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Two kinds of equality

Problem

Type theory is stricter than (oo, 1)-categories.

In type theory, we have two kinds of “equality”:
@ Equality witnessed by inhabitants of equality types (= paths).
® Computational equality: (Ax.b)(a) evaluates to b[a/x].

These play different roles: type checking depends on
computational equality.
e if 2 evaluates to b, and c: C(a), then also c: C(b).
e In particular, if a evaluates to b, then refl,: (a = b).

e if p: (a= b) and c: C(a), then only transport(p, c): C(b).
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Example
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gof = Xxg(f(x))
ho (g o f) = Ax.h( (Axg(f(x)))(x)) ~ Ax.h(g(f(x)))
(hog)of = rx.(Ar-h(g())) (F(x)) ~ Ax.h(g(F(x))



Two kinds of equality

But computational equality is also stricter.

Example

Composition is computationally strictly associative.

gof = Xxg(f(x))
ho (g o f) = Ax.h( (Axg(f(x)))(x)) ~ Ax.h(g(f(x)))
(hog)of = rx.(Ar-h(g())) (F(x)) ~ Ax.h(g(F(x))

e This is the sort of issue that homotopy theorists are intimately
familiar with!

e We need a model for (oo, 1)-categories with (at least) a
strictly associative composition law.



Display map categories

Forget everything you know about homotopy theory; let's see how
the type theorists come at it.
Definition
A display map category is a category with
e A terminal object.

e A subclass of its morphisms called the display maps, denoted
P— Aor P— A

e Any pullback of a display map exists and is a display map.



Display map categories

Forget everything you know about homotopy theory; let's see how
the type theorists come at it.
Definition
A display map category is a category with
e A terminal object.

A subclass of its morphisms called the display maps, denoted
P— Aor P— A

Any pullback of a display map exists and is a display map.

A display map P — A is a type dependent on A.

A display map A — 1 is a plain type (dependent on nothing).
Pullback is substitution.



Dependent sums of display maps

(x: A) F (B(x) : Type)

If the types B(x) are the fibers of B — A, their dependent sum
>« a B(x) should be the object B.

(x: A) = (B(x) : Type)

RH&—>«—W@

= (0 aB) : Type)

—R&—m@



Dependent sums in context

More generally:

(x: A), (v: B(x)) F (C(x,y) : Type)
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Dependent sums in context

More generally:

(x: A), (v: B(x)) F (C(x,y) : Type)

D «—N0

(x: A) F (Zy: B(x) C(x,y): Type>

D0

Dependent sums — display maps compose
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Aside: adjoints to pullback

e In a category %, if pullbacks along f: A — B exist, then the
functor
"2 ¢/B— E/A

has a left adjoint X given by composition with f.

e If f is a display map and display maps compose, then ¥
restricts to a functor

(%/A)disp — (%/B)disp

implementing dependent sums.

e A right adjoint to *, if one exists, is an “object of sections”.
% is locally cartesian closed iff all such right adjoints [M¢ exist.



Dependent products of display maps

(x: A), (v: B(x)) F (C(x,y) : Type)
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Dependent products of display maps

(x: A), (v: B(x)) F (C(x,y) : Type)

W &0

MNgC

(x: A) F (Hy: B(x) C(x,¥): Type> ) %
—»

Dependent products — “display maps exponentiate”



|dentity types for display maps

The dependent identity type
(x: A), (y: A) E ((x=y) : Type)

must be a display map
Ida

l

Ax A
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|dentity types for display maps

The reflexivity constructor
(x: A) F (refl(x) : (x = x))
must be a section

A*ldg ——Ida

S

ATAXA

or equivalently a lifting

Ida

2]

ATAXA
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|dentity types for display maps

The eliminator says given a dependent type with a section

ref*C — C C
< l l there exists /l
a compatible '
section \
A T Ida Ida

In other words, we have the lifting property

A——C

]

Ida Ida




|dentity types for display maps

In fact, refl has the left lifting property w.r.t. all display maps.

A
reﬂl

|dA?)

—

W«——N0O
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In fact, refl has the left lifting property w.r.t. all display maps.

A *C > C
_

reflJ{ l l

|dA |dA*> B



|dentity types for display maps

In fact, refl has the left lifting property w.r.t. all display maps.

A F*C——C
X _
L
reflJ{ B B l l
ldg —— Id4 ——B



|dentity types for display maps

In fact, refl has the left lifting property w.r.t. all display maps.

A FC C
X _
L
reflJ{ B - l l
Idy —— lda —— B

Conclusion

Identity types factor A: A— A X A as

Arfd, L Ax A

where g is a display map and refl lifts against all display maps.
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Weak factorization systems

Definition

We say j 1 f if any commutative square

X—B

[

Y —A

admits a (non-unique) diagonal filler.

e JU={fljmf VYjeJ}
e VF={jljmf VfeF}

Definition

A weak factorization system in a category is (J,F) such that
® J=9Fand F = JY.
® Every morphism factors as f o j for some f € F and j € J.



General factorizations

Theorem (Gambino—Garner)

In a display map category that models identity types, any
morphism g: A — B factors as

A;-)Ng—f»B

where f is a display map, and j lifts against all display maps.



General factorizations

Theorem (Gambino—Garner)

In a display map category that models identity types, any
morphism g: A — B factors as

A;-)Ng—f»B

where f is a display map, and j lifts against all display maps.

(y: B) b Ng(y) := hfiber(g,y) ==Y (g(x) =y)
x: A

is the type-theoretic mapping path space.
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Corollary (Gambino-Garner)
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is a weak factorization system.



The identity type wfs

Corollary (Gambino-Garner)

In a type theory with identity types,

(Z(display maps), (?(display maps))'z)
is a weak factorization system.

This behaves very much like (acyclic cofibrations, fibrations):
e Dependent types are like fibrations (recall “transport”).

e Every map in Y(display maps) is an equivalence; in fact, the
inclusion of a deformation retract.



Modeling identity types

Conversely:

Theorem (Awodey—Warren,Garner—van den Berg)

In a display map category, if

(Z(display maps), (?(display maps))‘Z'>

is a “pullback-stable” weak factorization system, then the category
(almost* ) models identity types.

identity types <+—  weak factorization systems



Model categories

Definition (Quillen)
A model category is a category C with limits and colimits and
three classes of maps:
e C = cofibrations
e F = fibrations
e W = weak equivalences
such that
@ W has the 2-out-of-3 property.
® (CNW,F) and (C,FNW) are weak factorization systems.



Type-theoretic model categories

Corollary

Let M be a model category such that
@ M (as a category) is locally cartesian closed.
® M is right proper.
© The cofibrations are the monomorphisms.

Then M (almost*) models type theory with dependent sums,
dependent products, and identity types.
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Type-theoretic model categories

Corollary

Let M be a model category such that
@ M (as a category) is locally cartesian closed.
® M is right proper.
© The cofibrations are the monomorphisms.

Then M (almost*) models type theory with dependent sums,
dependent products, and identity types.

Homotopy Type
theory (homotopy type) theory theory
Examples

e Simplicial sets with the Quillen model structure.

e Any injective model structure on simplicial presheaves.



Homotopy type theory in categories

(x: A) F p:isProp(B(x))
= (x: A), (u: B(x)), (v: B(x)) = (puyv: (u=v))
<= The path object P4B has a section in M /A
<= Any two maps into B are homotopic over A



Homotopy type theory in categories

(x: A) F p:isProp(B(x))
< (x: A), (u: B(x)), (v: B(x)) F (pu,v: (u=v))
<= The path object P4B has a section in M/A

<= Any two maps into B are homotopic over A

(x: A) F p:isContr(B(x))
< (x: A) F p:isProp(B(x)) x B(x)
<= Any two maps into B are homotopic over A
and B — A has a section

<= B — Ais an acyclic fibration



Homotopy type theory in categories

For f: A— B,

F p:isEquiv(f) < + H isContr(hfiber(f,y))
y: B
<= (y: B) F isContr(hfiber(f,y))
<= hfiber(f) — A is an acyclic fibration

<= f is a (weak) equivalence

(Recall hfiber is the factorization A — Nf — B of f.)



Homotopy type theory in categories

For f: A— B,

F p:isEquiv(f) <— + H isContr(hfiber(f,y))
y: B
<= (y: B) F isContr(hfiber(f,y))
<= hfiber(f) — A is an acyclic fibration
<= f is a (weak) equivalence

(Recall hfiber is the factorization A — Nf — B of f.)

Conclusion

Any theorem about “equivalences” that we can prove in type
theory yields a conclusion about weak equivalences in appropriate
model categories.



Coherence

Another Problem

Type theory is even stricter than 1-categories!

Recall that substitution is pullback.

frg"A gP P

A B C

a: Ak P(g(f(a))) b: B+ P(g(b)) c: CF P(c)
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Coherence

Another Problem

Type theory is even stricter than 1-categories!

Recall that substitution is pullback.

(gof) A P
A gef C
a: Ak P(g(f(a))) c: CF P(c)

But, of course, f*g*P is only isomorphic to (g o f)*P.



Coherence with a universe

There are several resolutions; perhaps the cleanest is:
Solution (Voevodsky)

Represent dependent types by their classifying maps into a universe
object.

Now substitution is composition, which is strictly associative
(in our model category):

At sc-Fy

of
A—% c—Lsu

We needed a universe object anyway, to model the type Type and
prove univalence.



Coherence with a universe

There are several resolutions; perhaps the cleanest is:
Solution (Voevodsky)

Represent dependent types by their classifying maps into a universe
object.

Now substitution is composition, which is strictly associative
(in our model category):

At sc-Fy

of
A—% c—Lsu

We needed a universe object anyway, to model the type Type and
prove univalence.

New problem

Need very strict models for universe objects.



@® The universal Kan fibration
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Representing fibrations

(Following Kapulkin—Lumsdaine—Voevodsky)

Goal

A universe object in simplicial sets giving coherence and univalence.

Simplicial sets are a presheaf category, so there is a standard trick
to build representing objects.

Un =2 Hom(A", U) ~ {fibrations over A"}

But n — {fibrations over A"} is only a pseudofunctor; we need to
rigidify it.
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A technical device (Voevodsky)

A well-ordered Kan fibration is a Kan fibration p: E — B together
with, for every x € B, a well-ordering on p~%(x) C E,.
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Well-ordered fibrations

A technical device (Voevodsky)

A well-ordered Kan fibration is a Kan fibration p: E — B together
with, for every x € B, a well-ordering on p~%(x) C E,.

Two well-ordered Kan fibrations are isomorphic in at most one way
which preserves the orders.

Definition

Up = {X — A" a well-ordered fibration}/

ordered =

Uy = {(X,x) ‘ X — A" well-ordered fibration, x € X,,}/

ordered =

(with some size restriction, to make them sets).



The universal Kan fibration

Theorem
The forgetful map U — U is a Kan fibration.

Proof.
A map E — B is a Kan fibration if and only if every pullback
b*E — E
|7
A"——B

is such, since the horns A}l — A" have codomain A".



The universal Kan fibration

Theorem
The forgetful map U — U is a Kan fibration.

Proof.
A map E — B is a Kan fibration if and only if every pullback
b*E — E
|7
A"——B
is such, since the horns A}l — A" have codomain A". Ol

Thus, of course, every pullback of U — U is a Kan fibration.



The universal Kan fibration

Theorem

Every (small) Kan fibration E — B is some pullback of U — U:
E—U

!

—

Proof.

Choose a well-ordering on each fiber, and map x € B, to the
isomorphism class of the well-ordered fibration b*(E) — A". O



The universal Kan fibration

Theorem

Every (small) Kan fibration E — B is some pullback of U — U:

1]

B—U
Proof.
Choose a well-ordering on each fiber, and map x € B, to the
isomorphism class of the well-ordered fibration b*(E) — A". O

It is essential that we have actual pullbacks here, not just
homotopy pullbacks.



Type theory in the universe

Let the size-bound for U be inaccessible (a Grothendieck universe).
Then small fibrations are closed under all categorical constructions.



Type theory in the universe

Let the size-bound for U be inaccessible (a Grothendieck universe).
Then small fibrations are closed under all categorical constructions.

Now we can interpret type theory with coherence, using morphisms
into U for dependent types.

Example

A context
(x: A), (y: B(x)), (z: C(x,y))

becomes a sequence of fibrations together with classifying maps:

//B

c » A 1
\ m/ \ [fy \ vy
U—»U U—U U—»U

in which each trapezoid is a pullback.
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Every type-theoretic operation can be done once over U, then
implemented by composition.

Example (Cartesian product)

e Pull U back to U x U along the two projections 71, 7.
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Strict cartesian products

Every type-theoretic operation can be done once over U, then
implemented by composition.

Example (Cartesian product)

e Pull U back to U x U along the two projections 71, 7.

e Their fiber product over U x U admits a classifying map:

(71 0) xuxu (130) — U
| |
U x UT)U

e Define the product of [A]: X — U and [B]: X — U to be

[x]

(AsD, (.

X U

This has strict substitution.



Nested universes

Problem

So far the object U lives outside the type theory.
We want it inside, giving a universe type “Type” and univalence.



Nested universes

Problem

So far the object U lives outside the type theory.
We want it inside, giving a universe type “Type” and univalence.

Solution

Let U’ be a bigger universe. If U is U’-small and fibrant, then it
has a classifying map:
Ny
N
1—p U

and the type theory defined using U’ has a universe type u.



Theorem
U is fibrant.
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with gj = f (and g*U = P). O



Theorem
U is fibrant.

Outline of proof.

iy

s
1|
An

With hard work, we can extend £*U to a fibration over A”":

FO P

=]

Mg ar

and extend the well-ordering of f*U to P, yielding g: A" — U
with gj = f (and g*U = P). O
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Extending fibrations

Lemma
Any fibration P — N} is the pullback of some fibration over A".

Proof.

e Let P/ C P be a minimal subfibration.
e There is a retraction P — P’ that is an acyclic fibration.

e Since A} is contractible, the minimal fibration P" — A] is
isomorphic to a trivial bundle A} x F — AJ.
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Extending fibrations

Lemma
Any fibration P — N} is the pullback of some fibration over A".

Proof.

e Let P/ C P be a minimal subfibration.
e There is a retraction P — P’ that is an acyclic fibration.

e Since A} is contractible, the minimal fibration P" — A] is
isomorphic to a trivial bundle A} x F — AJ.

,I)J anFP
l

P =NA] x F T A" x F
| - |

Y - A"



Univalence

We want to show that PU — Eq(U) is an equivalence:
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Univalence

We want to show that PU — Eq(U) is an equivalence:

U—"" PU—"— Eq(U)
N 4
UxUu
id l” k
U

It suffices to show:
@ The composite U — Eq(U) is an equivalence.
® The projection Eq(U) — U is an equivalence.
©® The projection Eq(U) — U is an acyclic fibration.



Univalence

By representability, a commutative square

A" — Eq(U)
I
AT —— U

corresponds to a diagram

N
/J /

OA" A"

E;

with E; — E» an equivalence.



Univalence

By representability, a commutative square with a lift

oA — Eq(U)

;4@

corresponds to a diagram

Ez
’ /

i

(‘3A”

with E; — E» and E; — E» equivalences.
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Univalence

E; E; R Mi(Er)
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e By factorization, consider separately the cases when E; — E)
is (1) an acyclic fibration or (2) an acyclic cofibration.

e (1) E; — E5 is an acyclic fibration (N; preserves such).

e (2) Ep is a deformation retract of Ej.



© Models in (oo, 1)-toposes



(00, 1)-toposes

Definition

An (o0, 1)-topos is an (oo, 1)-category that is a left-exact
localization of an (oo, 1)-presheaf category.

Examples

e oo-groupoids (plays the role of the 1-topos Set)

e Parametrized homotopy theory over any space X
e G-equivariant homotopy theory for any group G

e oo-sheaves/stacks on any space

e “Smooth oco-groupoids” (or “algebraic” etc.)



Univalence in categories

Definition (Rezk)

An object classifier in an (oo, 1)-category C is a morphism U—U

such that pullback
B U

A—U

—
J

induces an equivalence of co-groupoids

Hom(A, U) = Core(C/A)small

(“Core" is the maximal sub-oo-groupoid.)



(00, 1)-toposes

Theorem (Rezk)

An (00, 1)-category C is an (oo, 1)-topos if and only if
® C is locally presentable.
@® C is locally cartesian closed.

© rk-compact objects have object classifiers for k > Q.



(00, 1)-toposes

Theorem (Rezk)

An (00, 1)-category C is an (oo, 1)-topos if and only if
@ C is locally presentable.
@ C is locally cartesian closed.

© rk-compact objects have object classifiers for k > Q.

Corollary

If a combinatorial model category M interprets dependent type
theory as before (i.e. it is locally cartesian closed, right proper, and
the cofibrations are the monomorphisms), and contains universes
for k-compact objects that satisfy the univalence axiom, then the
(00, 1)-category that it presents is an (0o, 1)-topos.



(00, 1)-toposes

Conjecture

Every (oo, 1)-topos can be presented by a model category which
interprets dependent type theory with the univalence axiom.

Homotopy type theory is the internal logic of (oo, 1)-toposes.



(00, 1)-toposes

Conjecture

Every (oo, 1)-topos can be presented by a model category which
interprets dependent type theory with the univalence axiom.

Homotopy type theory is the internal logic of (oo, 1)-toposes.

If this is true, then anything we prove in homotopy type theory
(which we can also verify with a computer) will automatically be
true internally to any (oo, 1)-topos. The “constructive core” of
homotopy theory should be provable in this way, in a uniform way
for “all homotopy theories”.
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