a rule l'f2 = CU :CV. is termed inherited (derived) if
the type of the ith affix position of the control of the head of CU is equal to
t(Ii).

An occurrence of a non terminal affix in an affix expression :x in the
right hand side of some rule is termed inherited (derived) if the corre
sponding bound affix of any rule of which :x is an application is also inher
ited (derived).

6. UNDERLYING CF GRAMMAR

The underlying CF grammar of an AG ~ is the grammar Gu =
(S', T', E' , P'), obtained as follows:

S' = Vn>
T' = Vt>
E' = E,
P' = the set of all different rules, obtainable by taking a rule 'R of P, re

placing every affix expression in'R whose head is a nonterminal sym
bol by that symbol, and deleting all other affix expressions from c'f(

Clearly, £(Gu) :J £(~).

By making slight changes in a given AG, it is possible to get an equiva
lent AG with a different Gu and £(G;). Thus, the present notion of underly
ing CF grammar is of no great formal interest, but a convenient way of
getting an impression of the language of some AG. In particular, it is of
interest that the Gu of an AG be unambiguous, even though that hardly gives
an indication of possible ambiguities in AG.

7. WELL-FORMEDNESS

An affix grammar AG will be termed well-formed if the following condi
tions ct -c5 hold:

q) 'V(N,T,CJ.,F) E S 'Vi,jE[1,Nj [i *j -'CJ.i * CJ.j].

This condition ensures that no nonterminal affix occurs twice in the left
hand side of any rule.

c2)'V:X=XO+X1 +x2+'" +xnELHS 'VCY=YO+Y1 +Y2+'" +Yk ERHS

[xO = Yo -'(n = k 1\ (xO' k, T, CJ., F) E S 1\

i E [1, k] -. (T i = Ii -. Yi E An 1\ LXi ~ LYi,

Ti= t-.... YiEAn 1\ LXi 2LYi

v Yi E LXi))] .

This condition cuts off 'invisible' blind alleys.

100

c3) "I(q,N,T,a,F)€ S [q € Q->

k

C.H.A.KOSTER

Define C(k) = ~ (TJ.=O->l, TJ.=L->O).
J=l

Let n = C(N).
Let l = N - n.
Separate a in two lists D = (dl,d2,'" ,dn) and 1= (il,i2"" ,il) such
that ak = (Tk = 0-> dC(k) , Tk = L --> ik-C(k)), k = l(l)N.
Then there is given a total recurSlve iunction

if' : Li x Li x ... x Lil --> Ld x Ld X ... x Ld U {w}
1 2 1 2 n

such that "Ij€[1 N]"Ix:€L .. "Iy.€Ld·
, J zJ J j

! Let zk = (Tk=o->xC(k), Tk=L->Yk-C(k));

1 F(Xl'X2' .•. ,xl) = (Yt.Y2' •.. ,Yn) <--->F(zl,z2' ..• ,zN) = €].

This condition makes the separation between derived and inherited af
fixes meaningful. The F's are functions from the inherited to the de
rived affixes of the head.

c4) i) If the bound affix :x of C'f? is inherited, then all occurrences of :x in
the right hand side of C'f? are inherited.

ii) If the bound affix :x of C'f? is derived, then the first occurrence of :x
in the right hand side -of C'f? is derived, and all others are inherited.

iii) The first occurrence of a free affix in a rule is derived, all others
are inherited.

This condition makes that the inherited affixes can be seen as 'input
parameters' and the derived affixes as 'output parameters' to the rules.

c5) The underlying CF grammar of the AG is not left-recursive and its lan
guage does not contain €.

This condition prevents endless cycling in parSing.

For well-formed AG's the following terminology is useful:
A primitive predicate is an affix expression whose head is a primitive
predicate symbol.
A nonterminal precidate is an affix expression whose head is a. nonterminal
symbol.
A terminal predicate is a terminal symobl.
The symbol w we will term the false predicate.
We will term € the true predicate.
With these extra definitions, one might define a predicate as either a prim
itive predicate, or a nonterminal predicate, or a terminal predicate, or
the false predicate, or the true predicate.

Proposition 7. 1. It is undecideable whether or not a given AG is well
formed.

Proposition 7. 1 follows from the undecideability of condition c2' In

AFFIX -GRAMMARS 101

practice, 7. 1 is no restriction, since in constructing an AG one will stick
to grammars for which c2 can easily be decided.

In a given AG, the condition c4 may often be brought about by suitable
rewriting of the rules.

The grammar in 4. 2 is not well-formed since c 5 is not satisfied.

8. PARSING PROBLEM FOR AG

A parsing step c5 = eX, cy) consists of two lists of predicates sr and cy
such that cy is the result of substituting for the leftmost productive predi
cate ;Z of sr a direct production of ;Z .

A parse']> according to an AG rg for a sequence 7 of terminal symbols
is a sequence of Fsts of predicates']> = Pb P2' ... ,Pn such that P1 = E, for
i = 1(1) n - 1 the couple (Pi,Pi+1) is a parsing step, and Pn = -7, disregard
ing comma's and empty's.

Recognition problem
Given a sequence sr of terminal symbols and an AG rg, is sr a sentence

of rg?

Parsing problem
Given a sentence sr of an AG rg, determine a parse according to rg for sr.

Proposition 8.1. Every well-formed AG rg can be brought into a (Greibach
like) Normal Form such that the right hand side of every rule starts with a
terminal symbol.

Assume an ordering of the rules. Take the first rule'R of rg which is
not in the required form. If there is no such rule, the grammar has been
brought into the required- form. Look at the leftmost member em of its right
hand side which is a terminal or is an affix expression whose head is a
nonterminal symbol.

To the left of em only affix expressions occur whose head is a primitive
predicate symbol.

Case 1 em is a terminal symbol. Now em can be shifted to the left in'R with
out affecting E(rg), until the right hand side of'R starts with the
terminal symbol em.

Case 2 The head of em is a nonterminal symbol. Replace'R by a number of
rules, substituting for em its alternatives only by one. Start all
over.

Case 3 There is no such em in'R. Replace every occurrence in the rules of
the left hand side of'R by the right hand side of 'R, delete'R and
start all over.

Proceeding in this way, the rules can be brought into the normal form one
by one. Case 2 cannot lead to cycling of the algorithm since otherwise the
underlying CF grammar of rg would be left recurSive, contrary to c5.

102 c. H. A.KOSTER

Proposition 8.2. Every parse according to a well-formed AG in Normal
Form (jj of a sequence :r contains at most 1 + (N -1) x M parsing steps
where N is the maximum number of members of any right hand side of a
rule (jj and where M is the number of symbols in :r .

Proposition 8.3. For a well-formed AG, the recognition and parsing prob
lem are both solvable.

Because of c1 -c4 the rules of the AG describe a top-down parsing algo
rithm in terms of (mutually) recursive functions corresponding to the pred
icates. Proposition 8.2 ensures that this algorithm always terminates.

9. PARSING

In [2] it was shown how, from an affix grammar (jj, a parser in, e.g.,
ALGOL 60 or ALGOL 68 could be obtained by a mechanical transcription
process. This parser then consists of a parser-body obtained by tran
scribing the rules of (jj, embedded in an environment containing in effect
its control. The parser will terminate provided (jj is well-formed.

10. PARSER-BODY

The parser-body consists of one procedure-declaration for every rule of
(jj. As a transcription of a rule

identity declaration: declarer + mode, identifier + tag,
define identifier + tag + mode; contracted id decl.

the parser-body might contain

proc bool identity declaration = bool:

begin int mode, tag;

end

if declarer (mode)

then if identifier (tag)
-- then define identifier (tag, mode) ~se false fi
else contracted id decl fi

The head of the rule is transcribed as the procedure-identifier, bound af
fixes passed as parameters, free affixes declared locally and also passed
as parameters.

This transcription is merely the extension of a well known top-to-bottom
parsing method for CF grammars by the addition of parameters and locals.
The usual techniques for removing circularity, backtracking and local am
biguity can be applied also to AG's [3].

AFFIX-GRAMMARS 103

11. ENVIRONMENT

An environment could contain the following:

a) declaration for some stacks with pointers to their beginning and top, e.g.

[1: 10000] int stack1; int start1 =1; int top 1 : = 1 ;

b) declaration for a reading procedure read (x) which assigns to x the key
of the next symbol on the input tape.

c) two complementary procedures to access elements of a list, declared as

proc get = ([] int L, int p, ref int x) : x : = L[p] ;

proc put = (ref [] int L, int p, int x) : L[p] : = x;

d) procedures for simple arithmetic with pointers

proc incr = (!!Jl int P) : P +: = 1 ;

proc decr = (ref int P) : P +: = 1 ;

e) a procedure for assignment of pointers

proc make = (ref int x, int y) : x : = y;

f) procedures for comparing pointers

proc equal = (int x, y) bool : x = y;

proc less = (int x, y) bool : x < y;

g) a procedure out (x) for outputting the symbol corresponding to the key x.

12. APPLICATION TO ALGOL 68

Making use of only those primitives, a compiler-compiler has been
written, defined by an affix grammar, that constructs from an AG its
parser. This compiler-compiler is being used to construct an ALGOL 68
translator. For most of the syntax of ALGOL 68, rewriting it as an AG is
straightforward, but as with every syntax-directed technique the real prob
lems are caused by local ambiguities and unnecessary backtracking.

13. DEFINITION OF PROGRAMMING LANGUAGES

From the point of view of definition of programming languages, affix
grammars present a special interest in that they may describe both syntax
and semantics. In fact, the semantics is represented by the functions oc
curring in the control of the grammar. More involved tools are defined
syntactically in terms of those primitive functions. Affix grammars are
well-suited for describing the context-conditions of ALGOL 68, e.g., the
identification condition, in a syntactic way. One is left with the bare bones
of semantics.

104 C. H. A. KOSTER

REFERENCES

[1] MR 101.
[2] Koster, C. H. A.: Syntax-<iirected parsing of ALGOL 68 programs, Proceedings

of Informal Conference on ALGOL 68. Implementation, V.B.C., Vancouver B.C.,
August 1969.

[3] Foster, J.M.: A syntax improving program, Computer Journal, Vol. 11, 1968,
p. 31.

APPENDIX: IDENTIFICATION OF IDENTIFIERS

As an application of affix grammars, consider the problem of determin
ing the mode of an identifier in an ALGOL 68-like language.

Every occurrence of an identifier in a formal-parameter is termed de
fining, all other occurrences are termed applied. The mode of an applied
occurrence of an identifier is the mode of the defining occurrence identi
fied by it according to the process described in [1] 4.1.2.b.

We will treat this identification process in a syntactic way. Let the en
vironment (see section 11) also contain the arrays B, T and Wand the
pointers pb, db, pt and pw.

During the first scan all information about the nesting of blocks has to
be put into the array B, where the ith element of B contains the number of
the block directly surrounding the ith block. Blocks will be numbered
through, like, e.g.:

o begin 1

1 begin 2

2 end 1

1 begin 3

3 begin 4

4 end 3

3 end 1

1 end 0

In the process, use is made of the pOinters pb (present blocknumber) and
db (dynamic blocknumber, the last blocknumber handed out).

This information is collected by:

E 1) blockbegin: incr + db, put + B + db + pb, make + pb + db.

E 2) blockend: get + B + pb + pb.

T will contain one entry for each identifier. In the stack W with pointer pw ,
for every defining occurrence of an identifier an element is added to a
chain, containing present blocknumber and associated mode. For example,
if a is defined in block 1 as integer and in block 3 as real, we want the
structure:

AFFIX-GRAMMARS

T

y:

a:

(3:

Fig. 1.

w

o
1

INTEGRAL

y

3
REAL

In syntax:

E 3) declaration:
declarer + mode, identifier + tag, define + tag + mode.

E 4) define + tag + mode:
get + T + tag + ch, put + T + tag + pw, stack + ch, stack + pb,
stack + mode.

E 5) stack + x:
put + W + pw + x, incr + pw.

Note that in E 3, tag and mode are free affixes, in E 4 tag and mode are
bound affixes but ch is free.

Now we come to the identification process proper, which mirrors
R 4.1.2.b:

E 6) identify + tag + mode:
make + home + pb, get + T + tag + ch,
find + ch + home + mode.

E 7) find + ch + home + mode:
equal + ch + zero, make + mode + ERRONEOUS;
make + p + ch, incr + p, get + W + P + bldef,
rest find + ch + home + bldef + mode.

E 8) rest find + ch + home + bldef + mode:
equal + bldef + home, incr + ch, incr + ch,

get + W + ch + mode;
less + bldef + home, get + B + home + home,

rest find + ch + home + bldef + mode;
get + W + ch + ch, find + ch + home + mode.

105

106 C. H. A. KOSTER

In E 7, if an identifier turns out to have no defining occurrence it gets as
mode ERRONEOUS. In E 8 the three alternatives are:
1) The home contains the definition and a mode is obtained.
2) Block of definition outside the home; the home is enlarged.
3) Home outside block of definition; another definition is taken from the

chain.
This example demonstrates that a complicated matter like identification
can wholly be 'programmed' at the level of syntax.

DISCUSSION

Lindsey:
The example you have would presumably work only for a language

where definitions preceded applications?

KosIer:
No, actually the treatment of declarations is in a second scan. Really I

have shown three scans; one is the treatment of parenthesis structure, or
at least part of the treatment of parentheSiS structure. The second is the
entering of the information contained in declarations, and the third is the
acting upon that information.

Lindsey:
If you just took the grammar as you have written it, then it would work

with that restriction, or a grammar of that nature would?

Kosier:
Then. with that restriction, it would work, yes.

Lindsey:
Now the next thing that is bothering me is this business of the inherited

and derived occurrences. It seems to me that it is perfectly possible to
have a derived occurrence on your bound side and then the first thing on the
right might be inherited and the next one derived. It seems to me that so
long as there is one instance of a derived thing somewhere on the right
side, you can make a sensible deduction.

Koster:
I agree that you might relax the condition, C4, a lot. For one thing you

might allow more than one derived occurrence for some non-terminal af
fix. That means that for one part of the rule you use one meaning and for
the rest of the rule you use the other. Things like that. But from a de
scriptional point of view that is not very neat. From a practical point of
view, of course you would do it and I have done it in the syntax given in the
appendix.

Lindsey:
The sort of thing I had in mind was: suppose that the affix concerned was

MODE and you had a whole string of things on the right hand side separated

A FFIX -GRAMMARS 107

by commas's, then at the first one it met as it went down the production
rule concerned, it might conclude that the object that was in the source
string was of some subset of mode, like NONPROC. So it would come back
and say "Yes, we recognize this affix expression. We do not know what the
value of the affix is (we have not derived it entirely) but we know that it is
at least NONPROC." It now goes along to the thing after the next comma
and looks at the source object and it may conclude that is is NONSTOWED
or something. So we now know that the thing is the intersection of these
two and eventually we shall either find that it is something which is an in
tersection of those, in which case we have parsed it. or we will find that it
is not, in which case we have a failure. It seems to me that you need not
even insist. in the bound affix, that you know whether it is derived or in
herited.

Kasler:
Yes, I agree with you that you can certainly relax this condition,

especially by having mixed cases where you cannot say that your bound af
fix is either inherited or derived. The fact is that you must be sure that an
affix never gets no value and it helps perhaps that in an article of Knuth on
semantics of CF languages he has derived conditions under which those
mixed cases are non-paradoxical.

Griffiths:
Is it not true that you can do all those things that you were trying to sug

gest without relaxing the condition c4, just by defining new class names
and going down a level in the grammar?

Koster:
It is, I think.

Lindsey:
Yes, you can always make bigger and bigger grammars to do the same

thing.

Kasler:
There is to this a theoretical and a practical aspect. From a theoretical

point of view, you'd better stick to that rule. It is cleaner; then you have a
description that you can trust. On the other hand, from a practical point of
view, why spend storage for nothing? Lindsey is trying to save storage.

Lindsey:
I have in fact got a parsing routine, but I have not gotten any technique

for proving that any given grammar will terminate in this parsing routine.

Yershov:
I have several questions. The first question is about the underlying con

text-free grammar. Is the procedure for obtaining this underlying gram
mar really automatic? My question is especially about the reducing of
superfluous rules after elimination of unnecessary information.

Koster:
The definition of the underlying context-free grammar, as I gave it, is

108 C.B.A.KOSTER

very rough. If somebody would start thinking about this problem, then he
could derive much more. For instance, an interesting question is the re
lationship between the ambiguity of the original grammar and that of the
underlying context-free grammar. Well, I must simply say that the defini
tion I have given is very bad, but it tells you something already.

Yerslwv:
Could you say something about the difficult points in reducing the AL

GOL 68 grammar to an affix grammar?

Koster:
Of course, there are the practical difficulties of backtracking, which

I will not now mention. But the difficult point is where, in the ALGOL 68
grammar, the full pawer of the van Wijngaarden two -level system is
used. An example of that is in the beginning of Chapter 8 of [1] where you,
let us say, reparse hyper-notions a number of times. The automaton which
treats the united declarations is really a context-sensitive automaton, a
full-blown context-sensitive automaton. And you'd better not write it that
way for the affix grammar. You even cannot

Yershov:
What about the formalization of other context conditions? For example,

the prohibition to have two declarations for one identifier?

Koster:
This is easy, because you can check it easily. As in the appendix you

are filling in that list W, you have now simply to move chain elements in
there, but of course you can check whether a specific block number had al
ready occurred.

Yershov;
Could you program your affix grammar to control the number of scans

and agree to nesting the loops during the work of the parser? In other
words, could you predict how long your parser will work during parSing?

Koster;
Well, the affix grammars more or less dictate a top to bottom algorithm

for parSing, and many techniques developed for that can be used.

Yershov:
The question is really a programming question. Would you control how

your parser will actually work during parSing and reflect your control in
selecting specific grammar rules?

Kasler:
I can tell for instance this. You can write every Single rule in such a

way that it starts with a non-terminal symbol. And if you do that, then you
know that if you have n symbols in your text, you can have at most n re
writings, but you have a very long syntax here.

Griffilhs:
Surely you can apply any of the techniques which are known for context

free grammars to your affix grammars?

l"

AFFIX-GRAMMARS 109

Koster:
I think this is an extension of context-free grammars which is useful in

the sense that, well, context-free grammars are manageable. Everybody
knows how to interpret them and how to work with them, and most of their
properties go along with this extension.

Scheidig:
How many rules do you get for ALGOL 68?

Koster:
When I first tried, I had 250, and I could fit the thing into my machine.

Scheidig:
Do you have some mechanical way to translate such a grammar into

some sort of code?

Koster:
Yes.

Branquart:
As far as I can see, there are similarities between your way of writing

a compiler with the help of affix grammars and the formalism introduced
by Irons in this article on ALGOL 60 compilation. Are you aware of it? In
that case, what are the essential differences between affix grammars and
his formalism?

Koster:
There is of course the matter of notation in that you write something

which still looks like a grammar and where your primitive functions do not
fit in in a strange place but are really there. Then there is the fact that
you have both bound and free affixes, that is, you have both parameters
and local variables. I think that the last one is more than Irons used. The
third thing would be that in this way you have a tendency for using as few
semantic primitives as possible. In this article I give a list of some which
suffice well for constructing Turing machines etc., for instance, con
structing ALGOL 68 parsers. There may also be a point for all this in de
fining programming languages.

Mailloux:
It was not quite clear to me whether the arrays T, Wand B are inherent

in your system or whether these are defined in it.

Koster:
I have to elaborate slightly on that because I cheated: all the rules that I

wrote down have to be provided with some extra affixes for the environment.
In our compiler-compiler this is more practical. There is a macro facility
which allows you to define your functions in ALGOL 60 and furthermore a
specification possibility by which you can ask for some number of stacks
with various identifiers. So it is a self-contained compiler-compiler.

'II

ON IDENTIFICATION OF OPERATORS IN ALGOL 68

H. WOsSNER
Technical Unil'ersity, Munich

INTRODUCTION

In presenting some results from [1] we will, in contrast with [2 j, re
strict ourselves to the more complicated cases of those operands which are
not directly coercends and even require firm balancing of modes.

As a consequence of the overloading concept in ALGOL 68 [3J, the iden
tification is, in general, an iterative process. Efficient algorithms for it
can therefore only be achieved by unburdening its successive stages from
all activities which can be done beforehand and once and for all. One such
separable activity turns out to be, in nearly all cases, the balancing.

We begin with the classification of the "composite" clauses to be consid
ered as operands or, more generally, in firm position:
(1) We denote as "noncollateral clauses" those conditional- and closed

clauses C with the following property:
There are at least two units which possibly, by elaboration of C, yield
the value of C; and no such unit, called a (direct) component of C, is a
collateral-clause t.

(2) Collateral-clauses (which we sometimes call "directly collateral").
(3) Conditional- and closed-clauses "containing" at least one component

which is a collateral-clause are finally called "indirectly collateral
clauses".

1. NONCOLLATERAL CLAUSES

Before starting to consider case (1) we introduce some abbreviations.
Let M be a set of modes, M1:; M, m E: M, and let m denote an arbitrary
mode. Then we define:

01) fc(m) := {mlm firmly coerced from m},

fC(M1):= U fc(m).
mE: M 1

t Note that the term "component" here is defined for external objects.

111

112 H. WOSSNER

D2) sc(m)

sc(M1)

:= {mlm strongly coerced from m},

.- n sc(m).
mEM1

D3) fb dM1) := fc(M1) n sc(M) ,

fb(M) := fb dM) ,

fbM(m) := fbM({m}). *
D4) fm(M) := {mlfb(M) = fbM(m)} ,

the set of the '1-modes" of M.

Now, let C be a noncollateral clause and M the set of different a priori
modes of its components. Then we can give our first statement in the fol
lowing form:

81) fm(M)"* cp, that is,

3mEM: fb(M) = fbM(m).

In other words, there is at least one component (with mode m) of C to
which, in all cases and without any restrictions on the coercing possibili
ties, the firm position of C can be passed, since all parameter modes
agreeing with the operand C are elements of

fb(M) = U fb M(m)
mEM

and, from 81, even of fbM(m). Obviously, fbM(m) is the set of all modes
which can be reached from C, if a component of mode m is chosen as firm,
while the other components are to be strong. We remark that 81 does not
imply fb(M)"* cpo

In view of an algorithm delivering such anj-mode of C,

fmo(M) E fm(M) ,

the following is important:

82) M = M1UM2, m1dm(M1) ~ fm(m1UM2) ~ fm(M) ,
or, constructively,
fmo(M) := fmO (fmO (M1)IJM2)·

To prove 82, let mdm(m1UM2). Then we have, by an easy computation,

fb(M) = fbM(m) , Le., mdm(M),

as stated. 82 reduces 81 to the following statement for two given modes m1
and m2:

81r) my E fm(m1 um2),

* Further we will identify a set {m } with its element m.

1

l l

IDENTIFICATION OF OPERATORS

Instead of giving now the detailed proof (which consists of a suitable dis
tinction of cases) we will consider some examples. First, we define

D5) u(a) : = {union (m o' ... ,mn)i mll Efc(a) for one ll, 0 <s II <s n},

u(a, ti) : = u(a) n u(a).

113

In connection with D5 we remark that always before uniting only firm co
ercions are possible.

El) fm(int U compl) = compl .

It is clear that

fc(int) n sc(compl) = fc(u(int, compl))

~ fc(compl),

but an exchange of int and compl is, of course, not allowed.

E2) fm(ref row real U row row real) = row row real.

Here we have to see that no row can disappear by (strong) coercion.

E3) fm(real U ref real) = real U ref real.

In this last example, we have

fc(real) C fc(ref real)

(but not vice-versa). Therefore, the choice of real as fmO(real U
ref real) minimizes, in general, the tentative coercions needed for
identifying an operator, if we presume that the firm coercion is tried
first.

2. COLLATERAL-CLAUSES

In the case (2) of collateral-clauses C we have to take notice of
i) the proper recursion introduced by those units of C which are directly

or indirectly collateral clauses and
ii) the restrictions on the coercions available for coercends on any level

which also contains a collateral component.
Here we have denoted, in an obvious manner, as a (direct) component on
level 1 of C, any unit of C which is a coercend or a collateral-clause and
any component of another composite unit of C. The (indirect) components
on level 2 are then the direct components of any direct component of C,
and so on.

Further, we term an '1-level" any level of (components of) C which un
der all circumstances contains a firm component. For instance, if the
units of C are all collateral, we have at least the f-Ievels 1 and 2. Now we
can easily see:

S3) The minimum level l which contains (as a component) a coercend is al
so the maximum f-Ievel.

,I:

114 H. WOSSNER

This is trivial if 1 is at the same time the maximum level L of C. Other
wise, suppose 1 <: L: if we now choose a collateral component K on levell
as firm. the value of K must be an array of a mode t

1) ~ m. with lower bound lwb 0= 1 and upper bound upb ~ 2.
Then. however. any coercend K on level l can only be firmly coerced. For.
a properly strong coercion of K would, in this case, end with rowing and so
lead to an array of a mode

2) row m with lwb 0= 1 and upb '" 1.
where upb 0= 0 occurs only for a vacuum K (which we consider as a coer
cend, too). Obviously, for such values of K and K, the further elaboration
of C is undefined (see [3J6.2.2.c. Step 6).

It turns out that the set of possible modes for C is, in the case I 0= L, of
the form

row(l) fb(MZ)
where row(l) is a sequence of 1 row's and MZ the set of a priori modes of
the coercends which are components on level 1. In the other case, 1 < L,
this set of reachable modes consists of one and only one element (for cor
rect C). This mode can, of course. be determined by only considering C
and does not depend at all on any parameter mode specified for the oper
ator which is applied to C.

As examples for C we give (representing the coercends by their a priori
modes):

E4) (int. real, (real. real))

with the unique mode row compi.

E5) (ref proc row m, (m, ref m))

with the mode row row m .

3. INDIRECTLY COLLATERAL CLAUSES

In our third case of indirectly collateral clauses C we have to distin
guish between clauses C, all direct components (on level 0) of which are
collateral, and others. For the first of these two classes it can generally
be shown that:

S4) there is a unique maximum f-Ievel l in C with a coercend as firm com
ponent both of which depend only on C.

For example, let

E6) C '=!1 b then C1 else C2 fi,
where Cl is one of the following collateral clauses:
a) (int, real)
b) (real, campI)
c) (real, row real)
and C2 is always

C2 '= (fu!!), real), (int, !!ill).
t The symbol row stands for the protonotion "row of".

i
i

IDENTIFICATION OF OPERATORS 115

Then we get as reachable modes for C and corresponding maximum f -level
l, respectively (using the Kleene operation "*"):

a) row (2) {proc}* real, I = 2

(on level 1 rowing is needed) ;

b) row compL I = 1 ;

c) row (2) real, I = 1.

In the example a), I = 1 would not deliver a mode for C. In the other exam
pies, I = 2 would not allow other modes than I = 1. It is generally true that
l is the minimum level of C which, although it contains a coercend as firm
component, yields a mode for C.

In the second class of indirectly collateral clauses the maximum f -level
l is, by our definition of f-levels, I = O. But here, for the first time, this
level does not necessarily contain a coercend on a firm position. The rea
son for this exception is that the restrictions mentioned above (see 2) do
not hold for the coercends on level 0 and only for these coercends. Especi
ally, rowing may be performed on these coercends on level O.

As example we consider the following particular program E7:

0) begin

1) struct §. = (int i, bool b) ; §. s = (0, true) ;

2) union Ji = (in!, baal, §);

3) oP? = (§. x) int : skip;

3a) ? jj b !!1 s then s else O.false) li;
3b) begin

4) oP? = ([1 :flex] !!: x) int : skip;

5) ? jJ b f!i s then s else O. false) 1i
3c) end

6) end

Here, the applied occurrence of the monadic operator "?" in line 3a identi
fies the defining occurrence in line 3 where s, the then-clause, is firm.
The equally applied"?" in line 5 identifies, on the other hand, the defining
occurrence in line 4, where s is necessarily strong. The remainder re
sults from the earlier cases.

4. AN AMBIGUITY

Obviously, the modes §. and row Ji in E7 are not loosely related. By
eliminating the lines 3a, b, c we should, therefore, get a proper program.
But, as we have seen, the identification of "?" is ambiguous.

116 H. WOSSNER

This ambiguity could be avoided by the following definition of the rela
tion "loosely related".

Let us define (for mode m)

D6) fcn(m) : 0= row(n) fc(m), n ? 0 ,

then we say

D7) mi, i 0= 1,2, are loosely related whenever there exists a mode m and
an integer n ? 0 so that one of the following conditions holds:

(i) mi E fCn(m) i 0= 1,2 ;

(ii) m1 E fc(m) 1\ m2 E fCn(u(m)).

5. CONCLUSION

n ? 1. ~

In conclusion we remark that the first printing of [3] contained only the
condition (i) of D7. For the reason that collateral-clauses are not coer
cends. this condition is, of course, sufficient (for a unique identification of
operators) in all cases except the last one considered. This follows from
the uniqueness of the a priori mode (m) and the level (n) of the firm coer
cend which we have shown for these cases. Only in the last "critical" class
deviating from this. the balancing process cannot be completely separated
from the identification of operators.

POSTSCRIPT

In the discussion it was presented that N. Yoneda has found another am
biguity in the critical class. This ambiguity is caused by recursive modes
and is not solved by D7. Now, instead of further extension of D7, we pro
pose to reduce it to its earlier form (with only condition (i)) and to require,
for instance. that collateral components of critical clauses must be strong
(so that the firm balance would be restricted to the coercends on level 0).

REFERENCES

[IJ Wossner. H.: Operatoridentifizierung in ALGOL 68. Thesis, Technische Hoch
schule MUnchen. July 1970.

[2J Goos. G., Scheidig. H. and Wossner. H.: Mode representation and operator iden
tification in ALGOL 68. Proceedings of an Informal Conference on ALGOL 68
Implementation, University of British Columbia. August 1969.

[3J Van Wijngaarden, A., Mailloux, B. J., Peck, J. E. L. and Koster, C. H. A.: Report
on the algorithmic language ALGOL 68, Mathematisch Centrum, Amsterdam,
MR 101. 2nd print. October 1969.

~ n 0= 0 is contained in (i), for u(m) see D5.

IDENTIFICATION OF OPERATORS 117

DISCUSSION

Ershov:
What is the actual representation of modes?

Wossner:
We have a list of all modes occurring in a program. called the declara

tor-list, in which entries are made for all declarers. For manipulation of
these modes we use, in part, a binary representation, which is very sim
ply manipulated, at least in those cases which do not require uniting. We
have defined simple modes to be those which. if you delete the prefixes.
are not unions. For the representation of these modes we have given de
tails in a paper presented in Vancouver. For example. the property of a
mode to be firmly coerced from another is proved by simple binary opera
tions on their representations. This method allows not only a proof of this
property but also the determination of the coercing sequences to perform
on the coercends.

Ershov:
You use a set theoretical terminology to explain the algorithmic ap

proach. What is the actual technique for processing the sets of modes and
lists of modes which appear during the algorithm? Do you use linear
search or some special methods for addressing? And now a special ques
tion. What is the approach for generating modes? For example, if you
have to check whether or not two modes are related? You have usually sev
eral samples to compare.

Wossner:
Yes, from the general list of modes, we take out just these modes to

deal with and manipulate them in a special stack which is provided only for
this purpose.

Sinizojj:
I would like to ask Kakehi to explain whether the ambiguity discovered

in Japan is solved by Wossner's restriction.

Kakehi:
I suppose that the ambiguity which was found by Yoneda, is not excluded

by such a restriction. I will write it down.

mode Q

mode 52

mode .§.

Q a;.§. s j

[1:1]§;

[1:2,1:1]§.;

struct (ref!1: f, g) ;

+ if bool then s else (a, a) fi

firm strong ~ .§.

strong firm ~ 5;.

118 H.WOSSNER

Wl:issner:
You have no defined elaboration in the second case because the bounds

are not right. See Report 8.2.6.2 and 6.2.2.c. if I remember right.

Kakehi:
Yes, the elaboration is undefined because of incorrect bounds.

Goos:
I do not see that this question of bounds changes the problem. because

anyway, at compile-time you have to make a decision and you do not know
the bounds.

Wl:issner:
Yes, you are right, but you can generally. at compile-time, anticipate

consequences from the elaboration conditions given in the Report. You can
for example see that in some cases rowing is not possible. You are cer
tain, that. on the one hand. by rowing of a coercend. you can only obtain
an array of mode row m with the bounds zero or one. On the other hand. if
you make the "generalized rowing" of a collateral-clause. you must obtain
a mode row IJJ.. with an upperbound ~ 2. Then. by the semantic conditions
for the elaboration of collateral-clauses, you cannot build an array which
contains as components two multiple values with different bounds.

Goos:
This means that you are able to solve the situation by USing information

which comes along at that time.

Wl:issner:
I am not sure for the given exarp.ple.

Sintzojj:
But, you may use flexible arrays and a syntactic ambiguity still re

mains.

Bowlden:
The point is that this is an ambiguity and the question of bounds has

nothing to do with it.

Sintzojj:
Exactly.

AN ATTEMPTED DEFINITION

OF AN EXTENSIBLE SYSTEM

L. TRILLING * and J. P. VERJUS *
Departement d: informatique. Universite de Montreal

1. INTRODUCTION

Our goal is to propose a "basic system" that admits to be extended as
our needs grow.

Two kinds of computer users can be distinguished: those who care
about the system and those who program applications. The first have to
know the system deeply especially if they want to modify it accordingly to
the wishes of the other group. The others have to know a programming lan
guage and at least some elements of the system.

Our goal is to ease the task of all these people by empowering them to
use only one language: that is , to reduce as far as possible "systems or
ders".

ALGOL 68 has been selected mainly because:
- it includes all the facilities of modern programming languages,
- it is rigorously defined and it provides good means of communica-

tion between programmers,
- through mode declaration and operator declaration, it can be consid-

ered as extensible.
This will enable one to:
- construct oriented-systems for different needs,
- implement oriented-languages towards special applications.
An interesting feature will be that any user will have at his disposal

an ALGOL 68 description (as complete as possible) of the environment in
which his programs are executed.

A processor, called "Machine U", which can be addressed from a ter
minal (teletype or alphanumerical display) is presented under the form of
an ALGOL 68 procedure.

Following this, user's library facilities are considered. A privileged
user, called the "master", can access any book and controls users' re
quests (entries, exclusions ...).

Finally, some examples of context building, text edition and book mani
pulation are given.

* Present address: Departement Mathematiques et Informatique, Universite de
Rennes. France.

119

120 L. TRILLING and J. P. VERJUS

2. THE KERNEL

2.1. Notion of context
2.1.1. Compiling in a context. Progressive compilation

Let us consider an ALGOL 68 compiler which accepts a source string 82
and an initialisation as parameters. This given initialisation results from
the compilation of a source string 81 and is called "compilation state" re
sulting from the compilation of the source string 81.

To compile 82 in a context 81 means to compile 82 with an initialisation
given by the compilation state of 81 and to obtain another compilation state.

Example:

- let 81 be the string (int x ;

From its compilation, we obtain a compilation state.

- let 82 be the string x := x + 1

To compile 82 in 81 means to compile the string

(!!!! x ; x := x + 1

and to obtain the resulting compilation state.
Only "satisfying" contexts will be considered here. A given context 81

is said to be satisfying if the string 81) is an ALGOL 68 program.
Example: (int x := 0 is a satisfying context but

(int x := 1 + (int y. is not.

2.1. 2. Execution in a satisfying context. Progressive execution
Execution in a satisfying context 81 results in an "execution state" cor

responding to the "objects" and their "relations" [1] prior to the elabora
tion of the statement

e : skip

in the program:

81 ; e : skip)

To execute a string 82 in a context 81 assumes that 81 has been executed
and means that the execution of

(1)

will follow on from 82 with the execution state corresponding to 81. This
resulting execution state is the one corresponding to the objects and their
relations prior to the elaboration of

e : skip

The string ,;82 is compiled in the context 81 and, of course, (1) has to be an
ALGOL 68 program.

Example:

Let 81 be the string
(int x := 0

r
ATTEMPTED DEFINITION OF AN EXTENSIBLE SYSTEM 121

Assume that this satisfying context has been executed. To execute the fol
lowing string s2

print (x := x + 2)

in the context sl produces as an output the value 2. To execute the following
string s3

print (x := x + 1)

in the same context after the preceding execution produces as an output the
value 3.

2.1.3.
In the following, every context will have the same beginning, called the

"basic context". It is formed in the following way

(s (skip

where S is a declaration prelude sequence.
From now on:

(s(skip;Sl will be said to be a context and, by extension sl will be too if

(s(skip;Sl))

is an ALGOL 68 program and

sl will be said to be a program if

(s(skip;Sl)

is an ALGOL 68 program *.

2.2. The basic context and the Machine U
The problem can be specified in the foliowing terms:
- On a computer, we have at our disposal a compiler translating pro

grams written in a given source language (ALGOL 68) into a given object
language. Compiling is done in a context (cf. 2.1.1).

- A given string can be executed in a particular context (cf. 2.1.2).
- Communication with the computer is provided by terminals. Thus,

each user can write on a book corresponding to his terminal.
We want a simple processor to which the user could address himself to

order the following tasks:
- to compile a string in a choosen context,
- to execute a string in a choosen context,
- to "edit", that is to modify what has been written on the terminal,
- to interrupt an execution,
- to initialize and to close the communication.

* The execution of the string 52 in a context 51 will be now understood with the help
of the ALGOL 68 program:

(5(skip;51;52;e:skip q
where q is ") n or "» n according as 51 ; 52 is a program or a context.

122 L. TRILLING and J. P. VERJUS

Our solution is to provide the user with a processor (Machine U). It is
described by an ALGOL 68 procedure working in a particular context called
the "basic context" . Some variables used by this processor are declared in
this context.

The basic context is the "minimal" context in which the user can compile
or execute a string. Thus, the variable declared in this context are acces
sible to the users (nevertheless some of these variables are "hidden").

An ALGOL 68 description (with many comments) of the basic context and
of the Machine U is given below.

2.2.1. The basic context
The basic context can be described as follows *:

(8truct etat ~) = (booZ rBUB8ite. programme.

string sOUl"ae.

int % adresse.

etat aompilation) ;

ao "soUl"ae" is a SOUl"ae string whiah when aonaatenated to the basia aontext

string aorresponds to the "aompi lation" state. "reUBsite" is true when

the SOUl"ae string is a aontext or a program (af. II.l.S) and "programme tl

is ~ if "SOUl"ae" is a program.

ao

a a vaZue of this mode gives the aompilation state of a sourae language string.

The aorresponding objeat string is included as one of its fie lds.

a •
-'

etat aomp base aomp ,.

~ result of the basia aontext aompilation

a .
-'

etat aomp % aOUl"ant aomp.

aOUl"ant 1 aomp :- base a077q:1 ;

proa p aOUl"ant aomp • 6tCit aomp I aourant aomp ;

££. "aoUl"ant aoiip" is the a077q:1iZation state of the aU!'r>ent aontext.

"OOUl"ant 1 aomp" is used to ahange the aUl"rent aontext. The user aannot

* Symbol % before an identifier means that the last one is not accessible .to the cur-
rent user.

ao

A TTEMPTED DEFINITION OF AN EXTENSIBLE SYSTEM 123

modify "aourant aomp". this to keep the aorrespondenae be1;ween the

aompiZation state of the aurrent aontext ("aourant aomp") and its

exeaution state ("aourant ex"). However, the user has aaaess to its

vaZue with the heZp of the proaedure "p aourant aomp".

priority aompiZer = 1 ;

£[aompiZer = (string sourae. ~tat aomp initiaZisation) ~tat aomp :

£ The operator's parameters are 1'espeativeZy a sourae Zanguage st1'ing and

a given initiaZ state of aompiZation. It aompiZes the srnng "sourae" in

the aontext "initiaUzation". It resuUs in a new aompiZation state. The

fieZd seZeated by "ad:resse" in the :resuU gives the starting point of the

objeat progroam aor1'esponding to the "sourae" st1'ing. In aase of errors,

a message is deUvered and aompiZation is Zeft.

int % ~part = ad:resse £i. (" " aompiZer base aomp) ;

struat % ~tat ex •

£ a vaZue of this mode gives the e:x:eaution state of a aontext.

Uat ex basex =

£ resuU of the e:x:eaution of the basia aontext.

prio1'ity ex~auter = 1 ;

~ % e~auter - (~tat aomp objet, ~tat ex o1'iginaZ) ~tat ex :

£ these operator's parameters are :respeativeZy a aompiZation state and

an initiaZ state of e:x:eaution. It e:x:eautes the objeat program starting

at "ad:resse of objet" in the e:x:eaution state "o1'iginaZ" and gives the

1'esuUing e:x:eaution state.

124 L. TRILLING and J. P. VERJUS

La = a £,

aa = a these ape the fixed dimensions of a book aontaining a aompiLation

state

a .
-'

p1'Oa Urea = (fUe i) Uat aomp :

a takes the vaLue of the aompiLation state read on the book specified

by "i".
a .
-'

proa earirea = (fUe i, Uat aorp x) ~tat ClOmp :

£ writes the aompUation state "x" on the book specified by "i"

and returns this stat~.

fUe te1'7TlinaL ;

string tampon, tampon 1 := " " ;

string % utiUsateur courant;

~ "utiUsateur aourant" is initiaUzed by "Maahine UtI ; its vaLue

being a string representing the user. See III for appLiaation.

ao

(skip

ao this parenthesis is noteworth (af. 1.3).

ao

2.2.2. The Machine U
This processor is activated as soon as the user asks for an access to

the system from his terminal.
Machine U proceeds as follows:
It creates a book corresponding to the terminal (100 pages, 40 lines and

72 characters). Then, it asks for an identification (Le. user's name) and
checks his rights to work (Le. user's password). This verification implies
a search in the "repertoire" (Le. repertory) (d. 3). Once the user has been
admitted to work, Machine U prints out the character -+ and conversing may
begin.

ATTEMPTED DEFINITION OF AN EXTENSIBLE SYSTEM 125

Each character sent by the user is taken care of by Machine U. In fact,
only six special characters are recognized and interpreted: those charac
ters are:

$,!, #, +,t-and+
Any other character is stored in the string "tampon".
The effects of these special characters are:

$ - ends the processing,
- causes compilation and execution in the current context of the string

obtained by enclosing the string contained in "tampon" within paren
thesis. The compilation state of the current context is not modified un
like its execution state. In other words, the source string contained in
tampon is executed witliout inserting it in the current context.

- is identical to ! except that the source string is not enclosed between pa
rentheses and is added to the current context whose compilation state
is modified consequently.

+ - is used to change the current context. The compilation state of the new
current context is given by "courant 1 comp" this one being executed. t -copies the string contained in "tampon" into "tamponl".

+ - interrupts the execution (this order is not described here).
The processor is now described:

P2'OC Maahine U •

(ahar> a ;

estabUsh (terminaL, "terminaL", lOa, 40, 72, 2);

££ aaU for user's identifiaation ao

tampon := " " ;

e1: put (terminaL, "qui ~tes-vous?");

whiLe (get (terminaL, a); a) + "!" do tcurrpon +:= a ;

whiLe (~ dBs utiZisateU1's : dBsal'ipteU1' aOU1'ant) :+: niL do

f:i. nom uti Zisateu1' 9.f. desal'ipteU1' aOU1'ant + tcurrpon

e1 ;

then desal'ipteU1' aOU1'a7lt := utitisateU1' suivant 9.f. dBsal'ipteU1'
aOU1'a7lt

6 2 : utiZisateU1' aOU1'a7lt := tcurrpon ;

~ aheaking the pasSlJJo1'd ££

6 3 : put (terminaL, "donnez votre mot de passe");

tampon := " " . ,

126 L. TRILLING and J. P. VERJUS

bJhiZe (getftermina1.. a) ; a} + "!" do tampon +:- a;

it tampon + mot de CJont1'o1.e of desCJripteur CJourant

then put (terminal.. " .. ")

e1.se e3

fi ;

tampon := " " ;

CJo oonve1'sationa1. part E:£.

e4: get (terminal.. a) ;

it a + "$" the7'/.

it a = "!" then

etat CJomp :x: = ";(" + tampon + "}" oompiZe1' oourant CJomp ;

if Nussite El :x: then

eZse

tampon :- " " ;

if prograJT01le El :x: then put (terminal.. "e:x:eaution imp088ibZe")

e1.se CJourante:x: :- :x: e:x:eaute1' CJourante:x:

it a - "#"then

etat oomp :x: - ";" + tampon CJompiZe1' CJourant CJomp ;

tampon := " " ;

i:1 reus8ite !!l. :x: then

boo? p = p1'ogl'a1l'l7le of:X: ;

CJourant CJomp : = if p then base aomp else :x: Ii ;
CJourante:x: : = (dtate:x: l' = :x: e:&lfaute1' aourante:x:

i:1 p then l' else base:x: Ii)

Ii
else

ATTEMPTED DEFINITION OF AN EXTENSIBLE SYSTEM 127

courant comp : = courant 1 comp ;

ad!'esse qf courant comp := d§part ;

courantex := courant comp eXfJauter basex eI-se

if a = '!¥' .then

tampon 1 := tampon ;

tampon := " " eI-se

tampon +:= a ; e 4

fifififi;

put (terminaI-, "->-") ; e4

fi;

scratch (terminaI-)

Thus, given a string sent from the terminal, it can be executed in a par
ticular context (this context, in our view, would be written by the system
programmer). This string can also be included in the current context, thus
extending it.

One can note that a string sent from a terminal is always considered as
preceded by ";". Also, that if the current context is the concatenation of
the basic context to a program (cf. 2.1.3), the current context becomes the
basic context: this property is used in the example below.

A context is changed by assigning to courant 1 comp the compilation
state of the new context and activating the order ".i.".

Finally, one is able to modify a string on a terminal by copying it in
tampon with the order "f-I!. Then, one is free to use operators dec lared in
his context to effect the desired modifications and to put back the modified
string into tampon.

2.3. Example

., the current context is the basic context cjl

.. int x := 0

., this decl.aration is added to the basic context .,

.. put (terminal, x T:= 1) :

1

cjl thi8 statement has been compUed in the aU!'!'ent context and

executed. The vaZue 1 is printed cjl

128 L. TRILLING and J. P. VERJUS

~ put (terminal, x +:= 2) !

3

<t this time. 3 is printed because the execution state of the current

context was such that the va~ue of x was 1 4'

<t now. we wiU buUd. use and store a context and we wiU show how

to caU it back ~

~ proc replace = (string a, b, c) string :

~

(string t ; int bsa =ra, bsb = rb

for i to bsa do - -
if a [i : i + bsb - 1] b ~

t := a[l : i - 1] + C + a[i + bsb bsa] fi

t)#

~ we introduce this procedure in the current context ~

proc fac = (int n) int : (m = 0 I 1 I m * fac(m - 1» t
<t there is an error <t

... tampon: = replace (tamponl, "m", "n")

,the correct text is assigned to "tampon" ~

~ put(terminal, fac(3)) !

6

~ we have the good answer <t

file fl ; establish(fl, "edition", pc, lc, cc, 2)

ecrirec(fl, P courant comp) ; close(fl)

<t the compUation state of the current context is stored in the book ~

skip)1f=

<t the current context is now the basic context ,

~ string s#

~ tampon := S := "proc fac = (int n) int (z = 0111 z 1t fac(z-l»

put (terminal, fac(3» "

ATTEMPTED DEFINITION OF AN EXTENSIBLE SYSTEM 129

ERREUR COMPILATION

~ an error has been detected at compi~e time +
... file fl ; open(fl, "~dition", 2) ;

courant 1 comp := lirec(fl) ;

tamponl : = 5 !

...
¢ current context is the one which had been stored previoU8~y in

the book "edition" ~

... tampon : = replace (tamponl, "z", "n" » #-

ctcorrection is made and the current context becomes the basic

context +
...

6

3. THE "MASTER" AND THE LIBRARY

The processor described previously enables one to create and use books.
However, nothing has been provided to use these books for another elabora
tion. Also, it has not been anticipated that one could use other users' books
or that one could restrict the utilisation of his own books.

A brief description of the repertory ("repertoire") is given below, that
is books. organization and means of access to them. Only one user, called
the "master", can access this repertory without any restriction. He can
thus manage users' admission, modify their password. .. etc., with the
help of ALGOL 68 programs written by him. Other users are limited by
the basic context (where given variables are hidden) and by eventual re
strictions on other users' books.

A presentation of the different authorizations one is able to get is given.
Finally, means of acces 5 to a book during an elaboration are introduced,
and that, accordingly to ALGOL 68.

3.1. The repertory
The repertory is a list of users, each user possessing his own list of

books.
Three characteristics are attributed to each user: a control word, a

"global authorization" (cf. 3.2) and a list of "partenaires" (partners).

130 L. TRILLING and J. P. VERJUS

To each user's book one finds characteristics of the ALGOL 68 bfile, a
boolean indicating if the book is used and an "autorisation particuliere"
(particular authorization) for this book.

The following declarations are then to be added to the basic context:

struat des utiZisateur = (string nom utiZisateur,

struat des "Livre

(string mot de aontrMe,

[1 : nrrib ahannels] ~ des Zivre aatal.ogue des Zivres,

autorisation gZobaZe, [1 : 0 ~] ~ string partenaires,

ref des utiZisateur util.isateur suivant) ;

(boo Z attaahe, autorisation partiauZiere,

~ des Zivre proahain Zivre);

struat autorisation = ([1 : .3] booZ proprietaire, partenaire, anonyme) ;

struat bfiZe = ([1 .3] booZ autorisation d aaaes,

[1 0 [Zex, 1 : 0 fZex, 1 : 0 [Zex] int book,

int l.page, ZZivre, l.ahar, page, Zivre, ahar, max page, max Zivre,

max ahaI',

string idf,

~ b[iZe next) ;

ref des utiZisateurs % repertoire := £ a particul.ar initiaZisation given by

the master £ ;

~ des utiZisateurs % desaripteur aourant ;

The ALGOL 68 structure bfile is slightly modified: a row of boolean has
been added, indicating if reading, writing or scratching are possible, de
pending on the will of the book's owner.

It has been shown in 2.2 how "descripteur courant" is initialized. Its
value gives access to informations related to the user.

ATTEMPTED DEFINITION OF AN EXTENSIBLE SYSTEM 131

Example of a program (normally written by the master) to introduce
"dupont" in the repertory:

repertoire := des utilisateur := ("dupont". "dup129zbxa".

skip,

«true. true. true).

(false. false, false).

(false, false, false»,

skip,

repertoire) !

This way a new user named dupont possessing a given password and a
global authorization (the one given here could be considered as standard,
cf. 3.2) is included in the repertory. At this point, dupont does not possess
any book nor partner.

An example displaying the repertory:

book

attache
particuliere

idf 2f livre

r

prochain livre

I •
epertoire

channell

1

111
,

011
,

000 I I

"bidon"

-
nil

"dupont"

"dup09870"

channel 2

111 : 011
,

000 ,

"dupong"

"durang" 1
,

011 : 001
,

000 I

! "dupol"

"dupong"

, I
111 i 000 , 000

prodmat'

nil

132 L. TRILLING and J. P. VERJUS

The user dupont possesses a book titled "bidon" on channell and two
others. "dup01" and "prodmat". on channel 2. The meaning of authoriza
tions will be seen in the next paragraph. The book "prodmat" is being used
in an elaboration.

3.2. The authorizations
When a book is requested, two pieces of information are considered:
- the relation between the applicant and the owner of the book. There are

three kinds of applicant:
the requested book's owner

· the oWQer's partners
· others are anonymous applicants.

- the nature of the restrictions imposed to the applicant by the owner.
Restrictions fall under one of the three followings:

reading allowed or not
· writing allowed or not
· scratching and modifying the idf allowed or not.

An authorization is represented by a triple of boolean rows, each having
three elements. The first element of the triple is related to the owner, the
second one to the partners and the third one to the anonymous.

The third element of a boolean row indicates the possibility to read a
book (value true), the second one the possibility to write on it and the first
oae the possibility to scratch it and to modify the idf. For example, the
value (false, false, false) prohibits any access to applicants and the value
(lalse, true, true) permits reading and writing in the book.

There is one authorization per user and one per book. The first men
tioned concerns all the owner's books and the other one is related only to a
considered book.

Thus. in the last example of 3.1:
- dupont has complete access to the book "bidon" but it is not possible

for him to scratch his book "dupol".
- durang, who is a partner of dupont, is at most allowed to read or write

in his partner's books. This is exactly the case with the book "bidon"
but "dupol" is accessible only through reading.

In order to protect his books, a user must be allowed to modify:
- his partners' list,
- his global or particular authorizations.
Thus, the basic context must include the following declarations:

~ autof'isation auto:risation gLobaLe = gLobaLe Ei iiesaripteur courant;

,~ [1 :O~] ref string 1TIeS partenaires = partenaires gt desaripteur courant

proa autorisation Uvre = (string nom "livre, int aana"lJ ~ autorisation :

(!:!!i. des "livre i := (aataLogue des Uvres Ei desaripteur aourantJ [aanaL ;

!!£. searahing the book, the vaZue nil, is returned if not found co

r

,ATTEMPTED DEFINITION OF AN EXTENSIBLE SYSTEM 133

lJJhiLe (!!i des Zivroe : i) :+: niL do

it. idf!2i Zivroe !2i i + nom ZivT'e then

i := proahain Zivroe !2i i el,se e Ii;

niL

;

The variables autorisation glob ale and mes partenaires can be used by
the user. That is not the case of descripteur courant (cf. 2.2).

Exalllple:

autorisation globale := «true, true, true), (false, false, true),
(false, false, false)) !

fallows at least:

- to the user, reading, writing and scratching his own books,
- to his partners, reading only,

No access is provided to the anonymous.
Using the procedure autorisalion livre, one can know the value of a par

ticular authorization and modify it at his will.
Example: (Mr. Dupont is at work)

ref autorisation x = autorisation livre("dupol", 2) :
if x :'1': nil then x := «true, true, true), (false, true, true),
- - -- -- -- -- -- --(false, false. false))!

Mr. Dupont has thus allowed himself complete access to his book "du
pol II and permits his partners to read and write in it.

3.3. Accessing the books
In ALGOL 68, to open a book during an elaboration of a program it must

be accessible through "chainbfile". The initialization of this row is left in
the ALGOL 68 report to the implementer.

A procedure is provided to enter a book in chainbfile. This procedure,
called metire en chainbfile (put chainbfile) is declared in the basic context.
It possesses three parameters characterizing the book which are respec
tively the owner's name, the book's name and the channel on which it re
sides. It takes out the book from the repertory if possible; two cases may
arise where the applicant is not allowed to put this book in his chainbfile,
they are:

- the book is already used (into current elaboration),
- the owner has not allowed him to use it; that is, the opening authoriza-

tion is not sufficient.

134 L. TRILLING and J. P. VERJUS

This opening authorization is computed the following way: the relation be
tween the owner and the applicant is considered, let us call it the status of
the applicant. Then, we intersect the parts of the global authorization of the
owner and of the particular authorization of the requested book correspond
ing to this status. The entry into chainbjile is refused if the resulting value
is (false, false, false).

Entering a book into an user's chainbfile implies that the boolean field
altache belonging to its bfile is adjusted to true.

In the standard prelude, the elements of chainbfile will be initialized to
nil.

The procedure lock will disconnect a book from its channel and will en
ter it in the repertory. The procedure scratch will disconnect a book from
its channel and will take it out from the repertory.

This is the procedure mettre en chainbfile:

proa mettre en ahainbfi~e =

(string utiUsateur, nUvre, int aana~) int

E£ this proaedure takes a negative or nu~~ va~ue whenever the

ao

book "nUvre" of the user "utiUsateur" is not aaaessib~e.

The va~ues it aan take and their meanings are Us ted be~ow :

-3

-2

-1

0

1 to 7:

owner does not e::cist,

the requested book does not e::cist,

the book is being used,

no aaaess is provided for this app~iaant,

aaaess is a~~owed and number aorresponds to the

authorization from reading on~y ((0, 0, 1)

va~ue 1) to aomp~ete aaaess ((1, 1, 1) : va~ue 7).

(~ des uti~isateur i := repertoire ;

~ des Uvre j ;

int genre := 0 ;

E£ searahing the book owner ao

l

ATTEMPTED DEFINITION OF AN EXTENSIBLE SYSTEM

if... utiUsateur • utiUsateur eourant then

i := deseripteur eourant ;

genre := 1 ;

e

Ii;
whiZe (!:ti. des utiUsateur : i) :+: niZ do

it utiZisateur + nom utiZisateur £i i then

i := utiUsateur suivant £i i eZse e

fi;
- :3 •

e eo searehing the requested book eo

j := (eataZogue des livre of i) [eanal] ;

whiZe (!:ti. des Uvre : j) :+: niZ do

it idf £i Uvre 5d. i + nUvre then

j := proehain Uvre £i j else f

fi;
- 2 •

f: eo avaiZabiUty of the book eo

(!:ti. bool IX: = attaehe £i j ;

g

it. IX: then IX: := false ; g fi) ;

- 1 •

eo searehing appUeant's status eo

it genre + 1 then

i2£. k to rpartenaires £i i do

it (partenaires £i i) [k] = utiUsateur eourant then

genre := 2 ; h fi ;
genre := :3

fi;

135

136 L. TRILLING and J. P. VERJUS

h eo eomputing the authorizations eo

(2E.. n = ([1 : 3) boo l ::e, y) [) boo l :

([1:3) bool z ; IE!:. k to 3 do z[k) := ::e[k)" y[k) z);

priority n = 9 ;

~ autorisation gi = globale £L i, pj = partieuliere £L j ;

[1: 3] bool ::e = ease genre in

proprietaire £L gi n prorietaire £L pj,

partenaire £L gi n partenaire £L pj,

anonyme £L gi n anonyme £L pj esae ;

int 1 := 0 ;

IE!:. k to 3 do 1 := 2*1 + (::e[k) 1110) ;

i1. 1 + 0 then

autorisation d aeees £L j := ::e ;

ne::et £L j := ehainbfile [eanal) ;

ehainbfile [eanal) := livre £L j

Ii; 1

3.4. Example (see figure on next page).

Mrs. Dupont and Dupong are working:
Mr. Dupont has written:

mettre en chainbfile ("dupont", "prodmat" , 2) !
then the book prodmat has been taken from the repertory to chainbfile.

Mr. Dupont has written:
mettre en chainbfile ("dupont", "bidon" , 1) ;
mettre en chainbfile ("dupong", "dupo2 " , 1) ;
mettre enchainbfile ("dupont", "dupo1" , 2)!

these books have been entered in this chainbfile. Being the owner, he can
only read "dupo2" and as a partner of Dupont, he can only read "dupo1" and
is allowed to read and write into "bidon".

ATTEMPTED DEFINITION OF AN EXTENSIBLE SYSTEM 137

I "dupont"

repertoire "dup 097870"
channell

channel 2
.L

111 : 011 : 000 0 0

"dupong" 011 : 001 i 000 111 : 011 ! 000

"durang" ,-----. 'dupol" ,-----0 'bidon"

I 001 011
~ r---

~
"dupong"

f--- I---
"dup 069364T" nil nil

channell
I nil

nil 1
1 111 i 000 : 000

111 i 000 : 000 I
'dupo1'

n
r!

f---
111

f---

- -
nil

I

000 i 000 i 000 nil ch nnel1

~ l'dupo2' '-- f- ch nnel2

001
"chainbfile" of "dupont"

,
~ I

I

nil

~. channell

channel 2

"chainbfile" of "dupong"

138 L. TRILLING and J. P. VERJUS

4. CONCLUSION

The given description of the system is not complete and a practical re
alization will help us to give a more detailed one. Thus, the order "~,,
which stops execution and returns control to the Machine U would require a
description using semaphores.

Our choice to compile may be argued. To keep source string and object
program is costly. However, ALGOL 68 is not readily interpretable but in
our point of view a conversational system is an outstanding tool to build
ALGOL 68 programs. LISP is readily interpretable but it is not as flexible
as ALGOL 68 concerning data structures and we can expect ALGOL 68 pro
grams to be more efficient and more readable than LISP programs.

We are now, working towards the realization of the system described,
with a subset of ALGOL 68, excluding procedures, multiple values and
unions.

ABSTRACT

This paper deals with a system which gives to a user (whatever his
speciality may be) powerful and adaptable means to work on a computer.

The main characteristics of the proposed system are the following:
1. The knowledge of one language. ALGOL 68, is sufficient to work at the

"system" level and to write ordinary programs.
2. The processor which the user addresses to is described in an easy way

by an ALGOL 68 procedure.
3. Concepts of modes and operators introduced in ALGOL 68 make this lan

guage extensible.
With the help of "contexts" in which programs are executed. one can use
this very important facility to define oriented-languages (Simulation.
numerical analysis ...) and particular systems (evolved towards editing,
debugging ...).

4. Several users have access to the system and possess their own books.
Adequate procedures are provided for exchanging and protecting these
books.

REFERENCES

[1] Van Wijngaarden, A. (Editor), Mailloux, B.J., Peck, J.E.L. and Koster, C.R.A.,
Report on the algorithmic language ALGOL 68.

[2] Assabgui, M. and Trilling, L., Entrees-sorties ALGOL 68, Departement d'infor
matique de l'Universite de Montreal, Publication No. 13.

[3J Wilkes, M. V., Time-sharing computer systems. Mac Donald and Co. Ltd.

ATTEMPTED DEFINITION OF AN EXTENSIBLE SYSTEM 139

DISCUSSION

Ershov:
I have not understood whether the contexts have a linear or a nested

structure. If itis linear, then there is no possibility of organizing the real
block structure of an ALGOL 68 program.

Trilling:
Well, the contexts must have a linear structure but the programs that

you execute under them may have a block structure.

Van Wijngaarden:
How do you repair an error which depends upon the context? For exam

ple, in your definition of jac you may have had an error in the third occur
rence of the colon. Perhaps it was an equals-symbol instead.

Trilling:
You have to write another procedure in your context. In fact, what we

want is that people should have several different contexts and several edit
ing procedures.

Van Wijngaarden:
Perhaps I do not understand it quite. The use of your replace must be

very rare because all your examples were such that the letter that you
changed into another one occurred only once, but usually it will occur at
many places. Could you use your int = which occurs only once. Could you
use that in replace (tampon 1, "int =", "int: ") .

Trilling:
In this case you could use a new procedure replace taking into account

the left or the right contexts of the string to be replaced.

Ii'

SESSION 4

(Chairman: A.van Wijngaarden)

A MULTILANGUAGE PROGRAMMING SYSTEM

ORIENTED TO LANGUAGES DESCRIPTION

AND UNIVERSAL OPTIMIZATION ALGORITHMS

A.P. ERSHOV
Computing Centre, Siberian Division, AS USSR, Novosibirsk 90, USSR

INTRODUCTION

This paper relates to such an initial stage of the development when the
investigator follows mainly his intuition and experience with less care
about motivation, comparisons and references. The paper just reflects a
current vision of that multilanguage programming system within the frame
work of which we are planning to implement ALGOL 68.

We want to build the multilanguage programming system for a specific
computer but we hope that the computer will influence the system not so
deeply and this influence will be concentrated in isolated parts of the trans
lator.

The translator will be multilanguage in a sense that it will translate
source programs written in one of several algorithmic languages. AL
GOL 68 is definitely one of them. PL/l and Simula 67 are highly probable
candidates. Orientation of the translator to one or another language is per
formed by incorporation of some tables into appropriate places of the
translator, those tables being written for each language by general rules.
In a successful case there will be not so many such tables and their con
tents will be filled without great effort directly from the language specifi
cations. An extreme failure is to have these tables in the form of a family
of independent translators, one for each considered language.

Having in mind the reservations made at the beginning of the paper we
shall not discuss here what the differences or similarities are between our
approach and syntax-directed translators, compiler compilers, etc.

The key point in the organization of the translator is a specially de
signed algorithmic language which will be called "Internal Language" (IL).
It could also be called "intermediate language", because it is an interme
diate stage between a source language and an object computer language or
"semantic language" because the semantics of the source languages will be
described in a form of the IL constructs which elaborate notions of the
source languages. It seems to us, however, that it is most important to
stress the internal character of the language in a sense that the program
ming processor rather than the human being deals with texts in this lan
guage.

IL is also the medium in which an optimization of a translated program
is carried out.

143

144 A. P. ERSHOV

The general scheme of the translation is shown in fig. 1.
In what follows the main phases of the translation process will be dis

cussed.

Phases~

L SOUl ce ,P10/ILOn'L ""

""A 68Ipt//1 56? /

L,O"f'uayes ~

nCl./Zdati.on.. Vt-Co
I"t=n.cd I!a"f'~

• I te.z:.i.coL .scan

II Tatt~s JI
II A68lpL./f 156'

I
ZJecom.pG.5t!LO/l.

II CF- f?U2~nu2~

II ,168 I PI-// 1867

I
Semolzt(.C

,il(ILKt~Oh. O/ld cOt!'7Cio/'lS

I
/i'ut'e5 I

A 681 PL./I 1.56<
I

5emont(.'c
'lepLa.cemen-t

In~~fvffs/tpvo'~

4681 P&/f 1 567

i
/ Inul.~ai' l'-z:.oytal'7'L""
~n.ter,l'U7~ et7~~ /

t
a/Ul~y,jiS aad Main. code
.5ClUc;ru~1!'

pert.!! ,orion.. deeezm.in.oZi.c1ll'Z

I I
Pt:nou~e ~U7/'Zaf.e~ FO.5t men-to~

rptLI'7'lLZdCLoI"l-
ol'Zd 'l~pi.5re'Z.5
opcun~ 2 otievt-

I I
£OCQ~

Comp.dc:TLLO/t- ~.d'-m"~aLion..

O?ti/1'!£~ot«:¥T..
O/Me o",ect

,PU>yz.a..-n.

I I
:~~~1D. HRmot-y

o/ti'"-izeztu::w.. c~~~~~~7:s
A 69 1 PI-/? I s 6~

• • /qotim"Zed PU'fIzo,"-""'" / ~ec.t P~D?~C7nr. ""

Ytn.nal! k~pe / "'-.I'?och'ne ""qflj"O;'<" /

Fig. 1. Scheme of the joint implementation of the ALGOL 68, PL/I and Stimula 67
languages.

1. TRANSLATION INTO THE INTERNAL LANGUAGE

The translation into IL includes lexical analysis, context-free parsing
and decomposition of some recursive notions of the source languages,
identification of applied occurrences of denotations, semantic analysis of
intermediate denotations, implementation of coercions and, finally, direct
replacement of source languages notions by appropriate IL constructs.

1.1. Lexical analysis
It is appropriate at this point to note some specific IL features. Its

grammar, like any phrase -structure algorithmic language grammar, is
constructed over a set of its notions. These notions denote not only inter
mediate steps occurring during program parsing but also some important
and self contained language units. It is necessary to stress that the set of IL
notions is not built independently of the considered source languages.
Turing machine language could well be an internal language if we cared on
ly of the principal possibility to specify the process of elaboration of
source languages notions. But it is not enough for us. We want to find and
specify, by means of the internal language, those common things which
really exist in all these source languages. We are looking for the com
monness not only in their algorithmic equipower but also, and mainly, in

A MULTILANGUAGE PROGRAMMING SYSTEM 145

details of their structure, in kinds of statements and expressions and in
data types. In particular, this commonness will be materialized in many
notions which will be common for IL as well as for the source languages
(constants of various kinds, identifiers, subscripts, assignments, control
transfers, formats, procedures, etc.).

It is supposed that IL will have a common representation of "lexemes"
for all source languages, where lexemes are objects which are usually
subjected to the lexical analysis (identifiers, numbers and strings). Re
placement of the lexemes by their standard representation and filling of ap
propriate lexical tables is the contents of the lexical scan.

1.2. Decomposition
Decomposition is a context-free parsing of the program. This parsing

which is carried out by means of a universal parser will be based on con
text-free grammars of the source languages, possibly reinforced by prec
edence matrices .

. The standard output of the parsing will be a representation of recursive
and nested structures in the form of a list structure, the elements of which
will be linearly ordered following the logical order of their execution.
Thus, for example:

y :=!(a +b[i +j, 2xt])

will be transformed into a construction shown in fig. 2.

Fig. 2. List structure of a decomposed program.

Instead of the lexemes +, i, j, 2 etc., their standard IL representations
will, naturally, appear in the decomposed program. These lexemes to
gether with 'intermediate' lexemes rl, r2, r3 and r4, do not yet contain any
semantic information in their representation but the identification rules and
introduced references permit us to find and fill this information at the next

146 A. P. ERSHOV

passes. These references will be useful not only for the semantic analysis.
For example, at a proper moment during loop optimization they will make
it possible to discover that the address of the component of the array b
contains in a subscript a linear dependence on variables i, j and I which
could happen to be control variables of for statements.

There is an unsolved problem in theCiecomposition of recursive notions.
A literal application of the decomposition just described will transform,
for example, a for statement

for i : = 1 sl e p 1 I ill n do {a : = a + b [i] x c [i]} *
into

Xb[i]c[i]~~;E i : = 1 ~ 1 @ n rJ£ {j}
Such a careless decomposition, besides some technical difficulties, can

lead to the loss of the vitally important information that only the first and
second statements are in the scope of the for statement.

It means that the decomposition of recursive notions sometimes must
not destroy the nesting caused by this recursiveness. It involves the con
sideration of two or even three kinds of recursiveness where recursive
construction of linear sequences is regarded as the third kind. An addition
al complication consists in a fact that the kind of recursiveness cannot be
made a univalued function of a language and notion. It depends sometimes
on the character of optimization algorithms or even on specific properties
of a notion. For example. two subscripted variables

a[sign (sin (It 2))]

and

a[i + j]

where i and j are regular control variables of for statements require quite
different approaches to the implementation and decomposition.

A possible solution could be reached if the formal decomposition will be
accompanied by a system of additional delimeters and special references
which will make it possible to save all the information about nesting in or
der to collect things again into one nest if necessary.

The declaration parsing consists in inductive construction of the infor
mation, contained in the declaration and in passing it into the lexical ta
bles. The format of the tables is defined by IL. It is highly desirable to
have a united format which would be common for all source languages.
This means that any position in the tables, for example plain modes posi
tion, must have a proper flexibility of formats providing the necessary va
riety of plain mode characteristics. If the source languages will happen to
be too incompatible then it can enforce us to have quite separate lexical ta
bles with separate processing procedures.

* { and} are abbreviations for begin and end respectively.

A MULTILANGUAGE PROGRAMMING SYSTEM 147

1.3. Context conditions and coercions
The implementation of context conditions and coercions is an inductive

process of dissemination of prescribed information which is contained in
the lexical tables over all occurrences of the lexemes in the program. This
process begins with the defining occurrences of source language lexemes
and then, by identification rules. is spread over all their applied occur
rences. Inductive steps appear when intermediate lexemes are involved.
The direction of the "semantical" induction is given by the references in
troduced by the decomposition.

In a general case supplying an intermediate lexeme with semantic in
formation is not performed in a single way. From this point of view co
ercion is a comparison of several variants of the semantic induction for a
lexeme-operand with a single possibility permitted by a given pOSition. An
ambiguity arises when the position permits several possibilities; an in
consistency takes place if no variant coincides with any possibility (fig. 3).

coezcion..

~- - in-Cez-

/7Z~diate

-- ee-

__ xeh?es

semo/ltic
i'Zdvc~~On.,

Fig. 3. Identification, semantic induction, and coercions.

We hope to develop some general theory of identification and coercion
in which such notions as identifier, indicant, scope, region, intermediate
lexeme, operand and position will be treated in a common-for-all
languages manner. This general treatment will allow us to define united
formal and general rules of the processing of 'semantical tables' which will
contain specific-for-each language rules of identification, semantic induc
tion and coercion. These rules will be expressed in terms of some con
crete actions for filling up or amendment of the lexeme-mode tables, the
actions being directed by predicates of such type as "Has a lexeme (L)
mode (M)?", "Are modes (Ml) and (M2) related?" and so on.

All this technique will, seemingly, be close to the corresponding mecha
nism of ALGOL 68, where it is developed in an explicit and diverse way.

148 A. P. ERSHOV

1.4. Semantic replacement
The transformation of a decomposed source program into an IL program

is naturally called 'semantic replacement', because the transformation re
lates, to each executive notion N of a source language, an IL program that
precisely describes the elaboration of the notion N. There are, in a gener
al case, several versions of the program, each version being chosen de
pending on specific modes of operands of N. If these modes are already de
fined by previous passes then the corresponding predicates can be eval
uated during translation and the notion is replaced by a most appropriate
program. In some cases the reduction of a general program for an elab
oration of N to a particular program can be done 'automatically' by means
of universal optimization algorithms (see below).

2. INTERNAL LANGUAGE

Here we shall summarize some IL design specifications.

2.1. Descriptive means
Using an arithmetic analogy, IL has to be a collection of greatest com

mon divisors of main notions of the source languages. We could make the
analogy much deeper if we were able to answer what are the 'greatest',
'divisor' and 'main' in this case. Nevertheless this sentence has already
shown an approach to the IL design: we refuse to construct any a priori
system of basic notions of algorithmic languages but try to find it out after
studying the candidate languages. We believe that there is a piece of the
real world of programs, operating systems and machine architectures in
the background of these languages. We believe that important aspects of
these source languages such as parallelism and synchronization, channel
control and formats, multiple precision computations, loop control, mem
ory allocation technique - all this could be expressed adequately on some
abstract level higher than machine instructions and bits-and-bytes lan
guage.

When we say 'abstract' we mean that IL should have some free param
eters (details of the real-numbers arithmetics, quantitative restrictions,
numbers value diapason, execution time, sequenching of parallel proc
esses and so on) as they are in source languages.

IL might be considered as the instruction code of an abstract computer
that elaborates source programs. Having introduced axiomatically some
interpretation of the IL instruction we shall get a precise description of the
source language semantics that itself could be of some interest. It should
be noted that the semantics of the source languages must be taken into ac
count at the first phase of the translation because some pieces of a pro
gram elaboration may be executed during the translation as it has already
been mentioned. Most IL constructions are formally introduced into a pro
gram by replacement rules regardless of their meaning.

Regarding IL descriptive means it is necessary to mention the variety
of 'control' actions which organize a proper allocation of data and compu-

A MULTILANGUAGE PROGRAMMING SYSTEM 149

tation in space and time. It does not mean that a computer model will be
completely fixed (for example a specific method of indirect addressing) but
conceptually all these actions (descriptor generation, copying of instances,
memory reservation, referencing, substitution by actual parameters, par
allel branches initiation) must be present in a program in the form of ex
plicit instructions.

2.2. Relation to the object computer
We would like IL to be a machine-independent language. This independ

ence could be defined quite precisely if one says, for example, that a
change of an object computer changes nothing in the first two phases of the
translator. But even if it were achieved it would not mean that there is no
connection between IL and the computer. On the contrary, IL must be sub
jected to some quite definite hypotheses on a possible object computer.
Continuing the arithmetic analogy used above, we can say that with respect
to the object computer IL must be a collection of least common multiples
of those machine patterns which are used during implementation of the
chosen source languages.

It would be quite easy to satisfy this condition if we could be sure that
all IL patterns were larger than machine instructions (case a) in fig. 4).

Jb Zb eX Zb a Ob
----=-===:J::

~ :::g . -

§J ~
~ ---d ~ -- . r; =-===---====-=:

q) t) c)

Fig. 4. Comparison of the detailness of the Intermediate and Object languages.

A computer usually contains such a 'nucleus' in its instruction repertoire
that satisfies this condition, but to use only the nucleus means to lose ef
ficiency which is potentially provided by combined machine instructions
(for example, loop control, increment parts in arithmetic instructions and
so on). This means that IL must provide specific possibilities to recognize
such dispersed patterns in IL texts, for they could be composed in one
combined machine instruction (case b) in fig. 4). But if we are faced with a
necessity to apply irregular constructions of type c) in fig. 4, it will mean
our failure in IL design.

2.3. Language and program structure
The main working usage of IL is to be a convenient medium for opti

mizing transformations of a program. The optimization is based primarily

150 A. P. ERSHOV

on an analysis of the information and logical connections between state
ments and on studying program structure. It imposes some specific re
quirements to the language. Statements must be simple, each easily identi
fiable with one another. and must not contain nested operands. Information
and logical connections between statements have to be easily recognizable.
This means that successors and predecessors must be shown by references
but not found out by scanning. The same concerns the search for state
ments which supply arguments of a given statement. These requirements
are rather burdensome but, o~ the other hand, they essentially reduce the
time required. Another requirement is that the dependence of statements
on the context should be as weak as possible, which greatly simplifies
their transposition.

Requirements to those IL means, which make it possible to expose and
study the program structure. are less trivial.

We understand the structure of a program as a partition of program
variables and statements into subsets which are of special importance dur
ing the optimization. namely:
- potential subprograms and linear components
- repetition parts
- scopes
- parallel branches.

Potential subprogram - or 'hammock' - is a connected set H of program
statements which contains two statements - entrance EN and exit EX such
that any statement in H is reachable from the outside only through EN and
any outside statement is reachable from H only through EX. An important
special case of H is a linear component. That is the case when all state
ments from H, possibly except for EX, have only one successor.

We cannot yet give a precise definition of a repetition part but only can
state that it is a connected set of program statements about which it is pos
sible to say that they may be executed as a whole not less or not more fre
quently than some other set of statements. It is possible to make the fol
lowing partial but important observations:
- a for statement body is executed not less frequently than the direct suc

cessor or predecessor of the l!!I statement;
- any inside statement of a procedure body is executed not less frequently

than the entrance or exit of the procedure;
- any call of a procedure is executed not more frequently than the body of

the procedure;
- the translator when translating a program is executed not more frequent

ly than the translated program.
Repetition parts playa fundamental role in the optimization algorithms

as it will be shown below.
The precise definition of a scope S of variable V in a program also re

quires too lengthy abstract constructions to be formulated here. It is suffi
cient for our purposes to say that two sets of statements Out and In are
connected with any variable V. Out is a set of the statements that supply
with values as their results and In is a set of the statements that use a val
ue of Vas their argument. Then the scope S of the variable V is a set of

A MULTILANGDAGE PROGRAMMING SYSTEM 151

the statements which are passed by during a 'transportation' of the values
of V from statements from Out to statements from In. It is obvious that if.
for a pair of variables Vl and V2. the set Out for one of them is not inter
sected with the set 5 for the other. then Vl and V2 may be allocated in a
common part of the memory.

We say at last that a program has parallel branches Pl • ...• P n if a
partition of program statements into subsets Pl' ...• P n is given such that
for every pair Pi and Pj it is known whether statements from Pi and state
ments from Pj can be executed collaterally or not.

Probably. for everyone of the structures just described universal rec-
0gnizing algorithms could be developed. It is true at least for potential
subprograms and scopes. But it would be quite unreasonable to rely only on
universal algorithms and to consider an IL program before the optimization
just as a 'uniform' graph of statements over a field of variables. The
source language programs inevitably contain very useful information on
their structure and this information has to be completely preserved after
the modern algorithmic languages.

Let us list those structures which are introduced into programs by most
of the modern algorithmic languages.

- Hammocks: every block or procedure body without jumps to non-local
labels.

- Linear components: arithmetic expression without calls of declared
procedures.

- Repetition parts: for statement and procedure bodies. blocks.
- Scopes: procedure bodies. blocks. for statement bodies for their con-

trol variables. arithmetic expreSSion programs for their temporary loca
tions. any hammocks for their internal values.

- Parallel branches: component serial phrases in collateral phrases.
actual parameter programs in calls. arguments in any binary operations in
ALGOL 68, branches in PL/I. blocks in Simula.

It is obvious that IL must preserve the variety of delimiters which make
it possible to indicate explicitly the bounds of corresponding structures.
There has to be a unified system of delimiters for every program regard
less of its origin. For example a set of statements forming a procedure
body in IL has to be singled out in a standard IL manner regardless of the
denotations of procedure bodies in PL/I. Simula 67 or ALGOL 68.

Additional means for an indication of the program structure is a classi
fication of variables or statements by their specific properties whi.ch make
it easier to indicate the structures connected with them. Here are some of
those means:
- specific notations for blocks or loops without exits to non -local labels;
- different notations for static and dynamic arrays;
- specific notations for temporary locations of arithmetic expressions;
- specific notations for variables which have more than one assignment in

the program.
A unification of all such means at the IL level can become a considerable

contribution in the recognition of those universal internal program struc
tures which are important for an efficient program optimization.

152 A.P. ERSHOV

3. OPTIMIZATION

The previous discussion shows obviously that the preservation of the
structural properties of programs which have been introduced to them by
means of the source language is a basis for the optimization algorithms.
Until now optimization algorithms have been so tightly connected with spe
cific properties of source languages that they even were described usually
only in the context of a specifiC implementation of a given language.

An exposition of optimizing structures of programs at the IL level in a
form which is invariant with respect to individual properties of the source
languages allows us to put forward a problem of finding universal optimiza
tion algorithms providing the compilation of an efficient object program re
gardless of its source language. These universal algorithms include:

computation optimization:
- unloading of repetition parts
- elimination of redundant computations
- elimination of trivial computations
- elimination of non-used computations
memory optimization
parallel branches optimization.
An optimization region corresponds to any specific application of an op

timization algorithm that is the part of a program to which the algorithm is
applied. It is reasonable to distinguish a) local, b) quasilocal and c) global
algorithms which have as their optimization regions a) one or several
neighbour statements, b) part of the program of a regular structure, c) the
program as a whole, respectively.

3.1. Unloading of repetition parts
Unloading of repetition parts is in its universal application a highly ef

fective algorithm. There exist universal algorithms which, for any state
ment and for any point of a program, can determine whether the statement
may be transferred into this point without lOSing indispensable information
connections. Then, it is possible, in principle, to develop algorithms
which, for every statement S from repetition part R, can determine
whether the computation of S is dynamic or static with respect to R. Le.,
whether S produces one and the same or different values under different
repetitions of part R. Then the unloading of a repetition part R is a syste
matic transfer of all its static statements into program parts whose exe
cution frequency is not higher than that of R. It is generally a global algo
rithm though it can be quasilocal for some of its partial applications
(cleaning up of loops) or even local (computation over constant operands
during the translation).

If the operation of the translator is described in the same language as
the language of the translated program, then, applying systematically the
unloading of repetition parts to such parts as the translator itself and the
translated program, it is possible to develop a philosophy of programming
processors with a continuous spectrum of operation modes - from a pure
interpretation to a pure compilation.

A MULTILANGUAGE PROGRAMMING SYSTEM 153

3.2. Elimination oj redundant computations
Elimination of redundant computations consists of two parts: the recog

nition of equivalent expressions (textually identical or algebraically con
vertible to identical. for example, using the commutative law) and the de
termination of what occurrences of equivalent expressions are redundant
for their subsequent elimination. This is a typical example of a combina
torial optimization long ago attacked by many softwaremen. There is a
well developed technique of expression elimination along linear components
and simple branches; there is one recent paper dealing with a global algo
rithm of elimination [1] . The implementation of the algorithm is close to
the memory economy as regards the scope construction.

3.3. Elimination oj trivial and non-used computations
Elimination of trivial and non-used computations is not of a main im

portance, at least for human-written programs. Their role is the collec
tion of 'garbage' that appears as a secondary result of other optimization
algorithms.

3.4. Memory economy
Memory economy is a highly importation kind of optimization because of

the permanent lack of high-speed memory. It has two aspects: static. that
is connected with an economic allocation of memory locations. and dynam
ic, that is connected with the concept and implementation of the virtual
memory.

The static aspect requires a priori knowledge of scopes of variables.
There exist universal algorithms of scope construction and some reasona
ble combinatorics of memory allocation .. Algorithms of the static or
- pushdown principle - dynamic memory allocation which are based on reg
ular nested scopes of variables (blocks, hammocks. linear components -
for temporary locations) seem, however, more realistic.

The dynamic aspect which deals mainly with various kinds of buffering
depends highly on machine features and is not considered here.

3.5. Parallel branches optimization
We adopt the multiprogramming technique as it working version of the

implementation of parallel computation. The main premise is that the
computer system has a comparatively small number of processors (ones
but not tens) and the allocation of a processor for a job is a comparatively
rare event. Parallel branches in a program are not recognized automati
cally but are given explicitly by appropriate means of the source languages.
Each parallel branch is a separate job which is a 'unit of work' for the
operating system. Thus the program as a whole appears as a collection
of job Jb ... ,In (see fig. 5).

Any parallel branch begins in some branch point and ends in some meet
point. If, for example, we have a branch point B which initiates two
branches J' and J", then at the point B a call to the operating system is
inserted which signalizes the finalization of the job that proceeds B and the
readiness for the execution of two new jobs J' and J". Some characteristics

154 A.P. ERSHOV

Fig.5. Partition of a program into parallel branches and jobs.

of these jobs (start address, time required and so on) are also transferred
to the operating system.

The finalization of all jobs having a common meet point leads to an exe
cution in this point of a call to the operating system which initiates a new
job next to the meet point.

Such an approach does not oblige the operating system to use any strate
gy of processor appointment but only supplies it through dynamiC calls
with consistent information about possible candidates for execution.

It is important, however, that in this case the number of parallel
branches should not exceed considerably the number of processors and the
branches themselves should be as long as possible. It will reduce the
number of transactions with the operating system.

At the same time, for example, ALGOL 68 rules cause such a situation
that a literal understanding of the semantics will produce a great many of
too short parallel branches. It is known that there are the following
sources of collateral elaborations in ALGOL 68: proper collateral phrases,
procedure operand lists and array components. It is appropriate here to
remember a critical remark by Dr. V. Turski at one of the W.G. 2.1. meet
ings that in ALGOL 68 there is no conceptual distinction between inner
parallelism introduced 'automatically' in the program (array components,
procedure operands) and parallelism introduced deliberately in the pro
gram (collateral phrases).

However, one can convert this possible deficiency of ALGOL 68 into its
obvious merit by developing universal algorithms for reducing the number
as well as the increasing length of parallel branches of the program with
respect to that initial structure which will appear during parsing of the
source program.

Then such 'too' parallel programs which are similar to those shown in
fig. 6 will be converted by the considered optimization process into con
structions which are more appropriate, for example, for a two-processor
configuration (fig. 7).

A MULTILANGUAGE PROGRAMMING SYSTEM 155

Fig. 6. Initial structure of a parallel progra.m.

3t 25 J2 18 28 IS' .30 37
26 ,J6 2'1 33 29 3

IS # 20 13 22
.6 12 S 21 ..J5

Fig. 7. Optimized structure of a. parallel program.

3.6. Implementation of the mixed programming strategy
When using universal optimization algorithms an additional problem

arises that is connected with the mixed programming strategy principle.
This term has been introduced during the development of the ALPHA sys
tem [2]. It denotes that for the implementation of a complicated language
notion (procedures or for statements, for example) a universal and. as a
rule, uneconomical programming algorithm is supplemented by a series of
simpler algorithms destined for various particular cases of the usage of
these notions.

For example, in paper [3] which deals with the implementation of pro
cedures in the ALPHA system five methods of actual parameter substitu
tion are used when calling a procedure. These methods are shown in fig. 8
where the following notations are used. An example of a programming pro
cedure F is taken. F has one formal parameter which occurs twice in its
body and two calls for it. Each method occupies two lines in the figure: the
upper line contains the two calls for P, the lower one represents its body.
The inner brackets single out the procedure body proper and the outer ones
embrace all the subprogram implementing the procedure. The box scheme
tizes a subprogram (thunk) which evaluates an actual parameter storing the

156 A.P.ERSHOV

i
T..~t i t

i:= I; F; f' i,=2,1' ; 7;:~ 0{
F{ {. ~ . ~ }} ... (2=/\r, \7;) ol ••• (£-/17;17;) ell •••

i t F~ r; T:~ ®{ '1,
F:{ { T; ~ T; d. ••• }}

~ !:f

®{"""
~;F; ~;F';

... } J r:{ { 01 ... d.

r': /~ , 0{ }} r:{ { ~ ~ ...

F': F~
I ®{

F:{ ~; { ... d. d ... }}

Fig.8. Five methods of the implementation of procedures.

result in a location a. If T: is a subprogram label then T denotes a return
control transfer to the subprogram (the arrow directs a return point).

The 1st method is a universal one. The 2nd method is applied when both
calls have (graphically) one and the same actual parameter. The 3rd meth
od is applied when it is known that for any call all formal parameter occur
rences take one and the same actual parameter value which may be com
puted just before the call. The 4th method consists of an open substitution
of the same actual parameter for all formal parameter occurrences. The
5th method is a particular case of the 4th method when it is known thatthe
actual parameter value is not changed during the execution of the procedure
body.

We can see that the choice of a most appropriate programming method

A MULTILANGUAGE PROGRAMMING SYSTEM 157

requires an informal analysis of the translated program. This analysis ex
ploits, on the one hand. such universal notions as graphical identity. ex
istence or absence of assignments and on the other hand such specific
characteristics of the source language as procedure. call. actual and for
mal parameter. It means that. in general. the translation which uses a
mixed programming strategy (for example. for procedures) increases con
siderably that part of the translator which essentially depends on the
source language.

Two solutions are possible here.
The first, not yet obvious solution. to unify. for all three languages. all

the mentioned notions (procedure. call and so on) in order to make possible
an implementation in a general form of the principle of mixed programming
strategy for procedures.

The second solution. that will be demonstrated in the sequel on the ex
ample 5 of the above mentioned programming methods. consists in an
argumentation that global universal optimization algorithms make the
mixed programming strategy obsolete.

Let us return to the 1st method in fig. 8.
Suppose that the global elimination of redundant expressions has dis

covered that Wo;;J (Y I = ~~ (Y I . The second occurrence will then be re
moved as redund~nt and the switches in the procedure body will be con
verted into (i = 11 TIT). The elimination of trivial computations will trans
form this switch just into T. after that the assignments to i will become un
used. As a result we will have the 2nd method.

If thunk T is very simple the translator. for the sake of economy of con
trol actions. will perform an open substitution of T into every place where
there is a call for it which will lead to method 4.

Application of the algorithm of elimination of redundant computations
can reveal that in method 4 actual parameters introduced into the body
compute the same value. Then only one thunk will be left in the procedure
body. Unloading of the procedure body as some repetition part may re
move it outside the internal block of the procedure body which yields meth
od 5.

Return once more to method 1. If it turns out that the value Cl'. com
puted by each actual parameter. does not change in the procedure body
then, using the algorithm of elimination of redundant expressions and the
unloading of the procedure body. we obtain in the procedure body the fol
lowing construction:

••• Cl' ••• Cl' ••• }}.

Logically analysing the program of the procedure. we find that the com
putation of T1 is logically subjected to the first procedure call and that of
T2 to the second procedure call. This information will allow us to perform
the selective unloading of the procedure body. As a result, the call of the
procedure and its execution will take the form

158 A. P. ERSHOV

i : = 1; f1;1'F'; T1: I00%l Q'i! .. i : = 2; T~F; T2 :~~ Q' I!. .
. .. F: { (i = 1 I I) ... { ... Q' ••• Q' ••• }}.

A subsequent series of obvious simplifications will make this program
take the form of method 3.

4. A PHASE OF CONSTRUCTION OF MACHINE INSTRUCTIONS

In its main part this phase does not put forward any essentially new
problems and therefore it will not be discussed here. It will be reasonable
to note only one peculiarity associated with putting an object program in the
concrete envirDnment of a source language. Among the elements of the en
vironment are standard programs called at run-time. specific administra
tive systems. subprograms of execution of formats in input-output opera
tions. special debugging facilities. editors of the bilisting, etc.

Any translated program has points of contact with this environment. At
the first stage of constructing machine instructions these points of contact
have a conditional. non-concrete form denoting but not being actual in
structions of call and parameter transfer. The tables of the language envi
ronment have in this sense a form of dictionaries which. by a conventional
code of the point of contact. yield actual instructions to be included in the
program as well as some additional information to be used for a correct
assimilation of these instructions.

5. CONCLUSION

The paper describes an attempt of a system approach to the develop
ment of a multilanguage programming system when the general outline of
the system and its philosophy are fixed before the solutions of particular
problems are accumulated. The multilanguage character of the system is
ensured by orientation to the language description which controls the work
of the initial stage of the translator.

The language description consists of the following parts:
1. Tables of lexical analysis
2. Context-free grammars for parsing
3. Tables of semantic induction and rules of coercions
4. Tables of semantical replacement by Internal Language constructions
5. Tables of the language environment.
The latter is used only at the final stage of translation.

The translator must ensure high quality of the translations due to the
application of universal optimization algorithms. Efficiency of the algo
rithms essentially depends on how well we shall use the information on the
program structure contained in the constructions of the source languages.
The candidates for implementation are ALGOL 68, PL/1 and Simula 67.

In a successful case this approach may contribute to the solution of the
following problems:

A MULTILANGUAGE PROGRAMMING SYSTEM 159

- economy of efforts and costs as compared with the development of three
independent translators.

- elaboration of universal optimization techniques,
- finding of basic concepts of algorithmic languages,
- objective comparison of ALGOL 68, PL/l and Simula 67.

REFERENCES

[1] Cocke, J., Global elimination of common subexpressions in programs. Proceedings
of the 2nd All-Union Conference in Programming. Novosibirsk, February 3-6,
1970. Foreign participants reports (Russian).

[2] Ershov, A.P., Organization of the Alpha-translator. In the collection: "ALPHA -
an automatic programming system". Novosibirsk, 1967 (Russian).

[3] Zagatskii, B.A., Procedures implementation in the Alpha-translator. Novosibirsk,
1967 (Russian).

DISCUSSION

Branquart:
I know you have a deep knowledge of the language ALGOL 68. Do you

have the same knowledge of PLjI and SIMULA 67?

Ershov:
Well, not all of the group. We have two experts in PL/I; one of them

translated the language specification, and so it is possible to believe that
she knows the language rather well. Also we have two people who studied
very carefully all the material of the Vienna group about the formal de
scription of PL/I. We do not have considerable experience in the use of the
languages for writing programs. Also we conducted a comparative study of
the languages to try to find common patterns in these languages in order to
understand better whether or not it is possible to have a united approach to
implementation. We found that there are many similarities in the language
structures. But there are also some difficult points for a unified approach,
for example, multiple precision arithmetic is treated in a very different
way and in this respect PLjI and ALGOL 68 are not so compatible. So, it
is difficult to say that we have real experience with these languages, but we
did everything that was possible.

Branquart:
At this time do you have the impression that an ALGOL 68 compiler,

which is properly conceived, will automatically contain the necessary
primitives?

Ershov:
No, definitely not. I am sure that the descriptive means which are nec

essary to describe the ALGOL 68 patterns are not enough to describe all
the patterns for PL/I.

160 A.P. ERSHOV

Branquart:
In your optimization scheme you eliminate all the things which are re

dundant and not useful; such things which seem to be bad programming. Ac
cording to your experience, is it really worthwhile to eliminate these
things?

Ershov:
Well, there are two aspects. First of all, it is a good thing to have an

optimizing compiler because there are a lot of careless programmers.
Especially when we use ALGOL, or even the ALPHA language, which is
some considerable extension of ALGOL (it contains some multi-dimension
al arrays, some kind of slices, complex artihmetic, and so on). So there
are a lot of p.eople, especially in open shop installations, who are careless.
For example, they write a l!!:! clause in the form for i : '" 1 ,3, [), 7 and so on
up to 37 4!2 •..• Optimization algorithms can reduce the losses caused by
such bad programming. That is one point. Another point is that, if you
have some syntactically directed construction of a program then you nec
essarily have much redundance. That is, the replacement of the source
language patterns by machine constructs is based on local rules and there
are many boundary effects which cannot be recognized if you have no opti
mizing algorithm. So, if you have a syntactically directed compiler, there
is more scope for subsequent optimization than if you have some program
ming scheme as for example in classical FORTRAN compilers, which are
very carefully tailored for this particular language, for this particular
machine, and so on. Thus, the importance of a universal optimization
scheme is obvious to me if you have syntactically directed compilers.

Prentice:
Have you any estimate of the increase of cost at compile time of your

optimization? I am thinking of the open shop which you described. In an
open shop, my experience is that a lot of compiling is done and not so
much running, and so time spent optimizing is likely to be wasted in these
circumstances. I have another question. If I have understood you correct
ly, it appears that at the running of the compiler, a decision is being made
which language it is compiling; whereas if you have three essentially sepa
rate compilers, then when the compiler is loaded, this decision is made
once and for all. I may have misunderstood what you are envisaging, but if
that is the case, how much would that cost as against the ease of writing
the compiler through being able to use common parts well?

Ershov:
Of course, there is some optimum point in the balance between compile

time and execution time. If you have a well-organized open shop or any
other installation, it is best to have two compilers for a language, one, I
should say, a light compiler for one-run jobs and for debugging, and an
other, a massive compiler for more heavy works, for large programs re
peated many times. I definitely understand that any multi-pass optimizing
compiler will in some cases take in total more time passing through the
operating system. It depends on the situation, but our experience shows us

A MULTILANGUAGE PROGRAMMING SYSTEM 161

that we often lose more on the poor efficiency of compilers than on the
compilation time. We have two compilers for ALGOL. If you have a com
puter which executes one million operations per second and if you have a
job which runs on the optimizing compiler for one hour and through another
non-optimizing compiler for five hours, it is a real piece of money. you
see. So, it is an economic question. If you have good software. you
should have at least two versions of your compiler. Actually. with this
work which we have, it is supposed that there will be at least two versions
of compilers for all languages. One of them, a high -speed compiler as I
have just mentioned, and another. an optimizing one.

Now about the other question. I see no serious problem in it because if
you have batch processing, you cannot avoid the reading of compilers from
tape and introducing them into the memory. Actually. of course, we have
three copies of the compiler with tables corresponding to each language
and all three versions are available for the operating system. Any particu
lar job knows what the language is in which it is written. So there is no
dynamic change or mixture of languages in one particular job. The job is
written in one language, and information about the language is written in
the job control card.

Prentice:
Do you not envisage mixing languages in one problem?

Ershov:
No. That is not our approach.

Lindsey:
The example you wrote up said for i : = 1 , 2, 3, and all the way up to 37.

Now if I had a compiler which was clever enough to optimize that, I would
rather that I did not optimize it. I would rather that the compiler would
recognize this state and print out a very rude message to the user and re
fuse to run the program! This is the only way that you would educate your
users to write good programs in a high-level language.

Trilling:
You have to increment the variable and you have to compare with the

bound and that is not so foolish.

Griffiths:
Can I protest against the idea, which is very paternalistic, of refUSing

to run somebody's program because you do not like it. You have defined a
language in which this program is legal. Legal programs should be able to
run, however bad they are. If you want to print out rude messages, then
print out all the rude messages you like. I do not usually listen when people
talk to me anyway.

Lindsey:
Yes, well, for "refuse to run it" at least substitute "refuse to optimize

it" .

162 A.P. ERSHOV

van Wijngaarden:
If you write f2I i : = 1,2 do, would you reject it because 1 and 2 also

form a part of an arithmetic sequence?

Bowlden:
Really, the question is: what is the responsibility of a computer center

toward its users? Is its job to teach them how to write good programs, or
is its jo,b to teach them how to solve their problems?

Ershov:
I also would like to comment that this is a part of a more general and

also technical problem to what extent the programmer or compiler is re
sponsible for the strict and direct relation between the structure of written
programs and the structure of executed programs. There are, uf course,
many smart programmers who would like to have a compiler in their hands
as a tool and understanding its, in most cases. literal translation of the
program structure. they prefer to use for their personal choice a selected
language construction to better express their smart thoughts. But this is
only a part of the real users of computers. Many of them ignore absolutely
how to run and how to program. They simply express their thoughts, their
problem. and they are careless about any consequences. It is a real part of
users and if we want to consider money. we have to recognize their exist
ence and overcome their deficiencies.

van Wijngaarden:
It is perhaps also true that a programmer is more or less punished for

his inefficiency by the amount of time that is used by the computer and for
which he has to pay in some form or another, either in the form of money,
or in the form of losing time which is allotted to him.

ON DESCRIPTION OF SYNTAX OF ALGOL 68

AND ITS NATIONAL VARIANTS

A. A. BAHRS, A. P. ERSHOV and A. F. RAR
Computing Centre, Siberian Division of the AS USSR, Novosibirsk 90

INTRODUCTION

In 1969 the authors of this report together with L. L. Zmievskaya ful
filled the translation into Russian of the Report on the Algorithmic language
ALGOL 68 [1] *. The Translation and the Original were published in the
form of a bilisting in the journal "Kibernetika" [2].

On the basis of this work we can formulate some problems regarding the
international character of ALGOL 68 and make some suggestions on modi
fication of the language itself as well as of the Report. The authors are
aware that the suggested modification can be materialized only when edit
ing the Revised Report and they hope that the principles of "international
ity" of the international programming language can be discussed in the
process of preparing it.

While studying the Original and working on the translation some efforts
were made in the Computing Center of the Siberian Division of the USSR
Academy of Sciences to find a more visual and suitable form for represen
tation of ALGOL 68 syntax. As a result two variants of syntactic charts for
ALGOL 68 were developed, viz. tree-like disjointed syntactic charts [3]
and single-connected syntactic charts with collectors [4]. The two forms of
the Charts were made in Russian and English variants. The first section of
this report briefly describes the methods of constructing the charts and
their charac teristic s * *.

SYNTACTIC CHARTS

Tree-like charts. The rules given in sections under 'Syntax' in the Re
port on ALGOL 68 will be termed rules for hypernotions. Each hypernotion
G will be brought to correspond to a set of notions M(G) obtained as a re
sult of replacing the metanotions contained in G by their terminal produc
tions, in accordance with ALGOL 68 metasyntax.

* In what follows the Report will be referred to as the Original.
** The methods described are somewhat simplified as compared with a general case

bur clearly enough demonstrate the idea.

163

164 A.A. BAHRS, A. P. ERSHOV and A. F. RAR

The construction of a tree-like chart is made by induction starting with
the rule for the hypernotion "program", and the chart itself is a graph
whose nodes are brought to correspond to hypernotions. Each node of the
chart is in a layer. In the uppermost layer there is one node, that is "pro
gram".

Let there take place a moment of construction of a chart. Consider in
the lowermost layer the leftmost node with some hypernotion.

Let G be a hypernotion brought to correspond to a node V under consid
eration. If it is a terminal symbol, it is replaced in V by some of its re
presentations, after which there takes place transition to the next node
under consideration.

Otherwise, if G is also brought to correspond, in the chart, to some other
node V'. with outgoing arcs, then we put at the node V, for reference, co
ordinate of the node V' (the number of the layer and that in the layer) after
which there takes place transition to the next node under consideration.

Otherwise, if for S there exists a production rule of the form

G : A, B, C; K; L, M, N,

then to the node V is added the following construction:

~
@=@=© ® (0=®=@

the ith layer,

the (i+l)th layer,

after which a given moment of constructing the chart is completed and
there takes place transition to the next moment.

Otherwise, if for G there exists a hypernotion F, such that M(G) C M{F),
and for F there exists a production rule or F is already contained in the
chart, then to the node V is added the following construction:

~
the ith layer,

the (i+l)th layer,

after which a given moment of constructing the chart is completed and
there takes place transition to the next moment.

Replacement of G by F is termed operation of g e n era liz at ion.
Otherwise, if for G there exists some hypernotions, e.g. Fl, F2, F3,

such that M{G) ::J M{Fi) for each Fio production rules existing for all Fi'
then to V is added the following construction:

the ith layer,

the {i+l)th layer,

after which a given moment of constructing the chart is completed and
there takes place transition to the next moment.

Replacement of G by Fl, F2, F3 is termed operation of con c ret i z a-
tion. .

Transition to the next node under consideration,consists in transition to

Fig. 1.

120. Si'OWED :

structured nth

row of JllODE •

ALG O L-6B

~BT A SYNT A CTIC CHART

If {ot10nl

'.·<~...---.-'-=--=,----Y!=-:""-1--'
S (kip)

cohes1on ;

base.

Fig. 2.

___ 4-----1 12v. FIGURE :

12t • .lLPIU. :

two, three,

four; five ;

six; seven I

eight; nine .

a;b;c ; d;e;f;g;

o;p;q; r; a ;t ;u;

v I W ; ~ ; ,. ; z •

168 A.A.BARRS. A.P.ERSROV andA.F.RAR

the nearest right-hand node in a given layer or, if the layer is terminated,
to the leftmost not yet considered node of the previous layer if any.

Fig. 1 shows a fragment of a tree-like syntactic chart. .
Collector Chart. Two hypernotions Gl and G2 are assumed to be strongly

connected if M(Gl) n M(G2) '* A. Gl and Gk are connected if there exists
sequence of hypernotions where Gl is the beginning and Gk the end of the se
quence and any neighbouring hypernotions in it are strongly connected. Ac
cording to this definition, it is obvious that the set of all hypernotions used
in ALGOL 68 syntax decompose into a number of the components of connect
i vity.

The basis of a collector chart is a family of lines termed collectors.
Each of the above components of connectivity is brought to correspond to a
collector. In this way, each hypernotion G of ALGOL 68 has its 0 w n col
lector brought to correspond to the component of connectivity to which
belongs. .

Rules of ALGOL 68 syntax are placed between collectors. Each hyper
notion G, used in some rule R, is linked by an arrow with its collector. If
G is on the left-hand side in R the arrow goes from the collector towards
R, and if G is in the right-hand side of R the arrow goes from G towards
the collector.

In addition, for the sake of visualization, it is required that no collector
entry should be placed between any exits of the collector - it is one-sided
motion all along the collector. Besides, in arranging the rules of syntax,
an effort was made to reduce a number of intersections of arrows with out
side collectors and intersections of collectors with one another. A fragment
of a collector chart is shown in fig. 2.

Each collector may be brought to correspond to a hypernotion T such that
all hypernotions forming the component of connectivity, corresponding to a
given collector, are obtained from T by concretization. A set of such hyper
notions T can naturally be termed basic hypernotion of ALGOL 68. Selection
of a set of basic hypernotions is very essential in constructing national var
iants of ALGOL 68 syntax.

It is known from experience that syntactic charts are a convenient and
visual method for studying syntax and they are especially so as a source
material for constructing algorithms of syntactic analysis and tables for
them (e.g. obtaining of basic context-free grammar, construction of analyz
ing automaton and the like).

NATIONAL VARIANTS OF ALGOL 68

In the authors t opinion the international algorithmic language must sat
isfy the following conditions:

a) to provide possibility of developing national variants of the language
and translation of its canonical description into national languages, preserv
ing the structure and mnemonics both of the language itself and its descrip
tion;

b) to allow such translation both by the structure of the language itself
and by that of the Report;

SYNTAX OF ALGOL 68 AND ITS NATIONAL VARIANTS 169

c) to provide uniformity of executing any particular program written in
the canonical language for any national variant of the language:

d) to stipulate, in the canonical description, rules regulating the trans
lation so that the above requirements can be fulfilled.

Consider the structure of the language and the Original emphasising the
points which are essential for the translation.

As mentioned in the Original (1.1.1.a.b). ALGOL 68 is defined in three
stages: the "strict language", the "extended language" and the "representa
tion language" - by means of the English language and a formal language de
fined in the Original. In this connection the text of the Original consists of
the fragments of the three types: some fragments (FL type) are texts in
this formal language - section 1.2 "Metasyntax" and all sections beginning
with "Syntax", later on to be referred to as "quasisyntax" *, other frag
ments (AL type) are texts in ALGOL 68 itself (e.g. trans put procedures in
Chapter 10 and examples of programs in Chapter 11) and the rest of the
fragments are written in English. The latter. in their turn, are divided into
two parts: first - the phrases (of EF type) saying about the formal language
and its objects, which are given here in " " or ' , - for example. texts
from 1.1.5.b.c.; the fragments (EA type), in which objects of the formal
language are represented by means of paranotions, form the second part.
Besides, some fragments of AL, EF, and EA types are enclosed in braces
and, as mentioned in 1.3, are not part of the language description and play
an auxiliary role.

The authors think that the definition of the language in three stages ac
cepted in ALGOL 68 is the foundation which makes it possible to preserve
in translating the stability of the language core, that is the strict language
defined by the Original. However, this aspect of the language needs to be
refined. The fact is that a variant of the strict language becomes fully
fixed only after addition (allowed by the Original in 1.1. 4, Step 2, 1.1. 5. b.c.)
of a number of production rules for the metanotion "ALPHA" (1. 2.1. t.).
whose every direct production is another small syntactic token, and addition
of production rules for the notions 'indicant', 'dyadic indicant' and 'monadic
indicant' (4.2.1.b.e.f.) and the notions 'other comment item' (3.0.9.c.) and
'other string item' (5.1.4.1. b.} whose every direct production is some sym
bol (with restrictions described in the Original). The question of who can
add the above production rules, when and under what conditions they can be
added, remains indefinite and causes contradictory interpretation (as. for
example, was the case with the authors of this report). According to Pro
fessor A van Wijngaarden (a personal communication), any user. introduc
ing for example some new indicant when declaring a new mode offered by
him, is likely to create, in this way, a new copy of the Original which con
tains the corresponding production rule. It seems to us that this interpre
tation contradicts the prinCiple of stability of the international language.

On the other hand, all the advantages of ALGOL 68 in describing new
modes and overloading operations reduce to zero if a user is forbidden to
make use of the indicants which are not specified by an implementation. It

* The notion originated due to N. I. Zaritski.

170 A. A. R,xHRS. A. P. ERSHOV and A. F. RAR

is clear also that in practice the structure of indicants depends on a set of
symbols contained in the trans put devices and. consequently, is in fact de
fined by implementation.

Consider a possible regulation of the method of specialization and con
crete definition of the language described by the Original.

We think that the Report on the Algorithmic Language ALGOL 68 must
clearly state that it describes a canonical "variant" of the strict language.
canonical "modification" of the extended language and canonical "version"
of the representation language and indicates explicit methods for developing
other variants. modifications and versions of the language.

First. let us consider the definition of the strict language and the devel
opment of its variants.

Introduce into the metasyntax the following production rules:

SPALPHA : ALPHA.
INDICANT: SPALPHA tag ; SPALPHA INDICANT.
CHARACTER: LETTER; DIGIT; point; times ten to the power;

flip; flop; plus i times ; open; close; comma; space.
COMMENT: CHARACTER.

Add to the quasisyntax the following rules:

indicant: INDICANT symbol.
dyadic indicant: INDIC ANT symbol.
monadic indicant: INDICANT symbol.;

besides, drop rules 3.0.9.c.d and replace rules 3.0.9.b and 5.1.4.1.b by

comment: comment symbol. COMMENT symbol sequence option,
comment symbul.

and

string item: CHARACTER symbol; quote image.

The context conditions should include the requirement that no proper pro
gram should have an indicant and a monadic indicant whose terminal pro
ductions contain one and the same terminal production of metanotion INDI
CANT.

If, for example, the representation of the symbol 'peace tag symbol' is
peace and so on, the canonical variant of the language automatically allows
the introduction of various indicants, dyadic and monadic indicants, which
are sequences of bold-face letters. Collisions due to the use of the indi
cants of the type 'mode' can be avoided without difficulty with the help of
context conditions and/or by introducing symbols of type 'mode' by means
of the mechanism of indicant production.

Thus, development of new variants of the strict language suggests addi
tion of new production rules for the metanotions 'ALPHA', 'SPALPHA',
'CHARACTER' and 'COMMENT', and, the contents of any of the four basic

l

SYNTAX OF ALGOL 68 AND ITS NATIONAL VARIANTS 171

alphabets, can be enlarged, generally speaking, independently. In this way.
the programmer does not develop a new variant by introducing his own in
dicant but acts within the framework of some existing variant of the strict
language using a set of string and comment items and generally speaking an
infinite set of indicants. which are available in this variant.

Let us consider now the representation language and versions. Besides
the explicit enumeration of some symbols. the canonical version must also
have a mechanism for creating representations of the symbols 'INDICANT
symbol'. Transition to a new version consists, first of all. in indication of
representations for new symbols (if this version refers to the language of
representation of a new variant of the strict language and or a new modifi
cation of the extended language) and. secondly. maybe. in addition or re
moval of some representations for symbols from the .canonical version.
There is nothing new in it.

Now it remains to discuss the extensions of the strict language. We sug
gest that new modifications of the extended language could be developed by
adding new rules of extension to Ch. 9 (this logically follows from the prin
ciples of the language definition). This will make it possible to develop. on
the basis of the same strict language without changing it, different special
ized languages in which some constructions. frequently occurring in a given
class of applications could have convenient contracted forms. Besides. in
troduction of modification of the strict language will make the conception of
the three-stage language structure logically completed.

Let us consider now ALGOL 68 adaptations to national languages. First
of all it will be noted that the above methods of changing the language. Le.
development of variants, modifications and versions. which are necessary
for this purpose, are nevertheless insufficient.

In fact the standard part of ALGOL 68 programs is part of the language
description given in the Original. It follows that a choice of one or another
variant, modification and version does not formally affect the identifiers.
indications and field selectors, declared in the standard part and applied
in the particular program, whose representations are meaningful English
words.

Therefore ALGOL 68 is essentially oriented to the English language and
it is more convenient to read and understand ALGOL 68 programs for thpse
who know English. A similar assertion holds for the language description .
method since formal language objects are denoted in the Original by mean
ingful English words and phrases whose meaning, independently of their
syntactic role, fills syntactic constructions with very important mnemon
ics.

The authors are convinced that in any country where the English language
is not predominant among programmers the international algorithmic lan
guage ALGOL 68 will be adequately acknowledged only if it can be "loaded"
by mnemonics of the native language.

In particular, in translating into Russian, "russ ification" of ALGOL 68
was performed in the following way:

first, small syntactic marks of the Original were supplemented by mis
sing Russian letters (creation of the Russian variant of the strict language);

172 A. A. BAHRS, A. P. ERSHOV and A. F. RAR

second, new rules of extension were added which makes it possible to
use, in particular programs, Russian synonyms of field-selectors of the
standard structured mode file (creation of the Russian modification of the
extended language);

third, the collection of basic symbol representations of the canonical
version was supplemented by suitable Russian words or abbreviations (cre
ation of the Russian version of the representation language);

fourth. a transitive identity declaration was introduced for each standard
"mode identifier", giving a Rus3ian synonym of this identifier, and identi
fiers localized in the standard part declarations were replaced by suitable
Russian identifiers (change of standard part of ALGOL 68 program);

fifth. Russian synonym BbIXOt(was introduced for the standard identifier
exit and placed before the label exit: in the "exit" (2.1.e) (change of quasi-
syntax). .

Thus, one of the important requirements to the international language is
the ability to specify synonyms for objects represented by meaningful words
of a natural language. The ALGOL 68 identity declarations make it possible
to introduce synonyms for identifiers and indications (indicants); the latter
may also obtain synonyms by choice of representations. From this point of
view it seems necessary to have additional facilities for specifying syno
nyms of field selectors.

As, in the authors' opinion, it is undesirable to change either the stand
ard prelude or, the more so, the quasisyntax structure, they think it use
ful to change the structure of an ALGOL 68 program in the Original, that
is. to replace rule 2.1.a by

program: open symbol, standard prelude, national prelude, library
prelude option, particular program, exit, national postlude, library
postlude, library postlude option, standard postlude, close symbol.

and to add in Ch. 2 the following rules for national prelude and postlude:

national prelude: declaration prelude sequence option.
national postlude : label sequence option, statement interlude option.

It is meant that the national prelude may contain all the transitive identi
ty declarations for the renaming of the standard prelude objects and that the
first label of the national postlude may happen to be the corresponding syno
nym of exit:.

Thus, a concrete version of a fixed modification of a chosen variant of
the language in which respective national prelude and postlude are specified,
can be fixed as the canonical National ALGOL 68 for a given natural lan
guage.

In particular, the canonical English ALGOL 68 coincides with the canon
ical ALGOL 68, and in this case the national prelude and postlude are emp
ty. (For the sake of logical completeness it would be helpful to write the
canonical. Report in Latin or Esperanto.)

The version chosen for the National ALGOL 68 should naturally contain

r
SYNTAX OF ALGOL 68 AND ITS NATIONAL VARIANTS 173

all those representations which are available in the canonical ALGOL 68 so
that any correct text in the canonical ALGOL 68 should be so in the canon
ical National ALGOL 68 and have the same meaning.

Starting from the canonical National ALGOL 68 one can build its variants,
modifications and versions according to the above rules.

In other words. we have in mind the following scheme:

International N~tional

language language

Canonicn I language 1.1 1.2

Variant 2.1 2.2

Modification 3.1 3.2

Version 4.1

Sector 1.1 represents the strict language as defined by the Original. and
moving along the table downwards means further concretization of the lan
guage (though any such step can, in a particular case. leave the language
unchanged). The complete concretization of the language is achieved only
in 4.2 and it is for this "version of the modified variant of the National
ALGOL 68" that concrete implementations are made. The above phrase in
" " can naturally be abbreviated, where it does not cause ambiguity. to
"ALGOL 68".

Besides, some alteration should be made in the canonical description of
the language in order to regulate translation of the Original, reducing to a
minimum the changes in the description structure.

The main difficulty arising here is to conserve the mnemonical meaning
of syntactical objects denoted in the Original by English words and phrases.
Even in the Original its authors were confronted with some difficulty when
trying to identify different grammatical forms of the same word (Ch. 1.1.6.c,
point v), although analytical languages, to which English belongs, have in
fact very few flexions which are so important for synthetical languages
such as Russian, German, etc.

However, it seems valuable that representations of metanotions, notions,
hypernotions and paranotions should remain, after the translation, meaning
ful and grammatically correct phrases of the respective language without
violating a one-to-one correspondence between objects and rules of the
metasyntax and the quasi syntax of the Original and the Translation. thus en
suring one-to-one correspondence between a text of the formal language of
the Translation and that of the Original.

For this purpose we suggest that the "principal form" of metanotions
and notions (hence, paranotions) should be defined in the canonical descrip
tion as the form which they have when occurring in the left-hand part of the
corresponding production rule. A form obtained from the principal one ac
cording to the grammar of the respective language is regarded as a form
"related" to the laUer. The description should postUlate that the occurrence

174 A.A.R'\HRS. A.P.ERSHOV and A.F.RAR

of the form related to some (single) principal form stands everywhere for
this principal form of a given metanotion or notion (paranotion). The latter
rule will replace. in particular. the text of 1.1.6.c. v.

According to this a special section should be incorporated into the Report
which regulates the method of creating national ALGOL 68-s. This section
should explicitly enumerate the parts of the Original to be replaced in the
Translation. These parts are: the section where the concept of closeness is
defined, the section containing the national prelude and postlude, etc.

The remaining part of the Original must be translated, maximally re
taining the meaning of the Original. The translation of the formal language
(FL-type fragments) requires a new national terminology corresponding to
that of the Original but having its own mnemonic contents. The translation
of EF-type fragments must generate a new text since it should describe the
formal language of the Translation rather than of the Original. As for the
EA-type fragments, it is sufficient to translate them literally using glossa
ries of technical terms and paranotions. In translating pragmatic remarks
one has more freedom. In particular, the quotations should be translated
literarily and might possibly be replaced by quotations which are more
suitable from the point of view of the corresponding language.

(Omnia mutantur nihil interit)

REFERENCES

[1] VanWijngaarden, A. (Editor). Mailloux. B.J .. PecIc J.E.L. and Koster. C.H.A.,
Report on the Algorithmic language ALGOL 68, Mathematisch centrum, Amster
dam, MR 101, October 1969,

[2] Algorithmic Language ALGOL 68, Edited by A.P.Ershov. "Kibernetika" No.6, 1969
and No, 1. 1970. Kiev (in English and Russian).

[3] Majnagasheva. G.!.. Syntactic charts for ALGOL 68. Computing Centre Report.
NovOSibirsk. 1970 (in Russian).

[4] Bn.hrs, A.A. and Grushetski, V. V .. Syntactic charts of ALGOL 68. In ref. [2].

DISC USSION

Lindsey:
The word NATIONAL is clearly a metanotion which produces the proto

notions English, French, and so on, and I think if this proposal is adopted,
it must be clearly stated that English-prelude produces EMPTY.

Rar:
Yes. English produces empty, of course!

Lindsey:
Even more importantly, it must be stated that American-prelude is

EMPTY.

SYNTAX OF ALGOL 68 AND ITS NATIONAL VARIANTS

Rar:
(with much amusement) Whether the English language and the American
language are different is out of the realm of our discussion.

Van der Poel:

175

What have you done about constructions such as 'NOTION-option'. which
in the English is affixed. How does it work in Russian?

Rar:
We have not done it very well. I confess. but we have done something.

namely, we have given some forms and declared that protonotions may be
in other forms and some protonotions may be close to one another. This
depends on the Russian grammar and references are made to it.

Lindsey:
Can you give an example of 'NOTION list'?

Rar:
Yes. 'NOTION list' is 'CllHCOK nOHRTIDt'. In the metasyntax there is not

such a metanotion as 'noHRTlli1' but there is the metanotion 'nOHHT}IE'. Now
it is said that two sequences of large syntactic marks which are the same
in different grammatical forms. according to the rules of the Russian
grammar, are close and may replace one another.

Van der Poel:
That was not exactly my question. My question was: In English the word

'option' follows 'notion'. And here as I understand it. it precedes.

Rar:
This is not so in Russian.

Van Wijngaarden:
You see, we had in English the choice between one of two possible or

ders because we could have said "optional this or that" or "this or that op
tion". We chose in English, for some reason or other. the last formulation.
Now it turns out that in most of our Western languages you can always have
the first formulation but not always the second one. and in Russian too.
Now, what they did in Russian is to use the other form consistently. Your
'NOTION list proper' is translated into 'properly listed NOTION'.

Koster: (with a smile)
Are you considering having a companion volume to your publication

which contains the Russian grammar?

Rar:
No, we are not.

Koster:
With your national prelude, you open the door for a company prelude.

Just imagine the IBM prelude or the Burroughs prelude. (irreverent laugh
ter)

176 A.A.BAHRS. A. P. ERSHOV and A.F.RAR

Rar:
(with a twinkle) I propose that our approach will use the national point of

view. not the point of view of the companies.

Van Wijngaarden:
May I add to this that if you have the IBM with you, then you also have

the international prelude! Moreover, I had a question myself. You have
been talking about indicants and you made a scheme by having a letter-a
tag-symbol, a letter-b-tag-symbol, and so forth. In some implementations
those representations might look like l! or ab and so on. However, the indi
cants that we allow are not necessarily sequences of letters.

Rar:
If in some variant we include the question mark, then the following re

presentations will 'be possible: ? or l!?b.

Van Wijngaarden:
But that is not sufficient.

Rar:
If we have the question mark on our keyboard, it is all right, but if we

do not have it, we do not use it.

Van Wijngaarden:
That is fine. Obviously, nobody has to have all the representations, but

it is the other way around. I have not only on my keyboard a question mark
but also a symbol I do not tell you now, you see, because I implement my
keyboard after the Report is written.

Rar:
Of course, but it is a matter of a variant. You see, what we suggest is

to have an international canonical variant, which does not include the ques
tion mark at all. But then some special variants may have the question
mark and so on. When we want to implement the language, we choose a con
crete variant. concrete modification and concrete version, and when we
chose all of it, we may have a question mark. It is upon this base that we
may construct an implementation.

Van Wijngaarden:
I still do not quite get it. This is not a question of a national prelude.

Rar:
No. When some people want to have a national variant, a canonical na

tional language variant, then they may include that or other indicants, but
I suppose that they will offer only those letters which are in their national
alphabet as elements of the special alphabet ('SPALPHA').

Van Wijngaarden:
But that is not my point. Suppose there was at some moment a Dutch

national variant of the language, and after this Dutch national variant has
been printed I am going to use an indicant which is not in that and no docu
ment whatsoever and that is why I said that everyone who is going to intro-

SYNTAX OF ALGOL 68 AND ITS NATIONAL VARIANTS 177

duce a new symbol is writing a new Report. I give him the right to write his
Report.

Rar:
You see, only those who implement have the need to write their Report

in the form of some companion volume, but not every programmer that
uses the language and wants to use ~ as his own indicant. Your point of
view was that if one wants to use a new indicant, it is as if he writes a new
volume, though in invisible ink. But in our point of view, that is not the
case. If in our concrete variant, we have defined in a way which I have de
scribed, all the underlined sequences of letters as indicated, then everyone
uses them without asking.

Van Wijngaarden:
I agree completely that for a lot of indicants, namely all the, let us say,

underline:, ones, you could define them syntactically once and for all. I
think it would have been a wise way to do it. But my point of view was that,
apart from those, there are many other symbols which you cannot enumer
ate because you do not know what they are.

Rar:
You see, in a concrete implementation you can enumerate these. There

are those that can be used practically.

Van Wijngaarden:
Let us say, for instance, the Chinese alphabet, the national Chinese

version .. ,

Rar:
The Chinese alphabet consists of some primitive hieroglyphs, from

which their numerous hieroglyphs are constructed.

SOME PROBLEMS IN COMPILING ALGOL 68

GERHARD GOOS
Rechenzentrum der Technischen Hochschule, Munich, Germany

1. INTRODUCTION

Implementing a new programming language begins by analysing existing
implementations of similar languages. This analysis should detect language
differences which may create problems in the implementation of the new
language:
1.1 The difficulty of distinguishing between declarations and statements

without the knowledge of certain other declarations; ,
1.2 The internal representation of modes both at compile-time and at run

time. including the problem of finding out whether two modes are equiv
alent or not;

1.3 The verification of the context conditions [9, 4.4];
1. 4 The application of the rules for coercing and the identification of oper-

ators;
1. 5 The checking of scopes at compile-time and run-time;
1.6 Linkage editing of separate pre-compiled procedures;
1. 7 The treatment of formats at run-time;
1. 8 The storage allocation at run-time including the problem of garbage

collection;
1. 9 The implementation of parallel processing.

We concentrate here mainly on problems arising during the compilation
phase.

The implementation of parallel processing as described in [9] is largely
dependent upon the particular operating system. It requires a dynamically
varying and a priori unknown number of processes when implemented in
full generality.

We define a "pass" of a compiler to be a sequential scan without back
tracking, generating sequential output and possibly some tables. It follows
immediately that we have to cope with lexical analysis, syntactic analysis,
and the problems 1.1-1.3 in a pass preceding the one in which coercing and
operator-identification are done. This latter pass, however, has to pre
cede that in which code is generated due to some implications of coerCing
which are found "too late" in the sequential reading. Finally we have to
have a very simple pass which inserts addresses, etc. into the generated
object program. We therefore start the discussion by assuming a 4 pass
compiler with a distribution of functions roughly as described previously.
For the Simplification of program logic, it is, however, advantageous to

179

,I

180 G.GOOS

insert two passes, one between 1 and 2, and the other between 2 and 3.
These additional passes scan the program from right to left. This scheme
of a 6 pass-compiler is discussed in the second part of the paper. In par
ticular, this is the scheme underlying current work on an implementation
of ALGOL 68 for a Telefunken TR4 at the Technische Hochschule, Munich
[2].

2. CONTEXT DEPENDENCIES IN THE FIRST PARSING

Consider the examples

proe f!: x;
p := (real x; (J Y) ...
(11 : 12) ...

(2.1)
(2.2)
(2.3)

(2.1) is an identity-declaration if fl is declared by a mode-declaration; it is
a formula if (J is declared by an appropriate operation-declaration, in which
case proe is a generator.

The constructions (2.2) and (2.3) show special cases of the problems en
countered in scanning parentheses. Without knowledge of the context to the
right or the meaning of fl, it is impossible to decide whether the paren
theses in (2.2) form a formal-parameters-pack or a closed-clause. The ob
ject (2.3) may be the beginning of

(11 : 12) real x

or it may be read as

(11 : goto 12). (2.4)

The local ambiguity indicated by (2.1) can be overcome by a somewhat
sophisticated algorithm in the first pass of the compiler (for details see [2])
which picks out all these ambiguous constructions and resolves the ambigu
ity by the end of the first pass. Mailloux [7] proposes to solve the problem
by using the first scan of the program to find the mode- and operator
declarations only. In the second pass the meaning of the newly introduced
symbols is then known and it is easy to distinguish the two syntactic inter
pretations of constructions such as (2.1).

An opening parenthesis may occur in one of three different situations:
(i) Preceded by one of the symbols struet, union, proe, ref, op, loe,

heap or the equals-symbol of a mode- or operation-declaration;
(ii) Preceded by a sequence of symbols which may be interpreted as a

primary;
(iii) Elsewhere.

It is easy for a compiler to distinguish these three situations. Case (i)
very easily allows the interpretation of the parenthesis to be found. Case
(ii) causes the usual problem of distinguishing between calls and slices as
in many other languages.

SOME PROBLEMS IN COMPILING ALGOL 68 181

In the other cases, the opening parenthesis may open a closed-, condi
tional-, collateral- or case-clause as well as a formal-parameters-pack or
a declaration of a multiple value. The general idea for solving this kind of
ambiguity is to check each symbol following the opening parenthesis as to
whether it is suitable to reduce the number of possible syntactic interpreta
tions until a unique interpretation is reached. The constructions (2.2) and
(2.3) show that this may sometimes require scanning beyond the correspond
ing closing parenthesis.

Moreover, the fact that

11:

in (2.4) is a label definition, is discovered only after all other interpreta
tions of (2.3) have been eliminated. Such late recognition of the correct in
terpretation of the symbols also causes problems in determining the range
in which a defining occurrence of an identification or indication is valid.
The construction (2.2) shows an example in which this range cannot be de
termined at the time the definition of x is encountered. Problems concern
ing the meaning of parentheses and the recognition of ranges are discussed
in greater detail in [1] and [5].

3. REPRESENTATION OF MODES

Every compiler for a high-level programming language has to build up
a "declaration-table" in which the modes and further attributes associated
with identifiers and other newly introduced symbols are recorded.

For most languages the format of table-entries can be based on the as
sumption that there exist only a finite - and in fact small - number of dif
ferent modes and other attributes. This assumption is invalid for ALGOL
68. Although in each program to be compiled we have only a small number
of modes, nevertheless the number of possible modes is infinite. There
are two ways in which this can occur.

The first is theoretical in nature and is that by use of the symbols ref
and long and by forming arrays (= multiple values) of arbitrarily manYdi
mensions, an infinite number of modes can be constructed; in practice the
number of modes constructed in this way is usually limited by restricting
the number of times the prefixes!fl, long and row (standing for one
dimensional array) can be repeated *.

The second way is the infinity of modes which can be classified as pro
cedures, structured and united modes. Examples are

mode §. = proc(real, ~) real
mode §.. = struct (rfl §. pointer, !L value)
mode §.. = union(int, '!!d§.).

(3.1)
(3.2)
(3.3)

As a consequence it is impossible to represent a mode in ALGOL 68 by

* E.g .. The author knows of no practical case in which the symbol T!!i. has to be used
more than three times in front of a mode.

182 G.GOOS

a table-entry of fixed length. Instead we have chosen a scheme in which the
declaration-table is split up into two tables: a declarator-list finally con
taining internal representations of the modes as list-structures and a con
nection-list. in which each entry connects an identifier or an indication wil~
a mode. The content of these lists for the mode-declarations (3.1) - (3.3) is
shown schematically in figure 1 - 3.

Figure 1 shows the state immediately after all three declarations have
been recognized the first time. Any mode-indications occurring in the
RHS's are not further processed.

Figure 2 shows the state when the declarations of.!i and fl have been as
sociated with all the applied occurrences of these symbols.

Figure 3 shows the final state after all indications have been removed
from the declarator-list and have been replaced by pointers to the unique
entry for the appropriate mode.

From the figures it is apparent that the cases in which a field of an entry
contains a pointer to some mode and in which it contains a direct represen
tation of the mode are treated as being equal.

In the transition from figure 2 to figure 3. a set of algorithms is in
volved. Most of them have to check whether the context-conditions [9. 4.41
are fulfilled, i.e. they have to detect such illegal constructions as

mode Q = union(real. 0 real)
mode M! = struct(?f a, real b).

These algorithms are straightforward although very lengthy exercises in
list-handling.

More interesting are two other algorithms which check whether two
modes are equivalent or not. The first algorithm determines the equiva
lence of such modes as sl, s2. defined by

mode sl = struct(0 struct (0 sl p, real x) p, real x)
mode s2 = struct(rej s2 p, real x) . --

The internal representations of these modes are shown in figure 4; one of
the possible solutions to the problem is published in [6].

The other algorithm deals with the equivalence of united modes. This al
gorithm first replaces united modes which are members of other united
modes by their member modes e.g., it determines that

union(real, union (int, compl))

and

(3.4)

are equivalent.
Secondly the equivalence of united modes e.g., (3.4) and union(in~ rea4

compl), which differ only by a permutation of the members of the mode,
has to be shown. This is done by assigning to each mode an ordinal number
and by reordering each united mode in such a way that the members follow
one another in ascending order. Then the equivalence can be shown by pair
wise comparison of the members. Since these ordinal numbers have to be

SOME PROBLEMS IN COMPILING ALGOL 68

Connection-list

~

mode 12 = proc(real !!..) real
mode !!.. = Btruct?~ !!.. pointer, £ value)
mode £ = union (~ !:§.i. f!.)

Declarator-list

1
real

LS nil

1
real

-I struct

ref

/
/

s

q 1 value

183

nil

L-~~~-L ____ j--------------.)I~ __ U_nl_·o_n ___ I~/~ ____ ~
I

int I /
/
I nil

ref! I

I

Figure 1.

184 G.GOOS

Connection-list Declarator-list

L[~E~ __ -L _____ -~------------------~'I~~~~~----~--~~

I~

I~

)Istruct

Ire!

IEll I /
7

\ I nil

\
~ II

I
Figure 2.

SOME PROBLEMS IN COMPILING ALGOL 68 185

Connection-list Declarator-list

nil

I~

Figure 3.

186 G.GOOS

Connection-list Declarator-list

~s=1~ __ J-_____ .~---------------------.~1 struct

I ref I /
/

I struct I

~=s=2~~ ______ ·~"----------________ ~.~1 struct

I real x nil

Figure 4.

SOME PROBLEMS IN COMPILING ALGOL 68 187

represented internally in the computer they must have a fixed maximum
length. For this reason and since there is an infinite number of modes. a
solution which consists of a Godelization of the modes is impossible. An
ordinal number with a fixed maximum length is possible only if we choose
the numbers dependent on the particular program at hand.

On the other hand, assume that we have variables a. b declared by

union(inl. real) a ;
int b

and we want to assign the value of a to b using the conformity-relation

b : := a,

we then have to check at run-time whether the present value of a is integral.
This can be done only by storing a pair. consisting of the current value and
its mode for each variable of united mode. Clearly we need a representa
tion of modes at run-time also. Obviously. the ordinal numbers introduced
above are well-suited to this purpose: in fact there are no other possibil
ities which differ in principle from this solution. This method. however.
has a serious disadvantage: since the ordinal numbers are program-depen
dent we run into difficulties if we have to bind more than one program to
gether, e.g., a main program and some precompiled procedures. Conse
quently, we cannot use the general linkage-editor of the system to bind
ALGOL 68 programs together, and a special-purpose linkage-editor must
be constructed.

4. COERCION AND OPERATOR-IDENTIFICATION

In all high-level programming languages some implicit changes of
modes, usually called type-conversions. are provided. Each such "coer
cion" is split up into two algorithms. The first, and more difficult one, is
executed at compile-time and determines which change of modes are to oc
cur. The second one is prepared at compile-time and executed at run-time
in most cases. It computes the new value corresponding to the changed
mode *.

In an interpretive implementation of some languages it is possible to
execute both algorithms at run-time ("dynamic type-checking"), but this is
impossible for ALGOL 68 due to the problems involved in balancing and
proceduring (see below).

The difference between ALGOL 68 and other languages concerning coer
cion is twofold. On the one hand, which coercions are to be applied is de
termined by the syntax and not by the semantics of the language. This al
lows for a much more systematic treatment of the problem than e.g. in
PL/I. On the other hand deciding which coercions have to be applied is
much more context-dependent than in other languages. This increases the
complexity of the algorithms involved.

* In case of hipping the second algorithm is empty.

188 G.GOOS

There are eight possible coercions: dereferencing, deproceduring, pro
ceduring. uniting. widening, rowing, hipping and voiding. The application
of these coercions depends, amongst other things, on the syntactic position
of the "coercend", i.e. the syntactic entity which is being coerced. There
are four such positions.

In strong positions, e.g. the RHS of an assignation or the actual-param
eters of a procedure call, all coercions are allowed. The a posteriori
mode of the coercend is completely determined by the context, normally by
the preceding symbols; e.g., in the case of an assignation the a posteriori
mode of the RHS is given by the mode of the LHS minus the first!!!t. The
problem here consists therefore in determining whether a coercend is in a
strong position and which sequence of coercions leads from the a priori
mode of the coerc.end to the given a posteriori mode.

In firm positions, e.g. the operands in a formula, only the first four co
ercions are allowed. Two different problems are encountered with firm
coercends.

The first one is that there exist some syntactic constructions in which
an operand is composed of more than one component as in

(1, 1.2, 1.2 5) + (1, 1, 1),

or is chosen from a set of alternatives, as in

!:1 x < y then 1 else 2.1 fi + 4. (4.1)

Here one of the alternatives or components is in a firm pOSition and de
termines the a priori mode of the whole operand. The others are in strong
pOSitions and, e.g. have to be widened to that a priori mode. It is, how
ever, not at first known which one of the alternatives or components is in
the firm pOSition. The process which determines this is called balancing.

It is mainly this process of balancing which makes the run-time deter
mination of the coercions impossible. If, e.g. in (4.1), the first alternative
is chosen dynamically, then the first operand and the result of the whole
formula would be found to be integral. However, it should be real, because
2.1 and not 1 is in the firm position. This mistake may have disastrous
consequences.

The second problem with firm coercends is that the a posteriori mode
of the operands is not immediately known in most cases since it depends on
the operator applied and there may be more than one declaration, only one
of which is applicable. In the example

real x ;
&x ...

the symbol & may be declared by

!!p & = (real a) real

or by

op & = (ref real a) real

or by

SOME PROBLEMS IN COMPILING ALGOL 68 189

qP.. & = (proc real a) real: ...

The a posteriori mode is different in each of these cases. The algorithm
for finding the coercions in these firm positions therefore consists of three
steps:
(i) Determine the a priori mode(s) of the one (or two) coercend(s) and all

possible a posteriori modes. (There are infinitely many such a poste
riori modes.)

(ii) Compare the a posteriori modes with the modes of the parameters of
all operator-declarations valid for the given operation-symbol until the
declaration is found which is applicable to the given case. The fulfill
ment of the context-conditions, checked before, guarantees that there
is at most one declaration applicable.

(iii) Determine the sequence of coercions which have to be applied to the
operands in order to obtain the modes of the parameters of the oper
ator-declaration chosen.

The second step of this algorithm is called operator-identification. Any
implementation of this algorithm will be very time-consuming, even in such
trivial cases as

1 + i
x/y + z *.

It is therefore desirable to have a simplification of the algorithm which
works for at least the most common cases of modes of operands. Scheidig,
Wlissner and the author [3] outline such a simplification which works as
long as none of the modes of the actual operands and of the parameters of
the possible operator-declarations is a united mode. The general idea be
hind this simplification is that, for each a priori mode m of an operand and
each mode m' of a parameter, there exist "reduced" modes mr , m~ such
that the identity

mr = m~ (4.2)

of modes is a necessary and in most cases also a sufficient condition for
the applicability of an operator-declaration. The reduction of a mode m to
mr consists of removing any !!!is andprocs in front of m. Therefore, (4.2)
implies that m and m' are related [9, 4.4.3b].

The two other syntactic positions in which coercions may be applied are
called weak and soft. It is very easy to determine whether a coercend is in
a weak position; e.g., a primary which is followed by an index. This is also
true for soft positions; e.g., the LHS of an assignation. However, in iden
tity-relations such as

i :=: jj

a simple version of balancing has to take place in order to decide whether
it is the LHS or the RHS which is in the soft position. Further treatment of

* Note that + and / could be redefined (overloaded) by the programmer for integral
and real operands as well!

190 G.GOOSI

weak and soft coercion causes no difficulties since only dereferencing (weak)
and deproceduring (soft or weak) are performed and the a posteriori mode
is deduced very easily from the a priori mode.

The practical implementation of the different coercions involves no new
problems; with the exception of rowing all coercions occur in other well
known languages also. Rowing involves the establishment of a new array
descriptor for an array of zero elements or for one whose Single element
is the same storage-cell as occupied hy the value which has to be rowed.

Proceduring is an extension of the call-by-name-concept of ALGOL 60
to other syntactic positions than actual parameters. While all other coer
cions eventually change the computed value of the coercend, proceduring
prohibits this computation and saves the coercend for later evaluation. Pro
ceduring therefore creates problems if output of a pass is generated sequen
tially. The neE!d for proceduring, e.g., of the first operand of a formula, is
recognized only very late, e.g., after the whole formula is processed. But
forming a procedure requires the insertion of some instructions in front of
the procedure-body, which by the time the need is recognized, may already
be on the backing store.

5. SCOPES OF REFERENCES, PROCEDURES AND FORMATS

Any variable has a scope, outside of which it cannot be used. At the end
of the execution of a closed-clause or a procedure the storage allocated to
local variables or parameters is freed, and therefore references to such
variables or procedures containing global variables should end their exist
ence when the scope of these variables is left.

Therefore the program

begin ref int ii
---------tnt z; -

begin int j := 0 ;
(*) ii :=j

end;
(**) i:= ii + 1

print (i)
end

should fail because in (**) an attempt is made to access the value of the
variable j which has already ceased to exist *. Since it is nearly impossi
ble to check this mistake at compile-time, there is a rule that no local
value may be assigned to a nonlocal variable. Hence (*) is wrong.

Except when the reference is the result of a procedure, an operation or

* The same problems are encountered with pOinters in PL/I, but while ALGOL 68
states the scope-rules explicitly, PL/I says nothing about this problem.

SOME PROBLEMS IN COMPILING ALGOL 68 191

a dereferencing, the scope-rule can be controlled at compile-time. Unfor
tunately, the remaining cases require that for all references space is re
served at run-time not only for the address representing the reference but
also for a mark indicating the scope *.

The same considerations apply to procedures. But while it is convenient,
in the case of references, to check the scope-rules at the same time as co
ercing is done, this is impossible for procedures, since, due to procedur
ing, the set of all procedures is known only at the end of that pass. Further
more, while the scope of a reference follows immediately from the corre
sponding declaration or generator, the scope of a procedure has to be com
puted as the minimum scope of all globally declared objects occurring in it.
This can also be done only after it is known where proceduring is applied.
These remarks show the use for a pass between coercing and code-genera
tion. Due to historical reasons our compiler determines scopes of proce
dures during the coerCing-phase also; but this solution is expensive in time
and program logic and is therefore not recommended.

Formats, if they contain dynamic replicators, cause the same problems
as procedures. This will be seen in the next section.

6. THE HANDLING OF FORMATS

Apart from dynamic replicators, formats cause no special problems;
they can be completely compiled in the first pass. Unlike FORTRAN,
ALGOL 68 does not allow for reading formats at run-time, and therefore
very efficient coding of formatted I/O is possible.

If a format contains dynamiC replicators, then the transition format ->

transformat described in the syntax and semantics of the language
[9, 5.5.8.1] implies the evaluation of the replicators and the saving of the
results for use in one or more I/O-operations. This transition can occur
more than once, the second time before use of the first transformat has
finished. As a consequence, the appropriate solution is to compile a proce
dure from the format which on evaluation delivers a structured value con
sisting of the computed values of all dynamic replicators and the format
string in internal form. The mode of this structured value is internally de
clared and the computed value has to be stored on the \leap, not in the push
down-store. This method is shown by the following example:

The format

compiles to

$ 1 2zd, n(2xi+1) xn(3Xj) (zd.4d3~)$

mode ~ = struct(int dr1, dr2, stringj) ;
proc transform = ~ ~ :

* Of course this remark does not apply when a program is completely debugged and
is to be compiled to get fast object-code.

I

192 G.GOOS

{heap s s := (2xi+l, 3><j, "l2zd, n{drl qj s) xn{dr2 qj s)
(zd.4d3x)") ;s) *

7. THE MUNICH IMPLEMENTATION OF ALGOL 68

The following list ** gives an overview of the subdivision, into tasks, of
the implementation which presently is in construction at the Technische
Hochschule, Munich.
Tl : Preprocessing of the program in order to form a string of symbols (in

this, a c!laracter, e.g. the character "(", or a group of characters,
e.g. " .. ", which may represent different symbols, is treated as one
symbol), deletion of comments. Reconstruction of tags and replace
ment of tags by internal keys, replacement of denotations except for
mat- and procedure-denotations by internal values.

T2 : Syntactic analysis of formats except dynamic replicators. Construc
tion of a procedure for each format which first calculates the dynamic
replicators and then delivers the corresponding transformat.

T3 : Preliminary determination of ranges. Construction of the connection
and the preliminary declarator-list. For each mode- and priority
declaration an entry is made in these lists.

T4 : For each operator- and identity-declaration, formal-parameter of a
procedure, generator and label-definition, an entry is made in the
connection- and declarator-list.

T5 : Mode- and priority-independent parsing.
T6 : Development (a generalization of the development of the Report) of de

clarers for deleting the mode-indications from the declarator-list.
Check of the declaration condition and the uniqueness condition for
mode-declarations. Check of the existence of all required mode
declarations, marking of all mode-declarations from which generator
procedures have to be produced.

T7 : Identification of identifiers.
T8 : Construction of procedures from all mode-declarations which were

marked by T6.
T9 : Addition of declarations for all identifiers not declared or defined in

the particular-program from the library. (Only the formal-declarer
is needed.)

Tl0: Check of the uniqueness condition for tags and operators. Addition of
the appropriate priority to the entries for operators in the connection
list. The entries for priority-declarations may now be deleted.

Tll: Check of the mode-condition.
T12: Deletion of all entries in the declarator-list which occur more than

once. This operation constructs the final declarator-list.

* Of course, the string is represented internally by a pointer to the code to wbich
the format-string has been compiled.

* * This list and the diagram are reprinted from [3].

SOME PROBLEMS IN COMPILING ALGOL 68 193

T13: Mode-recognition, identification of operators, identification of field
selectors, coercing and balancing. Addition of operator-declarations
from the library if necessary. Final determination of ranges.

T14: Transformation of the program into reverse polish form.
T15: Determination of the scope of procedures. including those procedures

constructed by T2.
T16: Check of the scope-condition in assignation as far as possible and in

sertion of the check-operations in the program if not possible.
T17: Construction of lists containing the information which is needed later

for the linear address-calculation of subscripted variables in loops.
T18: Insertion of the coercing- and scope-check-operations determined in

T13 and T16 at the appropriate place in the program.
T19: Optimization by linear address-calculation.
T20: Transformation of reverse polish form into one-address form and in

troduction of the necessary auxiliary variables.
T21: Determination of the storage allocation for run-time and construction

of the parametrization for garbage-collection.
T22: Code-generation.
T23: Construction of lists for post-mortem-routines.
T24: Final addressing.
T25: Addition of the code of procedures from libraries including the code

of standard-procedures. Addition of the declarator-lists belonging to
these procedures to the given declarator-list. Repetition of T12. In
sertion of code-numbers for modes in the program; afterwards the
declarator-list may be deleted.

T26: Loading of the program.
T27: Run of the program.

Tasks T8 and the corresponding remark in T6 refer to the fact that if
storage is allocated to a value of a mode which produces array-descriptors,
"storage-allocators" have to be constructed if the mode is given by a mode
declaration. These storage-allocators are non-trivial procedures, especial
ly if the RHS of the mode-declaration contains another mode-indication with
the same property.

Task T19 indicates that this implementation tries to optimize loops by
linearizing the address-calculation of elements of arrays. This optimiza
tion, which is particularly useful in numerical applications, is possible in
ALGOL 68 with fewer restrictions than in ALGOL 60 (see [4]).

Figure 5 shows the distribution of the tasks over the passes. The num
bers refer to the list of tasks. An arrow indicates that the completion of the
first task is prerequisite to the second task. Only the more important in
ferences are indicated; some minor ones are given by dotted arrows. As a
consequence of the grouping of tasks into passes, tasks have to be treated
simultaneously. This implies some additional tasks which are not shown in
the diagram.

Pass 2 mainly has to clear the different tables and therefore could be
avoided *. The other pass which is added to the 4-pass scheme discussed in

* Note that (7) discusses a scheme in which pass 2 has a much more important role.

194 G.GOOS

J

~~~} 

----~~~~+-~~~--~~--~ J 

} 
------~~~------+------------~ 

) 
Figure 5. 

Pass 1 

(6 at the end 
of pass 1) 

Pass 2 

(backwards) 
(9,10.11,12 at 
the end of pass 2) 

Pass 3 

Pass 4 

(backwards) 

Pass 5 

Pass 6 

(25 either between 
23 and 24 or be
tween 26 and 27) 



SOME PROBLEMS IN COMPILING ALGOL 68 195 

the introduction is pass 4. Besides optimization its main job is to move all 
the internal operations determined by pass 3 (see sections 4, 5) to the cor
rect places. The author sees no way to avoid this pass without complicating 
the logic of other passes to such an extent that no benefits result. 

ACKNOWLEDGEMENTS 

The author thanks his coworkers Miss u. Hill. Mr. H. Scheidig and Mr. H. Wossner 
for many useful discussions. The detailed design of the algorithms to solve the prob
lems, especially in the area of coercion and loop-optimization, is mostly their work. 

ABSTRACT 

In order to compile ALGOL 68. certain problems which are not present in the 
compilation of FORTRAN or ALGOL 60 must be solved. Most of these problems are 
caused by the extensibility properties of ALGOL 68, namely the ability to introduce 
new modes and new operators. This paper describes some of these problems and 
discusses a possible decomposition of an ALGOL 68 compiler into separate tasks. 

REFERENCES 

[1] Branquart. P. and Lewi, J .. Analysis of the parenthesis structure of ALGOL 68. 
Rep. R130, MBLE Brussels, April 1970. 

[2] Goos, G., Eine Implementierung von ALGOL 68. Rep. Nr. 6906. Rechenzentrum 
Technische Hochschule MUnchen, 1969. 

[3] Goos, G., Scbeidig, H. and Wassner. H .. Mode representation and operator 
identification in ALGOL 68, Proc. of an Informal Conference on ALGOL 68 Im
plementation, University of British Columbia, Vancouver. August 1969. 

[4] Hill, U .. Automatische rekursive Adressenberechnung fUr hahere Progammier
sprachen, insbesondere fUr ALGOL 68, Thesis, Technische Hochschule MUnchen. 
Februar 1969. 

[5] Koch, F .. The recognition of ranges in ALGOL 68. Thesis. University of Calgary, 
September 1969. 

[6] Koster, C. H. A., On infinite modes. Algol Bulletin AB 30.3.3. 
[7] Mailloux, B. J., The implementation of ALGOL 68, Thesis. Mathematical Center, 

Amsterdam, 1967. 
[8] Scheidig, H .. Coercions in ALGOL 68, Rep. Nr. 7005, Mathematical Institute. 

Technische Hochschule MUnchen, July 1970. 
[9]VanWijngaarden. A. (Ed.). Mailloux, B.J .. Peck, J.E.L.andKoster. C.H.A .. 

Report on the algorithmic language ALGOL 68, Num. Math. Vol. 14 (1969) pp. 79-
218. 

DISC USS ION 

Koster: 
I would like to ask two questions about T3. In your diagram of the decla

rator-list some mode-indications occur, for instance this s. Should not 
they be accompanied by some kind of block number, in ord;r to discrimi
nate between the various ~'s that you have defined? 



196 G.GOOS 

Goos: 
Of course, they should. I have simplified the diagram. Also it is not 

made in a manner whereby references and longs have a separate entry. 
These things are really together. We have much more information than is 
given in the diagram. 

Kosier: 
Do you do anything to keep this declarator-list as small as possible, ac

cording to the following lines: if you are in some specific range and meet 
there two declarers which are the same sequence of symbols, you need to 
store only one of them. 

Goos: 
We do not. The problem in our case is that in the first reading it may 

happen that, if we try to get this list short, it is still too long to hold com
pletely in core. Therefore we just add one new entry after another and at 
the end of the first parsing we load the whole list into core. We have now 
no buffers for any other things and we process the list completely in order 
to shorten it. 

Kosier: 
Still. I think that you could have a considerable shortening of your de

clarator list, for instance in programs using only real and '!!!1. real. If you 
are going to have 1000 copies of real in your list ... ? 

Goos: 
The standard declarators real and ref real, etc., are identified sepa

rately. 

Ershov: 
How do you implement indirect addressing as implied, e.g., by !!!l real 

x = a[i]? 

Goos: 
Declarations of this form are transformed internally into ref ref real x' 

= !.£1 real := a[ i]. In the corresponding entry of the connection-li8tit is an
notated that x' has to be dereferenced once at every applied occurrence. 
This dereferencing takes place also in soft positions. In the same way we 
handle arrays with flexible bounds: 

[1 : 2 flex] real a 

is transformed into something like 

~[ ] real a' := [1 : 2] real 

with one dereferencing every time a' is used, except in those cases in which 
a new array is assigned as a whole. 

Ershov: 
What is the stage of development as a whole? 

Goos: 
The stage of the development is that four of the six passes are coded· 

some of which are partially running and some are in the debugging stage. 



SESSION 5 

(Chairman: C.H.A.Koster) 





A SCHEME OF STORAGE ALLOCATION AND 

GARBAGE COLLECTION FOR ALGOL 68 

P. BRANQUART and J. LEWI 
MBLE Research Laboratory. Brussels, Belgium 

INTRODUCTION 

The purpose of this note is to outline a system incorporating both the 
schemes of storage allocation and garbage collection. In this sketch, the 
accent is laid rather on the basic principles and theoretical aspects than on 
pragmatic details and particular hardware considerations. 

In developing the scheme of storage allocation and garbage collection. 
the following main strategy is adopted: utmost advantage has been taken of 
the static information on the values dealt with by the program; an important 
static information results from the concept of 'mode oj a value'. 

This strategy is maintained for each of the four parts of the storage al
location scheme. 

The first part handles the storage structure of the different ALGOL 68 
values in memory. This part forms the kernel of the storage allocation 
system and it lays the basis for an efficient access scheme for values and 
for components of compound values. 

The next two parts are concerned with an important feature which is 
present in most programming languages, Le., the ability to allocate and 
recover storage in a dynamic way. This dynamic storage control can be 
done essentially in two distinct ways: by means of a stack and by means of 
a heap. This leads us to the respective problems of the ALGOL 68 stack 
organization (part 2) and heap organization (part 3). 

The heap, in contrast with the stack, is a randomly organized storage 
zone where storage recovery is performed by an operation called garbage 
collection (explained in part 4 of this note). The construction of the garbage 
collector is based on the following three principles: 

(i) utmost advantage is taken of the static information (especially of the 
mode of the values); 

(ii) dynamic information to be stored during the garbage collection is re
duced to a minimum; 

(iii) program execution is not slowed down outside the garbage collection. 
The first rule directly influences the speed of the garbage collection, 

whereas the second rule influences the amount of storage needed by the 
garbage collection routines at a moment this storage is scarce. The most 
critical point is the third rule which causes some problems related to the 
working stack. 

199 



200 P. BRANQUART and J. LEWI 

Both schemes of storage allocation and garbage collection are developed 
for a direct access memory. In the sequel, a (memory) cell is considered 
to be the smallest addressable storage unit in the memory and by a location 
is meant a number of consecutive cells. 

PART 1. THE STORAGE STRUCTURE OF VALUES 

The memory representation of a value may consist of different locations 
(which are not necessarily contiguous in memory). The hierarchical order
ing of these locations for a given value is called the storage structure of 
that value; the term storage structure differs from that of memory repre
sentation in that the former is not concerned with the exact bit patterns. 
As an example., by storage structure of a structured value (record) is 
meant the size of the location for that value as well as the sizes and the 
relative positions of all the sublocations for the individual fields of that 
value (and this in a recursive way if in turn fields are compound values). 
The study of the storage structure forms the basis of the storage allocation 
since it determines the degree of efficiency of the access scheme for dif
ferent components of a given compound value. 

The description of the storage structure of values is based on the re
cursive definitions of static part and dynamic part of a value. For any val
ue, static part and dynamic part are such that the storage structure of the 
fo.rmer can be deduced from the mode of the value, whereas that of the 
latter cannot, but depends on an elaboration in the program. As an ex
ample, the size of the descriptor of an n-dimensional real array and the 
place where to find its ith quintuple (with i.., n) depend only on the mode of 
the array (on the number of dimensions), mode which is specified by the 
declarer "[II : Jl' ... , In : I n] real"; the descriptor is then said to be the 
static part of the array. However, the number of the elements constituting 
the dynamic part depends on the elaboration of the bounds Il,Jl,'" ,In,Jn 
in the program. 

In the sequel, the terms static and dynamic, used for any given proper
ty, are equivalent to respectively mode deducible and elaboration depend
ent. 

In ALGOL 68, one can distinguish five main types of value: the ordinary 
values, the names, the multiple values (arrays), the structured values 
(records) and the values of united modes. 

(i) Ordinary values are of the modes "int", "real", "bool", "char", 
"bits", "bytes", "proc (ILl"'" ILnJ IL", "proc (ILl' ••. ,lLnJ", 
"proc IL", and "proc", where IL stands for any mode. They are stored 
into locations of static size depending on a specific hardware; one 
might say that their storage structure is elementary. Note that rou
tines are stored at compile-time in the form of pieces of object code 
and they are manipulated by using the addresses of the locations con
taining these codes. 

(ii) A name is characterized by the mode n~ IL" where IL stands for any 
mode as it is recursively defined in this section. Such a name refers 



STORAGE ALLOCATION AND GARBAGE COLLECTION 201 

to a value of the mode" Jl" and it is represented by a pointer (Le., a 
stored address) to the memory representation of that value. In the 
case an address is stored into one memory cell, the size of a pointer 
is one. In the sequel, a pointer will be denoted by p (possibly indexed). 

(iii) A multiple value is characterized by the mode "L, ... ,] Jl"; its mem-
0ry representation consists of a static part, the descriptor, and a dy
namic part, the elements which are all of mode "Jl". The static part 
(descriptor) of a multiple value consists of a number of quintuples (a 
quintuple for each dimension) and a pointer to the dynamic part (ele
ments). Quintuples contain the coefficients of what is called in [3] the 
storage mapping junction for the elements of the multiple value. 
Each element of the multiple value is stored III a way depending on the 
mode "Jl"; all their static parts are stored together into one locatiofl. 
Clearly, this location has a dynamic size, since the number of ele
ments is dynamic; this size can be dynamically (at run-time) derived 
from the quintuples. In this sense, the descriptor of a multiple value 
contains dynamic storage information. In the sequel, a descriptor and 
a quintuple will be respectively denoted by D and q (possibly indexed). 
The storage structure of a multiple value M is illustrated by fig. 1, 
where M is of mode: 

H[,] struct ( int a, b)" 

V static part 
of M 

(static size) 

I! 

ql 

q2 j p 
'--__ --'-~t____-l--JJ 

I 2 I 
dyn amic 

of 
(dyn amic 

part 
M 
size) 

E8 
, I 

: : , , , , 
, 

Fig. 1. 

static part of 
an element of M 
(static size) 

(iv) A structured value is characterized by the mode" struct (Jll (J"l' ... , 
Jli ai' ... , Jln an)", where Jli is a mode and ai a field selector (n ;, 1); 
the static parts of all fields of the value constitute a location defined as 
the static part of the structured value. The dynamic parts, if any, of 
these fields constitute the dynamic part of the structured value and 
they are stored elsewhere in memory; their storage structures depend 
on the modes of their corresponding fields. 
It must be emphasized that each field selector ai is translated into the 



202 P.BRANQUART and J.LEWI 

relative address of the static part of the ith field; this results in a very 
efficient addressing mechanism for fields of structured values. 
The storage structure of a structured value S is illustrated in fig. 2, 
where S is of the mode: 

"struct (int n, [ ] compl m, bool P)" 
S 

. l' 
stat1c part 

of S f-----:~--I 
(static size) 

. 1=::::= 

1 

Fig. 2. 

dynamic part 
of S 

(dynamic size) 

(v) A united mode is of the form "union (Ill' ... , Ili' ... , Iln )", n ;;, 2, 
where all Ili ' s are non-united modes. A value of such a mode which 
is a compile-time mode is at run-time of one of its constituent modes, 
say" Ili", its current mode. In memory such a value consists of a 
static part and possibly of a dynamic part. This static part is divided 
into two subparts. The first one, termed the model, contains the cur
rent mode of the value. The second subpart contains the static part of 
the value stored in a way depending on the current mode" Ilin; the size 
of this second subpart is the maximum static size of any value of any 
of the constituent modes "Ill" . ... , I' Iln". The dynamic part of the val
ue is stored elsewhere in memory; its storage structure depends on 
"Ili". Note that the storage structure of this second subpart must be 
deduced at run-time from the model (containing the current mode) and, 
in this sense, the model (as the descriptor of a multiple value) con
tains dynamic storage information. According to the above definition 
of size, the static part of a value of a united mode may have an unused 
storage space. This space will be termed the residue of that static 
part and it will be denoted by res. The model of that static part will be 
denoted by m. 
The storage structure of a value of a united mode is illustrated in 
fig. 3, where U1 and U2 are values of the united mode: 

"union (int, [,] char)" 

In this example, U1 is of the run-time mode "int", 
whereas U2 is of the run-time mode ,,[,] char". 



STORAGE ALLOCATION AND GARBAGE COLLECTION 

static part 
of U1 

(static sue) 

" [~ Jahar" 
ql 
q2 
p 

Fig. 3. 

PART 2. THE STACK ORGANIZATION 

static part 
of U2 

"a" 

I "b" 
J 
I dynamic part 

of U2 

203 

One of the important features of most languages is the ability to allocate 
and recover storage dynamically. This dynamic storage control can be 
done essentially in two distinct ways: by means of a stack or by means of a 
heap. In ALGOL 68. stack controlled values are values of identifiers, par
tial results of expressions and values referred to by names of local gener
ators. This classification of values (more precisel'y of instances of values 
in memory), which is bas"ed on the properties of access. life-time. and 
storage control, is such that with each class an adequate storage device, 
basic stack, can be associated; these three basic stacks are: 

(i) the identifier stack (id-stack) 
(ii) the local generator stack (lg~stack) 

and (iii) the expression stack or working stack (wo-stack). 
First, we shall treat these three stacks independently from one another 

in order to show the basic principles (as they are defined in [1]) of storage 
handling of stack controlled values. Then. it will be examined how these 
three stacks can be merged into one, termed the range stack, thus leading 
to a practical memory organization where the only two devices of dynamic 
size are the range stack and the heap. Clearly, this merging must pre
serve the basic principles of storage handling, which are characteristic of 
each of the three stacks. 

(i) The identifier stack (id-stack) 
Values can be made to be possessed by identifiers or can be components 

of such values in which case they are possessed by notions called slices 
and field selections. E.g., the declaration "compl c = (1.1, 2;2)" causes 
the identifier "c" to possess the complex value "(1.1,2.2)" and causes the 
field selection "re of c" to possess the real number" 1.1". 

Storage handling of the values of this class is based on the nested struc
ture of ranges and it is implemented by means of a basic stack, the id
stack, where the values are stored in blocks !Qi; each block of the stack 
corresponds to a program range entered but not yet left. Access to the 



204 P. BRANQUART and J. LEWI 

values of this class is obtained by organizing each block id i into a static 
part sidi and a dynamic part didi' This partitioning of a block idi is iden
tical with that of a structured value of the mode: 

"struct (Ill a1 , .... Ilkak' .. , Ilna,J" , 

where n represents the number of identity and/or operator declarations of 
the ith range. By such a declaration an identifier or an operatol ak (1"; k";n) 
is made to possess a value (a routine in the case of an operator) of the 
mode Ilk. 

As long as they are created and unstacked together, in practice. static 
part sidi and dynamic part did i need not be adjacent in memory (see practi
cal stack organization in (iv)). 

It must be emphasized that the storage structure of sidi is static. thus 
permitting an efficient access scheme for values in sidi' The block sidi it
self can be acc,essed by the classical use of a display and of a dynamic 
chain of block heads [3]. 

As an example illustrating the organization of the id-stack, consider the 
following declarations occurring in the range Ri of a program: 

end 

reaZ pi = 3.14 ; 

!:£i reaZ x = Zoe reaZ ; 

[1 : 3] int a1 = (1, 2, 3) ; 

struct (int m, [1 :4] char n) s = 
(1, ("a", lib", "e", "d")) ; 

The id-stack organization is then illustrated by fig. 4. 



STORAGE ALLOCATION AND GARBAGE COLLECTION 

pi 

:r; 

1:3 

sid. 
-1- 1 

V 

11 

Fig. 4. 

(ii) The local generator stack (lg-stack) 

did. 
-.1-

205 

Values, more exactly names, may be created by local generators of the 
general form "loc 11 " where 11 specifies a given mode, e.g., "real", 
"struct (int n, [1 :4] char m)", etc ... When such a local generator is elab
orated, storage space is reserved for a value of the mode "11 ". Since local 
names have a life-time which is based on the nested structure of ranges, 
the storage reservation is done on a basic stack, the 19-stack. This stack 
is organized in blocks 19i and the whole block 19i is unstacked when the ith 
range is left. Since the amount of local names created in a program may 
depend on computations, the size of 19i is in general dynamiC. 

Note that the address of the storage space reserved at the elaboration of 
a local generator represents the name thus created; in turn, this address 
appears on one of the three basic stacks or on the heap (this depends on the 
actual use of that local name in the program). 

As an example illustrating the organization of the 19-stack (fig. 5), con
sider the following local generators appearing in the range Ri of a program: 

••• 1-oc !6a1- : = 3. 14 ••• ; 

••• 1-oc [1 : 4J int := (1,2,3,4) •••• , 

••• 1-oc 8truct (int m, [1:4J char n, boo1- p) 

: = (5, ("a", "b", "c", "d"), true) 

end 



206 P. BRANQUART and J. LEWI 

3.14 

1:4 

-0 
1 
2 

3 
4 

5 
1:4 

true J 
a 

''b " 
a" 

"d" 

~ 
Fig. 5. 

An important optimization is to be done, when local generators are used 
in identity-declarations of the general form" Jlx" ; e.g .. "real X". 

"[J1 : J2] int y", etc. (these declarations are contractions of respectively 
"rej real x = loc real" and "~[Jl : J2] int y = loc [Jl : J2] int"). The opti
mization consists in reserving the static part of the storage space on id
stack instead of 19-stack; the dynamic part remains on the 19-stack. 

There are three cases where the values referred to by local names do 
not fit the last-in first-out principle of the 19-stack. These cases which 
are treated in part 3 of this note are entitled: 

(i) the strongly dynamic local names 
(ii) the local names oj slices 

and (iii) the local names oj rowed-coercends 
(iii) The expression (working) stack * (wo-stack) 
Values resulting from expressions (and subexpressions) are handled by 

a basic stack, the wo-stack. In contrast with ALGOL 60, the wo-stack 
must deal with values (compound values) with dynamic parts. The access 
to such dynamic parts on this stack is provided by splitting it up into a 
static working stack (swo-stack), containing all the static parts of the val
ues, and a dynamic working stack (dwo-stack) containing all dynamic 
parts. An important pOint is that the maximum size of the part of the swo-

* In the literature. this stack is often called formula stack. In this note, we shall 
consider that expressions contain not only arithmetic operators and operands. but 
any type of operator (e.g., assignation operator. identity relator, selection and 
slicing, etc ... ) and any type of operand (e.g .. names, routines. multiple and 
structured values, etc ... ). 



STORAGE ALLOCATION AND GARBAGE COLLECTION 207 

stack which corresponds to a given ith range is static and is of reasonable 
length; this part of the swo-stack is called maxi' This property is used in 
(iv) where a practical stack organization is discussed. 

As an example, let us consider the following expression occurring in the 
range Ri of a program: 

begin 

end 

E!!i. [J int :r:x ; 

[1:3] int x; 

:r:x := x := (1,2,3+4*5) 

Fig. 6 below must be considered a snapshot taken at the moment when 
the last term in the formula "3 + 4 * 5" constituting the collateral clause is 
put on the stack. (Several types of optimization in the sense of [9] and [10] 
could be applied to the wo-stack, but this is outside the scope of this 
note.) 

swo-stack 

v 

(iv) The range stack 

:r:x (to 19-stack) 
x (to 19-stack) 

2 

Fig. 6. 

dwo-stack 

Until now, attention has been focused on the efficiency of the access of 
values and on their storage handling for each individual basic stack: the 
id-stack, the 19-stack and the wo-stack. In practice, however, one should 
dispose of a memory organization where only two devices of dynamic size 
are available. This will lead to the problem of merging the three basic 
stacks into one, termed the range stack. This merging must preserve the 
principles of access and storage handling, which are characteristic of each 
basic stack. 

In practice, the range stack is organized into blocks (one for each range 
entered but not yet left). Each block of the range stack has a static part and 
a dynamic part. 



208 P. BRANQUART and J. LEWI 

(a) The static part of ith block consists of both sidi and maxi; it has a static 
storage size. This part of the block is organized at compile-time. This 
permits all the values of this part of the block to be accessed by rela
tive addresses. 

(b) The dynamic part of the ith block results from the merging (which takes 
place at run time) of both didi and % and it has a dynamic storage size. 
This part of the block is organized in a dynamic way. Access to the val
ues on this part of the block is performed by pointers which either rep
resent accessible names or are stored in descriptors of accessible 
multiple values. 

(c) Finally, the dwo-stack is put on the top of the range stack. This is pos
sible if no other part varies when the dwo-stack is used. This condition 
is fulfilled when local generators in collateral clauses are treated in a 
particular way [11]. Note that when a range Ri is entered, the dwo
stack corresponding to an outer range Rj need not be empty. This res
idue of the dwo -stack is denoted by dwoj ~with j < i). 
The storage organization of the range stack is schematically illustrated 

in fig. 7. 

static part 
of the 

ith block 

dynamic part 
gf the 

it block 

static part 
of the 

(i+l)th block 

dynamic part 
of the 

(iH)th block 

b 
l~idi. max. 

-1 

i 
i 

did. 
-1 

.!£i 

dwo. 
-1 

sidi +1 

maxi +1 

did i +1 

.!£i+1 

dwo-stack 

----------

~ 
Fig. 7. 

range stack 

ith block 

(iTllh block 
(top of the range 

stack) 



STORAGE ALLOCATION AND GARBAGE COLLECTION 209 

It must be emphasized that values or parts of them, wherever they may 
be in memory, can be accessed only through the static part of the blocks of 
the range stack, more precisely through sidi and/or maxi for some i. This 
general principle will be used for the construction of a garbage collector 
(part 4) where the blocks sidi and maxi are called access blocks. 

PART 3. THE HEAP ORGANIZATION 

ALGOL 68 deals not only with stack controlled values but also with val
ues which do not fit the last-in first-out principle of a stack. Values of the 
latter type have to be stored on a random organized memory zone called 
the heap. This leads to a memory organization where the memory is dy
namically partitioned into three zones: the range stack. the heap and a zone 
called the free space. When the latter is exhausted. all the heap locations 
containing inaccessible values are then returned to the free space by a 
process called garbage collection, explained in part 4. 

According to the language definition [1], only values referred to by 
global names should be handled by the heap. E.g., by the elaboration of the 
generator "heap real: = 3.14" in a program, a location will be reserved on 
the heap to store the value "3. 14". Actually. there exist three distinct 
cases where the value referred to by a local name is not accommodated by 
the stack mechanism and thus must be stored on the heap. These three 
cases are: 

(i) the case of strongly dynamic local names 
(ii) the case of local names of slices 

and (iii) the case of local names of rowed-coercends 
(i) The strongly dynamic local names 
A name (local or global) is said to be strongly dynamic if its creation 

causes a storage space of variable size to be reserved; i.e., a space which 
may grow and contract during the elaboration of the program. Such names 
are created by generators using "flex" and/or "union". giving rise to stor
age spaces with a dynamic part; e.g., names created by "QI[l : 21lex] int" 
and "QI union (bool, [ ] int)", where QI stands for "loc" or "heaP". are 
strongly dynamic (respectively local or global) names; however, the name 
created by "QI union (bool, int)'! is not. The use of a strongly dynamic local 
name is illustrated by the following program showing that the creation of 
the strongly dynamiC local name possessed by "x" causes a storage space 
to be reserved, the dynamic part of which is not accommodated by the 
range stack (lg-stack). 

begin !!!.i. [ Jint x = Zoa[1:2~lint := (1,2) ; 

begin •••••••.. 

x := it rundom ;. 0 then 1 eZse (1,2,3) Ii; ....... . 
end 



210 P. BRANQUART and J. LEWI 

The storage allocation scheme for strongly dynamic local names works 
as follows: at the creation of such a name, the static part of the storage 
space is reserved on the range stack (lg-stack), whereas its dynamic part 
is on the heap. 

(ii) The local names of slices 
Let P represent a local name referring to a multiple value M with a de

scriptor D and with elements E and letPI be a local name referring to a 
subvalue M1 of M. The descriptor DI of MI describes a number of ele
ments E1 of E. 

This situation is schematically illustrated by fig. 8. 

M 

p : "' ~"~;"U~'------'E 
plrl--~'~I----~;~l~---------~~ 

I I I 
I I I 

I L-.J 
I 

Fig. 8. 

According to the language definition [1], both names P and Pl have the 
same scope; let the range Ri be this scope. If the subvalue M1 comes into 
existence in an inner range of Ri, then the descriptor D 1 of M1 is not ac
commodated by the range stack, since DI must live outside that inner 
range; D1 is then stored on the heap. 

This case is illustrated by the following particular program where the 
name P is possessed by "x" and the name P1 results from the slice "X [:I: 3]" 

begin ~ [ Jint = ; 
[1:3Jint:r; := (1,2,3) ; 
.......... 

begin =:= :r;[2:3] ; 
........... 

end 

end 

In [8] a method has been developed, which avoids the use of the heap for 
values referred to by local names of slices, thus preserving the principles 
of 'local' (stack controlled) and 'global' (heap controlled) of the language. 
The main idea of this method consists in regarding the descriptor D1 as 
forming part rather of the name PI than of the value MI' In terms of stor
age structure, this means that the memory representation of a name of 
mode "ref[, •.. ,] fJ." systematically consists of a pointer space and a de
scriptor space. The former space contains the pointer representing the 



STORAGE ALLOCATION AND GARBAGE COLLECTION 211 

name, the latter space is used to copy the descriptor of a multiple value as 
soon as this name is made to refer to that value by an assignation. 

This solution gives some difficulties for multiple values referred to by a 
strongly dynamic name using the 'flex' feature. The problem is caused by 
the fact that the contents of a descriptor of such a multiple value may 
change during the elaboration of a program; since different names can be 
made to refer to that value. there may be only one instance of that descrip
tor in memory. This problem is treated in [8J. 

(iii) The local names of rowed-coercends 
Let againp represent a local name referring to an m-dimensional mul

tiple value AI with a descriptor]) and elements E. This multiple value M can 
be rowed-coerced a number n of times. so that a namePl appears which 
refers to an n + m dimensional multiple value with a new descriptor Dl and 
the same elements E (note that Dl is different from D). This situation is 
illustrated by fig. 9. 

Fig. 9. 

According to the language definition [1 J, both names P and Pl have the 
same scope, say Ri. If the coerced value Ml comes into existence in an 
inner range of R i, then the descriptor D 1 of Ml is not accommodated by the 
range stack and is stored on the heap. This case is quite analogous to the 
case (ii) where the operation 'sliCing' must be replaced by the operation 
'coercing' . 

This case is illustrated by the following program: 

begin = := x; 

end 

end 

By the declaration "[1 :.3]inf x := (1.2,.3)", the identifier "x" is made 
to possess a name P referring to a multiple value M consisting of a de
scriptor D and elements E. The value of "x" in "xx: = x" is rowed-



212 P. BRANQUART and J. LEWI 

coerced; this means that a new name is made to refer to a subvalue Ml of 
the multiple value M; Ml consists of a new descriptor Dl (with one dimen
sion more than D) and the same elements E. BothP and Pl are local to the 
outer range. The descriptor Dl of Ml is built up in the inner range and 
therefore is not accommodated by the range stack. There is a method to 
avoid the use of the heap for values referred to by names of rowed-coer
cends; this method is identical to that in case (ii). 

Note that the problem of local names of rowed-coercends also exists 
when the coercend is a non-multiple value V; the value resulting from the 
rowed-coercion operation is then an n-dimensional multiple value Ml with 
a descriptor Dl and only one element V. 

PART 4. THE ,GARBAGE COLLECTION 

The memory is dynamically partitioned into three zones: the (range) 
stack, the heap and a zone called free space having the form either of a 
contiguous memory area or of a list of holes. When this free space is ex
hausted, all the heap locations containing inaccessible values are returned 
to the free space by a process called garbage collection. Actually, the zone 
in which the heap is organized consists of two merged spaces: the active 
space containing accessible values and the garbage containing (inaccessi
ble) values lost by the object program. The role of the garbage collection 
is then twofold: 
(i) to separate the active space from the garbage by tracing and marking, 

(ii) to reconstitute the free space either by means of a list of holes or by 
compacting all accessible values towards one end of the zone. 

1. The tracing oj list structures 

The memory can be considered to be ordered from a point of view com
pletely different from that of stack-heap organization. namely: from a 
point of view of list structures. Thus, values or parts of them, whether 
they are stored on the stack or on the heap, can be regarded as the ele
ments of list structures in memory. 

A list structure (abbreviated into list) consists of a number of memory 
areas, the nodes ni' linked by pointers Pi appearing within these nodes; 
these pointers represent the branches of the list; as it is explained below, 
nodes and branches represent well-defined values or parts of them. In 
ALGOL 68, list structures are of the most general type, i.e., they may 
have nodes of different sizes, they may share common sublists and they 
may even be cyclic. 

The main problem is the tracing of list structures. Tracing is the oper
ation through which each node of a list is recognized; this requires the 
knowledge of the size of each node and the exact place of the pointers con
tained in it. (Tracing can be compared with the operation of finding each 
node of an oriented graph.) In practice, tracing is done together with the 



r , 
STORAGE ALLOCATION AND GARBAGE COLLECTION 213 

operation marking which indicates that a branch has already been traced 
and must not be traced again; this is necessary to keep track of cyclic list 
structures. 

The tracing principles are based on the fact that each value in memory 
is of a given mode and has a given memory address. Suppose a given value 
forming part of a given list has been reached by tracing that list, then the 
2-uple consisting of the mode and of the address of that value characterizes 
the actual state of the tracing. This mode and this address are respectively 
called current mode cm and current address ca of the list and the 2-uple is 
then denoted by (ca, cm). One can distinguish five basic situations each 
corresponding to a tracing rule. These five situations are: 

(i) A node is constituted by a pointer p representing a name 
Suppose the name is of the mode "~J.l", then p points to a value of 
mode" J.l ". The corresponding tracing step is obvious and consists in 
following the pointer of address ca, thus obtaining the 2-uple (ca', J.l) 
on which in turn one of the five situations applies. 

em = "~}.i" em' :' "ll If 

'----+1 
I .... -,-~ 

The tracing step is then characterized by the transformation rule: 

(ca, ref J.l) ---> (ca', J.l) 

(ii) A node is constituted by the static part of a structured value 
This value is of mode "struct (J.ll al"'" J.l.ai"··' ilkak)". Ac
cording to part 1, the storage structure of this static part only de
pends on the mode; hence, from this mode, one can calculate the ad
dress of the ith field for any i (l,,;i,,;k), thus obtaining the 2-uple 
(ca', J.li) on which in turn one of the five situations applies. 



214 P. BRANQUART and J. LEWI 

em = "struet Q.J.l (Jl"'" /J.i(Ji'··· ,J.J.k(Jk) " 
ca em' = 

-I 
I 
I I 

i th j'i,U 0-> 
I • 
I I 
I I 

I ~---t~ 

~--f-~ ! ~--l-~ 
I ' 
I : 

ca~l!-__ -_-_--!l-J,~,~;z i 

I , 
I 

: 1 

The tracing step is characterized by: 

(ca, struct (J.J.l (Jl' ••• , J.J.i ai' ••• , J.J.k a,)) ---> (ca', J.J.i) 

for any i (l.;;i.;;k) 

(iii) A node is constituted by the static part (descriptor) of an n-dimen
sional multiple value. 
This value is of the mode ,,[, ..... J J.J." (n -1 comma's). The storage 
structure of the descriptor, i.e .• its size and the exact place of each 
quintuple and of the pointer in it. can be deduced from the mode. 
Since "J.J." describes the storage structure of the static part of each 
element and since all these static parts are put together. one is able 
to calculate from the mode the address of the ith element for any i 

(l.;;i.;;N). However. the maximum number N of elements is a dy
namic information and must be calculated from the quintuples of the 
descriptor. This leads to the 2-uple (ca', J.J.) on which in turn one of 
the five situations applies. 

em = ',[" ••• ,]ll" .. 
v 

I 
I 
I 

ith e1.ement G~ 
I I 
I I 
I I 
I I 

D~ 

em' rill" 

for an i 
l~i~ 

I =:Jl --+ 
I I 
I I 

1=3 
I 

I 
I 

[J. 



STORAGE ALLOCATION AND GARBAGE COLLECTION 215 

The tracing step is characterized by: 

(ca. [" ... ,]IL) -+(ca', IL)foranyi(l~i~N). 

(iv) A node is constituted by the static part of a value of a united mode. 
This mode has the form "union (ILl' ..• , ILk)"; it specifies the size of 
the static part of the value and the exact place of the model containing 
the run-time mode "ILi" of the value. This leads to the 2-uple (ca', ILi) 
on which in turn another situation applies. 

cm = "union" (1I1, .. ·,lIk)" em' = "lIi·" 

Cll 

IIi I m CI1' 

-~ 

The tracing step is characterized by: 

(ca. union (ILl' ... , IL,j) -+ (ca', ILi) 

(v) A node is constituted by an ordinary value. 
Locations containing ordinary values are the terminals of lists, 
where a particular branch ends; another branch, if any, can then 
start to be traced. Obviously, tracing requires a stack to memorize 
the branch pOints and other dynamic tracing information (see section 
3). 
cm = Hint" v "real" v "bool" v "char" v "bits" v "bytes" v 

"proc(Jll".JlnJlL" v "proc(1L1"'lLnJ" v ''ProcJ,J." v ''Proc". 

CIl 

~I I} a 

2. The access blocks 

In order to trace a list a starting address sa and a starting mode sm are 
required, forming the initial 2-uple (sa, sm). This sa is then the address 
of a particular node, called the starting node, which represents the static 
part of a value of mode sm. The memory areas containing the starting 
nodes of the lists to be traced are called the access blocks for these lists. 
These blocks are such that all values accessible from the object program 
can be reached by tracing the lists starting from these blocks. 

There are two types of accessible value: 
(i) Those which can be reached from the id-stack and they are called ex-

ternally accessible values. . 



, 
I.' 

216 P. BRAN QUART and J. LEWI 

All these values form part of lists which have sidi 's (for all i) as ac
cess blocks. 

(ii) Those which can be reached from the wo-stack and they are called in
ternally accessible values. 
All these values constitute lists which have maxi's (for all i) as access 
blocks. 

All other values have become inaccessible for the program. Note that 
values may be both externally and internally accessible. 

(i) The external access blocks 
From a conceptual point of view, a block idi is organized in the same 

way as a structured value of the mode iJ.ex,i obtained as follows. Suppose 
there is a reachRi with n identity and/or operator declarations, by which 
identifiers and/?r operatorsak (l""k ""n) are made to possess values (rou
tines in the case of operators) of the mode iJ.k' Then, iJ.ex,i is of the form: 

"struct (iJ.l al' ... , iJ.k ak' ... , iJ.n aJ" 

The block sidi as a whole is now considered to be the starting node of an 
accessible list with starting mode iJ.ex, i. 

It should be clear that there are as many such accessible lists as there 
are blocks sid i on the range stack; these blocks are dynamically chained in 
a classical way [3]. Any externally accessible value necessarily forms part 
of at least one of these lists. For example, consider the program: 

{mode !!.. = st:ruct (int i. ~ !!.. r) ; 

~ ~ reat:x:x: = r!!i reaZ := reaZ := :'.14 

( ~ booZ bb = booZ : = true; 

~!!.. s = Zoc s ._ (1, !!.. := {2, !!.. := (3, niZ))) 

After the elaboration of the last declaration, there are two blocks sid1 and 
sid2 on the range stack, which are the starting nodes of two accessible 
lists with iJ.ex, l' respectively iJ.ex, 2 as starting modes. 

iJ.ex , 1 is of the form "struct (!:!!l ref real xx)" and 

iJ.ex,2 is of the form "struct (ref bool bb, ref ~ s)" 

This is illustrated by fig. 10. 

J 



r 
STORAGE ALLOCATION AND GARBAGE COLLECTION 

sid) 

sid2 

.!..&2 

head of dynamic 
chain 

range stack heap 

LD of 
id1 

LD of 
id2 

b 

8 (.) 

Fig. 10. 
LD - link data 

217 

(ii) The in~al access blocks 
As it is described above, for reasons of accessibility the two-stack iSi 

split up into a static part, the swo-stack, and a dynamic part, the dwo
stack. In the ith block of the range stack, a storage space maxi is re
served (for each i) having the maximum size of the swo-stack for the range 
Ri· 

In principle, in a way analogous to section 3.1, maxi could be regarded 
as a starting node of a list structure with a starting mode /lin,i. The fun
damental difference between the internal and external access blocks is that, 
in the former case, /lin, i (for a given maxi) may vary each time a wo
stack operation is carried out, whereas, in the latter case, /lex,i (for a 
given si~) remains valid as long as sidi is on the range stack. In practice, 
Ilin,i will be implemented as a table Min,i of 2-uples, each 2-uple con
Sisting of the address of an internal accessible value and of its mode; this 
mode and address are respectively the starting mode and the starting ad
dress of an accessible list starting from that value. 

The method of using a table Min,i to save garbage collection information 

* In an optimized storage allocation scheme (8), it is not this location, but the lo
cation on ~2 which would appear on the id-stack. 



218 P. BRANQUART and J. LEW I 

for the wo-stack seems to be not very satisfactory because of a lack of 
run-time efficiency. which can be minimized by the following consideration. 
Garbage collection information has not systematically to be stored for all 
wo-stack values. Clearly. only those values which either are names or are 
structured and multiple values having names as components have to be 
taken into account. A more detailed optimization scheme is explained in 
section 6. 

3. The marking 

Marking is evidently done together with tracing. During the tracing of a 
list. all its active memory cells are marked by the use of an extra bit if it 
is provided by hardware or otherwise by the use of a bit table. This way of 
marking is known as cell marking. There exists another way of marking, 
location marking, which consists in the marking of an active location as a 
whole. Location marking requires each location to be provided with an 
overhead to store the mark and the size of that location; this method does 
not work here, since in ALGOL 68 in turn any sublocation may be consid
ered a location. 

Let us recall that the tracing of a list requires two things: the starting 
address, i.e., the address of the starting node of the list, and the starting 
mode, i.e., the mode of the value whose static part is that starting node. 
If the starting node is an external access block sidi, the starting address 
is the address of the block sidi itself and it can be reached by means of the 
dynamic chain of blocks on the range stack- the starting mode ilex,i is 
composed at compile time. If the starting node appears in an internal ac
cess block maxi' the starting address is contained in the corresponding ta
ble Min,i and again its associated starting mode is known at compile-time. 

As it has been emphasized in the preceding sections, the starting mode 
of a list contains all the information for tracing that list from its starting 
address. The routine performing both the tracing and the marking of the 
active cells of a list can be deduced from its starting mode at the moment 
of garbage collection itself. This method which is known as the interpretive 
method is not very satisfactory since it slows down the garbage collection. 
Garbage collection can be speeded up by generating at compile-time a 
marking routine for each possible starting mode. This method is known as 
the compiled method (its disadvantage may be the great amount of storage 
space taken by the compiled routines). 

(i) The interpretive method 
In section 3, we have discussed the tracing principles indicating by 

means of five recursive rules how a starting mode sm of a list can be in
terpreted to trace that list from its starting address sa. 

The routine MARK given below illustrates these principles. It consists 
in tracing and marking the active cells of a list with any given mode as 
starting mode and any given address as starting address; more precisely, 
MARK has two parameters: a current mode em and a current address ca. 



STORAGE ALLOCATION AND GARBAGE COLLECTION 219 

For reasons of clarity, the routine MARK is described in a schematic way; 
so one will recognize in the routine each of the five tracing rules of sec
tion 1. A more elaborated and practical version of the interpretive marking 
routine can be found in [6]. 

Before the routine MARK is outlined, some frequently used subroutines 
are given, which are denoted by CONT, NELEMENTS, RUNMODE, 
STATICSIZE, MARKCELLS and MARKED. 

int nU = ao integer aorresponding to the pattern of nU in the memopY ao ; 

proa (int)int CONT = 

ao CONT possesses a routine with an integral parameter representing 

the aurrent address of a memory aell. The result of CONT is an 

integer representing the aontents of that aell 

ao 

proa (int, string) int NELEMENTS = 

ao NELE~~NTS possesses a routine with two parameters : one is an 

integer representing the aurrent address of a desariptor 0, the 

other is a string representing the aurrent mode (whiah is of the 

form [" ••• , J II). The result of NELE~NTS is an integer represen-

ting the number of array elements and is deduaed from the quin

tuples of V. (The number of quintuples is deduaed j'rom the aur-

rent mode.) 

proa (int)string RUNMODE = 

ao RUNMODE possesses a routine with an integral parameter represen

ting the aurrent address of the statia part of a value of a uni

ted mode. The result of RUNMODE is the aontents (whiah is a mo-

de) of the model of that part. 

ao . - , 

prO(] (string) int STATICSIZE = 

ao STATICSIZE possesses a routine with a string parameter repressa-



220 P. BRANQUART and J. LEWI 

ting a mode. The result of STATICSIZE is an integer representing 

the size (the number of cells) of the static part of any value 

of that mode. 

proc (int, int) MARKCELLS = 

co MARKCELLS possesses a routine .nth ttvo integral parameters: one 

for a current address of a static part of a value and another for 

its static size. The result of MARKCELLS is the marking of all in

dividual cells of that static part in a bit table. 

co . - . 
proc (int) bool MARKED = 

co MARKED possesses a routine with an integral parameter represen-

ting a cell address. The result of MARKED is true or false accor

ding as the cell has already been marked or not. 

proc MARK = (int ca co current address in the list structure co, 

string cm 5!£ current mode associated .nth that current 

address co) : 

rule (i) 

it cm = ''!:!!.f. ~" 
then it' MARKED (ca) 

then MARKCELLS (ca, STATICSIZE (cm)); 

- it CONT (ca) # nil 

then MARK (CONT[ca),~) 

Ii 

Ii 



l'Ule (ii) 

l'Ule (iii) 

STORAGE ALLOCATION AND GARBAGE COLLECTION 

elsf am = "stl'UCt (11101, •••• IIjOj' •••• IIkok)" 

then int cad : = ca ; 

~jtokdo 

:!:i.-.MARKED (cad +:=:!:i. j=l 

then 0 

then MARK (cad. IIj) 

Ii 

elsf cm = "L •... .JII" 

then 'ff. MARKED (ca) 

else STATICSIZE (II· 1) r 
fiJ 

then MARKCELLS (ca. STATICSIZE (am}) ; 

Ii 

int n = NELEMENTS (ca. am) ; 

int cad := CONT (ca + STATICSIZE (cm)-l) ; 

int s = STATICSIZE (II) ; 

~ i to n do MARK (cad +:= (i-V* S.II) 

elsf am = "union ( ••••••••• )" 

then :!:i. .MARKED (ca) 

221 

then int s = STATICSIZE (am}-STATICSIZE (RTfNMODE (ca)rl; 

~ s ~p.resents the number of cells of the resi

due of the static part; the size of the model 

is considered to be one ce ZZ 

co 



222 P.BRANQUART andJ.LEWI 

1'UZe (iv} 

1'UZe (V) 

ftMRKCELLS (ca + STATICSIZE (RVWMODE (ca))+1.s); 

!~RKCELLS (ca. 1) ; 

5!£ fi'l'st. the modeZ and the 'l'esidue a1'e m:l'l'ked and 

co 

not the whoZe static Pa1't. othe1'Wise the dyna

mic pa'l't. if it exists. wiZZ neve:!' be t1'aced. 

!·MRK (ca + 1. RUNMODE (ca)) 

e Zs f ,MARKED (ca) 

then !~RKCELLS (ca. STATICSIZE (cm)) 

co ca is necessa1'iZy the address of an atom. 

co 

(ii) The compiled method 
Compiled marking routines have only one parameter, i.e., a memory 

address. The problem is to compile a mode into a routine performing the 
tracing and marking of a list which has that mode as starting mode. This 
problem will be illustrated for three different types of mode: 

the structured mode.§. = struct (int i, ?:!!f §. r), 
the multiple mode m = [,] struct (?:!!f ~ a) 

and the united mode !!:. = union (§., m). 
These modes are recursively defined ones, so that they will represent the 
fundamental problems of the compiled method. 

The marking routines for the modes.§.., m and!!:. are respectively denoted 
by MARK.s.' MARKm and MARKu' These routines frequently use five sub
routines which are denoted by MARKCELL, MARKED, CONT, NUMB and 
RUNMODE. 

int niZ = 5!£ intege'l' c01'1'esponding to the patte1'n of niZ in the memo'l'y ~ ; 

proc (int) MARKCELL = 

co the routine MARKCELL has an integ1'aZ par>amete'l' 'l'ep'1'esenting the 

add'l'ess of the (memo'!'y) ceZZ to be ma'1'ked in a bit tabZe 0'1' by 

the use of an e:x;t;roa-bit if it is provided by htmiwazoe. 

co ; 



r 
STORAGE ALLOCATION AND GARBAGE COLLECTION 

proc (int) booZ MARKED = 

ao the routine MARKED has an integral parameter representing a 

co 

aell address. The result of MARKED is tl'Ue or false according 

as the aeU has already been marked or not. 

proc (int) int CONT = 

co the routine CONT has an integral parameter representing the 

address of a aell containing a pointer. The result of COlff is 

223 

the contents of that aell, which again is an integer represen-

ting a ceU address. 

ao 

proa (int, int) int NUMB = 

co the routine NUMB has two integral parameters; the former re-

presents the address of the descriptor of a multiple value, 

the latter represents the number of dimensions of that value. 

The result is the number of elements of the multiple value 

and it is calculated from the quintuples of its desariptor. 

co 

proa (int) !!tring RUNMODE = 

ao the routine RUNMODE has an integral parameter representing the 

address of the static part of a value of a united mode. The 

result is a string representing the run-time mode of the value, 

obtained by taking the aontentsof the modeZ of that static part. 

ao 

The mode ~ = struct (int i, !!!l ~ r) can be compiled into a marking routine 
MARK§. defined as follows: 



II 

224 P. BRANQUART and J. LEWI 

proc MARKs = (int add ao the parameter represents the address of a struatu

red value of mode ~ 

ao) : 

(it.MARKED (add) then MARKCELL (add) 

Ii; 
it.MARKED (add+lJ 

then MARKCELL (add+ lJ ; 

it CONT (add+1J f. nil 

Ii 
) 

then MARKs (CO NT (add+1J) 

Ii 

The mode ?E = [,] struct (ref?E a) can be compiled into a marking rou
tine MARKm defined as follows: 
proc MARKm -; (int add ao the parameter represents the address of a multiple 

value of mode !!! 

it. MARKED (add) 

th£n MARKCELL (add) ao th£ first quintuple ao; 

MARKCELL (add+ 1) ~ th£ seaond quintup le ~ ; 

MARKCELL (add+2) ~ th£ pointer ~ ; 

Ii 

int n = NUMB (add, 2) ; 

~ i to n da it,MARKED (CONT (add+2)+i-lJ 

then MARK (CONT (add+2)+i-1J ; 

it CONT(CONT (add+2)+i-l) f. nil 

then MARKm (CONT (CONT (add+2)+i-l)) 

Ii 
Ii 



STORAGE ALLOCATION AND GARBAGE COLLECTION 225 

The mode u = union @' m) can be compiled into a marking routine MARKu 
defined as follows: - -

Pl'OC MARKu = (int add co the parameter represents the addPess of a value of 

a united mode ~ 

co ) : 

it. .,MARKED (add) then MARKCELL (add) 5!E.. the model co ; 

Ii 

it. RUNMODE (add) = 5!E.. the string i'epresented by the mode s co 

then MARKCELL (add+3) 5!E.. the residue co ; 

MARKs (add+1J 

else I~K (add+l) 
-- m 

Ii 

(iii) The dynamic marking information 
There are two important remarks to be pointed out with respect to the 

marking of lists. 
The first one concerns the marking of subvalues of multiple values, 

which is somewhat more complicated for reasons of compacting (second 
part of the garbage collection). In order to understand all aspects of this 
particular problem, it has been treated (see section 5) after the compacting 
has been explained. 

The second remark concerns the dynamiC information to be stored dur
ing the marking process. Conceptually, one can distinguish three types of 
dynamic information each requiring the use of a stack. First, each type of 
information is discussed and then some comment is given, indicating how 
these stacks can be actually implemented. A first type of dynamic informa
tion are the branch points in the list, which are currently traced and which 
must be memorized in order to be able to continue when a complete branch 
has been finished. This problem is quite analogous to that of tracing an 
oriented graph. A second type of dynamic information are the return ad
dresses in the marking routine; these addresses must also be handled by a 
stack in order to cope with the recursive calls within the marking routine. 
Marking routines can be recursive since there exist recursively defined 
modes. The third and last type of dynamic information to be stored on a 
stack is the number of elements of a multiple value and the current number 
of the element traced lastly. Here, a stack is required because the ele
ments of a given multiple value can be recursively defined in terms of the 
mode of that given multiple value. 

There exist methods to implement these stacks such that no storage 
space of dynamic size must be reserved at the moment of garbage collec
tion, a moment where storage space is rather scarce. An obvious case is 



226 P.BRANQUART andJ.LEWI 

the stack handling the maximum number and current number of elements of 
a multiple value; one can systematically add a memory cell to the descrip
tor of a multiple value to store the current value of a counter, indicating 
the current number of the element traced lastly. In [6] one can find, a 
practical method for the implementation of the other two stacks: the stack 
of branch pOints and the stack of return addresses. 

4. The compacting 

The role of the marking is to separate on the heap the active space from 
the garbage such that two kinds of memory areas (locations) can be distin
guished: the locations which consist of marked cells and which are called 
active locations, and the locations which consist of unmarked cells and 
which are termed holes. The free space of the heap can be reconstituted 
by organizing the holes into a list of holes and program elaboration can go 
on using these holes to store nonlocal values. There are two situations 
where a free space organized as a list of holes is not sufficient any more: 
one occurs when it is the (range) stack which causes the free space to 
be exhausted, the other appears as soon as a value must be stored, which 
does not fit any hole. In both situations the operation compacting has to 
take place. As it will be explained in detail, compacting is performed in 
two steps: (i) shifting and (ii) updating. In the first step, the contents of 
the active locations will be shifted towards one end of the memory; in the 
second step all pointers to active locations will be updated. 

We suppose the compacting phase will immediately follow the marking 
phase; the technique of using holes for storing new values before compact
ing is not discussed in this note. 

(i) The shifting of accessible values 
In fig. 11, the memory organization of the heap is shown in a schematic 

way. For 1 ~ k ~ n, the notations ao, ak and bk represent machine ad
dresses, "'k a hole and vk an active location cont~ining an accessible value 
or a part (static or dynamic) of it. 

v hn v n-I in-I, h2 VI hI n 

I~ J T I T T ~I .J f 41 
4 4n- 1 40 n n 1 

.. 
direction of the shifting of vk's 

Fig. 11. 



STORAGE ALLOCATION AND GARBAGE COLLECTION 227 

Shifting consists in moving the contents of all viis one by one towards 
one end of the zone constituting the heap. (In fig. 11 the direction of shifting 
is from left to right.) 

During this shifting operation a table Tupd of dynamic information is set 
up, which will be used for the updating of pointers after the contents of the 
last active location, vn, has been shifted. Tupd may have the form of an 
array of records with two fields: an address field selected by add and a cor
rectionfield selected by cor. Each time the contents of a new vi is shifted, 
a new record Tupd (i] is added to Tupd as it is shown by the following two 
assignations: 

add of Tupd (i]: = ai 

i 
cor of Tupd (i]: = ~ hj 

J=1 

Before the shifting operation starts, the table T upd must be initialized 
as follows: 

add!!l. Tupd (0] : = ao 

cor of Tupd (0]: = a 
It should be clear that T upd needs an unpredictable amount of storage 

space at a time when this space may be scarce. Clearly, the holes could be 
used for this purpose, but this possibility will not be treated in this note. 
A method using the holes to store Tupd is described in (12]. 

(ii) Updating of pointers 
Each pointer p for which the following relation holds for some k(l..;:k..;: n) 

add g[ Tupd (k]..;: P < add of Tupd(k -1] 

is updated intop + cor of Tupd (k]. 
Such pointers (which either are representing names or form part of de

scriptors of multiple values) may be located either on the range stack (id
stack, 19-stack or wo-stack) or on the heap itself. For the recognition of 
these pOinters, list structures may be traced in the same way as it is done 
in the marking process by using the information j..Lex,i and Min,j respec
tively for each block si~ and ma~ on the range stack. 

As it is the case with marking, the updating operation can be performed 
in an interpretive way or in a compiled way. 

The compiled method is illustrated by the following example where the 
mode.§. = struct (int i, ~ ~ r) is compiled into a recursive updating rou
tine UPDATE§.. This routine uses the subroutines UPDATE, COR and the 
subroutines CONT, MARKED and MARKCELL as they are described in 
section 3. 

proc COR = (int add. cor) :!:£. to the contents of the 

ce'H with address add is added the value 

cor!:£. ; 



228 P. BRANQUART and J. LEWI 

proc UPDATE = (int add) 

~itondo 

f:1. CONT (add) ~add 9.i. T upd [n ] 

thef add of Tupd [iJ "- CONT (add) /\ 

CONT (add) <add qf Tupd [i-1] 

then COR (add, cor !!iT upd [i]) 

Ii 
The compiled routine UPDATEs for the mode §. = struct (int i, ~ §. r) has 
the following form: -

proc UPDATEs = (int add !!£. the parameter represents the adtb>ess of a 

structured vaLue of mode ~ 

co) : 

f:1.-,MARKED (add+l) then MARKCELL (add+l) ; 

Ii 

f:1. CONT (add+lJ I niT- then UPDATE (add+lJ ; 

UPDATEs(CONT (add+l)) 

5. The marking problem for subvalues 

Given a name referring to a subvalue M 1 of a multiple value M with a 
descriptor D. The descriptor D 1 of Ml describes a number of elements of 
M. Obviously, for reasons of access, the interjacent spaces between the 
static parts of the elements of Ml must be preserved during the compacting 
phase of the garbage collection and, hence, these spaces are to be marked 
as well during the marking phase. 

This situation is illustrated by fig. 12, where p 1 and p represent names 
respectively referring to the multiple values Ml and M. In this example, M 
is of the mode "[1 :3, 1: 8] ref JJ." and Ml is of the mode "[1 :3] ref JJ.", Ml 
is a subvalue of M such that if M were identified by A, Ml is the value of 
the sliceA[ ,1]. 



STORAGE ALLOCATION AND GARBAGE COLLECTION 229 

M 

Fig. 12. 

This situation gives rise to the following two complications: 
(i) It should be clear that these interjacent spaces must be marked 

starting from D of M. Since M may be inaccessible, D must be attainable 
from Dl' For this reason, the memory representation of a descriptor of a 
multiple value, as it is given in part 1, is slightly modified as follows: 
storage space for a descriptor is to be reserved not only for the quintuples 
and the pointer to the dynamic part, but also for a second pOinter. Each 
time, during the elaboration of a program, a subvalue of a given multiple 
value is made, then this second pointer in the descriptor of that subvalue 
will be dynamically given the address of the descriptor of that given multi
ple value [2]. 

(ii) On the one hand, the marking process of these interjacent spaces 
must differ from that of accessible values, since only the cells in these 
spaces are marked and not the list structures starting from them. On the 
other hand, if an element of M must be marked and if this element is an 
interjacent space of a given subvalue of M, then, clearly, the marking 
must go on through the whole list structure starting from this element. 
This necessitates the differentiation of the two kinds of marking. To avoid 
the use of two different bit tables, which is rather expensive, one can 
adopt the following strategy: 

The memory cells constituting memory representations of accessible 
values on the heap are marked in a bit table. Each time a subvalue of a 
multiple value M is marked, the address of the descriptor of M is added 
to an address table Tsubv. Only, when all accessible values on the heap 
are marked, the remaining interjacent spaces in multiple values, whose 
addresses are in T subv' are marked at once in the same bit table. 



230 P. BRANQUART and J. LEWI 

6. The optimization of Min,j 

The processes of marking and updating. as they are described in sec
tions 3 and 4, need both the same tracing information, i.e., /lex i for each 
sidi on the id-stack and Min,j for each maxj on the wo-stack. These two 
processes seem not to work very efficiently in the case of the wo-stack, 
since the contents of the wo-stack vary continuously with each stack opera
tion. If j is the number of the current range (block on the top of the range 
stack), Min,j has to be dynamically adapted each time a name or a com
pound value having a name as component is added or deleted from the wo
stack. 

An optimization consisting in minimizing the tracing information for the 
wo-stack will now be worked out. The main principle of this optimization is 
that only those values of the wo-stack have to be considered in the table 
Min,j' which either have no external access block or which have an external 
access block but which is unstacked before these values disappear from the 
wo-stack. A way in which this principle may be put into practice results 
from the following classification of (partial) results of (sub)expressions 
for a given range Ri' 

Class (i): contains the results of expressions E, which are values 
possessed either by identifiers in E, or resulting from slices, selections 
and coercions on such values. (Note that this class of results is recursive
ly defined.) Such results are said to have an identifier as origin, since they 
are obtained by passing through a block sidj (for some j.,; i); j is the number 
of the range where the identifier is declared.. 

Class (ii): contains the results of expressions E, which are values 
(names) created either by generators in E, or resulting from slices, se
lections or coercions of such values. (Again, this class of results is re
cursively defined.) Such results are said to have a generator as origin; in 
other words, the results are obtained without passing through a block si~. 
It should be clear that calls and formulae cause a new range to be entered 
(new block to be put on the range stack). Their results fall into one of the 
two classes for that range. 

According to the classification above, for the processes of marking and 
updating, only those names are to be considered in Min,j, which have no 
external activation block (results of class (ii)) and which have an external 
activation block which is unstacked before these values are used (results of 
a subclass of (i)). 

The last case occurs in the following example: 

yy : = fJ:!!f real xx : = real: = 3.14; xx) + : = (oo • ;6. 28) 

The range where xx is declared is left before the name created by the gen
erator "real" disappears from the wo-stack. Suppose a garbage collection 
takes place during the elaboration of the part of the program represented 
by dots; this name has no external activation block. 

For all the other names there is no marking process to be done, but a 
simple updating process. The updating process is simple because only the 
pOinter representing a name is to be updated and there is no tracing of the 



STORAGE ALLOCATION AND GARBAGE COLLECTION 231 

list structure starting from that pointer (the modes of the names have not 
to be saved as tracing information). For the updating process of such 
names, one needs as information only the indication permitting to detect 
names on the wo-stack; this can be done by a bit table or an address table, 
if no extra bit is available. 

The main problem is now to detect at compile-time the maximum num
ber of cases for which no garbage collection information has to be stored in 
Min,j' In a way analogous to [9] this compile-time detection can be done by 
using a simulated wo-stack dealing with information, such as the origin of 
the values, their modes and their block number in case their origin is an 
identifier. 

CONCLUDING REMARKS 

There exist three language design principles which are characteristic of 
ALGOL 68 and which have served as guide lines in the construction of a 
scheme of storage allocation and garbage collection: 

(i) the implementation of general hardware considerations in the lan
guage 

(ii) the great amount of static in/ormation (e.g., the mode) on the values 
of a program 

(iii) the storage control (stack or heap) by program directives ("loc" and 
"heap"). 

In the storage allocation, the principles (i) and (ii) seem to work satis
factorily. The prinCiple (iii) gives rise to a problem: i. e., there exist three 
cases where intrinsically, storage space, although specified as local in the 
program, cannot be stack controlled. 

The critical point in the garbage collection is the application of the 
principle (ii) when the access block is on the working stack; one should 
dispose of a table Min,j minimized by taking utmost advantage of the static 
information in the program. 

REFERENCES 

[1] Van Wijngaarden, A. (ed.) , Mailloux, B.J., Peck, J.E.L., Koster, C.H.A., 
Report on the algorithmic language ALGOL 68, MR 101, Mathematisch Centrum, 
Amsterdam, February 1969. 

[2] Mailloux, B.J., On the implementation of ALGOL 68, Mathematisch Centrum, 
Amsterdam, 1968. 

[3] Randell, B. and Russell, L.J., ALGOL 68 implementation, Academic Press, 
1964. 

[4] Hoare, C.A.R., Record handling, in programming languages (F . Genuys, ed.) 
Academic Press, 1968. 

(5] Schorr, G. and Waite, W., An efficient machine-independent procedure for gar
bage collection in various list structures, CACM, August 1967. 

[6] Wodon, P., Methods of garbage collection for ALGOL 68, MBLE Research La
boratory, Brussels, April 1970. 

[7] Branquart, P. and Lewi, J., On object language and storage allocation in AL-



232 P.BRANQUART and J.LEWI 

GOL 68 compilers, "'Proceedings of an informal conference on ALGOL 68 im
plementation", J.E.L.Peck (ed.), University of British Columbia, Vancouver 
1969. 

[8] Branquart, P. and Lewi, J., On the implementation of local names in ALGOL 
68, R121, M.B.L.E. Research Laboratory, Brussels, November 1969. 

[9] Samelson, K. and Bauer, F., Sequential formula translation, Comm. ACM, 
February 1960. 

[10] Floyd, R. W., An algorithm for coding efficient arithmetic operations, Comm. 
ACM, January 1961. 

[11] Branquart, P. and Lewi, J., Local generators and the ALGOL 68 working stack, 
Note N62, MBLE Research Laboratory, Brussels, April 1970. 

[12] Haddon, B.K. and Waite, W. M., A compaction procedure for variable-length 
storage elements, The computer Journal, August 1967. 

DISCUSSION 

Lindsey: 
What happens when some values have been put on the working stack dur

ing the evaluation of an expression, and a local-generator is then en
countered in the expression 

Branquart: 
If you look at the possible constructions of the language, you can see 

that there are only two cases where a local-generator may be elaborated 
when the dynamic working stack is not empty; these cases are the collateral 
clauses and the assignations. In both cases, it is possible to elaborate 
the constituent generators beforehand, and so to eliminate the difficulty 
of merging the dynamic part of the working stack and the local-generator 
stack. 

Koster: 
I have a question about the relationship between the lengths of sidi and 

maxi. Probably you elaborate your declarations more or less from left to 
right and there may be some collaterality involved. That means, that if you 
have not had all of your declarations yet, maxi might be slightly shorter, 
since it has to be only the maximum up to that point. 

Branquart: 
No, you have to reserve the maximum size for sidi and ma~ of the 

range Ri as soon as it is entered; the reason is that the first declaration 
you elaborate in this range may give rise to a dynamic part on di9i. 

Trilling: 
During the elaboration of a recursive procedure you have to reserve 

maxi each time and this could be inefficient. 

Branquart: 
You can also reserve space for the whole static working stack, this can 

be less expensive in some cases, but anyway, you get troubles with re-



r 
STORAGE ALLOCATION AND GARBAGE COLLECTION 233 

cursivities for which the maximum size of the working stack cannot be 
foreseen. An advantage of this solution is that the values of the working 
stack can then be addressed by means of absolute machine addresses; this 
balances somewhat the inefficiencies inherent to recursivities; anyway, it 
is difficult to say which solution is better. 

Mailloux: 
The first comment I should make is that, although you attribute this idea 

to me, I actually got it from Paul in 1964, and I believe he got it from 
Samelson. This is important, because if you have a machine, as most of 
us do, which does not have an accumulator stack built into its hardware, 
then its simulation is a fantastically expensive business. 

Branquart: 
I should like to insist a bit more on the storage of the descriptors of 

slices and rowed coercends referred to by names. It is easy to understand 
why such descriptors can generally not be stored on the stack; an obvious 
solution is to store them on the heap. But this would imply heap organiza
tion and garbage collection even for programs of numerical analysis, as 
soon as they use slices or rowed-coercends. A solution avoiding the use of 
the heap, consists in associating the descriptor with the name and not with 
the multiple value itself. This solution is based on the following consider
ations: 

1) Associating the descriptor of a value referred to by a name with the 
name implies copying this descriptor with each instance of the name in the 
memory. This is possible when the descriptor cannot change when an as
signment is made to the name, otherwise, all instances of the descriptor 
should have to be changed at once, when an assignation is elaborated, and 
this is practically unfeasible. 

2) A descriptor can only be changed when the name referring to it is 
strongly dynamic, in this case there should be only one instance of the de
scriptor. Fortunately, no slices nor rowed coercends may give rise to 
strongly dynamic names. 

The solution is now the following: 
- The memory space reserved for storing a name of mode ref [ ... ] 

consists of a pointer space and a descriptor space. 
- When the name is not strongly dynamic, the descriptor is stored in the 

descriptor space of the name at each instance of this name in memory, 
so, if the name comes from a slice or a rowed-coercend, there is no 
problem for storing the corresponding descriptor. 



234 P. BRANQUART and J. LEWI 

- When the name is strongly dynamic, there can only be one instance of the 
descriptor. and the descriptor space of the name is unused: 

. __ I _V_' _....&-1--------...-------. 

given that ther~ are no strongly dynamic names issued from slices or 
rowed coercends. the problems of storing their descriptors is nonexist
ent. 
This solution has drawbacks: 

- Reserving descriptor spaces is space consuming. 
- Copying the descriptor at each instance of the name is time consuming. 

but it is possible to avoid the copy in case the name is not issued from a 
slice or a rowed-coercend, by adopting the solution of strongly dynamic 
names in those cases. 

- At each assignation of a name of mode ref [ ... 1 ... to a name of mode 
ref ref [ ... 1 ... a dynamic check is needed in order to determine if the 
descriptor has to be copied or not. 

The advantage of the solution is clear, it a voids the use of the heap for 
programs which contain neither global names nor strongly dynamic names 
and so facilitates the implementation of the corresponding sUblanguage. 

Bekic: 
Can you say again precisely what you mean by a strongly dynamic name? 

May I repeat what I have understood? A strongly dynamic name is a sub
name of a flexible name, is this true? 

Branquart: 
No, a strongly dynamic name is a name referring to a value, the dy

namic part of which is not frozen at the creation of the name. There are 
two cases where strongly dynamic names are created: when the corre
sponding generator contains the flex feature, or when it begins with union 
and may give rise to dynamic parts for the value referred to by the name. 

Bekic: 
So strongly dynamic names are just names which correspond with flex

ible locations, i.e., flexible arrays and unions? 

Branquart: 
Yes, that is right. 

Koster: 
The scheme you present is very complex. It is much more complex 

than that which we are used to in the case of ALGOL 60. Now have you, in 



r 
~ 

STORAGE ALLOCATION AND GARBAGE COLLECTION 235 

your stu ies, found a place where ALGOL 68 is in this respect unneces
sarily co plex? That is, where with little or no loss of power you could 
have a great gain of efficiency or simplicity? 

Branquart: 
In most cases we can state that the run time efficiency of an ALGOL 68 

program, equivalent to an ALGOL 60 program, will be better. The only 
price you have to pay for the generality of ALGOL 68 is in the block organ
ization; the so-called link-data are a bit more complicated, but this does 
not influence very much the general efficiency of the programs. 

Mailloux: 
I am not sure if I have understood the situation exactly. Your problem, 

I think, is that on your identifier stack there may be some pointers into the 
rest of this stuff which, at a given point, mayor may not be filled in. I 
was just wondering if there is some reason why you might not, as soon as 
you enter a block, fill in all pointers in this block with nil, or some special 
nil. 

Branquart: 
This is not exactly the point; of course, initializing the pointers of the 

static identifier stack with a special nil or putting some special bit in it 
solves your problem. My point is the following: suppose you have to start 
the garbage collection at the moment when a pointer to the heap is on the 
working stack. There are two possibilities: 

a) The pointer has been obtained through an identifier declared in a 
range which has not been left at the moment of the garbage collection; this 
pointer has to be updated, but no tracing starting from it has to be per
formed, given that this traCing is already done starting from the identifier 
stack. 

b) The range where the identifier has been declared has been left at the 
moment of the garbage collection, or the pointer is issued from a gener
ator the name of which has neither yet been assigned nor made to be pos
sessed by an identifier; in these cases, the pointer has not only to be up
dated but the traCing has to take this pointer as starting address; hence, 
such a pointer has to be provided with garbage collection information, and 
this is rather inefficient. But such cases are very scarce and the compiler 
should detect them in order to store tracing information only when strictly 
needed. This can be done by means of a simulated working stack at compile 
time. 

Mailloux: 
Yes, that is right! I thought you were also concerned about the identi

fier stack pointing further down into the stack. A second question; consid
ering the following example: 

ref[ ] real a, b; a : = [ 1: 10 ] real; 

b : = a [ 2: 8@2] ; a : = b; b : = a[ J: 7~ ] 

where we have a ref to vector, like a or b, which must be stored in two 
parts, a pointer and a descriptor. Now all I am suggesting is that the 



236 P. BRANQUART and J. LEWI 

pointer part is going to be of no use to you since in general you are going to 
have the descriptor part there anyway. If you look what happens dynami
cally in a program like this, then you can never be sure whether indeed the 
pointer or whether the descriptor is to be there and therefore you may as 
well have the descriptor there. That is not quite what I wanted to say. What 
I want to say is the following: in the assignation a : = b, you may not let a 
point to the descriptor which you created at b, because in the next assigna
tion you are going to change it. 

Branquart: 
Let us elaborate your example and see what happens in the memory. 
After having elaborated ref [ ] real a, b; we have reserved space for 

pointers and descriptors - --

after a : = [1: 10 ] real; b : = a [ 2: 8 at 2] ; space has been reserved for 10 
elements 

a 

·1 .... __ 1_: 1_0 ___ ~tmm_'------"'" 

1o...-_2:8---Jf 
I 

I 

I 
I 

I 
I 

I 

f 

/J-------f 

2 
3 
4 
5 
6 
7 
8 
9 
10 

and after a : = b ; b : = a[ 3: 7 at 3] we have the following situation: 

l 



Bekic: 

STORAGE ALLOCATION AND GARBAGE COLLECTION 

I 2:8 t __ 
I 

I 

I 
I 
, 

V' 3:7 

I 
I 

I 

-
I 

I , 

1 
2 

3 
4 

5 
6 
7 

8 
9 

\0 

237 

Let us first distinguish between fixed and flexible array names. if it is 
clear what that means. So flexible array names are flexible in at least one 
bound. etc. and you may say that with a fixed array name the descriptor is 
part of it. This clearly reflects your picture, because it is really part of 
the name. not of the multiple value. On the other hand, the descriptor can
not be part of the flexible name. at least not the current descriptor. This 
must really be part of the value being referred to. I think that your imple
mentation, as far as I can see from those diagrams. corresponds with 
this. 

van der Poel: 
If I understood you correctly this is not meant for dealing with parallel

clauses, because in the case of parallel-clauses you can have a tree-like 
stack. You have not dealt with that problem? 

Branquart: 
No, we have not considered that problem. 

van der Poe l: 
We have some experience ourselves with arranging a stack in a linked

like fashion, that is where elements are not placed in consecutive locations, 
but are linked. Indications are that in a machine which has no built-in 
stack operations this is almost as efficient. Have you thought about that 
scheme? Then you can treat everything, stack and heap in the same fashion 
and you can deal with it by the garbage collector which is called in more 
frequently than in the case with a real stack, but it works very well. We 
have an implementation of another language where we have actually done it. 

Branquart: 
If you have the experience and if you tell me that it is as efficient, I can 

trust you. 

van der Poe l: 
You can then deal with the parallel-clauses as well. You have no re

striction whatsoever and you can place everything into the same kind of 
storage. 



238 P. BRANQUART and J. LEWI 

Branquart: 
We did not elaborate such a solution because we thought it was less ef

ficient than the classical one. 

van der Poel: 
A little bit. 



I 

l 

AN ALGOL 68 GARBAGE COLLECTOR t 

S.MARSHALL 
Kiewit Computation Center, Hanover, New Hampshire 

AN ALGOL 68 GARBAGE COLLECTOR 

A garbage collector generally has three parts: a marking part where all 
words that can be referenced by the program are marked, a compacting 
part where all marked words are moved to a contiguous block, and a point
er adjustment part where all pOinters are modified to refer to the new lo
cations of the marked words. For this ALGOL 68 garbage collector. free 
memory consists of a linear array of words which contains data structures. 
A data structure is a concatenation of data elements. Data elements are 
either primitive elements and are not pointers or are data descriptors and 
contain a pointer word followed immediately by zero or more index qua
druples. Pointer words contain in their address field a pointer to the first 
word of a data structure and in their tag field a pointer to a pattern de
scribing the data structure. The index quadruple contains four words 
called Li, the lower bound; Ui, the upper bound; Di, the stride; and Pi. the 
place. (The place word is used only by the garbage collector and is as
sumed to be initially zero.) A data descriptor refers to a collection of iden
tical data structures each described by the pattern referred to by the point
er word. If n is the number of index quadruples in the data descriptor, then 
the location of a particular data structure can be found as follows: let 
(Xl,X2, ... ,Xn) be a vector satisfying 0"" Xi"" Ui - Li where i runs from 
1 to n, then let K = L,iXi Di' The addresses of all the data structures re
ferred to by the descriptor can be found by adding all possible values of K 
to the data structure pointer word. If the number of index quadruples is 
zero then only one data structure is referenced. If any lower bound is 
greater than the corresponding upper bound then no data structures are 
referenced. 

A pattern is a list of data specification words followed by a pattern ter
minator word. Primitive data elements are specified by a zero and de
scriptors are specified by a n+ 1 where n is the number of index quintuples 
followed by 4n zeros. A pattern terminator word contains minus the mim
ber of data specification words in the pattern. It is therefore also equal to 
minus the number of words in the data structure specified by the pattern. 
A mark bit is assumed to be associated with every word to be garbage col
lected. 

t This research was supported by the Advanced Research Projects Agency of the De
partment of Defense and was monitored by the Air Force Office of Scientific Re
search under Contract No. F44620-68-C-0015. 

239 



240 S.MARSHALL 

Primi tive element r+.-'-=-:;~~~-::I 
Data descriptor 

Data descriptor 

Data structure Corresponding pattern 

MARKING ALGORITHM 

1. Set all mark bits to zero, set A to 0 and set B to point to the data struc
ture to be marked. The address field of B pOints to the first word of the 
data structure and the tag field of B points to the corresponding pattern. 
B is a pointer word that points to the word under immediate consideration 
and A is a pointer word that points to a chain of reversed pointers that are 
constructed during the course of the marking algorithm. 

2. If the address field of B points to a word that is already marked then go 
to step 8. 

3. Mark the word pointed to by the address field of B. 

4. Examine the contents of the pattern word pointed to by the tag field of 
B. If it is 0 then go to step 8. Otherwise B refers to a data descriptor and 
all the elements it refers to must be marked. 

5. The address field of B refers to an array descriptor containing a pointer 
and n -1 index quadruples where n is the contents of the pattern word re
ferred to by the tag field of B. If the lower bound in all of the index qua
druples is less than or equal to the corresponding upper bound then con
tinue. Otherwise, go to step 8. 

6. Let C stand for the pointer word pointed to by the address field of B. Si
multaneously put the contents of B in A, C in B, and A in C. This stores a 
reversed pOinter in C. It will be restored in step 12. 

7. Go to step 2 to mark the first data structure. 

8. Increment both the address field and tag field of B by 1. This causes the 
address field to point to the next word in the data structure and the tag field 
to point to the corresponding pattern word. 

9. If the contents of the pattern word pointed to by the tag field of B is not 
negative (is not the pattern terminator word) then go to step 2. 

10. If A is ze-fo then the marking algorithm is finished and all reversed 
pOinters have been restored. 



AN ALGOL 68 GARBAGE COLLECTOR 241 

11. Increment both the address field and the tag field of B by the contents 
of the pattern terminator word pointed to by the tag field of B. This will 
restore both the address field and the tag field of B back to the beginning of 
the data structure and the pattern respectively. 

12. Let C stand for the pointer word pointed to by the address field of A. 
Simultaneously put the contents of A in B, B in C, and C in A. This will 
restore the contents of the reversed pointer in C to its original value. 
(Compare with step 6.) 

13. The address field of B refers to an array descriptor containing a 
pointer and n - 1 index quadruples where n is the contents of the pattern 
word referred to by the tag field of B. If there is a quadruple then incre
ment its P word by one. Also increment the address field of the pointer 
word by D. If P is now greater than U-L then set P to zero, decrement the 
address field of the pointer word by D (U - L + 1), and repeat this step with 
the next index quadruple if it exists. 

14. If there were no index quadruples or P in all index quadruples was set 
to zero, then go to step 8. Otherwise, go to step 6. 

THE HADDON AND WAITE COMPACTING ALGORITHM [1] 

Assume that a word can contain two addresses. The compacting algo
rithm proceeds from the bottom of memory to the top in the following 
manner: 

Starting from the bottom find the next free word. Into this word store 
the address of the next following marked word and the address of the first 
unmarked word. Interchange the block of free memory and the next follow
ing block of marked memory. Continue in this way until there is no more 
marked memory. All of the marked words will now be compacted at the 
bottom of memory followed by a block of unmarked words containing old 
and new addresses of all blocks. After sorting these words in order, the 
new address of any marked word can be quickly found from the old address 
by table look-up. These words will be out of order only if the interchanging 
of marked and unmarked blocks changes the order of the unmarked block. 
This may happen if the interchange is made efficient. 

In ALGOL 68 it is possible to construct an array descriptor that does 
not reference a solidly packed array of data structures. It would be a mis
take to compress the elements of such an array because then index calcu
lations would not come out right. This problem can be solved by solidly 
marking the interior of all arrays after the marking program is finished. 
This can be accomplished by altering step 14 of the marking algorithm to 
link up all array descriptors having at least one index quadruple in a chain 
and solidly marking these descriptors after the marking program termi
nates. 



242 

5 
11 

3 

2 
1 

I c 
free 

B 
A 

free 

C 
free 

B 
A 

2,1 

S.MARSHALL 

C C 5,3 
free 5,3 2,1 

2,1 2,1 C 

B B B 
A A _A __ i 

Picture of memory during compacting (A, B, C are marked) 

PROOF OF THE MARKING ALGORITHM 

It is the function of the program starting at step 2 to mark a piece of a 
data structure referred to by word B. This piece starts at the address re
ferred to in B al\d continues to the end of the data structure. The tag field 
of B is assumed to point to the pattern specification word corresponding to 
the address field of B. Notice that if there are no pointers left in the pat
tern. the program marks all of the words left in the data structure in pro
gram steps 2.3.4.8, and 9. When the data structure is done. step 10 
checks to see if A indicates that the program is finished. The program 
therefore works if there are no descriptors. To mark all reachable data 
words when data descriptors are present it is necessary only to mark all 
data structures referred to by the descriptor. This marking may encounter 
further descriptors requiring this process to be interpreted recursively. If 
step 12 followed step 6 immediately. the effect is no operation. Notice that 
the effect of step 6 is to place in B a pointer to a data structure which is 
the next data structure to be marked. It also alters the contents of cell C 
but the mark bit of cell C was set to one in step 3. and the program never 
looks at a cell that is already marked. Notice that the action of step 6 
never leaves the contents of A zero so step 10 will not indicate that the job 
is done. Step 11 restores the B pointer to its original value it had when 
this particular list element was first considered. Therefore. step 12 will 
correctly undo the effects of step 6 and we will be at the same state except 
for the setting of some mark bits. Since this is the case, the tag field in
dicates the type of descriptor referred to in B (i.e., the number of index 
quadruples) and the P's in the descriptor can be incremented to the next 
value with the proper modification of the pointer word. Since the pointer 
word was marked in step 3. this alteration does not affect anything. If 
step 13 resets to the beginning of the array. then the entire descriptor has 
been reset to its original state. When this happens, all of the elements of 
the array have been marked and step 8 correctly continues marking the 
data structure containing the descriptor. 

There are some subtle points in the program. For example, it would be 
a mistake to mark an entire data structure and then follow the pointers 
contained in the data structure. The difficulty is that if the marker en
countered the same data structure the second time through, it would be un
able to distinguish the reversed pointer left behind the first time through 
and would attempt to follow it. Whenever a word has the mark bit on, 
either all words reachable from this word have been marked, or the pro
gram is in the process of marking these words. In either case, the marker 



AN ALGOL 68 GARBAGE COLLECTOR 243 

can ignore marked words. It is also essential to mark words before mark
ing the words reached from them. If this is not done, an unmarked re
versed pointer may be encountered causing total calamity. The only re
striction the garbage collector imposes on the list structure is that all 
pointers contain tags which refer to consistent patterns. This means that if 
an area of memory is referred to in one descriptor as a descriptor with 
index quadruples. then this area must always be referred to in this way. 
Also, primitive words must always be referenced as primitive words and 
never as descriptors. No other restrictions are imposed and a word may 
be referred to consistently as part of several different data structures of 
various lengths. If memory is to be compacted, then elements of an array 
cannot change their relative separation distance (arrays may not be solidly 
packed) and this can be accomplished by solidly marking the interior of all 
arrays; therefore. they are treated as a single block by the compacting 
routine. 

POINTER ADJUSTMENT 

After memory has been compacted, it is necessary to adjust all point
ers so that they refer to the new location of all data structure. This is ac
complished by modifying step 5 of the marking algorithm and executing it 
again. Step 5 is modified to read: 

5. If all lower bounds in the data descriptor are less than or equal to the 
corresponding upper bounds, then the address field of B is adjusted so that 
it refers to the new location of the data structure rather than to the old. 
Then continue to step 6. Otherwise. go to step 8. 

Since all pointer are encountered exactly once il). step 5, this will cor
rectly adjust all pointers in memory. A side effect of the pointer adjust
ment process is that an accurate mark table is constructed so that the 
memory allocator can use fragments of memory between the elements of 
arrays that are not closely packed. 

REFERENCE 

[I] Haddon, B. K. and Waite, W. M., A compaction procedure for variable-length 
storage elements, Computer J. 10, 2 (August 1967), pp. 162-165. 





r 

METHODS OF GARBAGE COLLECTION FOR ALGOL 68 

INTRODUCTION 

P. L. WODON 
MBLE, Res.Lab., Brussels 

The purpose of this working note is to sketch and compare different 
methods of garbage collection for ALGOL 68. 

It is clear (see e.g. [21. [3]) that the form of a garbage collector depends 
on the properties of modes. Three of them are particularly important: 
(i) a mode may be declared in a program. (ii) each value has a mode and 
(iii) a mode declaration may be recursive. 

Property (i) means that the garbage collector cannot be completely con
structed beforehand: it must be tailored to the needs of each program. 

Property (ii) means that the compiler is indeed able to do so. at least 
partially. at compile time. This may be done either in the form of a table 
(table of "templates Of in [3]) to be interpreted by a general routine or in the 
form of a set of compiled routines as in [21. 

Property (iii) means that the garbage collector will be of a recursive na
ture and therefore that dynamically generated information will have to be 
stored during its execution. 

A garbage collector must fulfil two obvious requirements: it must col
lect all or almost all the garbage and be as quick as possible. Apart from 
that, the ideal garbage collector should not decrease the efficiency of the 
programs which do not call it and should not use a too large and. or unpre
dictable storage area for its own purpose. As usual. there are conflicts be
tween these four requirements and a compromise must be found. 

Unfortunately. hardware characteristics have a great influence on the 
relative efficiency, and sometimes even the practical feasibility. of the 
various compromises. Furthermore, a good solution may also depend on 
so far unavailable statistical data about the use of ALGOL 68. 

We are going to deal with a heap of the most general form in direct ac
cess memory. It does not seem that the ALGOL 68 heap can be efficiently 
accommodated in a secondary store, although some general indications can 
be given. Similarly, it does not seem that general purpose heap organiza
tion and garbage collection can be made satisfactory for special purpose 
problems which manipUlate a great amount of data of a limited number of 
types, especially if a secondary store is used. It is very likely that, within 
ALGOL 68, one must look to pragmats and trans puts for solving that kind 
of problems. 

245 



246 P. L. WODON 

1. FORM OF THE HEAP 

The heap contains three parts: the available space. Le. that part of it 
known to be free for storing values, the active space, consisting of all ac
cessible locations. and the garbage. The two latter parts are necessarily 
intermixed but the available space may be a contiguous memory area. a 
structure of holes or even a list of free pages. 

Before discussing how the garbage collector can trace and mark all ac
cessible locations and reconstruct the available space. we briefly describe 
the kind of things that are in the heap. It will be a somewhat simplified but 
still realistic picture based on [2]. 

We call "cell" the smallest directly addressable memory unit. By "loca
tion", we mean a block of contiguous cells in which is stored a non-multiple 
value or a descriptor. Multiple values are supposed to be stored, element 
by element, in contiguous locations. 

In this fashion, to each mode, there corresponds exactly one "type" of 
location of a specific and fixed size and form, depending on the mode only. 
By "description" of a location. we mean the static (Le. known at compile 
time) information on its type. relevant for the garbage collector. 

If we forget for a moment that there are structured modes, we have 
four different classes of descriptions, respectively corresponding to 'ref
erence to MODE', 'ROWS NONROW', 'UNITED' and any other mode, ex
cept 'structured with FIELDS'. 

We assume that all pointers occupy the same amount of memory, i. e. 
one cell, so that the description of a location corresponding with 'ref to 
MODE' must contain the flag "pointer" and an indication permitting to re
trieve the description of 'MODE'. 

To 'ROWS NONROW', there corresponds a type of location big enough to 
contain a descriptor of the multiple value, and not the multiple value itself. 
Its description consists of the flag "descriptor". an indication of the de
scription for 'NONROW' and the size of the location, which probably de
pends on the number of dimensions. 

To process the complete array. the garbage collector must also know 
the number of elements and the address of the first one. In general, these 
are dynamic informations depending on elaboration. We shall assume that, 
in a location for a descriptor. the first cell contains a pointer to the ele
ments and the second cell the number of elements. Since these informa
tions must be present anyhow. it is not forbidden to suppose that they are 
in this form. 

It is clear that slices must be handled in a special fashion. To start 
with, we will simply admit that the descriptor of a slice also contains the 
address of the first element and the number of elements of the complete 
array and that the latter is completely traced and marked. 

To a mode 'UNITED', where no constituent mode is itself 'UNITED' (we 
can certainly assume that), there corresponds a type of location with a 
size large enough to contain any value of the constituent modes. Its de
scription contains the flag "united \I and the size. To process the location, 
the garbage collector must know the actual type corresponding to the actual 



r 

l 

GARBAGE COLLECTION FOR ALGOL 68 247 

value of the location. This last information is dynamic and we suppose that 
it is contained in the first cell of the location. 

For any other mode. except 'structured with FIELDS'. the corresponding 
type contains the flag "plain" and the location size. The garbage collector is 
not interested in the contents. called here "plain values". of such locations. 

It remains to desc ribe types corresponding to 'structured with FIELDS'. 
A location for a structured value simply is the contiguous juxtaposition of 
locations for its fields so that its description may simply be an enumeration 
of simpler descriptions. Then. the description corresponding to e.g. the 
mode 'slrucl ((fa. struel (~b, £e)d)' is practically the same as that for 
'strucl (~a, Q b, f c)'. We shall take advantage of this and ignore (or develop) 
structures inside structures. This permits to avoid useless recursivities 
within the garbage collector and it will be seen that the case where a pointer 
points to a subvalue of a structured value is taken care of. provided that the 
inside modes have their own descriptions. A possible inconvenient is that 
type descriptions are no more isomorphic to modes. 

2. TRACING THE ACTIVE SPACE 

2.1. Genera I re marks. 
The active space is traced in order to be marked. Obviously. both 

things ;nust be done together but. for facility. they are discussed separate
ly. 

Tracing starts from known locations (in the stack) with known types. The 
problems this raises are discussed in [2]. In order to proceed. the tracing 
routine must know. as "forwards informations". the address of a location 
and its description. The address is contained in the location just left. The 
description (i. e. any number permitting to retrieve it) could be attached to 
the address or contained at some fixed place in the location but this has ob
vious inconvenience and is unnecessary since it can be obtained from the 
description of the location just left. 

In general, when a location is left for another one. through e.g. a pointer, 
it is not completely marked and must be traced back. This means that 
"backwards information" has to be memorized: an address. a description 
and what is left to be marked. This dynamically generated information must 
be dynamically stored and the easiest way of doing it is on a stack (see [2]l. 

Of course. it is not very advisable to use an unpredictable amount of 
storage when the garbage collector is activated. An alternative method 
(see [3]) is to store the backwards information in the locations themselves. 
Room must be reserved for that purpose and this amounts to reserving in 
advance room (too much in general) for a "split up stack". 

We shall give examples of both techniques, using two forms of type de
scriptions: a table and a set of compiled tracing routines. 

2.2. A fable-driven tracing routine which llses a slack. 
The following example is meant to isolate the main features that any 

tracing routine must have. In particular, we want to find out what are the 
minimum forwards and backwards informations that are needed at each step. 



248 P.L. WODON 

To simplify, any value is considered as a structure with one or more 
fields and we suppose that a plain value uses one cell. Any cell in the heap 
contains either a plain value or a pointer ('a') or the number of elements of 
a multiple value ('nmax') or the current type ('et ') of the value in a location 
of "united" type. 

The location descriptions are in a table built up by the compiler from the 
modes. For an n-cell type of location, there are n+l entries in the table. 

This is summarized by the following piece of ALGOL 68 text. (Some lib
erty with the language has been taken: conformity relations are not used 
where they should be.) 

7TKJde ceU = union (pointer, ,descrip, united, ~i~,sJ.; 

mode pointer = struct (int a); 

=de descrip = ~ (int nmax); 

mode united" = / struct (int ct); comment -- --, -.- . --- --

although not strictly necessary, the use of unions and structures clarifies 
somewhat the reading because a mnemonic name is used for the fields 

co 

[1:1 fl!il ceU U := comment. 

the store, stack and heap, as it is when garbage collection is activated 

7TKJde !iiJ?!!.. = stl'uct (string tag, in~ ~nde:;;); 

[1:1 ~ !iiJ?!!.. D := comment 

the table of descriptions as built up by the compiler for the particular pro
gram. The way this table 'D' is formed may be understood with an example. 
If we suppose that the modes used in a program are 'int', 'person' = '(int 
age, ref person father)', 'ref int', '[, )int' and 'union(person, int)', the table 
is as follows: 

'tag' 'index' 
1 "plain" S~iP } int 
2 "last" 
3 "plain" 

S1
iP

} 4 "pointer" person 
5 "last" 
6 "pointer" 1 ) ref int 
7 "last" 1 



r 
I 

GARBAGE COLLECTION FOR ALGOL 68 249 

8 "descriptor" 1 
9 "plain" ~l 10 "plain" skip 

11 "last" 3 

[, ] int 

12 "united" 

~l 13 "plain" skip 
14 "plain" skip 
15 "last" -3-

union, (int, person) 

When the tag is "plain" or "united", the index is irrelevant. When the tag is 
"pointer", the index is the address, in the table, of the description of the 
location pointed to. When the tag is "descriptor", the index is the address, 
in the table, of the description for an array element. When the tag is "last", 
the index is the size of the location and the table-entry does not correspond 
to a c'ell of the location. The descriptor is supposed to need 3 cells. 

00; pmc stack = (int i) : corrment 

this routine puts an integer on a stack 

co; pmc UJ1.stack = int : cOl1'Ullent 

this routine delivers the top element of the stack 

!!£J pmc mark = (int a) : C07mlent 

this routine marks the cell with address 'a' 

!!£J pwc marked = (int a) booZ. : OO7mlent 

this routine checks if the cell with address 'a' is already marked 

i:!::!:. ad. type; C07mlent 

current address and type of the location being marked 

~ int A. T. N; C07mlent 

working registers for an address, a type and a number of array elements 

00 

next trace : C07mlent 

the routine starts from a pointer or a descriptor in a known area (this is 
discussed in [2]). This pointer or descriptor has a known description with 



250 P.L.WODON 

address e in D and points to a location in the heap with address O! and type 
description e' = index Qi D[e] 

00 

start 

ad : = Ct; type : = e'; 

:!:f. tag 9.f. e = "d£soriptor" then stack (0) fi.; 

stack (0); stack (e); 

:!:f. tag 9.f. D[type] = "Zast" then 

T : = unstack; A : = unstack; 

:!:f. tag qt D[T] = "pointer" then bac~ds 

eZsf tag 9.f. D[T] = "descriptor" then next eZem 

eZsf tag 9.f. D[T] = "united" then compz,ete fi. 

fi; 

:!:f. marked (ad) then next e Z,se mark (ad) fi; 

:!:f. tag 9.f. D [ type] = "p Zain" !l:!!!!!:. next 

eZ,sf tag qt D[type] = "pointer" then pointer 

eZ,sf tag 9.f. D[type] = "d£scriptor" then aI'!'ay 

eZ,sf tag 9.f. D[typeJ = "united" then union fi; 

next: ad +:= 1; type +:= Z; start; comment 

the location and its description are scanned in parallel 

co 

pointer ::!:f. a 9.f. M[ad] = ~ then next fi; 

forwards stack (ad); stack (type); 

ad := a qt M[ad]; 

type := ind£x qt D[typeJ; 

start; 

bac~ds if.. A = 0 then next trace ez'se ad := A; type := T; 

next fi; 



array 

GARBAGE COLLECTION FOR ALGOL 68 

: f:1 nT/1a3: £i. M [ ad-t1 ] = 0 then ne:z:t e ~se 

staak (0); fo=ds fi; 

next e~em N:= unstaak -t 1; 

union 

f:1 N < rzmax £i. M[M1J then 

staak (N); staak (A); staak (T); 

type := index £i. VeT]; 

start 

e~se baakuJa.'1'de ii; 
staak (adJ; staak (type); 

type := at £i. M[ad]; ad -t:= 1; 

start; 

aomp ~ete type: = T -t 1 -t index £i. V [type J ; 
stan; 

251 

This rather crude method permits to see (as pointed out and discussed 
in [2]) that tracing need not, in principle, require that extra information be 
put in the locations. All information used by the tracing routine either is 
already present in any location or can be gathered at compile time from the 
modes and put in the location descriptions. 

The method also shows the kind of backwards information that needs to 
be memorized when a pointer, a descriptor or a union is met: namely an 
address-type pair plus a number of already processed elements in the case 
of a descriptor. It is worth noting that the information concerning what is 
left to be marked is included in the address-type pair, thanks to the de
scription entries tagged "last". 

There are obvious practical improvements to the method. For example, 
a pointer to a location containing only plain values should have a special tag 
and the index should indicate the size of the location. This would save one 
step of recursivity and shorten the table. Similar remarks apply to descrip
tors and unions. 

2.3. A table-driven tracing routine without stack. 
If, instead of using a stack, we wish to store the backwards information 

in the location themselves, we must find room for it. It is certainly sound 
to store the number of already traced array elements in the descriptor. It 
is possible to store the backwards address where the forwards pointer was 
stored. This is the technique, proposed in [5], of reversing pointers. But 
we need extra room for storing a type. 

The example of tracing routine which we now give a:ssumes that a pOinter 



252 P.L.WODON 

is contained in a cell and that, in the same cell, there are enough extra bits 
to store a type indication. This is an assumption whose workability depends 
on the size of an address, the size of a cell and the size of the description 
table. The latter has the same form as before but it is clear that it may be 
shortened in a practical implementation. 

One could also use two cells for a pointer but it is certainly inadvisable. 
The principle of the tracing routine is again outlined in an ALGOL 68 

piece of text whose general structure is exactly the same as the one above. 

nvae eelt = union (pointer, deserip, wtited, bits); 

nvde pointer = struct (int t, int a) eomment 

the field 't' represents the spare room, in a cell, suitable for storing a 
type 

eo; nvde deserip = struct (int n, int nmax) eomment 

the field 'n' represents the place, in a descriptor, where the number of al
ready traced elements may be stored 

!!S!J nvde united = struet (int et) eomment 

we suppose that the current type is stored in a cell and therefore that we 
are able to store a type and a pointer in the same cell. 

The declarations for 'M', 'D', 'mark' and 'marked' are as before. We 
need the following registers 

int ad, type, A, T; pointer status eomment 

'status' will contain the backwards information of the location just left 
(i. e. figure the top of a stack). It is in the latter location that is stored the 
backwards information for the still preceding location, etc. 

next traae ad:= a; type := a'; 

if.. tag £f. a = "desariptor" then aomment 

put '0' at the right place in the descriptor from which the routine starts 
tracing 

!!!!..fi; 

status := (a, 0); 



------------------------------------~~~~==~~=-

GARBAGE COLLECTION FOR ALGOL 68 

start !:i.. tag 9.i. D [type] = "last" then 

!:i.. tag 9.i. D [t 9.i. status J = "pointer" then baekuiards 

elsf tag 9i. D[t 9i. statu3] = "deseriptor" then next dem 

dsf tag 9i. D[t 9i. status] = "united" then complete 

fiii; 

:!:i. marked (ad) then next else mark (ad) fi; 

:!:i. tag 9i. D [type] = "p lain" then next 

elsf tag 9i. D[type] = "pointer" then pointer 

elsf tag 9i. D [type] = "descriptor" then army 

dsf tag 9.i. D[type] = "united" then union fi; 

next ad +:= 1; type +:= 1; start; 

pointer :!:i. a 9i. U[ad] = nil then next fi; 

fo!'Wa:t'ds A:= a 9i. M[ad]; M[ad] := status; 

status := (type, ad); 

type : = index 9.i. D [type]; ad : = A; 

start; 

baekuia1'0.s :!:i. a 9i. status = 0 then next tmee fi; 

A : = ad; 2' : = type; 

ad : = a 9i. status; type : = t 9i. status; 

status: = M[ad]; 

M[ad] := (skip, A - index 9i. D[T]) oomment 

here the forwards pointer is reestablished, using the location size 

eo; next; 

army :!:i. nmax 9i. M[ad + 1J = 0 then next else 

n 9i. M[ad + 1J := 0; forwards fi; 

next elem n 9i. M[a 9i. status + 1J +:= 1; 

253 



254 

union 

P.L.WODON 

i:1 n £i. M[a £i. status + 1J < nm::uI: £i. M[a £i. status + 1J 
then type : = index £i. D [t £i. status]; start f:!:; 

i:1 a £i. status = 0 then next t:roace f:!:; 

A := ad; T := type; 

ad := a £i. status; type := t £i. status; 

status := M[ad]; 

Urad] := (skip, A - nm::uI: £i. M[ad + 1J x index £i. D[TJ); 

next; 

T := at £i. U[ad]; M[ad] := status; 

status := (type, ad); 

type := T; ad +:= 1; 

start; 

aomp Zete : A : = a £i. status; T : = type; 

type := t £i. status + 1 + index £l. D[T]; 

status := M[A]; 

M[A] := (skip, T - index £l. D[T]); 

start; 

Again, this is a rather crude sketch which admits obvious improvements. 
In any case, it is clear that this method will be slower than the preceding 
one. One can also imagine an intermediate way: backwards address stored 
into locations and backwards types on a stack. 

2.4. Compiled tracing routines without stack. 
Instead of putting the descriptions of the locations into a table, the com

piler, when processing the modes, may insert them directly into the trac
ing routines. This is the method in [2]. We give here an example which 
does not use a stack. It is in fact still the same example, except that types 
are now materialized by labels, i.e. return addresses. In practice, these 
addresses may be put in a table and a table index stored in the locations in 
order to minimize the number of bits occupied by a description. 

We will show, using texts in ALGOL 68, how a tracing routine may be 
compiled. No table 'D' is used and the memory 'M' is as before, except 
for 

mode pointer = struat (string 1', int a) ; 



GARBAGE COLLECTION FOR ALGOL 68 255 

The field 'r' again represents the place where the backwards type is 
stored. It is only for description facility that we suppose it a string. We 
also suppose an operator 'lab' which transforms a string into a program 
label. The working registers that are needed by the complete set of tracing 
routines are the following: 

int ad. A. size; 

string type. T; 

pointer status := ("next tmae". 0); 

Then, to each type of location, there will correspond a compiled tracing 
routine, constituted as outlined below for a location of type "n" and size 
'nl': 

At the beginning, insert, to represent the address of the routine: 

Zab "t1" : 

If the ith field contains a plain value, supposed to use one cell, insert: 

mark (ad) ; ad ~:= 1; 

If the ith field contains a pointer to a location of type "t2", insert: 

it. marked (ad) then Zab "t1/' fi; 

mark (ad); 

it. a 9.i. M[ad] = niZ then Zab "t1/' fi; 

A := a 9.i. M[ad] ; M[a4J := status; 

status := ("baakt1/'. ad); 

ad := A; 

Zab "t2"; 

Zab ''baakt 1 i" : it. a 9.i. status = 0 then next traae fi; 

A := ad; ad := a 9.i. status; 

status := M[ad]; 

M[ad] : = (skip. A - size); 

Zab "t1." : 
- '!. 

ad ~:= 1; 

If the ith field is a descriptor (supposed to use di cells) to an array of 
elements of mode "t2". insert: 



256 P.L.WODON 

:fi. marked (ad) then talJ "t1 i" fi.J 

fE!:. j [rom ad to ad + d[l do mark(j); 

:fi. nmaz £i. M[ad + 1J = 0 then tab "t1/' fi; 

n £i. M[ad + 1J := 0; 

A := a £i. M[ad]; M[adJ := status; 

status := ("backt1/', ad); 

ad := A; 

ta1J "t2"; 

talJ "backt1/' : n £i. M[a £i. status + 1J +:= 1; 

:fi. n £i. M[a £i. status +: 1J < nmaz £i. M[a £i. status + 1J then 

lalJ "t2" fi; 

:fi. a £i. status = 0 then next trace fi; 

A := ad; ad := a £i. status; 

status := M[ad]; 

M[ad] := (skip, A - size x nmaz£i.M[ad + 1J); 

If the ith field contains a "united" value (supposed to use ui cells), in
sert: 

if. mark6d (ad) then talJ "t1 i " fi; 

mark (ad); 

T := ct £i. Urad]; M[ad] := status; 

status := ("backt1 i ", ad); 

ad +:= 1; 

lalJ T; 

tab "backt1/' : A := a £i. status; status := utA}; 

U[A] := (skip, type); 

fE!:. j [rom ad!£. A + ui -1 do mark(j); 

ad := A; 

'lab "t1." : ad +:= u.; 
- 't. 't. 



GARBAGE COLLECTION FOR ALGOL 68 257 

At the end, insert: 

size := nl; type := "tl"; 

Zab r £f. status; 

Of course, developed like that, the tracing routine corresponding to a 
structure with 10 fields would look rather formidable. In fact, many parts 
of it may be replaced by non-recursive procedure calls. 

2.5. Discussion. 
If we try to imagine how these tracing routines may be actually imple

mented in machine code on a computer, then there are questions that come 
up, the answers to which usually depend on the hardware itself. For exam
pie: is there room enough in a cell to store a pointer and a type indication? 
If yes, can the latter be easily, i.e. quickly, obtained and transformed 
either into a jump or into a description address? It is certain that the over
all efficiency of a garbage collection will very much depend on the answers, 
but we cannot say more. 

Even if we think of a particular machine, it is difficult to evaluate in ad
vance the comparative efficiency of different methods. We should need sta
tistical data on the form of the heap and anyway too much depends on ade
quate bit-twisting. Ideally, one should experiment with all sound-looking 
methods. 

There is still a point to make on the inherent recursivity of the methods: 
it is not quite true to say that recursivity is only allowed when strictly 
needed since, in fact, a location which contains only one pointer or de
scriptor need not be traced back. This remark is easy to implement when 
the recursivity uses a stack and when therefore nothing is changed in the 
locations themselves. 

If, however, we erase forwards pointers to store backwards informa
tion, we must reestablish and therefore know the forwards pointers when 
tracing back. The above outlined methods can do that simply because. when 
going backwards, they come from the locations to be pointed at. In other 
words, they demand that a location containing e.g. only one pointer is in
cluded in the recu~sivity because its address will be needed and not because 
something has still to be marked in it or from it. Therefore, if we want a 
method which uses recursivity only when strictly needed without implement
ing it on a stack, backwards information stored in locations must not erase 
anything and special room must be provided for it. One may accept to ap
pend extra cells to locations containing at least two pointers and/or de
scriptors but it is perhaps more advisable to reserve dynamically this 
room elsewhere. 

Still another kind of problem is raised by subarrays (slices). We have 
supposed that, when meeting a subarray, we mark completely the complete 
array. Of course, this is not necessary (see [2]) and only the first layer, 
so to speak, must be completely marked. This is discussed in [2], where a 
solution is given. There are other ones. For example, when meeting a sub-



258 P.L. WODON 

array, we could trace and mark completely only the relevant elements and 
afterwards mark the first layer of the rest. indicating in the descriptor of 
the complete array that this has been done. Subsequent tracing in the same 
array may then unmark the first layer. do what it has to do and mark the 
first layer again. 

3. MARKING THE ACTIVE SPACE 

To mark the active space, one may mark either each cell of it or only 
each location. This is discussed in [ 4]. Let us simply recall that marking 
only each location imposes that the mark is put in an overhead to the loca
tion which must also contain the size of the location. This seems to forbid 
location marking for ALGOL 68 since any sublocation may also be a loca
tion. 

With the current type of hardware, cell marking imposes the use of a bit 
table. Practically, this means that the routines 'mark(ad)' and 'marked(ad)' 
are rather inefficient. The idea of marking locations in an overhead should 
not be discarded too quickly, especially because the same overhead can be 
used to speed up the compacting routine quite a bit. 

Of course, if we allow overheads to creep everywhere. about 50% of the 
heap will be occupied by them, which is certainly not acceptable. But we 
could, for example, give an overhead to any location which is not a field of 
a structure. Any pointer to a field would then be accompanied by a (small) 
index permitting to find the overhead of the structure. The execution would 
ignore that index but the garbage collector would use it. 

Even if this method looks odd, it should be considered because it is pos
sible and much more efficient in the case where mainly large structures 
are in the heap. For mainly small structures, the overall efficiency de
creases rapidly because garbage collection is called more often. One could 
imagine compilers with both methods of marking (and compacting), with a 
possibility of choice. Of course, if locations have overheads, the tracing 
routine could use them with profit. 

If marking is done in a bit table, the routine 'marked(ad)' can still be 
made efficient. For a cell containing a plain value, it need not be used. On 
the contrary, it must be used for a cell containing a pointer and it is advis
able to use it for a descriptor or a union. In these cases, it is very likely 
that there is room enough in the cell itself to put another mark there, be
sides the one in the bit table. The routine 'marked(ad)' can thus make its 
test without looking in the bit table. This other mark, for example the sign 
bit, can be advantageously used and in any case erased during the compact
ing phase. 

4. RECONSTRUCTION OF THE AVAILABLE SPACE 

The various ways of reconstituting the available space are also dis
cussed in [4]. We only recall the main points. 



GARBAGE COLLECTION FOR ALGOL 68 259 

Reconstituting a list of holes is easily and quickly done, but this kind of 
available space slows down the execution of the program and, because of 
the generality of modes, it may eventually lead to a situation where the free 
store is a scattering of unusable small holes. It also imposes a fixed limit 
between the stack and the heap. 

Paging the heap is a possibility which should be considered, although, at 
a first glance, the generality and the recursivity of modes do not make it 
simple to organize. 

Compacting the accessible locations cannot be made in the simple fashion 
used for e.g. LISP 1. 5 since locations are of any size. They must be all 
moved down (or up) and all pointers updated. Even so, compacting is the 
easiest solution. 

Let Si be the size of the ith hole. All accessible locations between hole i 
and hole i + 1 have to be moved down ni cells, with 

i 
n· ="6 s· 

l . 1 J' 
J= 

Any pointer p to data in this area must be replaced by P-ni. The way this 
can be done is explained in [4] and [2]. Let us repeat that the numbers ni 
can be easily computed from the bit table but that they must be stored 
somewhere. Since there are as many of them as there are holes, the latter 
may be used. 

Finally, updating all pointers means that all pointers must be retrieved. 
For locations without overhead, this means that the tracing routines are 
called again. If there is an overhead, a much faster linear scan of the heap 
may be used. 

5. CONCLUDING REMARKS 

We have here written down a series of ideas about possible schemes of 
garbage collection. It certainly remains to discuss them and to confront 
them with reality. 

As an example, some tracing and compacting methods are going rather 
a long way to avoid using a stack. Isn't it simpler, after all, to make room 
for that stack by sending something in secondary memory when garbage 
collection starts? 

As another and important example, is the situation in which we have 
supposed the heap to be implemented, realistic enough? 

ABSTRACT 

This working paper collects a series of ideas about garbage collecting 
methods for ALGOL 68. Various methods of tracing the active space are 
sketched in order to illustrate the features that any tracing routine must 
have. The form and the reconstitution of the available space are briefly 
discussed. Some hypotheses have been made which are based on [2], where 



260 P.L.WODON 

a complete description of one method of storage allocation and garbage col
lection can be found. 

REFERENCES 

[1] Branquart, P., Lewi, J,: On object language and storage allocation, Proc. of an 
Informal Conf. on ALGOL 68 Implementation, Univ. of British Columbia, 1969. 

[2] Branquart. P., Lewi, J.: A scheme of storage allocation and garbage collection 
for ALGOL 68, these Proceedings. 

[3] Fites, P.: Storage organization and garbage collection in ALGOL 68, Proc. of an 
Informal Conf. on ALGOL 68 Implementation, Univ. of British Columbia, 1969. 

[4] Wodon, P. L.: Data structure and storage ·allocation, BIT 9-3. 1969. 
[5] Schorr. H., Waite, W. M.: An efficient machine-independent procedure for gar

bage collection in various list structures, Comm. ACM 10, Aug. 1967. 

DISCUSSION 

Mailloux: 
Can you tell the maximum size for a stack? If so, might it not be too 

pessimistic? 

Wodon: 
When you put a location on the heap. if you provide it with extra room 

for garbage col1ection at that time. for example one extra cell, you may as 
well add 1 to a counter which will then contain at any time an upper bound 
of the stack size. That's all. It will take exactly the same amount of space 
but you must count and that may take time. 

Bowlden: 
You asked a question about the implementation of a heap on a machine 

with virtual memory or in a secondary store? Most of the machines that 
have some sort of virtual memory have some kind of paging scheme where 
the store is kept in chunks in some way. The main problem, it seems to me 
here. is figuring out a means of ensuring that related things in the heap are 
in the same page, so that whenever you are tracing or linking through lists, 
or whatever kinds of things you do, you will tend to stay in the same page, 
for some reasonable length of time. That cuts down the amount of paging 
effort that has to be done. One possibility is to use the garbage collector 
to help in this process. If you use the process of mapping active space into 
the other half, which has been proposed in the case where you have an un
limited amount of space, then indeed the tracing scheme itself would prob
ably do more or less this. so that after the mapping was done, related 
items would tend to be on the same page. I don't know how good that one is. 
Perhaps even more important is enabling the user somehow or other, the 
programmer, to give some kind of information about this, perhaps by a 
pragmat. 



GARBAGE COLLECTION FOR ALGOL 68 261 

Wodon: 
Well, that's why I raised this question of pragmats or transputs. which 

may give a means for organizing the secondary memory. The main prob
lem is what kind of informations are closely related. One obvious way is to 
put in one page only those locations corresponding to one mode. This makes 
tracirig and compacting very easy. But now we have the problem. I think it 
is specific to ALGOL 68, that a structure may contain a substructure. and 
that you may have a situation where you have a pointer here. but no pointer 
there. Then you are in trouble of course. In which page are you going to 
put that? Will it be in the pages of that mode. when it should be in the pages 
of that other one? Well. there is a solution of course. You may point here in 
any case and give some kind of indication saying that this is this thing you 
have in mind or the other way around. I don't see any neat solution. 

Currie: 
I have just a few points on the tracing. the backward and forward tracing. 

On our machine we do not have enough room to keep the full type information 
for tracing. In fact we find that it isn't necessary. You can always recon
struct the backward information from just a few bits in the word. In fact 
we only use four spare bits in a word, to see what kind of thing we've got in 
our hand and what type it is. We can reconstruct the full type from this and 
the pointer pointing to the map area, we call it. It appears to work remark
ably well. So you don't actually have to carry the full type information if 
you don't have enough room. 

Wodon: 
I didn't mean that you have to do it exactly as I said. You may have tables 

or some kind of machine code, or what not. to reduce the exact amount of 
bits which are necessary to code a particular piece of information. 

Currie: 
In references, for instance, we carry around references as single 24 bit 

words, 20 of which are address, so that we have only four bits left to use 
for marking and to make sure that we don't go round the list twice and don't 
update it twice and all the rest of it. And all in all we only use I think six of 
these 8 different possible marks. 

Wodon: 
And how many modes can you accommodate like that? 

Currie: 
It depends what you mean by how many modes. I think there is a bit too 

much said about seeing them as speCific modes. In fact, what you are deal
ing with inside the machine are pointers. Some of them may not be actual 
physical modes mentioned inside your programs, because the particular 
implementation might work in terms of pointers which aren't actually the 
same as the formal specifications of the modes. 

Wodon: 
How many types of locations? 



262 P.L. WODON 

Currie: 
All in all about 1024, or something like that. All that we have to remem

ber about a volatile entry is the depth of pointers associated with it, and 
what is at the end of the chain. i. e. whether it is a structure. a union, or an 
array. If it is an array we also have to remember it is dimensionality. No
body ever has used more than three depths of reference. Plenty of people 
do use ref ref!!!l. but never any more. 

Lindsey: 
I think there has been some talking at cross purposes going on here. As 

far as I know Currie's garbage-collector is the only one which has a 
separate map area. The other ones we have been talking about haven't had 
a separate map area. 

Currie: 
Which map area do you mean? 

Lindsey: 
With your heap you ought to have a separate map. which contains the 

pointers to your heap proper. 

Currie: 
No, that wasn't the map I was meaning. I was meaning the map which 

tells you which part of a structure is a reference. 

Lindsey: 
Nevertheless, you have this map which takes some storage space which, 

I suppose. is roughly the equivalent of these two little words in here. 

Currie: 
Nevertheless, I think that's independent of the traCing and updating prob

lem. 

Lindsey: 
What is it for then? 

(~urrie: 

Well, I couldn't be bothered setting up a bit map, quite honestly, so I 
decided to do it in a slightly different way. 

Lindsey: 
By a word map instead: 



SESSION 6 

(Chairman: G.Goos) 





Goos: 

PANEL DISCUSSION 

ALGOL 68 SUB LANGUAGES 

Chairman: G. Goos 

Panelists: H. J. Bowlden, P. Branquart, B. J. Mailloux, 
J. E. L. Peck, P. M. Woodward. 

Ladies and Gentlemen, may I open this panel discussion on implementa
tion of ALGOL 68 sUblanguages. I would like first to set the frame. I have 
provided the panelists with some questions which I shall comment upon 
first; I hope then that we shall have some comment from the panel which 
would lead to a public discussion later. I would like to start first by de
fining what is meant by a sublanguage for the purpose of this panel discus
sion. The definition is given by example. I consider ALGOL 68-R to be a 
sublanguage, although it is not truly a sublanguage according to the Report. 
This means that we should concentrate not only on problems which can be 
solved by leaving out certain rules, by weakening certain rules of the Re
port or by shortening them, but also on problems solved by making slight 
changes of the kind that were made by the Royal Radar Establishment, for 
example in proceduring. 

The questions which I pose are as follows: 
1) What are the reasons for having sublanguages from the implementers' 

pOint of view? 
2) Is there any possibility for simplifying the recognition of the meaning of 

parentheses in such a way that the context required to the right has a 
fixed maximum length? 

3) What can be done to ease the distinction between mode- and operator
indications in the first parse? 

4) Is the generality of coercing appropriate? What Simplifications might 
be considered for proceduring or uniting? 

5) What kind of restriction can be made to simplify storage allocation at 
run-time (garbage collection, generators for rows of structures con
taining a row as a field etc., with arbitrary combinations of flexible and 
fixed bounds)? 

6) What are the problems in connection with separately compiled proce
dures, especially in case of parameter modes which enter a union mode 
either in the main program or in the procedure? 

7) Is the I/O-package appropriate? 

265 



266 PANEL DISCUSSION 

8) What are the considerations on parallel processing 7 
9) Is there a consistent way to describe restrictions 7 Can these restric

tions be checked by the compiler 7 
Can a description for a sublanguage be derived from the ALGOL 68 
Report 7 
What other relations are there between the description of a sublanguage 
and the Report 7 

10) What is the relation between making sublanguages for ease of imple
mentation and defining sublanguages for specific application areas 7 

May I now invite the panelists to start. 

Peck: 
I look at the first question and. taking out the last phrase, address my

self to that. What are the reasons for having a sublanguage 7 One very good 
reason is the fact, that we shall have to teach students this new language. 
Now. when you have to teach a large number of students a programming 
language. it is very essential to have a small. fast compiler and perhaps 
an in -core compiler. so that you get fast turn-around. This is achieved 
very well. as most people know. with the WATFOR compiler in the case of 
FORTRAN. For the language PL/I. there are now appearing such compil
ers for sUblanguages. One of those languages is SPL. which comes from 
Stanford. and is now used for the instruction of students. It is not quite a 
sublanguage of PL/I. but it is close enough to be called a sublanguage in 
the sense that was outlined. I think that if ALGOL 68 is to be successful, 
it is very essential to have a sublanguage of this type for which there can 
be a small. fast compiler and which can be used to put through perhaps a 
thousand student jobs a day. What the restrictions should be for such a 
language I do not yet know. I certainly think that unions should be absent, 
but I leave others to suggest perhaps, what further restrictions would be 
necessary. 

Woodward: 
The question is worded rather strangely, "from the implementer's point 

of view". because in a sense the implementer does not really have a point 
of view, except to get the job done sufficiently quickly to meet users' needs 
and to get a rapid feedback from them. The users are the people who mat
ter. It could be that this is a good justification for a sub language which en
ables you to get your compiler into practical use quickly. 

Bowlden: 
There is a problem with that, though. in the sense that one of the major 

things we want to be trying to sell with ALGOL 68 as compared with ALGOL 
60 is the increased power. If you give them a subset that looks just like 
ALGOL 60, they will say, "Why bother 7" 

Woodward: 
Well, perhaps what I would then say would come into the scope of an

other question, I am not quite sure. Clearly there are subsets which are at 
such a trivial level that we should not take them very seriously. 



ALGOL 68 SUBLANGUAGES 267 

Goos: 
May I ask you this question more precisely? What properties of the lan

guage would you identify to be necessary for not having a trivial subset? 

Woodward: 
Well, let me tell you straight why we had to make the decision to imple

ment this language. Users, who were hitherto all on ALGOL 60. required 
structures, and it is the data structures which enabled us to sell the lan
guage ALGOL 68-R to them. 

Goos: 
What kind of fields? Any kind? 

Woodward: 
Even very simple structures are of considerable value. It is not always 

that you want to find the place numerically. and we have to bear in mind 
the psychological value of being able to use field-selectors which look like 
identifiers. Our users are already exploiting structures of arrays. 

Goos: 
Does anyone else wish to comment? 

Branquart: 
In my opinion, one can distinguish two kinds of reason for having lan

guage restrictions from the implementer's point of view: 
The first reason is the optimization of the run-time efficiency of the 

compilers; though ALGOL 68 has been designed with the Bauer-principle 
in mind, it may happen that some sophisticated features of the language 
influence the efficiency of the compilh,ltion of more current ones. The in
troduction of restrictions eliminating such features is, I think, quite justi
fied. 

The second reason is the minimalization bf the time of compilation. and 
at the same time the minimalization of the time of designing and program
ming a compiler. There is a very striking point which all compiler build
ers are aware of: they devote the greatest part of their lives to taking into 
account very special features of languages and intricate combinations of 

. such features, which will pr.obably never be used by any programmer. It 
would be very useful to have a reasonable subset of ALGOL 68 which would 
be designed for current use. 

Goos: 
Such restrictions would be difficult to formalize. 

van Wijn,gaarden: 
May I interrupt here. I am wondering about his remark. Could you give 

some examples? We tried to design a language in such a way that all its 
concepts are orthogonal, and I think that if you imple~ent each concept 
correctly, then automatically you get correct all those which you call im
probable combinations. 

Branquart: 
That is right, but in some cases, if you can suppress improbable com-



268 PANEL DISCUSSION 

binations it simplifies the job of the compiler. For example, you admit 
generators which are dereferenced immediately, and which have not even 
been initialized. 

van Wijngaarden: 
Of course, these are nonsense programs. 

Branquart: 
But if you want to have a very general compiler, you have to take such 

cases into account. 

van Wijngaarden: 
But what is there to trouble you? The local-generator is an address. If 

you do not initialize it. then you do not put anything in that address. So 
what? 

Branquart: 
Consider the case of recognition of parentheses; if you eliminate the 

possibility of having uninitialized generators which are immediately de
referenced, you forbid the possibility of having in!: i as bound pair. and the 
job of the compiler is made easier. 

Woodward: 
But one cannot design a language which. from its very nature, would re

move the nonsense programs. You can write a nonsense program in any 
language. 

Branquart: 
Yes, but it would be advantageous to suppress what is possible to sup

press. 

Coos~ 

Are there languages restricted in such a way that you cannot program at 
aU in them? 

van Wijngaarden: 
That is the other t!xtreme. 

Coos: 
I think that the basic problem underlying your question. is that of effi

ciency at run-time or at compile-time. You qukkly find out certain cases 
in which the compiler writers have to solve not only the recursive case, 
which comes from the orthogonal design, but they have to split up this gen
eral case and see whether they can optimize the usual case which requires 
only one or two levels of recursion. It turns out that some of the orthogo
nalities in the language are very hard to handle if you try that. But this has 
to be tried for optimization. 

Bowlden: 
There are three cost features that are involved really. One is the cost 

of developing the compiler in the first place, one is the feature of compila
tion speed, and one is the problem of run-time speed, execution speed. 
They all have to be considered. Really what it amounts to is that you have 



ALGOL 68 SUBLANGUAGES 269 

to decide on the point of diminishing returns as far as increasing the cost. 
It seems to me that a good criterion is that if the inclusion of any particu
lar feature would add heavily. whatever that means, to the cost of pro
grams that do not use it, then it should be omitted. or at least be relegated 
to a larger version of the compiler for the use of those people who really 
have to have it. 

Goos: 
This criterion is very difficult to handle because I do not know any lan

guage in which the generality does not contribute to complexity of certain 
programs even if they do notuse the full generality. 

van Wijngaarden: 
Here we did our best according to the Bauer-principle not to let the gen

erality weigh on those people wo do not use it. But we have always decided 
that a very tiny little bit of tax should be paid by everyone for recursion. 

Bowlden: 
Well, in some cases it is not just a tiny bit. Certainly there are certain 

things that on certain machines would be expensive to implement for every
body who uses the system, unless you provide him with a pragmat or 
something to enable him to tell the compiler "I do not intend to use this 
feature, so do not build it into my program." 

Woodward: 
I think there is one overriding prinCiple which we have tended to bear in 

mind in decisions which we have had to make. and that is never to stop 
people from being able to do the things that they want to do. We do not 
mind if, for ease of implementation, the way in which they have to express 
themselves is a little bit more cumbersome than it would be in ALGOL 68. 
But we do not like to withdraw real facilities. 

Goos: 
I believe that we have now established certain criteria, according to this 

first question, about the reasons for having sUblanguages. These criteria 
seem to be, first, we want to be efficient at run-time as far as possible 
and this in a general way, which of course has to be split up into the two 
points, efficient in time and efficient in space. The second point is that we 
want to minimize the design time and programming time for the compiler 
itself. The third point are the advanced properties of the language, accord
ing to the question, whether these properties contribute to the complexity of 
the generated program or of the generation process in such a way that peo
pIe who do not use these features have to pay for it. The last point is the one 
which was expressed by Woodward, in asking which features could be weak
ened or removed from the language in order to fulfill these criteria. We 
should not reduce the expressive power of the language but only make it 
somewhat more cumbersome to express things. I think these are the cri
teria we can generally establish. 

Scheidig: 
Does there exist a group which would implement the whole language 

without restriction? 



270 PANEL DISCUSSION 

Ershov: 
Yes. 

Scheidig: 
But it seems to me that most groups make restrictions and so there is 

the danger that we have many sUblanguages. Perhaps we should come to a 
general sUblanguage. 

Goos: 
So this question is: What can we do to get a unified look at the different 

problems the compiler builder is concerned with. and what can we do to 
solve them in a uniform manner in different implementations? 

Bowlden: 
Really. what we are probably thinking here is that we do not want to go 

the way ALGOL 60 has gone. with sublanguages that are not nested. This 
makes it so that in effect you have different languages because different 
features are implemented. If we can define a nested set of sublanguages 
to start with. then this reduces the chance of that sort of thing happening. 

Mailloux: 
I should just like to remark again that there are perhaps two different 

kinds of subset and that one might have two different reasons for having 
them. One is essentially for teaching because you want to compile and 
probably reject thousands of programs every day; we intend to implement 
some such subset, probably a very large subset, while at the same time 
constructing a second implementation, of the entire language. The other 
reason that one might want to have a subset is that one has a small ma
chine and feels incapable or unwilling to go to the trouble, which might be 
considerable, of implementing the full language on it, and still getting it 
efficient. 

Wodon: 
What Branquart has said gives me the impression that there are two 

kinds of restriction: one just suppresses a concept and orthogonally all its 
consequences; and another suppresses 'side effects'. But if we have to 
suppress this kind of thing, it is very difficult to express this formally. We 
would easily come out with a list of unformalized restrictions, let us say 
some kind of PL/I stuff. The question is: are we ready to accept that, or 
are we not? Practically, it would be nice, of course. 

Goos: 
This is one of the possible answers which we should give to that first 

meta-question which I posed [9]. What kind of description can be visualized 
for sublanguages? As you just said, we may see a PL/I-like description 
consisting of many special cases, or we may drop certain features of the 
language completely, with the consequence that all things that follow by the 
principle or orthogonality from that must also be dropped. 

Branquart: 
I think that it is always possible to use the two level syntax of the Report 



ALGOL 68 SUBLANGUAGES 271 

for describing the suppression of a side effect, but this could give rise to 
huge swellings in the syntax; generally speaking. it is easier to cut out a 
whole feature than only its side effects. 

van der Meulen: 
With regard to the teaching aspects of the language. only structures 

were mentioned. I should like to remark that in particular. operation defi
nitions and the whole slicing mechanism are as important and appeal im
mediately to students as soon as they have some experience with them. 

Woodward: 
I would say that physicists using the language will find the slicing ex

tremely important. 

Mailloux: 
I would like to ask Peck just why unions in particular are so difficult. I 

do not see it. 

Peck: 
Well, the inclusion of unions means the inclusion of the conformity

relation with run-time mode checking and I would think that exclusion of 
this would simplify the compiler. 

Mailloux: 
I agree that it would simplify it. but it cannot really see that it would be 

all that much. since you still have to check at compile-time for equiva
lence of modes which might have been defined in different ways. It seems 
to me that is the really tough part and kicking unions out is not going to 
simplify that very much. 

Coos: 
I think we come now to the more specific questions. I would like to give 

the panelists first an opportunity to express their views on those facts 
which are difficult to implement and to see what they believe can be done to 
remove difficulties. 

van Wijngaarden: 
Who came first on this question between Mailloux and Peck? I thought I 

heard that if you took unions out then also the conformity relations should 
go. Is that true? But ~his is without any reason. because in the syntax of 
the conformity relation. unions do not occur. 

Coos: 
Can you tell me what expressive power remains in the conformity rela

tion if unions have gone? 

van Wijngaarden: 
May I say something about the possibility of simplifying the recognition 

of the meaning of parentheses in such a way that the context to the right is 
of fixed magnitude in length. Well. I think there is only one solution and it 
is to give all the different parentheses a specific representation. Why? Af
ter an opening parentheSis. an identifier can always follow. This identifier 



272 PANEL DISCUSSION 

is of any length. It will supersede any given fixed maximum length. There
fore, all we need to do is to have a specific opening parenthesis. You can 
manage with the same closing parenthesis because it is just a matter of 
matching, you see. The opening parenthesis must be different. 

Branquart: 
I agree with you, but not for the same reason. 

van Wijngaarden: 
That makes the point even stronger! That means I have more arguments 

in favour. 

Branquart: 
I do not think the example of 'identifier' is a good one: an identifier is 

recognizable by a finite state automaton and in practice, I do not consider 
the context 'identifier' as unbounded. 

van Wijngaarden: 
I am sorry, I do not understand at all. I have an opening parenthesis, 

then int, and then a, then I shall not know whether I have to do with a 
structure or the opening of a closed-clause. 

Branquart: 
I agree with you; I was only against the example of identifier. Here is a 

display of all possible kinds of parentheses, which may happen in a pro
gram; this display shows clearly that the context allowing one to recognize 
the left parentheses are generally not bounded. 
1) Let us first enumerate the trivial cases where the contexts are bounded; 

struct ( .. . 

union ( .. . 

struct (indication) = ( ••• 

union (indication) = ( ... 

op ( 

proc ( ) 

proc ( , ... 
proc ( 

proc ( ... 
par ( ... 

(tail of primary) ( ... 

parentheses of virtual bounds 

parentheses of virtual plan (other contexts) 

slice or call 

2) The detection of extensions needs a special state to be stored on a stack, 
and even with the help of such a state the necessary context is unbounded: 



ALGOL 68 SUBLANGUAGES 

struct (... ) S, (~) real r 

bounds 

struct ( ... ) s, (~) sl 

fields 

273 

There is one single solution for solving these cases without using spe
cific brackets: suppression of the extensions. 

3) The remaining cases are not bounded either, I have tried to charac
terize them rather roughly; note that the order in which they are written is 
important: 

( (LI ______ -----',) declarer 

formal-parameters 

routine -denotation 

( ~ ) declarer 

bounds 

( ) 

( ) 

I ) ( 

( 

( 

I I ) 

I: ... ) 

( , ... ) 

( ... I 
( ... , , 
( ... , , 

Goos: 

. .. 

. .. 

) 

) 

I ... ) 

) 

closed -clause 

collateral-clause 

conditional-clauses 

case-clauses 

I think you have stated the problem of parentheses now and also the 
cases in which a parenthesis is not preceded by a primary. Is this true? 

Branquart: 
Yes it is. 

Goos: 
Yes, and the question that we should be concerned with now is: what can 

we do in this situation, not by inventing tricky compiling routines but by 
changing the situation? 



274 PANEL DISCUSSION 

Bowlden: 
Can we change the situation without extensive alterations? We certainly 

cannot do it by making a sublanguage out of it. I am inclined to think that 
the question hinges on how much you are trying to do in the first pass. 

Goos: 
That is the question I have. You should not discuss the question of hav

ing a tricky compiling routine, because this is not the question put to this 
panel. 

Peck: 
I think there is one obvious thing and everybody knows it. It is that the 

representation of the sub-symbol should be different from the representa
tion of the open-symbol. This is an obvious simplification. 

van Wijngaarden: 
The representation of the sub-symbol is a different one from that of the 

open-symbol. But it is an extension that allows another representation un
der ',certain circumstances. 

Lindsey: 
I think that Branquart's second example, under 3), could also be a 

routine-denotation because a formal-parameters-pack can contain commas, 
and a comma can be a go-on-symbol. So in fact you have to go even further 
before you know the context. 

van der Meulen: 
Many of these troubles arise from two sources. One of them is the 48 

character set, and the other is the different possible ways of representing 
certain extensions. I think we could come a long way by saying that the 
implementation requires a 64 character set including in particular, square 
brackets, and secondly, prescribing certain extensions and excluding oth
er s so that a lot of troubles of this kind disappear. 

Goos: 
This is a proposal for attacking the problem by restricting the possibili

ties of expressing certain things in different ways. 

van der Meulen: 
It is only a choice in the representations. 

Goos: 
Is it only a choice of the representation, or do you suggest the use of 

certain extensions everywhere while forbidding other extensions in some 
places? 

van der Meulen: 
Yes, for example, for the declarations of a new mode by means of a 

struct you can say mode m '" struct .... You can also say struct m '" ... , 
and you can use it without an intermediate mode-declaration. In my opinion 
the implementer could help himself very much by requiring that you have 
always to declare a new mode by one of the three possibilities of extension. 



ALGOL68SUBLANGUAGES 275 

The same applies to the square bracket and the round bracket. By simply 
requiring that an implementation presupposes square brackets and only 
uses square brackets where the sub-symbol and the bus-symbol are meant 
and for all other cases round brackets, you have done away with some oth
er problems of this kind. Then I think you can make a certain choice of 
possible extensions, prescribe some of them and say here you cannot use 
the strict language but you have to use a certain extension. By making an 
intelligent choice of this kind (not restrictions. but just suppositions of the 
compiler) you can come a long way. Many of these problems arise from the 
many choices you have. Others arise from the restrictions of the 48 char
acter set. 

Mailloux: 
First, I should like to say that yes, indeed, I would very much like to 

choose different representations, but I cannot. I am sorry, but I just can
not.· because the boss of my computing center has bought a large number of 
keypunches with the character set that they have got on them. The same 
thing is true in most of the world, and although. of course, we would like 
to do everything we can to change it. I am afraid we are not quite in power 
yet. Soon we shall take over from FORTRAN, but it has just not happened 
yet. Secondly then, perhaps in a constructive vein. and I hope you will not 
tear me apart for this. in something that we might call an array-declara
tion, we might reinstate the ALGOL 60 array. It is slightly unfortunate but 
I suppose I could be put up with. We could probably also put up with some
thing or other in front of a routine-denotation. whether it is expr or rout, 
or whatever. I think that the other cases essentially either take care of 
themselves or are not serious in the sense that, you do not really need to 
know, when generating code for whatever follows any other left parenthe
sis, what the exact nature of the parenthesis is. Just compile along to the 
end of the serial-clause; if you there encounter a vertical bar, then the 
mode of the unitary-clause last compiled distinguishes between conditional
clause versus case-clause; if you encounter a comma instead, then you 
have a collateral-clause; or if you encounter a right parenthesis, then it 
was a closed-clause. I think the problem can probably be handled with 
those two additions, distortions, or whatever you want to call them, to the 
language. 

Goos: 
Did your first proposal mean that you want the sub-symbol to be repre

sented by something like row ( in some places only? 

Mailloux: 
I am saying you can do this. This is a possibility. I do not like it but it 

might make life livable. 

Goos: 
The question here is: can this be considered to be a property of a sub

language, or not? 

Mailloux: 
Well, I must insist that if Currie can get away with the things he is get-



276 PANEL DISCUSSION 

ting away with, and this can still be considered a sublanguage by our chair
man, then this must also be a sublanguage in his sense. 

Goos: 
Then I do not doubt the question: 

Bowlden: 
This is not just a matter of a 48 character set either. The set in ques

tion is a 128 character set, which is becoming a de facto standard, which 
has no square brackets. 

Koster: 
There is some point in looking at the restrictions or changes that Currie 

has used in his implementation. One of them is an old friend of mine, the 
reintroduction of the void-symbol as the virtual-void-declarer with maybe 
a corresponding ,extension to be deleted at nearly all places again. There is 
another thing in his proposal which I found much less to my taste and which 
I think people should now have a fight over. and that is his leaving out of 
the formal-declarers. It is quite clear that if you follow this example, then 
you are rid of both a number of local ambiguities in parsing and some 
problems in your compiler, but is it worth it. To begin with. you might 
envisage some system where you restrict what may occur as bounds in 
such a way that you can never have a closed-clause there because the 
closed-clause as bound is really the dangerous thing. 

Currie: 
I suppose I should rise up in defense at this point. I do not think it is go

ing to make any difference at all, on the analysis side of it. It does not 
make it any easier having virtual bounds there instead of formal bounds. It 
makes no difference at all on the analysis side. That is the first thing. The 
second thing is that my reason for omitting it, besides the standard lazi
ness, was that most users will never put anything in formal bounds - just 
sheer laziness. You know, they will assume they will always have the 
bound right and when it goes wrong, it goes wrong - and that is it. In a 
sense it is putting redundancy on top of redundancy. As far as any of the 
really tight library procedures are concerned, these are generally written 
in code anyway and they test bounds in the text. It did make some differ
ence to the code production. It is slightly easier to produce code, but it 
does not make any difference in the analysis at all. 

Goos: 
May I comment on the last point. I think you need not reflect on the 

question of procedures written in code but should say that it is possible for 
the routine, by using the correct operators, to ask what the values of the 
bounds are so that you can check them. 

Lindsey: 
I think it was quite a reasonable thing myself to omit the bounds from 

the formal-declarers but I think it was a terrible crime to omit the either 
or the flex, particularly the flex, because that is the point at which you 
cease to be a strict sub language. I think you should at least have accepted 



ALGOL 68 SUBLANGUAGES 277 

a formal bound with a flexible-symbol. You could ignore this and pretend it 
was not there and do nothing about it. I am not saying that you must do the 
check when you actually put in the actual-parameters. At least you should 
have accepted it. We now have a statewhere a program which will run on 
your implementation, which does not happen to contain a flexible-symbol 
in a particular place, will not run on anybody else's implementation. 

Currie: 
I would suggest that most of the programs that are written for a partic

ular installation will not work anyway when you go across to another com
pletely different installation. 

Woodward: 
We are talking about sublanguages and you only need two different sub

languages to encounter exactly the same problem. 

Goos: 
I think that this whole discussion is at a point where we violate the

prinCiples underlying a higher-level language. One of those principles 
is the portability of programs from one installation going to another 
one. Also, if we have doubts that this is effective in any case, we should 
not restrict languages in such ways that it is impossible. 

Currie: 
That does not make it impossible. Our machine is a 24 bit machine. 

That is the length of the integers. Do you think that everybody is going to 
be writing their programs in such a way so that they do an environment 
inquiry to find out how big their integers are going to be, and using it in 
some way to modify the program later on so that it can run on a machine 
that has got 18 bit integers perhaps, or maybe 36 bit integers? 

Goos: 
That is a rather strange idea. I think that experience with ALGOL 60 

and FORTRAN has proven that in very many cases these kinds of restric
tions are not so important. 

Currie: 
No, but there is always something which has to be changed in the pro

gram. 

Goos: 
I think we should close now on the point of parentheses and go on to an

other problem. 

Bowlden: 
I think that on this third point perhaps, with reference to the distinction 

between mode- and operator-indications in the first pass, maybe we ought 
to postpone that until after coffee and let Lindsey give us a little presenta
tion on that subject, since he seems to have given more thought to it than 
anyone else, I am aware of, on that sort of thing. 

Goos: 
Do you want to comment on another point? 



278 PANEL DISCUSSION 

Bowlden: 
This question as to the passing of united parameters to a separately 

compiled procedure seems to be a very difficult one to handle.. and it may 
be that extensive extra tables will have to be kept if we are going to do this. 
Now maybe this is one of the reasons why Peck; feels that unions are to be 
avoided, I am not sure. The other thing of course is simply to say that in a 
sublanguage you do not allow separately compiled procedures. This would 
be one direction to go. It is not even a sublanguage in that sense of the 
term. You could indeed argue that if you want to simplify the problem, do 
not allow separately compiled procedures. But if you are going to allow it 
and you are going to allow united modes. then you are gOing to have to keep 
a mode table with representations. I think, just as you are going to keep an 
identifier table for separately compiled procedures. 

Goos: 
May I first comment on the possibility of leaving out the precompiled 

procedures. You should note that the problem of passing the mode numbers 
in case of unions applies also to the case of procedures written in code, 
and I can see that it is possible to make an implementation which allows 
procedures written in code introduced impliCitly, but not by explicit call. 
explicit call. 

Currie: 
Well, I think I must have misunderstood this problem when you were de

scribing it because as far as I can see, you could put it right by not allow
ing the commutation of the modes inside the union. 

Bowlden: 
No. The problem is having a unique number assigned to each mode, 

which obviously depends on the order in which the declarations of these 
modes are processed by the compiler. If in the two separate compilations 
they are to be given the same number so that the test can be made to work. 
you have to have a complete list. 

Koster: 
I do not quite see this union problem. If you are to have a precompiled 

procedure, it is clear that you have to accompany it with part of a table, 
a declarer table. Your main program has its own declarer table. At a spe
cific moment you are trying to insert the library routine into your main 
program. That means also a merging of the tables. Only after that can you 
find your unique integers, etc., for the modes in this case. But I see no 
problems there. It is some work, but no problem. 

Goos: 
But difficult work. I think that Peck was right when he said: "I leave out 

unions for such reasons because it slows down the speed, just that". 

Mailloux: 
If you have got independent compilation, it does. Otherwise it does not. 

I mean, it follows the proper Bauer-principle that you should not pay for 
something unless you use it, and in this case you do not. Furthermore, the 



r 

ALGOL68SUBLANGUAGES 279 

process which you have to go through to knit these independent pieces of 
program together is a process which you essentially included in the first or 
second pass when the compiler went through and found out, i.e .. that this 
mode is equivalent to that mode. so you do not really even have to write a 
new piece of program. You have to modify it slightly to get at these things, 
but I do not see it as a real problem, any more than independent compila
tion of things at all is a problem in any language. Now in fact it might be 
considered to be a very bad thing in general. On our machine you cannot 
get a FORTRAN compilation in less than 18 seconds. and the main reason 
for this is that they have a thing called the linkage editor, which has all 
sorts of disk files and goes and compares things and spends most of its 
time doing transput and a very little time calculating and fixing things up. 
This would not be any worse, I think, in ALGOL 68, at least not signifi
cantly. 

Goos: 
I think we have no new ideas on this problem so one of my questions was 

the following: is there any possibility of designing specific garbage collec
tors which run, not with the full language but perhaps with a subset, so that 
we are able to recognize. at compile-time, whether some programs belong 
to that subset which may be handled by that garbage collector or not? I think 
for instance of the following. Suppose somebody has written, by suitable 
mode-declarations and operator-declarations, a LISP system in ALGOL 68. 
Then at the first look, all that is needed is a LISP -like garbage collector, 
and nothing of all those generalities for structured values and so on. Of 
course, the second look shows that there are certain problems, for in
stance, the fact that formats generate something on the heap, that unions 
containing arrays generate something on the heap, that arrays with flexible 
bounds generate something on the heap. So the question I would like to pose 
is: what can we do to avoid all these special cases which prevent the con
struction of special garbage collectors? One of the possibilities would be to 
say in advance that all things which are on the heap are declared by such 
and such mode-declarations which come in the first part of the program. 
And later on the compiler can check that it has no global-generator and no 
other kind of storage allocator which puts things on the heap and which does 
not fit into these modes we have declared in advance. This is my proposal. 

Currie: 
I am not at all clear as to why this would help. We have still got the 

problem of the Intermediate working results. Why would ... 

Goos: 
This you can put on the stack. 

Currie: 
No, but we still have to remember that these intermediate results, or 

intermediate references as it might be, have got to be stored somewhere, 
and they are still in the stack and you still have to remember them. I think 
that is the point in the whole garbage collection setup that you have got to 
attempt to optimize. I feel that if garbage collection takes more than 10% 



280 PANEL DISCUSSION 

of your program, then there is something wrong anyway. You are running 
on too small an installation. I agree that there are times when 99% of the 
time is spent in garbage collection, but nevertheless it is not a good way to 
use store. Making your garbage collector two or three times as fast is not 
really going to gain you so much as reducing the amount of code that you 
use to keep all these pOinters updated correctly so that the garbage collec
tor can be aware of them. I think this is a far more important point. 

van der Poe l: 
Our experience with garbage collectors of a rather complicated kind. 

namely for LISP with variable length element structures, is that the only 
thing whiCh a garbage collector has to do is to see whether it deals with a 
pointer, which it has to displace or whether it deals with a plain value, 
which it is not allowed to touch. I have the strong impression, from my 
own experience, that it would not matter that the garbage collector would 
not become any more difficult for the general case as for a specialized 
case. And even in a general case, such a garbage collector is within 700 
instructions or so. 

Goos: 
It is not the length of the garbage collector. It is just the execution time. 

van der Poel: 
Oh, not even the time because you can describe garbage collection as 

the number of times you have to visit each particular cell. It is practically 
a linear process which can be expressed as a coefficient times the total 
number of cells. So it goes up linearly with the number of storage cells you 
have and nothing else. 

Branquarl: 
I should like to ask you how many extra bits you have at your disposal 

in your system. 

van der Poel: 
Three. 

Lindsey: 
I think there may be some programs in which you could use a garbage 

collector which does not need to compact. If all your garbage is in units of 
the same size, as in the LISP system it probably would be, then you can go 
back to conventional chaining of your free store together, allocating pieces 
out of the chain as you wanted it. This would save the whole of the com
paction. 

Bowlden: 
Certainly it would not be hard to keep what amounts to a statistical ta

ble of sizes of spaces that have been allocated on the heap and if they are 
all of one size you could do exactly that. But the trouble with this, it seems 
to me, is that you are adding to overhead in the case where, as may often 
happen, you never have to do a garbage collection, and, in particular, I 
think this applies too to the handling of the working stack. I agree with what 



ALGOL 68 SUBLANGUAGES 2R1 

Currie was saying about the business of trying to keep track of what is on 
the working stack. If you put in a code to do that. you are penalizing people 
who will never use garbage collection. to keep track of something that the 
garbage collector could do if it ever gets called. 

Goos: 
Do you see any way to avoid that? 

Currie: 
In fact our implementation does not include any of that code if the gar

bage collector is not present in core. i.e .. if there had not been any gen
erators or two-dimensional collaterals. or similar things used in the pro
gram. then the garbage collector will not be loaded into use. neither will 
99% of the code required for manipulating the pointers. The other point was 
this point about getting areas of the same size together. This only makes 
sense when you have got a segmented store. when you can afford really to 
have disjoint areas in core. If you have got just a linear chunk of core. as 
I have got. which the stack and the heap have got to go into. then it just is 
not worth it. It does not pay. You might as well compact every time be
cause most of the time the garbage collection is invoked by the stack ex
panding and hitting the heap. So you might as well compact every time. 
There is no point in messing about in that case. However. if you did have 
a machine architecture which did allow you to separate out your core into 
reasonably disjoint areas. then I agree that would be the way to do it. 

Wodon: 
The subject of this panel discussion was sUblanguages. and I did not 

hear anything about a sublanguage which could ease the burden of garbage 
collection. I must say I do not see one either. The only thing I can see was 
expressed by Lindsey. In a case when we have only a small number of dif
ferent structured modes without structures in them. then I can imagine 
very fast garbage collection of course. using pages and things like that. 
But as far as sublanguages are concerned. I do not see anything. 

Goos: 
But the question is exactly that one. How can you recognize how many 

different structures you have? 

Wodon: 
I just have the compiler count them. 

Branquart: 
One more comment. In my opinion. the efficiency of the garbage collec

tion itself is not so important. What I am afraid of is the influence of the 
necessity of the garbage collector on the execution of the normal programs. 





SOME ALGOL 68 SUBLANGUAGES 

C. H. LINDSEY 
University of Manchester, UK 

This note introduces three proposed sublanguages known as CHL1, 
CHL2 and CHL3, whose purpose is to satisfy those implementations which 
prefer their defining occurrences to precede their applied ones. 

- It is also hoped that these examples will establish a satisfactory prece
dent for rigour in the definition of sublanguages. Note that I have been 
careful to apply my restrictions only to particular-programs since it is not 
necessarily the case that the standard and library preludes should be ex
pressible in the sUblanguages. 

SPECIFICATION OF THE ALGOL 68 SUBLANGUAGE CHLl 

{This sublanguage is intended to place the minimum restriction on the 
language, whilst yet enabling new indicants to be recognised as either 
mode-indications or ADIC-indications as soon as they are encountered dur
ing a single forward pass through the source text. It is essentially a for
malisation of an informal proposal made by Goos during the Banff meeting 
of WG2.l.} 

An "excluded object" is a terminal production of a notion, contained 
within a sequence of symbols which is to be replaced by a second sequence 
of symbols in the course of an extension {9.a}, which is not contained with
in that second sequence. {Thus, in~real x = loc real, when it is to be 
extended to real x, '!!!l real is an excluded object}. 

If a given {applied} occurrence of a terminal production of 'MODE m<;>de 
indication' where "MODE" stands for any terminal production of the meta
notion 'MODE' indentifies a defining occurrence of the same terminal pro
duction and is the textually first occurrence of that terminal production, 
excluding any such occurrence contained within an excluded object, within 
the smallest range containing that defining occurrence, then the given oc
currence is an "establishing" occurrence of that terminal production. 

N6 proper particular-program in the sublanguage contains a heap
generator whose constituent heap-symbol-option is empty (a local-gener
ator which is to undergo the extension given in 9.2.a) and whose constituent 
declarer is an establishing occurrence of a mode-indication. 

{Thus, in a particular-program commencing with 

begin proc p = : (gODS a; . . . .. , 

gODS must be the representation of a monadic-operator, for otherwise 

283 



284 C. H. LINDSEY 

goos a would be an extension of ref goos a '" loc goos, in which the second 
occurrence of goos would be an establishing occurrence, and the particu
lar-program would be improper in the sUblanguage. On the other hand, in 
a particular-program commencing with 

begin proc p '" : (mode!!: '" !:!!1 !:J .f. a; . ... , 

£ must clearly be the representation of a mode-indication, as it must also 
be in both of its occurrences in 

begin mode £ '" real; proc p '" : (£ a; .... , 

since no symbol can be a terminal production of both 'MODE mode indi
cation' and of 'monadic indication' (1.1.5.b).} 

SPECiFICATION OF THE ALGOL 68 SUB LANGUAGE CHL2 

{This sublanguage is intended to place the minimum restriction on the 
language, whilst yet enabling the identification of mode-identifiers, indi
cations and operators to be performed during a single forward pass through 
the source text. The main restriction is that all defining occurrences 
must precede their applied occurrences, and a consequence is some diffi
culty with regard to mutually recursive pairs of procedures or operators 
(for the solution to this see CHL3). This sublanguage is a sublanguage of 
CHLl.} 

An "excluded object" is a terminal production of a notion, contained 
within a sequence of symbols which is to be replaced by a second sequence 
of symbols in the course of an extension {g.a}, which is not contained with
in that second sequence. {Thus, in!!!i real x '" loc real, when it is to be 
extended to real x, !!d. real is an excluded obj ect.} 

If a given {applied} occurrence of a terminal production of 'MABEL 
identifier' ('MODE mode indication', 'PRIORITY indication', 'PRAM ADIC 
operator') where "MABEL" ("MODE". "PRIORITY", "PRAM", "ADIC") 
stands for any terminal production of the metanotion 'MABEL' ('MODE', 
'PRIORITY', 'PRAM', 'ADIC') identifies a defining occurrence of that same 
terminal production and is the textually first occurrence of that terminal 
production, excluding any such occurrence contained within an excluded 
object, within the smallest range containing that defining occurrence, then 
the given occurrence is an "establishing" occurrence of that terminal pro
duction. 

No proper particular-program in the sublanguage contains an establish
ing occurrence of a mode-identifier (dyadic-indication, operator). 

{Thus (proc a '" : b,' proc b '" : a; skiP) is improper because the first oc
currence of b is an establishing one. Likewise, (op a '" (real p, q) : p b q, b '" 
(real p, q) : P!1- q " priority!!: '" 7, Q '" 7; skiP) is improper for two reasons.} 

If an idication-applied occurrence of a mode-indication identifies an in
dication-defining occurrence of that mode-indication, then it must also 
"ultimately" identify one or more indication-defining occurrences of mode
indications found by the following steps: 

l 



SOME ALGOL 68 SUBLANGUAGES 285 

Step 1: Each mode-indication is said not to have been encountered; the 
given indication-applied occurrence is considered; 

Step 2: The considered {indication-applied} occurrence and all mode
indications consisting of the same sequence of symbols are said to have 
been encountered; the indication-defining occurrence identified by the con
sidered occurrence is said to be ultimately identified by the given occur
rence, and is itself considered; 

Step 3: If the constituent declarer of the mode-declaration, of which the 
considered {indication-defining} occurrence is a constituent contains one or 
more indication-applied occurrences of not yet encountered mode-indica
tions (other than occurrences contained within a boundscript contained 
within that declarer), then each such {indication -applied} occurrence of 
each such mode-indication is considered in turn, and for each one Step 2 
is taken. 

{Thus in 

(union Q = (real, !fl 2); 

f1.p; 

mode Q = bool; skiP) 

the second occurrence of f1. identifies the defining occurrence of Q, and ul
timately identifies the defining occurrences of both!J and Q.} 

No proper particular-program in the sublanguage contains a generator 
(a formal-parameter) whose constituent declarer contains a mode-indica
tion (other than a mode-indication contained within a boundscript contained 
within that declarer) which ultimately identifies an indication -defining oc
currence of a mode-indication which occurs later in the textual order than 
that given declarer. 

{Thus (struct!J = (real p, !fl!z q), Q = (real p, !flf!c q); Q x, Q Y; skiP) 
is p€rfectly proper, whereas 

(oP q = (union (real, !fl bool) a) : skip; 

union f!c = (real, !!!l Q); 

f1. p; 

~p; 

mode f.J = bool; skiP) 

is not (and must not be, for the identification of the applied occurrence of q 
cannot be made until the mode of Q is known).} ~ 

No proper particular-program in the sublanguage contains a jump whose 
constituent label-identifier is an establishing occurrence of that label
identifier and whose constituent go-to-symbol-option is empty. {For other
wise, in proc p = skip; (p; p: skiP)) , the second occurrence of p could not 
be recognised as a jump during a single forward pass.} 



286 C. H. LINDSEY 

SPECIFICATION OF THE ALGOL 68 SUBLANGUAGE CHL3 

{The purpose of this sublanguage is the same as that of CHL2, except 
that a provision is made for the creation of mutually recursive pairs of 
procedures and operators by means of pragmats. CHL3 is a sublanguage 
of CHLI. CHL2 is a sublanguage of CHL3.} 

Let the definitions of "excluded obje.ct", "establishing occurrence", and 
"ultimate identification", given in the specification of CHL2 be deemed to 
have been made. 

Let the restrictions on the occurrences of dyadic-indications, jumps and 
mode-indications {but not of mode-identifiers or operators} given in the 
speCification of CHL2 be deemed to have been made. 

It is necessary in this sublanguage to make use of pragmats {2. 3. c} and 
that the following production rules be included in the language with the re
striction that they may only be used inside pragmats: 

a) pragmat unitary declaration: identity warning declaration; 
operation warning declaration. 

b) identity warning declaration: formal PROCEDURE parameter, 
equals symbol, skip symbol. 

c) operation warning declaration: PRAM caption. equals symbol. 
skip symbol. 

d) * warning declaration : identity warning declaration; 
operation warning declaration. 

{It follows from this syntax that occurrences of mode-identifiers (oper
ators) in warning-declarations are applied occurrences, and may be es
tablishing occurrences.} 

The elaboration of a warning-declaration involves no action. 
If a given operator-applied occurrence of a terminal production of 

'PRAM ADIC operator' where "PRAM" ("ADIC") stands for any terminal 
production of the metanotion 'PRAM' ('ADIC') is the constituent operator 
of an operation-warning-declaration then it may identify an operator
defining occurrence of the same terminal production found by using the 
steps of 4.1.2.b, with Step 3 replaced as in 4.3.2.b. {The identification of 
mode-identifiers in identity-warning-declarations is already covered by 
4.1.2.b.} 

{4.4.l.a,b now ensures that the mode specified by a warning-declaration 
is the same as that specified by the unitary-declaration with which it is 
associated by the identification process.} 

No proper particular-program in the sublanguage contains an establish
ing occurrence of a mode-identifier (operator) unless that establishing oc
currence is contained within a warning-declaration. 

{Thus the following particular -program, . which was improper in CHL2, 
is proper in CHL3: 

(I!! ~ b = skip; l!! ~ a = : b; ~ b = : a; skiP).} 

1 



SOME ALGOL 68 SUBLANGUAGES 287 

DIS C USSION 

van Wijngaarden: 
What is the purpose of the gala restriction in your sublanguage CHL2? 

Lindsey: 
The main purpose of the restriction is to ensure that an applied occur

rence of p is properly identified as a jump. rather than a procedure call. 
At least we then know we can compile a jump into the program (and maybe 
let the loader fill in the address later). There is then no risk of compiling 
in a procedure call, which might be longer. However. I don't think you 
need to have the restriction which Currie has put in. where he has insisted 
that a gala should occur in every jump. 

Currie: 
I think the reason why I insisted on the gala appearing is 'that it is too 

complicated to explain where one could leave it out. 

Lindsey: 
Oh, it may very well be that in teaching your students, particularly 

when you are teaching them to write readable programs. which I hope you 
will teach them, that you may not tell them that they can leave this out until 
they are very skilled programmers and they have already discovered it in 
the primer anyway. I am trying to put on the minimum restriction which is 
necessary. There may be other restrictions in the language desirable for 
good programming. 

Lindsey (in answer to a question about mode-indications): 
The restriction I have placed on mode-indications is a little dlfferent 

because there ar.e some more problems. Consider the following: 

(union Q = (real. ref!!. ¢ an eslablishing occurrence ¢); 

oP!l = (union (real, ref bool) a) : skip; 

!l:.P; 

!lP; 
mode 12 = bool; 

skiP) 

I don't want to say that the establishing occurrence of 12 is illegal because 
then I would have some difficulty in treating recursive pairs of modes, and 
I want to be able to do this. In any case, most compilers are not particu
larly interested at this point in knowing exactly what 12 was. The compiler 
can tell it is a mode-indication because otherwise it would not have fol
lowed a ref. The a P declares one of these objects of mode a. quite proper
ly identifying the defining occurrence of Q. which precedes the applied oc
currence. Is there any reason to complain at this point? To show that 
there is, we must consider the applied occurrence of the operator!l' It 



288 C.H. LINDSEY 

turns out that you cannot perform the identification of this!i until you know 
this mode fl, because the mode.Q turns out to be exactly the same mode as 
the formal parameter of cr. But as I have written this program. we don't 
know this until we get to the mode-declaration for Q. I now define a new 
term. We already know that q p contains an applied occurrence of ~ which 
identifies the defining occurrence; but this in turn contains an applied oc
currence of some other mode-indication 12 which identifies its own defining 
occurrence mode Q = •.•• And so I'm going to say that.Q p identifies the 
defining occurrence of q and. also. it "ultimately identifies" this defining 
occurrence of Q. I now make the following restriction in my sUblanguage. 
No proper particular-program in the sublanguage contains a generator 
(such as Q in ~ P) which contains a mode-indication which ultimately iden
tifies an indication-defining occurrence of a mode-indication which occurs 
later in the textual order than that generator (and therefore this program is 
improper in my'Sublanguage). 

Currie: 
I did not see why you had to go all the way around the houses like that to 

show that it was improper. You see, all you have to do is to put an as
signation by that p. Then how are you going to manage that in a one-pass 
compiler? 

Lindsey: 
All that I am saying is that once you get down to this point here (q P) you 

must already have met mode Q. 

Currie: 
Yes. 

Lindsey: 
There are several reasons why this should be so. I have shown a par

ticularly nasty reason by showing that I could not identify cr. There are 
probably lots of other cases. For example. you cannot really assign stor
age for an Q until you know exactly what sort of beast it is. So this line 
(mode Q . .. ) must be moved up to earlier than Q p and then there is no 
problem. This is merely a particularly nasty consequence of what happens 
if you don't do it. 

van Wijngaarden: 
Why can you not assign the storage? 

Lindsey: 
It depends. If 12 is going to turn out to be a row-of mode. it may well be, 

if you adopt Branquart's system. that a reference to a row-of mode takes 
several words of space. A reference to a bool is presumably just one word. 
So you may well want to know that. Incidentally, in this sublanguage, of 
course, you cannot do recursive patrs of procedures. The sublanguage 
CHL3 shows how you might get around that one. 



Goos: 

PANEL DISCUSSION 

ALGOL 68 SUB LANGUAGES 

(Second part) 

I think that what Lindsey has shown us is a proposal for how we can 
build a one-pass compiler as far as things like mode-indications, operator
indications, and operator identification are concerned. He said that recur
siv~ procedures are not in at the moment, so I think we should not discuss 
that point. How can we teach that kind of language to users? I think it was 
not sufficiently clear how you could state all these rules (or some sharper 
rules) so that a user may have quick information on what is permitted and 
what is forbidden. 

Bowlden: 
It seems that the last restriction is the only one that poses any problem. 

As Currie suggested, a solution is to teach the beginning student that you 
always put go to's in jumps. As far as identifiers are concerned the simple 
rule is that the declaration must precede any use. That takes care of that 
one without any ambiguity and it is easy to say it. This last one is the 
problem .. ' For the guy who is not writing recursive mode-declarations, that 
is no problem either, and this is not a beginning student. 

Mailloux: 
! 

I would like to know at what point you can detect infringements against 
the rules. In your example, when the compiler gets to ref b in the first 
line, .it! either discovers that there is no global defining Occurrence of Q 
and issues an error message, or it finds that there is such an occurrence 
of Q, uses it, and carries on. The problem arises when it reaches the 
fifth line, with the local declaration of Q; somehow, the compiler must re
member about its earlier assumption, and signal the contradiction. It is 
not immediately clear how this remembering can be done without fairly 
heavy overhead. 

Li~dsey: 
" I thhtk, in one-pass compilers of this sort, you must keep your mode 

tables UJi> to date as you go along. So when you meet the declaration of g, 
the fir13t check is whether all the entries in the mode table for Q are com
plete. Now, in that case they would not be complete. There would be a 
pointer to the undeclared mode Q. Now let us consider this problem: 

begin proc a = : b ; proc b = : a ; skip end 

with nice simple things like identifiers, which have not got nasty overtones 

289 



290 PANEL DISCUSSION 

associated with them. Suppose that the identifier b had been declared in an 
outer range. The compiler comes along and thinks it is compiling a proper 
program in the sUblanguage. It has b correctly entered in its tables. It 
comes across that first occurrence of b, and thinks "Ah: yes we know this 
man. proc a is equal to some procedured version of this man." At that 
point it should make a note in the tables for b, that b has been encountered 
in this range. It must do this; otherwise. when it gets to the second occur
rence of b it cannot detect that it has made a mess of itself. If it makes 
this note in the table, it knows it has made a mess of itself and it can im
mediately proceed to produce rude messages. and that is the end as far as 
correct compilation goes. 

Currie: 
I think this is throwing away a lot of the advantages of one-pass compi

lation though. You are going to have to keep very extensive tables of usages 
of identifiers, and of modes in particular. 

Lindsey: 
If in that program I had an outer block in which I declared b, how would 

your compiler di~cover that it was improper? 

Currie: 
I would not. 

Lindsey: 
It would just make a mess? 

Currie: 
It would not discover that it was improper because I do not keep usages 

of identifiers. 

Lindsey: 
It would have yielded a program which would have failed to run? 

Currie: 
Yes. 

Bowlden: 
I think that the table organisation that I described in my paper on Mon

day, or something of that type, would answer this problem. For every 
identifier, the first time it is encountered in a range, you make an entry 
for that range because at this point you do not know what it is going to be. 
If at the end you decide indeed that it referred to the exterior range, the 
link is there and you can proceed in the identification process that way. 
But you have got an entry in the range and now when you try to declare it 
you say: "Oh, but there is already an entry in this range." There is no ex
tra labor involved here, I believe. 

Scheidig: 
Without defending these rules as such, I would say that they are no more 

complicated than some which are in the Report. 



ALGOL68SUBLANGUAGES 

van Wijngaarden: 
Do you mean just that the rule is more complicated or that it is more 

difficult to find out whether the rule is satisfied? 

Woodward: 
I h,ave the impression it would be difficult to teach. 

Trilling: 

291 

Perhaps my questions fall outside of the subject, but I would like to ask 
Currie and Lindsey whether they have considered the conversational situa
tion where the user is writing his program on the console and is conversing 
with the compiler. In such cases, the compiler can ask him: "Well. I never 
met this thing. Give me the declaration for the mode of this procedure" (in 
the case of recursive procedures, for example). 

Lindsey: 
I think if you are in this conversational situation. and it came across b 

and said: "Please, tell me what b is." I think you must now look to the sub
language CHL3, which I did not describe, in which there is a facility to tell 
it in advance what b really is. and then you can go ahead compiling on that 
basis. 

Currie: 
I am not quite sure whether I understand the question. Are you meaning 

to imply that for every known local that you co'tne across in the block you 
have to ask whether or not this is really a known local or whether I am 
really going to declare it later on the next line? Surely. that is out. 

Lindsey: 
I think what Trilling meant was that, if you came across this b, and b 

was completely unknown to you as an identifier at that point, then the com
piler is immediately aware that something is wrong and can type out a 
message to you, inviting you to put it right. If on the other hand, b had al
ready been declared in an outer range, I think any reasonable compiler 
would have presumed that its mode fitted and so on, and that was the b you 
meant. 

Trilling: 
Do you have the possibility to say this beforehand? 

Lindsey: 
Of course, if the programmer remembers to say beforehand that this is a 

new b (assuming he has this facility in CHL3) that is fair enough. But I 
would imagine, if we have the given program that the conversational com
piler would complain at the first occurrence of b. If on the other hand b had 
already been declared in an outer range, then the compiler would not com
plain until it came to the proc b. Then it would complain. By that time it 
would be more difficult for the user to mend. 

van Wijngaarden: 
If I declare a b and then seven ranges inwards I use that b again, I must 

not only make a note that I found this b but also for aU those ranges inside 



292 PANEL DISCUSSION 

I must keep notes. In each of those ranges the b may still be declared, may 
still become proper. It is not sufficient to make one note; you must make a 
recursive note. 

Lindsey: 
I think you only need to make a note if you follow what Bowlden was de

scribing earlier, if you actually encounter an instance of b in one of these 
ranges. 

Bowlden: 
No, it has to be copied back into each range. 

van Wijngaarden: 
When you come out of the range. you can throwaway that range, but you 

still have the problem for the range to which you have reverted, so you 
have to make a note for all the nestings. It multiplies your identification 
table. ' 

Goos: 
1 think that this is a problem which occurs in finding out the scope which 

procedures have, for there one must do the same things. You have to note 
that a certain identifier or indication appears some n ranges inside and you 
have to bring it out. 

van Wijngaarden: 
But you first scan the whole program so you know the scope of the iden

tifiers. 

Coos: 
Perhaps you do not know if you want to make a one-pass compiler. 

van Wijngaarden: 
No, not in the one-pass compiler. of course. but that was not the usual 

way in which YOI.l scan an ALGOL program. If you read it in one-pass, then 
you get into this difficulty. We do not need one identification table, we 
would need one on each leveL 

GODS: 

If you do this and make a one-pass compiler, you are involved in the 
same problem, another solution to which is also that of the scope problem. 
Identification is not the only problem. 

van Gils: 
The problem can be solved by requiring rigorously that each applied oc

currence has to be preceded by a defining occurrence, and this is usually 
not possible with recursivity. You must make a new kind of syntactic object 
like mode g and then you can declare mode 12 in terms of g and q in terms 
of Q; but it is an extension to the language and not a sublanguage; however, 
this is a good solution for implementation. 

Bowlden: 
I think that the question of whether this business of copying the table in

formation back from range to range is bad in terms of space can be taken 

l 



ALGOL68SUBLANGUAGES 293 

care of because we are talking about doing this in a one-pass compiler and, 
in a one-pass compiler, as soon as you are through with that inner range, 
you throwaway that part of the table, So this is not a table explosion prob
lem really. 

van Wijngaarden: 
What? This is a table explosion: 

Bowlden: 
You throwaway the inner-most range. Now you copy the thing into the 

next range. You have not added to the size of the table. 

van Wijngaarden: 
Oh: You have then seven times. If you are in the seventh block you have 

to take the outermost x ... 

Bowlden: 
No, not until you exit from the inner range and when you exit from a 

range you throwaway that range table. 

van Wijngaarden: 
Yes, but still there are the other seven ranges outside, and in each of 

the ranges you have to make a note that you have seen the x. 

Bowlden: 
No, you do not make that note until you exit from the range. 

Currie: 
Oh, but you must have made it somehow . 

. Bowlden: 
No. It is very Simple. If you have a defining occurrence of that x in the 

innermost range, then you do not need to copy it out. Now, in the case 
where the order does not matter, indeed you do not know yet until you have 
hit the end of the range whether you want to copy it out. So why insist on 
copying it out? 

van Wijngaarden: 
No, no. It is a check that you must perform. We do not trust that the 

program is proper in the new sense. 

Bowlden: 
Yes. But there is no need to copy it into the next outer range until you 

get back to compiling the next outer range. You do not have to do it until 
you are through with this range because you do not get to the next outer 
range until you are through with this range. 

Goos: 
I think we are now discussing a problem which can be solved in some 

way or another but has nothing directly to do with the proposal Lindsey has 
made. 

van Wijngaarden: 
Oh, I think it has very much to do with it. 



294 PANEL DISCUSSION 

Goos: 
I think it is a solvable problem. 

van Wijngaarden: 
I assert, for the moment, that it will result, not in an exploding identi

fier table but in a much bigger identifier table, actually in a multiple iden
tification table. 

Mailloux: 
I feel I have to come to van Wijngaarden's support here. It said in my 

thesis that the trouble you might have to go to in enforcing such a condition 
in a one -pass compiler, might amount to almost the same trouble you 
would have to go to in building a two- or three-pass compiler anyway. It is 
probably a wee'bit exaggerated, but I feel there is quite a high price to be 
paid if you are actually going to check that rigorously. 

Lindsey: 
Well, Bowlden thinks there is not a table explosion. I think I agree with 

him, but this is a technical matter which is probably better discussed in a 
smaller circle. I think I understand what he is getting at, and I do not see 
the problem. 

Coos: 
May I close this part of the discussion. Is there anybody who wants to 

make other proposals for solving the same kind of problem? 

van Wijngaarden: 
May I add to this that if you want to have some announcement of mode

indication, then you can do it by staying exactly in the language. You do not 
need an extension for it, just use a pragmat. That is what they are for. 

Bowlden: 
I believe this is in the CHL3 as a means of getting around recursive 

procedures. 

Coos: 
This seems to be the same kind of solution that ALGOL 68-R contains, 

because if you say mode E, then this is a kind of pragmat, although it is not 
written in that form. 

van Wijngaarden: 
Why not? 

Coos: 
That is a question Currie should answer. 

Currie: 
Three symbols instead of one: I think it is fairly irrelevant which par

ticular symbol you use. 

Mailloux: 
No, it is not irrelevant. It is a question of morality. We have a Bible, 

and you are sinning! Furthermore a way has been given for walking down 



ALGOL 68 SUBLANGUAGES 

the straight and narrow path while still getting all the good things in life, 
so why the devil do you not stick to the rules? 

Goos: 
Do you allow only one type of theology ? 

Mailloux: 
Yes! 

Griffith: 

295 

It may well be that it is the test of a good language that everybody fol
lows the Bible. 

Lindsey: 
If you look at my note on pragmats you will find that my standard ex

ample, which I use in various places, is this mode thing contained within 
pragmat -symbols. 

Woodward: 
Let me just say that your various criticisms will be accepted in the 

spirit in which they are offered! 

Goos: 
I close this point by stating that it seems that we have several proposals, 

one by Lindsey, one by van Gils and one by Mailloux which can be ex
tended to be proper in the sense of sUblanguages. I would like to invite 
discussion on other points, and would first like to ask Woodward the fol
lowing. You have taken out proceduring from the language and replaced it 
by something else. What other solutions had you discussed before for com
ing to this solution? Are there other solutions possible to overcome the 
problem posed by proceduring? The problem is that you have to return 
some information to the front of the coercend but you find this out mostly 
only at the end of that coercend or in a later scan. 

Woodward: 
The only thing it would be proper for me to say, since our compiler 

writer is with us, would be that without automatic proceduring we are not 
really withdrawing a facility; you can still have a dynamic parameter by 
simply expressing yourself slightly differently. 

Mailloux: 
(pontificating:) You are expressing yourself outside the language. It is a 

sin! 

Goos: 
The point is correct that the expressive power of the language is not re

duced but the syntax is changed and we are outside of the language as 
Mailloux points out. Are other solutions possible which perhaps remain 
inside the language? 

Woodward: 
Could we clear this point? I did not know what was meant when some

body said: "Outside the language'. It seems to me tha:t if you write a 



296 PANEL DISCUSSION 

routine-denotation when you want a dynamic parameter, you are within the 
language. 

Currie: 
Could I perhaps expand on that point? The point is that we have a new 

representation of the cast-of-symboL namely val. 

Mailloux: 
It is a new representation, but it has a different meaning, I believe. 

van Wijngaarden: 
Could you have obtained the results that you wanted to obtain by putting 

a colon instead of the val? 

Currie: 
No. What I intended to say was that if you replace any val in your pro

gram by a colon, it should come out to ALGOL 68. 

l'an Wijngaarden: 
All right then, why did you not use the colon? 

Currie: 
Because I wanted to distinguish strongly between casts and routine

denotations. 

Woodu'ard: 
This is a similar point to a suggestion made in quite a different connec

tion' that reintroducing the word array would be a useful thing to do. It is 
similar to this, is it not, and therefore it is a variation in the strict 
sense? 

Lindsey: 
May L for a change, come to Currie's defense. I am quite satisfied that 

in this respect, what he has created is a proper sublanguage, in the strict 
sense. Any program which is acceptable to ALGOL 68-R as far as proce
dures are concerned is acceptable to the full language, provided that when 
offering such a program to the full language you say that val is another 
representation, of the cast-of-symbol. You are perfectly entitled to say 
that. 

Mailloux: 
No, we do not: Technically, the definition of a sublanguage says that 

anything in the sublanguage should have the same meaning as in the full 
language. Now, what about the fellow who actually does write a colon 
Then he has written something which apparently does not get the same 
meaning as in the full language. 

Lindsey: 
Well, as a macro eUect, it does in ALGOL 68-R, I checked up on this 

this morning. If you write a cast containing a real, genuine colon in 
ALGOL 68-R, then i.t says: "Ah here is a procedure" and it proceeds to 
consider th~ procedure. And then it says: "Ah, we can deprocedure this 
procedure", whicJ:l gets it back to exactly where the cast would have been, 



ALGOL 68 SUBLANGUAGES 297 

taking up 60 more instructions than it should have done to do this. In fact. 
it has the required property. 

Goos: 
I think that generally speaking, we are now discussing the following 

problem. Given a certain symbol in the language. and somebody comes and 
splits the possible uses of this symbol into two classes; he prescribes one 
representation if the symbol is used as a member of the first class and an
other representation if the symbol is used as a member of the second 
class. Do we consider such a rule as being a rule of a sublanguage or as 
an extension? 

van Wijngaarden: 
No, a sUblanguage. 

Goos: 
I think that is exactly the point that was made. 

van Wijngaarden: 
Because you can define a set of restrictions whereby, ... and so on and 

so forth, and that is what you are doing. 

Goos: 
Any further comment on that? We seem now to have proved that ALGOL 

68-R, in this respect, is a sUblanguage. 

Koster: 
I suppose then that you might give the following representations of the 

cast-of-symbol: (void and:). You would hardly use this. except in the case 
of void-casts. Am I 'correct? 

Woodward: 
Yes and no. 

Goos: 
Is there anybody who has thought about the problems which are posed for 

the language and for the compiler by the handling of transput? There is one 
special question on that, viz. the efficient treatment of united modes oc
curring as parameter modes of the transput procedures. 

Mailloux: 
We have considered it. In fact we have a transput package almost ready 

to go. It takes about 6000 bytes of memory essentially to do the whole of 
section 10.5, assuming that we do have an operating system to move the 
tapes around and some of those odds and ends. Unions are a nuisance. In 
fact, it is interesting that you could not output a union until someone 
thought up the wonderful idea of making unions commutative, distributive 
and all those wonderful things; then it suddenly popped out. (I think it was 
discovered later to be a fortunate accident.) Essentially, it is a nuisance, 
but it is not terribly difficult. What it means is that, not within the input 
or output routines but in the program calling them, you have to construct a 
conformity case clause, find out which case it is'we are worrying about 
now and call the appropriate part of the transput routine. 



298 PANEL DISCUSSION 

Goos: 
Your opinion is that it can be implemented easily without doing anything 

restrictive. 

Mailloux: 
That is right. and furthermore. only those who use it have to pay. 

Bowlden: 
You mean the people who do not do any transput at all do not have to pay 

for it? 

Mailloux: 
No. Only those who transput unions have the extra overhead. 

Woodward: 
May I ask what the question means when it says: "Is the 1/ 0 package ap

propriate for use in sub -sets?" 

Goos: 
It means: "How can one implement it?" and "Is it useful to implement it 

as it stands?" 

Woodward: 
I had better not comment on this because we have submitted a short pa

per to the Working Group. by our expert Dr. Jenkins. giving constructive 
comments on transput facilities in ALGOL 68. Since this paper is more 
concerned with criticizing the definitions. it does not really come within 
the terms of reference of this discussion on implementation. 

Currie: 
Our transput depends essentially on expanding each of the calls of the 

appropriate routines, depending on the modes which you are trying to input 
or output. It only pulls in the routines that it requires. 

Lindsey: 
There is great scope here for individual implementations, putting more 

procedures into their library preludes to do different things in I/O, to give 
different facilities and so on. This is not strictly on the subject of this dis
cussion, but I think it is something which will come and of which some de
gree of standardization may have to be kept. 

van der Meulen: 
Is an implementation of ALGOL 68, without formatted transput. a sub

language? 

van Wijngaarden: 
Yes. You can formulate a set of restrictions to reduce the set of pro

grams to those not containing formatted transput. 

Woodward: 
It might be appropriate here to say what facilities we are providing to 

gain flexibility in unformatted output. We provide a global structure, a 
library structure if you like, the fields of which describe parameters con-



ALGOL 68 SUBLANGUAGES 299 

trolling the number of digits before and after the point and that kind of 
thing. If you are not aware of the existence of this structure, you will get 
the ordinary default read and print. If you are aware of it, you can re
assign to the fields of that structure so as to get a certain flexibility and 
still have something that is very easily explained to beginners. 

Mailloux: 
Sin: 

Goos: 
I think that this means that you allow the programmer to act as the in

termediate step, which usually is the result of compiling a format. 

Koster: 
I think there is nothing sinful in this. But there is a practical difficulty .. 

A voice: 
It is heretical: 

Koster: 
Well, no, it is just a new catechism. There is one problem on the input 

side. I mean, it is clear that on output you may have wanted to make some 
changes to the standard format of your reals. But on input you have, in un
formatted transput, a flexibility which you can never get by one format. I 
wonder how you have solved that. 

Woodward: 
I regret to admit that the programs I have written in ALGOL 68-R, have 

made no use of this facility so I cannot answer the question. The imple
menter of this part is not with us. Perhaps his paper will explain it. 

Branquart: 
There was another question concerning parallel processing. I should 

like to draw attention to the point that a compiler built for a machine with 
one single central unit can very well take the semaphores into account; it 
has just to control a queue of jobs. 

Goos: 
But to me, the main effect of your idea was to express the well-known 

fact that if you have only one CPU and if your operating system does not 
allow you to do multi-programming, then nevertheless you are able to 
construct a run-time system for your ALGOL 68 programs which allows 
implementation of parallel processing and implementation of semaphores. 
Thus you hold, in the run-time system, a pointer which tells you which of 
those parallel processes must get the CPU. This pointer is switched if and 
only if you come either to the end of that process or to an operation on a 
semaphore. 

Currie: 
What do you do with the intermediate results in the meantime in your 

strict language? I do not understand this. This seems to me a contradic
tion in terms. If we are speaking about ALGOL 68 and crossing out any 
parallel processing, then the ups and downs are meaningless. 



300 PANEL DISCUSSION 

Lindsey: 
It would be possible for an implementation in its library-prelude to de

clare some serna. The use of the parallel-symbol is nevertheless forbidden 
in this implementation ... 

van Wijngaarden: 
What do you do? 

Lindsey: 
I have an implementation. I forbid the use of the parallel-symbol in any 

form. In the library-prelude there is declared a certain serna, and the in
tended use of this is, for example, you do some computation, you then obey 
a down, or an up, whichever it is, according to this serna, and the effect 
is that your program is then thrown off the machine until such time, for 
example, as the transput you have initiated previously has been completed. 
So this gives you a way of latching yourself on to some real time through 
your operating system. This is perfectly possible. I think this is the sort 
of thing that Branquart had in mind. 

GODS: 

I think we have seen, this afternoon, some proposals for a one-pass 
scheme for the solution of the problem of mode-indications, operator-indi
cations, and mode-identifiers. We have also seen that there seem to be 
possibilities for reducing the complexity of the recognition of parentheses 
and to reduce the problems encountered in proceduring, by stating that 
certain symbols in different contexts may have different representations. 
We shall not be able to go into the details of the transput and parallelism 
and I think that we should close the discussion by saying that we have to 
consider it as input to WG2. 1. 



SESSION 7 

(Chairman: A.P.Ershov) 





A GARBAGE COLLECTOR TO BE IMPLEMENTED 

ON A CDC 3100 * 

INTRODUCTION 

PIERRE GOYER 
Universile de Montreal 

This paper describes a garbage collector for a subset [9J of ALGOL 68. 
to be implemented on a CDC 3100. This subset treats non-local structured 
values and names but does not include unions, multiple values and routines. 
However, the garbage collector is believed to be easily extensible to the 
general case of ALGOL 138. 

The CDC 3100 computer is word-addressable (24 bits). and our installa
tion has a 16K central memory and a mass storage provision consisting of 
two disc packs (# 854). 

THE GARBAGE COLLECTOR 

Two phases can be distinguished in a Garbage Collector routine for 
ALGOL 68 [5J: 
- tracing and marking 
- compacting. 

Tracing can be done with two different kinds of algorithms, those which 
need only a predetermined amount of storage (static) ([8J, appendix) and 
those for which we need a stack (dynamic) [4]. Dynamic algorithms have 
been found to be faster [8J. However they present a major problem: being 
dynamic, we cannot know for sure the space they will require for the stack. 
so the G.C. must be called soon enough to allow sufficient space for the 
stack. If the reserved storage space proves to be insufficient then in prin
ciple, the algorithm cannot be resumed. 

Static algorithms, when applied to ALGOL 68, need the adjunction of 
"fences" [7] to structured values comprising one or more fields which are 
"fingers" [7]. All users thus pay for the extra space needed to represent a 
structured value contained in the "heap" [2]. The main advantage of these 
algorithms resides in the fact that only the heap is necessary to insure 
completion of the tracing phase. 
* Ce document a ete rendu possible griice aux nombreux conseils de monsieur 

Laurent Trilling, professeur au Departement et de son assistance dans la descrip
tion ALGOL 68 de la simulation. 

303 



304 P.GOYER 

The Haddon and Waite method [7 j for compacting is mostly interesting 
when considering ALGOL 68, because it preserves the order of the values 
contained in the heap and does not need any supplementary storage space 
(provided that the size of the smallest value one is able to "free", is 
greater or equal to the size of one entry for the "break table"). 

Our computer's word size (24 bits) does not permit building the break 
table inside the heap. To build it outside of it means that we need an extra 
storage space which is dynamic in nature. (We cannot predict exactly what 
will be the table's size.) Moreover, we have to trace the pointers inside the 
heap in order to modify them. This tracing could be done by going down in
to the heap with a dynamic tracing routine or can be overcome, while exe
cuting the tracing and marking routine, by filling a "pointers' table" (where 
one bit represents one computer word in the heap). Then one dynamic stor
age space is to be taken care of while compacting and marking. 

Our approach is then to provide the system with a "Service Space", which 
is furnished to the user whenever he needs garbaging. This way the user 
pays only when he calls G.C. routine. Our final approach to the G.C. prob
lem is described below. 

Tracing and marking 
The starting point for a list contained in the heap is found in an "access 

block" [3]. Our algorithm uses a stack [4] (the Service Space being neces
sary anyway for the compacting phase, nothing now prohibits us from using 
a dynamiC routine), the values in the heap being traced "interpretatively" 
[5], by the use of "templates" [6]. One will find in the appendix a static rou
tine deduced from the one adopted. Marking is done with the help of a bit 
table and furthermore the pointers' positions are kept in a bit table called 
"pointers'table". 

Compacting 
Haddon's and Waite's compaction procedure has been retained with the 

notable exception that the break table is now directly built in the Service 
Space and consequently it is not rolled in the heap during the compaction 
process. 

The Service SPace 
As we mentioned before the Service Space is provided to the user only 

when he needs it, Le. when he calls the garbage collector routine. 
The Service Space fulfills two goals: 

During the first phase, it must provide sufficient storage space for 
- the bit table 
- the pOinters' table 
- the stack 
and during the second phase: 
- the bit table 
- the pointers' table 
- the break table. 



IMPLEMENTATION OF A GARBAGE COLLECTOR 305 

Conclusion 
This garbage collecting should prove to be fast enough since 

1. tracing is done with a stack 
2. it is done only once 
3. the break table is not "rolled" into the heap. 

Moreover, one pays for garbage collecting only when needed. 

THE SIMULATION 

We have written an ALGOL 68 simulation of our Garbage Collector. The 
purpose of this chapter is to introduce the main features of the program 
presented below. 

In our simulation, the heap (las) is a row of integer values and the in
teger variable taille las is the upper bound. Two rows of boolean represent 
the bit table and the pointers' table (table marquage and table pointeurs). 
Also, six integer values (type, niveau, lieu, compteur, type P, lieu P) are 
titled registers because of the role they play during the tracing and marking 
phase. Two rows of structured values have a flexible upper bound due to 
their dynamic nature. These are the break table (table modification) and the 
stack (pile). 

Models and their display 
A model (value of mode modele in our Simulation, see p. 310) is used to 

describe a value that is being traced and of which the type is not a refer
ence to mode. 

With the considered subset [9J, only three kinds of model are required. 
- Plain values and structured values containing no name. 

In this case, the size (field selected by taille) is the only information 
needed. 

- Structured values in which one field is or contains only one name. 
We need the size of this value and three more informations (field select
ed by pointeur) about the name contained in this value. These are the 
type (field selected by type), the number of references (field selected by 
niveau) and the offset (field selected by adresse, used to locate the name 
in the value). 

- Structured values in which more than one fields are or contain names. 
We need the size of the value and for each name in it, the information 
mentioned above. 
In each model, its kind (field selected by genre) has been added. 
The type of a value that is a name corresponds to the de referenced mode 

of that value. 
The models' display (display modele) is a row of reference to modele. 

Example: 
Assuming the following declarations in a user's program: 

struct tata = (int a, toto b, ref tata c) ; 
struct toto = (int a, ref int b) ; 



306 

type niveau lieu 

':L-.-L~ 

I I I I 
TT:\ 

compteur type P lieu P 

,--------: ------

i ! 
I I 

I ~ 
-I--J----,-.---l 
i 

I 
I 

I 
I 

! . pile i 
~--------~ 

P.GOYER 

tailleltas 

- -----

I --+--+---1 

-----
--- --
-- --- H nb types 

~ m taille tas I --'----'---' 

table 
modification 

I 

I 
'T~' I table I 
II table marquage 
pointeurs I 

I I 

L ________ ~ _______ J 
SERVICE SPACE 

I ..,.-,--, - l-j:::==:j 

/ 
modeles 

display modele 

tas 

- -- used while tracing 
---- used while compacting 

(These two sub-spaces overlap to form 
the service space as defined previously) 

Fig. 1. 



IMPLEMENTATION OF A GARBAGE COLLECTOR 307 

Then with the declarations for our simulation program, 
be found: 

the following would 

:= (1, 1, skiP) ; 
:= (2, 2, (type int, 1, 1)); 

modele int 
modele toto 
modele tata 
in! type int 
int type toto 

:= (4, 3, ((type int, 1, 2), (type tata, 1, 3))); 
= 1 ; 
= 2 ; 

int type tata = 3 ; 
display modele := (int, toto, tata) ; 

Tracing and marking 
Tracing starts from an access which provides informations necessary 

to initiate the scanning of a list. These informations are: 
- the type (type) corresponding to a model, 
- the number of references (niveau), and 
- the address in the heap (lieu) corresponding to the first value in the list. 

The integer variable debut is the location of this access. 
Furthermore, three integer values, compteur, type P and lieu P repre

sent the top of the stack. The counter (compteur) is used to remember 
which branches have been traced. 

During the forward scan, values are marked and when the model of a 
value belongs to the third kind, information on this value is stacked and 
tracing continues with the first pointer (figs. 2 and 3). 

During the backward scan, the branching point designated by the top of 
the stack is considered and if all branches have been traced, unstacking is 
accomplished. 

Example (illustrating the use of registers) 
Let a, b, c, d, e, and f be some addresses in the heap. Also, let tata 

type niveau lieu 

l ___ 3~~~_O_3~~~~: __ ~ 
a \--______ -j 

b lLLLL.LLLLL.LCLLI 

--- ---, 
I I 
I I 
I I 
I I 
I I 

tas (heap) L ______ .J 

pile.(stack) 

Fig. 2. Prior to the SCan of the value located at c. 



308 P.GOYER 

be declared as in the previous example for models. The values located at 
b, d and f are declared to be in! and those at a, c and e to be tata. 

The graphs picture the situation prior to and after a forward scan where 
the value located at c is to be considered. 

type niveau lieu 

I 
2 3 c 

0 d 

compteur type P lieu P 
a __ -------1 

b'-----____ --' 

tas (heap) 

d.------, 

--------, 
I 
I 
I 
I 
I 

- ------.1 

Fig. 3. Immediately after the scan. 

compacting 
Compacting is executed in two steps: 

- shifting of accessible values, 
- modification of pointers. 

ip 
~ 1131a 

pile (stack) 

The bit table (table marquage) is used to shift the values. Each time a 
marked word is encountered, it is shifted up to the location indicated by 
marque and if this word immediately follows a non-marked word then one 
entry is added to the break table (table modification). This entry is a struc
tured value with two fields selected by adresse and decalage which respec
tively represent the address of an accessible block (contiguous locations) of 
values and the number of holes encountered up to this address (fig. 4). 

Modification of pointers is done with the help of the pointers I table (table 
pointeurs) which has been constructed durillg the tracing phase and shifted 
accordingly to the heap. Pointers are scanned linearly and modified with 
the help of table modification. 

The main program 
Each time garbage collection is called upon, an INITIALISATION occurs 

and TROUVER ACCES searches for accesses. When an access is found, 
RECUPERER is called. After all accesses have been scanned, DEPLACER 
takes care of the compaction and accesses are then modified by MODIFIER 
ACCES. 

l 



IMPLEMENTATION OF A GARBAGE COLLECTOR 

area already { 
pacted 

tas (heap) 

j 
y 50 

f71 accessible values 
I:LI in the heap 

table modification 
(break table) 

Reaching an accessible value and 

j 

~'----=5:-=0---' 

shifting it 

Fig. 4. 

THE GARBAGE COLLECTOR PROGRAM 
co G1.obal. variables.££. ; 

int nb types. taiUe tas. debut. ip. im. nil := -1 ; 

.££. nb types : number of modeLs .££. 

co debut : an address in the access b1.ock ~ 

co im table modification index ~ 

~ ip stack index ~ 

tai He tas : = ~ ? ~ ? ~ ; nb types : = ;;, ; 

ip := 0 ; im := 1 ; 

309 



310 P.GOYER 

co Models ao 

struct modele = (int taiZZe, genre, [1:0 flex]constituant pointeur) 

struct constituant = (int type, niveau, adresse) 

[1 : nb types] ~ modele dispLay modele; 

co a model containS information to trace and mark a value in the 

heap. There are three kinde of model, describing respectively 

values without names, values comprising one name and 

values that are branching points ~ 

co Tables, the stack and the heap ~ 

[ 1 tai ZZe tas] boo l tab le marquage, tab le pointeurs ; 

[1 0 flex] 8truct (int adre88e, decalage) table modification; 

[ 1 0 flex] 8truct (int c, t, 1 ) pile; 

[1 tail:Ze tas] int tas ; 

co "table marquage" is the bit table, 

"table pointeurs" is the pointers table, 

"table modification" i8 the break table, 

"pile" is the 8tack and "tas" is the heap ~ 

ao Regis ters ~ 

int type, niveau, lieu ; 

~ these registers de8cribe the value being traced co 

int compteur, type P, lieu P ; 

co these registers represent the top of the stack co 

co Procedures co 

co proc INITIALISATION = initialization of "table marquage" and "table 

pointeurs" • 



IMPLEMENTATION OF A GARBAGE COLLECTOR 

proa TROUVER ACCES = this prooodure finds an aaaess in the aaooss bloak 

and does the initialization of : "debut" and 

the six registers. 

311 

When all aaaesses have been taken aare of, this pro

aedure is a jwrrp to "seaond phase". 

proa RECUPERER = this proaedure does the marking. 

p1'Oa EMPlLER = this proaedure does the staaking. 

p1'Oa DESEMPILER = this proaedure is used to unstaak. 

p1'Oa DEPLACER = this proaedure does the aompaating. 

proa MODIFIER ACCES = aaaesses are modified aonsequently to the aompaating 

phase. 

NOTE: "INITIALISATION", "TROUVER ACCES" and MODIFIER ACCES" 

are not desaribed in ALGOL 68 ao 

proa RECUPERER = 

begin 

p1'Oa EMPILER = 

(pile lip +:= 1J := (aompteur, type P, lieu P) 

aompteur := ~ pointeur £l modele 

type P ,- type; lieu P := lieu 

proa DESEMPILER = : 

aompteur := a £l pUe [ipJ 

type P := t £l pUe [ipJ 

lieu P := I £l pUe lip] 



312 P.GOYER 

ip -:= 

modele modeZe 

descente: 

( modele := display modele [type] ; 

int taille = (niveau> 0 111 taiUe Ei.modele) 

if. ( lieu = ni l I true I 

then remontee else 

if. niveau > 0 then 

( bool marque = ~ ; l2!:.. i from lieu to lieu + 

taiUe - 1 do 

h tab le marquage [i] marque: = false ; e) e 

marque )) 

table marquage [lieu] := table pointeurs [lieu] := true; 

lieu := tas [lieu] ; 

niveau -: = 1; 

descente 

else 

l2!:.. i from 'lieu to 'Lieu + taiUe -1 dD table marquage [i] := true; 

~ genre Ei. modele in 

remontee, 

suite, 

suite: 

(EMPILER, suite) 

( constituant c = (pointeur Ei. modele [1] ; 

int dec = lieu + adresse Ei. c ; 

table pointeurs [dec] := ~ ; 

1 



fiii 
) ; 

IMPLEMENTATION OF A GARBAGE COLLECTOR 

type : = type £f. c ; 

remontee : 

niveau := niveau £f. c - ; 

Ueu := tas [dec] ; 

descente 

il. Lieu P = debut then te1'mine else 

il. compteur > 1 then 

constituant c = (pointeur £f. dispZay modUe [type PJ) 

[compteur] ; 

int dec = Lieu P ... adresse £f. c ; 

tabZe pointeurs [dec] := ~ ; 

type : = type £f. c ; 

niveau := niveau £f. c - 1 

Lieu : = tas [ dec] 

compteur -: = 1 ; 

descente 

else 

fi Ii; 
termini skip 

DESEMPILER ; 

remonUe 

end 

proc DEPLACER = 
begin 

:f!!! IlUU'qUB : = 0 ; 

313 



314 

fi; 

j +:= 1 

) ; 

sortie: skip 

) ; 

P.GOYER 

( int i := 0 • J := 0 ; 

whil-e (i + : = 1J,,; tail- Ze tas do 

it. tab Ze marquage [i] then 

table modification lim +:= 1]:= [i.j] 

e :tas [marque +:= 1] := tas [i]; 

table pointeurs [marque] := table pointeurs [i] ; 

it. (( i +: = 1J < tai He tas tab le marquage [i] 

sortie) .then e 

adresse £i table modification lim + 1] := taille tas + 1 

iE!:. i 1£ marque do 

it. table pointeurs [i] then 

!!1 int lieu = tas [i] ; 

iE!:. k 1£ im do 

it. lieu?- adresse £i table modification [k] A 

lieu < adresse £i table modification [k+1] then 

lieu:= lieu - dBcaZage £i tabZe modification [k] 



IMPLEMENTATION OF A GARBAGE COLLECTOR 315 

ao Main program E£ ; 

INITIALISATION 

first phase TROUVER ACCES ; 

RECUPERER i 

first phase 

seaond phase DEPLACER; 

MODIFIER ACCES 

ABSTRACT 

This paper deals with a problem related to the implementation of AL
GOL 68. The problem is the one of "garbage collection" occurring with 
storage allocation for non-local values. A general description and a simu
lation (described in ALGOL 68) are given for the proposed solution. The 
whole is considered in the context of an implementation on a small com
puter with many terminals. 

REFERENCES 

[lJ Van Wijngaarden. A. (Editor), Mailloux, B.J., Peck, J.E.L. and Koster. 
C. H. A.: Report on the algorithmic language ALGOL 68, MR 101. Mathematisch 
Centrum. Amsterdam, February 1969. 

[2J Mailloux. B.J.: On the implementation of ALGOL 68, Mathematisch Centrum. 
Amsterdam, 1968. 

[3J Branquart, P. and Lewi, J.: General principles of an ALGOL 68 garbage collec
tor, Technical Note N60, M.B.L.E., January 1970. 

[4J McCarthy, J. et al.: LISP 1.5 Programmer's Mannual, The MIT Press, Cam
bridge, Mass., 1962. 

[5J Wodon, P. L.: Data structure and storage allocation, Bit 9 (1969) p. 270. 
[6] Fites. P.: Storage organisation and garbage collection in ALGOL 68, Proceeding 

of an Informal Conference on ALGOL 68 Implementation, Department of Comput
er Science, University of British Columbia, Vancouver, 1969. 

[7J Haddon, B.K. and Waite, W.M.: A compaction procedure for variable length stor
age elements, Computer Journal, Vol. 10, 1967-68, p. 161.. 

[8J Schorr, H. and Waite, W. M.: An efficient machine-independent procedure for 
garbage collection in various list structures, Communications of the A.C.M .. 
Vol. 10, Number 8, August 1967, p. 501. 

[9J Trilling, L.: Un sous-ensemble d'ALGOL 68, Universite de Montreal, to be pub
lished, 



316 P.GOYER 

APPENDIX 

A static tracing algorithm 
By "Static" it is meant that no storage reservation is done at the moment 

the Garbage Collector is called upon. That is, no extra space is needed for 
a stack. 

Branching points 
A branching point is defined to be any value containing more than one 

pointer. In the subset of ALGOL 68 considered, only structured values hav
ing more than one field consisting of a "name" [1] or another structured 
value containing "names" are branching points. 

The method's principle 
If each time we generate a non-local value which is a branching point we 

add to the representation of the value being generated in the heap sufficient 
space (called "stackelem ") to enter in it one stack entry (that is, one entry 
one would normally put in the stack with a dynamic algorithm), then, one 
always has sufficient space to build a stack into a list. This is demonstrated 
by the fact that, when using a dynamic procedure, stacking is done only 
when one encounters a branching point during the forward scan of a list. 

Practical consideration 
This method can easily be compared to that of Schorr and Waite as 

adapted for ALGOL 68 by Fites [6]. 
Indeed, with the exception that a structured value containing only one 

"finger" is not a branching point, one sees that stackelems correspond to 
"fences" used in a different way. 

Accepting the fact that stackelem can be one computer word, we have a 
static algorithm functioning under the same principle as for a dynamic algo
rithm and which requires less storage reservation than the procedure de
scribed by Fites. 

This method, which utilises a stack built into a list, should prove to be 
faster [8] than the method of Schorr and Waite adapted for ALGOL 68, since 
no reversing of pointers is needed. 

Modifying the dynamic algorithm into a static one 
Only two procedures in the program described above are to be changed. 
From these modifications, one can see that, in a non-local value re

presenting a branching point, stackelem is simulated by three integers val
ues representing respectively: the counter, the type and the heap address 
of the last branching point encountered previously to the one located at lieu. 



proc EMPILER = : 

Example 

IMPLEMENTATION OF A GARBAGE COLLECTOR 317 

tas [Ueu 1 : = compteur; 

tas [Ueu+1J := type P; tas [Ueu+2] := Ueu P; 

compteur := ~ pointeur q1 modeLe 

type P := type; Ueu P:= Ueu 

mode Usp = ~ (~ Usp car, cdr) ; 

A value generated by ~ Usp is represented as follows: 

Fig. 5. (During the tracing phase, * las [lieu] will contain the counter. ** las [lieu+1] 
the type, *** tas [lieu+2] the address. of the last branching point encountered prior 

to this one located at lieu.) 



-- --- - - --------------------- ---, 



SESSION 8 

(Chairman: F.L.Bauer) 





PANEL DISCUSSION 

IMPLEMENT ATION 

Panel-Moderator: F. L. Bauer. 
Panelists: H. J. Bowlden, P. Branquart, I. F. Currie, 

A. P. Ershov, C. H. A. Koster, 
B. J. Mailloux, M. Paul. 

The discussion was based on a list of questions compiled by M. Paul: 
- How far have you come? 
- How many man years are needed? 
- Space needed? 
- Run time characteristics - batch or interactive? 
- Are you in accordance with your time schedule as planned? 
- What do we hope to win? 

Learn the handling of the implementation problem for a highly complex 
language such as ALGOL 68? 
Make programming in ALGOL 68 possible 

Bauer: 

in order to allow the actual use of the language by users? 
in order to have a powerful language for teaching computer science 
in general? 

We have a panel discussion today on a number of questions which arose, 
I think, during the work most of you are engaged with. These questions 
have been put into shape by Paul. Some of them may seem to be trivial. If 
so, then we can hopefully discard them or simply answer them and thus 
solve the problem. Others may turn out to be very difficult to answer. 
Those are probably the ones we are most interested in. If we get answers 
after a while, fine; if we do not get an answer, that is also an answer to the 
the question. This is also an open discussion, which means that the floor 
should take part in the discussion. We have seven panelists here, carefully 
selected so that we are sure that at least certain experiences made by cer
tain implementing groups will be brought to the attention of the public. And 
you may comment on them of course. 

Is there any objection to putting the direct question "How far have you 
come?" to the seven panelists? 

Paul: 
This group, here in Munich, consisting of about three seniors and two 

'mathematical-technical assistants', started just about a year ago. They 

321 



322 PANEL DISCUSSION 

have designed the compiler to consist mainly of five passes, three of which 
are coded and are now being tested. The last two passes are beyond the de
signing phase and we are about to start coding them. I should mention in 
addition that the run-time operating system needed for our compiler has to 
be coded by us because the present one does not provide us with file hand
ling and things like library routines and so on. 

Koster: 
I must begin by saying that I am here under false pretenses, but the 

false pretenses are not mine. That is, I am sitting here as an implementer, 
but the Mathematical Center has not started implementation yet. What we 
have done is some preparatory study in the syntactic field, which is my 
main interest. I have looked at the possibilities and impossibilities of using 
syntax-directed techniques' for implementation of ALGOL 68 on the seman
tical side. De Bakker has given the compiler considerable thought. On the 
syntactic side, I spent my free time on a compiler, which is strong enough 
to allow implementation of ALGOL 68, but which was such a job in itself 
that hardly any time has been spent on the syntax of ALGOL 68. We have 
three unchecked syntaxes for the three first passes of our compiler, which 
would consist of four passes and maybe something after that. 

Bowlden: 
We have a recognizer coded and working, which operates on a state 

transition matrix method. We have not yet put the full ALGOL 68 syntax 
into it. As a matter of fact, we have not done much on that at all. It is cur
rently working with the partial syntax that we have in it. There is a good 
deal more that needs to be done about this. It does a parenthesis recogni
tion and produces trees. It is coded in an ALGOL dialect. 

Branquart: 
We have designed a six-pass compiler, four of which have been pro

grammed and partly debugged - partly, because you can never be sure. 
There remain the last two phases to be programmed and we are thinking of 
reprogramming our coercion routines in a more efficient way and of intro
ducing new static checks in order to increase run-time efficiency. 

Ershov: 
First of all I would like to mention that in the Soviet Union there exist 

three groups which have some implementation aims. Let me say a few 
words about the other two groups. 

The group which first began to implement ALGOL 68 is headed by 
Levenson of the Institute of Mathematical Economics of the Academy of 
Science in Moscow. He has a group of students of Moscow University, and 
they have planned to implement the ALGOL 68 strict language. They are 
now in the stage of flow-charting and particular programming. It will be a 
several pass scheme. They will implement first of all some core of the 
language and then, through bootstrapping, have the full strict language. 
Their plans to make some experimental operations are for the end of the 
next academic year. They are implementing their version for the BESM-6 
computer. 



IMPLEMENTA TlON 323 

Another group is headed by Professor Tseytin of Leningrad State Uni
versity. They have a plan to implement ALGOL 68. in full. for a new line 
of computers. Their approach is to construct a very fast compiler. Another 
important approach is to save a full and strict correspondence between 
language patterns in the source program and corresponding organization of 
the object program. They consider their compiler mainly as a tool for de
bugging and for some one-run programs. They are at the stage of develop
ment of the technical specification of the language and the search for a 
syntactic algorithm. They hope to begin actual coding of the compiler in the 
next year and to finish the work within the nex two years, say in 1972. 

As for us, I have mentioned, in my talks. that we now are at the re
search stage and are mainly involved in the search for a specification of 
the internal language, which we hope to have at the end of the year. Then 
we are involved in researching the appropriate method for the syntactic 
analysis of the text. We hope to make our decision by the end of this year. 
As I told you, it will be mainly a separation of the syntactic analysis into 
two parts; one of them is the context-free parsing, and another the induc
tive determination of all modes and other characteristics for internal quan
tities introduced during the decomposition of the program. 

Bauer: 
Thank you. On behalf of the organizing committee for the working con

ference, I may say that we tried to have Tseytin and Levenson here, the 
leading people from the groups which you mentioned, but it was unfortu
nately not possible for them to come to this country. I am especially 
thankful to Ershov that he has mentioned the work done by these other two 
groups. 

Mailloux: 
We have a garbage collector coded. Unfortunately we cannot test it 

since, for the time being, we have nothing to generate garbage with. We 
have the transput package almost coded. Beyond that, we have a document 
almost completed describing the internal storage organization and a trans
lation of external objects into internal ones. One of our compilers will have 
five passes and will include linkage editing and loop optimization. Our oth
er compiler will be a one-pass compiler, the intention being to use it for 
teaching students. Therefore, we want to compile as quickly as possible 
and we are not too concerned as to how fast the object program runs. It 
should be super-diagnostic. We hope to have both of these done in about a 
year. They will make considerable use of sections from each other, in 
particular the garbage collector and the transput package. 

Currie: 
We have been. running an ALGOL 68-R system on our machine since 

April, with a somewhat restricted transput operation. The complete trans
put is now available, although still under test. That is basically how far we 
have come. 

Bauer: 
Thank you. These answers are a kind of basis for some additional ques-



324 PANEL DISCUSSION 

tions, which may make sense only when you know, more or less, in what 
frame the work is being done. For example in our next question, "How 
many man years are needed?", the answer depends on what you are doing, 
whether you do a compiler for the full language or for a restricted set, 
whether you do it for a pilot model or whether you do it for a production 
type of compiler. 

van Wijngaarden: 
There is a question to Ershov. You said that in the Moscow implementa

tion they restrict themselves to the strict language. I mean hardly anyone 
would ever write a program in the strict language. 

Ershov: 
Well, he considered his project as an experimental one so he really be

gins with the strict language but after that he will expand the compiler. 

Scheidig: 
I would be interested to hear about the size of the groups, say how many 

persons. 

Bauer: 
May we go on with the next question, "How many man years are 

needed?". I would like the panelists, if they give figures about estimated 
man years or established man years, please add for what kind of a com
piler. full or restricted, more of the experimental or pilot type or more of 
the production type. 

Branquart: 
We intend to implement a compiler for the full language. Up to now we 

have consumed a total of eight man years, only taking into account people 
who are directly involved in the project, namely Lewi, Cardinael, De
lescaille and van Begin. These man years ask for some comments: 

- Two man years have been consumed for learning of the language, but I 
must add that we had undertaken the study when the language was not yet 
settled, and on the other hand, that we took profit from the advice of 
Sintzoff, who undertook the study of the language from the very begin
ning. 
- Three man years have been consumed for the design of the compiler. 
Here it is important to note that I have personally the experience of an 
ALGOL 60 compiler and, together with Lewi, of various syntactic ana
lysers. Moreover, we take profit from the advice of Wodon, who has the 
experience of LISP and SNOBOL compilers. 
- Two man years for programming and debugging proper. Only one of 
our programmers was experienced. 
- And one man year for documentation and reports. We estimate that we 
still need at least six man years for obtaining a compiler with a very 
simplified input/output. This compiler is not designed for being incor
porated into the system, nor for being provided with a specialized li
brary. 



IMPLEMENTATION 325 

Bauer: 
Thank you. It would be useful if now we could have other figures on a 

similar basis, that is for the unrestricted or practically unrestricted lan
guage . 

. Bowlden: 
The amount of time that has been spent to date on the processor that we 

have is about six man months. If I run over two man years, I am in trouble. 
That is my estimate. This is for a full compiler. 

Bauer: 
For the whole thing? 

Bowlden: 
For the whole thing. 

Bauer: 
Design and coding? 

Bowlden: 
Yes. 

Bauer: 
Now this is a little bit less than Branquart indicated. But Branquart 

had, I think, included that phase where he studied the language. 

Bowlden: 
I did not include my evening and morning time and things like this. 

Bauer: 
So Branquart's figure would have been lower if he had stated them on the 

same basis you have. But still it is larger than yours. 

Peck: 
Is it possible that some people are not including coders whereas others 

are? 

Bowlden: 
That is not so in my case, we have no coders. 

Bauer: 
Branquart did? 

Branquart: 
I did. 

Bauer: 
Anyhow, so far the design phase seems to be in the order of magnitude 

of a few man years. The production phase seems to be of a similar order 
of magnitude, is this right? 

Bowlden: 
Yes. 

Ershov: 
We have to make some estimate because, as I told you, we do our work 



326 PANEL DISCUSSION 

on a contract basis. We have the following schedule of consumption of man 
power during the period of development. In 1970 we write the specification 
of the internal languages and do all the necessary research using 10 per
sons for one year. In 1971 we shall write technical projects concerning the 
beginning of the language specification and the constructing of tables and 
other information projects for the compiler. This period will require about 
20 people. The next year. 1972, is a period for flow-charting and coding 
the compiler and all the necessary language tables. The next year, 1973, 
is a period for debugging the compiler. i.e., its pilot model. These two 
years will require about 30 people to take an active part in the work. And 
now 1974 is a period for field tests, experimental running, and finalization 
of documentation. This period will require about 20 people. Thus it is 
about 100 man years to do the job. I would like to stress that these figures 
are based on our previous experience in constructing productive compilers. 
The ALPHA cOJ;npiler. which is a reasonable extension of ALGOL 60, in
cluding some multi-dimensional complex arithmetic and so on, required 
for us 30 man years, but the documentation was not adequate. So this esti
mate includes also the documentation, and what is more important. the 
field testing on actual programs. 

Bauer: 
Thank you. It has been said clearly that it aims at a productive kind of a 

compiler. 

Ershov: 
Also I have to say that it is a joint implementation of three languages. 

Bauer: 
It also includes many things one would certainly not include in an exper

imental or pilot work. We have Bowlden. who is on the extreme Side, if I 
may say so, of being short in resources and being forced to do the best he 
can with the very limited amount of man years he has available; and we 
have Ershov. who is estimating 100 man years and I am sure he went on 
the safe side. I think this is a good spectrum now, and I would like to see 
how the others fit in. 

Paul: 
We aim at the full compiler, really compiling almost the whole language, 

minor restrictions can be discussed later, but it is really a full compiler. 
We had one very experienced programmer and one very experienced trans
lator, if I may say so, compiler-builder, in the group. Altogether I would 
say they take (if you do not count the time they spend for teaching, i.e., if 
you only consider the time that they spend for the compiler during a year) 
about 2t to 3 full workers. They have been working now for almost a year, 
so it is about 2 to 2t man years that they have spent on the first three 
passes. I am expecting them to finish their work, if the group stays to
gether, perhaps at the end of next year. So add another 4 to 5 man years to 
my estimate, Le., at least 6 to 7 man years, which is at least two more 
than we estimated in the beginning. 



IMPLEMENTATION 

Bauer: 
Language learning was not particularly counted. Is documentation in

cluded? 

Paul: 

327 

It includes documentation and includes field testing and debugging. So we 
should have a running and productive compiler by the end of next year. 
think. 

Bauer: 
Productive, that means embedded in an operating system, including li

brary routines to be provided. 

Paul: 
Yes. 

Currie: 
When we started on the restricted ALGOL 68-R project in January 1969, 

I estimated three man years for the basic compiler, i.e .. just the compiler 
itself, that 24K of code I was speaking about. In fact, it is spread out to 
about 5 man years. Fortunately the machine was late. That was for the 
basic compiler itself. The transput routines have probably taken about 3 
man months to write, in sort of interactive mode between the compiler 
writers and the one who is doing the transput routines. The other library 
operations seem to be taking roughly the same time as that, perhaps a bit 
more. The documentation is not complete. It is impossible to separate it 
from the documentation of the operating system itself. So all and all I 
suppose, up to now, we have had six man years perhaps to get a running, 
practical compiler. 

Bauer: 
Thank you. There was a general remark that Koster wanted to make and 

then I shall invite the audience to ask questions or give further information. 

Koster: 
We have seen a big spread in the spectrum of man years, which comes, 

more or less, from the different way of operating in the various implemen
tation groups. Bowlden probably works alone and other people speak about 
working with 20 or 30 people. I think the ideal group is a 3 to 5 person 
group, which will then spend 2 to 3 years on it, but from our experience of 
designing the language, we know that it is good to have a shadow group 
double-check everything you are doing. Therefore the group could, on 
those lines, be larger. 

Ershov: 
I have a remark to Koster's remark and also want to give some charac

teristics of our group. I am not fully in agreement that 3 to 5 people is the 
optimal group to do the job. It depends on the style and what you have to do. 
If you can convert the art of programming into a technology of program
ming, you can use many more people to do the job in a proper manner and 



328 PANEL DISCUSSION 

with high productivity. I refer again to our experience in constructing 
modifications of new versions of compilers for the same language when you 
have already developed a scheme of translation. Then you simply need to 
program, debug. check, and deliver a compiler. At such a stage of 
work (for example we are now making a compiler from ALGOL to the 
URAL computer), it is fairly technical work. We can assemble a group 
of 15 people, who cooperate well, who can finish their work in one 
year with full documentation and all the other necessary technical require
ments. Of course, when you are on the preliminary study and when you are 
developing a pilot model. I agree with Koster, that his group is optimal 
from the point of view of the exchange of information. I would like to make 
some specific points about our group. The manner in which people join the 
group is as follows: The initial group consists of five people, three of them 
with experience of various compilers. two of them are experienced people 
who have changed their interests from other fields to become compiler 
writers. We have about seven graduate students coming with ordinary 
training and no special knowledge in programming. But now we can capture 
the ten best 4th year students from one course, and they are now working 
on a version of the ALPHA compiler for the BESM -6 computer. They will 
finish their work before graduation. That will be the core of the main 
group. They will have two years of experience in writing compilers. We 
consider that we can involve them in the work very quickly over several 
weeks or maybe two months to get the necessary initial experience. So I 
consider it is quite possible to have a large project with students, but only 
if you have a possibility to influence their approach and to teach them prop
erly during the last two years of their education. 

Bauer: 
Thank you. Here I would like to make one direct remark concerning the 

estimate of man years, which perhaps is wrong. I do not think you have to 
take the number of people times the number of years, although this is what 
is usually the financial concern. This is no proper measure for the work 
that you do. I think you have to take the logarithm of the number of people 
multiplied by the time that they work, and you get roughly an indication of 
the work to be done. For example, if 8 people can do it in one year, then 
one man would not need 8 years, he would need 3 years. I think that would 
be more reasonable. Unfortunately, it is not true that the cost of wages 
goes up with the logarithm of the number of people, it is directly propor
tional. 

Bowlden: 
My estimate does not include documentation, but it does lean heavily on 

the fact that I have a good operating system. There is an awful lot that I 
do not have to worry about. The run time package is practically nothing. 

Bauer: 
Thank you. That again explains the discrepancy a little and where it is 

coming from. 



IMPLEMENTATION 329 

Branquart: 
I think that the figures are influenced by the language people have at 

their disposal for writing compilers. I should like to know in what language 
other people write their compilers. 

Bauer: 
We can ask this question. What language are you using, Branquart? 

Branquart: 
Assembly, with macro facilities. 

Bauer: 
What language are you using or plan to use. Ershov? 

Ershov: 
For system programming we use a specially designed language. a ma

chine oriented language, with some properties of high order languages, de
signed especially for symbol manipulation. We call it the EPSILON lan
guage. It is a kind of macro assembler which also incorporates string 
manipulations, list manipulations, table manipulations and such things. We 
use this language first of all as a way of expression of our algorithms. Af
ter that we have a double way. One of them is to compile from EPSILON 
to machine code; and for a not very responsible part of the compiler we use 
this compiler. Sometimes if we have to write a difficult part. we use as
sembler language doing the translation from EPSILON to this assembler 
language by hand. 

Bauer: 
May I ask Bowlden ? 

Bowlden: 
It is in Burrough's extended ALGOL. 

Bauer: 
May I ask Paul? 

Paul: 
It is assembler code directly into machine code. 

Bauer: 
Last, not least, what are you USing, Mailloux? 

Mailloux: 
We expect to spend six man years ,to produce both compilers. This is 

because the work will overlap very considerably. In fact I expect the one
pass compiler will require an additional man year over the full compiler. 
The language will be the full language with the exception of parallel proc
essing and the semaphores. The language we are writing it in; I am 
ashamed to admit, is PL. " oh, you know that one. The reason for this is 
that we have no suitable ALGOL 60 translator on our machine, and even if 
we did, we would find ALGOL 60 less suitable because we want to trans
late our compiler as quickly as possible into ALGOL 68 and perhaps pro-



330 PANEL DISCUSSION 

duce it as a model compiler. Since PL/I does have some features which 
look a little bit like some of the things in ALGOL 68, this seems a more 
appropriate choice. We expect to have an extremely inefficient compiler in 
the beginning, and of course this will improve, possibly by translating it 
into ALGOL 68 and having it compile itself. We shall also have it trans
lated into assembly. The time for translating into ALGOL 68 and assembly 
is not included in the estimates. 

Bauer: 
Does anyone else want to make GesUindnisse? 

Peck: 
I shall also admit that the efforts that we are making are written in 

PL/I. I am not as ashamed as Mailloux to admit it. 

van Wijngaarden: 
A direct question to Ershov. You said that you were making an ALGOL 

compiler for the URAL computer? Is that right? 

Ershov: 
That is right. 

van Wijngaarden: 
Which ALGOL? 

Ershov: 
Well, ... 

van Wijngaarden: 
number? 

Ershov: 
This is a kind of socialist ALGOL, namely ALGAMS, so called, because 

it was officially adopted in a group of socialist countries, a subset of 
ALGOL which includes the IFIP-subset. 

van Wijngaarden: 
Well, fine, I thought it might perhaps have been ALGOL 68. Thank you. 

Bauer: 
There is not yet a socialist form of ALGOL 68. Other questions? Then 

we shall come back to documentation. We spoke about it here and whether 
it is included in the count and what time is needed. I think it is a very im
portant topic, documentation, and I think it fits in here. Does anybody care 
to say something about documentation, about its problems and in particular 
about the time it needs. I think documentation, at least in our circles, has 
very often been a time problem, and I have seen it insufficiently done. An 
excuse was usually: "We did not have the time." 

Ershov: 
I have a question for the panelists, please. It seems to me that some 

kind of machine independent documentation for a compiler is necessary, 
and I need to know what kind of such machine independent documentation 
are you planning to prepare. 



IMPLEMENTATION 331 

Bauer: 
I was really trying to ask the same question. Thank you very much and 

we can start at the other end with Paul. 

Paul: 
We are certainly hoping that we shall have a good machine independent 

documentation, as we had it in the past for the ALCOR compilers. You all 
know that it was published about four or five years after the compilers 
were built. It took the longest time to get this documentation finally pub
lished. 

Bauer: 
It was a very ambitious publication. 

Paul: 
All right, but it was machine independent, and its purpose was to say 

exactly what the basic ideas in this compilation were and how it was fitted 
together in a modular way. If we can make this gap between completion of 
the compiler and completion of documentation shorter, then we would con
sider it a big success. 

Bauer: 
In what language will the documentation be? 

Paul: 
We have not yet made up this documentation language. 

Scheidig: 
For each pass which we have in the test phase, we have two kinds of 

documentation. One is internal and is necessarily machine dependent. On 
the other hand we have our machine independent documentation, first a de
scription in words, and as an appendix the description of the compiler in 
ALGOL 68 itself. 

Bauer: 
Well, so there is even a description in ALGOL 68 which is a kind of 

machine independent documentation. 

Bauer: 
Sorry for interfering about the ambitiousness of the documentation, 

but I am quite sure that documentation can be looked at from several 
levels. You may only want to give the documentation, for later reference 
to what you have done or for your going into maintenance, I think this is the 
minimum level. The maximum level is if you want from the project. as in 
the ALGOR project, to derive and publicize the utmost in knowledge that 
you gain from the project. In the case which Paul has mentioned, when it 
took quite a long time, I know that most of the time came from the polish
ing, which is a very complicated and time-consuming thing, so we should 
not suggest that documentation will always need five years after the com
pletion of the compiler. I think Paul certainly did not want to do this. 

Paul: 
I mean to warn people that if you have completed your compiler and you 



332 PANEL DISCUSSION 

have debugged it. then you are so happy that it works, you are usually not 
so concerned with completing this burdensome task of documenting the 
whole thing. Of course you tried to document it while you were program
ming. and this of course is good advice to every group of programmers, 
but beware that as soon as the thing works and you can give it to people to 
program in that language you are so happy, you go away and you leave the 
documentation in the state it is at that time. That is the danger. 

Koster: 
There is a connection between part of the documentation problem and the 

language used for the detailed description of your compiler. What you 
should aim for is that other people can use, fully or in part, what you have 
done, especially in the present situation, the beginning of implementation 
of ALGOL 68. Therefore, we are thinking of using syntax-directed tech
niques for the parser, that is, having a grammar describe all of parsing 
and translating. This grammar. together with the compiler described in 
itself, is a complete informal documentation. One may use as interme
diate, let us say for testing the object code, ALGOL 60. No good ALGOL 68 
compiler is available but ALGOL 60 is quite sufficient for describing your 
compiler and even testing it on a machine. Only lastly you get into machine 
code. That is, you need a set of well-defined macros, as small as possi
ble, as well thought out as possible, which you have trouble in documenting. 

Branquart: 
As far as we are concerned, we spent one man year for documentation, 

but rather high-level documentation where prinCiples are settled. As an 
emphasis of the statement of Koster, I think that for a compiler which is 
written in a high-level language, the program itself can already be consid
ered as good documentation. We use an assembly code with macro facili
ties, and we try to define, as Koster said, a set of primitive macros in 
such a way that the machine dependency appears only in the macro defini
tions. 

Ershov: 
As to our approach to documentation, I should say that we are happy 

with the flow charts but they require some means of automation for pro
ducing them. But now some means exist. It is only one level of documen
tation and of course there has to be some detailed method of documentation. 
As for us, maybe we shall use the same EPSILON language, but of course, 
we shall have some experiments in expressing our compiler in ALGOL 68. 
We do not know whether it will come into the technical documentation. Per
haps it will be the way to have a scientific publication about the main parts 
of the compiler. 

Mailloux: 
I am perhaps in a good position, since most of my workers are students 

who need to write theses in order to graduate, and so they will write docu
mentation or else: One of the things that we are doing is trying to invent a 
universal ALGOL-oriented language (UNALGOL). This is somewhat like 
what Ershov has been mentioning, I think, but we are not trying to be quite 



IMPLEMENTATION 333 

as ambitious. We shall be sufficiently happy if we can invent a small lan
guage of about 50 instructions which is sufficient to describe what ALGOL 
68 does and yet can still be translated into the order code of present-day 
machines. Our final pass will produce code in this intermediate language. 
This is essentially the output of the compiler and after that, you have to 
write a machine dependent thing to translate this output into your own ma
chine language. Quite likely, people will tend to rewrite the whole last 
pass, but we hope at least to have given them some guidance as to ho-.v they 
should do this. I hope that a complete description of this will be available 
in a few weeks. 

Bauer: 
This is in fact the problem of portability which you are mentioning here. 

As on many other occasions, we have here also the problem: can you ar
range your documentation in a language that, if you go to a different and 
unforeseen machine configuration or machine structure, you have to change 
as little as necessary? In your case, and this I think is the classical way, 
it is done by introducing language layers. 

Bowlden: 
I would say it is intended that our compiler be self-documenting and 

about 25% of the current ALGOL program is comment. Of course my own 
choice for the most important immediate documentation for a project like 
this, is a user programming manual. If you do not have this, you will not 
get people using it. 

Bauer: 
Now you mention manuals, and this is perhaps a key word to which we 

may return later. It is generally something that cannot be taken away com
pletely from the compiler building, and that is from the job we are dis
cussing here during this week. But it is not our main point. 

Our next question is: "How much space is needed?" Who will volunteer 
to give such information? 

Bow lde n: 
Our experience with our processors so far is that we can run two copies 

easily, three copies with difficulty, together in our 32K core. This is a 
page on demand multi-programming system. This is the only way we can 
make an estimate: the core usage of the program is rather soft. 

Bauer: 
Has somebody other information? 

Ershov: 
I cannot estimate the actual necessity for core memory for our com

piler, so I make only some extrapolation based on our experience. If you 
have no very diverse method for using multi-dimensional arrays or 
structures, then you can reduce the actual requirements of core memory. 
But if you write large programs which make full use of the ALGOL 68 
language, then no less than 16K of memory has to be in the possession of 



334 PANEL DISCUSSION 

the running problem to make things comfortable. 

Bowlden: 
Pardon me. Are we talking about space for the compiler or for the run

time system? 

Bauer: 
Our question left it open. Our question allowed you to include both. But 

perhaps Branquart will say something. 

Branquart: 
We count an average of 5K instructions per pass. That is 30K instruc

tions for the whole compiler. 

Paul: 
Well, that really comes exactly to the same amount that we estimate 

right now 30K for the-compiler. 

Bauer: 
So on this we got quite obviously a certain agreement. At least the order 

of magnitude seems to be not too different. 

Ershov: 
I have one more remark about space. In our case we shall have pro

gram processor and language tables. Our estimate is that the progr:.tm 
processor will occupy about 50K words, but language tables will occupy 
much more space and we consider that languages such as ALGOL 68 and 
PL/I, each require no less than 50K to 60K words. Thus, as a whole, this 
joint implementation will occupy about 200K words in the secondary mem-
0ry. 

Currie: 
The size of our compiler is 32K. That includes table space. The amount 

of actual program is about 24K. This is for the one-pass compiler. 

Bauer: 
Here I think I would like to say that your compiler, as far as the lan

guage goes, will be restricted. It is a compiler for a restricted language. 
This is right. This should be said clearly because some of the other gen
tlemen are not speaking about a compiler for a restricted language. 

Currie: 
I think everybody is aware that it is a restricted language. 

Bauer: 
Do we really have to say much about run-time characteristics, against 

interactive? 

Paul: 
Are there any installations that plan interactive systems in the near 

future? Because I should like to know some of the basic ideas that have 
been considered already. 



IMPLEMENTATION 335 

Currie: 
We have plans for running an ALGOL 68-R interpreter interactively. in 

such a mode that it can run with previously compiled segments. using our 
compiler. This is, I would say, about half done. It is estimated at one man 
year. Previously we had another version of much the same project running, 
last year some time, of a very slow interpretive system for ALGOL 68, 
our subset. and this has been running but it was not much use. it was too 
slow. It will still be just as slow at the outermost level but at least you will 
be able to use the previously compiled segments so that you can test them 
perhaps with different inputs on line. 

Paul: 
I would like to ask Currie directly again if I may, would you provide for 

initializing names that have not got any values at a certain point. if you 
want to test the program interactively while you are writing it? Is there 
any plan that the system provides reasonable values for identifiers. or is 
this up to the programmer that the system will ask him to initialize. for 
instance? 

Currie: 
In general what will happen is that he will come to a run -time error, if 

he has forgotten to initialize or something like that. Perhaps it has got 
some good numbers which are illegal in certain circumstances. 

Ershov: 
We do not yet have immediate plans to make conversational compilers 

for ALGOL 68, but we hope to organize some cooperation with the Grenoble 
group. We begin our own implementation not earlier than in two years. Our 
first version will be specifically for batch processing and for remote 
batch processing. 

Lindsey: 
In our implementation we shall try to make it such that all diagnostic 

error messages come out during the first pass, which means we have to 
restrict the language, of course. The intention then is that the same im
plementation could be used. You could type in your program and if you 
made an error, the diagnostic message would come out immediately and 
you would have the chance to correct it on the spot. 

Bauer: 
Now inevitably I think the discussion leads us into another question. That 

is, do you have to restrict the language and what are suitable restrictions 
if you want to do interactive compiling? Has anybody any ideas about it? 

Lindsey: 
You have to restrict it at least to the level of CHL2, which I defined 

yesterday. 

Currie: 
What do you do with the labels in that case? Are you going to keep your 

complete source string? 



336 PANEL DISCUSSION 

Lindsey: 
I think you have to restrict it at least that far. 

van der Meulen: 
Are the restrictions of ALGOL 68-R established now. or is there some 

chance that after the discussions of this conference. and perhaps some 
deliberations of the WG2. 1, you could consider a modification of your 
restrictions in such a way that you are more in the line of an official sub
language of ALGOL 68? 

Currie: 
I doubt it. I cannot say much more than that. It depends critically on the 

sort of installation parameters that you are dealing with. We have got 
real programs running and all the rest. 

Bauer: 
I think the question is much more the kind of question to be discussed 

next week in WG2. 1 meetings and I hope we shall discuss it at that con
ference. 

Paul: 
Especially I think the term sub language has not really been established 

yet. I mean, apart from what is in the Report, which says something about 
sUblanguages. 

van der Meulen: 
But ALGOL 68-R being. as far as I know. the first ALGOL 68-like com

piler which is operative, I think this is a crucial question. 

Bauer: 
Now, if you agree. our next question is: "Are you in accordance with 

your time schedule as planned originally? If not, what are the unforeseen 
difficulties?" Does the panel have ideas about this? 

Bowlden: 
It depends on whether you are asking about elapsed time or processor 

time figures. On elapsed time we are behind; processor time I think we 
are on schedule. And the reason is that there is a fair amount of unfore
seen or more than expected time in preparing for and attending meetings 
and preparing for a new computer and a few other incidentals. 

Branquart: 
We never had a very precise time schedule but I estimate that we are 

four man years late. We had external reasons for that. Let us say quickly 
that our single experienced programmer had an accident and we had ap
proximately one year delay in the delivery of our drum, so we had to work 
with only 32K. There are also internal reasons. 

Bauer: 
And these are the ones we are more interested in, may I say this? 

Branquarl: 
The more we enter into details of the compilation, the more we see the 



IMPLEMENTATION 337 

possibility of introducing new compile-time features to ameliorate the run
time efficiency, and it is very time consuming. 

Bauer: 
May I say that you have changed your concept a little, during your work. 

That of course may sometimes cause you delay. Of course you gain some
thing by it, but you usually do not keep to your schedule. 

Paul: 
Well, we are behind schedule, about a year I should say. 

Bauer: 
A year or a man year? 

Paul: 
A year just in time, one year behind schedule. We wanted to have the 

five passes far enough to give, for instance, the participants of the working 
conference a chance to run some example programs. That was at one time 
our idea for this conference. And of course since we have only three 
passes, it is impossible to do it. So I should say we are one to one and a 
half years behind. Now, what are the reasons, or what could be the rea
sons? One certainly is that you cannot so easily communicate and convey 
the experiences that you have made in earlier ventures of the same sort. 
We have many experts in the Munich group, who have been writing com
pilers for ALGOL 60 in all kinds of system, and some of them have ex
perience with two or three of these interpreters, generators. One of these 
people that have been working on ALGOL 60 compilers is still active in 
this group. And still it was not so easy to convey all the experience gained 
during those past ventures. I think this is one main reason. They have to 
learn it again and even if you tell them that is the trick that they should 
use, and these are nice easy ways to go, it is not so easy without once 
jumping into the water yourself and trying to swim. 

Scheidig: 
I would say that 50% of our difficulties arise because of our installation. 

The details are not interesting, but it is so. And the other 50% arise be
cause we have too few persons for coding. That is a dirty job. 

Paul: 
Yes, you are quite right. The coding itself is, as everyone knows, a 

burdensome task. You do not have the coders and it is too hard to explain 
the flow charts and such things. What you then do is, you just code it 
yourself and, of course, it is frustrating and all the rest of it. Still, I 
think one reason remains: this difficulty of conveying to other people the 
experience which would allow one to repeat compiler writing in the same 
institution. 

Bauer: 
I would like to go to our next point: "What do we hope to win?" Essen

tially two things are mentioned here: handling the implementation problem 
on the one side, and making possible programming in ALGOL 68 on the 



338 PANEL DISCUSSION 

other side. So the one aspect is a pure research aspect: we want to make 
progress without looking at the product. The other is a purely economic 
aspect: we want to have a product. Now. I am sure that some people do 
their implementation more under the one aspect and that some do it more 
under the other aspect. I hope that in most implementations at least both 
aspects are somehow present, but I can imagine that at present some im
plementations are really. to a large extent. pilot implem entations only. 

Branquart: 
We work in a research laboratory. Our main goal is not to produce an 

effective operational compiler. We essentially try to learn the methodology 
of compilers, and ALGOL 68 appears to be very well fitted for it. 

Bowlden: 
We have a dual role in our research laboratory. One is to do research 

and the other is to serve the research scientists in the laboratory. So we 
really have a split ·personality on this matter: we are doing both. We have 
developed a special purpose extension package in the current ALGOL which 
has meant extensions. It looks as if ALGOL 68 is much more suited for 
this purpose and we are planning so to use it. We plan to make a production 
compiler, but in the sense of an experimental compiler too. 

Ershol': 
Please, let me cover both points. What do we hope to win, what are the 

real goals for this work Now. one of them is, of course, obvious - that 
is to construct a productive compiler for actual usage. From the point of 
view of programming technology we are trying to make language descrip
tion directed compilers economically feasible. It seems to me that this 
approach to writing compilers. up to now. if you consider the spectrum of 
existing compilers in real usage. has not produced so many compilers. So 
we are trying to study this subject and gain some real knowledge. From the 
scientific point of view, our main interest is in searching for universal op
timization algorithms. Next, what are the reasons for having a compiler 
for ALGOL 68. I believe that for several years the main language for 
teaching will be ALGOL 60. It is difficult to see that many teachers can 
switch from ALGOL 60 to ALGOL 68 very soon. They would begin to do it 
only after the first successful implementation and very wide publication 
about this implementation. The problem of dissemination of the information 
on how the work on ALGOL 68 is done is very important because up to now 
we are a rather closed group. 

Currie: 
I would like to say that our motivation in implementing ALGOL 68-R was 

simply to provide a reasonable language for users actually to solve prob
lems with it, and not for any particular academic exercise in writing the 
compiler. 

Mailloux: 
One of the things I feel is an aspect of this is that the language and its 

definition have brought some clarity (at least to me) about what it is we are 



IMPLEMENTATION 339 

doing when we are computing. Now the world seems, at least on my side of 
the ocean, to be cluttered with people who have what I call "FORTRAN 
minds". It seems to me that we have a 'mission'. if you wilL to clean up 
these minds, but we shall need compilers to help us do it. and some good 
reading material. 

Bauer: 
Mailloux has introduced a point to be discussed which is 'educating the 

community'. I think it is an important point that we should have listed 
here. Is there someone who wants to speak in particular to the point "in 
order to have a powerful language for teaching computer science in gen
eral"? Is it true that it is a powerful language for teaching computer sci
ence? It is implied by Mailloux's remark that it is. But is this the ques
tion? 

van der Meulen: 
Since ALGOL 68 is an ideal vehicle for teaching computer science. it is 

important to have some compiler available, because swimming in the dry 
is not so amusing. Therefore I think it is wise for every compilation to 
have this point foremost in mind, because after some people have been 
taught in ALGOL 68, they will want to use the language for programming 
problems. This is in my opinion the natural order. ALGOL 68 is a much 
better language for teaching computer science than ALGOL 60 is. For ex
ample, the mode concept, the reference concept, the possibility of de
claring structures, the possibility of declaring new operators, appeal im
mediately to students. Therefore, it is important to have a compiler for 
teaching purposes in the first place and the rest will come as a conse
quence. 

Bauer: 
I may say, as others in Munich could have said, that in fact we look 

very much at ALGOL 68, at the moment, from the point of view of using 
it in teaching. I have used it in teaching my students since 1967, i.e., even 
before it existed. I used the form that existed at that moment. I used it to 
the extent that I understood or misunderstood it; sometimes I misunder
stood it on purpose (laughter); that was the first year, the next year I was 
already more orthodox and it was not that easy to misunderstand it on pur
pose. The next year, that is the academic year that is just now over, 
Samelson gave that course here. He also used ALGOL 68 as a basic lan
guage, the language in which you learn to think, the language in which you 
explain concepts. By the way, we are not orthodox, as you know we still 
deviate sometimes unintentionally, and we have not exhausted it. I do not 
think that in using ALGOL 68 in teaching you have to teach people every 
corner of it. By no means, we only give the basic philosophy. I have not 
the slightest doubt that it is much better than any other thing I could do -
chosing among the other existing languages. whatever names they have, or 
trying to concoct, as one usually did, one's own language, which usually 
ends up in a mess. 



340 PANEL DISCUSSION 

van der Meulen: 
Until now we do not have a regular computer science curriculum in ut

recht. I gave in total four courses in ALGOL 68, there and elsewhere, and 
many from the audience told me afterwards, it really was a course in 
computer science. You cannot teach ALGOL 68 without teaching essential 
things about computer science. The language forces you to be exact about a 
lot of points you can never be exact about if you are teaching ALGOL 60 or 
something. 

Bauer: 
We still have a question left: we have minus 8 minutes left. Is some

body willing to speak on the question? "What could be the reason that man
ufacturers are so hesitant to implement ALGOL 68?" I take it for granted 
that we agree that this is a fact. 

van der Meulen: 
Manufacturers are not hesitant. I think it is entirely a matter of the 

customers. If the customers require ALGOL 68 with all their force, the 
manufacturers will do it. 

Bauer: 
Well, that is quite clear, but the question is, why do customers not re

quire it and so the manufacturers can do nothing but be hesitant. 

Paul: 
I do not believe van der Meulen's statement. Because you teach your 

customers to wish something, to want something. Everybody knows that 
advertising is just to create wishes and this is done in the computer com
munity by "Big Brother" as well as by others. Therefore, I am still of the 
opinion that there is mainly a certain resistance among some of the manu
facturers to implement ALGOL 68, as they did in the past with ALGOL 60. 
Most effiCiently working compilers for ALGOL 60 were built by university 
people and people involved mainly in research, and not so much by manu
facturers' software houses. 

van der Meulen: 
Of course, manufacturers are hesitant. We now know how much effort 

you have to invest in implementing ALGOL 68. But, if in a small computer 
center like the University of Utrecht, I speak with manufacturers and I say 
I personally want to have an ALGOL 68 compiler, I do not even then get a 
flat refusal. If I were backboned, for example, by the ARA Center, which 
will have the largest computer in Western Europe as we were told before, 
and if the people there require from their manufacturer an ALGOL 68 
compiler, well, it will not be so difficult. This is a big chance to press 
them. 

Bauer: 
What is the big chance: to get a bad compiler instead of no compiler? 

van der Meulen: 
Oh yes, you will always start with a bad compiler. I think, perhaps, if 



IMPLEMENTATION 341 

the manufacturer realizes that the customer requires such a thing and he 
can really sell the biggest computer in Western Europe ... 

Paul: 
You see, I am really concerned about something which is different from 

what you think is the main point. My concern is that there seem to be indi
cations that on asking for the profit that you will make by implementing this 
language, the answer for any manufacturer is: "The profit is not there, 
I cannot make profit with it, so I shall not put money into it" - is not that 
so? I mean, every good businessman will, of course, try to get the best 
compiler there is, if he can make business with it. I think we should try to 
find out why this is not a possible break-through for software construc
tion. PL/I probably has failed, as far as I can see, and so ALGOL 68 will 
be a candidate, that is my opinion. 

Bowlden: 
I think it may be that a few manufacturers have gotten stung in a way. 

The decision of Burroughs when they started back in 1960 on the design of 
the B 5000, to implement ALGOL and not FORTRAN, really hurt them, not 
because they were providing ALGOL, but because they did not provide 
FORTRAN. The computer community in the United States is basically very 
conservative. They know it, and now Burroughs is being much more care
ful, and not looking seriously at ALGOL 68, as far as I can find out, not 
until they get some real pressure from users. I think it is this kind of ex
perience in the past which is responsible. 

Griffiths: 
Can we also make the point that the manufacturer always takes a lot 

longer to make up his mind to do something Two years is not a long time 
for them to make a similar decision, which implies for them an awful lot 
more money than for us. Their hesitance merely means they are being as 
cautious as usual. 

Branquart: 
I think manufacturers hesitate to adopt ALGOL 68, not for isolated rea

sons, but for a combination of reasons, at least two of the main reasons 
are: the language seems to be difficult to learn and we have no compiler. 

Bauer: 
He said, "seems to be". 

Branquart: 
Yes, on purpose. Now, another remark: different universities and la

boratories have taken the burden of showing the way; manufacturers prefer 
to wait and see, it is more sure and less expensive. 

Bauer: 
Exactly, and less expensive in particular. In fact, if universities again 

will provide ALGOL 68 compilers and if the compilers will be good enough 
to convince the manufacturers that they could take them over, why should 

, 



342 PANEL DISCUSSION 

this not happen? It happened with ALGOL 60 in Europe. I think the question 
is a really complicated one under the surface of the wording we have here. 
Hesitant may have two meanings. Someone is 'hesitating'. but if you would 
do it for him or if you would convince him. then you could bring him on 
your side - as it has happened with ALGOL 60 with some manufacturers. 
And the other 'hesitant' can turn out to be hostility. The more you show 
that it is possible. the more hostile the manufacturer becomes. because he 
now sees that some difficulties are coming to his market. This could of 
course happen again with ALGOL 68. that some manufacturer would think 
there is a deadly danger for his market position. Of course it would not be 
our duty to keep manufacturers from making silly decisions, but on the 
other hand it does not help us a bit, if the manufacturer makes a wrong de
cision. We are also hurt by it. as the community has been in the United 
States at least. with respect to ALGOL 60, and the way it was suppressed 
there. 

Paul: 
I would like to find out what failures we have made with ALGOL 60 and 

not so much the wrong thing the other side has done. I have discussed this 
question about ALGOL 60 so often with people involved and I know that 
there were some things which a theorist would call minor flaws. Since 
manufacturers. of course, have to do with people who want to input and 
output a language, if it is good, it has to have good input-output facilities 
with it. I am sure that is one of the main reasons for ALGOL 60 to be a 
failure in the United States. 

Bauer: 
Of course, one would expect that people in Europe would also want 

input -output. 

Paul: 
Since the manufacturers in Europe have not built a decent compiler by 

themselves, they took it over and maintained it after it was given to them. 
That is right in one sense. 

Bauer: 
In fact, I cannot see why the input-output argument explains anything for 

the Unites States. If it would hold, it would also hold for Europe, or ... 

Paul: 
I mean, of course, one can close one's eyes, but I think it is quite clear 

that I/O shortcoming was one of the main reasons for ALGOL 60's state in 
the United States. 

Bauer: 
Yes, but what I am saying is that the lack of input-output in ALGOL 60 

did not do the same harm in Europe, as it did in the United States, and that 
makes me think about it. 

Bowlden: 
(It did not stop Burroughs either. 



IMPLEMENTATION 

Bauer: 
It might very well be that for a number of people this lack of input

output was only a very easy excuse. It certainly was used for an excuse. 
It was very handy. 

Paul: 
I am not so sure whether this is true. 

van der Meulen: 

343 

It is also a matter of the right approach to the manufacturers. If you say 
to a manufacturer: "I want to have your computer, if you have an imple
mentation of ALGOL 68", perhaps you are asking too much. Another ques
tion could be: "If we make, together with you as a customer, an ALGOL 68 
compiler, will you support it?", then I think for ALGOL 68 this could be 
the best approach. So I think we really should speak about how to get the 
right support from the manufacturer for implementations made by custo
mers and not give them the whole burden of the responsibility. 

Bauer: 
Let me bring to this discussion a kind of conciliatory note now: I do not 

want it to end in any aggressive mood. What we should hope for is good co
operation with the manufacturer, be it "Big Brother" or smaller brothers, 
in establishing the best for the community. Thank you. 





SESSION 9 

(Chairman: W.L.van cler Poel) 





MAKING THE HARDWARE SUIT THE LANGUAGE 

C. H. LINDSEY 
University of Manchester 

1. INTRODUCTION 

There is at present under construction, in the Department of Computer 
Science at Manchester. a machine known as MU5, whose design has been 
a joint venture by all the members of that department. The principle fea
tures of this machine have already been described [1,2]. The motivation 
behind this project was to produce a piece of hardware especially suited to 
the implementation of high level languages, and it therefore contains special 
features to facilitate the run time performance of such languages, and it 
omits those features which had been common in earlier machines (notably 
large numbers of addressable registers) of which high level languages (as 
distinct from machine code programmers) cannot make effective use. 

The purpose of the present paper is to describe the new machine, show
ing how its features are especially suited to ALGOL-like languages, and to 
ALGOL 68 in particular. 

2. THE VIRTUAL STORE 

The programmer has at his disposal a large virtual store, a 32 bit ad
dress being needed to specify any byte in it. The actual word length is 64 
bits, but the user can readily handle, 64, 32, 16, 8, 4 or 1 bit quantities. 
The 32 bit address is subdivided as follows: 

14 bit 18 bit 

segment address byte address 

It is therefore possible to address 16K segments, each of 64K 32 bit words. 
Of these, the top 8K segments are common to all processes (and contain a 
library of pure procedures, including the compilers themselves and the run 
time routines which their object programs will require). A user may use as 
few or as many segments as he wishes, but the operating system will ex
pect him, within each segment, to restrict his usage to some continuous 
region at the beginning of that segment. A given segment may be shared be
tween several processes (who may know it by different segment numbers), 
each of whom may have permission to "read", "write", or "execute" it. 

347 



348 C. H. LINDSEY 

This virtual store is implemented by a fairly conventional paging scheme, 
using a 32 word associative store to perform the page look-up. The page 
size is variable in powers of 2 from 16 to 1024 32 bit words (the user is in
vited to suggest a page size for each segment he creates). Infrequently used 
pages will find themselves paged out to a mass core store, and thence to a 
fixed-head disc. 

Alternatively, a segmented store of this nature can be implemented by 
means of multiple base and limit registers, this solution being more ap
propriate to a smaller machine which has to be compatible with the larger 
one. 

Apart from the virtual store, there are comparatively few central re
gisters known to the user. There is an accumulator known as A, in which 
64 bit real and 32 bit int arithmetic may be performed, and a 32 bit int re
gister known as B with a more limited arithmetic repertoire. There are 
also registers D, XD, NB, XNB and SF, whose use will be described pres
ently. It is also possible that 128 bit real, 64 bit int and decimal arithmetic 
could be performable in A, but at present these are being implemented by 
software. 

3. THE NAMING SEGMENT 

In the context of this project, the word "name" has a special meaning, 
different from its usage in ALGOL 68. A name will exist, roughly speaking, 
for every identifier declared in a program, and for each such name a space 
will be reserved in the "naming segment". When I have occasion to speak of 
'names' in the ALGOL 68 sense, I shall therefore use the word "reference" 
instead. 

Each process must possess a naming segment (normally its segment 
zero), whose contents will always be laid out according to the following 
plan: 

main range procedure 1 procedure 2 

i i 
NB SF 

The naming segment is to be used for the storage of fixed length data (Le. 
primitives, structs, refs and descriptors, but not the elements of multiple 
values). The register NB (name base) points to the start of the name space 
of the current procedure and, since all the names within this space are of 
fixed length, the displacement from NB of any such name is known at com
pile time. Hopefully, the majority of store accesses within a typical pro
gram are to names local to the current procedure, and the normal and 
most efficient means of access is therefore by means of a small displace
ment relative to NB. 

Consider the following program: 



MAKING THE HARDWARE SUIT THE LANGUAGE 

begin 
real x, y, int i, j ; 
pYOC P = : 
--begin 

p 

end 

int k, l, m, n, struct (real a, b, c, int dj s 
real e = 2.718281828 ; 
proc q = : 
--begin 

real q, r, t ; 

begin 
real a, b, c, d; 

a oj s := r ; 

end· -' 

end· --' 

q 

end· -' 

349 

During the assignation of r (which is local to q) to a oj s (which is local 
to P), which occurs during the call of q which occurs within the call of p 
which occurs within the main program (which can also be regarded as a 
procedure for the present purpose), the state of the naming segment will be 
as follows: 

! 1 
, 'd m 

i k 
a:b,c 1 if 

a I , :~ 
b d P q x Y f--- - 91: 91:!!l.' s q r t a c 

i j 1 , 'r n s , s 's 

display names i names T names i 
of main XNB of p NB of q SF 



350 C. H. LINDSEY 

The code compiled for this would be something like: 

XNB = p 4 set XNB from display ~ 
A = 1 (rel NB) 
A=;!>2 (rel XNB) 

Thus any reference to a name not local to the current procedure requires a 
setting of the register XNB (extra name base). Note, however, that no new 
level on the display needed to be created for the inner range within q in 
which a, b, c and d were declared and that NB only needs to be moved dur
ing procedure entry and exit (there are of course various links and pointers 
not shown which also require attention at these times). Note also that no 
space on the name. stack was reserved for the identifier e, since this pos
sesses a literal, and literals of up to 64 bits can be stored within the oper
and field of an instruction. 

It has been estimated that 80% of store accesses during typical programs 
will be to the naming segment and even, in the short term, to a compara
tively small number of words within that. Perhaps these words should be 
stored in fast central registers; but which words, and what happens if we 
have 32 registers and 33 words we would like to keep there? In fact, there 
is a fast store of 32 words but it is addressed associatively. I.e. each time 
a word is brought from the naming segment in the main store, it is entered 
into this associative store, together with its address (another word, not re
cently referred to, may have to be taken out to make room for it). Each 
time a word is needed from the naming segment, it is first sought in the 
associative store (by associating on its process number and address) and 
only if it is not found there is a main store cycle necessary. A word can be 
brought from this store every 45 ns, whereas the main store cycle time is 
250 ns. Simulations have shown that, for many programs, the required 
word will already be in the associative store 99% of the time so that, for 
sequences of simple instructions, the rate of execution will be one every 
45 ns, or say one every 70 ns averaged over all instructions. If a particu
lar program happens to be using more than 32 names, in the short term, 
then nothing disastrous happens, but the performance is degraded corre
spondingly. However, the compiler need have no knowledge of what is going 
on, and can compile on the assumption that there is one large, fast store. 

4. THE ORDER STR UCTURE 

Most instructions will be 16 bits long. These contain an operand field of 
6 bits. enabling 64 names to be addressed relative to NB. However, escape 
bits are provided to extend the operand field to 16, 32 or 64 bits, thus en
abling access to any displacement ahead of NB, or to displacements rela
tive to XNB or to the start of the naming segment, or to provide literal 
operands and various other special cases. 

Thus, up to 8 instructions can be extracted in one (128 bit wide) main 
stote access. An instruction buffer is provided to smooth out the flow, and 
to contain small loops of instructions in their entirety: ' 



MAKING THE HARDWARE SUIT THE LANGUAGE 351 

The functions provided are of an essentially straightforward character. 
For example, for the int accumulator there are: 

A= operand (load) 
A *= " (stack and load - see later) 
A=*' " (store) 
A+ " 
A- " 
A* " (times) 
AI " 
A* " (exclusive or) 
Av " (or) 
A& " (and) 
A 1 " (shift) 
A(} " (reverse subtract) 
Act> " (reverse divide) 
ACOMP " (compare - see later) 
ACONV " (convert to reaD 

Note in particular the reverse divide and subtract operations, which enable 
the most efficient order of elaboration of the operands to be chosen with the 
operators I - I and 'I'. 

5. THE STACK 

A working stack is kept at the head of the naming segment, the last word 
in it being pointed to by the register SF (stack front). The instruction "A*= 
operand" mentioned above first advances SF and stacks the current value 
of A, and then loads A from the operand. Conversely, it is possible to spec
ify STACK as an operand, as in "A+STACK", in which case the word indi
cated by SF is taken as the operand, after which SF is retarded. There is 
also a special instruction "STACK operand". 

The normal way to enter a procedure is first to stack the link and the 
current NB (a special instruction is provided to do this). Then the values 
of the actual parameters are obtained and stacked and then the procedure 
is entered. The first thing it must do is to set NB pointing to the link, and 
to advance SF so as to leave space for the names local to the new procedure. 
Also, if the procedure is likely to call other procedures, it must now update 
the display. Upon exit, SF is reset from NB and NB is reset from the link. 

6. THE BOOLEAN AND TEST REGISTERS 

The COMP instruction mentioned above does not alter the value of A. It 
compares the values of A and of the operand, and puts the result in a test 
register T, which is capable of storing (in two bits of information) thefol
lowing states: 



352 C. H. LINDSEY 

Instructions are then provided to jump upon any of these six states. How
ever, a jump upon the result of a comparison is not always what is re
quired. Frequently, it is to be stored in a bool variable, or operated upon 
by a bool operator. For these purposes, there is a boolean accumulator BN, 
which can be combined with T or with an operand in various ways. Consider 
(in the range of the well known declarations) the following: 

jj i < j & k - 3 * m ? n v p then ~ grenoble Ii 
which would compile into: 

A 
A COMP j 
BN T< 
A 3 
A * m 
A e k 
A COMP n 
BN & T? 
BN V p 
IF BN grenoble 

7. THE VECTOR SEGMENT 

The vector segment of a process is another segment which, by conven
tion, contains a stack which grows and contracts with the name stack, but 
whose contents consist of items whose length is not known at compile time -
notably the elements of multiple values. Thus the access to such objects is 
always indirect, via pointers (Le. descriptors) on the name stack (or else
where). Clearly, the address of the front of the vector stack (we shall call 
it VSF) must be kept in some global location, and it must be stacked and 
reset every time a range is entered or left, if the outermost reach of that 
range contains phrases which could alter it. The following example illus
trates these points: 

begin ¢ of the range in which xl is declared ¢ 
int m, n; 
read ( (m, n) ) ; 
[m : nJ real xi ; 
proc p = (real a) : 

begin ¢ of a reach which does not alter VSF ¢ 
real b, c, d; 



MAKING THE HARDWARE SUIT THE LANGUAGE 

begin ~ oj the range in which x2 is declared ~ 
real e ; 
[1 : m-n] real x2 ; 

e := x2[6] ; 

end· -' 
p (x1[m]) ; 

353 

At the time the declaration of x2 is encountered (during a call of P), the 
stacks will appear as follows (note that the link stacked by the procedure 
call is also shown here): 

v 
S 
F 

a b 

t 
SF 

The vector stack will also be used for objects created by loc generators 
(other than those which are the constituent actual parameters of identity 
declarations), since the number of these that may be created within the 
life of a range is not known at compile time. They are simply stacked at 
VSF as they are created, and they disappear automatically when VSF is re
set at the end of the relevant range. 

8. PROCESSES 

A process is an instance of the execution of a program, and takes place 



354 C. H. LINDSEY 

in a "virtual processor". A virtual processor buys real time from a real 
processor (of which there could be more than one) whenever the supervisor 
permits. Each process has its own virtual store, but some of the segments 
in this may be shared with other processes, thus permitting a program to 
be in execution simultaneously by several processes (pure procedures), and 
enabling processes to cooperate with each other. A process can spawn 
other processes subordinate to itself, at the same time arranging for some 
(perhaps usually most) of its own segments to be available to the new proc
ess. 

This will happen, in ALGOL 68, upon entry to a parallel clause. From 
within a constituent clause of a parallel clause, it must be possible to ac
cess two kinds of objects - those declared outside the parallel clause (there 
is some risk here if ":!Es and downs are not used correctly) and those de
clared within the constituent clause itself, which are quite distinct from any 
(possibly Similar) objects declared within the other clause(s). 

Therefore, upon entry to a parallel clause (with two constituent clauses, 
say), the old naming segment must remain accessible to both the new 
clauses, and two new naming segments must be created for the two proc
esses that will now take over: 

virtual 
process 

/ 
1/ 
I( 

I 
l 
'\ 

store of 

1~ 

displa;y 

\ " old naming s 

virtual stot 
of process 2 

------
1 - -
~ 

- -
"' 

objeots 
available 
to both 
processes 

Dent 
- - - --

--- ~ 

.--- - - - - - - - - - - - - "', 

"-
"-

/ 

/ 

I II -¥ ,t 
obj ~ots 

display loc al tc 
pro bess 1 

naming segmen for tSF l~ " _ .F0oes~ 1 __ - - - _/ 

)</ 

/ 
...... _----- -- - - -. 

0111 
. displa;y 

nam~ se ng gIll en 
process 2 

~ -¥ 

0' .".;1-
10 al tc 
pr ceS8 2 I 

for .1 1 
SF 

-- -_/ 

The displays for the two new processes are initialized by taking copies of 
the display of the parent process, thus enabling the XNB of either virtual 
processor to be set to points in the old naming segment as well as in the 
new. The vector segment must also be split in the same way as the naming 
segment. Apart from these, all other segments in existence at the time of 
the split will continue to be shared by the new processes. 

A special hardware facility, guaranteed inseparable, is provided which 
will read a word of store, at the same time clearing it to zero. It is then 
quite easy to implement semas, 1!J!.s and downs using it. 



MAKING THE HARDWARE SUIT THE LANGUAGE 355 

9. OPERANDS 

In general, the various functions provided and the various methods of 
operand access may be combined orthogonally. Some of the operand types 
have already been introduced - a more complete list is as follows: 

name at operand, relative to NB (always in naming segment) 
name at operand, relative to XNB (might be in any segment) 
name at operand, relative to start of naming segment 
literal (of 6, 16, 32 or 64 bits) 
some central registers (e.g., B, D, NB, XNB, etc.) 
STACK 
S[B] 
S[O] 
D[BJ 
D[O] 

The last four provide the normal means of access to segments other than 
the naming segment. Before they can be described, however, it is neces
sary to introduce another central register. 

10. THE D REGISTER AND DESCRIPTORS 

24 32 

BOUND ORIGIN 

The D register is a 64 bit register which holds objects known as "de
scriptors" (not to be confused with the word 'descriptor' in the ALGOL 68 
sense, although there is some similarity). Of the four types of descriptor 
(2 type bits), only type zero need concern us just now. Briefly, a type 0 de
scriptor specifies a vector anywhere within the virtual store. The 32 bits 
of its origin field are enough to specify any byte in any segment and are 
used to specify the start of the vector. The bound field gives the number of 
elements in the vector, the element size (1, 4, 8, 16, 32 or 64 bits) .being 
specified by the size field. 

If you now refer back to section 7 above, you will see that these descrip
tors are just those objects which need to be kept on the name stack (or else
where) in order to point to regions of the vector stack. The statement: 

e := x2[6] 

in the example might be then translated as: 

B = 5 ~ i. e. 6 - lwb x2 ~ 
A = x2[B] 
A =l>e 



356 C. H. LINDSEY 

The operand x2[ B] is an example of the type S[ B], and its effect is as fol
lows: 

The descriptor at x2 is loaded into D. If the value of B is <0 or ;" the 
bound field of D, then (unless BC = 1), the process is interrupted because 
the subscript is out of range. otherwise, the element whose store address 
is the origin field of D plus the value of B (scaled according to the size 
field, unless US = 1) is yielded as the value of the operand. Thus the ele
ment is obtained and the bounds are checked, all in one operation. 

Unfortunately, there is only room in a descriptor for one bound, so that 
the lower bound must be subtracted from B before the element can be ob
tained. However, in deference to those languages in which the use of a 
lower bound of 1 is encouraged (i. e. FORTRAN and ALGOL 68), a special 
instruction is provided: 

B =' operand 

the effect of which is to load B with the value of the operand minus 1. Fre
quently, in ALGOL 68, the value of the lower bound will be known at com
pile time to be 1 (from the formal parameter at the time of its declaration), 
so this facility will be of benefit. 

The S[O] type of operand operates similarly, except that B is not added 
to the origin field in order to locate the element. The types D[B] and D[O] 
use the descriptor already in D, instead of obtaining a new one from the 
operand. 

11. FLEXIBLES 

The vector segment is an excellent place to keep objects whose size is 
known at declaration time, but objects such as: 

[1 : Oflex] real x2 

must be kept elsewhere. The heap is not really a good place for these 
either, because these objects disappear at well defined times (upon range 
exit) and the full generality of a garbage collector is wasted upon them. In 
a machine with a large virtual store, another region can be made available 
(call it the "pile"). In the pile, a brand new segment will be provided for 
each multiple value with a flexible bound. This segment can grow and con
tract as the number of elements in this multiple is changed, and it can be 
abolished entirely upon exit from the range. A descriptor pointing into this 
segment Will, of course, be kept on the name stack in the usual manner, 
and therefore access to a flexible multiple is achieved by exactly the same 
instructions (and in the same amount of time) as access to a fixed one. 

There will be some system overhead whenever such a segment is cre
ated or abolished or has its size changed but, in a machine with paging, the 
supervisor should never have to move blocks of data around within the real 
store, so that the compaction problems which would arise if the object code 
were to attempt its own store management are avoided. Even in a machine 
which achieves its segmentation by means of base registers, the supervisor 



MAKING THE HARDWARE SUIT THE LANGUAGE 357 

should be able to make a better job of the compaction than the object code 
could have done, since it can avoid doing any movement until it becomes 
absolutely essential. 

12. DOPE VECTORS 

The use of the D register is a simple and quick way of accessing a mul
tiple value of one dimension. For two or more dimensions, or where each 
element of the multiple is itself a sizeable object, something more elaborate 
is needed: 

[a : b, c : d, e :/] struct (£ some object occupying g words £) t3 ; 

Fort3, the following storage structure will be set up: 

t 
a 
c 
e 

t 

\1111 I I I 
-+ ..-

83 .. g 

~ 

82 .. (f_) s3 

s1 .. (d-c) 82 

s1 
s2 
s3 

( 

sO .. (b-a) 81 

sO 
s1 
s2 

Now, in order to access the slice: 

t3[ i, j, k] 

the code compiled would be: 

B = i 
SUB1 t3 
B = j 
SUB2 
B=k 

X Dope 

I Dope 

Vector 



358 C. H. LINDSEY 

SUB2 
RMOD XD[O] * 
A = D[O] ¢ to get the first word of the struct ¢ 

This introduces several new instructions. The effect of "SUB1 t3" is defined 
by the following equivalent sequence: 

XD = t3 ¢ XD is another register similar to D. It is loaded with 
the descriptor pointing to the dope vector ~ 

D = 0 ~ D is cleared ~ 
B - XD[O] ~ subtract the lower bound ~ 
B * XD[l] ¢ multiply by the stride ~ 
B check XD[2] ~ to check that this subscript is within its range ~ 
XD + 3 ¢ increment the origin field of XD, ready for the next di-

mension ~ 
MOD B ¢ add B to the origin field of D ~ 

The effect of SUB2 is identical, with the omission of the first two instruc
tions. After SUB1 and some number of SUB2s, the origin field of D will 
contain the displacement (in bytes) of the required struct from the beginning 
of the element space of t3. The instruction RMOD XD[O] now takes the de
scriptor at the end of the dope vector (to which XD now conveniently points), 
adds to it the origin field of D, and puts it into D. There, it may be used to 
access the inside of the selected struct in any manner. 

13. REFERENC ES 

It will now be seen how references (or 'names' in ALGOL 68 terminolo
gy) are to be implemented in this machine. A reference to a multiple value 
will consist of a dope pointing to a dope vector, the two being kept together 
as one unit. Thus, rows of such references and structures containing them 
can easily be manipulated. Such a reference can be made to point to a sub
value of a multiple value. On the other hand, if a reference to the whole of 
a flexible multiple value is assigned, it is important that a new copy of the 
dope vector is not made since, if this multiple value should subsequently 
acquire new bounds, these must become effective for the assigned copy al
so. Therefore, in the assignation of a reference to the whole of a flexible 
multiple, only the dope is copied across, and it is left pointing at the origi
nal dope vector (which will be the one and only master copy made when that 
multiple was generated in the first place). When a reference to the whole of 
a fixed multiple is assigned, it does not matter whether the dope vector is 
copied or not. Essentially the same technique has been described by Bran
quart [3]. 

It will be seen that the dope vector is equivalent to the 'descriptor' in 
the ALGOL 68 sense. The descriptor at the end of it corresponds to the 

* This instruction no longer exists in the hardware being built. An alternative se
quence of instructions is possible. 



MAKING THE HARDWARE SUIT THE LANGUAGE 359 

offset, and the triples correspond to the quintuples. There is no need to 
keep a record of the states, except with the master copy of the dope vector, 
since any reference to a multiple with one or more flexible states must in
evitably lead back to such a master copy. If it does not, then the states 
were fixed. 

Clearly, references to NONROW objects will be straightforward descrip
tors. 

14. VECTORS 

Clearly a multiple value of mode row-of-PRIMITIVE can be referred to 
by a single descriptor (with an associated record of its lower bound), or by 
a dope vector containing just one triple. The former leads to a rapid and 
convenient access, but in general the latter is necessary because the refer
ence to such a multiple might be a formal parameter of a routine, and the 
actual parameter might be a reference to a column of a two dimensional ob
ject. Single descriptors cannot point to columns. 

In order to get the best of both worlds, a straightforward vector (such as 
will be found 99% of the time) will be stored as follows: 

[m : n] real xl ; 

and accessed by the following code: 

B = i 
B - x1+2 
A = x1[B] 

~ i.e. the lower bound m ¢ 

However, the occasional vector of an odd shape would be stored as follows: 

ref[ ]realx2 = (c some slice c); (see scheme on next page) 

This would be accessed by exactly the same code as before (the compiler 
does not know any better), but the instruction !fA = x2[B]!f then finds that 
the descriptor at x2 is a type 3 descriptor (so far we have only met type 0 
ones). The type 3 descriptor points to a vector, the first word of which con
tains the address of a procedure. This procedure is now automatically en
tered, with a link pointing to the instruction which caused the trouble. The 
procedure called in this case would look like: 

NB = SF 
MOD 1 

¢ procedures always start by setting NB 4 
¢ add 1 to D, so that it points to the dope vector 

proper ¢ 



360 

x2 --;. 

{
! proc 
I 0 
I I 

SUB! D 

1 ... 

< 

RMOD XD[O] 
B=O 
DSET 
RETURN 

C. H. LINDSEY 

s I (~m) s I 1 Dope 
Vector I 

s 

¢ the usual dope vector operations, using the con
tents of D as the dope ¢ 

~ D now points to the required word ¢ 

The instruction DSET sets a special flip-flop such that, when the procedure 
returns and tries to obey the itA = x2[B]1t again, it will take the descriptor 
already in D, rather than trying to get the one in x2 again. 

Thus, the compiled code can always happily assume that its vectors have 
the simplest kind of descriptor. Therefore, a type 3 descriptor will also 
be needed where the descriptor on hand should really be pointing to a mas
ter copy because the bounds are flexible. In this case, the procedure en
tered will quietly substitute the master copy for the one the code thinks it 
is using. 

15. STRINGS 

Objects of mode [ ]char can (and must) be handled in the same way as 
other multiple values (a?:.£i string is entitled to point to a column of a 
[1: ,1: ]char). However, to keep a separate segment on the pile for every 
string might be uneconomic, since the language encourages the use of lots 
of short strings which appear and disappear with great rapidity. Moreover, 
there must be an easy way of concatenating strings (for the operators +, 
plus and prus). Therefore, it might be better to keep objects declared as 
string in the form of chained lists, in which case a descriptor pointing to 
such a string would be of type 3 and would call a procedure which would 
work along the chain until it found the required element. 



MAKING THE HARDWARE SUIT THE LANGUAGE 361 

16. THE HEAP 

Heap management in a machine with a large virtual store is rather dif
ferent from that with a conventional store. The storage space does not sud
denly run out, with a consequent necessity to take sudden and drastic action 
(with no store left to take it in). Rather, if too much store is used, the sys
tem overheads start gradually to climb, due to the amount of page turning 
which begins to take place. The decision when to collect garbage must 
therefore be taken by observing this degradation in performance in some 
way, and it may be necessary also to have regard to the actual current 
needs of other users on the machine. 

Once the decision has been taken, the actual collection can be done by 
copying the useful parts of the heap into a fresh area, and then abandoning 
the old heap entirely, as has been described by Fenichel and Yochelson [4]. 
However, as with all compacting schemes, this does mean that a large num
ber of pointers throughout the system has to be amended. 

An al ternative scheme is possible, which might tUrn out to be better. 
Suppose that, for all the multiple values which are generated on the heap, 
only their references are kept on the heap, their elements being put on the 
pile (Le. a separate segment for each multiple value, whether its bounds 
are flexible or not in this instance). Then the actual object to be put on the 
heap for any given generator is of a fixed size, determined entirely by its 
mode. Suppose now that a separate segment were to be provided for each 
length of object generateable by the program; or, better still (since typical 
programs actually contain very few heap generators, although each of them 
may be encountered many times), let there be a separate segment for each 
generator occurring in the program ( its private heap). Within each of these 
heaps, because the objects are of a fixed size, a conventional free chain 
technique can be used. Therefore there is no compaction and no need to 
alter any pointers. The marking process can be quite conventional and, in 
addition to showing which objects on the heaps can be thrown away, it will 
also show those segments on the pile which are no longer referred to (or 
into). 

ACKNOWLEDGMENTS 

As stated at the beginning, all members of the Department at Manches
ter, under the direction of Professor T. Kilburn, have had a hand in the de
sign of this machine, and my thanks are therefore due to them for making 
this paper possible. 

REFERENCES 

[1] Kilburn, T., Morris, D., Rohl, J.S. a.nd Sumner, F., A system design proposal, 
Information Processing 68 (proc IFIP Cong 68), North-Holland, Amsterda.m. 



362 C. H. LINDSEY 

[2] Aspinall, D., Kinniment, D. J. and Edwards, D. B. G., A3sociative memories in 
large computer systems, Information Processing 68 (proc IFIP Cong 68), North
Holland, Amsterdam. 

[3] Branquart, P. and Lewi, J., A scheme of storage allocation and garbage collec
tion for ALGOL 68, this volume, p. 37. 

[4] Fenichel, R. R. and Yochelson, J. C., A LISP garbage-collector for virtual mem
ory systems. Comm. ACM 12, 11 November 1969, p. 611. 

DISC USS ION 

Van der Meulen: 
What happens if you violate bound checks? 

Lindsey: 
An interrupt. 

Van der Meulen: 
What kind of an interrupt? 

Lindsey: 
Well as far as ALGOL 68 is concerned, the further elaboration is un

defined; in the case of this particular machine the operating system would 
clearly give the user the opportunity to be told th;lt this interrupt had hap
pened and take some action. But, of course, in ALGOL 68 there is nothing 
that can be done further. Presumably the operating system would have 
some default action, such as throwing you off the machine with a suitably 
rude message. 

Prentice: 
You say that the top of the stack is always to be associated with the 

scratch pad store. What is the idea of having the A register as a separate 
register? Would there be any objection to a totally stack organized opera
tion with "Add the two top things on the stack" as an example of an instruc
tion? 

Lindsey: 
This was thought of. It is essentially the zero addres'3 machine, instead 

of the one address we have. I think we concluded there was some inconve
nience. Obviously this A register and the hardware associated with it have 
got to exist. I think we decided that, to specify a given piece of program, 
you could specify it in less bits if you did it this way than if you had done it 
the other way. This is essentially what it came to. It was considered. 

Ershov: 
Let us suppose that you have for an operating system several compilers 

for various languages. What is your opinion on how to divide memory allo
cation or linkage facilities between the operating system and the admini
strative system attached to a particular compiler? For example, is it pos
sible to have a garbage collector common to various problems? 



MAKING THE HARDWARE SUIT THE LANGUAGE 363 

Lindsey: 
It is quite possible that several of the compilers that we write will use, 

for example, the same dictionary routines. So that if two processes are 
simultaneously compiling ALGOL 68 and PL/I, they may nevertheless be 
using this one copy of this dictionary routine. Similarly, the run-time sys
tems will share most of their library routines, certainly the obvious things, 
like sines and cosines, where you cannot really come to much harm. I im
agine transput routines for any language are going to be rather specific. So 
every opportunity is taken to share code between different systems where 
this can de done. 

Branquart: 
You do not use the block structure of programs for addressing values 

possessed by identifiers, do you? When you want to address the value pos
sessed by an identifier, you use only one register, so I think, you do not 
use the block structure of programs? 

Lindsey: 
If I show you now this picture here again (see page 349). We have 

here for example a block containing another block, and a new major 
range (we might say a new procedure, a new superblock) must start 
here (proc q). This is a procedure and this could be called from anywhere. 
So we have a range on the stack which has got to start here (see NB, bot
tom of page 349). Now we do not need to start a new range on the stack at 
this point (real a, b, c, d), because aU these objects are of fixed length and 
therefore we can specify this a (bottom of page 353) as an address relative 
to this point (NB) and we know this at compile time. So the chances are 
that the number of different levels that we have to keep in our display 
is much less and therefore the number of times we have to load the XNB 
register, and so on and move pointers around, is reduced. 

Branquart: 
In the figure on page 353, I do not see clearly how you manage to update 

the pointer of the top of the vector stack when the block is left. 

Lindsey: 
Essentially you recognize two kinds of range. You recognize ranges 

such as this one (real a, b, c, d on page 349), which are not going to create 
anything on the vector stack, and those which are, such as the one which 
presumably started at that point (just after d on page 353). Now I said 
that no code is compiled at the point (real a, b, c. d on page 349) 
and in this particular example that is true. However, had there been a row 
of something declared at that point, then on entry to this block you would 
have had to compile code to dump the present value of VSF in there (just after 
the link) (page 353) and here (after the matching end) I would compile 
code to restore it. But I am still referring to the objects inside here, 
in this case this e (on the stack on page 353) relative to the same base 
as I referred to these things (a, b, c, d) declared out here. (Note: 
Lindsey was using the program on page 349 with the diagram on page 353, 
which does not quite match it. Ed.) 



364 c. H. LINDSEY 

Branquart: 
Do you recuperate the space for the descriptor? 

Lindsey: 
If, for example, there had been a second block (after the block real a, b, 

e, d on page 349) in which I declared various things, then essentially these 
things - let us call them 1, m and n - then these would be mapped over the 
same storage as a, b,e, d. 

Van der Poel: 
You said that for a fixed length object on the heap, you take a segment of 

the store for its own purpose. That limits that number of segments to 214. 
I could imagine that, for example, in administrative applications this would 
be far too low for ranging over a large number of objects. 

Lindsey: 
I think we are at cross purposes somewhere. You certainly would not 

run out of segments unless there were 214 generators in your program. 

Van der Poe 1: 
Yes, that can very well happen in an administrative application. 

Lindsey: 
But it would take you years to write a program with 214 generators in it. 

Van der Poel: 
Recursively? 

Lindsey: 
Oh no! We are talking about occurrences. What I essentially propose in 

the case of generators is that each time a heap-generator occurs in the 
program, I will say, right, "Here is probably a new kind of generator with 
a mode we have not met yet - we will have a new segment for it. " (and in 
fact, if there were several generators for the same mode, we could possi
bly save a little here, if it is worth it). And this essentially means that 
every time I come to this generator when evaluating the program, I create 
another object in this particular segment. 

Van der Poel: 
Oh, I see. OK. 

Lindsey: 
Particularly, I think it is the case that programs which do a lot of heap 

work (list processing sorts of applications) actually have comparatively few 
occurrences of generators in them. But they come round and use them an 
awful lot. 

Currie: 
If you are going round a loop a hundred times, you are going to fill up 

that particular segment very quickly. And you have got no compaction of 
this. 



MAKING THE HARDWARE SUIT THE LANGUAGE 365 

Lindsey: 
A segment can hold 216 32 bit words, which is quite a lot, and it is pos

sible, in fact, for it to continue into the next segment. 

Currie: 
But you might have grabbed the next segment for the next generator. 

Lindsey: 
This is all chained and we can arrange to point into another segment 

somewhere else - we have got plenty of virtual space - or we can try to 
collect some garbage and see if we can recover some of it. You see, the 
other point about garbage collection is that you do not suddenly find that 
your stacks run into each other in a virtual store system; you just find that 
the overheads start to go up rather sharply. So you can postpone garbage 
collection, to some extent, to when it suits you. 





CONFERENCE PARTICIPANTS 

Bauer, F. L .. Mathematisches Institut, Technische Hochschule MUnchen, Arcisstr. 
21, 8000 Munich 2, Germany. 

Bekic, H., IBM - Laboratory Vienna, Parkring 10, A-1010 Vienna, Austria. 
Bjl">rk, Harry, Mickelsbergsv 136, S-126 63 Haegersten, Sweden. 
Bond, Susan G., Ministry of Technology, Royal Radar Establishment, St. Andrews 

Road, Great Malvern, Worcs., England. 
Bowlden, H.J., Westinghouse Research Center, Beulah Road, Pittsburgh, Pennsyl

vania, USA. 
Branquart, P., M.B.L.E. Research Laboratory, 2 Ave. van Becelaere, Brussels 17, 

Belgium. 
Caracciolo di Forino, A., lEI - CNR, Via S. Maria 46, 1-5600 Pisa, Italy. 
Currie,!. C., Ministry of Technology, Royal Radar Establishment, St. Andrews Road, 

Great Malvern, Worcs., England. 
de Bakker, J. W., Stichting Mathematisch Centrum, 2E Boerhaavestraat 49, Amster

dam, The Netherlands. 
Duby, J.J., IBM European Systems Research, Institute 40, Rue du Rhoene, 1211 

Geneva 11, Switzerland. 
Ershov, A. P., Morskoyprospekt 34, KV.14, Novosibirsk 90, USSR. 
Goos, G., Rechenzentrum, Technische Hochschule MUnchen, Arcisstr. 21, 8000 

Munich 2, Germany. 
Grau, A., Department of Engineering Science, Technical Northwestern University, 

Evanston, Illinois 60201, USA. 
Griffiths, M., Mathematiques Appliquees, Universite de Grenoble, Cedex 53, 

Grenoble-Gare 38, France. 
Harkema, L. B. D., Bosboom Toussaintplein 188, Delft, The Netherlands. 
Hill, U., Mathematisches Institut, Technische Hochschule MUnchen, Arcisstr. 21, 

8000 Munich 2, Germany. 
Jorrand, Ph., Cedex 247, Grenoble-Gare 38, France. 
Koster, C. H. A., Mathematisch Centrum, 2E Boerhaavestraat 49, Amsterdam-O .. 

The Netherlands. 
Kral, Jaroslav, Ustav Vypoctove Techniky CVUT (Computing Center of CVUT) , 

Rorska 3, Prag 2, CSSR. 
Kudielka, V., IBM- Laboratory Vienna, Parkring 10, A-10l0 Vienna, Austria. 
Lindsey, C. R., Department of Computer Science, University of Manchester, Man

chester 13, England. 
Lyall, C., Department of Computing Science, University of Alberta, Edmonton 7, 

Alberta, Canada. 
Mailloux, B.J., University of Alberta, Department of Computer Science, Edmonton 

7, Alberta, Canada. 
Molnar, G., Consiglio Intern. delle Ricerche, Centro Studi Calcolatrici Elettron., 

Presso Universita di Pisa, Via. S. Maria, 44, 1-56100 Pisa, Italy. 
Morison, J. D., Ministry of Technology, Royal Radar Establishment, St. Andrews 

Road, Great Malvern, Worcs., England. 
Paul, M., Mathematisches Institut, Technische Hochschule MUnchen, Arcisstr. 21, 

8000 Munich 2, Germany. 
Peck, J.E.L., Department of Computer Science, University of British Columbia, 

Vancouver 8, British Columbia, Canada. 
Prentice, J.A .. The University of Nottingham, Crips Computing Centre, University 

Park, Nottingham, Ng 72 Rd., England. 

367 



368 CONFERENCE PARTICIPANTS 

Rar, A. F., Computing Centre, Novosibirsk 90, USSR. 
Rekdal, K., Computing Centre at the Technical University of Norway, Department of 

SINTEF, 7034 Trondheim - NTH, Norway. 
Scheidig, H., Mathematisches Institut, Technische Hochschule MUnchen, Arcisstr. 

21, 8000 Munich 2, Germany. 
Sintzoff, M., M.B.L.E. Research Laboratory, 2 Ave. van Becelaere, Brussels 17, 

Belgium. 
Trilling, L., Departement d'Informatique, Universite de Montreal, Montreal, 

Quebec, Canada. 
van Gils, T., Philips Electrologica NV, Postbus 245, Apeldoorn, The Netherlands. 
van der Meulen, S., Univers. Mathemat. Inst. (E.R.C.), Boedapestlaan, Utrecht 

Uithof, The Netherlands. 
van der Poel, W. L., Technological University of Delft, Julianalaan 132, Delft, The 

Netherlands. 
van Wijngaarden, A., Mathematical Centre, 2E Boerhaavestraat 49, Amsterdam-D., 

The Netherlands. 
Wodon, P. L., M.B.L.E. Research Laboratory, 2 Ave. van Becelaere, Brussels 17, 

Belgium. 
W6ssner, H., Mathematisches Institut, Technische Hochschule MUnchen, Arcisstr. 

21, 8000 Munich 2, Germany. 
Woodward, P. M., Ministry of Technology, Royal Radar Establishment, St. Andrews 

Road, Great Malvern, Worcs., England. 
Zemanek, H., IBM - Laboratory Vienna, Parkring 10, A-1010 Vienna, Austria. 



BIBLIOGRAPHY OF ALGOL 68 

Andrews, M. P., 
Practical considerations in the storage of modes, Proc. Informal Conf. on ALGOL 
68 Implementation, Univ. of British Columbia, Aug. 1969, pp. 78-84. 

Andrews, M. P., Peck, J. E. L., 
Cross reference of the ALGOL 68 transput routines, Univ. of British Columbia, 
March 197.0. 

Arnal, P., Buffet, J., Quere, A. et aI., 
Projet de traduction du rapport ALGOL 68, Faculte des Sciences de Lille, La
boratoire de Calcul, 1969. 

Assabgui, M., Trilling, L., 
Entrees - Sorties ALGOL 68, Universite de Montreal, Department d'Informatique, 
Publ. No. 13, Nov. 1969. 

Baecker, H. D., 
The use of ALGOL 68 for trees, Computer Journal, Vol. 13, No.1, Feb. 1970, 
pp.25-27. 

Baecker, H. D., 
Implementing the ALGOL 68 heap, BIT (Nordisk Tiskrift for Informationsbe
handlung) Vol. 10, 1970. 

Baecker, H. D., 
Garbage collection for virtual memory systems, Univ. of Calgary, Nov. 1970. 

Blllirs, A.A., Ershov, A. P., Rar, A. F., 
On the description of syntax of ALGOL 68 and its national variants, these Pro
ceedings. 

Baker, J.L., 
The syntax of ALGOL 68, property grammars, and context-sensitive languages, 
Univ. of Calgary, Sept. 1970. 

Baker, J.L., 
Acceptors from van Wijngaarden grammars, Univ. of Washington, Compo Sci. 
Group, Tech. Rep. 70-02-10, Feb. 1970. 

Baker, J. L., 
Some formal properties of the syntax of ALGOL 68, Computer Science Group, 
Univ. of Washington, May 1970. 

Berry, D.M., 
The importance of implementation models in ALGOL 68, or how to discover the 
concept of necessary environment, SIGPLAN Notices, Vol. 5, No.9, 1970, 
pp. 14-24, Sept. 1970. 

Boussard, J.e., Pair, C., 
Introduction ~ ALGOL 68. Revue franQaise d'Informatique et de Recherche Ope
rationnelle. 1969-No. B3, pp. 17-52, Dec. 1969. 

Boussard, J.C., Duby, J.J. (Editors), 
Rapport d'evaluation d'ALGOL 68, IMAG, Grenoble and Centre Sci. IBM France, 
July 1970. 

369 



370 BIBLIOGRAPHY OF ALGOL 68 

Bowlden, H. J., 
A comparative introduction to ALGOL 68, WestingllOuse Research Labs. No. 
69-1C4-COMPS-P2 (obsolete). 

Bowlden, H. J., 
Environmental factors in computer language design and implementation, Proc. 
Informal Conf. on ALGOL 68 Implementation, Univ. of British Columbia, Aug. 
1969, pp. 97-109. 

Bowlden, H.J., 
ALGOL 68 structural flowchart, Westinghouse Research Labs., Report 69-1C4-
COMPS-R2, Oct. 1969. 

Bowlden, H.J., 
A symbol table for the B-6500, Westinghouse Research Labs. No. 70-1K4-
COMPS-Rl, Pittsburgh, April 1970 (obsolete). 

Bowlden, H.J., 
A symbol table with scope recognition for the B-6500, these Proceedings. 

Bowlden, H. J., 
ALGOL 68 - Comments and recommendations, Algol Bulletin 31. 3. 3, March 
1970, pp. 28-32. 

Branquart, P., Lewi, J., Cardinael, J.P., 
A context-free syntax of ALGOL 68, Technical Note N66, MBLE Research Lab. 
Brussels, Aug. 1970. 

Branquart, P., Lewi, J., 
On object language and storage allocation in ALGOL 68 compilers, Proc. Infor
mal Conf. on ALGOL 68 Implemeritation, Univ. of British Columbia, Aug. 1969, 
pp.25-34. 

Branquart, P., Lewi, J., 
General principles of an ALGOL 68 garbage collector, Technical Note N60, 
MBLE Research Lab. Brussels, Jan. 1970. 

Branquart, P., Lewi, L., 
On the implementation of coercions in ALGOL 68, Report R123, MBLE Research 
Lab., Brussels, Jan, 1970, and Proc. International Computing Symposium, Bonn, 
1970. 

Branquart, P., Lewi, J., C'lrdinael, J. P., 
Local generators and the ALGOL 68 working stack, Technical Note N62, MBLE 
Research Lab., Brussels, Sept. 1970. 

Branquart, P., Lewi, J., Sintzoff, M., Wodon, P. L., 
Structural composition of semantics in ALGOL 68, Report R125, MBLE Research 
Lab., Brussels, April 1970. 

Branquart, P., Lewi, J., 
Analysis of the parenthesis structure of ALGOL 68, Report R130, MBLE Re
search Lab., Brussels, April 1970, and these Proceedings. 

Branquart, P •• Lewi, J., 
Structure d'un compilateur d'ALGOL 68, Report R131, MBLE Research Lab., 
Brussels, April 1970, and Congr~s d'Informatique AFCET, Paris, 1970. 

Branquart, P., Lewi, J., 
A scheme of storage allocation and garbage collection for ALGOL 68, Report 
R133, MBLE Resea.rch Lab., Brussels, July 1970, and these Proceedings. 

!3ranquart, P., Lewi, J., 
.: Quelques aspects de l'implementation d'ALGOL 68, Seminaire de Programmation 

IMAG 1968-69, Grenoble, 1970. 



BIBLIOGRAPHY OF ALGOL 68 

Brown, W.E., 
The cross-referencing of ALGOL 68 syntax, Vniv. of Calgary, June 1969. 

Chastellier, G. de, Colmerauer, A., 
W-grammar, Proc. 24th National Conf. ACM, 1969, pp. 511-518. 

Currie, I.F., Bond, Susan G., Morison, J.D., 
ALGOL 68-R, these Proceedings. 

Currie, I. F., 

371 

Working description of ALGOL 68-R, RRE Memorandum No. 2660, Royal Radar 
Establishment, Malvern, Worcs., V.K. (to be published). 

Dijkstra, E. W., Duncan, F., Garwick, J., Hoare, C.A. R., Randell, B., Seeg
mUller, G., Turski, W., Woodger, M., 
Minority Report, Algol Bulletin, AB 31.1.1.1, March 1970, p. 7. 

Ershov, A. P., 
A multilanguage programming system oriented to languages description and uni
versal optimization algorithms, these Proceedings. 

Finch, P.M., 
Defining and applied occurrences of identifiers, Proc. Informal Conf. on ALGOL 
68 Implementation, Vniv. of British Columbia, Aug. 1969, pp.110-117. 

Fites, P. E., 
Storage organization and garbage collection in ALGOL 68, Proc. Informal Conf. 
on ALGOL 68 Implementation, Vniv. of British Columbia, Aug. 1969, pp. 85-96. 

Fites, P. E., 
On error classes in ALGOL 68, Vniv. of Alberta, April 1970. 

Garwick, J. V., Merner, J.M., Ingerman, P. Z., Paul, M., 
Report on the ALGOL X 1/0 Subcommittee W.G. 2.1 Working paper, July 1967. 

Goos, G., Scheidig, H., SeegmUller, G., Walther, H., 
Another proposal for ALGOL 67, Bavarian Academy of Science, Munich, 
May 1967. 

Goos, G., 
Eine Implementierung von ALGOL 68, Report, Computing Centre, T. H. MUnchen 
Nr. 6906, 1969. 

Goos, G., Scheidig, H., W~ssner, H., 
Mode representation and operator identification in ALGOL 68, Proc. Informal 
Conf. on ALGOL 68 Implementation, Vniv. of British Columbia, Aug. 1969, 
pp. 36-41. 

Goos, G., 
Einige Eigenschaften von ALGOL 68, Elektronische Datenverarbeitung, Vol. 11, 
Sept. 1969. 

Goos, G., Scheidig, H., 
Vne implementation d'ALGOL 68, Seminaire de programmation IMAG 1968-69, 
Grenoble, 1970. 

Goos, G., 
Some problems in compiling ALGOL 68, these Proceedings. 

Goyer, P., 
A garbage collector to be implemented on a CDC 3100, Diipartement d'Informa
tique, Vniversite de Montr~al, No. 34, April 1970, and these Proceedings. 

Hill, V., 
Automatische rekursive Adressenberechnung fUr h~here Programmiersprachen, 
insbesondere fUr ALGOL 68, T. H. MUnchen, Feb. 1969. 



372 BIBLIOGRAPHY OF ALGOL 68 

Hoare, C.A.R., 
Critique of ALGOL 68, Algol Bulletin, AB 29.3.5, 1968. 

Hodgson, G. S., 
ALGOL 68 extended syntax, Vniv. of Manchester, Dept. of Computer Science, 
March 1970. 

Jorrand, P., 
Intersection de deux langages "context-free". Application a. la grammaire du 
langage ALGOL X, Vniversite de Grenoble, Mathematiques Appliquees, Oct. 
1967. 

Jorrand, P., 
Tutorial on ALGOL 68, Proc. third annual Princeton conference on information 
sciences and systems, March 1969, pp. 403-407. 

Koch, F., 
The recognition of ranges in ALGOL 68, Vniv. of Calgary, Sept. 1969. 

Koster, C.H.A., 
On infinite modes, Algol Bulletin AB 30.3.3, Feb. 1969, pp. 61-69. 

Koster, C. H. A., 
Syntax directed parsing of ALGOL 68 programs, Proc. Informal Conf. on ALGOL 
68 Implementation, Vniv. of British Columbia, Aug. 1969, pp. 61-69. 

Koster, C.H.A., 
Two level grammars, Amsterdam, Mathematisch Centrum, May 1970. 

Koster, C.H.A., 
Affix grammars, these Proceedings. 

Kral, J., Moudry, J., 
An implementation of identifier tables in multipass ALGOL 68 based on hash 
code techniques, these Proceedings. 

LandeU, A., Pleyber, J., 
A definition of the translation of ALGOL 60 to ALGOL 68, Proc. Informal Conf. 
on ALGOL 68 Implementation, Vniv. of British Columbia, Aug. 1969, pp. 49-60. 

Landelle, A., Pleyber, J., 
Traduction d'ALGOL 60 en ALGOL 68, Seminaire de Programmation, 1968-69, 
IMAG Grenoble, 1970. 

Lewi, J., Branquart, P., 
Implementation of local names in ALGOL 68, Report R121 MBLE Research Lab., 
Brussels, Nov. 1969, and International Computing Symposium, Bonn, 1970. 

Lindsey, C. H., 
ALGOL 68 with fewer tears, Algol Bulletin AB 28 (obsolete). 

Lindsey, C. H., 
An iso-code representation for ALGOL 68, Proc. Informal Conf. on ALGOL 68 
Implementation, Vniv. of British Columbia, Aug. 1969, pp. 1-24, and Algol 
Bulletin AB 31. 3. 6, March 1970. 

Lindsey, C. H., 
Making the hardware suit the language, these Proceedings. 

Lindsey, C. H., 
Some ALGOL 68 sublanguages, these Proceedings. 

Mailloux, B.J., 
On the implementation of ALGOL 68, Mathematisch Centrum, Amsterdam, 1967. 



BIBLIOGRAPHY OF ALGOL 68 373 

Mailloux, B.J., Fites, P.E., 
Storage organization and garbage collection for ALGOL 68 implementation, Univ. 
of Alberta, Feb. 1970. 

Mailloux, B.J., Peck, J.E.L., 
ALGOL 68 as a self extending language, Proc. Extensible Language Symposium, 
SIGPLAN Notices, Vol. 4, No.8, Aug. 1969, pp. 9-13. 

Marshall, S., 
Preliminary report on ALGOL 68 implementation, Proc. Informal Conf. on 
ALGOL 68 Implementation, Univ. of British Columbia, Aug. 1969, pp. 42-48. 

Marshall, S., 
An ALGOL 68 garbage collector, Technical Report TM 0111, Dartmouth College, 
Dec. 1969, and these Proceedings. 

Mazurkiewicz, A. W., 
A note on enumerable grammars, Information and Control, 1969, Vol. 14, 
pp. 555-558. 

Meek, B.L., 
ALGOL X, some comments, Computer Bulletin, Aug. 1969, p. 298. 

Meertens, L., 
On the generation of ALGOL 68 programs involving infinite modes, Algol Bulle
tin, AB 30.3.4, pp. 90-92. 

Nadrchal, J., 
Guide to the language ALGOL 68, Math. Inst. Czechoslovakia Acad. of Sciences, 
Praha. 

Pair, C., 
Concerning the syntax of ALGOL 68, Algol Bulletin, AB 31.3.2, March 1970, 
pp. 16-27. 

Peck, J.E.L., 
The syntax of ALGOL 68, Department of Mathematics, Univ. of Calgary, March 
1968 (obsolete). 

Peck, J. E. L., 
On storage of modes and some context conditions, Proc. Informal Conf. on 
ALGOL 68 Implementation, Univ. of British Columbia, Aug. 1969, pp. 70-77. 

Peter, R., 
Zur zweistufigen Satzstruktur-Grammatik, Studia Sci. Math. Hung., Vol. 2 pp. 
455-456, Vol. 3 pp. 181-194. 

Scheidig, H., 
Anpassungsoperationen in ALGOL 68, T. H. Milnchen, Feb. 1970. 

Scheidig, H., 
Syntax and mode check in an ALGOL 68 compiler, these Proceedings. 

Schneider, V. B., 
A translation grammar for ALGOL 68, AFIPS Spring Joint Computer Conf. 1970 
and International Computing Symposium, Bonn, 1970. 

Schneider, V. B., 
A one-pass algorithm for compiling ALGOL 68 declarations, Purdue Univ., 1970. 

Simonet, M., 
Une grammaire context-free d'ALGOL 68, Congres d'Informatique AFCET 
Paris, 1970, p. 5.3. 119-135. 



374 BIBLIOGRAPHY OF ALGOL 68 

Sintzoff, M., 
Calculating the properties of programs by valuation on specific models, MBLE 
Res. Lab., Brussels, N64, May 1970. 

Sintzoff, M., 
Existence of a van Wijngaarden syntax for every recursively enumerable set, 
Annales Soc. Scientifique de Bruxelles, Vol. 81, No.2, 1967, pp.115-118. 

Sintzoff, M., 
Grammaires superposees et autres sys~mes formels, Journees d'Etude sur 
l'Analyse Syntaxique, Centre d'Automatique Fontainebleau, 1969. 

Sintzoff, M., 
Introduction ~ la description d'ALGOL 68, Revue FranQaise d'Informatique et de 
Recherche Operationnelle Vol. B-3, 1969, pp. 3-16. 

Sintzoff, M. (Ed.), Branquart, P., Lewi, J., Wodon, P.L., 
Remarks on the Draft Reports on ALGOL 68, Report R96, MBLE Res. Lab., 
Brussels, Jan. 1969. 

Trilling, L., Verjus, J.P., 
An attempted definition of an extensible system, these Proceedings. 

Lindsey, C. H., van der Meulen, S. G., 
Informal Introduction to ALGOL 68, North-Holland Publishing Company, Amster
dam, 1971. 

van Wij ngaarden, A., 
Orthogonal design and description of a formal language, MR 76, Mathematisch 
Centrum, Amsterdam, Oct. 1965. 

van Wijngaarden, A., 
On the boundary between natural and artificial languages, Linguaggi nella societa 
e nella tecnica, Edizioni di Comunita - Milano 1970, pp. 165-175. 

van Wijngaarden, A., 
Generalized ALGOL, Annual review in Automatic Programming, Vol. m, 1963, 
pp.17-26. 

van Wijngaarden, A. (Ed.), Mailloux, B.J., Peck, J.E.L., Koster, C.H.A., 
Report on -the algorithmic language ALGOL 68, Mathematisch Centrum, MR 101, 
Amsterdam, Oct. 1960, and Numerische Mathematic, 14, 1969, pp. 79-218. 

van Wijngaarden, A., Mailloux, B.J., Peck, J.E.L., Koster, C.H.A., 
Report on the algorithmic language ALGOL 68 (Russian and English), Kibernetika, 
Vol. 6, 1969, and Vol. 1, 1970. 

Wegner, P., 
Some remarks on VWF notation, Report No. 69-12, Center for Computing and In
formation Sciences, Brown Univ., Dec. 1969. 

Westland, J., 
An ALGOL 68 syntax and parser, Univ. of Calgary, Sept. 1969. 

Wodon, P.L., 
Methods of garbage collection for ALGOL 68, MBLE Research Lab., Brussels, 
April 1970, and these Proceedings. 

Woodward, P. M., 
A narrative preview of ALGOL 68, R. R. E. Memorandum No. 2499, Royal Radar 
Establishment, Malvern, Worcs., U.K •• Oct. 1968. 

Woodward, P. M •• 
A primer of ALGOL 68-R (2nd Edition). R.R.E.Memorandum No. 2601. Royal 
Radar Establishment, Malvern, Worcs •• U.K •• Feb. 1970. 



BIBLIOGRAPHY OF ALGOL 68 375 

W6ssner, H., 
On identification of operators in ALGOL 68, these Proceedings. 

Yoneda, N., 
New algorithmic language ALGOL 68, Surikagaku 1969, Vols. 5-? 


	Title
	Copyright
	Contents
	Bowlden: A  symbol table with scope recognition for the B-6500
	Currie, Bond, and Morison:ALGOL 68-R
	Branquart, Lewi, and Cardinael: Analysis of the parenthesis structure of ALGOL 68 
	Král and Modrý: An implementation of identifier tables in a multipass ALGOL 68 compiler based on a hash-code technique 
	Scheidig: Syntax and mode check in an ALGOL 68 compiler
	Koster: Affix grammars
	Wössner: On identification of operatorsin ALGOL 68 
	Trilling and Verjus: An attempted definition  of an extensible system
	Ershov: A multilanguage programming system to languages description and universal optimization algorithms
	Bährs, Ershov, and Rar: On description of syntax of ALGOL 68 and its national variants 
	Goos: Some problems incompiling ALGOL 68 
	Branquart and Lewi: A scheme of storage allocation and garbage collection for ALGOL 68 
	Marshall: An ALGOL 68 garbagecollector 
	Wodon: Methods of garbagecollection for ALGOL 68 
	Panel Discussion - Part 1 : ALGOL 68sublanguages 
	Lindsey: Some ALGOL 68sublanguages 
	Panel Discussion - Part  2: ALGOL 68sublanguages 
	Goyer: A garbage collector to be implemented on a CDC 3100 
	Panel Discussion: Implementation
	Lindsey: Making the hardware suit thelanguage 
	Conferenceparticipants 
	Bibliography of ALGOL 68



