Novel Hybrid Catalysts of Cysteine Proteases Enhanced by Chitosan and Carboxymethyl Chitosan Micro- and Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Carboxymethyl Chitosan
2.3. Obtaining Micro- or Nanoparticles of Chitosan and Carboxymethyl Chitosan
2.4. Preparation of Complexes of Cysteine Proteases with Micro- or Nanoparticles of Chitosan and Carboxymethyl Chitosan
2.5. Protein Content Assay
2.6. Proteolytic Activity Assay
2.7. Statistical Analysis
2.8. Molecular Docking Method
3. Results and Discussions
3.1. Determination of the Size and Zeta Potential of Micro- or Nanoparticles of Medium- and High-Molecular-Weight Chitosan and Carboxymethyl Chitosan
3.2. Proteolytic Activity and Stability of Ficin in Complexes with Micro- or Nanoparticles of Chitosan and Carboxymethyl Chitosan
3.3. Proteolytic Activity and Stability of Papain in Complexes with Micro- or Nanoparticles of Chitosan and Carboxymethyl Chitosan
3.4. Proteolytic Activity and Stability of Bromelain in Complexes with Micro- or Nanoparticles of Chitosan and Carboxymethyl Chitosan
3.5. Molecular Docking
3.6. Hybrid Catalysts of Cysteine Proteases Enhanced by Chitosan and Carboxymethyl Chitosan Micro- or Nanoparticles Offer Distinct Advantages over Other Cysteine Protease Samples Immobilized on Chitosan and Its Derivatives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pawar, K.S.; Singh, P.N.; Singh, S.K. Fungal alkaline proteases and their potential applications in different industries. Front. Microbiol. 2023, 14, 1138401. [Google Scholar] [CrossRef] [PubMed]
- Chetia, D.; Nath, L.K.; Dutta, S.K. Extraction, purification and physicochemical properties of a proteolytic enzyme from the latex of Ficus Hispida Linn. Indian J. Pharm. Sci. 1999, 61, 29–33. [Google Scholar]
- Barrett, A.J.; Rawlings, N.D.; Woessner, J.F. Handbook of Proteolytic Enzymes; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Starley, I.F.; Mohammed, P.; Schneider, G.; Bickler, S.W. The treatment of paediatric burns using topical papaya. Burns 1999, 25, 636–639. [Google Scholar] [CrossRef] [PubMed]
- Baidamshina, D.R.; Koroleva, V.A.; Olshannikova, S.S.; Trizna, E.Y.; Bogachev, M.I.; Artyukhov, V.G.; Holyavka, M.G.; Kayumov, A.R. Biochemical Properties and Anti-Biofilm Activity of Chitosan-Immobilized Papain. Mar. Drugs 2021, 19, 197. [Google Scholar] [CrossRef] [PubMed]
- Baidamshina, D.R.; Koroleva, V.A.; Trizna, E.Y.; Pankova, S.M.; Agafonova, M.N.; Chirkova, M.N.; Vasileva, O.S.; Akhmetov, N.; Shubina, V.V.; Porfiryev, A.G.; et al. Anti-biofilm and wound-healing activity of chitosan-immobilized Ficin. Int. J. Biol. Macromol. 2020, 164, 4205–4217. [Google Scholar] [CrossRef]
- Sharaf, A.; Muthayya, P. Microbial profile of burn wounds managed with enzymatic debridement using bromelain-based agent, NexoBrid®. Burns 2022, 48, 1618–1625. [Google Scholar] [CrossRef]
- Feijoo-Siota, L.; Villa, T.G. Native and biotechnologically engineered plant proteases with industrial applications. Food Bioprocess. Technol. 2011, 4, 1066–1088. [Google Scholar] [CrossRef]
- Holyavka, M.G.; Goncharova, S.S.; Sorokin, A.V.; Lavlinskaya, M.S.; Redko, Y.A.; Faizullin, D.A.; Baidamshina, D.R.; Zuev, Y.F.; Kondratyev, M.S.; Kayumov, A.R.; et al. Novel Biocatalysts Based on Bromelain Immobilized on Functionalized Chitosans and Research on Their Structural Features. Polymers 2022, 14, 5110. [Google Scholar] [CrossRef]
- Fernandez-Arrojo, L.; Guazzaroni, M.-E.; Lopez-Cortes, N.; Beloqui, A.; Ferrer, M. Metagenomic era for biocatalyst identification. Curr. Opin. Biotechnol. 2010, 21, 725–733. [Google Scholar] [CrossRef]
- Ferrer, M.; Martmez-Martmez, M.; Bargiela, R.; Streit, W.R.; Golyshina, O.V.; Golyshin, P.N. Estimating the success of enzyme bioprospecting through metagenomics: Current status and future trends. Microb. Biotechnol. 2016, 9, 22–34. [Google Scholar] [CrossRef]
- Denard, C.A.; Ren, H.; Zhao, H. Improving and repurposing biocatalysts via directed evolution. Curr. Opin. Chem. Biol. 2015, 25, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Petrenko, D.E.; Mikhailova, A.G.; Timofeev, V.I.; Agapova, Y.K.; Karlinsky, D.M.; Komolov, A.S.; Rakitina, T.V. Molecular dynamics complemented by site- directed mutagenesis reveals significant difference between the interdomain salt bridge networks stabilizing oligopeptidases B from bacteria and protozoa in their active conformations. J. Biomol. Struct. Dyn. 2020, 38, 4868–4882. [Google Scholar] [CrossRef] [PubMed]
- Panis, F.; Kampatsikas, I.; Bijelic, A.; Rompel, A. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis. Sci. Rep. 2020, 10, 1659. [Google Scholar] [CrossRef]
- Bolivar, J.M.; Woodley, J.M.; Fernandez-Lafuente, R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem. Soc. 2022, 51, 6251–6290. [Google Scholar] [CrossRef] [PubMed]
- Souza, P.M.; Carballares, D.; Goncalves, L.R.; Fernandez-Lafuente, R.; Rodrigues, S. Immobilization of lipase B from Candida antarctica in octyl-vinyl sulfone agarose: Effect of the enzyme-support interactions on enzyme activity, specificity, structure and inactivation pathway. Int. J. Mol. Sci. 2022, 23, 14268. [Google Scholar] [CrossRef] [PubMed]
- Souza, P.M.P.; Carballares, D.; Lopez-Carrobles, N.; Goncalves, L.R.; Lopez-Gallego, F.; Rodrigues, S.; Fernandez-Lafuente, R. Enzyme-support interactions and inactivation conditions determine Thermomyces lanuginosus lipase inactivation pathways: Functional and florescence studies. Int. J. Biol. Macromol. 2021, 191, 79–91. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Ortiz, C.; Berenguer-Murcia, A.; Torres, R.; Fernaandez-Lafuente, R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 2013, 42, 6290–6307. [Google Scholar] [CrossRef]
- Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym. Microb. Technol. 2007, 40, 1451–1463. [Google Scholar] [CrossRef]
- Coscolm, C.; Beloqui, A.; Martmez-Martmez, M.; Bargiela, R.; Santiago, G.; Blanco, R.M.; Ferrer, M. Controlled manipulation of enzyme specificity through immobilization-induced flexibility constraints. Appl. Catal. A Gen. 2018, 565, 59–67. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Berenguer-Murcia, A.; Fernandez-Lafuente, R. Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Adv. Synth. Catal. 2011, 353, 2216–2238. [Google Scholar] [CrossRef]
- Rueda, N.; Dos Santos, J.C.; Ortiz, C.; Torres, R.; Barbosa, O.; Rodrigues, R.C.; Fernandez- Lafuente, R. Chemical modification in the design of immobilized enzyme biocatalysts: Drawbacks and opportunities. Chem. Rec. 2016, 16, 1436–1455. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Qamar, S.A.; Carballares, D.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R. Proteases immobilized on nanomaterials for biocatalytic, environmental and biomedical applications: Advantages and drawbacks. Biotechnol. Adv. 2024, 70, 108304. [Google Scholar] [CrossRef]
- Tavano, O.L.; Berenguer-Murcia, A.; Secundo, F.; Fernandez-Lafuente, R. Biotechnological applications of proteases in food technology. Compr. Rev. Food Sci. Food Saf. 2018, 17, 412–436. [Google Scholar] [CrossRef]
- Cipolatti, E.P.; Valeario, A.; Henriques, R.O.; Moritz, D.E.; Ninow, J.L.; Freire, D.M.; de Oliveira, D. Nanomaterials for biocatalyst immobilization-state of the art and future trends. RSC Adv. 2016, 6, 104675–104692. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Morellon-Sterling, R.; Castaneda-Valbuena, D.; Berenguer-Murcia, A.; Kamli, M.R.; Tavano, O.; Fernandez-Lafuente, R. Immobilization of papain: A review. Int. J. Biol. Macromol. 2021, 188, 94–113. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, H.; Heintz, D.; Chassagne, D.; Guilloux-Benatier, M.; Charpentier, C.; Feuillat, M. Protease A activity and nitrogen fractions released during alcoholic fermentation and autolysis in enological conditions. J. Ind. Microbiol. Biotechnol. 2001, 26, 235–240. [Google Scholar] [CrossRef]
- Dal Magro, L.; Kornecki, J.F.; Klein, M.P.; Rodrigues, R.C.; Fernandez-Lafuente, R. Optimized immobilization of polygalacturonase from Aspergillus niger following different protocols: Improved stability and activity under drastic conditions. Int. J. Biol. Macromol. 2019, 138, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Dal Magro, L.; Kornecki, J.F.; Klein, M.P.; Rodrigues, R.C.; Fernandez-Lafuente, R. Pectin lyase immobilization using the glutaraldehyde chemistry increases the enzyme operation range. Enzym. Microb. Technol. 2020, 132, 109397. [Google Scholar] [CrossRef]
- Barbosa, O.; Ortiz, C.; Berenguer-Murcia, A.; Torres, R.; Rodrigues, R.C.; Fernandez- Lafuente, R. Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 2015, 33, 435–456. [Google Scholar] [CrossRef]
- Maghraby, Y.R.; El-Shabasy, R.M.; Ibrahim, A.H.; Azzazy, H.M.E. Enzyme Immobilization Technologies and Industrial Applications. ACS Omega 2023, 8, 5184–5196. [Google Scholar] [CrossRef]
- Murugappan, G.; Sreeram, K.J. Nano-biocatalyst: Bi-functionalization of protease and amylase on copper oxide nanoparticles. Colloids Surf. B Biointerfaces 2021, 197, 111386. [Google Scholar] [CrossRef] [PubMed]
- Gkantzou, E.; Chatzikonstantinou, A.V.; Fotiadou, R.; Giannakopoulou, A.; Patila, M.; Stamatis, H. Trends in the development of innovative nanobiocatalysts and their application in biocatalytic transformations. Biotechnol. Adv. 2021, 51, 107738. [Google Scholar] [CrossRef]
- Reshmy, R.; Philip, E.; Sirohi, R.; Tarafdar, A.; Arun, K.B.; Madhavan, A.; Binod, P.; Awasthi, M.K.; Varjani, S.; Szakacs, G.; et al. Nanobiocatalysts: Advancements and applications in enzyme technology. Bioresour. Technol. 2021, 337, 125491. [Google Scholar] [CrossRef] [PubMed]
- Harugade, A.; Sherje, A.P.; Pethe, A. Chitosan: A review on properties, biological activities and recent progress in biomedical applications. React. Funct. Polym. 2023, 191, 105634. [Google Scholar] [CrossRef]
- Malmiri, H.J.; Jahanian, M.A.G.; Berenjian, A. Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am. J. Biochem. Biotechnol. 2012, 8, 203–219. [Google Scholar]
- Geng, Y.; Xue, H.; Zhang, Z.; Panayi, A.C.; Knoedler, S.; Zhou, W.; Mi, B.; Liu, G. Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydr. Polym. 2023, 305, 120555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pham, C.-Y.; Yu, R.; Petit, E.; Li, S.; Barboiu, M. Dynamic Hydrogels Based on Double Imine Connections and Application for Delivery of Fluorouracil. Front. Chem. 2020, 8, 739. [Google Scholar] [CrossRef]
- Luo, F.; Fan, Z.; Yin, W.; Yang, L.; Li, T.; Zhong, L.; Li, Y.; Wang, S.; Yan, J.; Hou, Z.; et al. pH-responsive stearic acid-O-carboxymethyl chitosan assemblies as carriers delivering small molecular drug for chemotherapy. Mater. Sci. Eng. C 2019, 105, 110107. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, Z.; Li, W.; Guo, L.; Wang, L.; Guo, L.; Ma, S.; Han, B.; Chang, J. pH-sensitive O-carboxymethyl chitosan/sodium alginate nanohydrogel for enhanced oral delivery of insulin. Int. J. Biol. Macromol. 2022, 223, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Long, T.; Wan, Y.; Li, B.; Xu, Z.; Zhao, L.; Mu, C.; Ge, L.; Li, D. Dual-drug loaded polysaccharide-based self-healing hydrogels with multifunctionality for promoting diabetic wound healing. Carbohydr. Polym. 2023, 312, 120824. [Google Scholar] [CrossRef]
- Geonmonond, R.S.; Silva, A.G.D.; Camargo, P.H. Controlled synthesis of noble metal nanomaterials: Motivation, principles, and opportunities in nanocatalysis. An. Acad. Bras. Ciênc. 2018, 90, 719–744. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Zhang, X.; Puthirath, A.B.; Meiyazhagan, A.; Bhattacharyya, S.; Rahman, M.M.; Babu, G.; Susarla, S.; Saju, S.K.; Tran, M.K.; et al. Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 2021, 33, 2101589. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.L.; Kumar, S.; Das, A.; Randhawa, J.S.; Chamundeeswari, M. Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ. Chem. Lett. 2020, 18, 315–323. [Google Scholar] [CrossRef]
- Shojaei, F.; Homaei, A.; Taherizadeh, M.R.; Kamrani, E. Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for the immobilization of P. Vannamei protease: An eco-friendly nanobiocatalyst. Int. J. Food Prop. 2017, 20, 1413–1423. [Google Scholar]
- Ramalho, E.X.; de Castro, R.J.S. Covalent bonding immobilization of a Bacillus licheniformis protease on chitosan and its application in protein hydrolysis. Biocatal. Agric. Biotechnol. 2023, 50, 102713. [Google Scholar] [CrossRef]
- Chen, S.C.; Wu, Y.C.; Mi, F.L.; Lin, Y.H.; Yu, L.C.; Sung, H.W. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J. Control. Release 2004, 96, 285–300. [Google Scholar] [CrossRef]
- Pankova, S.M.; Sakibaev, F.A.; Holyavka, M.G.; Vyshkvorkina, Y.M.; Lukin, A.N.; Artyukhov, V.G. Studies of the Processes of the Trypsin Interactions with Ion Exchange Fibers and Chitosan. Russ. J. Bioorg. Chem. 2021, 47, 765–776. [Google Scholar] [CrossRef]
- Holyavka, M.; Faizullin, D.; Koroleva, V.; Olshannikova, S.; Zakhartchenko, N.; Zuev, Y.; Kondtatyev, M.; Zakharova, E.; Artyukhov, V. Novel biotechnological formulations of cysteine proteases, immobilized on chitosan. Structure, stability and activity. Int. J. Biol. Macromol. 2021, 180, 161–176. [Google Scholar] [CrossRef]
- Verma, M.L.; Kumar, S.; Das, A.; Randhawa, J.S.; Chamundeeswari, M. Enzyme Immobilization on Chitin and Chitosan-Based Supports for Biotechnological Applications. In Sustainable Agriculture Reviews 35; Crini, G., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 35, pp. 147–173. ISBN 9783030165376. [Google Scholar]
- Liu, Y.; Wang, K.; Zheng, H.; Ma, M.; Li, S.; Ma, L. Papain Immobilization on Interconnected-Porous Chitosan Macroparticles: Application in Controllable Hydrolysis of Egg White for Foamability Improvement. Food Hydrocoll. 2023, 139, 108551. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Z.; Ma, M.; Sheng, L.; Huang, X. Effect of Eggshell Membrane as Porogen on the Physicochemical Structure and Protease Immobilization of Chitosan-Based Macroparticles. Carbohydr. Polym. 2020, 242, 116387. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, A.V.; Olshannikova, S.S.; Lavlinskaya, M.S.; Holyavka, M.G.; Faizullin, D.A.; Zuev, Y.F.; Artukhov, V.G. Chitosan Graft Copolymers with N-Vinylimidazole as Promising Matrices for Immobilization of Bromelain, Ficin, and Papain. Polymers 2022, 14, 2279. [Google Scholar] [CrossRef]
- Malykhina, N.V.; Olshannikova, S.S.; Holyavka, M.G.; Sorokin, A.V.; Lavlinskaya, M.S.; Artyukhov, V.G.; Faizullin, D.A.; Zuev, Y.F. Preparation of Ficin Complexes with Carboxymethylchitosan and N-(2-Hydroxy)Propyl-3-Trimethylammoniumchitosan and Studies of Their Structural Features. Russ. J. Bioorg. Chem. 2022, 48, S50–S60. [Google Scholar] [CrossRef]
- Olshannikova, S.S.; Malykhina, N.V.; Lavlinskaya, M.S.; Sorokin, A.V.; Yudin, N.E.; Vyshkvorkina, Y.M.; Lukin, A.N.; Holyavka, M.G.; Artyukhov, V.G. Novel Immobilized Biocatalysts Based on Cysteine Proteases Bound to 2-(4-Acetamido-2-Sulfanilamide) Chitosan and Research on Their Structural Features. Polymers 2022, 14, 3223. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Melo, A.E.C.; De Sousa, F.S.R.; Dos Santos-Silva, A.M.; Do Nascimento, E.G.; Fernandes-Pedrosa, M.F.; De Medeiros, C.A.C.X.; Da Silva-Junior, A.A. Immobilization of Papain in Chitosan Membranes as a Potential Alternative for Skin Wounds. Pharmaceutics 2023, 15, 2649. [Google Scholar] [CrossRef] [PubMed]
- Homaei, A.A.; Sajedi, R.H.; Sariri, R.; Seyfzadeh, S.; Stevanato, R. Cysteine Enhances Activity and Stability of Immobilized Papain. Amino Acids 2010, 38, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ. Antioxidant Activity of Food Constituents: An Overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef]
- Ramos, A.R.; Tapia, A.K.G.; Piñol, C.M.N.; Lantican, N.B.; Del Mundo, M.L.F.; Manalo, R.D.; Herrera, M.U. Effects of Reaction Temperatures and Reactant Concentrations on the Antimicrobial Characteristics of Copper Precipitates Synthesized Using L-Ascorbic Acid as Reducing Agent. J. Sci. Adv. Mat. Devices 2019, 4, 66–71. [Google Scholar] [CrossRef]
Sample | Medium Size, nm | Size Range, nm | Median Zeta Potential Value, mV | Zeta Potential Range, mV |
---|---|---|---|---|
Chitosan microparticles | ||||
molecular weight of ~200 kDa (Ch200Mp) | 220 | 122–1281 | 0 | 0 |
molecular weight of ~200 kDa + ascorbic acid (Ch200MpAsc) | 190 | 106–1106 | 0 | 0 |
molecular weight of ~350 kDa (Ch350Mp) | 220 | 142–459 | 0 | 0 |
molecular weight of ~350 kDa + ascorbic acid (Ch350MpAsc) | 2670 | 1990–7456 | 0 | 0 |
Chitosannanoparticles | ||||
molecular weight of ~200 kDa (Ch200Np) | 12 | 6–24 | 0 | 0 |
molecular weight of ~200 kDa + ascorbic acid (Ch200NpAsc) | 21 | 12–68 | 0 | 0 |
molecular weight of ~350 kDa (Ch350Np) | 33 | 16–79 | 0 | 0 |
molecular weight of ~350 kDa + ascorbic acids (Ch350NpAsc) | 38 | 24–91 | 0 | 0 |
Carboxymethyl chitosan microparticles | ||||
molecular weight of ~200 kDa (CMCh200Mp) | 220 | 91–615 | 0 | 0 |
molecular weight of ~200 kDa + ascorbic acid (CMCh200MpAsc) | 164 | 68–342 | 0 | 0 |
molecular weight of ~350 kDa (CMCh350Mp) | 190 | 79–459 | 0 | 0 |
molecular weight of ~350 kDa + ascorbic acid (CMCh350MpAsc) | 220 | 79–615 | 0 | 0 |
Carboxymethyl chitosan nanoparticles | ||||
molecular weight of ~200 kDa (CMCh200Np) | 106 | 91–142 | 0 | 0 |
molecular weight of ~200 kDa + ascorbic acid (CMCh200NpAsc) | 255 | 79–825 | 0 | 0 |
molecular weight of ~350 kDa (CMCh350Np) | 122 | 79–190 | 0 | 0 |
molecular weight of ~350 kDa + ascorbic acid (CMCh350NpAsc) | 91 | 68–142 | 0 | 0 |
Type of Particles | Minimal Incubation Time Increasing Enzyme Stability in Hours | ||
---|---|---|---|
Ficin Complexes | Papain Complexes | Bromelain Complexes | |
Ch200Mp | 144 | 168 | 8 |
Ch200MpAsc | 120 | 168 | 8 |
Ch350Mp | complexation did not lead to increased enzyme stability | 120 | 8 |
Ch350MpAsc | complexation did not lead to increased enzyme stability | 96 | 8 |
Ch200Np | 4 | 4 | 4 |
Ch200NpAsc | 4 | 4 | 4 |
Ch350Np | 4 | 4 | 8 |
Ch350NpAsc | 4 | 4 | 8 |
CMCh200Mp | 4 | 8 | 4 |
CMCh200MpAsc | 4 | 8 | 4 |
CMCh350Mp | 4 | 4 | 4 |
CMCh350MpAsc | 4 | 8 | 4 |
CMCh200Np | 4 | 4 | 4 |
CMCh200NpAsc | 4 | 4 | 4 |
CMCh350Np | 4 | 8 | 4 |
CMCh350NpAsc | 4 | 8 | 4 |
Formed Complexes | Affinity, Kcal/Mol | Amino Acid Residues That Form the Following | |
---|---|---|---|
Hydrogen Bonds and Bond Length, Å | Other Types of Interactions | ||
Ficin and ascorbic acid | −5.2 | Glu121, 2.95 and 2.99; Asn199, 2.82 and 3.34; Val200, 3.28 and 3.31; Glu202, 3.13; Pro203, 2.83 | Asn119; Asn120; Asn122 |
Ficin and chitosan | −7.7 | Asn18, 2.90; Gly20, 3.13; Glu145, 3.01; Asp161, 2.85; Trp184, 3.06 | Gln19; Ala139, Gly140; His162 |
Ficin, chitosan, and ascorbic acid | −5.1 | Gly20, 2.80 and 3.04; Cys22, 3.10; Ser66, 2.85; Glu121, 2.95 and 2.99; Glu145, 2.92; Leu160, 2.83; Asp161, 2.77; Trp184, 2.96; Asn199, 2.82 and 3.34; Val200, 3.28 and 3.31; Glu202, 3.13; Pro203, 2.83 | Gln19; Arg21; Gly23; Gly67; Gly68; Asn119; Asn120; Asn122; His162; Trp188 |
Ficin and carboxymethyl chitosan | −6.1 | Lys21, 3.11; Cys22, 3.15; Lys66, 3.25; Asp161, 3.09 | Asp18; Gln19; Gly20; Cys25; Gly140; Lys145; Trp184; Lys187; Trp188 |
Ficin, carboxymethyl chitosan, and ascorbic acid | −5.1 | Asn18, 2.94; Gly20, 3.08 and 3.10; Glu121, 2.92 and 2.98; Glu145, 2.72, 2.79 and 3.34; Asp161, 2.89, 3.16 and 3.22 Asn199, 2.77 and 3.31; Val200, 3.18 and 3.28; Glu202, 3.19; Pro203, 3.06 | Gln19; Arg21; Cys22; Gly23; Cys25; Gly67; Asn119; Asn120; Asn122; Gly140; His162; Trp184; Trp188 |
Papain and ascorbic acid | −4.8 | Cys25, 2.99; Gly66, 2.94, 2.94, 2.81 and 2.99 | Gly65; Pro68; Val133; Asp158; His159; Ala160 |
Papain and chitosan | −7.7 | Gly20, 2.94; Cys22, 3.03; Cys25, 3.01; Asn64, 3.03; Gly66, 2.71 and 3.17 | Gln19; Ser21; Gly23; Gly65; Asp158; His159; Ala160; Trp177 |
Papain, chitosan and ascorbic acid | −5.0 | Gly20, 2.70; Cys22, 2.85 and 3.10; Trp177, 3.12; H-bond between ascorbic acid and chitosan, 3.03 | Gln19; Ser21; Gly23; His159 |
Papain and carboxymethyl chitosan | −6.6 | Gly20, 2.89, 2.98 and 3.10; Asn64, 3.18; Lys156, 2.99 | Asn18; Gln19; Ser21; Cys22; Gly23; Cys25; Cys63; Gly65; Gly66; Ala136; Ala137; Gln142; Asp158; His159; Trp177 |
Papain, carboxymethyl chitosan, and ascorbic acid | −4.4 | Asn18, 3.05; Gly20, 2.89, 2.98 and 3.10; Cys25, 2.76 and 3.02; Asn64, 3.16; Asp140, 2.86 and 3.07; Gln142, 3.17; Arg145, 2.94; Gly146, 2.71 and 2.93; Lys156, 2.99; Asp158, 2.97, 3.10 and 3.13 | Gln19; Ser21; Cys22; Gly23; Cys63; Gly65; Gly66; Ala136; Ala137; Leu143; Tyr144; Phe149; His159; Trp177 |
Bromelain and ascorbic acid | −5.7 | Thr15, 2.75; Ser16, 2.85; Lys18, 2.81, 3.15 and 3.18; Glu36, 2.86 and 3.10 | Val17; Phe29; Ile32; Ala33 |
Bromelain and chitosan | −8.0 | Thr15, 3.13; Ser16, 3.09; Asn19, 2.76; Phe29, 3.32; Gly51, 3.19; His158, 2.93; Lys179, 3.04; Trp180, 3.19 | Val17; Lys18; Ala33; Val160; Thr161; Ile163; Ala178; Gly184 |
Bromelain, chitosan, and ascorbic acid | −5.7 | Thr15, 2.86 and 3.13; Lys18, 3.08; Glu36, 3.04; His158, 2.83; Thr161, 2.83 and 3.15; Ile163, 2.97 and 3.31; Gln167, 2.92; Lys179, 2.92; Ile186, 2.86 and 2.86 | Asp7; Arg9; Val14; Ser16; Val17; Phe29; Ala33; Gln141; Lys144; Val160; Ala162; Ile163; Gly164; Trp180; Gly184; Tyr185; Arg187 |
Bromelain and carboxymethyl chitosan | −8.4 | Asn19, 3.29; Gln20, 2.92 and 2.99; Asn21, 2.70; Cys23, 3.00 and 3.09; Glu36, 2.88; Glu51, 2.87; Lys179, 2.90; Trp180, 3.23 | Thr15; Ser16; Val17; Lys16; Pro22; Gly24; Phe29; Ala33; Ala136; Phe140; His158; Ala159; Val160; Thr161; Ile163; Ala178; Gly184; Tyr185 |
Bromelain, carboxymethyl chitosan, and ascorbic acid | −5.8 | Lys18, 3.35; Asn19, 3.12 and 3.29; Gln20, 2.92 and 2.99; Asn21, 2.70; Cys23, 3.00 and 3.09; Phe29, 3.31; Glu36, 2.88; Glu51, 2.87; Ala136, 2.88; Thr161, 2.80; Ile163, 3.02 and 3.20; Gln167, 2.96; Lys179, 2.90; Trp180, 3.23; Gly184, 2.77; Ile186, 2.83 and 2.84 | Asp7; Arg9; Thr15; Ser16; Val17; Pro22; Gly24; Ala33; Phe140; His158; Ala159; Val160; Thr161; Ala162; Ile163; Gly164; Ala178; Tyr185; Arg187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holyavka, M.; Redko, Y.; Goncharova, S.; Lavlinskaya, M.; Sorokin, A.; Kondratyev, M.; Artyukhov, V. Novel Hybrid Catalysts of Cysteine Proteases Enhanced by Chitosan and Carboxymethyl Chitosan Micro- and Nanoparticles. Polymers 2024, 16, 3111. https://doi.org/10.3390/polym16223111
Holyavka M, Redko Y, Goncharova S, Lavlinskaya M, Sorokin A, Kondratyev M, Artyukhov V. Novel Hybrid Catalysts of Cysteine Proteases Enhanced by Chitosan and Carboxymethyl Chitosan Micro- and Nanoparticles. Polymers. 2024; 16(22):3111. https://doi.org/10.3390/polym16223111
Chicago/Turabian StyleHolyavka, Marina, Yulia Redko, Svetlana Goncharova, Maria Lavlinskaya, Andrey Sorokin, Maxim Kondratyev, and Valery Artyukhov. 2024. "Novel Hybrid Catalysts of Cysteine Proteases Enhanced by Chitosan and Carboxymethyl Chitosan Micro- and Nanoparticles" Polymers 16, no. 22: 3111. https://doi.org/10.3390/polym16223111
APA StyleHolyavka, M., Redko, Y., Goncharova, S., Lavlinskaya, M., Sorokin, A., Kondratyev, M., & Artyukhov, V. (2024). Novel Hybrid Catalysts of Cysteine Proteases Enhanced by Chitosan and Carboxymethyl Chitosan Micro- and Nanoparticles. Polymers, 16(22), 3111. https://doi.org/10.3390/polym16223111