Plasma Treatment of Metal Surfaces for Enhanced Bonding Strength of Metal–Polymer Hybrid Structures
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Surface Treatment of Aluminum Alloys
2.3. Preparation of Metal–Polymer Hybrid Structures
2.4. Bonding Strength Measurement
2.5. Characterization
3. Results and Discussion
3.1. Surface Characterization of Anodized and Plasma-Treated Aluminum
3.2. Bonding Strength Measurements of Metal–Polymer Hybrids
3.3. Internal Structural Analysis of Metal–Polymer Hybrid Structures
3.4. 3D Printing Applications of Metal–Polymer Hybrid Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Grujicic, M.; Sellappan, V.; Omar, M.A.; Seyr, N.; Obieglo, A.; Erdmann, M.; Holzleitner, J. An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components. J. Mater. Process. Technol. 2008, 197, 363–373. [Google Scholar] [CrossRef]
- Qiu, J.; Sakai, E.; Lei, L.; Takarada, Y.; Murakami, S. Improving the shear strength by silane treatments of aluminum for direct joining of phenolic resin. J. Mater. Process. Technol. 2012, 212, 2406–2412. [Google Scholar] [CrossRef]
- Huang, H.; Sun, M.; Wei, X.; Sakai, E.; Qiu, J. Effect of interfacial nanostructures on shear strength of Al-PPS joints fabricated via injection moulding method combined with anodizing. Surf. Coat. Technol. 2023, 428, 127896. [Google Scholar] [CrossRef]
- Masuda, H.; Yada, K.; Osaka, A. Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys. Part 2 Lett. 1998, 37, L1340. [Google Scholar] [CrossRef]
- Chu, S.Z.; Wada, K.; Inoue, S.; Isogai, M.; Katsuta, Y.; Yasumori, A. Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical potential anodization. J. Electrochem. Soc. 2006, 153, B384–B391. [Google Scholar] [CrossRef]
- Zhang, J.-S.; Zhao, X.-H.; Zuo, Y.; Xiong, J.-P. The bonding strength and corrosion resistance of aluminum alloy by anodizing treatment in a phosphoric acid modified boric acid/sulfuric acid bath. Surf. Coat. Technol. 2008, 202, 3149–3156. [Google Scholar] [CrossRef]
- Lunder, O.; Olsen, B.; Nisancioglu, K. Pre-treatment of AA6060 aluminium alloy for adhesive bonding. Int. J. Adhes. Adhes. 2002, 22, 143–150. [Google Scholar] [CrossRef]
- Dursun, T.; Soutis, C. Recent developments in advanced aircraft aluminium alloys. Mater. Des. 2014, 56, 862–871. [Google Scholar] [CrossRef]
- Alexander, D.T.L.; Greer, A.L. Particle break-up during heat treatment of 3000 series aluminium alloys. Mater. Sci. Technol. 2005, 21, 955. [Google Scholar] [CrossRef]
- Krishnamurthy, S.C.; Arseenko, M.; Kashiwar, A.; Dufour, P.; Marchal, Y.; Delahaye, J.; Idrissi, H.; Pardoen, T.; Mertens, A.; Simar, A. Controlled precipitation in a new Al-Mg-Sc alloy for enhanced corrosion behavior while maintaining the mechanical performance. Mater. Charact. 2023, 200, 112886. [Google Scholar] [CrossRef]
- Gupta, M.; Surappa, M.K.; Qin, S. Effect of interfacial characteristics on the failure-mechanism mode of a SiC reinforced Al based metal-matrix composite. J. Mater. Process. Technol. 1997, 67, 94–99. [Google Scholar] [CrossRef]
- Dong, L.; Li, Y.; Huang, M.; Hu, X.; Qu, Z.; Lu, Y. Effect of anodizing surface morphology on the adhesion performance of 6061 aluminum alloy. Int. J. Adhes. Adhes. 2022, 113, 103065. [Google Scholar] [CrossRef]
- Kimura, F.; Kadoya, S.; Kajihara, Y. Effects of molding conditions on injection molded direct joining under various surface fine-structuring. Int. J. Adv. Manuf. Technol. 2018, 101, 2703–2712. [Google Scholar] [CrossRef]
- Zhao, S.; Kimura, F.; Wang, S.; Kajihara, Y. Chemical interaction at the interface of metal–plastic direct joints fabricated via injection molded direct joining. Appl. Surf. Sci. 2021, 540, 148339. [Google Scholar] [CrossRef]
- Lucchetta, G.; Marinello, F.; Bariani, P.F. Aluminum sheet surface roughness correlation with adhesion in polymer metal hybrid overmolding. CIRP Ann. 2011, 60, 559–562. [Google Scholar] [CrossRef]
- Horiuchi, S.; Terasaki, N.; Itabashi, M. Evaluation of the properties of plastic-metal interfaces directly bonded via injection molding. Manuf. Rev. 2020, 7, 11. [Google Scholar] [CrossRef]
- ASTM B209/B209M-21a; Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate. ASTM: West Conshohocken, PA, USA, 2022.
- ISO 19095-1:2015; Plastics—Evaluation of the Adhesion Interface Performance in Plastic-metal Assemblies. Part 1: Guidelines for the Approach. ISO: Geneva, Switzerland, 2015.
- Ye, J.; Yin, Q.; Zhou, Y. Superhydrophilicity of anodic aluminum oxide films: From “honeycomb” to “bird’s nest”. Thin Solid Films. 2009, 517, 6012–6015. [Google Scholar] [CrossRef]
- Abrahami, S.T.; Kok, J.M.M.; Gudla, V.C.; Ambat, R.; Terryn, H.; Mol, J.M.C. Interface strength and degradation of adhesively bonded porous aluminum oxides. npj Mater. Degrad. 2017, 1, 8. [Google Scholar] [CrossRef]
- Song, J.-S.; Kwac, L.-K.; Kim, H.-G.; Ryu, S.-K. Enhanced mechanical properties of anti-corrosive concrete coated by milled carbon nanofiber-reinforced composite paint. Carbon Lett. 2023, 33, 1095–1104. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, Y.; Wang, S.; Li, M. Optimization for testing conditions of inverse gas chromatography and surface energies of various carbon fiber bundles. Carbon Lett. 2023, 33, 909–920. [Google Scholar] [CrossRef]
- Wu, D.; Xing, Y.; Zhang, D.; Hao, Z.; Dong, Q.; Han, Y.; Liu, L.; Wang, M.; Zhang, R. Optimized interfacial compatibility of carbon fiber and epoxy resin via controllable thickness and activated ingredients of polydopamine layer. Carbon Lett. 2024, 34, 351–359. [Google Scholar] [CrossRef]
- Bard, S.; Tran, T.; Schönl, F.; Rosenfeldt, S.; Demleitner, M.; Ruckdäschel, H.; Retsch, M.; Altstädt, V. Relationship between the tensile modulus and the thermal conductivity perpendicular and in the fiber direction of PAN-based carbon fibers. Carbon Lett. 2024, 34, 361–369. [Google Scholar] [CrossRef]
- An, S.H.; Kim, K.Y.; Chung, C.W.; Lee, J.U. Development of cement nanocomposites reinforced by carbon nanotube dispersion using superplasti-cizers. Carbon Lett. 2024, 34, 1481–1494. [Google Scholar] [CrossRef]
- Abrahami, S.T.; de Kok, J.M.; Gudla, V.C.; Marcoen, K.; Hauffman, T.; Ambat, R.; Mol, J.M.C.; Terryn, H. Fluoride-induced interfacial adhesion loss of nanoporous anodic aluminum oxide templates in aerospace structures. ACS Appl. Nano Mater. 2018, 1, 6139–6149. [Google Scholar] [CrossRef]
- Drelich, J.; Chibowski, E. Superhydrophilic and Superwetting Surfaces: Definition and Mechanisms of Control. Langmuir Lett. 2010, 26, 18621–18623. [Google Scholar] [CrossRef]
- Zou, X.; Sariyev, B.; Chen, K.; Jiang, M.; Wang, M.; Hua, X.; Zhang, L.; Shan, A. Enhanced interfacial bonding strength between metal and polymer via synergistic effects of particle anchoring and chemical bonding. J. Manuf. Process 2021, 68, 558–568. [Google Scholar] [CrossRef]
- Vasconcelos, R.L.; Oliveira, G.H.; Amancio-Filho, S.T.; Canto, L.B. Injection overmolding of polymer-metal hybrid structures: A review. Polym. Eng. Sci. 2022, 63, 691–722. [Google Scholar] [CrossRef]
- Jiang, L.; Li, P.; Wang, S.; Liu, R.; Zhu, X.; Song, Y.; van Ree, T. Anodization fabrication techniques and energy related applications for nanostructured anodic films on transition metals. Energy Mater. 2022, 2, 2000038. [Google Scholar]
- Couda, M.M.; Khatib, A.M.; Khalil, M.M.; Elzaher, M.A.; Abbas, M.I. Comparative study between micro-and nano-carbon with epoxy for gamma shielding applications. Carbon Lett. 2024, 34, 1129–1141. [Google Scholar]
- Xu, D.; Yang, W.; Li, X.; Hu, Z.; Li, M.; Wang, L. Facile transition from hydrophilicity to superhydrophilicity and superhydrophobicity on aluminum alloy surface by simple acid etching and polymer coating. Appl. Surf. Sci. 2013, 280, 193–200. [Google Scholar]
Factor | Level | |
---|---|---|
3D Printing | Nozzle temperature (°C) | 210 |
Bed temperature (°C) | 100 | |
Chamber temperature (°C) | 60 | |
Printing speed (mm/min) | 5000 | |
Adhesion method/Area (m2) | Single lap joint/5.0–10.0 | |
Measuring speed (MPa/min) | 5 |
Element | Atomic Percentage (%) | ||
---|---|---|---|
Bare Al | Anodized Al | Plasma-Treated Al | |
Al | 76.97 | 45.10 | 44.07 |
C | 11.69 | 3.14 | 3.70 |
O | 11.34 | 51.02 | 51.54 |
P | 0 | 0.75 | 0.69 |
Element | Specific Information | Binding Energy (eV) | |
---|---|---|---|
Orbital | Bond | ||
O | O(1s) | 531.7 | |
O1(–OH) | 531.9 | ||
O2(=O) | 530.8 |
Element | Specific Information | Binding Energy (eV) | |
---|---|---|---|
Orbital | Bond | ||
C | C(1s) | 288 | |
C1(C–C, C-H) | 285 | ||
C2(C–O) | 286.5 | ||
C3(O=C–O) | 289 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.H.; Kim, H.S.; Jung, Y.; Hong, J.-Y.; Jeon, Y.-P.; Lee, J.U. Plasma Treatment of Metal Surfaces for Enhanced Bonding Strength of Metal–Polymer Hybrid Structures. Polymers 2025, 17, 165. https://doi.org/10.3390/polym17020165
Kim DH, Kim HS, Jung Y, Hong J-Y, Jeon Y-P, Lee JU. Plasma Treatment of Metal Surfaces for Enhanced Bonding Strength of Metal–Polymer Hybrid Structures. Polymers. 2025; 17(2):165. https://doi.org/10.3390/polym17020165
Chicago/Turabian StyleKim, Dong Hyun, Han Su Kim, Yunki Jung, Jin-Yong Hong, Young-Pyo Jeon, and Jea Uk Lee. 2025. "Plasma Treatment of Metal Surfaces for Enhanced Bonding Strength of Metal–Polymer Hybrid Structures" Polymers 17, no. 2: 165. https://doi.org/10.3390/polym17020165
APA StyleKim, D. H., Kim, H. S., Jung, Y., Hong, J.-Y., Jeon, Y.-P., & Lee, J. U. (2025). Plasma Treatment of Metal Surfaces for Enhanced Bonding Strength of Metal–Polymer Hybrid Structures. Polymers, 17(2), 165. https://doi.org/10.3390/polym17020165