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ABSTRACT 
 

Brain Computer Interfaces (BCI) represent a new communication option for those suffering 
from neuromuscular impairment that prevents them from using conventional augmented 
communication methods. This new approach has been developing quickly during the last 
few years, thanks to the increasing of computational power and the new algorithms for signal 
processing (Independent Component Analysis, Wavelets decomposition, Support Vector 
Machine etc.) that can be applied to the studies made on brain waves. Here follows two 
methodologies of approach based on making the computer adapt to the human brain activity 
and not vice-versa.  The P300 and the SSVEP based BCIs, here presented, have the 
characteristics of not demanding specific training to the user.  
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1. Introduction  
 

A good hundred years after the first discoveries were made on the brain’s electrical 

activity, Jacques Vidal published an innovative work explaining how to use the brain’s 

electrical potentials for building a mental prosthesis [Vidal, 1973,1977]. This was the 

starting point for BCI research. Nowadays, about thirty research groups are following 

this approach for interfacing the computer [Kronegg, 2003].  

In the first international meeting on BCI technology, which took place in 1999, at the 

Rensselarville Institute of Albany (New York), Jonathan R. Wolpaw formalized the 

definition of the BCI system :  

"A brain-computer interface (BCI) is a communication or control system in which the 

user's messages or commands do not depend on the brain's normal output channels. 

That is, the message is not carried by nerves and muscles, and, furthermore, 
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neuromuscular activity is not needed to produce the activity that does carry the 

message" [Wolpaw et al., 2000a].  

Through this definition, BCI systems appear as a possible and sometimes unique 

mode of communication for people with severe neuromuscular disorders like spinal 

cord injury or cerebral palsy. As a matter of fact, such neural diseases can break the 

slim and fragile line between thoughts and actions.  In these cases, neither medicine 

nor surgery can be of any use to give back to the person the control of his/her body. 

However, utilizing the residuals functions of the brain, it seems possible to give back a 

hope of communication to these people.  

The human brain has an intensive chemical and electrical activity, partially 

characterized by particular electrical patterns, which occur at specific times and at 

well-localized brain sites. All of that is observable with a certain level of repeatability 

under well-defined environmental conditions. These simple physiological issues can 

lead to the development of new systems to communicate.  

 

Here follows a list of the most utilized electrical activities of the brain for BCI:  

 

o β and µ Rhythms  

These electrical activities are observable inside a frequency range 

from 8 Hz to 12 Hz (Mu) and 12 Hz to 30 Hz (Beta). These signals are 

associated with those cortical areas most directly connected to the 

brain’s motor output and can be willingly modulated with an imaginary 

mental movement for example. The increases/decreases of this rhythm 

have been used several times as a support for a BCI. [Pfurtscheller, 

1989], Pfurtscheller and Lopes Da Silva, 1999], [Mc Farland  et al., 

2000].  

 

o P300 Evoked Potential 

This wave is a late appearing component of an Event Related 

Potential (ERP) which can be auditory, visual or somatosensory. It has 

a latency of about 300 ms and is elicited by rare or significant stimuli, 

when these are interspersed with frequent or routine stimuli. Its 

amplitude is strongly related to the unpredictability of the stimulus, the 

more unforeseeable the stimulus is, the higher is the amplitude. This 
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particular wave has been used to make the subject chose between 

different stimuli [Farwell and Donchin , 1988] , [Donchin  et al., 2000]. 

 

 

o Visual Evoked Potential  

They are ERPs with short latency that represent the exogenous 

response of the brain to a rapid visual stimulus. They are characterized 

by a negative peak around 100ms (N1) by a following  positive peak 

around 200ms (P2).Since Vidal’s innovative works in the early 70’s, 

these potentials are being used as clues indicating the direction of the 

user’s gaze [Vidal, 1973, 1977], [Sutter, 1992]. 

 

o Steady-State Visual Evoked Potentials (SSVEP)  

These signals are natural responses for visual stimulations at specific 

frequencies. When the retina is excited by a visual stimulus ranging 

from 3.5 Hz to 75 Hz, the brain generates an electrical activity at the 

same (or multiples of the) frequency of the visual stimulus. They are 

used for understanding which stimulus the subject is looking at in case 

of stimuli with different flashing frequency. [Morgan et al., 1996b],[Muller 

et al., 1997]  

 

o Slow cortical potentials (SCP) 

These electrical activities are slow potential variations generated in 

the cortex after 0.5 – 10.0s. Negative  SCPs are generally produced by 

movement, instead positive SCPs are associated with reduced cortical 

activation. Bimbaumer and his colleagues [Bimbaumer et al., 1990] 

demonstrated that people, adequately trained, can  control these 

potentials and use them to control the movement of a cursor on the 

screen. 

 

 

BCIs have been investigated from different perspectives. For the sake of simplicity 

we will split them into two methods, direct (invasive) and indirect (non-invasive).  

In the first approach, recording devices are required inside the brain. This makes it 

possible to capture the electrical patterns near their sources. This solution requires 
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challenging technological, scientific and psychological competences. For example, 

highly complex implanted micro-sensors, biologically compatible, are pioneering 

researches. Algorithms which process huge amounts of data generated by neurons at 

high rates (>20 kHz), and which filter and classify in real-time the brain's electrical 

activity, are another critical point for the BCI direct approach. Furthermore, from a 

psychological point of view, it is not yet sure that anyone in the future will approve to 

receive an implanted device in the brain.  

Probably the work of neurologist Philip Kennedy and his colleagues [Kennedy et al., 

2000] is the most impressive example for the direct approach. Johnny Ray, a patient of 

Kennedy, lived and talked to the world using cortical implanted electrodes.  

Other researchers, like Chapin from the Medical College of Pennsylvania and Nicolelis 

at the Duke University [Chapin et al., 1999], have used implanted electrodes inside 

monkeys' brains to control a robot-arm from distance.  

The non-invasive way for BCI is less technologically and psychologically demanding. 

It requires sensors (electrodes) placed on the scalp to record electrical patterns. The 

necessary experimental set-up (i.e., electrodes, amplifiers, medical competence...) to 

carry out the indirect approach is more available to laboratories today than the require 

set-up for the invasive one. The disadvantage of listening to the brain activity from the 

outside of the scalp lies in the very low quality of the signals, due to the damping of the 

electrical activity signals on their way to the electrodes.  

This non-invasive and easy to set-up approach has been used to study several sets 

of electrical patterns. These sets can be grouped into two main classes: the electrical 

patterns evoked by external stimuli (i.e., a blinking arrow) and the electrical patterns 

generated by means of wilful execution of particular cognitive tasks (i.e., imaging a 

spinning cube). It is the research goal or the physical boundaries imposed by the 

patients that decide the use of one or the other kind of electrical pattern. 

The usage of this approach has given good results, even if there are no real and 

useful applications yet. To cite the most published works inspired by it, it's worthwhile 

to highlight the pioneering researches of Prof. Birbaumer. He was one of the first to 

use brain waves, influenced by the human will, to drive a speller [Birbaumer et al., 

2003]. Another well-known researcher is Prof. Wolpaw. He developed a BCI based on 

µ and β EEG rhythms [Wolpaw et al., 1991]. The patient, after specific training, is able 

to move a cursor up and down just modifying those rhythms. A different strategy was 

proposed by the psychologist Donchin [Farwell and Donchin, 1988] using the P300 

wave to control a speller.  Whereas the previously cited works (Birbaumer and 
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Wolpaw) are based on the user's ability to control brain behavior, in Donchin's method 

a quasi-uncontrollable brain signal, the P300, is used. 

The general idea of Donchin's solution is that the patient is able to generate this 

signal without any training. This is due to  the fact that the P300 is the brain’s response 

to an unexpected or surprising event and is generated naturally. Donchin has 

developed a BCI system able to detect an elicited P300 by signal averaging 

techniques (to reduce the noise) and used a specific method to speed up the overall 

performance.  

The SSVEP (Steady State Visual Evoked Potential) activity is another successfully 

investigated brain signal. As presented previously, SSVEP [Morgan et al., 1996b], [ 

Muller M.M. et al., 1997] is the natural brain response when the retina is excited by 

flickering visual stimuli. The SSVEP signals are strongly modulated by a selective 

spatial attention process: these signals are well defined within the extent, delimited by 

the user's visual attention. Outside this area, flickering visual stimuli don't generate the 

same meaningful activity.  

Starting from the P300 and SSVEP works and trying to overcome their boundaries, 

two BCI systems have been developed in our laboratory.  

 

2. Materials and methods  
 

A fundamental aspect for a human machine interaction system, such as BCI, is the 

need for a proper development environment that allows a real time interaction between 

the subject and the machine. (This necessity is directed by the fact that the users need 

a short response time to keep up their attention level). For this purpose we created a 

flexible modular environment useful to develop and to experiment various BCIs  

 

There are essentially two parts that every BCI system needs:  

 

1. A dedicated hardware system that manages the stimulation, the EEG acquisition 

(electrodes and amplifier samplers etc) and the feedback (visual, acoustic, haptic ...)  

2. A system that deals with advanced signal processing and interpretation.  

 

We chose to use for the first part a commercial system for EEG analysis and for the 

signal analysis tool we opted for Matlab, which gives a great flexibility and easiness to 

the developing of the algorithms. In this system we studied two kinds of BCI: a first one 

based on an ERP (P300), and a second one based on SSVEP.  
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Both the BCIs studied share the video interface and the acquisition in the first 

elaboration part.  

 

Figure 1: System for BCI development 
 
 
2.1 The system: Hardware  

 

The core of the first part is the NeuroScan System. This is a commercial system 

composed of : 

 

o Neurostim: PC that manages the visual and acoustic stimulation for the 

subjects.  

o SynAmps: which amplifies and filters high frequency components of the 

EEG signals.  

o ScanPc: PC that manages the functioning of the whole system for 

acquisition, processing and visualization as well as the exchange of 

EEG data with external programs ( ex.; Matlab). The possibility to 

exchange data with other programs is one of the main reasons to use 

Neuroscan for a research and development project.  

o A set of electrodes (that can be fixed on a "quick cap") to be fitted on 

the subject's scalp. 

o A 4-button keyboard whose stimulations are recorded synchronously 

with EEG by the SynAmp.  
 
 
2.2 The system: Software 
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Thanks to NeuroScan’s characteristics, which allow data exchange between different 

processes, we developed the artificial intelligence algorithms needed by our BCIs in 

Matlab and C++ code. This choice was determined by the notable flexibility of the 

software written in Matlab whose characteristics permit easy trials of new algorithms. 

The proposed system (Hardware and Software) carries out some fundamental 

operations in order to test the detection of the electrical potentials in real time. We use 

for this reason, the same system for both the BCIs we are studying.  

 

2.3 P300 based BCI  
 

For a P300-based BCI, we need to elicit an ERP.  Therefore, to start with, the subject 

must be stimulated with an appropriate interface. Then the generated electrical 

potentials should be recorded and eventually processed in real time. Here follows the 

list of the main characteristics necessary to achieve these three steps (stimulation, 

recording and processing):  

 

o The definition of an elicitation paradigm to evoke this ERP, using 

different kind of stimulations (acoustic or visuals modality according to 

the user's capabilities).  

o Neuroscan that performs on-line acquisition of EEG data, synchronized 

with the stimuli (collected as ERPs epochs).  

o A processing procedure that allows to reduce noise and enforce P300-

related information.  

o A pattern recognition algorithm that permits to check the absence or the 

presence of the P300 wave in the recorded ERP epochs. 

o The procedures that carries out a epoch labelling, according to the 

previous stimulus type (target or non-target), in order to use them during 

off-line operations.  

o A feedback mechanism to the subject, which sends him/her a visible 

signal on the monitor correlated to the recorded epoch. 

o  A pattern recognition algorithms that, using the labelled epochs 

previously collected, adapts its rules according to the user 

characteristics. 
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Figure 2: P300 wave 
 
 
2.3.1 Algorithms for P300 studies: ICA and Support  Vector Machine  
 
Classification Algorithm  
 

In order to understand whether a P300 pattern has been generated by the visual 

stimulus, a Support Vector Machine [Vapnik, 1995] was developed. Generally 

speaking, the Support Vector Machine implements the following idea: it maps the input 

vector x into a high-dimensional feature space Z through some non-linear mapping K, 

chosen a priori. In this space, a hyper plane is  constructed.  

This hyper plane, in our case, separates the P300 patterns from the non-P300 

patterns.  

The core of a SVM classifier is the kernel function  

 (1) 

 

One of the most used kernel functions, as in our experimental sessions, is the 

radial basis kernel  

 (2) 

 

Using the SVM classifier, the following issues have been observed:  

• A fast learning rate: typically a few seconds are sufficient to learn the training 

set.  

• Quite coherent results between the off-line training, the testing phase and the 

real-time phase. 

• Good numerical stability.  
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ICA algorithm  
  

The raw signal, acquired by NeuroScan, follows four processing steps: first, all the 

signals recorded by scalp electrodes are processed in order to obtain a set of 

independent components. Since the locations of the brain that generate ERP cannot 

be determined easily by the scalp recordings (resolution problem), many algorithms 

have been studied in order to separate each signal in a set of independent sources 

(i.e., originating from different areas). One of the most promising algorithms is the so-

called Independent Component Analysis (ICA) [Comon, 1994]. ICA determines what 

spatially fixed and temporally independent component activations compose an 

observed time-varying response, without attempting to directly specify where in the 

brain these activations arise. Practically the problem that ICA solves, is to recover 

sources from their instantaneous mixture without any previous knowledge of the 

sources and the mixing channel. Differently from Principal Component Analysis PCA 

that finds components that are uncorrelated, ICA is a much stronger criterion because 

it is based on statistical moments of a higher order, so ICA requires more than the 

uncorrelatedness of the components. The most general case can be so characterized: 

we consider n unknown sources signals si(t), i=1,…n, which are mutually independent, 

and we model the sensor’s output as  

 

 (3) 

 

where A is an unknown non-singular mixing matrix, x(t)= [x1(t), …xn(t)]T, s(t)= [s1(t), 
…sn(t)]T. With no knowledge of the source signals and the mixing matrix, we want to 

recover the original signals from the observed signals x(t) by the following linear 

transformation:  

 

 (4) 

 

where y(t)= [y1(t), …yn(t)]T and W is the un-mixing matrix. Of course it is impossible 

to find the original sources without ambiguity, because they are not identifiable in a 

strictly statistical sense. However, up to some permutation, it is possible to obtain 

cisi(t) where ci are unknown non-zero scalar factors. In order to separate the 

components, ICA works on a learning algorithm that minimizes the dependency 
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between the output components: such a dependency is measured by the Kullback-

Leibler divergence (5) between the joint and the product of the marginal distributions of 

the output:  

 
(5) 

 

Where pa(ya) is the marginal probability density function (pdf). To perform this, some 

hypotheses are implicit and a training algorithm is needed to find the right un-mixing 

matrix W. The hypotheses are the following:  

1. The signals recorded from the electrodes are an instantaneous mix of n 

statistically independent sources. This implies that the coefficients of the 

mixing matrix A are linear and time-independent. From a physiological 

point of view this is equivalent to saying that the sum of the electrical 

potentials coming from different areas of the brain on the scalp 

electrodes, is linear. To be more precise, it is not the result of non-linear 

distortion or temporal convolution of the sources.  

2. The number of sources n does not exceed the number of electrodes. In 

physiology this means that the areas involved are stable and in a 

defined number.  

3. The sources and the mixing process are stationary, they don't change 

their statistical properties in time.  

The first hypothesis is well confirmed in literature [Makeig et al., 1997], [Jung et al., 

2001]. The second hypothesis doesn't represent a problem because we can take as 

many sources as we want (in theory at least), in order to have the number of sources 

smaller than the number of electrodes. The third one is generally not verified but we 

can overcome this problem if we choose a time interval, small enough to consider with 

a good approximation, the signal stationary. According to these considerations we can 

apply the independent component analysis computation. 

 

2.3.2 P300 based BCI: protocol and interface  
 

The protocol used to test the proposed BCI device, consists of a P300 wave 

elicitation paradigm. It can be divided into two main phases, called learning and 

testing. Through this protocol we want to reach the following objectives: 
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1. Solving the "ad personam" system adaptation;  

2. Quantifying the system performance;  

3. Giving a visual bio-feedback to the subject. 

  

To elicit the ERP (P300 wave) we submit the subject to a random sequence of visual 

stimuli on a computer screen, using a complex odd-ball paradigm. Inside our graphic 

interface, each stimulus has the shape of an arrow to give a directional meaning: up, 

right, down and left, for the total amount of four different stimuli (see Fig. 3). A stimulus 

consists of the single flash of an arrow lasting 150ms. The inter-stimulus interval is of 

2.5 s, and the upper bound of a sequence of stimuli is of 90. Since the subject's task is 

to reach the goal (the red cross) with the movements of an object (the blue ball) he/she 

has to decide which direction (i.e.: the blinking arrow) is interested in and keep his/her 

attention on it. The stimulus desired by the user is called target (that is  the one that 

would allow the object's movement in the direction chosen by the user), otherwise it is 

called non-target.  

The main hypothesis, that we will use later, is that every target stimulus elicits the 

P300 wave.  

 

 

Figure 3: P300 interface: testing phase 
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2.3.2.1 Learning phase  
 

During the learning phase, the subject learns to reach the red cross using the 

arrows. 

For this phase two strategies can be followed, depending on the capacity of the 

subject to use the keyboard or not. For those who can’t, a predefined path appears on 

the screen that they are taught to follow looking at the correct arrows. The object's 

movements are controlled by the software, thus every time that the subject receives a 

target stimulus (the next direction along the predefined path) the object makes a single 

step toward the cross, otherwise it does not make any step.  

If the subject is able to move (one hand at least), we can apply another strategy for 

the learning phase: the person informs the system when he receives a target stimulus 

by pressing a key, so that every time he presses the key, the object on the screen 

makes a single step according to received stimulus.  

Both protocols make the subject believe that every time he/she wants to move the 

ball, the machine is able to read the subject's will and moving consequently the object. 

This is done to recreate the closest situation to the testing phase. At the end of the 

learning phase, the system has recorded a set of signals (ERP epochs) that should be 

similar to the ones it will deal with during the testing session. In such a way the 

adaptive algorithm can learn the specific P300 wave of each subject. It can then 

discriminate the ERPs data epochs between target stimuli (the one which elicits 

P300s) and non-target stimuli. To do this, some off-line operations must be performed:  

o trace filtering (low-pass filtering);  

o ICA decomposition, to extract the un-mixing matrix W;  

o feature extraction and normalization;  

o Support Vector Machine training.  

Once the system completes the training, the testing phase can start. The above 

processing and training procedure can be performed after every testing session, in 

order to improve the system performance.  

 

2.3.2.2 Test phase  
 

During the testing phase, the subject actually performs the task, like in the learning 

session, but with a substantial difference: the object's movements are controlled by the 

output of the adaptive algorithm, trained on the subject's previous tracks. So, in this 
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phase, the user can see directly on the screen the result of the classification algorithm 

(the movement of the ball). 

The recognition algorithm assesses the presence of the P300 wave into the single-

sweep tracks related to every stimulus. If a P300 is detected, then the system moves 

the object on the graphical interface according to the stimulus just received by the 

subject, otherwise the object stays still. If the subject is interested in a particular 

direction, left for example, he normally will elicit a P300 wave only when he sees the 

left arrow flashing. If the classification algorithm works correctly, the subject should see 

the ball moving one step left. Otherwise, he/she will see the ball moving in a direction 

he/she is not interested in or no movement at all. The subject will consider as a reward 

the movement of the ball in the desired direction (positive biofeedback). Otherwise, a 

non-desired movement (negative biofeedback) will push the subject to concentrate 

more on the stimulus, trying to control it better. As in the learning session, the subject 

informs the system about target stimulus by pressing a key if he/she can. This allows 

track labelling and, successively, re-training the system using information retrieved 

during the testing session.  

 

2.4 SSVEP-based BCI: protocol and interface  
 

The second BCI we are studying is based on the steady-state visual evoked potential 

(SSVEP).The SSVEP is a continuous and periodic signal, elicited by visual stimulus 

flickering in the frequency range between 3.5 Hz-75 Hz. SSVEP is described as a near 

sinusoidal signal oscillating at the same, or multiple, stimulus frequency and it's 

particularly detectable in the occipital-parietal region of the skull. These signals are 

readily quantifiable in the frequency domain and can be easily extracted from 

background electroencephalogram noise. 

 

2.4.1 Assessment studies 
 

The first step of our research consisted in assessing the feasibility of creating a 

screen based visual interface able to elicit SSVEP signals. The visual stimulus is given 

by some items of the graphic interface that flicker at different frequencies. An important 

part of the work concerned with the definition of the item features, such as light 

intensity, colour, shape, dimension and flickering frequency. We performed a set of 

experiments in order to understand how to increase the amplitude of the recorded 

brain responses to the flickering stimuli.  
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We reached these conclusion:  

o Confirming what is said in literature [Regan, 1989], the occipital  

electrodes, specially PO8 (figure 4), are the one where the response to 

the stimuli is higher. This was verified through a set of experiments, made 

on 5 subjects (figure 5). From the figure, It can be seen also that the 

second harmonic is the one which has the greatest amplitude [Ventura, 

2002 ].  

o We confirm the fact that the increase of the SSVEP amplitude is directly 

correlated with the spatial attention processes [Muller and Hillyard, 1997], 

[Morgan et al., 1996], [Silberstein, 1990]. To test this hypothesis we 

associated to the action of concentrating on the stimulus, a cognitive task 

like counting a blue spot that appears randomly on the regions where the 

stimuli are flashing. This task increases the amplitude on the SSVEP 

recorded.  

o It has been shown [Blanchard and Epstein, 2000] that it is possible 

through the feedback to make some subjects increment some brain wave 

activities. For such a purpose we put a bar next to every flashing symbol, 

showing in real time the brain activity correlated to that flashing frequency. 

 

Figure 4: SSVEP distribution over the scalp 
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Thanks to this feedback we noticed (with a high statistical significance ) 

an increase of the wave amplitude of 10-20%  (Table 3) [Ventura, 2002 ]. 

o We found also that the couple of frequencies easier to discriminate was 

the couple 6 Hz and 10 Hz. This couple was the one in which each 

frequency interferes less with the other (as can be see on the figure 6).  

 

Figure 5: Harmonic Components of 6 Hz (left) and 10 Hz (right) stimulation for the 
different electrodes: as it can be see the PO8 is the one with higher amplitudes 

 

Figure 6: Power spectrum of SSVEP for the couple 6-10 Hz when the subject is looking at the 
flashing stimulus at 6 Hz on (figure on the left ) and at 10 Hz (figure on the right) 
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2.4.2 Algorithms for SSVEP studies: MA, ALE, Subspace Averaging  
 

The EEG signal is processed with a method named Subspace Averaging [Davila and 

Srebro,2000],[Davila et al.,1998]. 

This technique is a combined application of two signal elaboration methods called 

Signal Averaging and Signal Space Projection. 

The latter one was introduced in 1987 by Ilmoniemi and is used to separate the EEG 

signal from a generic noise signal (cardiac or oculographic artifacts). See [Ilmoniemi 

and Williamson, 1987], [Ilmoniemi et al., 1987] and [Ilmoniemi and Uusitalo, 1997]. 

This technique has been widely applied in the telecommunication field and, recently, 

has been applied in the analysis of physiological signals such as EEG or MEG. The 

computational simplicity and the short processing time, make this method preferable to 

others and allow an easy and efficient implementation, especially for on-line 

application.  

The classification has been implemented by a linear threshold algorithm, that 

recognizes the SSVEP signal if its amplitude exceeds the threshold value for, at least, 

2 seconds.  

 

2.4.3 Protocol 
 

The experimental protocol has been divided in two phases: training and testing. The 

training phase has the purpose of establishing the parameters of the typical SSVEP 

activity of every subject (maximal amplitude) in order to fix the threshold for the 

classification part. The subject sits at 70 cm distance from the screen and the 

electrodes (Oz,O2,PO8) are applied. In this first phase, during which the feedback 

signal is not given to the subject, the subject has to focus his/her attention for 20 s on 

the left flashing symbol, after 2s at the centre of the screen and finally for 20 s at the 

left flashing symbol. To check the exact moment in which the subject changes 

direction, he/she has to press one of the three buttons according to which flashing light 

the subject is looking at.  

In this second phase, the subject has been told to focus his/her attention on the 

flashing arrows, following the sequence of the directions to look at on top screen (D for 

Right, S for Left as it can see on the figure 7). The current letter (corresponding to a 

direction) will change colour if the subject manages to keep the amplitude (according 

to the magnitude bar) of the brain wave corresponding to the frequency of the stimulus 

he is looking at, for at least 2 seconds. We measure, for each trial, the correct 

selections, the errors, the null events (defined as the event when both the amplitude 
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bars reach the top for two seconds) and the time to complete the trial. After each trial 

the subject's amplitude thresholds are recalculated adaptively in order to track the 

changes on the individual behaviour. This simple game is an easy trick to keep the 

subject always engaged. 

 

 

Figure 7: SSVEP visual interface during the testing phase 
 

 

3. Results  
 
3.1 P300  
 

P300 based BCI has now achieved a good developing level, in terms of both the 

system architectural choices and the early results. Since the beginning of our project, 3 

years ago, the whole system has changed many times. We started with an acoustic 

protocol, but we had to drop this approach because of the difficulty to handle a 

stimulus with a high semantic component (P300 had latency and shape that depended 

too much on the particular stimulus). The evolution of the system passed through 

hundreds of tests on healthy and pathological subjects and through many 

modifications of the classification algorithm (we started from a simple Bayesan 

classificator, we shifted to neural networks and finally we chose a Support Vector 

Machine).  

The following tables sum up briefly the results we had. The first one, related to the 

neural network approach, (Table 2) is divided into healthy and pathological subject, 
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and the second one represents the new promising SVM approach (Table 3). In the 

tables we define:  

o Performance: the percentage of the exact classification;  

o Instr./min.: the number of correct instructions per minute;  

o Err P300: error in classification of P300 waves;  

o Err. Not P300: error in classification of non-P300 waves;  

o Err. tot: total error.  

 

 Healthy Pathological 

Subject N 7 5 

Performance 66.8 56.7 

Instr./min. 3.39 3.59 

Age: Mean- Var 33 22-43 40 30-53 

Err.P300: Mean –StD 0.4966 0.16 0.5864 0.1544 

Err. Not P300: Mean –StD 0.2707 0.0794 0.3665 0.106 

Err. tot.: Mean –StD 0.3318 0.0777 0.4327 0.986 

Table 2: P300 results: NN approach healthy Vs Pathological  
 

Subject N 5 

Performance 71.1 

Instr./min. 5.34 

Age: Mean -Var 32 23-45 

Err. P300: Mean -StD 0.59 0.109 

Err. Not P300: Mean -StD 0.123 0.0291 

Err. tot.: Mean -StD 0.2888 0.0397 

Table 3: P300 results: SVM approach.  
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It is necessary to keep in mind the way our interface works in order to interpret these 

data tables. A random stimuli sequence is presented to the user, who has to 

concentrate only on the one is interested in. It appears evident that the most critical 

error is due to the misinterpretation of the not-P300 wave. This causes a wrong action 

on the interface while a P300 wrong classification doesn't create any output. That is 

the reason why we tend to minimize the error on not-P300 classification without caring 

of the corresponding error on P300. Using such a strategy, the user will only 

experience a great difficulty to move the object in the desired direction and this 

sensation will push him/her to concentrate more.  

A simply way to increase the bit-rate without changing the classificator, consists in 

reducing the interstimulus time. Presently, the interstimulus period is of 2.5 seconds 

whereas the computation time is of 400ms. This implies that we can reduce the 

interstimulus at most to 400 and this will bring up the bit-rate magnitude of 5 times. 

This solution will be investigated accurately because it hides many interrogatives about 

what the user reaction will be to such high frequency stimulation.  

 

  

3.2 SSVEP  
 

The experimental sessions were run at the San Camillo Hospital in Venice.  

5 healthy subjects, aged between 24 and 32 years old were tested.  

The experimental sessions validated the feedback efficacy in improving the man-

machine communication process. The importance of the feedback signal is particularly 

evident in its capability of adapting the SSVEP response of the subject to the 

classification algorithm request. This adaptation process has been observed in all the 

subjects. As it can be seen from the table 4 there is a significant increase of the 

amplitude of SSVEP when using the biofeedback bar. Another interesting result is that 

all the subjects show a decrease of the signal amplitude after 7-8 trails. When asked, 

the subjects replied that this interface is very tiring and that they find it hard to 

concentrate. The last observation, according to the results obtained in the testing 

phases, is the accuracy of this kind of interface (the average accuracy is of 95.71% 

with a standard deviation of 2.73%). This high accuracy was obtained because we 

kept the threshold for selecting the stimulus high in order to decrease the false 

negative classification that is very harmful in BCI systems; in other words, only 4.3% of 

the instructions are misinterpreted. Practically this results in increased difficulty for the 
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subject that has to keep concentrated to reach the selection. In spite of this increment 

of difficulty, the subject achieved a satisfactory communication rate (10 instructions in 

97.16 seconds).  

 

Freq. 

Stim. 
Subject 

Percent. 

Incr. 
P 

1 10.93 0.085 

2 28.22 0.045 

3 10.01 0.013 

4 21.35 0.004 

  
  
10 

Hz 
  
  5 10.09 0.034 

1 9.08 0.025 

2 34.71 0.027 

3 14.51 0.046 

4 10.67 0.01 

  
  
6 Hz 
  
  

5 19.58 0.029 

Table 4: Tables comparing the percentual increase of amplitude for every 
subject and the statistical significativity P. 

 
 
4. Discussion  
 

Both BCI systems studied have the advantage that they do not need a particular 

training (Birbaumer, Wolpaw) because they exploit a natural brain behaviour. Thanks 

to the feedback, subjects can learn how to improve the communication rate. We see 

also that the performance can be greatly improved by increasing the engagement of 

the subject in the task. It turns out that the subject participation and willingness is as 

important as the classification tools of the system. It is evident that the more the 

subject is concentrated on the task, the higher will be the bit-rate of whole systems. 

Therefore the study of physical interfaces and of the stimulating strategies become 

critical. 
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Many ways can be explored to improve the whole system performance:  

o virtual reality involvement;  

o competition between subject in a video-game, one after the other or one 

against the other;  

o reward/penalty distribution strategy improvement. 

 

The drawback of such an attention-dependent system is that it is very tiring and 

consequently the performances decrease in time (as it can be seen on the figure 8 

referring to one SSVEP session).  

 

Figure 8: SSVEP amplitude ( 6 Hz, 10 Hz) decreasing during the testing session 
for 2 subjects 

 
5. Towards the future 
 

P300 interface and SSVEP interface are still at this stage an open research topic. 

The results we show are in their early stages but some interesting points can be 

observed.  

In general, it's quite clear that the two interfaces require a good attention level by their 

users. So, a particular effort has been dedicated to all the aspects regarding the user’s 

side of the interfaces. Two simple examples are, the colours used for P300 interface 

arrows and the feedback channel studied for the SSVEP interface.  

The classifier performance or the ICA filtering is not as important as the user's feeling 

toward the interfaces. The more the user is aware of the task proposed by the BCI, the 

more the brain activity will be recognizable by the machine.  

To improve the involvement of the subject, which has been seen as a critical point for 

the performance of both the interfaces, many solutions can be explored. A massive 

use of Virtual Reality is probably the first step toward a real and usable BCI, especially 

for all the aspects regarding the multiple sensorial stimulations provided by this 
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technology. Another really important issue is the user’s emotional involvement when 

he/she uses the interface. 

A sort of game-competition, maybe mediated in a Virtual Reality environment, could 

amplify and focus the brain activity toward a specific target. As an example, the P300 

wave is strongly related to the level of surprise: it's quite easy to imagine an engaging 

game, with colours and sounds, able to generate unexpected events. 
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