This document discusses linear transformations and their properties. It defines a linear transformation as a function between vector spaces that preserves vector addition and scalar multiplication. The kernel of a linear transformation is the set of vectors mapped to the zero vector, and is a subspace of the domain. The range is the set of images of all vectors under the transformation. Matrices can represent linear transformations, with the matrix equation representing the transformation of vectors. Examples are provided to illustrate key concepts such as kernels, ranges, and matrix representations of linear transformations.
1 of 59
Downloaded 864 times
More Related Content
Linear transformation.ppt
1. Chapter 4 Linear TransformationsChapter 4 Linear Transformations
4.1 Introduction to Linear Transformations4.1 Introduction to Linear Transformations
4.2 The Kernel and Range of a Linear Transformation4.2 The Kernel and Range of a Linear Transformation
4.3 Matrices for Linear Transformations4.3 Matrices for Linear Transformations
4.4 Transition Matrices and Similarity4.4 Transition Matrices and Similarity
2. 6 - 2
4.1 Introduction to Linear Transformations4.1 Introduction to Linear Transformations
A linear transformation is a function TT that maps a vector space
VV into another vector space WW:
mapping
: , , : vector spaceT V W V W→
V: the domain of T
W: the co-domain of T
(1) (u v) (u) (v), u, vT T T V+ = + ∀ ∈
(2) ( u) (u),T c cT c R= ∀ ∈
Two axioms of linear transformationsTwo axioms of linear transformations
3. 6 - 3
Image of v under T:
If v is in V and w is in W such that
wv =)(T
Then w is called the image of v under T .
the range ofthe range of TT::
The set of all images of vectors in VThe set of all images of vectors in V.
the pre-image of w:
The set of all v in V such that T(v)=w.
}|)({)( VTTrange ∈∀= vv
4. 6 - 4
Notes:
(1) A linear transformationlinear transformation is said to be operation preservingoperation preserving.
(u v) (u) (v)T T T+ = +
Addition
in V
Addition
in W
( u) (u)T c cT=
Scalar
multiplication
in V
Scalar
multiplication
in W
(2) A linear transformation from a vector space intoa vector space into
itselfitself is called a linear operatorlinear operator.
:T V V→
5. 6 - 5
Ex: Verifying a linear transformation T from R2
into R2
Pf:Pf:
1 2 1 2 1 2( , ) ( , 2 )T v v v v v v= − +
numberrealany:,invector:),(),,( 2
2121 cRvvuu == vu
(1) Vector addition :
1 2 1 2 1 1 2 2u v ( , ) ( , ) ( , )u u v v u v u v+ = + = + +
)()(
)2,()2,(
))2()2(),()((
))(2)(),()((
),()(
21212121
21212121
22112211
2211
vu
vu
TT
vvvvuuuu
vvuuvvuu
vuvuvuvu
vuvuTT
+=
+−++−=
+++−+−=
++++−+=
++=+
6. 6 - 6
),(),(
tionmultiplicaScalar)2(
2121 cucuuucc ==u
)(
)2,(
)2,(),()(
2121
212121
u
u
cT
uuuuc
cucucucucucuTcT
=
+−=
+−==
Therefore, T is a linear transformation.
7. 6 - 7
Ex: Functions that are not linear transformations
xxfa sin)()( =
2
)()( xxfb =
1)()( += xxfc
)sin()sin()sin( 2121 xxxx +≠+
)sin()sin()sin( 3232
ππππ
+≠+
2
2
2
1
2
21 )( xxxx +≠+
222
21)21( +≠+
1)( 2121 ++=+ xxxxf
2)1()1()()( 212121 ++=+++=+ xxxxxfxf
)()()( 2121 xfxfxxf +≠+
( ) sin is not a
linear transformation
f x x⇐ =
2
( ) is not a linear
transformation
f x x⇐ =
( ) 1 is not a
linear transformation
f x x⇐ = +
8. 6 - 8
Notes: Two uses of the term “linear”.
(1) is called a linear functiona linear function because its graph is
a line. But
1)( += xxf
(2) is not a linear transformationnot a linear transformation from a
vector space R into R because it preserves neitherbecause it preserves neither
vector addition nor scalar multiplicationvector addition nor scalar multiplication.
1)( += xxf
9. 6 - 9
Zero transformation:
: , u, vT V W V→ ∈
VT ∈∀= vv ,0)(
Identity transformation:
VVT →: VT ∈∀= vvv ,)(
Thm 4.1Thm 4.1: (Properties of linear transformations)
WVT →:
00 =)((1)T
)()((2) vv TT −=−
)()()((3) vuvu TTT −=−
(4) If 1 1 2 2
1 1 2 2
1 1 2 2
v
Then (v) ( )
( ) ( ) ( )
n n
n n
n n
c v c v c v
T T c v c v c v
c T v c T v c T v
= + + +
= + + +
= + + +
L
L
L
10. 6 - 10
Ex: (Linear transformations and bases)
Let be a linear transformation such that33
: RRT →
)4,1,2()0,0,1( −=T
)2,5,1()0,1,0( −=T
)1,3,0()1,0,0( =T
Sol:
)1,0,0(2)0,1,0(3)0,0,1(2)2,3,2( −+=−
(2,3, 2) 2 (1,0,0) 3 (0,1,0) 2 (0,0,1)
2(2, 1,4) 3(1,5, 2) 2(0,3,1)
(7,7,0)
T T T T− = + −
= − + − −
=
(T is a L.T.)
Find T(2, 3, -2).
11. 6 - 11
Thm 4.2Thm 4.2: (The linear transformation given by a matrix)
Let A be an m×n matrix. The function T defined by
vv AT =)(
is a linear transformation from Rn
into Rm
.
Note:
11 12 1 1 11 1 12 2 1
21 22 2 2 21 1 22 2 2
1 2 1 1 2 2
v
n n n
n n n
m m mn n m m mn n
a a a v a v a v a v
a a a v a v a v a v
A
a a a v a v a v a v
+ + +
+ + + = =
+ + +
L L
L L
M M M M M
L L
vv AT =)(
mn
RRT →:
vectorn
R vectorm
R
12. 6 - 12
Show that the L.T. given by the matrix
has the property that it rotates every vector in R2
counterclockwise about the origin through the angle θ.
Rotation in the planeRotation in the plane
22
: RRT →
cos sin
sin cos
A
θ θ
θ θ
−
=
Sol:
( , ) ( cos , sin )v x y r rα α= = (polar coordinates)
r : the length of v
: the angle from the
positive x-axis
counterclockwise to the
13. 6 - 13
+
+
=
+
−
=
−
=
−
==
)sin(
)cos(
sincoscossin
sinsincoscos
sin
cos
cossin
sincos
cossin
sincos
)(
αθ
αθ
αθαθ
αθαθ
α
α
θθ
θθ
θθ
θθ
r
r
rr
rr
r
r
y
x
AT vv
r : the length of T(v)
θ +α : the angle from the positive x-axis counterclockwise
to
the vector T(v)Thus, T(v) is the vector that results from rotating the vector v
counterclockwise through the angle θ.
14. 6 - 14
is called a projection in R3
.
A projection inA projection in RR33
The linear transformation is given by33
: RRT →
=
000
010
001
A
15. 6 - 15
Show that T is a linear transformation.
A linear transformation fromA linear transformation from MMmm××nn intointo MMnn ××mm
):()( mnnm
T
MMTAAT ×× →=
Sol:
nmMBA ×∈,
)()()()( BTATBABABAT TTT
+=+=+=+
)()()( AcTcAcAcAT TT
===
Therefore, T is a linear transformation from Mm×n into Mn ×m.
16. 6 - 16
4.2 The Kernel and Range of a Linear Transformation4.2 The Kernel and Range of a Linear Transformation
KernelKernel of a linear transformation T:
Let be a linear transformationWVT →:
Then the set of all vectors v in V that satisfy is
called the kernelkernel of T and is denoted by kerker(T).
0)( =vT
ker( ) {v | (v) 0, v }T T V= = ∀ ∈
17. 6 - 17
Finding the kernel of a linear transformationFinding the kernel of a linear transformation
1
3 2
2
3
1 1 2
(x) x ( : )
1 2 3
x
T A x T R R
x
− −
= = → −
?)ker( =T
Sol:Sol:
}),,(),0,0(),,(|),,{()ker( 3
321321321 RxxxxxxxTxxxT ∈===
1 2 3( , , ) (0,0)T x x x = ⇒
=
−
−−
0
0
321
211
3
2
1
x
x
x
1
2
3
1
1
1
x t
x t t
x t
⇒ = − = −
real numberker( ) { (1, 1,1) | }
span{(1, 1,1)} = Nullspace of A
T t t⇒ = − ∈
= −
.1 1 2 0 1 0 1 0
1 2 3 0 0 1 1 0
G E− − −
→ −
18. 6 - 18
Thm 4.3:Thm 4.3: The kernel is a subspace of V.
The kernel of a linear transformation is a subspace of the
domain V.
WVT →:
(0) 0 (Theorem 4.1)T =QPf:Pf:
is a nonempty subset ofker( )T V∴
then.ofkernelin thevectorsbeandLet Tvu
000)()()( =+=+=+ vuvu TTT
00)()( === ccTcT uu )ker(Tc ∈⇒ u
)ker(T∈+⇒ vu
.ofsubspaceais)ker(Thus, VT
Corollary to Thm 4.3:Corollary to Thm 4.3:
0ofspacesolutionthetoequalisTofkernelThen the
)(bygivenL.Tthebe:Let
=
=→
x
xx
A
ATRRT mn
{ }
a linear transformation(x) x ( : )
( ) ( ) x | x 0, x (a subspace of )
n m
n n
T A T R R
ker T NS A A R R
= →
⇒ = = = ∀ ∈
19. 6 - 19
Finding a basis for the kernelFinding a basis for the kernel
Let be defined by , where and5 4 5
: (x) x x is in R
1 2 0 1 1
2 1 3 1 0
1 0 2 0 1
0 0 0 2 8
T R R T A
A
→ =
−
=
− −
Find a basis for ker(T) as a
subspace of RR55
.
Sol:
[ ] .
1 2 0 1 1 0 1 0 2 0 1 0
2 1 3 1 0 0 0 1 1 0 2 0
0
1 0 2 0 1 0 0 0 0 1 4 0
0 0 0 2 8 0 0 0 0 0 0 0
G E
A
− −
− − = →
− −
s t
1
2
3
4
5
2 2 1
2 1 2
1 0
4 0 4
0 1
x s t
x s t
xx s ts
x t
x t
− + −
+
⇒ = = = +
− −
is a basis
of the kernel of
{( 2, 1, 1, 0, 0)
(1, 2, 0, 4, 1)}
B and
T
= −
−
20. 6 - 20
.:Tnnsformatiolinear traaofrangeThe WWV foecapsbusasi→
Thm 4.4Thm 4.4: The range of T is a subspace of W
Pf:Pf: (0) 0 (Thm 4.1)T =Q ( ) is a nonempty subset ofrange T W⇒
TTT ofrangein thevectorbe)(and)(Let vu
)()()()( TrangeTTT ∈+=+ vuvu
)()()( TrangecTcT ∈= uu
),( VVV ∈+⇒∈∈ vuvu
)( VcV ∈⇒∈ uu
Therefore, ( ) is a subspace ofrange T W
21. 6 - 21
Let be the L.T. represented by
then the range of is equal to the column space of
( ) ( ) {
( ,
}
: x) xn
n
m
range T CS A
T R R
Ax
T A
T A
x R
=
= = ∀ ∈
→
⇒
Rank of a linear transformation T: V→W:
( ) the dimension of the range ofrank T T=
Nullity of a linear transformation T: V→W:
( ) the dimension of the kernel ofnullity T T=
Note:Note:
Let be the L.T. represented by ,then: (x) x
( ) ( ) dim[ ( )]
( ) ( ) dim[ ( )]
n m
T R R T A
rank T rank A CS A
nullity T nullity A NS A
→ =
= =
= =
22. 6 - 22
Finding a basis for the range of a linear transformationFinding a basis for the range of a linear transformation
5 4 5
Let : be defined by ( ) ,where and
1 2 0 1 1
2 1 3 1 0
1 0 2 0 1
0 0 0 2 8
T R R T A R
A
→ = ∈
−
=
− −
x x x
Find a basis for the range(T).
Sol:Sol:
.
1 2 0 1 1 1 0 2 0 1
2 1 3 1 0 0 1 1 0 2
1 0 2 0 1 0 0 0 1 4
0 0 0 2 8 0 0 0 0 0
G E
A B
− −
− = → =
− −
54321 ccccc
54321 wwwww
{ }
{ } )(,,
)(,,
421
421
ACSccc
BCSwww
forbasisais
forbasisais⇒
{ } Tofrangefor thebasisais)2,0,1,1(),0,0,1,2(),0,1,2,1( −⇒
23. 6 - 23
Let be a L.T.from an n - dimensional
vector space into a vector space
:
,
then
T V W
V W
→
Thm 4.5Thm 4.5: Sum of rank and nullity
Pf:Pf: Let is represented by a mnT matrix A
. ., dim(range of ) dim(kerne
( ) ( )
l of ) dim(domain of )
,rank T nullity T n
i e T T T+
=
=
+
Assume ( ) ( . ., var )rank A r i e the number of leading iables=
(1) ( ) dim(range of ) dim(column space of )
( )
rank T T A
rank A r
= =
= =
(2) ( ) dim(kernel of ) dim(solution space of )nullity T T A
n r
= =
= −
( ) ( ) ( )rank T nullity T r n r n⇒ + = + − =
( )T x Ax=Q
24. 6 - 24
Finding the rank and nullity of a linear transformation
Find the rank and nullity of the L.T. define by3 3
:
1 0 2
0 1 1
0 0 0
T R R
A
→
−
=
Sol:
( ) ( ) 2
( ) dim(domain of ) ( ) 3 2 1
rank T rank A
nullity T T rank T
= =
= − = − =
25. 6 - 25
A function : is called one-to-one if the preimage of
every w in the range of T consists of a single vector.
T V W→
One-to-one:One-to-one:
T is one-to-one if and only if for all u and v in V,
T(u)=T(v) implies that u=v.
one-to-one not one-to-one
26. 6 - 26
A function is said to be if
has a preimage in
onto: every element
in
T V W
W V
→
Onto:Onto:
i.e., T is onto W when rangerange((TT))=W=W.
27. 6 - 27
Thm 4.6:Thm 4.6: (One-to-one linear transformation)
T is one - to -one if and
Let
only
be a L.T.,
if ( ) {0}
:
ker T
T V W
=
→
Pf: 1-1isSupposeT
0:solutiononeonlyhavecan0)(Then == vvT
.,.e ) {0i ( }ker T =
Suppose and( ) {0} ( ) ( )ker T T u T v= =
0)()()( =−=− vTuTvuT
L.T.aisT
( ) 0u v ker T u v− ∈ ⇒ − =Q is one- to -one L.T.T⇒
i.e., The addtive unit element in V is mapped onto
the additive unit element in W.
28. 6 - 28
One-to-one and not one-to-one linear transformationOne-to-one and not one-to-one linear transformation
The L.T.( ) : given by ( )
is one-to-one.
T
m n n ma T M M T A A× ×→ =
mn
zero matrix
i.e., ker(T) = {0 }.
Because its kernel consists of only the m n×
one.-to-onenotis:ationtransformzeroThe)( 33
RRTb →
.ofalliskernelitsBecause 3
R
29. 6 - 29
Onto linear transformationOnto linear transformation
Let be a L.T., where is finite dimensional,
then is equal to the dimension of
:
is onto iff the rank of .
T V W W
T T W
→
Thm 4.7Thm 4.7: (One-to-one and onto linear transformation)
Let be a L.T. with vector space both of
dimension then is one - to -one iff it is onto.
: and
,
T V W V W
n T
→
Pf:Pf: If is one- to -one, then and( ) {0} dim( ( )) 0T ker T ker T= =
( ) dim( ( )) dim( ( )) dim( )rank T range T n ker T n W= = − = =
onto.isly,Consequent T
dim( ( )) dim(range of ) 0ker T n T n n= − = − =
Therefore, ker(T) = {0}. is one - to -one.(from Thm 4.6)T
nWTT == )dim()ofrangedim(thenonto,isIf
( ) dim[range( )] dim[ ( )]rank T T CS A= =Note:
30. 6 - 30
Ex:
The L.T. is given by find the nullity and rank
of and determine whether is one- to -one, onto, or neither.
: (x) x,n m
T R R T A
T T
→ =
=
100
110
021
)( Aa
=
00
10
21
)( Ab
−
=
110
021
)( Ac
=
000
110
021
)( Ad
Sol:
T:Rn
→Rm dim(domain
of T)
rank(T)
nullity(T
)
1-1 onto
(a)T:R3
→R33
3 33 00 YesYes YesYes
(b)T:R2
→R3
2 2 00 YesYes No
(c)T:R3
→R22
3 22 1 No YesYes
(d)T:R3
→R3
3 2 1 No No
( ) the dimension of the range of dim( ( ))rank T T CS A= =Note:
31. 6 - 31
IsomorphismIsomorphism
A linear transformation that is one to one and onto is called an isomorphism.
Moreover, if are vector spaces such that there exists an isomorphism from
then are said to b
:
and
to , and
T V W
V W V
W V W
→
e isomorphic to each other.
Pf:Pf: .dimensionhaswhere,toisomorphicisthatAssume nVWV
onto.andonetooneisthat:L.T.aexistsThere WVT →⇒
is one - to -oneTQ
dim(range of ) dim(domain of ) dim( ( ))
0
T T Ker T
n n
⇒ = −
= − =
is onto.TQ
nWT ==⇒ )dim()ofrangedim( nWV == )dim()dim(Thus
Thm 4.8:Thm 4.8: (Isomorphic spaces and dimension)
Two finite-dimensional vector space V and W are isomorphic if
and only if they are of the same dimension.
dim( ( )) 0Ker T⇒ =
32. 6 - 32
Ex: (Isomorphic vector spaces)
space-4)( 4
=Ra
matrices14allofspace)( 14 ×=×Mb
matrices22allofspace)( 22 ×=×Mc
lessor3degreeofspolynomialallofspace)()( 3 =xPd
)ofsubspace}(numberrealais),0,,,,{()( 5
4321 RxxxxxVe i=
The following vector spaces are isomorphic to each other.
33. 6 - 33
4.3 Matrices for Linear Transformations4.3 Matrices for Linear Transformations
)43,23,2(),,()1( 32321321321 xxxxxxxxxxxT +−+−−+=
Three reasons for matrix representationmatrix representation of a linear transformation:
−−
−
==
3
2
1
430
231
112
)()2(
x
x
x
AT xx
It is simpler to write.
It is simpler to read.
It is more easily adapted for computer use.
Two representationsTwo representations of the linear transformation T:R3
→R3
:
34. 6 - 34
Thm 4.9Thm 4.9: (Standard matrixStandard matrix for a linear transformation)
1 2 n
n
Let be a linear transformation and{e ,e ,...,e }
are the basis of R such that
: n m
T R R→
r r r
1 1 1
2
2
2
2
1
1
21
1 2
2
( ) , ( ) , , ( ) ,
m
n
n
m
n
nm
a a a
a a a
T e T e T e
a a a
= = =
L
M M M
Then the matrix whose columns correspond to ( )im n i T e×
is such that for every in .
A is called th standard me atrix for
(v) v v
.
n
T A R
T
=
11 12 1
21 22 2
1 2
1 2
( ) ( ) ( )
n
n
n
m m mn
a a a
a a a
A T e T e T e
a a a
= =
L
L
L
M M O M
L
35. 6 - 35
Pf:Pf: 1
2
1 1 2 2
n
n n
n
v
v
v R v v e v e v e
v
∈ ⇒ = = + + +
r r r
L
M
is a L.T. 1 1 2 2
1 1 2 2
1 1 2 2
(v) ( )
( ) ( ) ( )
( ) ( ) ( )
n n
n n
n n
T T T v e v e v e
T v e T v e T v e
v T e v T e v T e
⇒ = + + +
= + + +
= + + +
r r r
L
r r r
L
r r r
L
11 12 1 1 11 1 12 2 1
21 22 2 2 21 1 22 2 2
1 2 1 1 2 2
v
n n n
n n n
m m mn n m m mn n
a a a v a v a v a v
a a a v a v a v a v
A
a a a v a v a v a v
+ + +
+ + + = =
+ + +
L L
L L
M M O M M M
L L
36. 6 - 36
11 12 1
21 22 2
1 2
1 2
1 1 2 2( ) ( ) ( )
n
n
n
m m mn
n n
a a a
a a a
v v v
a a a
v T e v T e v T e
= + + +
= + + +
L
M M M
L
n
RAT ineachfor)(Therefore, vvv =
38. 6 - 38
[ ]
−
=
=
012
021
)()()( 321 eTeTeTA
Note:
zyx
zyx
A
012
021
012
021
++
+−
←
←
−
=
+
−
=
−
=
yx
yx
z
y
x
z
y
x
A
2
2
012
021
i.e., ( , , ) ( 2 ,2 )T x y z x y x y= − +
Check:
39. 6 - 39
Composition of T1: Rn
→Rm
with T2: Rm
→Rp
:
n
RTTT ∈= vvv )),(()( 12
2 1 1, domain of domain ofT T T T T= =o
Thm 4.10:Thm 4.10: (Composition of linear transformations)
then,andmatricesstandardwith
L.T.be:and:Let
21
21
AA
RRTRRT pmmn
→→
is a .The composition L.T2 1(1) : , defined by (v) ( (v)),n p
TT R R T T→ =
is given by the matrix product 2 1(2) The standard ma fortrix A A AT A=
40. 6 - 40
Pf:
nscalar theanybecletandinvectorsbeandLet
L.T.)ais((1)
n
R
T
vu
)formatrixstandardtheis)(2( 12 TAA
)()())(())((
))()(())(()(
1212
11212
vuvu
vuvuvu
TTTTTT
TTTTTT
+=+=
+=+=+
)())(())(())(()( 121212 vvvvv cTTcTcTTcTTcT ====
vvvvv )()())(()( 12121212 AAAAATTTT ====
But note:
1 2 2 1T T T T≠o o
41. 6 - 41
Ex : (The standard matrix of a composition)
Let and be L.T.from into such that3 3
1 2T T R R
),0,2(),,(1 zxyxzyxT ++=
),z,(),,(2 yyxzyxT −=
,'and
nscompositiofor thematricesstandardtheFind
2112 TTTTTT ==
Sol:
)formatrixstandard(
101
000
012
11 TA
=
)formatrixstandard(
010
100
011
22 TA
−
=
43. 6 - 43
Inverse linear transformationInverse linear transformation
If and are L.T.such that for every1 2: : v inn n n n n
T R R T R R R→ →
))((and))(( 2112 vvvv == TTTT
invertiblebetosaidisandofinversethecalledisThen 112 TTT
Note:
If the transformation T is invertible, then the inverse is
unique and denoted by T–1
.
44. 6 - 44
Existence of an inverse transformation
.equivalentareconditionfollowingThen the
,matrixstandardwithL.T.abe:Let ARRT nn
→
Note:
If T is invertible with standard matrix A, then the standard
matrix for T–1
is A–1
.
(1) T is invertible.
(2) T is an isomorphism.
(3) A is invertible.
45. 6 - 45
Ex : (Finding the inverse of a linear transformation)
The L.T. is defined by3 3
:T R R→
1 2 3 1 2 3 1 2 3 1 2 3( , , ) (2 3 , 3 3 , 2 4 )T x x x x x x x x x x x x= + + + + + +
Sol:Sol:
142
133
132
formatrixstandardThe
=A
T
1 2 3
1 2 3
1 2 3
2 3
3 3
2 4
x x x
x x x
x x x
¬ + +
¬ + +
¬ + +
3
2 3 1 1 0 0
3 3 1 0 1 0
2 4 1 0 0 1
A I
=
Show that T is invertible, and find its inverse.
. . 1
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 6 2 3
G J E
I A−
−
→ − =
− −
46. 6 - 46
11
isformatrixstandardtheandinvertibleisTherefore −−
ATT
1
1 1 0
1 0 1
6 2 3
A−
−
= −
− −
1 1 2
1 1
2 1 3
3 1 2 3
1 1 0
(v) v 1 0 1
6 2 3 6 2 3
x x x
T A x x x
x x x x
− −
− − +
= = − = − +
− − − −
In other words,
1
1 2 3 1 2 1 3 1 2 3( , , ) ( , , 6 2 3 )T x x x x x x x x x x−
= − + − + − −
47. 6 - 47
the matrix ofthe matrix of TT relative to the basesrelative to the bases B andB and BB''
a L.T.
1 2
1 2
: ( )
{ , , , } (a basis for )
' { , , , } (a basis for )
n
m
T V W
B v v v V
B w w w W
→
=
=
L
L
Thus, the matrix of T relative to the bases B and B' is
1 2' ' '
( ) , ( ) , , ( )n m nB B B
A T v T v T v M ×
= ∈ L
48. 6 - 48
Transformation matrix for nonstandard basesTransformation matrix for nonstandard bases
11 12 1
21 22 2
1 2' ' '
1 2
( ) , ( ) , , ( )
n
n
nB B B
m m mn
a a a
a a a
T v T v T v
a a a
= = =
L
M M M
Let be finite -dimensional vector spaces with basis
respectively,where 1 2
and
and ', { , , , }n
V W
B B B v v v= L
If is a L.T.such that:T V W→
49. 6 - 49
[ ]such that for every in'
(v) [v] v .BB
T A V=
11 12 1
21 22 2
1 2
1 2
( ) ( ) ( )
n
n
n
m m mn
a a a
a a a
A T v T v T v
a a a
= =
L
L
L
M M O M
L
the matrix whose i columns correspond to '
( )i B
m n T v is×
50. 6 - 50
Ex : (Finding a transformation matrix relative to nonstandard bases)
bydefinedL.T.abe:Let 22
RRT →
)2,(),( 212121 xxxxxxT −+=
)}1,0(),0,1{('and)}1,1(),2,1{(
basisthetorelativeofmatrixtheFind
=−= BB
T
Sol:Sol:
)1,0(3)0,1(0)3,0()1,1(
)1,0(0)0,1(3)0,3()2,1(
−=−=−
+==
T
T
[ ] [ ]' '
3 0
(1, 2) , ( 1, 1)
0 3B B
T T
= − = −
relative tothe transformation matrix and 'T B B
[ ] [ ]' '
3 0
(1, 2) ( 1, 1)
0 3B B
A T T
= − = −
51. 6 - 51
to findse the matrix (v),where v (2, 1)Now u A T =
)1,1(1)2,1(1)1,2( −−==v
[ ]
−
=⇒
1
1
Bv
[ ] [ ]
=
−
−
==⇒
3
3
1
1
30
03
)( ' BB AT vv
)3,3()1,0(3)0,1(3)( =+=⇒ vT )}1,0(),0,1{('=B
)}1,1(),2,1{( −=B
)3,3()12(2),12()1,2( =−+=T
Check:
52. 6 - 52
Notes:Notes:
is called the matrix of relative to the basis
(1) In the special case where and ',
the matrix
V W B B
A T B
= =
relative to the basis
1 2
1 2
(2) : : the identity transformation
{ , , , }: a basis for
the matrix of
1 0 0
0 1 0
( ) , ( ) , , ( )
0 0 1
n
n nB B B
T V V
B v v v V
T B
A T v T v T v I
→
=
⇒
= = =
r r r
L
L
Lr r r
L
M M O M
L
53. 6 - 53
4.4 Transition Matrices and Similarity4.4 Transition Matrices and Similarity
a L.T.
1
2
2
1
: ( )
{ , , , }
' {
( a basis of )
(a basis of ), , , }
n
nB w
T V V
B v v
w Vw
v V
→
=
= L
L
relative to1 2( ) , ( ) , , ( ) ( matrix of )nB B B
A T v T v T v T B = L
relative to1 2' ' '
' ( ) , ( ) , , ( ) (matrix of ')nB B B
w w wT T BA T T = L
1 2, , , ( transition matrix from ' to )nB B B
P Bw w w B = L
1
1 ' '2'
, , , ( transition matrix from to ')nB B B
P v v v B B−
= L
[ ] [ ] [ ] [ ]1
' '
v v , v vB B B B
P P−
∴ = =
[ ] [ ]
[ ] [ ]' '
(v) v
(v) ' v
B B
B B
T A
T A
=
=
54. 6 - 54
direct
indirect
Two ways to get from to :Two ways to get from to :
' '
(1) direct
'[v] [ (v)]B BA T=
[ ] 'Bv [ ] ')( BT v
1
' '
(2) indirect
[v] [ (v)]B BP AP T−
=
1
'' '' B B B BBB P AA P−
⇒ =
55. 6 - 55
ExEx
Sol:Sol:
[ ] '
(1, 0) (2, 1) (1, 0) (1, 1) (1,
3
1
)3 01 B
T T−
−
= − = ⇒ =
Find the transformation matrix for 2 2
:A' T R R→
1 2 1 2 1 2( , ) (2 2 , 3 )with T x x x x x x= − − +
reletive to the basis ' {(1, 0), (1, 1)}B =
[ ] '
(1, 1) (0, 2) (1, 0) (1, 1) (1,
2
2
)2 12 B
T T
= = + ⇒ =
−
−
[ ] [ ]' '
3 2
' (1, 0) (1, 1)
1 2B B
A T T
−
⇒ = = −
[ ] [ ]' '
(I) ' (1, 0) (1, 1)B B
A T T =
56. 6 - 56
relative to
(II) Standard matrix for ( . ., the transformation
matrix of {(1, 0), (0, 1)})
T i e
T B =
[ ]
−
−
==
31
22
)1,0()0,1( TTA
[ ] [ ]
1 1
The transition matrix from ' to : (1, 0) (1, 1)
0 1B B
B B P
= =
1 1 1
The transition matrix from to ':
0 1
B B P− −
=
relative
1
The transformation matrix of '{(1,0),(1,1)}
1 1 2 2 1 1 3 2
'
0 1 1 3 0 1 1 2
T B
A P AP− − − −
= = = − −
)3,22(),( 212121 xxxxxxT +−−=with
57. 6 - 57
Similar matrix:Similar matrix:
For square matrices A and A‘ of order n, A‘ is said to be similar to A
if there exist an invertible matrixan invertible matrix PP such that
1
'A P AP−
=
Thm 4.12:Thm 4.12: (Properties of similar matrices)
Let A, B, and C be square matrices of order n.
Then the following properties are true.
(1) A is similar to A.
(2) If A is similar to B, then B is similar to A.
(3) If A is similar to B and B is similar to C, then A is similar to C.
Pf:Pf:
nn AIIA =)1(
)(
)()2(
111
1111
−−−
−−−−
==⇒=
=⇒=
PQBAQQBPAP
PBPPPPAPBPPA
58. 6 - 58
Ex : (A comparison of two matrices for a linear transformation)
Suppose is the matrix for relative
to the standard basis B.
3 3
1 3 0
3 1 0 :
0 0 2
A T R R
= →
−
)}1,0,0(),0,1,1(),0,1,1{('
basisthetorelativeformatrixtheFind
−=B
T
Sol:Sol:
[ ] [ ] [ ]
The transition matrix P from to the standard basis B is
1 1 0
(1, 1, 0) (1, 1, 0) (0, 0, 1) 1 1 0
0 0 1
B B B
B'
P
= − = −
1 1
2 2
1 1 1
2 2
0
0
0 0 1
P−
⇒ = −
59. 6 - 59
relative to
1 1
2 2
1 1 1
2 2
''
The matrix of :
0 1 3 0 1 1 0
' 0 3 1 0 1 1 0
0 0 1 0 0 2 0 0 1
4 0 0
0 2 0
'
0 0 2
B B BB B
T
A P AP
diagonal matrix
B
−
→→
= = − −
−
= − =
−