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The geometric nature of weights in real complex
networks
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The topology of many real complex networks has been conjectured to be embedded in hidden

metric spaces, where distances between nodes encode their likelihood of being connected.

Besides of providing a natural geometrical interpretation of their complex topologies, this

hypothesis yields the recipe for sustainable Internet’s routing protocols, sheds light on the

hierarchical organization of biochemical pathways in cells, and allows for a rich character-

ization of the evolution of international trade. Here we present empirical evidence that this

geometric interpretation also applies to the weighted organization of real complex networks.

We introduce a very general and versatile model and use it to quantify the level of coupling

between their topology, their weights and an underlying metric space. Our model accurately

reproduces both their topology and their weights, and our results suggest that the formation

of connections and the assignment of their magnitude are ruled by different processes.
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M
ost of the complexity of networks is encoded into
the intricate topology of the interactions among
their components and into the layout of the intensities

associated to such interactions (the weights). Interestingly,
weights are coupled in a non-trivial way to the binary network
topology, playing a central role in their structural organization,
function and dynamics1. For instance, the quantification of
the rich-club effect in real weighted networks, in sharp contrast
to results in unweighted representations, unveils the formation
of alliances in multipolarized environments or the lack of
cohesion even in the presence of rich-club ordering2. Similarly,
the propagation of emergent diseases in the international airports
network is intimately linked to the number of passengers
flying from one airport to the other3. A shift towards a
paradigm of weighted networks is therefore in order to fully
understand the behaviour and evolution of complex networks.
However, advances in this area have been limited by the extreme
heterogeneity and fluctuations that typically characterize the
distribution of weights.

Meanwhile, complex networks4,5 have been conjectured to be
embedded in hidden metric spaces, in which distances among
nodes encode a balance between their similarity and popularity
and, thus, determine their likelihood of being connected6.
This hypothesis, combined with a suitable underlying space,
has offered a geometric interpretation of the complex
topologies observed in real networks, including scale-free
degree distributions, the small-world effect, strong clustering,
community structure and self-similarity. A metric space under-
lying complex networks can also explain their efficient inter-node
communication without knowledge of the complete structure7,8.
Moreover, it has been shown that for networks whose degree
distribution is scale free, the natural geometry of their underlying
metric space is hyperbolic9–14. All these results have then
been used to propose geometric models for real growing
networks that reproduce their evolution and in which
preferential attachment emerges from local optimization
principles15,16. Finally, mapping real complex networks into a
hidden metric space has yielded a sustainable solution to the
scaling limitations of the Internet17, has shed light on the
hierarchical organization of biochemical pathways in cells18, and
has allowed a rich characterization of the evolution of
international trade over 14 decades19.

In real weighted networks, weights are coupled to the
binary topology in a non-trivial way. This is manifested,
for instance, in a non-linear relation between the strength of
a node s (the sum of the total weight attached to it) and its
degree k of the form sBkZ (refs 1,20,21). However, the relation
between the layout of weights and the geometry underlying
the network is unclear. The reason being that, even if the
existence of a link depends on the metric distance between the
nodes, there is no reason, a priori, to expect that the same
distance will affect its weight. For instance, in the airports
network, the decision to set-up a link between two cities
depends on the airline companies operating at the two airports,
a process affected by geopolitic and economic costs, and by
the expected flow of passengers that would eventually compensate
such costs. However, once the connection is established,
its weight is determined by the aggregation of the individual
decisions of people using it, a process that may be affected by a
different cost function.

In this paper, we present empirical evidence on the
metric nature of weights in real biological, economic and
transportation networks (see Methods for a description of the
data sets), which suggests that the hidden/latent geometry
paradigm can be extended to weighted complex networks.
We then propose a general class of weighted networks embedded

in hidden metric spaces that accurately reproduces
many properties observed in real weighted networks. This model
has the critical ability to fix the degree–strength distribution
independently of the coupling of the topology and weighted
organization with the metric space. It is therefore possible
to isolate, and thus directly study, the effect of the coupling
between the metric space and the weighted organization of
real weighted networks. In fact, our results unveil that in
some systems these couplings are uncorrelated, which in turn
suggests that the formation of connections and the assignment of
their magnitude might be ruled by different processes.
Our empirical findings, combined with our new class of models,
open the path towards the use of information encoded in
the weights of the links to find more accurate embeddings of
real networks, which in turn will improve the detection
of communities, the prediction of missing links and provide
estimates for the weights of such missing links.

Results
Interplay between weights and triangles in real networks.
Clustering, as a reflection of the triangle inequality, is
the key topological property coupling the bare topology
of a complex system and its effective underlying metric space6. In
this context, the triangle inequality stipulates that if nodes A and
B are close, and nodes A and C are also close, we expect nodes B
and C to be close as well; triangles are therefore more likely
to exist between nodes that are nearby. Consequently, we
expect that if the weights of connections depend on the
distance between the connected nodes in the underlying metric
space, they should be quantitatively different depending on the
clustering properties of the connections. However, weights and
clustering are known to be strongly influenced by the degrees
of end point nodes1,20,22, which prevents from a direct detection
of the metric properties of weights due to the typical
heterogeneity in the degrees of nodes in real networks. Thus,
to compare links on an equal footing, we define the normalized
weight of an existing link connecting nodes i and j as
onorm

ij ¼oij=�o kikj
� �

, where �o kk0ð Þ is the average weight of
links as a function of the product of degrees of their end
point nodes. By doing so, we decouple the weights and the
topology, leaving the normalized weights seemingly randomly
fluctuating around 1 (see uniform sampling on Fig. 1).

Figure 1 shows, however, that these fluctuations are
not uniform as links involved in triangles tend to have larger
normalized weights than the average link. Indeed, in some cases
the difference can reach 430%. Sampling links over triangles
is equivalent to sampling links proportionally to their multiplicity
m (the number of triangles to which a link participates).
Therefore, the results in Fig. 1 indicate that onorm and
m are positively correlated variables, as corroborated by their
Pearson correlation coefficient (Supplementary Table 1). In
ref. 22, the authors also found local correlations between
the multiplicity of links and the weights for different real
networks. However, note that in that study weights were not
normalized to discount the effects of the heterogeneity in
the degrees of the nodes, so that the detected weighted
organization cannot be taken as a signature of underlying
metric properties.

Since triangles are a reflection of the triangle inequality in
the underlying metric space, we expect nodes forming triangles
to be close to one another. Thus, the higher average normalized
weight observed on triangles strongly suggests a metric nature
of weights, which is not a trivial consequence of the relation
between weights and topology. This leads us to formulate the
hypothesis that the same underlying metric space ruling the
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network topology—inducing the existence of strong clustering
as a reflection of the triangle inequality in the underlying
geometry—is also inducing the observed correlation between
onorm and m. To prove this, we develop a realistic model of
geometric weighted random networks, which allows us to
estimate the coupling between weights and geometry in real
networks.

A geometric model of weighted networks. Many models
have been proposed to generate weighted networks. Among them,
growing network models23–30 and the maximum-entropy class of
models31–35. However, none of them is general enough to
reproduce simultaneously the topology and weighted structure of
real weighted complex networks. We introduce a new model
based on a class of random networks with hidden variables
embedded in a metric space6,7 that overcomes these limitations.
In this model, N nodes are uniformly distributed with constant
density d in a D-dimensional homogeneous and isotropic metric
space (Supplementary Methods), and are assigned a hidden
variable k according to the probability density function (pdf)
r(k). Two nodes with hidden variables k and k0 separated by a
metric distance d are connected with a probability

Prob k; k0; dð Þ¼p wð Þ; and w¼ d

mkk0ð Þ1=D
; ð1Þ

where m40 is a free parameter fixing the average degree and
p(w) is an arbitrary positive function taking values within the
interval (0, 1). The free parameter m can be chosen such
that �k(k)¼ k. Hence, k corresponds to the expected degree of
nodes, so the degree distribution can be specified through the
pdf r(k), regardless of the specific form of p(w) (Supplementary
Methods). The freedom in the choice of p(w) allows us to
tune the level of coupling between the topology of the
networks and the metric space, which in turn allows us
to control many properties such as the clustering coefficient
and the navigability6,8.

To generate weighted networks, a second hidden variable s is
associated to each node. This new hidden variable can be

correlated with k so, hereafter, we assume that the pair of
hidden variables (k, s) associated with the same node are drawn
from the joint pdf r(k, s). The weight of an existing link between
two nodes with hidden variables ki, si, kj and sj, respectively,
and at a metric distance dij is given by

oij¼Eij
nsisj

kikj
� �1� a=D

daij
ð2Þ

with n40 and 0raoD and where E is a positive random variable
drawn from the pdf f(E). Notice that a dictates a trade-off between
the contribution of degrees and geometry to weights. If a¼ 0
weights are independent of the underlying metric space
and maximally dependent on degrees, while a¼D implies
that weights are maximally coupled to the underlying
metric space with no direct contribution of the degrees.
Equation (2) constitutes the keystone of our model. Indeed, as
shown in the Supplementary Methods, the form of equation (2) is
the only one ensuring that �s(s)ps. The free parameter n can
then always be chosen such that �s(s)¼ s. The new hidden
variable s can therefore be interpreted as the expected strength
of a node, and the joint pdf r(k, s)¼r(k)r(s|k) controls
the correlation between degrees and strengths in the network.
Indeed, as shown in the Supplementary Methods, the average
strength of nodes with a given degree, �s(k), relates to the
first moment of the conditional pdf r(s|k), �s(k), so that
when limk!1�s kð Þ¼1 then �s kð Þ� �s kð Þ.

The relations �k(k)¼k and �s(s)¼s—and consequently
the relation between r(k, s) and the degree–strength
distribution—hold independently of the specific form of
the connection probability p(w) and of the noise distribution
f(E). Besides conferring great versatility to our model, this conveys
a degree of control over the weight distribution that
is independent of the specification of degrees and strengths
and, more importantly, opens the possibility to measure
the metric properties of complex weighted networks.

To use the model in the context of real weighted networks,
we choose the circle S1 of radius R¼N/2p to be the underlying
geometry, that is, D¼ 1, over which N nodes are uniformly
distributed6. Distances among nodes are measured in terms of
arc lengths, that is, two nodes with angular positions y and y0 are
at a distance d(y, y0)¼RDy, where Dy¼p� |p� |y� y0||.
The connection probability is set to

p wð Þ¼ 1
1þ wb

with w¼ d
mkk0

; ð3Þ

where b41 is a free parameter that can be used to tune
the clustering and quantifies the level of coupling between
the network topology and the metric space. Equation (3) casts the
ensemble of networks generated by the model into exponential
random networks9: networks that are maximally random
given the constraints imposed by the free parameters (that is,
r(k) and b). To obtain a scale-free degree distribution, hidden
variables k are distributed according to r(k)pk� g

with k0okokc and g41.
Weights are assigned on top of the topology generated by

the model. The noise distribution f(E) is chosen to be a
gamma distribution of average Eh i¼ 1 with a given second
moment E2h i. Finally, to control the correlation between strength
and degree and, therefore, to tune the strength distribution,
we assume a deterministic relation between hidden variables
s and k of the form s¼ akZ, as observed in real complex
networks1,20,21, yielding �s kð Þ� akZ (Supplementary Methods).
Notice that the relation between average strength and degree in
the previous expression is totally independent of the underlying
metric space, which implies that the strength distribution
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Figure 1 | Geometric nature of weights. Comparison of the average

normalized weights in the network (yellow circles) with the one measured

by sampling links over triangles (red triangles) for the empirical data sets

analysed. The error bars correspond to an estimate of the s.d. of the

average value due to the finite size of the samples and are computed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var onorm½ �=L

p
, where Var[onorm] is the variance of the normalized

weights sampled uniformly or via the triangles, and L is the number of links.
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scales as P sð Þ� s� x for s � 1 with x¼ (gþ Z� 1)/Z. All these
theoretical predictions and the ones derived in the Supplementary
Methods are confirmed in Supplementary Fig. 1.

Hidden metric spaces underlying real weighted networks.
At the beginning of this section, we showed that the normalized
weights of links participating in triangles are higher, thus
suggesting a coupling between the weighted organization of
real weighted complex networks and an underlying metric space.
We then presented a model that has the critical ability to fix the
joint degree–strength distribution, while independently varying
the level of coupling between the weights and the metric space
(parameter a). This opens the way to a definite proof of
the geometric nature of weights in real complex networks, which
inevitably must involve the triangle inequality: the most funda-
mental property of any metric space.

For unweighted networks, a direct verification of the triangle
inequality based on the topology without an embedding in a
metric space is not possible, due to the probabilistic nature of
the relationship between the binary structure and the distance
between nodes. In contrast, weights do contain information about
their distances in the metric space (via equation (2)) such that a
direct verification of the triangle inequality is possible. To ensure
that the metric properties of triples in the network are in
correspondence to the metric properties of the corresponding
triangles in the underlying space, only triples of nodes forming
triangles in the network are taken into account to evaluate
the triangle inequality. There are however two main challenges
when one tries to apply this methodology. The first one is related
to the fact that connections in the weighted S1 model depend
not only on angular distances but also on hidden degrees,
such that we need a purely geometrical formulation of the
weighted hidden metric space network model, in which angular
distances and degrees are combined into a single distance
measure. The second issue is related to the intrinsic noise present
in the system due to the stochastic nature of the processes
conforming it, which may blur the evaluation of the
triangle inequality. Below, we propose a way to overcome these
two issues.

First, as shown in ref. 9, the model described by equation (1) is
equivalent, in the one-dimensional case, to a purely geometric
model where nodes are embedded within a disk of radius R in
the hyperbolic plane of constant curvature � 1. Indeed, by
mapping the hidden variable k to a radial coordinate r as follows

r¼R� 2 ln
k
k0

� �
with R¼2 ln

N
mpk20

� �
ð4Þ

and keeping the same angular coordinates, the connection

probability equation (1) can be written as

p
d

mkk0

� �
¼p e

1
2 x�Rð Þ

	 

ð5Þ

where x¼ rþ r0 þ 2 lnDy2 is a very good approximation of
the hyperbolic distance between two points with radial coordi-
nates r and r0, and angular separation Dy. In this framework,
networks generated with our model are geometric random
networks in the hyperbolic plane, a geometry in which
the triangle inequality must hold. To test the triangle inequality,
we therefore select nodes participating in topological triangles
in the network and measure the hyperbolic distance between
them.

The purely geometric interpretation of our model given
by equation (5) further illustrates the reasons for which a metric
space implies a non-vanishing clustering even in the thermo-
dynamical limit. As stated at the beginning of this section,
the triangle inequality—a fundamental property of any metric
space, including the hyperbolic plane—stipulates that whenever
point A is close to point B and point B is close to point C,
then points A and C are also close. Consequently, the notion of
‘closeness’ extends well beyond pairwise comparisons and is
integrated ‘at once’ in the positions in the metric space.
This implies that many-body interactions emerge from pairwise
interactions, such as the connection probability given by
equation (3). Given that nearby nodes are likely to be connected,
clustering is a direct consequence of such many-body interac-
tions; any triad of close nodes are likely to form a triangle,
independently of the size of the disk, and therefore of the
total number of nodes.

By using the mapping given by equation (4), with D¼ 1
equation (2) becomes

oij¼Eij
n
ma

sisj
kikj

e�
a
2 xij �Rð Þ; ð6Þ

from which we can isolate the hyperbolic distance, xij, between
nodes i and j. The triangle inequality, xijþ xjkZxik, then becomes

ln
oijojk

oik

kj
sj

� �2" #
þ ln

ma

n

� �
� 1

2
aR � ln

EijEjk
Eik

� �
: ð7Þ

The first term in the left hand side of this inequality is a function
of the actual weights and network topology and, thus, can
be empirically estimated in any network. The next two terms
on the left hand side have an explicit dependence on the
parameter a. The term in the right hand side is a noise term
whose mean value is close to zero.

Let us first assume that this noise term is zero. In synthetic
weighted networks, the inequality should hold approximately for
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any value of a in equation (7) equal to or larger than the value
of areal used to assign weights in the network. Note that it may
not hold exactly even when a is greater than its real value due
to the inherent noise in the estimation of the hidden variables
k and s in equation (7), as well as the global parameters m and
n (note that whenever we set �s(s)¼ s, parameter n becomes
a function of a; see Supplementary Methods). To minimize such
uncertainty, we choose s¼ akZ and approximate k by the degree
of nodes. We propose to consider a in equation (7) as a free
parameter and to measure the triangle inequality violation
spectrum, TIV(a), defined as the fraction of violations of
the triangle inequality (triangles for which the left hand side
of equation (7) is positive). In the absence of noise, TIV(a)
should take a very small value when aZareal if the weighted
structure of the network is congruent with the existence of
an underlying metric space. In Fig. 2a, we show TIV(a) for
synthetic networks generated with the model with different values
of areal. As expected, the curves fall rapidly precisely at a\areal,
indicated by the dashed vertical lines.

In real situations, however, noise is typically present and has
an impact on TIV(a). Indeed, Fig. 2b shows its behaviour for a
fixed value of areal and different values of the noise E2h i. This
implies that we need an independent measure of the noise to infer
the value of areal from the spectrum TIV(a). For this purpose,
we use the square of the coefficient of variation of the strength,
which depends linearly on the noise E2h i (Supplementary
Methods). Combining these observations, we propose a

procedure to infer the value of areal for any real complex network
based on the empirical TIV(a). The method is described in details
in the Supplementary Methods.

Figure 3a,b shows the TIV(a) curves for the real networks and
the same curves for synthetic networks generated by our model
using the inferred areal to be maximally congruent with the real
data. In all cases, we find a very good agreement between theory
and observations, which suggests a coupling with a hidden metric
space as a highly plausible explanation of the observed weighted
organization. Note that the increase of TIV(a) for aB1 is an
expected artefact of equation (7) (Supplementary Methods).
Figure 3c shows the values of b (coupling topology and metric
space) and areal (coupling weights and metric space) inferred by
our method. Notice that, except for the US airports network,
areal is always 40.40, which indicates a clear and strong coupling
between weights and the hidden underlying geometry. We also
generated synthetic networks with the inferred parameters and
confronted their topological and weighted properties against
those of their real counterparts (see Fig. 4 and Supplementary
Methods for other networks and a comparison with other
models). In all cases, the agreement between the model and
the real networks is excellent. Remarkably, in the case of the
weight distribution and disparity measure, such agreement is
only achieved with the empirical value of areal found via the test of
the triangle inequality.

Finally, we considered the networks for which an embedding
of the binary structure was available and rescaled each weight by a
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factor e� arealxij=2 (equation (6)), where xij is the hyperbolic
distance between nodes in the embeddings17. We then
normalized and sampled the weights as in Fig. 1 and the results
are shown in Fig. 3d. Strikingly, we see that the gap observed
in Fig. 1 completely disappears in some of the networks or
is significantly reduced in others. While the remaining gaps
may be due to imprecisions in the embedding (the embedding
procedure cannot take into account the information contained in
the weights yet), these results nevertheless add their voice to the
evidence pointing towards the geometric nature of the weights in
real complex networks.

Discussion
The metric character of many real complex networks—in which
clustering is a direct consequence of the triangle inequality—has
long been established. However, the metric nature of their
weighted organization still remained an open question. In this
paper, we provided strong empirical evidence for the metric
origin of the weighted architecture of real complex networks
from very different domains. Our results suggest that the same

underlying metric space ruling the network topology also
shapes its weighted organization. It is important to notice that
the distances between nodes implied by this metric space does
not necessarily correspond to geographic distances (for example,
distances between ports on the Earth), but are rather abstract
and effective distances encoding several factors affecting
the existence of connections and their intensity.

To account for these empirical findings, we proposed a
very general model capable of reproducing the coupling with
the metric space in a very simple and elegant way. This model
allows us to fix the local properties of the nodes—their joint
degree–strength distribution—while varying the coupling of
the topology and, independently, of the weights with the hidden
metric space. This critical property permits us to gauge
quantitatively the effect of the metric space in real systems.
In the case of the US airports network, we found quite remarkably
that while the coupling between the topology and the metric
space is relatively strong, the coupling at the weighted level
is quite weak. This strengthens the hypothesis that in some
systems the formation of weights and topology obey different
dynamics. Contrarily, we found strong coupling, both at the
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topological and weighted levels, even in networks that are
not embedded in any obvious metric space like the metabolism
of Escherichia coli, a system of metabolic reactions for which
the hidden geometry is elucidated as a biochemical affinity
space. This fact provides yet another empirical evidence towards
the existence of hidden metric spaces shaping the architecture
of these systems and, more generally, of real complex networks6.

Our framework can be understood as a new generation of
gravity models applicable to very different domains, including
Biology, Information and Communication Technologies, and
Social Systems. Indeed, equation (2) is a novel generalization
of this concept to the case of weighted networks, where

s
k1� a=D ð8Þ

plays the role of the ‘mass’ of nodes and ensures that, once
the network has been assembled, nodes have expected degree
and strength k and s, respectively. Current gravity models predict
the volume of flows between elements, but cannot explain
the observed topology of the interactions among them, as shown
in works for the world trade web36. Our contribution overcomes
this limitation and offers a gravity model that can reproduce both
the existence and the intensity of interactions. This opens a
new line of theoretic research on the coupling between topology,
weighted structure and geometry in complex networks.

Furthermore, our work opens the possibility to use information
encoded in the weights of the links to find more accurate
embeddings of real networks. Such improved embeddings
are expected to allow the detection of communities or of missing
links and to provide estimates of the weights of such missing
links37–39. They can also be extremely helpful to implement
navigation and searching protocols, such as greedy routing, which
take into account not only the existence of connections but
also their intensity.

In perspective, the hidden metric space weighted model
and the maps of real complex systems that it will enable will
lead to a deeper understanding of the interplay between
the structure and function of real networks, and will offer
insights on the impact they have on the dynamical processes they
support and on their own evolutionary dynamics.

Methods
Empirical data sets. In addition to the details given in Table 1, we provide further
information and references about the real complex networks used in this paper.

The world trade web describes significant trade exchanges between countries in
2013. The corresponding weights are trade volumes between pairs in USD19.

The international network of global cargo ship movements consists of the
number of shipping journeys between pairs of major commercial ports in the world
in 2007 (ref. 40).

The commodities network corresponds to the flows of the goods and services
in millions of USD between industrial sectors in the United States in 2007 (ref. 41).

The airports network indicates the number of passengers that flew between
pairs of airports in the United States in 2013. Data are freely available at the website
of the US Bureau of Transportation Statistics (transtats.bts.gov).

The commuting network reflects the daily flow of commuters between counties
in the United States in 2000 (ref. 41).

Weights in the metabolic network of the bacteria E. Coli K-12 MG1655 consist
of the number of different metabolic reactions, in which two metabolites
participate18,42.

Weights in the human brain network correspond to the density of anatomical
connections between subregions of the human brain as detected via diffusion
tensor imaging43.

Except for the metabolic and human brain networks, all networks were filtered
using the disparity filter defined in ref. 44 to preserve the most statistically
significant connections. Many real weighted networks are generated from data by
using a very broad definition of what constitutes a significant connection. This
results in networks with huge average degrees and in which many links are noisy
and weakly related to the overall functionality of the network. For instance, the
US airports network contains links due to private flights (of the order of
10 passengers per year), which obviously follow different patterns of connection
than the regular commercial airlines. Another interesting example is the world
trade web, in which many trade interactions amount for less than one million
dollars and are extremely volatile, appearing and disappearing from year to year.
Indeed, it has been shown in ref. 19 that removing these noisy connections yields
a significantly more congruent topology with real economic factors, such as the
gross domestic product.

Disparity. The disparity quantifies the local heterogeneity of the weights attached
to a given node and is defined as

Yi¼
X
j

oij

si

� �2
; ð9Þ

where oij is the weight of the link between nodes i and j (oij¼ 0 if there is no link)
and si¼

P
j oij (ref. 45). From this definition, we see that the disparity scales as

Yi � k� 1
i whenever the weights are roughly homogeneously distributed among the

links. Conversely, whenever the disparity decreases slower than k� 1
i implies that

weights are heterogeneous and that the large strength of a node is due to a handful
of links with large weights.

Data availability. Codes and data supporting the findings of this study are
available from the corresponding author on request.
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45. Barthélemy, M., Barrat, A., Pastor-Satorras, R. & Vespignani, A.
Characterization and modeling of weighted networks. Physica A 346, 34–43
(2005).

46. Papadopoulos, F., Aldecoa, R. & Krioukov, D. Network geometry inference
using common neighbors. Phys. Rev. E 92, 022807 (2015).

Acknowledgements
We acknowledge support from the James S. McDonnell Foundation Scholar Award in
Complex Systems; the Fonds de recherche du Québec—Nature et technologies; the
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