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Abstract. We present a taxonomy of the variability mechanisms of-
fered by modeling languages. The definition of a formal language en-
compasses a syntax and a semantic domain as well as the mapping that
relates them, thus language variabilities are classified according to which
of those three pillars they address. This work furthermore proposes a
framework to explicitly document and manage the variation points and
their corresponding variants of a variable modeling language. The frame-
work enables the systematic study of various kinds of variabilities and
their interdependencies. Moreover, it allows a methodical customization
of a language, for example, to a given application domain. The taxon-
omy of variability is explicitly of interest for the UML to provide a more
precise understanding of its variation points.
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1 Introduction

A complete definition of a formal modeling language consists of the descrip-
tion of its syntax and its semantics (meaning) [1]. It is widely accepted that a
commonly agreed formal definition (especially semantics) of a language helps to
avoid misunderstandings and lack of interoperability between tools.

In [2], we presented a tool-based approach to define textual modeling lan-
guages and to formalize their semantics in a flexible way using a theorem prover.
While one of our main targets is the formalization of the Unified Modeling Lan-
guage (UML 2) [3,4], the approach is more general and applies to any modeling
language based on objects.

In this paper, we investigate how variability in a language definition can be
formally specified. This work is inspired by the introduction of semantic vari-
ation points in UML where portions of the language have been deliberately
incompletely specified. The benefits of systematically describing UML’s vari-
ability have been noted early [5]. The treatment of semantic variation points in
the UML, however, is rather disappointing. It was not systematically carried out,
semantic variation points are dispersed across the documentation. Moreover, the
standard fails to tag them completely: it suffices to look for underspecified se-
mantic definitions in order to realize that there are far more semantic variation
points than those explicitly labeled as such.
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Beyond UML, we are interested in a general treatment of variability in model-
ing languages which may be of semantic and also of syntactic nature. Hence, one
goal of this work is to classify the kinds of variability that a modeling language
may offer and their interdependencies. Additionally, we extend our approach
from [2] and present a tool-based solution to define and configure variability
within a language definition.

A systematic approach to variability should make it possible to explicitly state
all (possibly implicit) assumptions and previously chosen variants. This allows a
systematic customization of a language for a given application domain. Further-
more, tool builders can refer to particular variants in order to document design
decisions. Variation points of modeling languages, unlike those of product lines,
are not associated with a binding time [6]. That is, tool builders may delay the
binding of a variation point to a variant and leave the decision to project man-
agers. Moreover, these may even forward the disambiguation to modelers. As for
UML, currently implementors may provide [...] informal feature support state-
ments [...] for less precisely defined dimensions such as presentation options and
semantic variation points” [3, Sect. 2.3]. We improve this situation by making
precise the definition of the variability mechanisms offered by a language.

The rest of this paper is organized as follows. Sect. 2 describes the constituents
of a modeling language definition. Sect. 3 presents our classification of variability
in a language definition. Sect. 4 introduces our tool-supported solution using
feature diagrams. The approach is illustrated with a simple example of UML-
like class diagrams. Sect. 5 discusses related work and Sect. 6 draws conclusions
and sketches future work.

2 Constituents of a Modeling Language Definition

As shown in Fig. 1, a complete definition of a modeling language consists of the
following basic parts:

– the concrete syntax of the language, which may be a graphical or textual
syntax or a combination of both,

– the abstract syntax to which the concrete syntax is mapped. For a textual
syntax this may be given as abstract syntax trees. In case of graphical mod-
eling, metamodels are typically used. Additionally, a set of well-formedness
rules or context conditions are defined,

– some minimal abstract syntax that can be derived from the abstract syntax
by expressing more complex constructs of the language by primitive ones.
Thereby the number of constructs but not the expressive power of the lan-
guage is reduced. This eases the definition of the semantics of the language.
This step may not be required for some languages,

– a semantic domain, a domain well-known and understood, typically based
on a well-defined mathematical theory, and

– the semantic mapping that relates elements of the (minimal) abstract syntax
to elements of the semantic domain.
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Fig. 1. Basic parts of a modeling language definition

Fig. 2. Theories that constitute the system model

Characteristic for our approach to define the semantics of a modeling language
is a set-valued or predicative semantic mapping of the form sem(.) : L → ℘(S).
The semantics of a model as an element of the (minimal) abstract syntax m ∈ L
is therefore the set sem(m) of elements in the semantic domain S.

We defined a single semantic domain S used as a target for the semantic
mapping of various kinds of object-oriented modeling languages [7]. This do-
main, called system model, captures and integrates all aspects of object-oriented
systems using basic mathematical theories. It is rather detailed as it defines var-
ious structural, behavioral, and interaction aspects, and is built in a modular
fashion as depicted in Fig. 2. Systems in the system model are state transition
systems (theory STS). They operate on a global system state which is com-
posed of object individual states (theory State). States constitute a data store
for attribute values of objects (theory Data), a control store (theory Control) for
active threads and computational states of methods, and an event store for un-
processed events (theory Events). States evolve dynamically. Static information
(e.g., which classes, methods, etc., exist) is defined through underspecified uni-
verses containing abstract identifiers only. For example, UTYPE is the universe of
type names (defined in theory Type). Classes are elements of the universe UCLASS

(theory Object) and are only described by functions that yield information about
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their attributes or methods, i.e., they are not constructed from records. Thus,
the definition of the system model is predicative and not constructive. For a
complete picture of the system model features, the reader is referred to [7].

The system model as a single semantic domain and the set-valued semantic
mapping enable a straightforward treatment of composition and refinement of
possibly incomplete and underspecified models of various modeling languages [8].
For example, the integrated semantics of models m1, . . . , mn from possibly dif-
ferent languages L1, . . . ,Ln is given as semL1(m1) ∩ . . . ∩ semLn(mn). In the
same way, m′ ∈ L is a refinement of m ∈ L, exactly if sem(m′) ⊆ sem(m).

3 Classification of Variability

In this section, we develop a classification of variability that a modeling language
may offer. We do not restrict our attention to semantic variability (in UML
terms, semantic variation points) but also consider syntactic variability.

In a very abstract view, the syntax of a formal language is defined by a set
of words over some alphabet A, i.e., L ⊆ A∗. Syntactic variability allows for
defining more than one syntax, say L1 and L2, which normally contain many
common words but are different. That is, there is at least one model (i.e., word)
m ∈ (L1 ∪ L2)\(L1 ∩ L2) that is in one but not both languages. The semantics
of a syntax L over some semantic domain S can be defined as sem ⊆ L × S
(in a relational style). Semantic variability means more than one semantics,
say sem1 and sem2, for a given syntax L. These mappings may have different
codomains S1 �= S2 or not. As with the syntax, sem1 and sem2 are mostly the
same but there is at least one model m and an element s for which (m, s) ∈
(sem1 ∪ sem2)\(sem1 ∩ sem2). So the meaning of the model differs according to
which semantics is chosen.

There naturally may be languages containing both kinds of variability, and
relationships between both exist. In the following, we concretize this abstract
view by analyzing how variants and their interdependencies can be classified.

3.1 Syntactic Variability

Regarding concrete syntax (see Fig. 1), differences can be given by, e.g., alterna-
tive keywords such as “public” or “+” in case of modifiers, or the font size, line
thickness, and color of some graphical element. In UML, these are called pre-
sentation options and can be classified as presentation variability. They improve
the readability of models. Nevertheless, presentation options are so defined that
the abstract syntax of models remains the same even if the options are changed.1

1 This is an important assumption we make on presentation options, namely that
they do not alter abstract syntax and hence the intended semantics of the presented
model element. Font size, for instance, may have a meaning in cartography, where
cities with bigger labels have more inhabitants. In the case of cartography, therefore,
font size does matter and is not a presentation option.
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We do not classify presentation options as syntactic variability since they
do not make it possible to define different languages. Their effect exclusively
concerns the concrete syntax. They must, nevertheless, be registered and docu-
mented.

The syntax of a language may allow the use of stereotypes. The term stereo-
type, borrowed from UML, is used here to designate a general principle of ex-
tending the syntax of a language. The concrete set of defined stereotypes (e.g.,
as part of a profile in case of UML) is classified as syntactic variability.

Another kind of syntactic variability also found in the syntax is given by so-
called language parameters. Concerning for instance UML, the language of state
machines defines transition systems whose transitions are triggered by a stimulus
subject to a condition on the stimulus and/or the internal state of the object.
The language in which conditions (or guards) are expressed is not specified. This
constitutes a syntactic variability.

In the abstract syntax, optional context conditions may exist. Examples
thereof, for instance for a particular code generator to operate, are the enforce-
ment of types of attributes of a class to be defined, and the restriction to single
inheritance only. Context conditions rule out certain models based on syntactic
criteria. Only if the context conditions are met, the model is well-formed and it
makes sense to give the model a semantics.

The syntax also may offer constructs that enhance readability and are seman-
tically equivalent to other, usually more involved, expressions of the language.
Such constructs are often referred to as “syntactic sugar” and may be safely
omitted, since models of the language obtained by the use of those constructs
can be replaced by equivalent models that do not use the abbreviations. We clas-
sify this as presentation variability. In particular, the language can be reduced
to a minimal one, which not necessarily is unique. Note that a minimal language
derived this way may still allow synonyms, i.e., syntactically different models m1

and m2 that denote the same semantics sem(m1) = sem(m2).
Summarizing, we classify any variability as syntactic variability that still may

be present in the minimal abstract syntax of a modeling language and hence in-
teracts with the semantics. This variability originates from stereotypes, language
parameters, and optional context conditions.

3.2 Semantic Variability

While UML only uses the term semantic variation point, we further subdivide se-
mantic variability into semantic mapping variability and semantic domain vari-
ability; cf. Fig. 1. A helpful analogy might be to see the variability of the semantic
mapping similar to configuration options of a code generator while variability of
the semantic domain has its analogy with properties of an underlying run-time
system or target platform.

Regarding semantic domain variability, the system model defined in [7] already
contains explicit variability in form of extensions through optional definitions.
In general, semantic domain variants may provide alternative realizations of
functions, additional constraints to properties of existing definitions, or optional
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structures and definitions. Alternative realizations are, for example, different
notions of type-safe method overriding. Additional constraints are, for example,
the restriction to single inheritance only, or the requirement of certain predefined
types like, e.g., “String.”

Similarly, in the semantic mapping, the same mechanisms to introduce vari-
ants apply. Semantic mapping variability often manifests as alternative choices
for specific mapping functions while the target domain remains the same. For in-
stance, one mapping of super-classes of classes in a UML class diagram assumes
multiple inheritance in the semantic domain, while an alternative mapping uses
some delegation mechanism for a domain that may lack multiple inheritance.
As this example shows, there are also various relationships between variants on
the different levels which will be discussed in more detail in the following. As
another example, consider the representation of states of a state machine in an
implementation as, e.g., a simple enumeration or using the state pattern [9].

Note that semantic variability is transparent to the modeler. But it may be
necessary to allow the modeler to select one or the other interpretation of a con-
struct. We propose to model these interpretation choices as syntactic variability
by providing corresponding stereotypes. For instance, consider the example of
a semantic mapping for a class which states that only a single instance of that
class may exist at run-time. One possibility would be to encode this syntactically
as a stereotype “singleton” which can be used by the modeler and which is used
by the semantic mapping to associate exactly this meaning to the given class.

Table 1 provides a comprehensive summary of our modeling language vari-
ability classification.

Table 1. Variability classification summary

presentation variability variability not present in a minimal abstract syntax

presentation options affect concrete syntax only

abbreviations can be omitted without losing expressiveness

syntactic variability variability affecting a minimal abstract syntax

stereotypes syntactic encoding of semantic variability

language parameters usable with different independent languages

context conditions constrain the set of well-formed models

semantic variability variability in the semantics

semantic domain variability variability in the underlying target domain

semantic mapping variability different choices for mapping functions

3.3 Interdependency and Consistency

Dependencies between variants exist. These are characterized with the help of
examples. Consider the integration of multiple languages: One language might
be parameter to another, e.g., a constraint or action language. Additionally, lan-
guages may be mainly orthogonal and used to describe different views of the
same system such a class and state machine diagrams. In any of these cases, dif-
ferent assumption on the underlying domain may be made, i.e., different variants
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of the semantic domain may be assumed. Moreover, a language that is parameter
to another is equipped with a semantics that has to fit the assumptions made
by the parametric language.

Context conditions may influence the selection of a specific semantic map-
ping. For instance, if the context conditions for UML class diagrams guarantee
that multiple inheritance is syntactically excluded, then one can safely select a
semantic mapping that only handles single inheritance. Similarly, if a semantic
domain only allows for single inheritance, then a delegate mechanism must be
resorted to by the semantic mapping of UML class diagrams in case multiple
inheritance is allowed syntactically.

From these examples we conclude that it is important to capture all possible
variants and their interdependencies. We propose to model them using feature
diagrams including constraints that state inclusion or exclusion between vari-
ants [10].2 As a supplement, informal descriptions of the variabilities can be
given to explain their raison d’être. The proposed approach is completely sup-
ported by tools and will be described in the next section.

Unfortunately, capturing variants as feature diagrams and constraints does
not guarantee that a concrete configuration of variants that conforms to the
given feature diagrams is consistent. Since we have many configuration options,
we might have not captured all constraints to rule out inconsistent, unwanted,
or simply uninteresting configurations. Especially when integrating multiple lan-
guages, there is a possible risk of contradicting mapping functions. One way to
obtain a consistent set of theories is to actually prove consistency. That is, given
two languages L1 and L2 with semantic mappings sem1 and sem2, to show

sem1(m1) ∩ sem2(m2) �= ∅

for some witnesses m1 ∈ L1 and m2 ∈ L2.

4 Definition and Configuration of Variability

We now describe the actual definition and configuration of variability in a mod-
eling language with respect to the configurable semantic mapping and the like-
wise configurable semantic domain. Syntactic variability such as optional context
conditions and language parameters can be handled similarly and are therefore
omitted here. The presentation is accompanied by a simple running example.

The whole approach of defining a language and its variabilities is supported by
two tools. The basic tool-based approach (neglecting variability) has been pre-
sented in [2] and is summarized below. It features a complete, formal, flexible,
and machine-readable definition of modeling languages using the tools Monti-
Core and Isabelle/HOL.

2 There is an inclusion relation between two or more variants if the choice of one makes
it mandatory to choose the other(s). There is an exclusion relation between two or
more variants if the choice of one forbids the choice of the other(s).
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Fig. 3. Approach with tool support

4.1 Prerequisites

The basic approach is depicted in Fig. 3. MontiCore [11] is a framework for
the textual definition of languages based on an extended context-free grammar
format. We use MontiCore to define the concrete syntax of a language because
it provides enhanced modularity concepts like language inheritance and embed-
ding (not used in the simple running example, though). Sophisticated framework
functionality allows, for example, an easy development of generators. Note that
the general idea can similarly be implemented using, e.g., metamodeling.

To provide a semantics developer with maximum flexibility and also with some
machine checking (e.g., type checking) as well as the potential for verification
applications, we use the theorem prover Isabelle/HOL [12] for

– the formalization of the system model as a hierarchy of theories,
– the representation of the abstract syntax of the language as a deep embed-

ding [13], and
– the actual semantic mapping that uses the generated abstract syntax and

maps each language construct to predicates over systems of the formalized
system model.

Concrete Syntax. The example grammar CDSimp in Fig. 4 defines UML-like
class diagrams with classes that can have super-classes. MontiCore grammars

1 grammar CDSimp {

2 CDDefinition = "classdiagram" Name:IDENT "{" (CDClass)* "}";

3

4 CDClass =

5 "class" Name:IDENT ("extends" scl:IDENT ("," scl:IDENT)*)?";";

6 }

Fig. 4. MontiCore grammar of class diagrams

have terminal symbols enclosed in quotes (see, e.g., Fig. 4, line 2) and support
Kleene closure (*) and option (?), among other constructs. The two rules of
CDSimp use the built-in identifier rule IDENT. Nonterminals may be prefixed by
descriptive names followed by a colon (like IDENT, l. 2). According to Fig. 4, a
class diagram definition (l. 2) has a name and a set of classes. Classes (l. 4) have
a name and a comma separated list of names that refer to super-classes.
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Abstract Syntax. A MontiCore generator produces the Isabelle/HOL data
type definition in theory CDSimpAS (see Fig. 5) from the grammar in Fig. 4.

1 theory CDSimpAS imports GeneralAS

2 begin

3 datatype CDClass =

4 CDClass IDENT "IDENT list"

5

6 datatype CDDefinition =

7 CDDefinition IDENT "CDClass list"

8 end

Fig. 5. Generated abstract syntax data type in Isabelle/HOL

Isabelle/HOL data types have a name (e.g., CDClass in Fig. 5, l. 3), a construc-
tor (also CDClass, l. 4), and a list of arguments. Data type IDENT is defined in the
imported, re-usable theory GeneralAS and iteration in a grammar is translated
to the built-in data type list (e.g., l. 4). A complete account on the mapping
of MontiCore grammars to Isabelle/HOL can be found in [2].

System Model. We have formalized the system model, introduced in Sect. 2,
in Isabelle/HOL as a hierarchy of theories.

1 theory Object imports Type

2 begin

3 datatype iCLASS = Class "char list"

4

5 consts

6 UCLASS :: "SystemModel ⇒ iCLASS set"

7 sub :: "SystemModel ⇒ iCLASS ⇒ iCLASS ⇒ bool"

8

9 fun psubRefl :: "SystemModel ⇒ bool"

10 where "psubRefl sm = (∀ C ∈ UCLASS sm . sub sm C C)"

11 end

Fig. 6. Isabelle/HOL theory Object (excerpt)

Fig. 6 shows a small excerpt from the theory Object which introduces the
universe of classes UCLASS (line 6) as a function that yields a set of class names (of
type iCLASS). consts is Isabelle’s way of declaring a constant without defining
it. Additionally, a subclassing relation sub is declared. The boolean function
definition psubRefl is a simple example of a predicate that must hold in all
valid systems and requires reflexivity of the subclassing relation.

The top-level theory SystemModel-base (Fig. 7) imports all basic definitions
and defines a predicate valid-base. In our abbreviated example, only theory
Object is imported. The full theory would import all other theories from Fig. 2
and combine all predicates (like psubRefl) into valid-base, describing all prop-
erties of a valid system in the system model.
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1 theory SystemModel-base imports Object

2 begin

3 fun valid-base :: "SystemModel ⇒ bool"

4 where "valid-base sm = (psubRefl sm ∧ ... )"

5 end

Fig. 7. Isabelle/HOL theory SystemModel-base (excerpt)

Semantic Mapping. The semantic mapping of our simplified class diagrams is
likewise formalized in Isabelle/HOL. The theory in Fig. 8 imports the abstract
syntax and the system model theory and defines the mapping. We only state
the signatures of the mapping functions, which are built in a modular fashion
along the abstract syntax. Note that the mapping functions for classes and class
diagrams, mCDClass and mCDDefinition, are function definitions (using the key-
word fun) while the mapping of super-classes of a class, consts mSuperClasses,
again is just a function declaration whose body has not yet been defined.

1 theory CDSimpSem-base imports CDSimpAS SystemModel

2 begin

3 consts mSuperClasses :: "iCLASS ⇒ IDENT list ⇒ SystemModel ⇒ bool"

4

5 fun mCDClass :: "CDClass ⇒ SystemModel ⇒ bool"

6 where ...

7

8 fun mCDDefinition :: "CDDefinition ⇒ SystemModel set"

9 where ...

10 end

Fig. 8. Semantic mapping of the simplified class diagram in Isabelle/HOL

4.2 Definition of Variants

We start by introducing a variant for the system model. Fig. 9 contains a theory
with an additional constraint for the transitive subclassing relation, restricting
it to single inheritance. That is, for all classes C1, C2, C3, if C1 is a sub class of
C2 and C3, then C2 and C3 have to be in a subclass relationship (or equal due to
reflexivity of sub).

As explained before, we model variants of theories as feature diagrams like
the one in Fig. 103. Ignoring the check mark for a moment, the feature dia-
gram therein states that SingleInheritance is an optional feature of the the-
ory Object. Other variants may be associated with other theories as the other
variation point vType indicates.

3 In our tool suite, we use a textual version of feature diagrams and configuration files
but we stick to the standard graphical form for the sake of clarity of the presentation.
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1 theory SingleInheritance imports Object

2 begin

3 fun valid-SingleInheritance :: "SystemModel ⇒ bool"

4 where "valid-SingleInheritance sm = (∀ C1 C2 C3.

5 sub sm C1 C2 ∧ sub sm C1 C3 −→ (sub sm C2 C3 ∨ sub sm C3 C2))"

6 end

Fig. 9. Definition of an Isabelle/HOL predicate about single inheritance

Fig. 10. Semantic domain feature diagram (fragment)

Additionally, the feature diagram for the variants of the semantic mapping
can be found in Fig. 11. The class diagram semantics has two variants for the
mapping of super-classes. The variant mapSuperCDirect carries an additional
constraint which excludes the use of variant SingleInheritance for the system
model. The actual implementation of the theories has been omitted.

Fig. 11. Semantic mapping feature diagram (fragment)

4.3 Configuration

The configuration space of the simple class diagram language has been defined
above with the help of feature diagrams. A concrete configuration for a system
model is also given in Fig. 10, in which the single inheritance variant is selected
as indicated by the check mark. As a configuration for the class diagram semantic
mapping, we select variant mapSuperCDelegate (see Fig. 11); choosing the other
variant would violate the exclusion constraint.
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A generator written for MontiCore processes a set of configuration files (mul-
tiple configurations of, e.g., the system model may be defined). It first com-
bines configuration files that refer to the same feature diagram. Then, it checks
if the configurations conform to the feature diagrams and if the constraints
have been observed. Afterwards, the configured theories for the system model
and the semantic mapping are generated. In case of a system model configu-
ration, the generated theory (see Fig. 12) combines all predicates (line 4) from
the imported theories that constitute the configuration. This is done by name
convention: The theory SingleInheritance has to provide a predicate called
valid-SingleInheritance.

1 theory SystemModel imports SystemModel-base

2 "vObject/SingleInheritance"

3 begin

4 constdefs "valid sm == valid-base sm ∧ valid-SingleInheritance sm"

5 end

Fig. 12. Resulting generated system model theory in Isabelle/HOL

Fig. 13 shows the resulting (generated) class diagram semantic mapping. It
simply combines the chosen theories using the Isabelle/HOL import mechanism.
The loose end in Fig. 8, namely the declaration mSuperClasses, is automatically
bound to the definition provided in theory MapSuperCDelegate.

1 theory CDSimpSem imports CDSimpSem-base

2 "vMapSuperClasses/MapSuperCDelegate"

3 begin end

Fig. 13. Resulting generated class diagram semantics theory in Isabelle/HOL

Finally, the theory in Fig. 14 uses the generated semantic mapping theory. The
generated system model theory was already used in Fig. 8 by the base version of
the semantic mapping. Presenting a meaningful verification application is outside
the scope of this paper, a simple verification example has been given in [2]. The
scenario in Fig. 14, however, suffices to show, on the one hand, how variants in
a language definition can be systematically handled using feature diagrams. On
the other, it shows that the whole approach can be supported by tools. In this
scenario, property P (Fig. 14, l. 3) ranges over all class diagrams and all systems.
In [2], we also presented an additional generator that translates concrete textual
models to instances of the generated abstract syntax data type. This makes it
also possible to reason about properties of concrete models.

The instantiation of variants is done at the theory level. We could have made
all variation points type parameters, similar to [14]. A configuration would then
correspond to instantiating type parameters with concrete types. We refrained
from doing so because the readability of the theories would have been drastically
reduced and it would be no longer possible to leave variants underspecified.
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1 theory myVerifyApp imports CDSimpSem

2 begin

3 lemma "∀ cd sm . mCDDefinition cd sm ∧ valid sm −→ P cd sm"

4 ... done

5 end

Fig. 14. A possible verification scenario in Isabelle/HOL

5 Related Work

To the best of our knowledge, there is no previous work on a general classification
of variability mechanisms offered by modeling languages. [15] also suggests fea-
ture models to express language variabilities. The focus is on syntactic variability
and variable code generators, formal semantics is not addressed.

Regarding the presented tool support for formal language definitions, most re-
lated approaches do not consider variability. For example, a complete language
definition (including syntax, typing rules, and operational semantics) can be
expressed in Alloy [16], which has the advantage of immediate analyzability. Se-
mantic anchoring [17] is another approach to define semantics with tool support.
Operational semantics is given by generated abstract state machines.

Other works support semantic variability to a certain extent. Template seman-
tics [18] can be used to define the behavioral semantics of state-based modeling
notations. The execution semantics is based on parametric hierarchical transition
systems whose behavior can be configured with the help of predefined template
parameters. In [19], template semantics is employed to define the semantics of
UML state machines. The semantics explicitly models the variability found in the
UML standard. [20,21] describe semantically configurable Java code generation
and analyzable models using template semantics. Template semantics provides
a rich theory for state-based modeling notation variants but is restricted to be-
havioral semantics that furthermore fits the computational model. Templatable
metamodels, introduced in [22,23], is a similar approach presented for metamod-
eling the abstract syntax and operational semantics of a domain specific modeling
language. It uses the UML 2 profile and template mechanisms to define variation
points at the metamodel level and to bind the introduced generic types to con-
crete types at the metamodeling or modeling level. Like template semantics, the
approach is targeted towards behavioral semantics but its mechanisms are more
compliant with the UML standard. Quite differently, [24] proposes an approach
to model semantic variation points and implementation choices as class models
in their own right. These are transformed together with a source UML model
into a specific target UML model that reflects the chosen variants. The focus in
this work is also behavioral semantics in that variants correspond to operations
implemented in an action language. We are not aware of any other framework
that supports defining and configuring syntactic and semantic variability in a
formal language definition.
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6 Conclusion

The contribution of this work is twofold. First, we presented a taxonomy of
variability mechanisms that may be found in a modeling language definition.
Variability may be of presentation, syntactic or semantic nature. Opposed to
UML, which only talks about “semantic variation points” in general, we further
classify semantic variability according to semantic domain and semantic mapping
variability. Semantic domain variability can be thought of as variability in some
run-time system modeling the underlying platform assumptions, while semantic
mapping variability would correspond to configuration options in a generator
targeting a previously chosen (i.e., configured) run-time system.

Second, we extended our framework for defining the syntax and semantics of
an object-oriented modeling language by integrating the variability mechanisms
that we have identified. The tool suite built on MontiCore and Isabelle/HOL
uses feature diagrams with inclusion/exclusion constraints to model variants and
their interdependencies in the syntax, semantic domain, and semantic mapping.
Given a configuration of variants for possibly multiple modeling languages, the
framework generates a set of theories representing the integrated language defini-
tions. This set of theories can be used in several verification scenarios. Note that,
while the framework is tailored towards object-oriented modeling languages, the
taxonomy mentioned above applies to any kind of modeling language. Likewise,
the framework could be used for semantic domains other than the system model.

Future work will be concerned with elaborating variability for concrete mod-
eling languages; larger case studies will contribute to validate the proposal and,
in particular, the tool support. The long term goal, regarding one of our main
targets UML, is to provide a comprehensive feature model for UML variability
which ultimately could replace the currently used informal definitions and feature
support statements. Another line of work is verification within our framework.
Theorem proving is challenging. The effect of variability in concrete verification
scenarios is not very well discussed and may require substantial further research.
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6. Deelstra, S., Sinnema, M., Nijhuis, J., Bosch, J.: COSVAM: A Technique for As-
sessing Software Variability in Software Product Families. In: Proc. of ICSM 2004,
pp. 458–462. IEEE Computer Society, Los Alamitos (2004)
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