A new approach to the development of a single-layer graphene sensor decorated with metal nanoparticles is presented. Chemical vapor deposition is used to grow single layer graphene on copper. Decoration of the single-layer graphene is achieved by electroless deposition of Au nanoparticles using the copper substrate as a source of electrons. Transfer of the decorated single-layer graphene on glassy carbon electrodes offers a sensitive platform for biosensor development. As a proof of concept, 10 units of glucose oxidase were deposited on the surface in a Nafion matrix to stabilize the enzyme as well as to prevent interference from ascorbic acid and uric acid. Amperometric linear response calibration in the μmoll(-1) is obtained. The presented methodology enables highly sensitive platforms for biosensor development, providing a scalable roll-to-roll production with a much more reproducible scheme when compared to the graphene biosensors reported previously based on drop-cast of multi-layer graphene suspensions.
Copyright © 2011 Elsevier B.V. All rights reserved.