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Recently, high-order statistics have received more and more interest in the field of hyperspectral anomaly
detection. However, most of the existing high-order statistics based anomaly detection methods require
stepwise iterations since they are the direct applications of blind source separation. Moreover, these
methods usually produce multiple detection maps rather than a single anomaly distribution image. In this
study, we exploit the concept of coskewness tensor and propose a new anomaly detection method, which is
called COSD (coskewness detector). COSD does not need iteration and can produce single detection map.
The experiments based on both simulated and real hyperspectral data sets verify the effectiveness of our
algorithm.

he research on the anomaly detection of hyperspectral data has drawn much attention recently in many
fields' . The so-called anomaly detection is basically to find out “abnormal” pixels from an image where the
targets and their associated background are both unknown. Many anomaly detection methods have been
proposed, among which RX Detector (RXD)*° is the most typical one. It has been applied to both multi and
hyper-spectral successfully in terms of anomaly detection. In fact, the expression of RXD is equivalent to the
Mahalanobis distance. There are many anomaly detection operators derived from RXD, such as modified RX
(MRX), normalized RX (NRX), weighted RX, Causal RX’ and adaptive causal anomaly detector algorithm
(ACAD)?®. The low probability detector (LPD)’ is another anomaly detector used frequently. LPD determines
whether a pixel is abnormal or not according to the relationship between any pixel of the image and the unity
vector multiplied by the inversion of the sample auto-correlation matrix. The uniform target detector (UTD) is an
evolved version of LPD which has a translational shift of the origin of the image to the mean vector. Kwon'
proposed a new anomaly detection method, dual window-based eigen separation transform anomaly detector
(DWEST). DWEST model involves two local windows, namely inner and outer windows, which are designed to
maximize the separation between anomalies and background. The inner window is used to detect the anomalies
presented in it, while the outer window is used to model the background of the anomalies. By moving these two
local windows in an image, we can calculate the local mean and covariance matrix for each window and their
differences. Consequently, anomalies can be extracted by projecting the differential mean between two windows
onto the eigenvector associated with the largest positive eigenvalue of the differential covariance matrix. Similar to
DWEST, nested spatial window-based target detector NSWTD) is presented in''. NSWTD model involves three
nested local windows, namely, inner, middle and outer windows. The first two windows are used to extract the
smallest and largest anomalies respectively, while the outer window is used to model the local background.
Moreover, the other key difference of this model from the DWEST and RX-based algorithms is to use the
orthogonal projection divergence (OPD) instead of eigenvector projection or sample covariance matrix as a
measurement. Based on a nonparametric model, the combined F-Test anomaly detector (CFT) is presented by
Rosario". The main assumption of this method has an asymptotic behavior of Fisher’s F distribution for data sets
which are examined by a common statistical test. Some other anomaly detection methods can be seen at™>""°.
The anomaly detectors mentioned above are all basically conducted from the statistical perspective. The
statistics used include first-order statistics (e.g., mean vector) and second-order statistics (e.g., covariance matrix).
It is not sufficient to use the first-order and the second-order statistics since the distributions of scatter points in
feature space for most real images are not normal distributions.
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In this study, the third-order statistical tensor is introduced to
extract anomalies. In fact, there are many approaches in existing
literature for anomaly detection using high-order statistics'®™"".
However, all these approaches are the direct applications of the blind
signal separation (BSS) methods (e.g., FastICA), which generally
involve step-by-step iterations to reach the optimal solution. As a
result, they are apt to be trapped in local minima. In order to address
the convergence issue, Geng'® introduced the concept of coskewness
tensor to hyperspectral data analysis and proposed a target detection
method based on higher order singular value detection (HOSVD).
Nevertheless, both the BSSS-based techniques and HOSVD are in the
domain of feature extraction, aiming at the extraction of not only the
anomalies but also the other independent components in the image.

In this paper, combining the concept of third-order statistical
tensor and the idea of RXD, we present a new anomaly detection
method termed coskewness tensor detector (COSD). The proposed
method can directly get the distribution of the anomaly of a hyper-
spectral image without any iteration, which can therefore avoid pro-
blems of the BSS-based methods.

Results

Although there are many anomaly detection algorithms based on the
2nd-order statistic, they are all generally derived from RXD.
Similarly, we can also derive corresponding algorithms based on
COSD. Therefore, the experiments in this study only focus on com-
paring the performances between COSD, FastICA and RXD. In order
to facilitate the comparison between COSD and FastICA, we used
skewness as a measure of non-Gaussianity in FastICA. In addition,
since FastICA can produce a lot of independent components, we just
select the one with the greatest skewness as the detection result.

Evaluation with simulated data. The simulated image of two bands
with 50 X 50 pixels was first used in this experiment. Simulation data
consists of two parts, abnormal targets (8*8) and their background.
The background pixels fit a Gaussian distribution. The target was
located in the upper left corner of the image and randomly scattered
outside the background in the feature space of the image (see Fig. 1).

The comparisons between RXD, FastICA and COSD are given in
Fig. 2. By a visual comparative analysis, the performance of COSD is
superior to that of RXD. Fig. 3 shows the receiver operating character-
istic (ROC) curve of detection rate versus false alarm rate for the three
algorithms (see reference [15] for their definitions of detection rate
and false alarm rate). Clearly, the detection performance of COSD is
comparable to that of FastICA, and both are better than that of RXD.

Evaluation with real hyperspectral data. The hyperspectral data of
100*100 pixels from OMIS-II (Operational Modular Imaging
Spectrometer) is used to test these methods. The hyperspectral
imaging system was developed by Shanghai Institute of Technical
Physic, Chinese Academy of Sciences (SITP). The data, which was
acquired by the Aerial Photogrammetry and Remote Sensing Bureau
in Xi’an, China in 2003, includes 64 bands from visible to thermal
infrared with 3.6 m spatial resolution and 10 nm spectral resolution
in the visible and near infrared region (60 bands). There were small
man-made targets simulated as common objects within the scene,
which were distributed at two locations around the top right corner
of the image (marked by the rectangles in Fig. 4 a), consisting of tens
of pixels. From the true color (approximately) composition image
(see Fig. 4 a), it is hard to find any information of the targets in the
rectangles.

From Fig. 4b, we can see two small bright blocks at the top right
corner, which are the man-made targets. It indicates that RXD can
distinguish them as the abnormal pixels from the background. Fig. 4c
is the result of COSD, where the two man-made targets are high-
lighted significantly as the abnormal pixels while the rest is greatly
suppressed as the background. The result of NCOSD in Fig. 4d indi-
cates that it is good enough to extract anomalies by only using the
skewness information. Fig. 5 shows the ROC (receiver operating
characteristic) curve of detection rate versus the false alarm rate
for both RXD and COSD. It illustrates that the detection capability
of COSD has a significant advantage over that of RXD.

Now we turn to the comparison between FastICA and COSD.
Usually, FastICA gets all the independent components through itera-
tions, and the one with the maximum skewness is chosen as the
anomaly detection result. However, due to the local optimum, the
first independent component of FastICA is not always corresponding
to the global maximum skewness, thus different surface objects may
be detected (see Fig. 6, which shows the inconsistency of anomaly
detections. Besides, the skewness-based FastICA does not have a
global convergence. Nevertheless, our COSD does not have these
problems.

Discussion

In this study we proposed a new method of using high-order statistic
tensor to detect the anomaly of a hyperspectral image and analyzed in
detail the application of the skewness tensor in the anomaly detec-
tion. Compared to the traditional methods based on the second-
order statistics, COSD has a better capacity to extract the abnormal
objects. Moreover, COSD can directly get the distribution of the

Figure 1 | The scatter plot of the simulated data.
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Figure 2 | Anomaly detection result. (a) RXD; (b). FastICA; (c). COSD.

abnormal objects by using a higher-order statistic tensor, compared
to the traditional methods based on blind signal separation methods.
Since COSD does not need iteration, it can avoid the shortcomings of
the blind signal separation methods. By the experiment with simu-
lated data, it shows that the detection performance of the COSD is

better than that of RXD. In the experiment using real hyperspectral
data, it is illustrated that the COSD can highlight the man-made
targets as the anomalies out of the image successfully. It is note-
worthy that, the obtained abnormal pixels might not be the ones of
interest due to the uncertainty of the abnormal pixels in an image.
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Figure 3 | ROC curves.
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Figure 4| Anomaly detection results for the real hyperspectral image: (a). True true color composition image, (b). RXD, (c). COSD, (d). NCOSD.

However, the introduction of a higher-order statistic tensor will
benefit a lot in the anomaly detection for hyperspectral images.
Although the introduction of coskewness tensor benefits anomaly
detection a lot, COSD may suffer from larger computational com-
plexity. Figure 7 shows the computational complexity (measured by
the required float operations, flops) for RXD, and COSD. Assume the
size of the hyperspectral data is N pixels and L bands. The flops

3
required for RXD is (ELz—i—L)N while that for COSD is

7
(8 L’ +L*+L |N. We can see that from Fig. 7, COSD is more sens-
itive to the number of bands. When L is relatively large (for instance,

7
>50), the computational complexity of COSD is about §L times of

that of RXD.

It is noticeable that since the COSD method can be considered as
the extension of the RXD method in formula expression from the
2nd-order statistics (covariance matrix) to the 3rd-order statistics
(coskewness tensor), all the other 2nd-order statistics based anomaly
detection methods (such as modified RX, weighted RX, causal RX,
DWEST, NSWTD) can be simply extended to those 3rd-order stat-
istics based ones or even higher-order statistics based ones. The
advantage of our COSD algorithm in detecting anomaly of hyper-
spectral image ensures a rationality of this extension.

In conclusion, the anomalies generally show strong features in
the high-order statistics. Thus, this paper presents a new anomaly

detection method COSD based on third-order statistical tensor.
Formally, the COSD is the natural extension of RXD from second-
order to third-order statistics. Essentially, the COSD take full advant-
age of angle information, which ensures the validity of COSD.

Methods

RXD. The RXD is a detector proposed by Reed and Yu*. For each pixel vector r in an
image, RXD can be implemented by a operator specified by

Srxp(®)=(r—p) K~ (r—p), (1)

N
1

wherep = N Z r; is the mean vector of the image, K is the sample covariance matrix

i=1
of the image and N is the number of pixels. dgxp(r) in Eq.(1) has the same form as
Mahalanobis distance. The covariance matrix K can be decomposed as: K = EDE’,
where D = diag{A;, A5, A1}; E is the eigenvectors matrix of K. We denotes

1

F=ED 7 asa whitening operator of the image. Then eq.(1) can be transformed as

Srxp()=(r—p) FE (=) = (F (r—p)) " (F' (r—p)). )

From Eq. (2) we can see that, drxp(r) is actually the Euclidean distance of r and p of
the whitened image.

Tensor introduction. A real m-order n-dimensional tensor A consists of n™ real
entries'’, represented as a;, ...;, where i; = 1,---,n for j = 1,---, m. Fig. 8 shows an
example of third-order 4-dimensional tensor. The tensor A is supersymmetric if its
entries are invariant under any permutation of their indices™, or mathematically, a;;
= iy = Gjik = Gjki = Akij = Akjie
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Figure 5 | ROC curves.
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Figure 7 | The computational complexity of RXD and COSD versus (a) the

The tensor A defines an mth-degree homogeneous polynomial

fx)=Ax", (3)
where x = [xy, -+, x,]”, X" is a tensor with m orders, n dimension and rank being 1*°
and its elements are respectively x;, - - - x;, where i; = 1, -, nforj = 1,--, m. Ax" is

the tensor product of A and x™ *. For example, when m = 2, A is a matrix of n*n, and
=xx',f(x)=Ax’ = x! Ax. For m-order tensors, Ax" can be decomposed in 11 steps
as following:

()

where X; denotes the i-mode product operator. Fig. 9 shows the explanation of the
multiplication of a third-way tensor and a vector which yields a scalar. As will be seen
later, that scalar is the corresponding skewness in the direction xif A is the coskewness
tensor.

For a hyperspectral image data set S = {ry,..., ry}, its m-order cumulant matrix
(tensor) is defined as:

fO=AX"=AX XXX X3 X X,

R= ()

z|

N
1
g r”,
i=1

where r; is the spectral column vector of an image; r/” is a m-order L-dimensional
tensor (where L is the number of bands in the image) with rank being 1. Obviously, the
m-order statistical tensor R is a supersymmetric tensor. This paper will focus on the
research of anomaly extraction for the hyperspectral image by using the high-order
statistical tensor.

coskewness tensor detector (COSD). For a hyperspectral image data set

- 1 .

S={f,--.En}, suppose that p= N Z ;=0 and E(SS”) =1, where I is L*L unit
i=1

matrix. It means that each band of the image has a variance of 1, and the correlation
coefficient between the bands is zero. That is to say, the hyperspectral data has been
normalized. It is not difficult to reach these two conditions. If the mean vector of the
image is not zero, it can be achieved by moving the origin of the image to the mean
vector. Besides, the real hyperspectral image can meet the second condition by data
whitening.
Here, we propose a new anomaly detector, named high-order statistic detector

(HOSD), which is defined as follows:

Required flops

(b)

300300
Number of pixels (N)

10°

100100 200200 400400 500°500

number of bands (N = 200%200) and (b) the number of pixels (L = 50).

(6)

Onosp(¥) =Ki",

N
1
where K= N Z 1" is a high-order statistic tensor of the image defined as Eq.(5); r is
i=1

the pixel vector of the image. Similar to Eq.(3), Ki" is a scalar which is the tensor
product of the m-order statistic tensor K and ¥". In this paper, we will discuss a case
where m = 3. And then Eq.(5) can be transformed as

7)

which can be called as coskewness tensor detector (COSD), and here K is the cos-
kewness tensor. Apparently the coskewness tensor is a supersymmetric third-order
tensor with the dimension of L X L X L.

Like RXD, the coskewness tensor based anomaly detector also uses all pixels of the
image by eq. (7) to get a gray image, where the anomalies of the image will appear to be
very bright or dark. The dark pixels in the gray image are caused by the negative values
from Eq. (7). Therefore, we usually determine anomaly pixel by using the absolute
value of the gray image.

In Eq. (7), if ¥ is a unit vector, then d¢cosp(F) is the skewness of the image against the
direction of ¥. Eq.(7) can be transformed as follows

dcosp(®) =KF,

mode3

1 apour

Figure 8 | A sketch map of third-order tensor with size of 4 X 4 X 4.
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Figure 9 | Illustration of n-mode product of a 3-way tensor and a vector.
dcosn(®)=([[El],) KE/||,)’. (8)

From Eq. (8), we can see that the anomaly extraction using Eq. (7) is mainly
dependent on two indices: One is the skewness and the other is the cube of the 2-
norms. If we eliminate the item (||#||,)? from Eq.(8), the COSD operator becomes a
normalized COSD (NCOSD) operator

Sncosp(®) =K(&/|[F]],)’. ©)

Practically, dncosp(F) is the skewness of image data against the direction of T.
Let us assume that hyperspectral image is composed of background and abnormal
pixels,

$=8,+S,, (10)

where §= {, - - - ,fx} is the whitened hyperspectral image; S, = {i’bl Sy, } is

background (N, is the number of background pixels); and S, = {Fay, - Fay, } 1
anomaly (N, is the number of abnormal pixels). It is obvious that N = Nj, + N,.. The
coskewness tensor of the image can be transformed as

an,

by,
1 . =3 1 =3
K:N’éb ri+ﬁ § r; =K, +K,,

i=ap

(11)

where K, is composed of background pixels and K,, is composed of abnormal pixels.
In this study, we just discuss the case that only one class of anomaly lies in the image
and denote the spectrum of anomaly as t,, Then we have

N, .
K= (12)
and the coskewness tensor of the image can be transformed as:
N,
K=K+t (13)

In general, the number of abnormal pixels in an image is very small, thus p, = p =
by,

No Z{, T; is the mean vector of the background image. Accordingly, K,
1=0y

can be approximately considered as the coskewness tensor of the background image.

If we assume that the background image fits a Gaussian distribution, we can get

(14)

0, where p, =

K,~o0.

It means that all the elements of K, are close to zero. Thus the skewness of the
image in the direction of F can be expressed as

. S~ Naos oo Na 1o Nao
5NCOSD(r):K(r/HrH2)3zW i(r/llr\lzf:ﬁ(rTra/Herf:ﬁHraHiCOS3 0, (15)

where 0 is the angle between the vector  and ¥,. Considering eq.(15), eq.(8) can be
rewritten as

(16)

. Naoi_3..
dcosp(F)= ﬁa 1E(13 1143 cos® 0.

Since S= {¥, -- -,y } is an image after centering and whitening, the RX operator
can be expressed as

(17)

From eq.(15-17), it can be seen that there are distinguished differences among RX,
NCOSD and COSD. Specifically, RXD depends only on the distance between a pixel

Srxp(®) =[5

X

-»/x3 - @

1x1x L 1x1%1
Lx1

X
ij
Lx1

and the origin in the feature space of the whitened image. Only when abnormal pixels
are far away from the origin and all the background pixels are relatively close to the
origin, RXD can achieve a good anomaly detection result. NCOSD is based on the
skewness of the image, and its detection performance is dependent on angles between
an abnormal pixel and all the background pixels. When all the angles are large,
NCOSD can get a good detection result. As for COSD, it does not only take the
distance into account, but also the angle. So it can overcome shortcomings of both
RXD and NCOSD, both of which focus only on one single index.
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