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Abstract  

Defects experienced during construction are costly and preventable.  However, inspection 

programs employed today cannot adequately detect and manage defects that occur on 

construction sites, as they are based on measurements at specific locations and times, and are not 

integrated into complete electronic models.  Emerging sensing technologies and project 

modeling capabilities motivate the development of a formalism that can be used for active 

quality control on construction sites.  In this paper, we outline a process of acquiring and 

updating detailed design information, identifying inspection goals, inspection planning, as-built 

data acquisition and analysis, and defect detection and management.  We discuss the validation 

of this formalism based on four case studies. 
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1.  Introduction   

 

Current approaches for quality control on construction sites are not as effective as they could be 

in identifying defects early in the construction process.  As a result, defects can go undetected 

until later phases of construction or even to the maintenance phase.  Defects, when detected late, 

can have costly ramifications.  It has been noted that six to twelve percent of construction cost is 

wasted due to rework of defective components detected late in the construction phase [1][2][3] 

and five percent of construction cost is wasted due to rework of defective components detected 

during maintenance [3].  Twenty to forty percent of all these site defects can be attributed to the 

construction phase [3]. 
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According to [4], fifty-four percent of all construction defects are related to human factors such 

as unskilled workers or insufficient supervision of construction work.  Furthermore, twelve 

percent of construction defects are due to material and system failures [4].  These statistics all 

suggest the importance of inspection for achieving higher construction quality.  In addition, it has 

also been identified that careful inspection during construction is one of the most important 

factors in preventing structural failures during construction [5].  

 

The status of the work in place at construction sites changes continuously as construction 

projects evolve over time.  Current surveying and quality control approaches are not effective, 

since they only provide data at specific locations and times to represent the work in place, and 

the data generated are interpreted manually and are not integrated electronically into the project 

design and schedule.  Consequently, project managers do not get complete and accurate 

information about work in place.  This limits their abilities to easily identify and manage defects, 

and actively control and manage construction projects.  Frequent, complete, and accurate 

assessment of the status of as-built conditions at construction sites, identification of critical 

spatio-temporal and material quality related deviations of work in place, and assessment of 

whether these deviations constitute defects during a construction project are necessary for active 

project quality control. 

 

Recent advances in generating 3D environments using laser scanning technologies, and acquiring 

quality information about built environments using embedded and other advanced sensors create 

an opportunity to explore the technological feasibility of frequently gathering complete and 

accurate three-dimensional and material quality related as-built data.  Laser scanners are being 

utilized to collect 3D geometric as-built information for renovation, retrofit and expansion 

projects in industrial, commercial and heavy-civil sectors of construction, and a set of these 

studies suggests some cost benefits of using scanners for quality control purposes [6][7][8].  

Embedded sensing is also being adopted by various owners for assessment of quality of cast-in-

place concrete.  According to a survey of American state departments of transportation in 2000, 

thirty-two of the forty-four respondents indicated progress in investigating the sensor-based 

maturity method for their quality and project control purposes, and thirteen had already 

developed a protocol for its use [9]. 

 

Over a decade of research on integrated project models and current usage trends in the 

Architecture/Engineering/Construction (AEC) industry have shown that a semantically rich 

project data model, combining multiple project participants’ views, can support various project 

management and facility management functions [10][11][12][13].  This provides an opportunity 

to integrate as-built data collected from laser scanners and embedded sensor systems with 

planned design and schedule models to assess whether there are important deviations between 

as-designed and as-built conditions.  

 

Our research has shown that current sensing and scanning technologies and modeling approaches 

are technologically advanced, but the usage of them should be carefully planned and the data 

collected from them should be carefully analyzed in support of the desired task.  There is a need 

for developing a formalism for utilizing these sensing and scanning technologies and for 

analyzing the data collected.  Our approach includes utilization of prior design, schedule, and 

construction specification knowledge to determine what sensors to use when, and where to locate 
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the sensors to enable efficient and effective data collection and to analyze the as-built data 

collected from these sensor systems to detect construction defects [14].  

 

In this paper, we provide an overview of a formalism developed for active construction quality 

control using sensors and integrated project models.  The focus of the formalism has been to 

leverage the technological advances in the automated data capture area. We have tested the 

technological aspects of this formalism on four construction job sites and in the last section of 

this paper, we describe our validation of the technical feasibility of the formalism by conducting 

retrospective and concurrent cases at these four sites.  

 

2.  Background research  

 

Automated quality control approaches developed so far have mostly focused on streamlining the 

document management process associated with quality assurance and quality management on 

construction sites.  Riley and Pickering have suggested an automated total quality management 

system composed of quality assurance process, form libraries and report management modules 

[15].  Similarly, two of the previous research projects focused on developing a computer-based 

implementation of ISO 9000 and 9001 guidelines on how to structure and  store various quality-

related information and documents such as inspection and test plans by utilizing templates 

generated by the systems developed [16][17].  These systems provide a formalism that enables 

contractors to implement ISO guidelines; however, they have not included an approach that 

leverages automated data capture technologies for creating and reasoning about as-built models 

during quality control processes.   

 

Laser scanners are proving to be effective for capturing detailed 3D spatial data in order to create 

3D as-built models.  Cheok et al. demonstrated how LADAR (Laser Distance and Ranging) can 

be used for construction progress monitoring by focusing on and developing an approach for 

excavation work [18].  Their approach included generating and analyzing terrain models based 

on the data collected from LADARs to assess the progress of an excavation activity.  Kwon et al. 

developed an approach that fits range data to geometric primitives so that 3D as-built modeling 

can be achieved rapidly [19].  This approach utilizes sparse range point clouds and targets 

increasing the efficiency of processing the data collected to enable real-time field applications.  

Kim et al. have developed a laser-based aggregate scanning technique utilizing scan data to 

automatically identify sizes of stone aggregates [20].  In that research, they have transformed the 

3D laser scan data into a 2D image format and utilized technologies developed for digital 

imaging for assessment of the volume of an aggregate.  These research projects demonstrate the 

applicability of LADAR technology to the assessment of as-built conditions on construction 

sites.   

  

Embedded sensors are also beginning to be used effectively on construction sites to collect 

quality-related information.  For example, Goodrum et al. completed a pilot study using 

embedded temperature sensors and data loggers to enable the use of the concrete maturity 

method to predict concrete strength for cast-in-place components for an industrial facility [21].  

This study showed that data collected during inspection could be used to accelerate construction 

by providing frequent measurements of components as they cure; resulting in lower labor costs 
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and a shorter overall schedule.  It has also been shown that embedded sensor deployments enable 

improvement in construction quality control and quality assurance.  For example, Inaudi et al. 

used multiple embedded deformation sensors in a concrete bridge first to inspect strains 

experienced during the curing process, and secondly to monitor the mean elongation and bending 

experienced during a six-hour staged relocation process to ensure that the bridge did not 

experience damage as a result of the move [22].  Embedded sensors are also used in long-term 

monitoring of such properties as acceleration, vibration, and acoustic emissions well after 

construction [23].  These research projects and field tests demonstrate the applicability of 

embedded sensors in varying sized deployments and for time periods varying from days to years 

 

All of these research projects demonstrate that laser scanners and embedded sensors can be 

applied effectively in a wide variety of construction site conditions and in varying durations of 

deployment.  However, additional development is necessary for preparing for, avoiding, and 

reacting to technology failures, such as crimped wires and overfilled data loggers.  Additionally, 

while considering frequent inspection of as-built conditions using reality capture technologies, 

one must consider the upstream and downstream process implications of inspection timing, 

frequency, level of detail, and personnel commitment, such as modeling time [46].  We have 

built on these previous research studies in applications of reality capture technologies on 

construction sites to develop an approach for inspection planning that deploys these sensor 

technologies and for interpreting the data originating from these sensors for assessment of 

construction quality. 

 

3. Overview of the approach 

 

Figure 1 describes the overall ASDMCon (Advanced Sensor-based Defect Management on 

Construction Sites) approach and different modules that make it up.  The approach consists of 

modules that enable acquisition and update of the design and schedule information, modules that 

enable inspection planning and collection of as-built information based on that plan, and modules 

that analyze the as-built information from a quality control perspective.  Some of these modules 

are commercially available (highlighted as dashed-lines in the figure) and some of them are 

developed within the research effort.   

 

In terms of commercially available systems, we have used ArchiCAD 8.0 in creating the as-

planned product model.  For data collection, we have utilized two different types of laser 

scanners and various types of temperature sensors.  The laser scanners that we utilized include a 

commercially-available Zoller + Fröhlich LARA 25200 (Z+F scanner), and a research test-bed 

composed of two actuated SICK lasers (CMU scanner).  Both generate 3D point clouds as their 

output.  We have conducted experiments with commercially available embeddable sensors such 

as thermocouples and thermistors produced by intelliRock, Con-Cure, and Microstrain. 

 

As Figure 1 shows, our approach for active project control and management utilizes a core 

"living" (continuously updated and maintained) project model composed of as-planned, as-built, 

specification, and defect models.  The as-planned model includes product and process 

information obtained from design and scheduling software systems and represents that 

information in an integrated manner.  Specification modeling enables capturing the construction 
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specification information and representing them in a computer-interpretable way within the 

integrated project model. The as-built model contains product and process information based on 

the data collected from a construction site.  Finally, the defect model contains any product 

related deviations identified between as-planned and as-built models. 

 

 

Figure 1.  Overall approach for sensor-based quality control 

 

This quality control formalism implemented in this research is composed of five major 

processes: transforming the design model, identifying inspection goals, planning inspection 

activities, collecting as-built data, and analyzing data for quality control (Figure 2). The first 

process transforms a given design and schedule models to create an initial as-planned project 

model with multiple views necessary to support the subsequent processes.  This project model, 

together with computer-interpretable representations of construction specifications, is utilized to 

identify inspection goals.  Information goals are utilized for inspection planning, during which 

inspection methods are identified based on the available sensing systems and their properties. 

With inspection methods selected, sensor locations are optimized and inspection activities are 

created and added to the project model.  This information is used to guide the collection and 

analysis of as-built data.  Analysis of as-built data includes alignment of data collected from 

multiple scans and recognition of objects within the scanned data.  These help in generating an 

as-built model that can be compared to the as-planned model to identify deviations.  Once the 

deviations are identified, construction specifications are reasoned with to determine if any of the 

deviations constitutes a defect.  At the end of these five processes, a project model that integrates 

as-planned, as-built, and defect information is generated.  Whenever a construction defect exists, 
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further actions might need to be taken to correct the defect (in terms of rework) or to incorporate 

it into the next version of the design.  Hence, the overall process outlined in the circle shown in 

Figure 1 and 2 continues until the completion of a project. 
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The following sections elaborate further the five processes shown in Figure 2. 
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3.1. Transformation of the design model 
 

Previous building product modeling research efforts have focused on providing a design- 

component view of a building project.  Many researchers [24][25][26] have identified issues of 

product model progression and elaboration; these become important when the different product 

models become incorporated into a project model in a construction process.  Such project models 

support the exchange of engineering and other design information with construction information, 

such as specifications, and support advanced planning and monitoring during construction. 

 

The transformation of a design model into a project model involves decomposition of 

components. In a previous research, Fischer and Aalami (1996) defined mechanisms that 

transform a design-centric decomposition of a product model into a production-centric 

decomposition [27].  Their approach included three sets of transformations; (i) the introduction 

of temporary structures, (ii) the refinement of components, such as walls, slabs, beams and 

columns etc., and (iii) the aggregation of components.  These three mechanisms were triggered 

by or closely related to a construction schedule and a set of construction methods utilized.  

Additionally, the transformation of a design model included other complex relationships with a 

construction process.   Akbas and Fischer (1999) pointed out that the relationships between 

components can vary in different views over the life cycle of the project [28]. It is clear that 

whenever there are changes to the product model caused by transformations resulting in new 

components or new inter-component relationships, the underlying representation needs to be 

updated. 

 

The mechanisms defined by Fischer et al. (1998) [11], make the reasons for each product model 

transformation explicit.  Therefore, new product models suitable for a particular set of tasks can 

be generated, and the resulting specific product models can be maintained whenever design and 

construction methods change.  While these previous approaches are suitable and can generate the 

necessary changes in a product model for the purposes of the research described in this paper, 

maintaining a product model at a desired perspective and level of detail throughout the design 

and construction process, without explicitly defined and implemented product model 

transformation mechanisms, can be cumbersome.  Knowing that a variety of engineering tasks 

require multiple viewpoints, each distinguished by particular interests and emphases, there are 

multiple representations for certain components in the project model.  The transformation 

mechanisms can be implemented at the database level, with clear specifications from the user.  

The research described in this paper incorporated such an approach, called sorts [29][30][31],  

for transforming project model objects as needed by a particular set of engineering tasks, such as 

inspection planning and deviation detection. 

 

“Sorts” provides an approach to defining representational structures that enable these structures 

to be compared based on the scope.  “Sorts” also presents a uniform approach to manipulating 

data structures.  Individual sorts are class structures identified by compositions of properties.  

Properties are named entities identified by a type specifying the set of possible values. These can 

be composed or grouped using one or more constructors.  Currently, two constructors are 

considered: subordinate and disjunctive coordinate compositions of properties.  Furthermore, the 

ability to alter a representational structure by changes to compositional sortal relationships 
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facilitates user definition and redefinition of and within the representation.  More information on 

this “sorts” approach can be found in [29][30][31]. 

 

3.2. Identify inspection and measurement goals  
 

To perform sensor-based quality control, it is critical to know what the inspection goals are, i.e., 

what components and attributes of components need to be inspected with what accuracy.  

Determination of inspection goals is a first step towards the selection of appropriate inspection 

methods and technologies.  With the technologies in mind, the appropriate measurement goals, 

i.e., what measurements need to be made and with what accuracy, can be derived from the 

inspection goals. 

 

Construction specifications for a project serve as a major knowledge source for identifying 

inspection goals.  These specifications describe the quality requirements for the construction 

project and, as such, state allowable performance tolerances for the constructed products.  This 

information can be directly translated into inspection goals.  However, this is too tedious to be 

done manually due to the large number of construction specifications that are applicable to a 

construction project.  Therefore, this process needs to be automated as much as possible. 

 

To enable the automation of the inspection goal identification, construction specifications need 

to be represented in a computer-interpretable form.  In this research, we have developed a 

representation of specifications using contexts, requirements, features, attributes and behaviors 

to support both automated inspection goal identification and automated construction defect 

detection [32].  For inspection goal identification, the context of a construction specification can 

be evaluated to identify a set of components that are possibly related to a given specification.  

The requirement of a construction specification restricts the applicability of the specification 

further by imposing additional requirements that are bound to attributes of specific components 

or behaviors of features.  If a specification’s context and requirements are satisfied, the attributes 

and features, together with their corresponding tolerances targeted by a given specification, are 

determined.  These features and attributes of a component and the corresponding tolerances are 

then represented as inspection goals for the components associated with that given specification. 

 

Knowing only the inspection goals is not sufficient.  It is also necessary to know the earliest and 

latest times that inspections can be performed.  With temporal information available based on a 

given schedule, it is possible to identify windows of opportunity for performing inspections.  

This temporal information further elaborates the inspection goal description.  When determining 

the windows of opportunity for inspections, one can identify the start dates of construction 

activities related to a given building component and assign that time as the earliest time that the 

component can be inspected.  In addition, some specifications require inspections of a 

component to be performed before other components are to be built.  In those cases, retrieving 

the installation times for the succeeding components from the schedule helps in defining the 

latest time when an inspection can be performed.  Thus, windows of opportunity for inspection 

goals can be determined automatically using the underlying integrated as-planned product and 

process model, and reasoning about the construction specifications.  These windows of 

opportunity should be determined periodically every time as –planned or as-built is updated and 

should be linked to the as-built schedule. 
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3.3.  Inspection planning  
 

Given inspection goals, and the desired accuracy and timeframe during which they are to be 

addressed, one can then select appropriate inspection methods and make decisions about which 

technologies to use for data collection functions, such as measurement, communication, memory 

and power, and when and where to use these technologies such that deployment meets inspection 

requirements effectively.  First, it is necessary to identify inspection methods that may be 

appropriate for a given inspection context.  This process, identified in [33], requires determining 

if an inspection goal is refined sufficiently to be matched to available inspection methods, 

reasoning with contextual information, such as weather, in order to refine goals further, and 

heuristically matching goals to methods by reasoning with the attributes to be inspected.  

Inspection methods are then applied to generate inspection activities and to select inspection 

technologies such as sensors.  Once the inspection technologies are selected, sensor locations can 

be optimized to ensure adequate coverage of the area to be inspected.  The selected set of sensors 

can be deployed to the optimized sensor locations to make the required measurements.  As a 

result, sensor deployment is integrated into the project models incorporating as-built and as-

planned design and schedule.  

 

 

Figure 3.  Process model of inspection planning 

 

 

3.3.1.  Identification of inspection methods  

 

Goals for inspection may be addressed by multiple types of inspection methods, each requiring 

different inspection technologies and tasks.  In order to make informed decisions about an 

inspection to be performed, it is necessary to consider the range of possible inspection methods 

that can be applied in order to satisfy the goals for inspection. 

 

Inspection goals might not be represented at a sufficient level of detail to select appropriate 

inspection methods, in which case the goals must be refined.  This may be because a goal is not 

defined based on measurable attributes, or because no inspection method is available to address a 

given inspection goal.  Information about the context of inspection can be used to guide how an 
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inspection goal should be refined.  For example, in a hot-weather context, concrete quality 

should be evaluated based on durability, compressive strength, workability, and temperature.  

Given a fully refined goal (i.e. one that can be addressed by an inspection method in a given 

domain), it is possible to identify various methods capable of addressing the goal, and generate 

inspection plans.  Inspection methods are identified by reasoning with the attributes to be 

inspected and reasoning with the constraints on how inspections are to be performed, such as 

constraints on the duration or destructiveness of inspections. 

 

 

3.3.2. Optimization of sensor locations  

 

It is expensive to provide sensor coverage for areas that do not require frequent or even 

occasional inspections.  Instead, it is necessary to optimize sensor configurations for the highest 

quality data collection, while minimizing cost and time to acquire that data.  Three-dimensional 

laser scanning is a relatively costly process, as it takes time to set up the LIDAR sensor, take a 

scan, and visually verify the data.  In order to minimize the length of interruptions to the 

construction process during data collection, the fewest number of scans should be used to 

achieve a desired set of measurement goals.  Furthermore, if the necessary data is captured in 

fewer scans, it may simplify the data analysis process later, as there is less data to process.  

 

Finally, different inspection goals may have different scanning requirements.  For example, 

checking alignment of an anchor bolt may require a high scanning resolution while confirming 

relative position and orientation of walls and columns requires a scan that captures information 

over a wide area.  Another goal of scan planning is to ensure that scans achieve the required 

resolution or data density, and that multiple goals will be captured in the same scan if possible.  

As a result, the user needs to designate which measurement goals must be captured in the same 

scan in order to fully meet certain inspection goals. 

 

Inputs to the scan planning process are the as-designed model for the current stage of 

construction, the scanner specifications (based on the scanner selected during inspection 

planning), and the corresponding measurement goals.  Outputs are an optimal set of sensing 

locations and scan angles to achieve the given goals, and a motion plan (path) to travel between 

sensing locations.  

 

The first step in scan planning is to group construction measurement goals into clusters, 

simplifying the planning space in order to reduce computational complexity.  For each cluster, 

the planner generates the space of potential sensor placements for a set of information goals and 

selects a minimal set of subspaces to take advantage of views that can achieve multiple goals 

simultaneously.  Sensing locations are chosen that maximize the resolution achieved for each 

goal, and a path is generated to minimize the transit cost between the various sensing locations 

within each cluster.  Finally, a path that minimizes the transit cost between sensing locations is 

generated.  At various points in the process, relevant data is saved so that it can be reused should 

the plan need to be updated.  Further details on scan planning are described in [34]. 
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3.4. Data collection  
 

Based on the inspection methods identified and the optimized scanner locations, one can start 

collecting data on a construction site.  In this research, data collection efforts included two 

different types of scanners to collect the geometry information, and three different types of 

temperature sensors to assess the strength of a cast-in-place concrete in various construction job 

sites.   

 

We have experimented with commercially-available Zoller + Fröhlich LARA 25200 (Z+F 

scanner), and an internally developed scanner (CMU scanner).  Both scanners generate 3D point 

clouds as their output.  The Z+F scanner has a 360 x 70 degree field of view and a 25.2 meter 

maximum effective range.  It has a data rate of 120,000 samples per second, acquiring an 8000 x 

1400-pixel scan in ninety-three seconds.  Each point in the scan contains a fifteen bit range 

measurement and a sixteen bit reflectance value.  The noise on the range measurements is zero 

mean Gaussian with a standard deviation of 2.67mm for a 20% reflective surface at thirteen 

meters.  The Z+F scanner has the advantage of delivering 3D data at very high resolution in a 

reasonable amount of time (Figure 4a).  For example, at a range of ten meters, a surface will be 

sampled on a grid with 9mm spacing.  The CMU scanner consists of a SICK (LMS 291) laser 

line scanner mounted on a panning mechanical actuator.  It has a 130x100 degree field of view 

and acquires 800x400 pixel range image in approximately 10 seconds.  At ten meters, a surface 

will be sampled on a grid with 4cm spacing- about a fourth of the spatial resolution of the Z+F.  

The noise in the CMU scanner’s range measurements has a standard deviation of 6mm for a 

surface of thirteen meters.  The maximum range of this scanner is eighty meter.  The CMU 

scanner is much faster than the Z+F scanner in acquiring as-built conditions and provides sparse 

scanning as a possible way of collecting the data (Figure 4b).  Figure 4 shows the scanned data 

of a column footing obtained from the two scanners.   

 

It is important to understand how sensor resolution and range accuracy translate into the ability 

to detect construction defects.  For example, can the Z+F scanner detect a column that is out of 

position by 6mm?  The answer depends on a number of additional factors beyond the underlying 

sensor accuracy, including measurement goal type, object size, surface orientation, and even 

surface material.  Some measurement goals, such as determining the location of anchor bolts, 

require point measurements, while other goals, such as determining the plumbness of a column, 

involve measurements on relatively large surfaces.  The accuracy of area-based measurements 

can be much higher than that of the individual sensor measurements because data fitting 

methods, such as plane fitting, will average out the single measurement noise, provided that it is 

unbiased.  Object size also affects the accuracy of area measurements.  All other things being 

equal, the plumbness of a six meter column can be measured more accurately than that of a three 

meter column because twice as much surface area can be used for the plane fitting.  Surface 

orientation affects measurement accuracy due to reduced resolution of obliquely viewed 

surfaces.  For example, the side of a column viewed from a sixty degree angle will have a 

resolution half as dense as the front of the same column viewed straight on.  Finally, surface 

material can affect measurement accuracy.  Dark-colored surfaces absorb laser light, resulting in 

noisier range measurements.  At the other extreme, highly reflective surfaces, such as polished 

metal, can act as a mirror, resulting in an incorrect range measurement or no measurement at all.   

 



 12 

  

Figure 4a.  As-built data 

obtained from the Z+F scanner 

Figure 4b.  As-built data 

obtained from the CMU scanner 

Figure 4.  Data acquired about a column footing from two different scanners 

 

 

As can be seen from Figure 4, the data collection process and the resolution of the data collected 

can be quite different based on the scanner utilized.  The quantity of the measurement goals for a 

given scanning session and the detail and accuracy required for each measurement goal 

determine the choice of scanner.  For example, if one needs to have detailed data about anchor 

bolts, a higher resolution scanner placed close to the location of objects of interest might be 

needed.  On the other hand, if one needs to know the locations of a large number of columns in a 

row, a scanner with lower resolution and higher range located further away from the component 

might suffice.  These experiments further demonstrate the need for formally identifying the 

measurement goals, the corresponding inspection methods (which include the choice of 

technology to utilize), and for optimizing scan locations prior to acquiring data on sites.  Other 

lessons learned associated with utilization of the two laser scanners on construction sites include 

the difficulties of moving the equipment over rocks, mud, and temporarily stored materials on 

the site; the need for power to run this equipment; and the impact of the extreme temperatures on 

the performance of the sensors [35]. 

 

We have also experimented with various commercially available embedded temperature sensing 

systems.  We selected systems that differ from each other in terms of whether communication, 

computation, measurement, and data storage functions were performed in-situ, in-situ/mobile, or 

ex-situ.   Initial experiments showed that requirements of supporting sensing system 

technologies, such as the amount of data storage, must be designed to support an inspection task 

as well as to accommodate the uncertainty in timing of construction operations [35].  Further 

experiments with embedded sensing have focused on identifying distinguishing factors in 

decisions related to selection and use of sensing technologies. 

 

 

3.5. Data analysis for quality control 
 

The as-built data collected from construction sites using sensor systems needs to be further 

processed to enable automated analysis for quality control.  Figure 5 shows a process model of 

the as-built data analysis process for automated quality control.  Laser scanners provide point 

clouds in local coordinate for each scan location.  To have a complete understanding and 

assessment of as-built conditions on a construction site, the individual scans need to be aligned 
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with one another – a process called registration.  The registered data provides a more 

comprehensive 3D model of the site.  However, it is still in a point-cloud form.  Object 

recognition provides a way to identify objects from a scene and reverse engineer the objects 

identified to highlight and represent the as-built conditions of the building components within the 

as-planned model in an object-oriented way.  At the end of object recognition, an object-oriented 

representation of as-built conditions is integrated into the project model.  Once an integrated as-

planned and as-built model is created, the data from both models can be compared to identify 

deviations and to assess whether any of the deviations identified constitutes a construction 

defect. 

 

 

Figure 5.  Process model of data analysis for quality control  

 

 

3.5.1. Registration  

 

The as-built data obtained from the laser scanners are in the form of 3D point sets known as 

point clouds.  The point cloud from each scan is represented in the local coordinate system of the 

scanner, which makes it impossible to perform direct comparisons with the as-designed model 

for defect detection and analysis. Therefore, it is necessary to align all of the scans in a common 

coordinate system – a process known as registration.  Furthermore, the collectively registered as-

built scans must be registered with the as-designed model to enable reverse engineering and 

deviation detection.   

 

There are a number of established methods for registering 3D point clouds.  First, the sensor can 

be augmented with a pose estimation system that records the scanner’s position and orientation 

for each scan [36].  Second, the environment can be augmented with markers, known as 
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fiducials, with known locations, which are then detected in the 3D data and used to aid in the 

registration [37].  Third, the scans can be manually registered, for example, by specifying two or 

three pairs of corresponding points in two scans [38].  Finally, automated methods based on 

computer-vision algorithms can be used to automatically register views without any knowledge 

of the scanner position or orientation [39].   

 

Currently we use the manual registration method, with the goal of migrating to the automatic 

registration method in the near future.  Our current automatic registration algorithms require 

approximately fifty percent overlapping data to succeed.  The next generation of the algorithm 

will be extended to handle a lower amount of overlap that is dictated by the need to minimize the 

total number of scans collected. 

 

Once the registration of pairs of scans is accomplished, a second registration phase involving all 

of the scans is necessary.  The process of sequentially registering a series of data sets leads to 

accumulation of error, and the resulting model will not be geometrically accurate.  This error can 

be eliminated by simultaneously registering all the scans, a process known as multi-view 

registration.  Several multi-view registration algorithms have been proposed [40][41][42].  

Neugebauer’s algorithm [41] has proven effective in our work.  

 

Finally, the as-built model must be registered with the as-designed model.  This problem is 

identical to the pair-wise registration problem described above, and therefore, the same methods 

are applied. 

 

 

3.5.2. Object recognition  

 

Once the as-built model is constructed and registered with the as-designed model, it is possible to 

perform quality control analysis.  However, since the as-built model is in the form of a point 

cloud, this analysis must necessarily take place at the lowest level (i.e., raw point data).  We 

hypothesize that more effective analysis can be accomplished by further processing the as-built 

data to enable comparisons at a higher level.  Object recognition serves this purpose by providing 

a bridge from the low-level point data to a high-level component level.  For example, given a 3D 

model of a column, that column can be detected in the as-built data, and its position determined 

through the use of object recognition. 

 

Previous research in 3D computer vision has demonstrated the ability to detect and localize free-

form objects within 3D scenes [43][44][45].  The key to this technology is the use of local shape 

descriptors, which encapsulate the surface shape of parts of a 3D object model to be recognized 

(the query model).  The same shape descriptors are then computed at points in the as-built model 

(the scene).  Descriptors for points on the target object in the scene will be similar to those 

computed for the query model.  Once the object is recognized, the matching descriptors can be 

used to determine the pose of the query model in the scene.   

 

This basic object recognition approach has been applied to rigid objects, and more recently to 

articulated objects.  Currently, we are working on symmetry analysis as well as extensions to 
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enable non-rigid objects to be recognized.  In particular, we are seeking ways to allow 

recognition of parametrically defined query models, such as a column with variable height.    

 

3.5.3.  Deviation and defect detection  

 

Identifying spatial and material quality related deviations is the first step in discovering 

construction defects.  Identification of deviations can be accomplished by comparing the 

processed as-built data obtained from sensors to the given design model.  Once a deviation is 

found, it can be evaluated based on related construction specifications to determine whether the 

deviation identified violates any specification and thus constitutes a construction defect.  If this is 

the case, corrective actions need to be planned and implemented to resolve the defect.  

Identification of deviations is also important in preventing the occurrences of defects.  If a 

deviation between the design and the as-built conditions is known, this knowledge can be 

incorporated in the planning of succeeding construction activities to avoid propagation and/or 

amplification of the deviations which could result in defects [6]. 

 

The research project described in this paper incorporates a model-based deviation detection 

approach which assumes that all as-built and design information is represented in the integrated 

project model.  The as-built information integrated in the model thereby is extracted and derived 

from the raw-data received through the deployed reality-capturing technologies. The raw-data is 

also linked to the integrated project model, so that no loss in data or resolution occurs.  Within 

this model, the approach compares the design information to the related as-built information to 

identify deviations.  A simple comparison of the values of the attributes of the objects within the 

as-built model to the objects within the design model is not feasible since the representation of 

the design information and the representation of the as-built information are likely to differ in 

their structures.  The differences can stem from different levels of detail of the data, different 

levels of hierarchical decompositions, and differences in the actual representation of the same 

information resulting from the flexibility of the project model used [32].  Thus, a one-to-one 

comparison of design and as-built information is not appropriate.  

 

Instead, a feature-ontology and attribute-ontology based deviation detection approach is needed.  

Ontology for features and attributes developed from construction specifications enables the 

development of a deviation identification mechanism that is not dependent on the structure of the 

information representation within the integrated project model.  In this case, the deviation 

detection mechanism searches for deviations in the features and attributes.  However, additional 

mechanisms need to be implemented to extract the relevant feature/attribute from the underlying 

information representation in a given integrated project model.  Due to the possible repetition in 

the structure of the information representation in the integrated project model, many of the 

feature extraction mechanisms are reusable for different objects in the model.  If raw as-built 

data is available and linked to the integrated project model, it is used for comparison to the 

design information extracted from the integrated project model to avoid any loss of information 

resolution. Any deviations found will then be mapped to the respective features and/or attributes 

defined in the ontology. For example, deviation detection based on scanned data will compare 

the raw point clouds with the design information. The deviations found are then mapped to the 

specific features or attributes, e.g. surface-deviations or location-deviations, of the affected 

component. 
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Since the deviation detection will be performed frequently throughout the construction process, it 

is expected that the as-built part of the integrated model will change over time and will achieve 

its highest level of completeness only when construction is finished.  Thus, comparing design 

information to as-built information will not always be possible, since as-built information can be 

expected to be missing.  Therefore, the deviation detection mechanism needs to reason about any 

scheduling information available in the design part of the integrated project model to identify 

whether a component is expected to be built at the time of the deviation detection or not.  If a 

component is scheduled to be built at some later point after the time of the deviation detection, 

the as-built information of the component can be expected to be missing.  Thus, the component 

does not need to be checked for deviations yet.  It might also happen that the as-built information 

of a component is not available in the integrated project model, even though the component is 

expected to be installed.  In that case, the system will point out to the user that the information is 

missing and ask the user to provide the missing as-built information or to update the schedule to 

reflect the actual delay.  In certain cases, parts of the design information might be missing since 

the design might not be detailed enough, for example, to graphically show the geometric 

representation of an anchor bolt.  .  If such information is needed for the deviation detection, the 

user needs to intervene to update the integrated project model by providing more detail on the 

design information. The user can choose to provide the missing information or, if he/she finds 

that providing the information is too tedious, continue without providing the information. He/she 

will then be notified later about which checks could not be performed and which specifications 

could not be tested due to the missing information.  

 

The deviations found need to be further processed in relation to the construction specifications to 

assess whether a deviation is a defect.  The evaluation of deviations is done by comparing them 

to the targeted quality standards, expressed in construction specifications, for the related 

components.  This process utilizes the construction specification model developed for generating 

inspection goals and compares the amount of deviations to the corresponding allowable 

tolerances defined in specifications.  If a given deviation exceeds the allowable tolerance, then it 

constitutes a construction defect and thus further actions need to be taken to correct the defect or 

to incorporate it into the next version of the design.  Both of these actions impact the as-planned 

model either with addition of rework activities in a given schedule or modifications in the design 

model.   

 

4. Validation  

 

We have performed case studies at four different construction job sites: (1) a 1,000 square foot 

footbridge, (2) a 36,000 square foot one story warehouse construction (Figure 6), (3) a 50,000 

square foot one story office and production facility (Figure 7), and (4) a 133,000 gross square 

foot nine-story commercial construction project with five floors for office space above a four-

level parking garage (Figure 8).  

 

The comparison process between as-designed and as-built model requires that the as-designed 

model be presented at a comparable level of detail to the laser scanned as-built model.  In order 

to compare with the geometric features, the as-designed model needs to be three-dimensional and 
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highly detailed.  We created 3D design models of the projects prior to the start of the data 

collection and data analysis processes. Figure 7a shows an example of a 3D model created for 

the Case Study site #3.   These 3D models were very detailed in nature due to the fact that some 

construction specifications were targeting detailed objects and their locations. Figure 7c shows 

the initial 3D model created for a column and 7d shows the corresponding as-built data collected 

form the site.  We periodically hired undergraduate students to create these 3D models. For case 

study #2 (Figure 7), one undergraduate student spent about twenty hours a week for one semester 

to generate a highly detailed as-designed model, including steel frames, x-bracing, corrugated 

siding, etc.  In this case study, the available design information were 90%-complete design 

documents depicted in 2D blue prints.  Starting with a CAD model would significantly reduce 

the generation time for 3D models. 

 

Once the 3D design model for each project was created, we started planning for the inspection 

and data collection operations and visited the job site periodically to collect the necessary data. 

Depending on the construction activity and the corresponding data collection needs, we averaged 

about one to two weeks between data collection visits.  Each data collection visit produced 

twenty to seventy scans.  Each scan took approximately one to two minutes, and each relocation 

between scan locations took approximately three minutes.  Embedded sensing data collection 

duration ranged from hours up to one month.  Further detail on case study experiences and 

technological and process assessment of using these for frequent as-built assessment are 

documented in [35] and [46].   

 

Figures 6, 7 and 8 show examples of the data collected from different construction sites.  While 

Figure 6a shows that an uncluttered site can be measured with one 360º scan from one location, 

Figure 7c shows that a moderately cluttered site can be measured in approximately thirty 130º 

scans from twenty locations.  Figures 6b, 7d and 8b show up-close views of the data collected by 

focusing on data collected on individual columns at a given job site and assessing whether the 

data captured from laser scanners could be easily associated with the lower level objects 

modelled in the detailed 3D design models. The images in Figure 6 and 7 show the intensity data 

generated and collected using the higher resolution Z+F scanner, while the images in Figure 8 

show point cloud data collected by the lower resolution CMU scanner.  Our assessment shows 

that while higher resolution scanners are needed for identifying and reasoning about higher 

levels of design information represented in the 3D design model, such as anchor bolts, to get a 

quick assessment about the locations and the shapes of major components, such as columns and 

beams, the lower resolution scanners would suffice. 
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Figure 6a. Figure 6b. 

Figures 6a and 6b.  Scanned data from the Case Study # 2. 

 

 

 

  
Figure 7a. Initial highly detailed 3D design model of the site Figure 7b. 3D design 

model of a column 

 
 

Figure 7c. 3D as-built data collected from the site Figure 7d. As-built of 

the column shown in 7b 

Figure 7. 3D design model and as-built data collected during Case Study #3 
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Figure 8a. Figure 8b. 

Figure 8a and 8b. Scanned data from Case Study #4. 
 

 

The three building project case studies vary in terms of their sizes and types; providing a test bed 

to evaluate the generality of the overall formalism.  Site conditions were also quite different in 

all three job sites.  The first two job sites (Figures 6 and 7) were moderately congested and there 

were fewer temporary structures and less material stored on the site.  The third job site (Figure 8) 

was highly congested due to the fact that the site footprint was small and was tightly bounded on 

all four sides.  As a result, a significant amount of material was stored on the site.  In addition, 

since most of the work was cast-in-place, the last job site included a significant number of 

temporary structures, such as shoring and formwork to be stored and staged at the site.  These 

observations further emphasize the need and the approach for developing formal inspection and 

scan plans prior to any data collection process. 

 

The designs of the first two building sites were very different than the third site.  The first two 

were mostly steel structures including a large number of components that were small in size, 

such as anchor bolts, x-braces, and girts, and the construction specifications required reasoning 

about the location of these small components.  The third project consisted of mostly cast-in-place 

concrete components with challenges associated with the reasoning about the locations and 

shapes of temporary structures and rebar.   

 

The data collection efforts mostly occurred during the September-March time frame, with highly 

different temperature ranges, varying from -7 ºC to 30 ºC, and the resulting surface conditions of 

the site varying from a finished surface to muddy, icy, and uneven surface.  These further 

challenged the data collection and data analysis processes as described in [35] and [46]. 

 

Our higher level formalism for automated quality control worked well in all of these highly 

different cases with varying complexities.  This suggests some generality of our approach for the 

structural and enclosure elements within the commercial building construction domain.  In 

certain cases, our approach has lead to more efficient data collection and processing.  For 

example, during a data collection effort in the second case, the site had twenty-three information 

goals and two hundred forty-six obstacle vertices.  Given a four to five minute estimate to scan, 

it would take approximately one and a half hours to scan each goal once.  Sensor planning took 
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forty-three seconds to generate a sensing plan with seven sensing locations.  Scanning from the 

sensor plan would take approximately thirty minutes [34].   

 

Example of deviations identified in the case studies: 

 

In these case studies, we have identified several types of deviations.  An example of a coarse 

level deviation identified was related to a design change that was not captured in the design 

documents.  Figure 9a shows the design model of a portion of a manufacturing plant.  The 

original design shows three windows and an opening for a loading deck.  Figure 9b show the 

original design and the as-built data collected from laser scanners in an integrated way.  As the 

as-built model shows, none of the window or loading deck openings highlighted in the original 

design exist in the final conditions at the site.   

 

  

Figure 9a.  Original design model of a portion 

of the site 

Figure 9b.  Integrated view of design and as-built 

models with deviations highlighted  

Figure 9.  Examples of design change related deviations identified in Case Study #2 

 

In addition to obvious coarse level deviations, we have also successfully identified many small 

scale deviations that would be harder to identify without using the formalism described in this 

paper, and yet would have important implications about the performance of a facility.  An 

example of such a deviation is changes in the surface and thicknesses of a wall or a column as 

shown in Figure 10.  Such deviations not only have aesthetic issues, but also possible structural 

implications, such as not being able to provide minimum concrete coverage of reinforcing steel 

specified by specifications like ACI 318 [47]. When creating a cast-in-place concrete wall, forces 

being applied to the wall’s formwork during concrete-placement can lead to movements and 

deflection in the formwork. Among others, ACI 347 [48] identifies “failure to inspect formwork 

during and after concrete placement to detect abnormal deflections or other signs of imminent 

failure that could be corrected”, “failure to construct formwork in accordance with the form 

drawings”, and  “lack of proper field inspection by qualified persons to ensure that form design 

has been properly interpreted by form builders” as common construction deficiencies. Thus, such 

deviations in the formwork can go undetected. Also, when the formwork or the final product is 

inspected, usually only sparse measurements are performed, i.e., only a few points on the 

formwork or the final product are checked. When using laser-scanning technology, a more 

comprehensive check can be performed, because more points are measured. The resulting 3D as-

built model can be overlaid with the 3D-design model and deviations within the wall’s surface 
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can be shown, rather than only deviations at certain points. This allows for a more 

comprehensive identification of deviations. Additional tests, like checking the actual concrete 

coverage in areas with alarming deviations, can be performed if needed and, if necessary, 

immediate measures to counteract certain deviations or to resolve problems can be introduced. 

Figure 10 shows such surface deviations identified on cast-in-place concrete elements in case 

study #2. 

 

 

Figure 10.  Surface deviations identified through overlaying design and as-built models 

 

In addition to the deviations identified using laser scanners, we have also identified some 

deviations using embedded sensors.  In the small foot bridge project, we used three types of 

embedded temperature sensors for evaluation. The selected sensors varied according to how data 

was collected: wirelessly, wired with integrated data logger, and wired with external data logger.  

The details of the embedded sensors utilized and the technological performances and 

assessments of those sensors are provided in [46].   During this case study, we identified that a 

different concrete was used on a grade beam than was specified by monitoring its temperature 

over time and comparing that to the temperature-time factor developed for a sample of the 

expected concrete.  Figure 11 shows the strength predicted by applying the maturity method with 

the use of data collected from temperature sensors embedded within concrete components.  
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Figure 11.  An example of a design change related deviation identified in Case Study #1 using 

embedded temperature sensors 

 

5. Conclusions and future work  

 

Reality capture technologies have matured sufficiently to be utilized for as-built data collection 

on construction sites.  These technologies can be leveraged to improve project quality control 

processes.  A formalism is needed to utilize these technologies effectively and to analyze the data 

collected from these instruments to enable active quality control.  Our formalism for using 

advanced sensor systems and integrated project models for active quality control includes five 

basic process steps: creating as-planned project model information, identifying inspection goals, 

inspection planning, data collection, and defect detection and management.  Our utilization of the 

formalism on four construction sites suggests that the generality of the overall approach and its 

possible technical effectiveness in data collection and deviation detection.  Future research 

includes further refining the algorithms implemented in support of this formalism and 

incorporation of other reality capture technologies to the automated quality control framework.  

In addition, we hope to perform detailed studies on assessing the cost effectiveness of the 

formalism described in this paper. 
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