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Abstract

This paper describes the dynamic window approach to reactive collision avoidance
for mobile robots equipped with synchro-drives. The approach is derived directly
from the motion dynamics of the robot and is therefore particularly well-suited for
robots operating at high speed. It differs from previous approaches in that the search
for commands controlling the translational and rotational velocity of the robot is
carried out directly in the space of velocities. The advantage of our approach is that
it correctly and in an elegant way incorporates the dynamics of the robot. This is done
by reducing the search space to the dynamic window, which consists of the velocities
reachable within a short time interval. Within the dynamic window the approach only
considers admissible velocities yielding a trajectory on which the robot is able to stop
safely. Among these velocities the combination of translational and rotational velocity
is chosen by maximizing an objective function. The objective function includes a
measure of progress towards a goal location, the forward velocity of the robot, and
the distance to the next obstacle on the trajectory. In extensive experiments the
approach presented here has been found to safely control our mobile robot RHINO
with speeds of up to 95 cm/sec, in populated and dynamic environments.

1 Introduction

One of the ultimate goals of indoor mobile robotics research is to build robots that can
safely carry out missions in hazardous and populated environments. For example, a
service-robot that assists humans in indoor office environments should be able to react
rapidly to unforeseen changes, and perform its task under a wide variety of external cir-
cumstances. Most of today’s commercial mobile devices scale poorly along this dimension.
Their motion planning relies on accurate, static models of the environments, and therefore
they often seize to function if humans or other unpredictable obstacles block their path.
To build autonomous mobile robots one has to build systems that can perceive their envir-
onments, react to unforeseen circumstances, and (re)plan dynamically in order to achieve
their missions.



This paper focuses on one particular aspect of the design of such a robot: the reactive
avoidance of collisions with obstacles. The dynamic window approach proposed in this
paper is especially designed to deal with the constraints imposed by limited velocities
and accelerations, because it is derived directly from the motion dynamics of synchro-
drive mobile robots. In a nutshell, our approach considers periodically only a short time
interval when computing the next steering command to avoid the enormous complexity of
the general motion planning problem. The approximation of trajectories during such a time
interval by circular curvatures results in a two-dimensional search space of translational
and rotational velocities. This search space is reduced to the admissible velocities allowing
the robot to stop safely. Due to the limited accelerations of the motors a further restriction
is imposed on the velocities: the robot only considers velocities that can be reached within
the next time interval. These velocities form the dynamic window which is centred around
the current velocities of the robot in the velocity space.

Among the admissible velocities within the dynamic window the combination of transla-
tional and rotational velocity is chosen by maximizing an objective function. The objective
function includes a measure of progress towards a goal location, the forward velocity of
the robot, and the distance to the next obstacle on the trajectory. By combining these,
the robot trades off its desire to move fast towards the goal and its desire to ship around
obstacles (which decrease the free space). The combination of all objectives leads to a
very robust and elegant collision avoidance strategy.

Figure 1. The robot RHINO, an RWI B21.

The dynamic window approach has been implemented and tested using RHINO, a
B21 robot manufactured by Real World Interface Inc. (see Figure 1), and other synchro-
drive robots. In extensive experimental evaluations using ultrasonic proximity sensors



for the construction of local world models (obstacle line fields), the method has proven
to avoid collisions reliably with speeds of up to 95 cm/sec on several robots in several
indoor environments (University of Bonn, Carnegie Mellon University, 1994 AAAI robot
competition, 1995 IJCAI robot exhibition, and others, see also [3]). The method has also
successfully been operated based on cameras and infrared detectors as sensory input.

Our approach differs from previous approaches in (a) that it is derived directly from
the motion dynamics of a mobile robot, (b) it therefore takes the inertia of the robot
into account — which is particularly important if a robot with torque limits travels at high
speed —, and (c¢) has safely controlled several RWI robots in various cluttered and dynamic
environments with speeds of up to 95 centimeter per second. We envision this approach to
be particularly useful for robots that travel at even higher speeds and for low-cost robots
with limited motor torques, for which the constraints imposed by the motion dynamics
are even more imperative.

The remainder of this paper is organized as follows. After discussing related work
Section 3 gives the general motion equations for synchro-drive mobile robots. One of the
key results here is that trajectories of synchro-drive robots can be approximated accurately
by finitely many segments of circles. Section 4 describes our approach, as outlined above.
Experimental results are summarized in Section 5, followed by a discussion of further
research issues.

2 Related Work

The collision avoidance approaches for mobile robots can roughly be divided into two
categories: global and local. The global techniques, such as road-map, cell decomposition
and potential field methods (see [10] for an overview and further references), generally
assume that a complete model of the robot’s environment is available. The advantage of
global approaches lies in the fact that a complete trajectory from the starting point to the
target point can be computed off-line. However, global approaches are not appropriate
for fast obstacle avoidance. Their strength is global path planning. Additionally, these
methods have proven problematic when the global world model is inaccurate, or simply
not available, as is typically the case in most populated indoor environments. Hu/Brady,
Moravec and others [5, 11], have shown how to update global world models based on sens-
ory input, using probabilistic representations. A second disadvantage of global methods
is their slowness due to the inherent complexity of robot motion planning [12]. This is
particularly problematic if the underlying world model changes on-the-fly, because of the
resulting need for repeated adjustments of the global plan. In such cases, planning in a
global model is usually too expensive to be done repeatedly.

Local or reactive approaches, on the other hand, use only a small fraction of the world
model, to generate robot control. This comes at the obvious disadvantage that they cannot
produce optimal solutions. Local approaches are easily trapped in local minima (such as
U-shaped obstacle configurations). However, the key advantage of local techniques over
global ones lies in their low computational complexity, which is particularly important



when the world model is updated frequently based on sensor information. For example,
potential field methods, as proposed by [8], determine the steering direction by (hypothet-
ically) assuming that obstacles assert negative forces on the robot, and that the target
location asserts a positive force. These methods are extremely fast, and they typically
consider only the small subset of obstacles close to the robot. Borenstein and Koren [9]
identified that such methods often fail to find trajectories between closely spaced obstacles;
they also can produce oscillatory behavior in narrow corridors. An extended version of
the potential field approach is introduced in [7]. By modifying the potential function the
motion of the robot becomes more efficient and different behaviors such as wall following
and tracking can be achieved.

In [2], the vector field histogram approach is proposed, which extends the previously
developed virtual force field histogram [1]. This approach uses an occupancy grid repres-
entation for modeling the robot’s environment, which is generated and updated continu-
ously using ultrasonic proximity sensors. Occupancy information is transformed into a
histogram description of the free space around the robot, which is used to compute the
motion direction and velocity for the robot. As noted above, local methods are typically
very fast, and they quickly adapt to unforeseen changes in the environment.
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Figure 2. Example situation

Most of these local approaches generate motion commands for the robot in two separate
stages [1, 2, 8]. In the first stage a desired motion direction is determined. In the second
stage the steering commands yielding a motion into the desired direction are generated.
Strictly speaking, such an approach is only justifiable if infinite forces can be asserted
on the robot. However, for robots with limited accelerations it is necessary to take into
account the impulse of the robot.

For example consider the situation given in Figure 2 and suppose that the robot is
in a fast straight motion in the corridor while the target point is in the small opening
to its right. Obviously, the optimal target direction implies a turn to the right. Without
respecting that its forces are not high enough to perform the necessary sharp turn the robot
would collide with the wall (right wall IT). By only considering the admissible velocities
in the dynamic window our method detects that the robot cannot perform the sharp turn.
Thus the robot would stay on its current straight trajectory and not collide with the wall.
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3 Motion Equations for a Synchro-Drive Robot

This section describes the fundamental motion equations for a synchro-drive mobile robot
[4]. The derivation begins with the correct dynamic laws, assuming that the robot’s trans-
lational and rotational velocity can be controlled independently (with limited torques). To
make the equations more practical, we derive an approximation that models velocity as a
piecewise constant function in time. Under this assumption, robot trajectories consist of
sequences of finitely many segments of circles. Such representations are very convenient
for collision checking, since intersections of obstacles with circles are easy to check. We
also derive an upper bound for the approximation error. The piecewise circular represent-
ation forms the basis of the dynamic window approach to collision avoidance, described
in Section 4.

3.1 General Motion Equations

Let 2(¢) and y(?) denote the robot’s coordinate at time ¢ in some global coordinate system,
and let the robot’s orientation (heading direction) be described by #(t). The triplet (z,y, 6)
describes the kinematic configuration of the robot. The motion of a synchro-drive robot
is constrained in a way such that the translational velocity v always leads in the steering
direction # of the robot, which is a non-holonomic constraint [10]. Let x(fo) and x(t,)
denote the x-coordinates of the robot at time tq and ¢, respectively. Let v(t) denote the
translational velocity of the robot at time ¢, and w(t) its rotational velocity. Then x(t,)
and y(t,) can be expressed as a function of x(ty), v(t) and 6(¢):
w(ty) = alto)+ [ o(t) - cosB(t) dt (1)
to
tn

y(t) = ylto)+ [ o(t)-sin(t) di (2)

to

Equations (1) and (2) depend on the velocities of the robot, which usually cannot be
set directly. Instead, the velocity v(t) depends on the initial translational velocity v(o)
at to, and the translational acceleration #(f) in the time interval ¢ € [to,¢]. Likewise, the
orientation #(¢) is a function of the initial orientation #(t¢), the initial rotational velocity
w(to) at tg, and the rotational acceleration w(f) with 7 € [to,t]. Substituting v(¢) and 0(¢)
by the corresponding initial kinematic and dynamic configuration v(to), 0(to),w(to) and
the accelerations 0(f) and () yields the expression' :

tn

2(th) = (te) + @w+tww)m@w+t@%wfmmaﬁﬁ(@

1) to to to

The equations are now in the form that the trajectory of the robot depends exclusively
on its initial dynamic configuration at time ¢y and the accelerations, which we assume

'Notice that the derivation of y(t,) is analogous, thus we only describe the derivation for the x-
coordinate.



to be controllable (for most mobile robots the accelerations determining its motion are
monotonic functions of the currents flowing through the motors [6]. Hence, limits on the
currents directly correspond to limits on the accelerations).

Digital hardware imposes constraints as to when one can set the motor currents (and
thus set new accelerations). Hence, Eq. (3) can be simplified by assuming that between
two arbitrary points in time, ¢ and ?,, the robot can only be controlled by finitely many
acceleration commands. Let n denote this number of time ticks. Then, the accelerations v;
and w; for i = 1...n are kept constant in a time interval [¢;,¢,11] (: = 1...n). Let Al and
Az{ be defined as Ai =1t —1; and Az{ — { — ¢, for some interval index i = 1...n. Using this
discrete form, the dynamic behavior of a synchro-drive robot is expressed by the following
equation, which follows directly from Eq. (3) under the assumption of piecewise constant
accelerations:

(1) = alt0) + 3 [ (ote + 60 A7) -cos (000 + it - A7 + S (M) de ()

3.2 Approximate Motion Equations

While Eq. (4) describes the general case of mobile root control, it is not particularly helpful
when determining the actual steering direction. This is because the trajectories generated
by these equations are complex, and geometric operations such as checks for intersections
are expensive to perform.

To derive a more practical model, we will now simplify Eq. (4) by approximating the
robot’s velocities within a time interval [¢;,¢;11] by a constant value. The resulting motion
equation, Eq. (6), converges to Eq. (4) as the length of the time intervals goes to zero.
As we will see under this assumption the trajectory of a robot can be approximated by
piecewise circular arcs. This representation is well-suited for generating motion control in
real time, as described in Section 4

If the time intervals [t;, #;] are sufficiently small, the term v(#;) + ;- A’ can be approx-
imated by an arbitrary translational velocity v; € [v(t;), v(t;41)], due to the smoothness of
robot motion in time. Likewise, the term 0(;) + w(t;) + 1&;(A})? can be approximated by
an arbitrary 0(t;) + w; - A}, where w; € [w(t;),w(t;11)]. This leads to the following motion
equation

n—1 ti 1 . .
o(ty) = w(to) + Z/ i cos (0(t:) e - (F— 1)) di (5)
i=0 Yt
which, by solving the integral, can be simplified to
n—1
2(tn) = a(to) + Y (Fo(tivr)) (6)
=0

; Z—i(sin O(t;) —sin(0(t;) +w; - (t —1:))), wi # 0
Fot) = { v;cos(0(t;)) - t,w; =0 (7)



The corresponding equations for the y-coordinate are:
n—1
y(ta) = ylto) + 2 (Fy(ti)) (8)
=0

; —Z—i(cos O(t;) —cos(O(t;) +w; - (t—1:))), wi £ 0
B = { v sin(0(;)) - t, wi =0 )

Notice that if w; = 0, the robot will follow a straight line. Conversely, if w; # 0, the

robot’s trajectory describes a circle, as can be seen by considering
' v
M, = ——-sinf(t;) (10)
i i Z
M, = o - cos 0(t;) (11)
for which the following relation holds:
i )2 i i\ 2 v; \?
(rr =) (r-0r)" = () (12)
This shows that the i-th trajectory is a circle M; about (M;,M;) with radius M! = o,
Hence, by assuming piecewise constant velocities, we can approximate the trajectory of a
robot by a sequence of circular and straight line arcs.

Notice that, apart from the initial conditions, Equations (5) to (9) depend only on
velocities. When controlling the robot, however, one is not free to set arbitrary velocities,
since the dynamic constraints of the robot impose bounds on the maximum deviation of
velocity values in subsequent intervals.

3.3 An Upper Bound on the Approximation Error

Obviously, the derivation makes the approximate assumption that velocities are piecewise
constant within a time interval. This error is bounded linearly in time between control
points, ;11 —t; — a fact which will be used below for modeling uncertainty in the robot’s
position.

Consider the errors £ and E; for the z- and y-coordinate, respectively, within the time
interval [¢;,¢;11]. Let At; :=t,41—1;. The deviation in the direction of any of the two axes is
maximal if the robot moves on a straight trajectory parallel to that axis. Since in each time
interval we approximate v(t) by an arbitrary velocity v; € [v(¢;), v(ti4+1)], an upper bound of
the errors £ and E; for (i+1)-th time interval is governed by £ E; < |o(tiz1)—v(t:)]-Aty,
which is linear in At,.

The reader should notice that this bound applies only to the internal prediction of the
robot’s position. When executing control, the location of the robot is measured periodically
with its wheel-encoders (four times a second in our implementation).

This completes the derivation of the robot motion. To summarise, we have derived
an approximate form that describes trajectories by sequences of circular arcs, and we
have derived a linear bound on the error due to an approximate assumption made in the
derivation (piecewise constant velocities).



4 The Dynamic Window Approach

In the dynamic window approach the search for commands controling the robot is carried
out directly in the space of velocities. The dynamics of the robot is incorporated into
the method by reducing the search space to those velocities which are reachable under the
dynamic constraints. In addition to this restriction only velocities are considered which
are safe with respect to the obstacles. This pruning of the search space is done in the first
step of the algorithm. In the second step the velocity maximizing the objective function is
chosen from the remaining velocities. A brief outline of the different parts of one cycle of
the algorithm is given in Figure 3. In the current implementation such a cycle is performed
every (.25 seconds.

In the remainder of this section we will use the situation shown in Figure 2 to describe
the different aspects of the dynamic window approach.

4.1 Search Space
Circular trajectories

In Section 3 we showed that it is possible to approximate the trajectory of a synchro-
drive robot by a sequence of circular arcs. In the remainder of this paper we will refer to
these circles as curvatures. Each curvature is uniquely determined by the velocity vector
(vi, w;), which we will simply refer as velocity. To generate a trajectory to a given goal
point for the next n time intervals the robot has to determine velocities (v;, w;), one for
each of the n intervals between tq and ¢,. This has to be done under the premise that
the resulting trajectory does not intersect with an obstacle. The search space for these
vectors is exponential in the number of the considered intervals.

To make the optimization feasible, the dynamic window approach considers exclusively
the first time interval, and assumes that the velocities in the remaining n — 1 time intervals
are constant (which is equivalent to assuming zero accelerations in [t1,,]). This reduction
is motivated by the observations that (a) the reduced search space is two-dimensional and
thus tractable, (b) the search is repeated after each time interval, and (c) the velocities
will automatically stay constant if no new commands are given.

Admissible Velocities

Obstacles in the closer environment of the robot impose restrictions on the rotational and
translational velocities. For example, the maximal admissible speed on a curvature de-
pends on the distance to the next obstacle on this curvature. Assume that for a velocity
(v,w) the term dist(v,w) represents the distance to the closest obstacle on the corres-
ponding curvature (in Section 5.2 we describe how to compute this distance given circular
trajectories). A velocity is considered admissible, if the robot is able to stop before it
reaches this obstacle. Let v, and W, be the accelerations for breakage. Then the set V, of



1. Search space: The search space of the possible velocities is reduced in
three steps:

(a) Circular trajectories: The dynamic window approach considers
only circular trajectories (curvatures) uniquely determined by pairs
(v,w) of translational and rotational velocities. This results in a
two-dimensional velocity search space.

(b) Admissible velocities: The restriction to admissible velocities
ensures that only safe trajectories are considered. A pair (v,w) is
considered admissible, if the robot is able to stop before it reaches
the closest obstacle on the corresponding curvature.

(¢) Dynamic window: The dynamic window restricts the admissible
velocities to those that can be reached within a short time interval
given the limited accelerations of the robot.

2. Optimization: The objective function

G(v,w) = o(a-heading(v,w) + § - dist(v,w) + v - vel(v,w)) (13)

is maximized. With respect to the current position and orientation of the
robot this function trades off the following aspects:

(a) Target heading: heading is a measure of progress towards the
goal location. It is maximal if the robot moves directly towards the
target.

(b) Clearance: dist is the distance to the closest obstacle on the tra-
jectory. The smaller the distance to an obstacle the higher is the
robot’s desire to move around it.

(¢) Velocity: vel is the forward velocity of the robot and supports fast

movements.

The function o smoothes the weighted sum of the three components and
results in more side-clearance from obstacles.

Figure 3: Different parts of the dynamic window approach

admissible velocities is defined as

Vo= {(0.0) [0 < V2 distlo,.0) 6y A w0 < 2 dist(0,0) -8} (1)

Thus V, is the set of velocities (v, w) which allow the robot to stop without colliding with
an obstacle.
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Example 1 Again consider the example given in Figure 2. Figure 4 shows the velocities
admissible in this situation given the accelerations v, = 50 cm/sec* and W, = 60 deg/sec*.
The non-admissible velocities are denoted by the dark shaded areas. For example all
velocities in area right wall 1T would cause a sharp turn to the right and thus cause the
robot to collide with the right wall in the example situation. The non-admissible areas are
extracted from real world proximity information; in this special case this information was
obtained from sonar sensors (see Section 5).

Dynamic window

In order to take into account the limited accelerations exertable by the motors the overall
search space is reduced to the dynamic window which contains only the velocities that
can be reached within the next time interval. Let ¢ be the time interval during which the
accelerations v and w will be applied and let (v,, w,) be the actual velocity. Then the
dynamic window Vj is defined as

Vi=A{(v,w) | ve[vy, — 0 -t + 0t Awe[w, —w - tw, +w - t]}. (15)

The dynamic window is centred around the actual velocity and the extensions of it depend
on the accelerations that can be exerted. All curvatures outside the dynamic window
cannot be reached within the next time interval and thus are not considered for the obstacle
avoidance.

Example 2 An ezemplary dynamic window obtained in the situation shown in Figure 2
given accelerations of 50 cm/sec* and 60 deg/sec® and a time interval of 0.25 sec is shown
in Figure 5. The two dotted arrows pointing to the corners of the rectangle denote the
most extreme curvatures that can be reached.

10



VS\ A 90 crv/sec

dyl 1amic window Vd 7
\ ° L
Vr

¥
actdal velocity

Va

S0 degisec 90 deg/sic

Figure 5. Dynamic window

Resulting Search Space

The above given restrictions imposed on the search space for the velocities result in the
area V, within the dynamic window. Let V, be the space of possible velocities, then the
area V, is defined as the intersection of the restricted areas, namely

V, = V.nv,nv, (16)

In Figure 5 the resulting search space is represented by the white area.

4.2 Maximizing the Objective Function

After having determined the resulting search space V, a velocity is selected from V,.. In
order to incorporate the criteria target heading, clearance, and velocity, the maximum of
the objective function

G(v,w) = o(a-heading(v,w) 4+ G- dist(v,w) + 7 - velocity(v,w))

is computed over V,. This is done by discretization of the resulting search space.

Target heading

The target heading heading(v,w) measures the alignment of the robot with the target dir-
ection. It is given by 180 — 60, where § is the angle of the target point relative to the robot’s
heading direction (see Figure 6). Since this direction changes with the different velocities,
f is computed for a predicted position of the robot. To determine the predicted position
we assume that the robot moves with the selected velocity during the next time interval.
For a realistic measurement of the target heading we have to consider the dynamics of
the rotation. Therefore, 6 is computed at the position, which the robot will reach when

11



actual position

Figure 6. Angle 0 to the
target

exerting maximal deceleration after the next interval. This yields a smooth turning to the

targt heading —

90

rans. velocity [cm/sec]

30
0

rot. velocity [deg/sec] 45

Figure 7. Evaluation of the target
heading

target in the behavior of the robot when it has circumvented an obstacle.

Example 3 Figure 7 shows the evaluation of the target heading for the different velocities
In this figure and the following figures the values for non-
admissible velocities are set to zero (compare with Figures 2 and 4). For clarity we show
the evaluation of the whole velocity space and do not restrict it to the dynamic window.
The non-linearity of the function in Figure 7 is caused by the consideration of the dynamics
in the determination of the predicted position. Because positive rotational velocities yield
curvatures to the right we find the best velocities on the right side of the velocity space.
The optimal velocities are those leading to a perfect heading to the target on the predicted
position. The function declines for even higher rotational velocities, because they yield a

in the example situation.

turning beyond the target.

Clearance

The function dist(v,w) represents the distance to the closest obstacle that intersects with

the curvature. If no obstacle is on the curvature this value is set to a large constant.
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Example 4 The evaluation of the distances as given in Figure 8 solely depends on the
proximity information about obstacles around the robot. In the given plot one can find low
evaluations for those curvatures which lead to the walls. For higher translational velocities
these values fall into the non-admissible areas and are thus set to zero.

Velocity
The function velocity(v,w) is used to evaluate the progress of the robot on the correspond-

ing trajectory. It is simply a projection on the translational velocity v, as can be seen in

Figure 9.

Smoothing

evaluation function —

90

30
rot. velocity [deg/sec] 45

rans. velocity [cm/sec]|

Figure 10. Combined evaluation
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90
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30

rot. velocity [deg/sec] 45

Figure 11. Objective function

function

All three components of the objective function are normalized to [0,1]. The weighted sum
of these components is shown in Figure 10. It is obtained by a value of 2.0 for a and a
value of 0.2 for # and . As expected the fastest trajectory leading through the door area
gets the highest evaluation (compare with Figure 4). Smoothing increases side-clearance
of the robot. The resulting objective function is shown in Figure 11 and the position of
the maximal value is depicted by the vertical line.

It should be noticed that all three components of G, the target heading, the clearance
and the velocity are necessary. By maximizing solely the clearance and the velocity, the
robot would always travel into free space but there would be no incentive to move towards
a goal location. By solely maximizing the target heading the robot quickly would get
stopped by the first obstacle that blocks its way, unable to move around it. By combining
all three components, the robot circumvents collisions as fast as it can under the constraints
listed above, while still making progress towards reaching its goal.

In a former version of our approach (see [3]) the search for the best velocity was
carried out in two steps. In the first step only the curvature was chosen. This was done by
evaluating the target angle and the so-called “n-sec-rule”, namely a linear function of the
clearance. In the second step the velocity on this curvature was maximized. Although the

13



resulting behavior of the robot was the same, we decided to use this single step evaluation
of the objective function. We adopted the idea for this representation from [13].

4.3 Role of the dynamic window

In the previous section we introduced the objective function to be maximized for smooth
and goal directed behavior. For illustration purposes we always showed the evaluation
for the whole velocity space. As mentioned in Section 4.1 this space is reduced to the
admissible velocities in the dynamic window. In this section we describe how the robot
respects the dynamics by this restriction. We discuss the dependency of the behavior on
different velocities and accelerations. In both examples the time interval determining the
dynamic window is fixed to 0.25 seconds.

Role of the Current Velocity

In this example we show how the behavior changes with the current velocities. We assume
accelerations of 50 cm/sec? and 60 deg/sec?. Figure 12 shows the dynamic windows
Va1 and Vg given straight motion with translational velocities of 75 and 40 c¢m/sec,
respectively. In the Figures 13 and 14 the objective function is shown for the dynamic
windows. Velocities outside the dynamic windows have an evaluation of -1.

VS\ A 90 cm/sec
o)
[ ]
Va1
. door
corridor
[ ]
Va2
Va
290 deg/sec 90 deg/sec

Figure 12. Velocity space

In the first case, where the current velocity is 75 ¢cm/sec, the robot moves too fast to
perform the sharp turn to the right necessary to drive through the open door. This is
reflected in Figure 13 by the fact that the velocities resulting in a turn to the right are
not admissible. Among the velocities in the dynamic window the velocity with maximal
evaluation yields straight motion, as denoted by the vertical line in Figure 13 and by the
cross mark at the top of V4 in Figure 12.

14
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If in contrast the current velocity is 40 c¢cm/sec, the dynamic window Vg includes
curvatures leading through the door (see Figures 12 and 14). Due to the better evaluation
of the angle and the distance the chosen velocity is the one yielding the most extreme turn
to the right.

Dependency on the Accelerations

The restricted search space, the evaluation function, and the dynamic window also depend
on the given accelerations. Consider the velocity space for the example with accelerations of
20 cm/sec? and 30 deg/sec? as illustrated in Figure 15. Because of the small accelerations
the space of admissible velocities is smaller than in Figure 4. Therefore, we only consider
velocities up to 60 cm/sec and 50 deg/sec. The dynamic window for straight motion with
a translational velocity of 40 cm/sec is represented by the white area. The size of this
window is reduced as it depends on the accelerations.

Figure 16 contains the objective function of the entire velocity space. The evaluation of
the space restricted to the velocities in the dynamic window is shown in Figure 17. Again
the robot is too fast for a sharp turn into the door and the velocity with straight motion
has the maximal evaluation (compare to Figure 13).

5 Implementation and Experimental Results

5.1 RHINO

The dynamic window approach has been implemented and tested using the robot RHINO
which is a synchro-drive robot currently equipped with a ring of 24 Polaroid ultrasonic
sensors, H6 infrared detectors, and a stereo camera system. Because the main beam width
of an ultrasonic transducer is approximately 15°, the whole 360° area surrounding the
robot can be measured with one sweep of all sensors. A complete sonar sweep takes
approximately 0.4 sec.
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5.2 The Obstacle Line Field

As local world model we use an obstacle line field [3], which is a two-dimensional descrip-
tion of sensory data relative to the robot’s position (see Figure 18). We adjusted our sonar
sensors such that most erroneous readings indicate a too long distance. To be maximally
conservative, every reading is converted to an obstacle line. If the sensors would produce
spurious short readings (e.g. due to cross-talk), more sophisticated sensor interpretation
and integration models such as for example occupancy probability grid maps [11] would
be required.

The obstacle line field is centred around the robot’s position and is built out of the
data gathered by proximity sensors. It contains a line for each reading of a sonar sensor,
which is perpendicular to the main axis of the sensor beam at the measured distance. The
length of the line is determined by the breadth of the beam in the given distance. Using
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this obstacle representation the distance to obstacles on curvatures is computed as follows:
let r be the radius of the circular trajectory, and let v be the angle between the intersection
with the obstacle line and the position of the robot (see Figure 19). Then the distance to
the next obstacle is given by ~ - r.

To allow the robot to react quickly to changes in the environment, we limit the number
of lines to 72 and apply a first-in-first-out strategy to remove the least actual lines from
the obstacle line field. We found these values to allow the robot to travel safely even with
speeds of up to 95 cm/sec, while simultaneously keeping the computational time within
0.25 sec on an 1486 computer.

5.3 Further Implementation Details

The following additional strategies improved the maneuverability and the elegance of robot
motion. Since they are not essential for the approach proposed in this paper, we will only
sketch them here.

e Rotate away mode. In rare cases we observed that the robot got stuck in local
minima. This is the case if no admissible trajectory allows the robot to translate.
When this condition occurs, which is easily detected, the robot rotates away from
the obstacle until it is able to translate again.

e Speed dependent side clearance. To adapt the speed of the robot according
to the side clearance to obstacles we introduced a safety margin around the robot,
which grows linearly with the robot’s translational velocity. Thus the robot will
travel with high speed through corridors and will decelerate when driving through
narrow doors. Simultaneously, possible deviations coming from the approximation
error described in Section 3.3 are respected.
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5.4 Experimental Results

Based on the dynamic window approach to collision avoidance, RHINO has been operated
safely in various environments, over the last 2 years. Its maximum velocity is constrained
by the hardware to approximately 95 em/sec. RHINO reaches this velocity in large open-
ings and hallways, if no obstacles block its way. If obstacles block its way, slower velocities
are selected, and collisions are avoided by selecting appropriate trajectories. For example,
when moving through doors, RHINO typically decelerates to approximately 20 cm per
second in the vicinity of the door. In the remainder of this section, we will give experi-
mental results generated with the dynamic window approach. In the following figures the
environment is drawn by hand. Nonetheless each diagram is an actual experiment and all
shown trajectories are extracted from real position data. Each of these examples show the
complete path to a particular goal point, which in our tests is set by a human operator.
In the every-day use, these goal points are set automatically by a global path planner
described in [14, 15, 16].

Parameter Settings

Although the performance of the obstacle avoidance depends on the weighting parameters
a, [, and 7, it is stable against slight changes of their values. Without any exhaustive
tuning of these parameters we found values of 0.8, 0.1, and 0.1 for «, 3, and 7 to give
good results. The alignment of the robot with the target point is mainly determined by
the ratio between « and the other two parameters. Very low values of the target heading
weight o give the robot much freedom in moving around obstacles. At the same time they
may detain the robot from reaching target points behind narrow openings if sensors with
low angular resolution are used (e.g. ultrasonic sensors). This is because the robot turns
away from the opening before its sensors are able to detect it. On the other extreme, a
high heading weight forces the robot to approach objects very closely before turning aways,
which prohibits smooth circumvention of obstacles.

By choosing different values for « global knowledge about the environment can be
transfered to the local obstacle avoidance. While higher values produce good results in
narrow environments, smaller values are more appropriate in wide and populated hallways.

Role of the Dynamic Window

The first experiment demonstrates the influence of the dynamic window on the behavior of
the robot. The three paths in Figure 20 are examples for the typical behavior of the robot
under different dynamics constraints (for the velocities and accelerations we used the same
values as in Section 4.3). The crucial point of the experiment is the path taken in the dark
shaded decision area. In this area the robot detects the opening to its right and has to
decide whether to take the sharp turn to the right or not. This decision strongly depends on
the dynamics of the robot. Only if the actual velocity and the possible accelerations allow
a sharp turn to the right, the robot directly moves to the target point. This trajectory is
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denoted by the dashed line. In the other two cases the robot decides to pass the opening and
moves parallel to the wall until the evaluation of the target heading angle(v,w) becomes
very small.

] ] |

im ;e 70 cmi/sec - 50 cmi/sec?, 60 deg/sec?
----- 40 cm/sec - 50 cmisec?, 60 deg/sec?

40 cm/sec - 20 cm/sec?, 30 deg/sec?

Decision area

Figure 20. Trajectories chosen for different dynamic
parameters

Notice that without considering the dynamic constraints, an attempt to turn right
would have almost certainly resulted in a collision with a wall. In fact, in initial experi-
ments with a simulator, in which we ignored some of the dynamic effects, we experienced
these type collisions frequently.

Straight Motion in Corridors

Figure 21. Trajectory through corridor

Figure 21 shows an example of traveling along a hallway with only one obstacle in the
middle of the hallway. In this case RHINO first orients itself to the target point. But then
the obstacle is detected and the robot chooses a smooth trajectory avoiding the obstacle.
Although RHINO slows down to 55 cm/sec before passing the obstacle, the average speed
in this experiment was approximately 72 ¢m/sec. It should be noted that after having
driven round the obstacle RHINO follows straight lines whenever possible, and does not
oscillate, as sometimes is the case with other approaches.
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Fast Motion through Cluttered Environment

Figure 22. Trajectory through cluttered corridor

The third experiment is shown in Figure 22 and involves traveling through a cluttered
corridor. All humans in the corridor are smoothly circumvented with a maximal speed of
95 cm/sec. Notice that although the robot decelerates to less than 20 cm/sec when passing
the narrow passage (less than 80 cm wide) between the fourth person and the open door,
it still maintains an average speed of 65 cm/sec!

The AAAI 94 Mobile Robot Competition

The next trajectory was generated in the arena of the AAAT 94 mobile robot competition.
Figure 23 shows a plot of the occupancy map of the arena and the trajectory of the robot.
Here the robot moved free of collisions in an artificial indoor environment during an
exploration run. The target points for the collision avoidance were generated by a global
planning algorithm. Doors were approximately 80-110 cm wide.

It is generally difficult to compare the results described here to results obtained by other
researchers, mainly because robots vary in sizes, and small changes in the environment can
have an enormous impact on the difficulty of the problem. For example, in a configuration
similar to the ones shown in Figures 21 and 22 Borenstein et al. report that their robot
traveled with an average speed of 58 cm/sec through a cluttered environment [1, 2]. As
far as it can be judged from a single example (which is all that is available in [1, 2]), our
results compare favorably to those of Borenstein et al.

6 Discussion

This paper describes an approach to collision avoidance for mobile robots equipped with
synchro-drives. Based on the exact motion equations of such robots, it derives an ap-
proximate version that models robot trajectories by finite sequences of circular arcs. The
dynamic window approach first prunes the overall search space by considering only the
next steering command. This results in a two-dimensional search space of circular traject-
ories. After that, the search space is reduced to the admissible velocities allowing the robot
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Figure 23. Run at the AAAI "94 mobile robot competition

to stop safely without colliding with an obstacle. Finally, the dynamic window restricts
the admissible velocities to those that can be reached within a short time interval given the
limited accelerations of the robot. This way we make sure that the dynamic constraints
are taken into account. The robot constantly picks a trajectory at which it can maximize
its translational velocity and the distance to obstacles, yet minimize the angle to its goal
relative to its own heading direction. This is done by maximizing the objective function.

The experiments show that the combination of all objectives leads to a very robust and
elegant collision avoidance strategy which safely operates our robot RHINO with speeds
of up to 95 em/sec. RHINQO, a B21 mobile robot, frequently operates in our university
building without human supervision. The approach described here is only part of the
overall architecture. For example, approaches to building occupancy maps, global path
planning and computer vision are surveyed in [3, 15, 16].

In principle, the approach proposed here only assumes geometric information about
the relative location of obstacles. Therefore, it is well-suited for proximity sensors such as
ultrasonic transducers, which were used in the experiments reported here, or such as laser
range-finders. In some preliminary tests we also used camera and infrared sensors for the
detection of obstacles. Knowing the geometry of the robot and the angle of its camera,
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pixel information is converted to proximity information. However, the resulting proximity
estimate is only accurate if an obstacle touches the floor. Obstacles in different heights lead
to an overestimation of distance, which may cause the robot to collide. Stereo vision might
potentially overcome this problem. The result with infrared detectors suffered from the
fact that RHINO’s detectors have only a small range of view (< 30 cm). Therefore, when
moving high-speed the robot may collide nonetheless. Combining either of the two sensor
systems with ultrasonic measurements, however, consistently improved the smoothness of
the robot’s trajectories.
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