In the diabetic patients the level of glucose must be determined without any short term fluctuations. The level of Glycated hemoglobin (HbA1c) is accordingly examined for checking diabetes mellitus. HbA1c is considered one of the primarily factor to discern the concentration of average plasma glucose over a long-drawn-out period. In our work, we describe a construction of biosensor which is based on fructosyl amino-acid oxidase (FAO) immobilized nitrogen-doped graphene/gold nanoparticles (AuNPs)/fluorine doped tin oxide (FTO) glass electrode. This constructed biosensor exhibits a wide linear range of 0.3 to 2000μM in response to HbA1c at +0.2V. Consequently, the detection limit of 0.2μM and good stability (4 months) were achieved. The electrocatalytic activity of this sensor was good as a result of synergistic effect of graphene and AuNPs (2D and 0D nanomaterials). The charge transfer resistance was decreased which was observed by electrochemical impedance spectroscopy (EIS) study. The graphene/AuNPs composites film reveals a distinguished electrochemical response to fructosyl valine (FV) which demonstrates a promising application for electrochemical detection of HbA1c in human blood samples.
Keywords: FTO electrode; Fructosyl amino-acid oxidase; Glycated hemoglobin; Gold nanoparticles; Graphene nanosheet; Whole blood.
Copyright © 2016 Elsevier B.V. All rights reserved.