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The Video Surveillance and Monitoring (VSAM) team at
Carnegie Mellon University (CMU) has developed an end-to-end,
multicamera surveillance system that allows a single human
operator to monitor activities in a cluttered environment using a
distributed network of active video sensors. Video understanding
algorithms have been developed to automatically detect people
and vehicles, seamlessly track them using a network of cooperating
active sensors, determine their three-dimensional locations with
respect to a geospatial site model, and present this information to
a human operator who controls the system through a graphical
user interface. The goal is to automatically collect and disseminate
real-time information to improve the situational awareness of
security providers and decision makers. The feasibility of real-time
video surveillance has been demonstrated within a multicamera
testbed system developed on the campus of CMU. This paper
presents an overview of the issues and algorithms involved in
creating this semiautonomous, multicamera surveillance system.
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I. INTRODUCTION

There are immediate needs for automated surveillance sys-
tems in commercial, law enforcement, and military applica-
tions. Mounting video cameras is cheap, but finding avail-
able human resources to observe the output is expensive. Al-
though surveillance cameras are already prevalent in banks,
stores, and parking lots, video data currently is used only
“after the fact” as a forensic tool, thus losing its primary ben-
efit as an active, real-time medium. What is needed is con-
tinuous 24-hour monitoring of surveillance video to alert se-
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curity officers to a burglary in progress, or a suspicious indi-
vidual loitering in the parking lot, while there is still time to
prevent the crime.

There is growing interest in developing automated video
understanding algorithms to provide this constant vigilance.
Automated video surveillance addresses real-time obser-
vation of people and vehicles within a busy environment,
leading to a description of their actions and interactions
(e.g., [1]–[12]). Large research projects devoted to video
surveillance research have been conducted in the United
States (e.g., DARPA’s Video Surveillance and Monitoring
(VSAM) project [13]), Europe (the ESPRIT PASSWORDS
[14], AVS-PV [15] and VIEWS [16], [17] projects) and
Japan (the Cooperative Distributed Vision project [18]).
Automated surveillance has also been the topic of recent
international workshops [19]–[23] and special sections
in journals [24], [25]. In addition to the obvious security
and traffic monitoring applications, other diverse uses are
possible, including compiling consumer demographics
in shopping malls, logging routine maintenance tasks at
nuclear facilities, monitoring livestock, and segmenting
moving objects from commercials to provide hooks for user
interaction.

A. Multisensor Surveillance

In realistic surveillance scenarios, it is impossible for a
single sensor to see all areas at once, or to visually track a
moving object for a long period of time. Objects become oc-
cluded by trees and buildings and sensors themselves have
limited fields of view. A promising solution to this problem
is to use a network of video sensors to cooperatively monitor
all objects within an extended area and seamlessly track indi-
vidual objects that cannot be viewed continuously by a single
sensor alone. Some of the technical challenges within this
approach are to: 1) actively control sensors to cooperatively
track multiple moving objects; 2) fuse information from mul-
tiple sensors into scene-level object representations; 3) mon-
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Fig. 1. Logical layout of tasks in a multisensor surveillance system.

itor the scene for events and activities that should “trigger”
further processing or operator involvement; and 4) provide
human users with a high-level interface for dynamic scene
visualization and system tasking.

Within the context of the DARPA VSAM project, we have
developed an end-to-end, multicamera surveillance system
that allows a single human operator to monitor activities in
a cluttered environment using a distributed network of ac-
tive video sensors. Central to our design philosophy is the
notion of “smart” sensors that are independently capable of
performing real-time, autonomous detection of objects and
events (see Fig. 1). Sensors are modular units that can be
added or removed without affecting the other sensors in the
network. Each sensor performs real-time video processing to
digest incoming video streams into symbolic descriptions of
objects and events. The current suite of video understanding
algorithms running on each sensor includes moving object
detection, object tracking (including active tracking by sen-
sors having active pan/tilt/zoom control), classification of de-
tected moving blobs into semantic categories such as human
and vehicle, and identifying simple human motions such as
walking and running (see Section II).

Surveillance research typically employs a single sensor to
locate and track objects in the field of view, with detections
indicated to the observer through graphical annotations
(e.g., bounding boxes) on the video stream. However, when
multiple, active sensors are used in a cooperative mode,
more sophisticated surveillance capabilities and user inter-
action are both possible and necessary. One of the goals of
the VSAM project is to alter user interaction with a surveil-
lance system from image-space to scene-space and from
sensor-specific commands such as “pan sensor A to position
B” toward higher level task commands such as “alert me
when a delivery vehicle enters the East parking lot.” To
achieve interactivity at this level requires system-level
algorithms that fuse sensor data, task sensors to perform
autonomous cooperative behaviors, and display results to
the operator in a comprehensible form (Fig. 1).

Data Fusion: Data from disparate sensors is integrated
within a central three-dimensional (3-D) scene coordinate

system to provide a complete representation of the union
of all objects seen from all cameras. Every object observa-
tion from each sensor is mapped from the camera-centric
image-space of the sensor into 3-D geodetic coordinates (lati-
tude, longitude and elevation) through a process called geolo-
cation. Geolocated object observations are compared to cur-
rent 3-D object hypotheses maintained by the system using
viewpoint-independent features and objects that match are
conjoined to form an updated hypothesis (see Section III).

Sensor Tasking:An outdoor surveillance system must op-
timize the use of its limited sensor assets. Sensors must be al-
located to perform all user-specified tasks and, if enough sen-
sors are present, to gather redundant observations. An arbi-
tration function determines the cost of assigning each sensor
to each of the tasks, based on task priority, the load on each
sensor, and visibility of the objects from each sensor. The
system performs a greedy optimization of the cost to deter-
mine which pairing of sensors and tasks maximizes overall
system performance requirements. Through this mechanism,
objects can be tracked long distances byhanding offbe-
tween cameras situated along the object’s trajectory (see Sec-
tion IV).

Scene Visualization:A single human operator cannot ef-
fectively monitor a large area by looking at dozens of moni-
tors showing raw video output. That amount of sensory over-
load virtually guarantees that information will be ignored
and requires a prohibitive amount of transmission bandwidth.
Our approach is to provide an interactive, graphical user in-
terface (GUI) showing a synthetic view of the environment,
upon which the system displays dynamic agents representing
people and vehicles. This approach has the benefit that visu-
alization of scene events is no longer tied to the original reso-
lution and viewpoint of a single video sensor and the operator
can therefore infer proper spatial relationships between mul-
tiple objects and scene features (see Section V).

B. Surveillance Testbed

We have built a testbed system to demonstrate how
multiple sensors using automated video understanding
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Fig. 2. (a) Placement of cameras in the current VSAM testbed system. (b) Schematic overview of
the testbed system architecture. (c) Three sensors used for cooperative surveillance. (d) Central
operator control station for integrating information from all sensors.

technology can be combined into a coherent surveillance
system. The testbed consists of multiple cameras distributed
over an area of roughly 0.4 kmon the campus of CMU
[Fig. 2(a)]. The system architecture consists of a central
operator control unit (OCU) which receives video and
Ethernet data from multiple remote sensor processing units
(SPUs) [see Fig. 2(b)]. The OCU uses a 3-D geometric site
model to integrate symbolic object trajectory information
accumulated by each of the SPUs and presents the results

to the user on a map-based GUI. The data is also accessible
through a set of distributed visualization nodes (VIS). Each
component of the testbed system architecture is described
briefly below.

Each SPU consists of a camera [Fig. 2(c)] paired with a
processor to form a smart sensor that acts as an intelligent
filter between a video signal and the VSAM network. The
SPU analyzes raw video imagery to extract objects and
events and transmits that detected information symbolically
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(e) (f)

Fig. 2. (Continued.)(e) Operator console where a user interacts with the system through a
graphical user interface. (f) Screen dump of a map-based visualization tool that displays sensor
resources and all detected objects and events.

to the OCU. Performing as much video processing as
possible on the SPU greatly reduces the bandwidth require-
ments of the network. This arrangement also allows for
many different sensor modalities to be seamlessly integrated
into the system. For example, we have integrated color
sensors with active pan/tilt/zoom control, fixed field of
view monochrome sensors, a Cyclovision omni-directional
sensor [26], thermal sensors, a van-mounted relocatable
sensor system, an indoor video event detection system
developed by Texas Instruments [27] and an airborne sensor
platform [28], all using the same communication protocol.
We have even prototyped man-portable SPUs that can be
placed, calibrated and connected to the system in only a few
minutes.

The OCU [Fig. 2(d)] integrates symbolic object infor-
mation from the SPUs with a 3-D site model to determine
object locations. The OCU supports one GUI [Fig. 2(e)]
through which all user-related command and control in-
formation is passed. The GUI contains a map of the site,
overlaid with all object locations, sensor platform locations
and sensor fields of view. In addition, a low-bandwidth,
compressed video stream from one of the sensors can be
selected for real-time display. The OCU schedules sensor
tasks to perform cooperative multicamera surveillance. The
operator can task individual sensor units through the GUI, as
well as instructing the entire testbed sensor suite to perform
surveillance operations such as generating a quick summary
of all object activities in the area.

VIS nodes [Fig. 2(f)] are designed to distribute surveil-
lance results to remote users by providing graphical repre-
sentations of detected activities overlaid on maps or 3-D syn-
thetic views. We have developed a Java-based visualization
client that can be played on any laptop connected to the
VSAM system network. This two-dimensional (2-D) map
display maintains much of the character of the operator GUI,
but without the ability to control the system. We have also
interfaced to ModSAF and ModStealth, which are 2-D and
3-D scene viewers developed within the context of Synthetic
Training Environments [29], [30]. See Section V.

Prior knowledge of the terrain and important scene
features is represented within a 3-D site model. Some of the
surveillance tasks supported by scene-specific knowledge
provided by the site model are: 1) computation of object
location by intersecting viewing rays with the terrain [31];
2) landmark-based calibration of camera exterior orientation
[32]; 3) visibility analysis to predict what portions of the
scene are visible from which cameras, thereby improving
tracking [33] and allowing more effective sensor tasking; 4)
geometric focus of attention, for example to task a sensor
to monitor the door of a building, or specify that vehicles
should appear on roads; 5) visualization of the scene to
enable quick comprehension of geometric relationships
between sensors, objects and scene features and 6) simula-
tion for planning best sensor placement and for debugging
algorithms.

II. V IDEO UNDERSTANDING TECHNOLOGIES

A multicamera surveillance system is built upon the basic
capabilities provided by each sensor. At a minimum, each
sensor must be able to detect moving objects from raw video
at nearly frame-rate. This section provides an overview of
the video understanding algorithms implemented within the
VSAM testbed to detect moving objects, track them through
a video sequence, classify them into semantic categories
(e.g., human and vehicle) and analyze human motions such
as walking and running. These descriptions are very brief
in order to devote more space to multisensor aspects of the
system.

A. Moving Object Detection

Detection of moving objects in video streams is known
to be a significant and difficult research problem [34].
Conventional approaches to moving object detection include
temporal differencing [35], [36]; background subtraction
[6], [34], [37], [38] and optical flow [39]–[41]. One of the
most successful approaches to date is adaptive background
subtraction [37]. The basic idea is to maintain a running
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statistical average of the intensity at each pixel. When the
value of a pixel in a new image differs significantly from
average, the pixel is flagged as potentially containing a
moving object. One problem of this approach, along with
the other conventional approaches to motion detection, is
that objects that cease moving within the image simply dis-
appear from the representation. A robust detection system
should continue to “see” objects that have stopped and
disambiguate between overlapping objects in the image. For
example, a car that comes into the scene and parks should
not be considered as part of the scene background, however
its stationary pixels should play the role of background for
detecting motion of a person getting out of the car.

We have developed a novel approach to object detection
based on layered adaptive background subtraction. Layered
detection is based on two processes: pixel analysis and re-
gion analysis. Pixel analysis determines whether a pixel is
stationary or transient by observing its intensity value over
time. The technique is derived from the observation that le-
gitimately moving objects in a scene cause much faster in-
tensity transitions than changes due to lighting or weather.
Fig. 3(a) graphically depicts the process. To capture the na-
ture of changes in pixel intensity profiles, two factors are
important: the existence of a significant step change in in-
tensity and the intensity value to which the profile stabi-
lizes after passing through a period of instability. An object
moving through the pixel displays a profile that exhibits a
step change in intensity, followed by a period of instability,
then another step back to the original background intensity.
An object moving to the pixel and stopping displays a pro-
file that exhibits a step change in intensity, followed by a pe-
riod of instability, then a step to a new intensity as the ob-
ject stops. Lighting and weather effects tend to cause smooth
changes with no large steps. Therefore, by observing the in-
tensity transitions at each pixel, different intensity layers con-
nected by transient periods can be postulated.

Region analysis collects groups of labeled pixels into
moving regions and stopped regions and assigns them to
spatio-temporal layers [Fig. 3(b)]. Regions that consist of
stationary pixels are added as a layer over the background,
or over a previously determined layer. Regions consisting
of moving pixels are represented as transient objects that
occlude all layers. A layer management process that operates
much like the window manager on a modern workstation is
responsible for creating and deleting new regions, updating
intensity information and keeping track of depth ordering
between overlapping regions. Pixel values in stationary
layered regions and the scene background are updated by
an Infinite Impulse Response (running average) filter to ac-
commodate slow lighting changes and noise in the imagery,
as well as to compute statistically significant step-change
thresholds.

An additional mechanism is built into this algorithm to
detect sharp changes in the overall scene, caused by mo-
tion of the camera (which is mounted on a pan/tilt head)
or occasional sharp lighting changes (e.g., the sun comes
out from behind cloud cover). If a majority of the image
pixels are found to be changing, the detection algorithm tem-

porarily shuts down until the view stabilizes, as determined
by a simple two-frame differencing algorithm. At this point,
all pixel statistics are reinitialized and the detection algorithm
resumes.

This detection algorithm has been evaluated on 4 h of
video tape for which ground-truth labeling of moving ob-
jects (people and vehicles) was manually determined. 2 h of
data were taken on a sunny day and 2 h on a cloudy day.
Probability of detection was determined as the percentage of
human-detected moving objects that were also detected by
the system. The detection rate was 89.6% for sunny day data
and 94.5% for cloudy day data. The main reason for failure
to detect was low image contrast between the moving object
and the background. Sunny day detection rates are lower be-
cause of the additional loss of image contrast in areas of deep
shadow. False positive detection rates were not recorded.

B. Object Tracking

To begin building a temporal model of activity, indi-
vidual object blobs generated by motion detection are
tracked over time by matching them between frames of the
video sequence. Among the many approaches to tracking
are model-based matching [9], [42], [43], image contour
matching [44] and image region matching [45], [46].
Multiple potential matches typically arise, which can be
disambiguated using statistical data association techniques
[47], [48] or by imposing smooth trajectory motion models
using Kalman filters [49].

Our approach lies squarely in the image region matching
camp. Given a moving object region in a current frame, we
determine the best match in the next frame by performing
image correlation matching, computed as the normalized
cross correlation of the object’s intensity template over
candidate regions in the new image [50]. Due to real-time
processing constraints in the VSAM testbed system, this
basic correlation matching algorithm is only computed for
“moving” pixels, regions are culled that are inconsistent
with current estimates of object position and velocity and
imagery is dynamically subsampled to ensure a constant
computation time per match.

In the spirit of [44] the tracker maintains multiple match
hypotheses with varying degrees of matching confidence and
can merge and split hypotheses as appropriate to describe ob-
jects that temporarily occlude each other as they pass. Any
object that has not been matched maintains its position/ve-
locity estimates and current image template, but its confi-
dence is reduced. If the confidence of any object drops below
a given threshold, it is considered lost and is dropped from the
list. High confidence objects (ones that have been tracked for
a reasonable period of time) will persist for several frames, so
if an object is momentarily occluded but then reappears, the
tracker will reacquire it. More details can be found in [51],
[52]. Some sample trajectories resulting from this approach
are shown in Fig. 4.

C. Object Type Classification

Bottom-up motion detection and tracking algorithms
(which do not try to fit a priori models to image data)
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(a)

(b)

Fig. 3. (a) Example analysis of intensity changes over time at a single pixel as a car enters the
scene and stops, a second car enters and stops in front of the first, a person gets out and walks
to the first car, the person returns to the second car, the second car drives away, and finally the
first car drives away. Each of these steps is visible in the pixel’s intensity profile. (b) Detection
results for one timestep during the described events. The algorithm has correctly detected and
represented that there are three overlapping objects, namely, the first stopped car, the second stopped
car, and the person walking in front of them.

view objects in the scene as moving blobs of pixels. Object
classification routines begin to add semantics to these
observations by providing class labels for each blob [4],
[7], [53], [54]. We have developed two algorithms for
view-dependent visual object classification. The first is a
neural network classifier, trained for each sensor view [55]
(see also [56], [57] for additional neural network approaches
to object classification). The neural network is a standard
three-layer network, trained using the backpropagation

algorithm. Input features to the network are measured
directly from the image blob and camera settings: blob
dispersedness (perimeterarea); blob area; blob aspect
ratio and camera zoom value. There are four output classes:
single human; human group; vehicle and clutter. This neural
network classification approach is fairly effective for single
image frames; however, one of the advantages of video is
its temporal component. To exploit this, classification is
performed on each blob as it is tracked through the sequence
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Fig. 4. Sample object trajectories and class labels.

of frames. The classification results for each frame are kept
in a histogram and at each time step, the most likely class
label for the blob is chosen based on all classifications that
have been made for it. Sample results are shown in Fig. 4.

A second method of view-dependent object classifica-
tion uses linear discriminant analysis to provide a finer
distinction between vehicle types (e.g., van, truck, sedan).
This method has also been successfully trained to recognize
specific types of vehicles, such as UPS trucks and campus
police cars. The method has two submodules: one for classi-
fying object shape and the other for determining color. The
latter is needed because the color of an object is difficult to
determine under varying outdoor lighting. Each submodule
computes an independent discriminant classification space
using linear discriminant analysis (LDA) and calculates
the most likely class in that space using a weighted k-class
nearest-neighbor (k-NN) method [58]. In LDA, feature
vectors computed on training examples of different object
classes are considered to be labeled points in a high-dimen-
sional feature space. Training examples are mapped into
shape space as an 11-dimensional feature vector computed
from the motion blob: area; center of gravity; width; height
and first, second, and third moments taken along the row and
column pixel axes. Color space is three dimensional, with
features R G B ; R B and

G R B computed from RGB values
of pixels within the motion blob. Given training points in
these feature spaces, LDA computes a set of discriminant
functions, formed as linear combinations of feature values,
that best separate the clusters of points that correspond to
different object labels and color labels. See [59] for more
details. Some sample results are shown in Fig. 5.

Table 1 shows cross validation between targets (columns)
and classified results (rows) gathered from 4 h of hand-la-
beled video data. The recognition rate was roughly 90%
across both sunny and cloudy weather conditions. (Note: a
“Mule” is a golf-cart-like vehicle used by campus mainte-

nance workers). Currently, the system does not work well
when it is raining or snowing, because the raindrops and
snowflakes interfere with the measured RGB values in the
images. For the same reason, the system does not work well
in early mornings and late evenings, due to the nonrepresen-
tativeness of the lighting conditions. The algorithm is also
foiled by backlighting and specular reflection from vehicle
bodies and windows.

D. Human Motion Analysis

Classifying moving objects enables a surveillance system
to subsequently invoke object-specific motion analysis
methods to generate more detailed descriptions of object
behavior. There has been considerable interest in the area of
human motion tracking in recent years [2], [6], [38], [43],
[60]–[67]. More references can be found in [68], [69]. Many
human motion tracking algorithms assume that the size of
the person in the image is large enough to track individual
limbs. On the other hand, many surveillance applications
involve more distant observations and a subsequent smaller
number of “pixels on target.”

We have developed a “star” skeletonization procedure for
analyzing human gaits in these situations [70]. The key idea
is that simple, fast extraction of the broad internal motion
features of an object can be employed to analyze its motion.
The star skeleton consists of the centroid of a motion blob
and all of the local extremal points that are recovered when
traversing the boundary [see Fig. 6(A)]. Fig. 6(B) shows how
two properties extracted from the skeleton provide cues to the
person’s gait. Assume the uppermost skeleton segment rep-
resents the torso and measure the anglebetween this seg-
ment and vertical. Assume the lower left segment represents
one of legs and measure anglebetween this segment and
vertical. Fig. 6(C) shows two star skeleton motion sequences
for a walking and running human and plots the valuesand

over time. Examining the average values ofshows that
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Fig. 5. Sample results for LDA classification of object type and color.

Table 1
Experimental Evaluation of LDA Classification

the posture of the running person can easily be distinguished
from that of the walking person (people lean forward when
they run). Also, the frequency of cyclic motion of the leg seg-
ments provides cues to whether this is a walking or running
gait.

Gait classification using star skeleton features has been
tested on a set of video sequences of adults and children
walking and running. There are approximately 20 video se-
quences in each category, with pixels on target ranging from
50 to 400. Star skeletons and values forand were ex-
tracted from the video at a frame rate of 8 Hz. The average
walking frequency was found to be 1.75 (Hz) and for run-
ning 2.875 (Hz). A threshold frequency of 2.0 (Hz) correctly
classifies 97.5% of the gaits. Note that these frequencies are
twice the actual footstep frequency because only the left-
most leg segment is considered. For each video sequence,

the average inclinationof the torso showed that the forward
leaning torso of a running figure can be clearly distinguished
from the more vertical torso of a walking one. A threshold
value of 0.15 rad correctly classifies 90% of the gaits. More
details can be found in [70].

III. M ULTISENSORDATA FUSION

A multisensor surveillance system is more than a col-
lection of sensors acting independently to detect and track
objects. At some point, all observations must be brought into
a common frame of reference to form a coherent, dynamic
scene representation. This scene representation should be
complete, in that it contains the union of all observations
made by all sensors. Multiple observations of the same
object from different cameras should be identified and
merged into a single, more accurate object description. The
representation should make explicit the spatial relationships
between sensors, objects, and scene features, to aid sensor
tasking and visualization of the scene by the human operator.

We believe that bringing all observations into a common
3-D coordinate system is the key to coherently representing
a large number of object hypotheses from multiple, widely
spaced sensors. We choose geodetic coordinates as this
common coordinate system. In contrast to all other surveil-
lance systems that we know of, which work in an arbitrary
local scene coordinate system, we compute the latitude,
longitude, and elevation with respect to the WGS84 datum
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(A)

(B)

Fig. 6. (A) The star skeleton is created by “unwrapping” the silhouette boundary as a distance
function from the centroid, and extracting extremal points. (B) Determination of posture features
from the skeleton:� is the angle the left cyclic point (leg) makes with the vertical, and� is
the angle the torso makes with the vertical.

(so-called “GPS coordinates” [71]), of each person and
vehicle we detect and track. Since geometric computations
can be difficult in the spherical geodetic coordinate system,
our internal computations are carried out within a set of
local Cartesian frames defined throughout the site; however,
all of these Cartesian frames have known transforms to and
from geodetic coordinates. We believe that having precise
knowledge of where objects are in the world, represented
in a commonly agreed upon global (in the literal sense of
the word) coordinate system, is a significant advantage. For
example, this choice has allowed us to easily merge our
ground-base surveillance results with hypotheses generated
independently by an airborne sensor operated by The
Sarnoff Corporation and the U.S. Army’s Night Vision and
Electronic Sensors Directorate [28], [72]. It also has allowed

us to use third-party cartographic software and datasets
such as United States Geological Survey maps, orthophotos,
DEMS, and road network graphs, in the development of our
site model [72].

A. Camera Calibration

A mapping between sensor coordinates and scene coordi-
nates is determined by calibrating each sensor with respect to
the geodetic coordinate system. We have developed methods
for fitting a projection model consisting of intrinsic (lens) and
extrinsic (pose) parameters of a camera with active pan, tilt
and zoom control. Intrinsic parameters are calibrated by fit-
ting parametric models to the optic flow induced by rotating
and zooming the camera. This procedure is fully automatic
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(C)

Fig. 6. (Continued.)(C) Skeleton motion sequences. The periodic motion of� provides cues to
the person’s gait, as does the mean value of� .

and does not require precise knowledge of 3-D scene struc-
ture. Extrinsic parameters are calculated by sighting a sparse
set of scene landmarks that have been surveyed using dif-
ferential GPS [71]. Actively rotating the camera to measure
landmarks over a virtual hemispherical field of view leads to
a well-conditioned exterior orientation estimation problem.
Details of the calibration procedures are presented in [32].

B. Geolocation

In regions where multiple sensor viewpoints overlap, ob-
ject locations can be determined by wide-baseline triangu-
lation [73]. However, regions of the scene that can be si-
multaneously viewed by multiple sensors are likely to be
a small percentage of the total area of regard in real out-
door surveillance applications. Determining object locations
from a single sensor requires domain constraints, in this case
the assumption that the object is in contact with the terrain.

This contact location is estimated by passing a viewing ray
through the bottom of the object in the image and intersecting
it with a model representing the terrain [see Fig. 7(a)].

Previous uses of the ray intersection technique for ob-
ject localization in surveillance research have been restricted
to small areas of planar terrain, where the relation between
image pixels and terrain locations is a simple 2-D homog-
raphy [9], [49], [74], [75]. This has the benefit that no camera
calibration is required to determine the backprojection of an
image point onto the scene plane, provided the mappings of
at least four coplanar scene points are known beforehand.
However, large outdoor scene areas may contain significantly
varied terrain. To handle this situation, we perform geoloca-
tion using ray intersection with a full terrain model provided
by a georeferenced digital elevation map (DEM). A simple
geometric traversal technique based on the well-known Bre-
senham algorithm [76] for drawing rasterized line segments
is used. Consider the vertical projection of the viewing ray

COLLINS et al.: ALGORITHMS FOR COOPERATIVE MULTISENSOR SURVEILLANCE 1465



(a)

(b)

Fig. 7. (a) Estimating object geolocations by intersecting backprojected viewing rays with a terrain
model. (b) A Bresenham-like traversal algorithm determines which DEM cell contains the first
intersection of a viewing ray and the terrain.

onto the DEM grid [see Fig. 7(b)]. Starting at the grid cell
( ) containing the sensor, each cell ( ) that the ray
passes through is examined in turn, progressing outward,
until the elevation stored in that DEM cell exceeds thecom-
ponent of the 3-D viewing ray at that location. See [31] for
more details.

Since geolocation estimates are computed by backpro-
jecting the center of the lowest side of the bounding box
enclosing a moving blob, the surveillance system main-
tains a running estimate of the variance of this point. An
internal estimate of horizontal variance of the geolocated

point is formed by propagating this variance from the
image, through the inverse projection equations, onto a
horizontal plane with an elevation corresponding to the
value of the 3-D geolocation estimate. This in general yields
a covariance matrix with elliptical contours. A simplified
uncertainty representation consisting of a single variance
value is formed by taking the trace of this covariance matrix
and dividing by 2. The horizontal ( ) location of a
point, along with its approximate variance as computed
above, is called the “map-plane” coordinate of a point in
Section III-C.
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We have evaluated geolocation accuracy for two cameras
on the CMU campus using a Leica laser-tracking theodolite
to generate ground truth (see Fig. 8). The experiment was
run by having a person carry the theodolite prism for two
loops around the parking lot, while the system logged
time-stamped horizontal ( ) locations measured by
the theodolite. The system also simultaneously tracked
the person using each camera, while logging time-stamped
geolocation estimates. Standard deviations of errors between
ground truth locations and geolocation estimates from each
camera are roughly on the order of .6 m along the axis of
maximum spread and roughly .25 m at minimum, over an
average camera-object distance of 65 m. The axis of max-
imum error for each camera is oriented along the direction
vector from the camera to the object being observed. For
more details, see [59].

C. Data Fusion

Sensor data fusion is a classic subject in engineering
[77], [78]. In our case, the central idea of the data fusion
process is to make associations between image-based sensor
observations and scene-based object hypotheses. The central
operator control unit (OCU) receives a continual stream
of time-stamped symbolic object observations from each
remote sensor processing unit (SPU). Each observation is
geolocated, as described previously and compared to a list of
known object hypotheses to see if it is an observation of an
object already being tracked by the system. However, because
the SPU sensors are scattered widely throughout the scene,
one may be viewing the front of an object, one the side, and
another the top. Therefore, comparison of SPU observations
to 3-D hypotheses needs to use features that are insensitive to
viewpoint [8], [79]. We use three features: 1) object geolo-
cation (Section III-B); 2) object class (Section II-C); and 3)
color. Color is represented by three coarse color histograms
(red, green, and blue), concatenated into a single vector and
normalized so that the sum over all counts is 1. This has the
effect of normalizing the resulting color histogram, so that
the representation is less sensitive to color variations due to
viewpoint, illumination and sensor color response [80].

Observations received by the OCU are processed in time-
stamped order. Features of a new observation are compared
against the features stored for each existing object hypothesis
using a match score function. Two situations may arise.

• The observation does not match any known object
(match score is below a threshold for all hypotheses). In
this case, a new object is hypothesized and its location,
class and color information are initialized to those
provided by the observation. A confidence value stored
with the hypothesis is set to a nominal low value.

• The observation matches at least one object hypoth-
esis (match score exceeds a threshold for one or more
hypotheses). The object hypothesis with the highest
match score value is chosen as the best match. The fea-
ture values of the SPU observation are used to update
the features of this object hypothesis and the confidence
of the object is increased.

(a)

(b)

(c)

Fig. 8. (a) Ground truth trajectory determined by a theodolite,
overlaid with geolocations estimated by the system while
automatically tracking the same object from one camera.
(b) Geolocation error boxes computed by the system. (c) Plotted
covariances of the horizontal displacement errors between estimate
geolocations and ground truth locations for corresponding time
stamps. All scales are in meters.

A separate mechanism culls objects that leave the field of
regard of the entire system. Any 3-D object hypothesis that is
not matched and updated for 2 s is flagged as inactive. After
ten more seconds pass with no activity, the hypothesis is de-
clared dead and removed from the list of known hypotheses.

Computing the Match Score:Match score between an in-
coming observation and a known object hypothesis is com-
puted by comparing location, class, and color information

match location class color
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To compare location information, the geolocation technique
described previously is used to transform the location
measurement of the sensor observation into a “map plane”
2-D location measurement and an associated variance,
which corresponds to a circular Gaussian covariance matrix
of the form . In the following equations, all covariances
are approximated as circular Gaussians of the form
and the uncertainty propagation equations are simplified by
using a single variance weight . The underlying mecha-
nism, however, is propagation of 2-D Gaussian covariances,
as in [81], with any resulting 2-D covariance matrixbeing
approximated as Trace . For a given object
hypothesis with a sequence of previous map plane trajectory
points ( ) and variances ( ), the
OCU predicts a new 2-D location and variance for
the hypothesis assuming a constant velocity linear trajectory

and

where is a function of the times-
tamps ( ) on the sequence of processed video
frames from which the hypotheses were generated.

The prediction and the current observation are then tenta-
tively merged into a joint sample point with variance

This is treated as a statistical distribution onand the score

location of matching the SPU observation with object
hypothesis is taken to be proportional to the joint proba-
bility of two independent samples and drawn from the
distribution for

location

Note that this is not a proper probability since the bivariate
Gaussian normalization constant has been dropped.

To compute class, a simple heuristic function is used.
The current classifications supported by the match score
function are: vehicle, human, human group, and unclassified
(if the classification algorithm does not have enough data
to make a suggestion). Given the classification of an object
hypothesis and the classification of the new observation

, the heuristic score class is computed as follows: If
, the value is 1.0; if either or is unclassified,

the value is 0.75; if is human and is human group, or
vice versa, the value is 0.6; otherwise, the value is 0. Color
comparison between a new observation and an existing
object hypothesis is based on their color histogram vectors.
The value of color is taken as med where

is the set of differences between the color vectors of
the two objects.

Feature Updating: When a new observation matches an
object hypothesis already known to the system, the features
of the hypothesis are updated by merging the new informa-
tion from the observation with the previously stored values
in the hypothesis. The new location and variance estimates
for the matched hypothesis become and

. The hypothesis class is updated to be the most frequent
classification given to that hypothesis so far, as determined
by a histogram of associated classifications (this is the same
mechanism used to improve temporal classification perfor-
mance at the SPU). The color vector of the object hypothesis
is simply replaced with the color vector from the new obser-
vation.

IV. M ULTISENSORTASKING AND CONTROL

An important goal of VSAM is to enable a single human
operator to task a multisensor surveillance system at a rela-
tively high level of abstraction. Traditional camera-centric
commands such as “pan sensor A to position B” become
cumbersome when many sensors are available, and it is
nearly impossible for a person to orchestrate control strate-
gies by commanding multiple sensors in a specific temporal
order. We seek instead to issue high-level requests such as
“track this car” or “report any red sedans that enter the gate,”
and have the system (specifically the OCU) decompose
them into a sequence of low-level commands issued to the
appropriate sensors at the correct times.

A. Sensor Tasking

High-Level Tasking:Through the GUI, the operator
can specify objects to be actively tracked and geographic
locations to monitor for events. The operator can choose to
operate in either an image-centric or scene-centric coordi-
nate system. For example, the user can choose to see video
imagery from one of the sensors and can click on an image
feature to task the system to control the sensor pan and
tilt to bring that feature into the center of the image. If the
user clicks on a moving object within the video display, the
system is automatically tasked to actively track that object.

More interesting and novel, is the ability of the operator to
specify operations in scene space using a map overlaid with
sensor locations and moving icons representing tracked ob-
jects. For example, the user can click on a sensor location and
drag the mouse to a point on the map, which tasks the sensor
to look at that geographic location in the scene. The user can
also click on any of the moving object icons displayed on
the GUI and the system will allocate resources to continually
track that object. Another high-level tasking command is to
specify a region of interest (ROI) event trigger. To specify a
ROI, the user traces the outline of a polygonal region on the
map and the OCU then determines which sensors have the
best view of that area and assigns them to observe it. Any ob-
ject entering the ROI triggers an alert to the operator. The op-
erator can also specialize a ROI trigger to particular classes of
objects (e.g., human or vehicle) and the system will provide
an alert only when that type of object enters. For example, it
is easy to task the system to “report all pedestrians entering
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this restricted area” by creating an appropriate ROI trigger.
Given suitably sophisticated video understanding algorithms
at each sensor, ROI triggers could also be specialized to spe-
cific events or activities occurring in a geographic location.

Sensor Arbitration: The GUI sends high-level
user requests to the OCU, which keeps a list of
all tasks currently being handled by the system.
Each SPU has only a few basic capabilities, such
as and

. The OCU must therefore
“compile” high-level user requests into a sequence of sensor
specifications and commands. This compilation mainly
involves choosing a sequence of sensors to carry out the
task and commanding them to look at the appropriate scene
locations at the right times. Sensor-specific pan, tilt, and
zoom commands associated with a particular object or ROI
are computed by the OCU using the known calibration
parameters of the sensor and the known geometry of the
object and scene.

The hard part of automated sensor tasking is allocating
sensors to perform all of the tasks required by the system and
requestedbytheoperator.Whentherearenotenoughresources
to complete all required tasks, the system performance should
degrade gracefully. When there are relatively few tasks, the
system should automatically exploit redundant sensors to
provide as much information as possible. Automated sensor
selection for each system task is performed according to a
cost matrix. At every iteration of system time, each sensor
is assigned a cost of performing each task and a greedy
strategy is used for assigning tasks to sensors. The factors
that contribute to the cost function are as follows.

1) Visibility : This is a binary measure (0 or 1) indi-
cating whether sensorcan view the geographic loca-
tion associated with task (1 indicates visible). Visi-
bility is determined using the geometric site model to
determine if there are any significant occluding objects
between the camera and the point of interest.

2) Distance : This is the distance between sensor
and the location of task.

3) Tasking : This is a binary measure (0 or 1) indi-
cating whether sensoris currently executing opera-
tions involved in task (0 indicates already tasked).

4) Priority : This is the priority of the task assigned
by the user (a low value indicates a high priority).
Tasks with low priority, such as scanning the area
for moving objects, become default tasks that are
performed whenever a camera would otherwise be
idle. These default tasks are preempted whenever
a higher priority task, such as tracking a particular
object, are scheduled.

A matrix of cost values is created where each value
represents the cost of sensorperforming task . The cost
function is

where the s are tuning constants. If is zero, it indicates
that the task cannot be performed by the sensor. Otherwise,
a small nonzero value indicates a desirable tasking. The as-
signment of tasks to sensors at each time step is scheduled as
follows.

• If a user has taken direct control of a sensor, remove it
from consideration.

• For each task, select the sensor that has minimum
nonzero cost to perform it and remove that sensor from
the list of untasked sensors.

• After all tasks are assigned, any sensors left untasked
are assigned to perform their minimum cost task. These
sensors thus provide redundancy in carrying out that
task.

This arbitration scheme automatically allocates sensors
such that: 1) high priority tasks are performed at the expense
of less important ones; 2) no sensors are ever idle; and
3) sensors with better viewpoints of a particular area are
favored over those farther away. Note that arbitration does
not simply choose the closest sensor—a more distant sensor
can be selected if the closest sensor is occluded or busy with
a higher priority task.

B. Multisensor Cooperative Control

If a sensor is actively tracking an object that is moving out
of its field of view and into the field of view of another sensor,
the cost associated with having the first sensor track it will
increase, while the cost associated with the second sensor
will decrease, until the point where the second sensor will
automatically be tasked to take over the surveillance. Thus,
cost-based sensor arbitration allows the OCU to automati-
cally coordinate multiple sensors to seamlessly track moving
objects over an extended area. Just before the hand-off be-
tween sensors occurs, the second sensor is commanded by
the OCU to point in the right direction at the right zoom
factor. The OCU then issues a command,
passing the estimated object image location to the SPU along
with a target description that uses the same view-indepen-
dent classification and color features used for data fusion
matching. The SPU compares all moving objects in its field
of view with the same matching function used in data fusion
comparison (Section III-C)

match location class color

except that the location comparison now uses sensor-specific
2-D image coordinates rather than horizontal map-plane co-
ordinates.

An example of using cost-based tasking to achieve au-
tonomous multisensor hand-off to track a vehicle as it travels
through campus is shown in Fig. 9. This diagram shows
continuous tracking of a single object for a distance of
approximately 400 m and a time of approximately 3 min.
In Fig. 9(a), two sensors cooperatively track the object.
At the time shown in Fig. 9(b) the object is occluded
from sensor 2, but is still visible from sensor 1, which
continues to track it. When the object moves out of the
occlusion area, sensor 2 is automatically commanded to
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9. Cooperative, multisensor tracking (see text for description).

track it again [Fig. 9(c)]. Finally, when the object moves
out of the field of regard of both sensors, a third sensor
is automatically commanded to continue surveillance, as

shown in Fig. 9(d). By automatically managing multiple,
redundant camera resources, the vehicle is continuously
tracked through a complex urban environment.

1470 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 10, OCTOBER 2001



(a) (b)

Fig. 10. Example of camera slaving. (a) Wide-angle view in which a person is detected. (b) A better
view from a second camera, which has been tasked to intercept the person’s estimated 3-D path.

A second form of sensor cooperation is sensor slaving.
This is not a side effect of cost-based tasking, as hand-off is,
but is instead a special, user-selectable task programmed into
the system. A camera slaving system has one master camera
and at least one slave camera. The master camera is set to
have a wide-angle view of the scene so that it can track all
objects in a wide area without moving. The object trajectories
generated by the master camera are sent to the OCU, where
they are converted into 3-D trajectories. After estimating the
3-D location of an object from the first camera’s viewpoint,
the OCU transforms the location into a pan-tilt command to
control the slave camera. The slave camera, which is highly
zoomed in, can then follow the trajectory to generate close-up
imagery of the object. If more than one object is detected
by the master camera at one time, the OCU will “multitask”
the slave camera to cycle through the objects, visiting each
one in turn for one second to generate an updated close-up
view. Fig. 10 shows an example of camera slaving. A person
has been detected and is being tracked in the wide-angle
view shown in the left image. A second narrow field of view
camera is continually tasked by the OCU to move slightly
ahead of the person’s estimated 3-D trajectory to generate a
close-up view, as shown in the right image.

V. DYNAMIC SCENE VISUALIZATION

Keeping track of people, vehicles, and their interactions
over a large area is a difficult job for a human observer. It
certainly cannot be done effectively by looking at a wall of
video screens each showing a disparate sensor view. Our ap-
proach is to provide an interactive, graphical visualization
by automatically placing dynamic agents representing people
and vehicles into a synthetic view of the environment. This
graphical approach to operator display has the benefit that vi-
sualization of an object is no longer tied to the original reso-
lution and viewpoint of the video sensor, since a synthetic re-
play of the dynamic events can be constructed from any per-
spective. Particularly striking is the amount of data compres-
sion that can be achieved by transmitting only symbolic ob-
ject information instead of raw video data. Currently, we can

process NTSC color imagery with a frame size of 320240
pixels at ten frames per second on a Pentium II computer, so
that data is streaming into the system at a rate of roughly 2.3
Mb/s per sensor. After automated video processing, detected
object hypotheses contain information about object type, lo-
cation, and velocity, as well as measurement statistics such
as a time stamp and a description of the sensor (current pan,
tilt, and zoom, for example). Each object data packet takes
up roughly 50 bytes. Therefore, with our current communi-
cation protocol, a sensor tracking three objects for 1 s at ten
frames per second ends up transmitting 1500 bytes back to
the OCU, well over a thousandfold reduction in data band-
width.

A. Map-Based Operator GUI

The human operator interacts with the VSAM system
through a single, map-based graphical user interface (GUI).
The GUI is dominated by a scalable and scrollable geo-
referenced map of the site, overlaid with all current object
locations, camera locations, and camera fields of view (see
Fig. 11). Each of these graphical entities can be selected
using the workstation’s mouse. To the right of the map is a
status pane, showing how many sensors are active, how many
objects are currently being tracked, and other vital statistics
of the system. The lower right pane is a low-bandwidth,
compressed video stream from one of the cameras, which
can be selected by the user. The video from that sensor is
compressed by transmitting a spatially subsampled version
of the adaptive background model used for motion detection
(Section II-A), updated once every few seconds, overlaid
with spatially subsampled pixels from within the bounding
box of detected moving objects, updated at 10 Hz. These
moving foreground objects overlaid on the background
can also be selected using the mouse. The lower left pane
of the GUI is the sensor-suite tasking interface, through
which the operator can task individual sensor units, as well
as the entire testbed, to perform surveillance operations
such as generating a quick summary of all object activities
in the area or creating a region of interest event trigger
(Section IV-A).
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Fig. 11. Map-based graphical user interface, through which a human operator tasks the VSAM
sensor suite and visualizes objects tracked by the system.

B. Immersive 3-D Visualization

Ultimately, we believe that the key to comprehending
large-scale, multiagent events is a full, 3-D immersive
visualization that allows the human operator to move at will
through the environment to view dynamic events unfolding
in real-time from any viewpoint. This goal guided our
selection of the Compact Terrain Database (CTDB) format
for representing our 3-D model of the surveillance site.
The CTDB format was originally designed to represent
large expanses of terrain for U.S. Department of Defense
distributed interactive simulation (wargaming) exercises
[82], [83]. In addition to terrain elevation, the CTDB format
also represents relevant cartographic features on top of the
terrain skin, including buildings, roads, bodies of water, and
tree canopies. An important benefit to using CTDB as a site
model representation is that it allows us to easily interface
with third-party cartographic modeling and visualization
tools developed to provide synthetic training environments
[30]. The Modular Semi-Automated Forces (ModSAF)
program provides a 2-D graphical interface similar to our
VSAM GUI, with the ability to insert computer-generated
human and vehicle avatars that provide simulated opponents
for training [84], [85]. The ModStealth program generates
an immersive, realistic 3-D visualization of texture-mapped
scene geometry and computer generated avatars [29].

We have built an interface to the ModSAF and ModStealth
programs from the VSAM testbed system. At the OCU, 3-D
object hypotheses are repackaged into a data packet format
specifying the type of avatar wanted (various human and ve-

hicle types are available) and the current 3-D location and
orientation of the avatar within the CTDB site model. These
data packets are then broadcast (multicast) on the VSAM net-
work, where any running ModSAF or ModStealth visualiza-
tion clients pick them up and display them within their re-
spective 2-D or 3-D synthetic environments. Fig. 12(a) and
(b) shows an example of three people being tracked by the
VSAM system and a screen dump of their avatars repre-
sented within a 2-D ModSAF display. Fig. 12(c) and (d)
shows a person being tracked and the corresponding avatar
being viewed within a 3-D ModStealth viewer. Fig. 13 shows
an example of multiple objects detected automatically and in-
serted as avatars within a 3-D ModStealth view of the CMU
campus. These experiments demonstrate that it is possible to
automatically detect, track, and classify multiple people and
vehicles using an automated surveillance system and then in-
sert them as avatars in a synthetic environment for real-time
visualization.

C. Preliminary Work: Web-Page Event Reporting

In addition to on-line interactive use by an operator, an-
other useful mode of operation for an automated surveillance
system is unsupervised data logging, followed by off-line op-
erator review days or months after collection of the data. We
have begun to develop a prototype web-based data logging
system to explore this application. For each object detected
and tracked by the system, all symbolic data (e.g., object clas-
sification; color information; time-stamped trajectory data) is
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Fig. 12. Sample synthetic environment visualizations of VSAM detection and tracking data.
(a) Automated tracking of three soldiers. (b) ModSAF 2-D orthographic map display of estimated
geolocations. (c) Tracking of a soldier walking out of town. (d) Immersive, texture-mapped 3-D
visualization of the same event, seen from a user-specified viewpoint.

Fig. 13. Real-time, 3-D ModStealth visualization of objects detected and classified by the
VSAM testbed system.

saved, along with a cropped image of the object. All observa-
tions can then be explored by web browsing via CGI through
an HTTP server [86], so that a human reviewer can access the

data from anywhere. Fig. 14(a) shows a sample object report
web page. To cut down on information overload, the user can
select specific subsets of object classes to view. When the
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(a)

(b)

Fig. 14. (a) Object report web page. (b) Activity (event) report web page.

user selects an object, the system automatically brings up a
page showing other objects of the same class having similar
color features. In this way, it might be possible for a user to
detect the same vehicle or person being observed at different
places and times around the surveillance site.

Unfortunately, in a high-traffic area, data on dozens of
people and vehicles can be collected in just a few minutes of
observation. Browsing the huge volume of raw surveillance
data collected over even a single day is unmanageable and
some type of higher-level semantic organization of the
data is desired. To this end, we have begun developing an
event detection program that scans the log files for common
“events” that can be given a semantic label. There has been
much work on parsing sequences of low-level surveillance
observations, particularly time-stamped trajectories, into

events that signify object interactions [5], [10]–[12], [15],
[17], [87]–[90]. Our prototype event detector is based on
hidden Markov models (HMMs) [10], [87], trained to
recognize simple object interactions. Briefly, output from
the low-level detection and tracking surveillance algorithms
is quantized into the following discrete set of attributes and
values for each motion blob:

1) object class:Human, Vehicle, HumanGroup;
2) object action: Appearing, Moving, Stopped, Disap-

pearing;
3) interaction: Near, MovingAwayFrom, MovingTo-

ward, NoInteraction.
The activities that can be labeled are: a) human entered a ve-
hicle; b) human exited a vehicle; c) human entered a building;
d) human exited a building; e) a vehicle parked; and f) human
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rendezvous. To train the activity classifier, conditional and
joint probabilities of attributes and actions are obtained by
generating many synthetic activity occurrences in simula-
tion. This simulation-based training approach is motivated
by [10]. Fig. 14(b) shows a preliminary example of a gener-
ated activity report. The activity report shows labeled events
such as a “car parked,” or “human entered a building,” sorted
by time. If a user wants more detail, a hypertext link brings
up a page showing a cropped image of the object, along with
its class and color information.

VI. SUMMARY

The paper has presented an overview of video under-
standing algorithms developed at CMU to perform cooper-
ative, multisensor surveillance. A network of smart sensors
are deployed that are independently capable of performing
real-time, autonomous object detection, tracking, classifi-
cation and gait analysis. Results from these single-sensor
technologies are combined into a coherent overview of the
dynamic scene by multisensor fusion algorithms running on
a central operator control station. The key to data integration
from these multiple, widely spaced sensors is computation
of object location with respect to a 3-D site model, followed
by object hypothesis comparison and matching using a set
of viewpoint-independent descriptors.

A single user tasks the system through an intuitive graph-
ical user interface. The system automatically allocates sen-
sors to perform these tasks using an arbitration function that
determines the cost of assigning each sensor to each task.
The system performs a greedy optimization over this cost
table to maximize overall system performance. Through this
cost-based scheduling approach, multiple sensors are auto-
matically tasked to cooperatively track objects over long dis-
tances and through occlusion.

Visualizing the relative locations of people and vehicles
over a large area is a difficult task. We provide the user with
2-D and 3-D synthetic views of the environment, within
which detected people and vehicles are displayed as dynamic
agents. This approach has the benefit that visualization of
scene events is no longer tied to the original resolution and
viewpoint of a single video sensor and the operator can
therefore infer proper spatial relationships between sets
of objects and between objects and scene features such as
roads and buildings, leading to a better understanding of the
evolving scene.
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