Wireless Sensor Network-Based Rockfall and Landslide Monitoring Systems: A Review
Abstract
:1. Introduction
1.1. Rockfall and Landslide Mechanisms
1.2. Monitoring Systems for Geohazards
- A sensing layer, where sensors are used to gather data about a specific physical dimension relative to a geomorphological condition;
- A data exchange layer, where wired or wireless technologies are used to transport the information;
- A data storage layer, where gathered data are stored in a database for successive analysis;
- A data analysis layer, where data are analyzed to obtain early warnings, risk assessment, and generally useful information.
2. State-of-the-Art Overview of Wireless Sensor Networks for Monitoring Applications
3. Rockfall and Landslide Monitoring Based on WSNs
3.1. Examples of Non-WSN-Based Monitoring Systems
3.2. WSN-Based Monitoring Systems
4. Considerations on the State of the Art and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gutiérrez, F.; Parise, M.; De Waele, J.; Jourde, H. A Review on Natural and Human-Induced Geohazards and Impacts in Karst. Earth Sci. Rev. 2014, 138, 61–88. [Google Scholar] [CrossRef]
- Dorren, L.K.A. A Review of Rockfall Mechanics and Modelling Approaches. Prog. Phys. Geogr. 2003, 27, 69–87. [Google Scholar] [CrossRef]
- Calista, M.; Menna, V.; Mancinelli, V.; Sciarra, N.; Miccadei, E. Rockfall and Debris Flow Hazard Assessment in the SW Escarpment of Montagna Del Morrone Ridge (Abruzzo, Central Italy). Water 2020, 12, 1206. [Google Scholar] [CrossRef]
- Luckman, B.H. Rockfalls and Rockfall Inventory Data: Some Observations from Surprise Valley, Jasper National Park, Canada. Earth Surf. Process. 1976, 1, 287–298. [Google Scholar] [CrossRef]
- Collins, B.D.; Stock, G.M. Rockfall Triggering by Cyclic Thermal Stressing of Exfoliation Fractures. Nat. Geosci. 2016, 9, 395–400. [Google Scholar] [CrossRef]
- Apostolou, E.; Agioutantis, Z.; Steiakakis, C. Integrated Evaluation of Rockfall Triggering Mechanism for Road Monitoring. In Engineering Geology for Society and Territory; Springer International Publishing: Cham, Germany, 2015; Volume 2, pp. 1975–1978. [Google Scholar]
- Terzaghi, K. Mechanism of Landslides. In Application of Geology to Engineering Practice; Geological Society of America: New York, NY, USA, 1950; pp. 83–123. [Google Scholar]
- Dorren, L.K.A.; Berger, F.; le Hir, C.; Mermin, E.; Tardif, P. Mechanisms, Effects and Management Implications of Rockfall in Forests. For. Ecol. Manag. 2005, 215, 183–195. [Google Scholar] [CrossRef]
- Erismann, T.H.; Abele, G. Dynamics of Rockslides and Rockfalls; Engineering Geology; Springer-Verlag: Berlin/Heidelberg, Germany; New York, NY, USA, 2002. [Google Scholar]
- OCHA Reliefweb, OCHA Services, Global Overview of Landslides 01 January–27 June 2022—DG ECHO Daily Map 27/06/2022. Available online: https://Reliefweb.Int/Map/Brazil/Global-Overview-Landslides-01-January-27-June-2022-Dg-Echo-Daily-Map-27062022 (accessed on 11 August 2023).
- Wang, X.; Zhang, C.; Wang, C.; Liu, G.; Wang, H. GIS-Based for Prediction and Prevention of Environmental Geological Disaster Susceptibility: From a Perspective of Sustainable Development. Ecotoxicol. Environ. Saf. 2021, 226, 112881. [Google Scholar] [CrossRef]
- Wang, X.; Frattini, P.; Crosta, G.B.; Zhang, L.; Agliardi, F.; Lari, S.; Yang, Z. Uncertainty Assessment in Quantitative Rockfall Risk Assessment. Landslides 2014, 11, 711–722. [Google Scholar] [CrossRef]
- Hantz, D.; Corominas, J.; Crosta, G.B.; Jaboyedoff, M. Definitions and Concepts for Quantitative Rockfall Hazard and Risk Analysis. Geosciences 2021, 11, 158. [Google Scholar] [CrossRef]
- Corominas, J.; Copons, R.; Moya, J.; Vilaplana, J.M.; Altimir, J.; Amigó, J. Quantitative Assessment of the Residual Risk in a Rockfall Protected Area. Landslides 2005, 2, 343–357. [Google Scholar] [CrossRef]
- Copons, R.; Vilaplana, J.M. Rockfall Susceptibility Zoning at a Large Scale: From Geomorphological Inventory to Preliminary Land Use Planning. Eng. Geol. 2008, 102, 142–151. [Google Scholar] [CrossRef]
- Felsberg, A.; Poesen, J.; Bechtold, M.; Vanmaercke, M.; De Lannoy, G.J.M. Estimating Global Landslide Susceptibility and Its Uncertainty through Ensemble Modelling. Nat. Hazards Earth Syst. Sci. 2021, 22, 3063–3082. [Google Scholar] [CrossRef]
- Briones-Bitar, J.; Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F. Rockfall Research: A Bibliometric Analysis and Future Trends. Geosciences 2020, 10, 403. [Google Scholar] [CrossRef]
- Sharma, H.; Sharma, S. A Review of Sensor Networks: Technologies and Applications. In Proceedings of the 2014 Recent Advances in Engineering and Computational Sciences (RAECS), Chandigarh, India, 6–8 March 2014; pp. 1–4. [Google Scholar]
- Muttillo, M.; Barile, G.; Leoni, A.; Ferri, G. Wired Sensors System for Monitoring of Landslide Events. In Proceedings of the Proceedings of the 3rd International Conference on Vision, Image and Signal Processing, Vancouver, BC, Canada, 26–28 August 2019; ACM: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Mohamed, N.; Jawhar, I.; Al-Jaroodi, J.; Zhang, L. Sensor Network Architectures for Monitoring Underwater Pipelines. Sensors 2011, 11, 10738–10764. [Google Scholar] [CrossRef] [PubMed]
- Lazar, A.; Beguš, T.; Vulić, M. Monitoring of the Belca Rockfall. Acta Geotech. Slov. 2018, 15, 2–15. [Google Scholar] [CrossRef]
- Paolucci, R.; Muttillo, M.; di Luzio, M.; Alaggio, R.; Ferri, G. Electronic Sensory System for Structural Health Monitoring Applications. In Proceedings of the 2020 5th International Conference on Smart and Sustainable Technologies, SpliTech 2020, Split, Croatia, 23–26 September 2020. [Google Scholar]
- Mei, G.; Xu, N.; Qin, J.; Wang, B.; Qi, P. A Survey of Internet of Things (IoT) for Geohazard Prevention: Applications, Technologies, and Challenges. IEEE Internet Things J. 2020, 7, 4371–4386. [Google Scholar] [CrossRef]
- Pottie, G.J. Wireless Sensor Networks. In Proceedings of the 1998 Information Theory Workshop (Cat. No.98EX131), Killarney, Ireland, 22–26 June 1998; pp. 139–140. [Google Scholar]
- Yick, J.; Mukherjee, B.; Ghosal, D. Wireless Sensor Network Survey. Comput. Netw. 2008, 52, 2292–2330. [Google Scholar] [CrossRef]
- Kandris, D.; Nakas, C.; Vomvas, D.; Koulouras, G. Applications of Wireless Sensor Networks: An Up-to-Date Survey. Appl. Syst. Innov. 2020, 3, 14. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A Survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Mainetti, L.; Patrono, L.; Vilei, A. Evolution of Wireless Sensor Networks towards the Internet of Things: A Survey. In Proceedings of the SoftCOM 2011, 19th International Conference on Software, Telecommunications and Computer Networks, Split, Croatia, 15–17 September 2011. [Google Scholar]
- Oliveira, L.M.L.; Rodrigues, J.J.P.C. Wireless Sensor Networks: A Survey on Environmental Monitoring. J. Commun. 2011, 6, pp. 143–151. [Google Scholar] [CrossRef]
- Sabato, A.; Niezrecki, C.; Fortino, G. Wireless MEMS-Based Accelerometer Sensor Boards for Structural Vibration Monitoring: A Review. IEEE Sens. J. 2017, 17, 226–235. [Google Scholar] [CrossRef]
- Alshamrani, M. IoT and Artificial Intelligence Implementations for Remote Healthcare Monitoring Systems: A Survey. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 4687–4701. [Google Scholar] [CrossRef]
- Darwish, A.; Hassanien, A.E. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring. Sensors 2011, 11, 5561–5595. [Google Scholar] [CrossRef]
- Ragnoli, M.; Barile, G.; Leoni, A.; Ferri, G.; Stornelli, V. An Autonomous Low-Power Lora-Based Flood-Monitoring System. J. Low Power Electron. Appl. 2020, 10, 15. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Li, K.; Zhang, Z.; Sheng, Y.; Liu, S. Research on Key Technologies of Fault Diagnosis and Early Warning for High-End Equipment Based on Intelligent Manufacturing and Internet of Things. Int. J. Adv. Manuf. Technol. 2020, 107, pp. 1039–1048. [Google Scholar] [CrossRef]
- Aponte-Luis, J.; Gómez-Galán, J.; Gómez-Bravo, F.; Sánchez-Raya, M.; Alcina-Espigado, J.; Teixido-Rovira, P. An Efficient Wireless Sensor Network for Industrial Monitoring and Control. Sensors 2018, 18, 182. [Google Scholar] [CrossRef]
- Patel, N.R.; Kumar, S. Wireless Sensor Networks’ Challenges and Future Prospects. In Proceedings of the 2018 International Conference on System Modeling & Advancement in Research Trends (SMART), Moradabad, India, 23–24 November 2018; pp. 60–65. [Google Scholar]
- Thai, M.T.; Wang, F.; Du, D.H.; Jia, X. Coverage Problems in Wireless Sensor Networks: Designs and Analysis. Int. J. Sens. Netw. 2008, 3, 191. [Google Scholar] [CrossRef]
- Chellappan, S.; Gu, W.; Bai, X.; Xuan, D.; Ma, B.; Zhang, K. Deploying Wireless Sensor Networks under Limited Mobility Constraints. IEEE Trans. Mob. Comput. 2007, 6, 1142–1157. [Google Scholar] [CrossRef]
- Del-Valle-Soto, C.; Mex-Perera, C.; Nolazco-Flores, J.A.; Velázquez, R.; Rossa-Sierra, A. Wireless Sensor Network Energy Model and Its Use in the Optimization of Routing Protocols. Energies 2020, 13, 728. [Google Scholar] [CrossRef]
- Cardei, M.; Du, D.-Z. Improving Wireless Sensor Network Lifetime through Power Aware Organization. Wirel. Netw. 2005, 11, 333–340. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, R.; Singh, D. Energy Harvesting in Wireless Sensor Networks: A Taxonomic Survey. Int. J. Energy Res. 2021, 45, 118–140. [Google Scholar] [CrossRef]
- Chaudhari, B.S.; Zennaro, M.; Borkar, S. LPWAN Technologies: Emerging Application Characteristics, Requirements, and Design Considerations. Future Int. 2020, 12, 46. [Google Scholar] [CrossRef]
- Chaudhari, B.S.; Zennaro, M. LPWAN Technologies for IoT and M2M Applications; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Levchenko, P.; Bankov, D.; Khorov, E.; Lyakhov, A. Performance Comparison of NB-Fi, Sigfox, and LoRaWAN. Sensors 2022, 22, 9633. [Google Scholar] [CrossRef] [PubMed]
- Finnegan, J.; Brown, S. An Analysis of the Energy Consumption of LPWA-Based IoT Devices. In Proceedings of the 2018 International Symposium on Networks, Computers and Communications (ISNCC), Rome, Italy, 19–21 June 2018; pp. 1–6. [Google Scholar]
- Ragnoli, M.; Colaiuda, D.; Leoni, A.; Ferri, G.; Barile, G.; Rotilio, M.; Laurini, E.; Berardinis, P.d.; Stornelli, V. A LoRaWAN Multi-Technological Architecture for Construction Site Monitoring. Sensors 2022, 22, 8685. [Google Scholar] [CrossRef]
- Rubio-Aparicio, J.; Cerdan-Cartagena, F.; Suardiaz-Muro, J.; Ybarra-Moreno, J. Design and Implementation of a Mixed IoT LPWAN Network Architecture. Sensors 2019, 19, 675. [Google Scholar] [CrossRef] [PubMed]
- Du, X. Hsiao-Hwa Chen Security in Wireless Sensor Networks. IEEE Wirel. Commun. 2008, 15, 60–66. [Google Scholar] [CrossRef]
- Fang, W.; Zhang, W.; Chen, W.; Pan, T.; Ni, Y.; Yang, Y. Trust-Based Attack and Defense in Wireless Sensor Networks: A Survey. Wirel. Commun. Mob. Comput. 2020, 2020, 1–20. [Google Scholar] [CrossRef]
- Pathan AS, K.; Lee, H.W.; Hong, C.S. Security in Wireless Sensor Networks: Issues and Challenges. In Proceedings of the 2006 8th International Conference Advanced Communication Technology, Phoenix, Park, 20–22 February 2006; pp. 6–1048. [Google Scholar]
- Zhihua, H.; Baochun, L. Fundamental Performance Limits of Wireless Sensor Networks. In Ad Hoc and Sensor Networks, Wireless Networks and Mobile Computing; Nova Science Publisher, Inc.: New York, NY, USA, 2006; Volume 2, pp. 91–114. [Google Scholar]
- Barla, M.; Antolini, F. An Integrated Methodology for Landslides’ Early Warning Systems. Landslides 2016, 13, 215–228. [Google Scholar] [CrossRef]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano Surveillance Using Infrared Cameras. Earth Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Ardizzone, F.; Basile, G.; Cardinali, M.; Casagli, N.; del Conte, S.; del Ventisette, C.; Fiorucci, F.; Garfagnoli, F.; Gigli, G.; Guzzetti, F.; et al. Landslide Inventory Map for the Briga and the Giampilieri Catchments, NE Sicily, Italy. J. Maps 2012, 8, 176–180. [Google Scholar] [CrossRef]
- Gigli, G.; Mugnai, F.; Leoni, L.; Casagli, N. Analysis of Deformations in Historic Urban Areas Using Terrestrial Laser Scanning. Nat. Hazards Earth Syst. Sci. 2009, 9, 1759–1761. [Google Scholar] [CrossRef]
- Abellán, A.; Vilaplana, J.M.; Calvet, J.; García-Sellés, D.; Asensio, E. Rockfall Monitoring by Terrestrial Laser Scanning—Case Study of the Basaltic Rock Face at Castellfollit de La Roca (Catalonia, Spain). Nat. Hazards Earth Syst. Sci. 2011, 11, 829–841. [Google Scholar] [CrossRef]
- Erdelj, M.; Król, M.; Natalizio, E. Wireless Sensor Networks and Multi-UAV Systems for Natural Disaster Management. Comput. Netw. 2017, 124, 72–86. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Straightforward Reconstruction of 3D Surfaces and Topography with a Camera: Accuracy and Geoscience Application. J. Geophys. Res. Earth Surf. 2012, 117, 03017. [Google Scholar] [CrossRef]
- Solari, L.; del Soldato, M.; Raspini, F.; Barra, A.; Bianchini, S.; Confuorto, P.; Casagli, N.; Crosetto, M. Review of Satellite Interferometry for Landslide Detection in Italy. Remote Sens. 2020, 12, 1351. [Google Scholar] [CrossRef]
- Farmakis, I.; DiFrancesco, P.-M.; Hutchinson, D.J.; Vlachopoulos, N. Rockfall Detection Using LiDAR and Deep Learning. Eng. Geol. 2022, 309, 106836. [Google Scholar] [CrossRef]
- Weidner, L.; Walton, G. Monitoring the Effects of Slope Hazard Mitigation and Weather on Rockfall along a Colorado Highway Using Terrestrial Laser Scanning. Remote Sens. 2021, 13, 4584. [Google Scholar] [CrossRef]
- Fanos, A.M.; Pradhan, B.; Mansor, S.; Yusoff, Z.M.; Abdullah, A.F. bin A Hybrid Model Using Machine Learning Methods and GIS for Potential Rockfall Source Identification from Airborne Laser Scanning Data. Landslides 2018, 15, 1833–1850. [Google Scholar] [CrossRef]
- Liu, S.-P.; Shi, B.; Gu, K.; Zhang, C.-C.; He, J.-H.; Wu, J.-H.; Wei, G.-Q. Fiber-Optic Wireless Sensor Network Using Ultra-Weak Fiber Bragg Gratings for Vertical Subsurface Deformation Monitoring. Nat. Hazards 2021, 109, 2557–2573. [Google Scholar] [CrossRef]
- Ravet, F.; Briffod, F.; Goy, A.; Rochat, E. Mitigation of Geohazard Risk along Transportation Infrastructures with Optical Fiber Distributed Sensing. J. Civ. Struct. Health Monit. 2021, 11, 967–988. [Google Scholar] [CrossRef]
- Muttillo, M.; Colagiovanni, A.; Pantoli, L.; Ferri, G. Landslides Monitoring by Means of Low Cost Wired Sensor Networks. In Sensors and Microsystems: Proceedings of the 20th AISEM 2019 National Conference 20; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 143–147. [Google Scholar]
- Alippi, C.; Camplani, R.; Galperti, C.; Marullo, A.; Roveri, M. An Hybrid Wireless-Wired Monitoring System for Real-Time Rock Collapse Forecasting. In Proceedings of the The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010), San Francisco, CA, USA, 8–12 November 2010; pp. 224–231. [Google Scholar]
- Epstein, J. Introduction to Wi-Fi. In Scalable VoIP Mobility; Elsevier: Amsterdam, The Netherlands, 2009; pp. 101–202. [Google Scholar]
- Ghazanfari, E.; Yoon, S.-U.; Dong, Y.; Li, X.; Medina, C.I.; Seserko, D.; Cheng, L.; Yun, T.S.; Pamukcu, S. Subsurface Geo-Event Monitoring Using Wireless Sensor Networks. In Proceedings of the Geo-Frontiers 2011; American Society of Civil Engineers: Reston, VA, USA, 2011; pp. 1732–1742. [Google Scholar]
- Lynch, J.P. A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. Shock. Vib. Dig. 2006, 38, 91–128. [Google Scholar] [CrossRef]
- Sofi, A.; Jane Regita, J.; Rane, B.; Lau, H.H. Structural Health Monitoring Using Wireless Smart Sensor Network—An Overview. Mech. Syst. Signal Process 2022, 163, 108113. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.; Wang, L.; Dou, M.; Chen, J.; Li, H. Natural Disaster Monitoring with Wireless Sensor Networks: A Case Study of Data-Intensive Applications upon Low-Cost Scalable Systems. Mob. Netw. Appl. 2013, 18, 651–663. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Ghosh, J.K.; Samadhiya, N.K. Review of Geohazard Warning Systems toward Development of a Popular Usage Geohazard Warning Communication System. Nat. Hazards Rev. 2012, 13, 260–271. [Google Scholar] [CrossRef]
- Bagwari, S.; Gehlot, A.; Singh, R.; Priyadarshi, N.; Khan, B. Low-Cost Sensor-Based and LoRaWAN Opportunities for Landslide Monitoring Systems on IoT Platform: A Review. IEEE Access 2022, 10, 7107–7127. [Google Scholar] [CrossRef]
- Ali, N.A.; Drieberg, M.; Sebastian, P. Development of Wireless Sensor Network for Slope Monitoring. In Proceedings of the 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012), Kuala Lumpur, Malaysia, 12–14 June 2012; pp. 285–290. [Google Scholar]
- Karnjana, J.; Keerativittayanun, S.; Sangrit, K.; Dillon, P.; Tanatipuknon, A.; Aimmanee, P.; Murata, K.T. Real-Time Monitoring System Based on Wireless Sensor Networks and Remote Sensing Techniques for Landslide-Prone Areas in the Northern Region of Thailand. In Civil Engineering for Disaster Risk Reduction; Springer: Berlin/Heidelberg, Germany, 2022; pp. 169–180. [Google Scholar]
- Ramya, C.M.; Shanmugaraj, M.; Prabakaran, R. Study on ZigBee Technology. In Proceedings of the 2011 3rd International Conference on Electronics Computer Technology, Kanyakumari, India, 8–10 April 2011; pp. 297–301. [Google Scholar]
- LoRa and LoRaWAN: A Technical Overview LoRa®® and LoRaWAN®®: A Technical Overview. 2020. Available online: https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf (accessed on 11 August 2023).
- Devalal, S.; Karthikeyan, A. LoRa Technology—An Overview. In Proceedings of the 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; pp. 284–290. [Google Scholar]
- Tseng, K.H.; Chung, M.Y.; Chen, L.H.; Huang, Y.W. Implementation of Composite LPWAN on the Slope Disaster Prevention Monitoring System. IEEE Sens. J. 2022, 22, 2658–2671. [Google Scholar] [CrossRef]
- Mangalvedhe, N.; Ratasuk, R.; Ghosh, A. NB-IoT Deployment Study for Low Power Wide Area Cellular IoT. In Proceedings of the 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–8 September 2016; pp. 1–6. [Google Scholar]
- GSMA. LTE-M Deployement Guide to Basic Feature Set Requirements; GSM Association: London, UK, 2017. [Google Scholar]
- Hsieh, P.-C.; Jia, Y.; Parra, D.; Aithal, P. An Experimental Study on Coverage Enhancement of LTE Cat-M1 for Machine-Type Communication. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–5. [Google Scholar]
- Raspberry Pi 3 Product Description. Available online: https://www.raspberrypi.com/products/raspberry-pi-3-model-b/ (accessed on 11 August 2023).
- MySQL 8.0 Reference Manual. 2023. Available online: https://dev.mysql.com/doc/refman/8.0/en/ (accessed on 11 August 2023).
- Ragnoli, M.; Leoni, A.; Barile, G.; Ferri, G.; Stornelli, V. LoRa-Based Wireless Sensors Network for Rockfall and Landslide Monitoring: A Case Study in Pantelleria Island with Portable LoRaWAN Access. J. Low Power Electron. Appl. 2022, 12, 47. [Google Scholar] [CrossRef]
- Haxhibeqiri, J.; De Poorter, E.; Moerman, I.; Hoebeke, J. A Survey of LoRaWAN for IoT: From Technology to Application. Sensors 2018, 18, 3995. [Google Scholar] [CrossRef]
- Arnhardt, C.; Fernández-Steeger, T.M.; Azzam, R. Sensor Fusion in an Ad-Hoc Multi-Hop Sensor Network for Real-Time Monitoring of Landslides Endangering Human Infrastructures. In Early Warning Systems for Transportation Infrastructures; RWTH Publications: Aachen, Germany, 2010; pp. 38–49. [Google Scholar]
- Caviezel, A.; Schaffner, M.; Cavigelli, L.; Niklaus, P.; Bühler, Y.; Bartelt, P.; Magno, M.; Benini, L. Design and Evaluation of a Low-Power Sensor Device for Induced Rockfall Experiments. IEEE Trans. Instrum. Meas. 2018, 67, 767–779. [Google Scholar] [CrossRef]
- Giri, P.; Ng, K.; Phillips, W. Wireless Sensor Network System for Landslide Monitoring and Warning. IEEE Trans. Instrum. Meas. 2019, 68, 1210–1220. [Google Scholar] [CrossRef]
- Vassis, D.; Kormentzas, G.; Rouskas, A.; Maglogiannis, I. The IEEE 802.11g Standard for High Data Rate WLANs. IEEE Netw. 2005, 19, 21–26. [Google Scholar] [CrossRef]
- Mistry, H.P.; Mistry, N.H. RSSI Based Localization Scheme in Wireless Sensor Networks: A Survey. In Proceedings of the 2015 Fifth International Conference on Advanced Computing & Communication Technologies, Haryana, India, 21–22 February 2015; pp. 647–652. [Google Scholar]
- Romdhane, R.F.; Lami, Y.; Genon-Catalot, D.; Fourty, N.; Lagrèze, A.; Jongmans, D.; Baillet, L. Wireless Sensors Network for Landslides Prevention. In Proceedings of the 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, CIVEMSA, Annecy, France, 26–28 July 2017; pp. 222–227. [Google Scholar]
- Sangrit, K.; Karnjana, J.; Laitrakun, S.; Fukawa, K.; Fugkeaw, S.; Keerativittayanun, S. Distance Estimation Between Wireless Sensor Nodes Using RSSI and CSI with Bounded-Error Estimation and Theory of Evidence for a Landslide Monitoring System. In Proceedings of the 2021 13th International Conference on Information Technology and Electrical Engineering (ICITEE), Chiang Mai, Thailand, 14–15 October 2021; pp. 40–45. [Google Scholar]
- Giorgetti, A.; Lucchi, M.; Tavelli, E.; Barla, M.; Gigli, G.; Casagli, N.; Chiani, M.; Dardari, D. A Robust Wireless Sensor Network for Landslide Risk Analysis: System Design, Deployment, and Field Testing. IEEE Sens. J. 2016, 16, 6374–6386. [Google Scholar] [CrossRef]
- Ghribi, B.; Logrippo, L. Understanding GPRS: The GSM Packet Radio Service. Comput. Netw. 2000, 34, 763–779. [Google Scholar] [CrossRef]
- Wang, C.; Guo, W.; Yang, K.; Wang, X.; Meng, Q. Real-Time Monitoring System of Landslide Based on LoRa Architecture. Front. Earth Sci. 2022, 10, 899509. [Google Scholar] [CrossRef]
- Ramesh, M.V.; Vasudevan, N. The Deployment of Deep-Earth Sensor Probes for Landslide Detection. Landslides 2012, 9, 457–474. [Google Scholar] [CrossRef]
- Jeong, S.; Ko, J.; Kim, J. The Effectiveness of a Wireless Sensor Network System for Landslide Monitoring. IEEE Access 2020, 8, 8073–8086. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Pothalaiah, S.; Rao, D.S. Real-Time Monitoring of Partially Stable Slopes for Landslide Prediction by Using Wireless Sensor Networks. In Proceedings of the 2016 Online International Conference on Green Engineering and Technologies (IC-GET), Coimbatore, India, 19 November 2016; pp. 1–5. [Google Scholar]
- Kodosky, J. LabVIEW. Proceedings of the ACM on Programming Languages 2020, 4, 1–54. [Google Scholar] [CrossRef]
- Baronti, P.; Pillai, P.; Chook, V.W.C.; Chessa, S.; Gotta, A.; Hu, Y.F. Wireless Sensor Networks: A Survey on the State of the Art and the 802.15.4 and ZigBee Standards. Comput. Commun. 2007, 30, 1655–1695. [Google Scholar] [CrossRef]
- Sakuradani, K.; Koizumi, K.; Oda, K.; Tayama, S. Development of a slope disaster monitoring system for expressway operation and maintenance control. J. GeoEngineering 2018, 189–195. [Google Scholar]
- Wang, H.; Tuo, X.; Xi, D.; Fan, L.; Zhang, Z.; Zhang, G.; Hao, S. Research on One ZICM2410-Based Wireless Sensor Network for Landslide Monitoring. In Proceedings of the 2011 7th International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, 23–25 September 2011; pp. 1–4. [Google Scholar]
- California Eastern Laboratories Mesh Connect ZICM2410 Datasheet, Integrated Transceiver Modules for IEEE 802.15.4. CEL Datasheets 2012. Available online: http://www.datasheet.hk/view_download.php?id=2066937&file=0534%5Czicm2410p0-1c_7866110.pdf (accessed on 11 August 2023).
- Honghui, W.; Xianguo, T.; Yan, L.; Qi, L.; Donglin, N.; Lingyu, M.; Jiaxin, Y. Research of the Hardware Architecture of the Geohazards Monitoring and Early Warning System Based on the Iot. Procedia Comput. Sci. 2017, 107, 111–116. [Google Scholar] [CrossRef]
- Joshi, A.; Kanungo, D.P.; Panigrahi, R.K. WSN-Based Smart Landslide Monitoring Device. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Barile, G.; Leoni, A.; Pantoli, L.; Stornelli, V. Real-Time Autonomous System for Structural and Environmental Monitoring of Dynamic Events. Electronics 2018, 7, 420. [Google Scholar] [CrossRef]
- Charléty, A.; Breton, M.L.; Baillet, L.; Larose, E. RFID Landslide Monitoring: Long-Term Outdoor Signal Processing and Phase Unwrapping. IEEE J. Radio Freq. Identif. 2023, 7, 319–329. [Google Scholar] [CrossRef]
- Tzitzis, A.; Megalou, S.; Siachalou, S.; Emmanouil, T.G.; Kehagias, A.; Yioultsis, T.V.; Dimitriou, A.G. Localization of RFID Tags by a Moving Robot, via Phase Unwrapping and Non-Linear Optimization. IEEE J. Radio Freq. Identif. 2019, 3, 216–226. [Google Scholar] [CrossRef]
- Janeras, M.; Jara, J.-A.; Royán, M.J.; Vilaplana, J.-M.; Aguasca, A.; Fàbregas, X.; Gili, J.A.; Buxó, P. Multi-Technique Approach to Rockfall Monitoring in the Montserrat Massif (Catalonia, NE Spain). Eng. Geol. 2017, 219, 4–20. [Google Scholar] [CrossRef]
- Hafidz, A.; Kinoshita, N.; Yasuhara, H.; Tsuzuki, S. Development and Applications of Slope and River Monitoring System Using Low-Power Wide-Area Network Technology. J. Civ. Struct. Health Monit. 2023, 13, 83–100. [Google Scholar] [CrossRef]
- Crossbow Technology MicaZ Datasheet, Document Part Number: 6020-0060-04 Rev A. Available online: http://courses.ece.ubc.ca/494/files/MICAz_Datasheet.pdf (accessed on 11 August 2023).
- Arduino, Arduino Mega 2560 Datasheet. 2023. Available online: https://docs.arduino.cc/hardware/mega-2560 (accessed on 11 August 2023).
- Arduino, Arduino Pro Mini Datasheet. 2023. Available online: https://docs.arduino.cc/retired/boards/arduino-pro-mini (accessed on 11 August 2023).
- Winet s.r.l WinetTx Datasheet, Www.Winetsrl.Com. 2023. Available online: https://www.winetsrl.com/documents/Datasheet_WinetTX.pdf (accessed on 15 July 2023).
- Iqbal, M.; Abdullah, A.Y.M.; Shabnam, F. An Application Based Comparative Study of LPWAN Technologies for IoT Environment. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 1857–1860. [Google Scholar]
- Maudet, S.; Andrieux, G.; Chevillon, R.; Diouris, J.-F. Refined Node Energy Consumption Modeling in a LoRaWAN Network. Sensors 2021, 21, 6398. [Google Scholar] [CrossRef] [PubMed]
- Basford, P.J.; Bulot, F.M.J.; Apetroaie-Cristea, M.; Cox, S.J.; Ossont, S.J. LoRaWAN for Smart City IoT Deployments: A Long Term Evaluation. Sensors 2020, 20, 648. [Google Scholar] [CrossRef] [PubMed]
- Singla, P.; Munjal, A. Topology Control Algorithms for Wireless Sensor Networks: A Review. Wirel. Pers Commun. 2020, 113, 2363–2385. [Google Scholar] [CrossRef]
- Li, M.; Li, Z.; Vasilakos, A.V. A Survey on Topology Control in Wireless Sensor Networks: Taxonomy, Comparative Study, and Open Issues. Proc. IEEE 2013, 101, 2538–2557. [Google Scholar] [CrossRef]
- Baert, K.; Gyselinckx, B.; Torfs, T.; Leonov, V.; Yazicioglu, F.; Brebels, S.; Donnay, S.; Vanfleteren, J.; Beyne, E.; van Hoof, C. Technologies for Highly Miniaturized Autonomous Sensor Networks. Microelectron. J. 2006, 37, 1563–1568. [Google Scholar] [CrossRef]
- Qiu, D.; Wang, X.; Wen, Y.; Zeng, Y.; Li, W.; Zhao, L.; Chen, L.; Xiong, J.; Tang, K. A Low-Cost Wireless Intelligent Portable Sensor Based on Disposable Laser-Induced Porous Graphene Flexible Electrode Decorated by Gold Nanoshells for Rapid Detection of Sulfonamides in Aquatic Products. Food Anal. Methods 2022, 15, 1471–1481. [Google Scholar] [CrossRef]
- Wang, G.; Xuan, X.; Jiang, D.; Li, K.; Wang, W. A Miniaturized Implantable Antenna Sensor for Wireless Capsule Endoscopy System. AEU Int. J. Electron. Commun. 2022, 143, 154022. [Google Scholar] [CrossRef]
- Oseyemi, A.E.; Kuruvinashetti, K.; Packirisamy, M. Perspective—Trends in the Miniaturization of Photosynthetic Power Cell towards Improved Power Density. J. Electrochem. Soc. 2022, 169, 126501. [Google Scholar] [CrossRef]
- Dikshit, A.; Pradhan, B.; Alamri, A.M. Pathways and Challenges of the Application of Artificial Intelligence to Geohazards Modelling. Gondwana Res. 2021, 100, 290–301. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B.; Li, Y.; Catani, F.; Pourghasemi, H.R. Landslide Susceptibility Modeling Applying Machine Learning Methods: A Case Study from Longju in the Three Gorges Reservoir Area, China. Comput. Geosci. 2018, 112, 23–37. [Google Scholar] [CrossRef]
Pros | Cons |
---|---|
Energy efficiency | Limited range (relative to the application) |
Flexibility and scalability | Some implementations can be subject to interference |
Installation accessibility | Security |
Wiring constraint reduction | Power constraints |
Cost effectiveness | Possible data amount and speed limitations |
Ref. | Year | Stage | Monitored Elements | Study Duration |
---|---|---|---|---|
[74] | 2012 | Laboratory prototype | Soil condition | Not specified |
[75] | 2021 | Fixed installation | Land displacement | Not specified |
[79] | 2022 | Fixed installation | Rockfall mesh barriers | 1 day |
[85] | 2022 | Fixed installation | Rockfall mesh Concrete barriers Environmental parameters | July 2022—to date |
[87] | 2009 | Fixed installation | Rock mass tilting | Not specified |
[89] | 2019 | Portable test nodes | Rockfall pattern | Not specified |
[92] | 2017 | Not specified | Hillside landslide movement | Not specified |
[94] | 2016 | Fixed installation | Land displacement Environmental parameters | 9 months |
[96] | 2022 | Fixed installation | Crack displacement Rainfall | 9 months |
[97] | 2011 | Fixed installation | Deep earth movements Hydric characteristics | Not specified |
[98] | 2020 | Fixed installation | Soil moisture status | Not specified |
[99] | 2016 | Fixed installation | Seismic movements Soil moisture | Not specified |
[102] | 2018 | Fixed installation | Rain-induced slope failure Sediment disasters near expressways | 1 month |
[103] | 2011 | Laboratory prototype | Soil displacement | Not specified |
[105] | 2017 | Fixed installation | Large crack displacement Rainfall | Not specified |
[106] | 2023 | Fixed installation | Land movements Hydric characteristics | Not specified |
[107] | 2018 | Fixed installation | Rockfall barrier movements | 10 months |
[108] | 2023 | Fixed installation | Land displacement | 2 years |
[110] | 2016 | Fixed installation sensor nodes, fixed and portable radar scanners | Rock mass movements | 3136 days |
[111] | 2018 | Fixed installation | Slope and river monitoring | 3 years |
Ref. | Region | Country | Witnessed Events |
---|---|---|---|
[74] | Not applicable | Not applicable (laboratory prototype) | Not applicable |
[75] | Northern Thailand | Thailand | Not specified |
[79] | Nantou | Taiwan | Rockfalls disasters |
[85] | Pantelleria | Italy | No significant rockfall events in the reported period |
[87] | Not specified | Not specified | A test was performed showing tilt monitoring capabilities |
[89] | Not applicable | Not applicable | Not applicable |
[92] | Not specified | Not specified | Not specified |
[94] | Torgiovannetto | Italy | No events in the reported period |
[96] | Jianshanying disaster area, Shuicheng County, Guizhou Province | China | Landslide rainfall, landslide deformation and cracks |
[97] | Anthoniar Colony hill, Munnar town, Idduki District, Kerala State | India | Not specified |
[98] | Seoul | South Korea | Landslides in urban areas, increased heavy rainfall |
[99] | Malin village, Pune Maharashtra town | India | Landslide occurred in July 2014 |
[102] | Not specified | Japan | Slope failures |
[103] | Not applicable | Not applicable | Not applicable |
[105] | Hezhang County, Guizhou Province | China | Not specified |
[106] | Netala landslide location, Garhwal Himalayan Uttarakhand region, Uttarkashi district | India | Landslide occurred during the monitoring period |
[107] | Two unspecified sites in south and central Italy. | Italy | No significant rockfall events in the reported period |
[108] | Four different locations:
| France and Switzerland | Landslides occurred in each selected site |
[110] | Montserrat Mountain, near Barcelona, Catalonia, northeast of Spain | Spain | Rockfalls detached between 2001 and 2008 |
[111] | Nakayama, Aruse, Namikata and Matsuyama sites | Japan | Increased heavy rainfall events reported |
Ref. | System Monitoring Type | Sensor Types | Node Communication Technology | Node Power Supply | Low Power Performances | Network Topology | Hardware Platform |
---|---|---|---|---|---|---|---|
[74] | Local | Soil moisture sensor, pressure sensor, flexible band | IEEE 802.15.4 based unspecified protocol | AA batteries | Not specified | Not specified | Crossbow MicaZ [112] |
[75] | Remote | Cameras | ZigBee, LoRa | Not specified | Not specified | Star | Not specified |
[79] | Remote | Accelerometer, vibration gauge, temperature, soil resistance | LoRa, NB-IoT, Wi-Fi | Not specified | Not specified | Not specified | Arduino e Mega 2560 [113] and Pro Mini [114] boards with commercial modules |
[85] | Remote | Accelerometer, temperature, humidity, altitude | LoRa | Solar harvesting, 3.7 V lithium battery | 16 µA sleep mode current | Star | Custom |
[87] | Remote | Accelerometer, tilt sensor | Unspecified 868 MHz ISM radio | Solar harvesting, unspecified battery | Not specified | Multi-hop | Custom |
[89] | Remote | IMU | Wi-Fi | Solar harvesting, 3.7 V lithium battery | 50 mA in passive mode | Mesh | Raspberry Pi- based [83] node |
[92] | Local | IMU, altitude | LoRa | Not specified | Not specified | Mesh | Custom |
[94] | Remote | Extensometers, hygrometers, clinometers, thermometer, rain and wind gauges | IEEE 802.15.4 based unspecified protocol | Solar harvesting, 6 V lead-acid battery | 30 µA sleep mode current | Multi-hop | WinetTX board [115] |
[96] | Remote | Tipping bucket, extensometer, tilt sensor | LoRa | Solar harvesting, 12 V lithium battery | 1 mA sleep mode current | Star | Custom |
[97] | Remote | Geophone, moisture sensors, strain gauges, piezometers, rainfall sensor | Wi-Fi | Solar harvesting, lead-acid battery | Not specified | Not specified | Custom |
[98] | Remote | Soil moisture sensors, tensiometer, inclinometer | Wi-Fi | Solar harvesting, unspecified battery | Not specified | Mesh | Not specified |
[99] | Remote | Dielectric moisture sensors, accelerometers, tilt sensors, temperature sensors, rain gauge sensor | IEEE 802.15.4 based unspecified protocol | AA batteries | Not specified | Mesh | Not specified |
[102] | Remote | Tilt sensors, extensometers, displacement meter, soil moisture sensor, water gauge, rain gauge, temperature sensor | ZigBee | Solar harvesting, 3.6 V rechargeable batteries | <1 uA sleep mode current | Mesh | Custom |
[103] | Remote | Extensometer, tilt sensor, capacitive rainfall sensor, temperature, and moisture sensor | ZigBee | Unspecified lithium battery | 1 mA sleep mode current | Mesh | ZICM2410 ZigBee Module with commercial devices |
[105] | Remote | Rainfall sensor, tilt sensor, displacement sensor | GSM | Solar harvesting, unspecified battery | Not specified | Star | Custom |
[106] | Remote | IMU, moisture sensor, pressure sensor | ZigBee | Solar harvesting, 3.7 V lithium battery | 34 mA in sleep mode | Star | Commercial devices on a connection board |
[107] | Remote | Accelerometer | Unspecified 433 MHz ISM radio | Solar harvesting, 3.7 V lithium battery | 3 mA sleep mode current | Partial mesh | Custom |
[108] | Not specified | RFID tags | RFID | Power grid, Solar harvesting and wind harvesting for the interrogators | Not specified | Star | Not specified |
[110] | Remote sensor nodes, ground-based SARs | Extensometers, temperature sensors, radars | ZigBee | Solar harvesting, rechargeable AA batteries | Not specified | Mesh | Custom SAR equipment |
[111] | Remote | tilt sensors, extensometers, ultrasonic sensor, temperature and humidity | LoRa, Sigfox, LTE-M | Unspecified alkaline batteries | Not specified | Star | Not specified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragnoli, M.; Scarsella, M.; Leoni, A.; Ferri, G.; Stornelli, V. Wireless Sensor Network-Based Rockfall and Landslide Monitoring Systems: A Review. Sensors 2023, 23, 7278. https://doi.org/10.3390/s23167278
Ragnoli M, Scarsella M, Leoni A, Ferri G, Stornelli V. Wireless Sensor Network-Based Rockfall and Landslide Monitoring Systems: A Review. Sensors. 2023; 23(16):7278. https://doi.org/10.3390/s23167278
Chicago/Turabian StyleRagnoli, Mattia, Massimo Scarsella, Alfiero Leoni, Giuseppe Ferri, and Vincenzo Stornelli. 2023. "Wireless Sensor Network-Based Rockfall and Landslide Monitoring Systems: A Review" Sensors 23, no. 16: 7278. https://doi.org/10.3390/s23167278