At the end of 2019, the outbreak of COVID-19 was reported in Wuhan, China. The outbreak spread quickly to several countries, becoming a public health emergency of international interest. Without a vaccine or antiviral drugs, control measures are necessary to understand the evolution of cases. Here, we report through spatial analysis the spatial pattern of the COVID-19 outbreak. The study site was the State of São Paulo, Brazil, where the first case of the disease was confirmed. We applied the Kernel Density to generate surfaces that indicate where there is higher density of cases and, consequently, greater risk of confirming new cases. The spatial pattern of COVID-19 pandemic could be observed in São Paulo State, in which its metropolitan region standed out with the greatest cases, being classified as a hotspot. In addition, the main highways and airports that connect the capital to the cities with the highest population density were classified as medium density areas by the Kernel Density method.It indicates a gradual expansion from the capital to the interior. Therefore, spatial analyses are fundamental to understand the spread of the virus and its association with other spatial data can be essential to guide control measures.