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Abstract. The aim of this note is to provide a natural extension and general-

isation of the well-known Gelfond constant eπ using a hypergeometric function

approach. An extension is also found for the square root of this constant. Several

known mathematical constants are also deduced in hypergeometric form from our

newly introduced constant.

1. Introduction and preliminaries

In mathematics, Gelfond’s constant, which is named after Aleksandr Osipovich Gel-

fond (1906–1968), is given by eπ. Like both e and π, this constant is a transcendental

number. The decimal expansion of Gelfond’s constant is

eπ = 23.1406926 32779 . . .

and its continued fraction representation is given in [5, A039661].

This number has a connection to the Ramanujan constant eπ
√
163 = (eπ)

√
163. It

is worth noting that this last number is almost an integer:

eπ
√
163 ≃ 6403203 + 744.

A geometrical occurrence of Gelfond’s constant arises in the sum of even-dimension

unit spheres with volume V2n = πn/n!. Then

∞!

n=0

V2n = eπ.
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There are several ways of expressing Gelfond’s constant, some of which are enu-

merated below. We have eπ = (ii)−2, where i =
√
−1;

eπ = 0F1

"
−−
1
2

####
π2

4

$
+ π 0F1

"
−−
3
2

####
π2

4

$
,

where 0F1 is a generalised hypergeometric function that can be expressed in terms

of the modified Bessel function of the first kind of order ∓1/2 (i.e., as πI−1/2(π)/
√
2

and I1/2(π)/
√
2, resp.) and finally

eπ = 2F1

"
i, −i

1
2

#### 1
$
+ 2 2F1

" 1
2
+ i, 1

2
− i

3
2

#### 1
$
, (1.1)

where 2F1 is the well-known Gauss hypergeometric function [3, p. 384]. The result

(1.1) can be easily verified by making use of the classical Gauss summation theorem

2F1

"
a, b

c

#### 1
$

=
∞!

n=0

(a)n(b)n
(c)n

1

n!
=

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, (1.2)

where (a)n = Γ(a + n)/Γ(a) is Pochhammer’s symbol and Re(c − a − b) > 0, to

evaluate the 2F1 series on the right-hand side, combined with the identities

cos πz =
π

Γ(1
2
− z)Γ(1

2
+ z)

, sin πz =
π

Γ(z)Γ(1− z)

and Euler’s formula eiz = cos z + i sin z.

The extension of the summation theorem (1.2) to the 3F2 hypergeometric series

is available in the literature [4], which we write in the following manner:

3F2

"
a, b, d+ 1

c+ 1, d

#### 1
$

=
∞!

n=0

(a)n(b)b(d+ 1)n
(c+ 1)n(d)n

1

n!

=
Γ(c+ 1)Γ(c− a− b)

Γ(c− a+ 1)Γ(c− b+ 1)

%
c− a− b+

ab

d

&
(1.3)

provided d ∕= 0,−1,−2, . . . and Re(c− a− b) > 0.

The aim of this note is to provide an extension of Gelfond’s constant (1.1), and

also its square root, with the help of the result (1.3). A few interesting results closely

related to Gelfond’s constant and its square root are also given.
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2. Extension of Gelfond’s constant

The natural extension of Gelfond’s constant to be established here is given in the

following theorem.

Theorem 2.1. For d1, d2 ∕= 0,−1,−2, . . . , the following result holds true:

eπ
"

1

5d1
+

15

32d2
+

23

80

$
+ e−π

"
1

5d1
− 15

32d2
− 7

80

$

= 3F2

"
i, −i, d1 + 1

3
2
, d1

#### 1
$
+ 2 3F2

" 1
2
+ i, 1

2
− i, d2 + 1

5
2
, d2

#### 1
$
. (2.1)

Proof. The derivation of (2.1) follows from application of the summation formula

(1.3). We have

3F2

"
i, −i, d1 + 1

3
2
, d1

#### 1
$

= (eπ + e−π)

"
1

10
+

1

5d1

$

and

3F2

" 1
2
+ i, 1

2
− i, d2 + 1
5
2
, d2

#### 1
$

= (eπ − e−π)

"
3

32
+

15

64d2

$
.

Insertion of these summations into the right-hand side of (2.1) then yields the result

asserted by the theorem. □

Corollary 2.1. In (2.1), if we take d1 = 2/(5n − 1) and d2 = 15/(2(8n − 3)) for

positive integer n, then we obtain after a little calculation the following result:

neπ = 3F2

"
i, −i, 5n+1

5n−1
3
2
, 2

5n−1

#### 1
$
+ 2 3F2

" 1
2
+ i, 1

2
− i, 16n+9

2(8n−3)

5
2
, 15

2(8n−3)

#### 1
$
. (2.2)

For n = 1, 2, 3 we find respectively the following results related to (1.1):

eπ = 3F2

"
i, −i, 3

2
3
2
, 1

2

#### 1
$
+ 2 3F2

" 1
2
+ i, 1

2
− i, 5

2
5
2
, 3

2

#### 1
$
,

2eπ = 3F2

"
i, −i, 11

9
3
2
, 2

9

#### 1
$
+ 2 3F2

" 1
2
+ i, 1

2
− i, 41

26
5
2
, 15

26

#### 1
$
,

and

3eπ = 3F2

"
i, −i, 8

7
3
2
, 1

7

#### 1
$
+ 2 3F2

" 1
2
+ i, 1

2
− i, 19

14
5
2
, 5

14

#### 1
$
.
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We note that the expression for eπ reduces to (1.1) since both 3F2 series contract to

yield 2F1 series.

Corollary 2.2. In (2.1), if we take d1 = 2/(5n− 1) and d2 = −15/(2(8n + 3)) for

positive integer n, then we obtain after a little calculation the following result:

ne−π = 3F2

"
i, −i, 5n+1

5n−1
3
2
, 2

5n−1

#### 1
$
+ 2 3F2

" 1
2
+ i, 1

2
− i, 16n−9

2(8n+3)

3
2
, − 15

2(8n+3)

#### 1
$
. (2.3)

In particular, for n = 1, 2, 3 we find respectively the following results:

e−π = 3F2

"
i, −i, 3

2
3
2
, 1

2

#### 1
$
+ 2 3F2

" 1
2
+ i, 1

2
− i, 7

22
3
2
, −15

22

#### 1
$
,

2e−π = 3F2

"
i, −i, 11

9
3
2
, 2

9

#### 1
$
+ 2 3F2

" 1
2
+ i, 1

2
− i, 23

38
3
2
, −15

38

#### 1
$
,

and

3e−π = 3F2

"
i, −i, 8

7
3
2
, 1

7

#### 1
$
+ 2 3F2

" 1
2
+ i, 1

2
− i, 13

18
3
2
, − 5

18

#### 1
$
,

where the first 3F2 series in the expression for e−π contracts to yield a simpler 2F1

series.

Similarly, if we take d1 = 2/(10n − 1) and d2 = −5/2 in (2.1), where n is a

positive integer, and note that the second 3F2 series vanishes with this choice of d2

on account of (1.3), we obtain after a little calculation the following:

Corollary 2.3. We have the result for positive integer n

n(eπ + e−π) = 3F2

"
i, −i, 10n+1

10n−1
3
2
, 2

10n−1

#### 1
$
. (2.4)

In particular, for n = 1, 2 we find the following results:

eπ + e−π = 3F2

"
i, −i, 11

9
3
2
, 2

9

#### 1
$
,

2(eπ + e−π) = 3F2

"
i, −i, 21

19
3
2
, 2

19

#### 1
$
.

Similarly other results can be obtained.
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3. The square root of Gelfond’s constant: eπ/2

Expressions for the square root of Gelfond’s constant are eπ/2 = i−i,

eπ/2 = 2F1

"
i, −i

1
2

####
1

2

$
+
√
2 2F1

" 1
2
+ i, 1

2
− i

3
2

####
1

2

$
(3.1)

together with the inverse expression

e−π/2 = 2F1

"
i, −i

1
2

####
1

2

$
−

√
2 2F1

" 1
2
+ i, 1

2
− i

3
2

####
1

2

$
. (3.2)

It is not out of place to mention here that the results in (3.1) and (3.2) can be ob-

tained by evaluating the first hypergeometric function by the second Gauss theorem

and the second hypergeometric function by Bailey’s theorem (cf. [2])

2F1

"
a, b

1
2
(a+ b+ 1)

####
1

2

$
=

Γ
'
1
2

(
Γ
'
1
2
a+ 1

2
b+ 1

2

(

Γ
'
1
2
a+ 1

2

(
Γ
'
1
2
b+ 1

2

( , (3.3)

2F1

"
a, 1− a

c

####
1

2

$
=

Γ
'
1
2
c
(
Γ
'
1
2
c+ 1

2

(

Γ
'
1
2
c+ 1

2
a
(
Γ
'
1
2
c− 1

2
a+ 1

2

( . (3.4)

We now derive the analogue of Theorem 2.1 by making use of the extension of the

second Gauss and Bailey’s theorems applied to 3F2 series. These are given by [1]:

3F2

"
a, b, d+ 1

1
2
(a+ b+ 3), d

####
1

2

$
=

Γ
'
1
2

(
Γ
'
1
2
a+ 1

2
b+ 3

2

(
Γ
'
1
2
a− 1

2
b− 1

2

(

Γ
'
1
2
a− 1

2
b+ 3

2

(

×
% 1

2
(a+ b− 1)− ab/d

Γ
'
1
2
a+ 1

2

(
Γ
'
1
2
b+ 1

2

( +
(a+ b+ 1)/d− 2

Γ
'
1
2
a
(
Γ
'
1
2
b
(

&
(3.5)

and

3F2

"
a, 1− a, d+ 1

c+ 1, d

####
1

2

$
= 2−cΓ

"
1

2

$
Γ(c+ 1)

×
%

2/d

Γ
'
1
2
c+ 1

2
a
(
Γ
'
1
2
c− 1

2
a+ 1

2

( +
1− (c/d)

Γ
'
1
2
c+ 1

2
a+ 1

2

(
Γ
'
1
2
c− 1

2
a+ 1

(
&
, (3.6)

provided d ∕= 0,−1,−2, . . . . Then we have the following theorem:

Theorem 3.1. For d1, d2 ∕= 0,−1,−2, . . . , the following result holds true:

eπ/2
"

1

10d1
+

3

16d2
+

27

40

$
+ e−π/2

"
3

10d1
− 21

16d2
+

11

40

$
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= 3F2

"
i, −i, d1 + 1

3
2
, d1

####
1

2

$
+
√
2 3F2

" 1
2
+ i, 1

2
− i, d2 + 1

5
2
, d2

####
1

2

$
. (3.7)

Proof. In the first 3F2 series use (3.5) and in the second 3F2 series use (3.6) together

with standard properties of the gamma function. □

Corollary 3.1. If in (3.7) we take d1 = 1/(7n − 5) and d2 = 15/(24n − 14) for

positive integer n then we find

neπ/2 = 3F2

"
i, −i, 7n−4

7n−5
3
2
, 1

7n−5

####
1

2

$
+
√
2 3F2

" 1
2
+ i, 1

2
− i, 24n+1

24n−14
5
2
, 15

24n−14

####
1

2

$
. (3.8)

When n = 1 we recover (3.1) after contraction of the 3F2 series. For n = 2, 3 we

find respectively the following results:

2eπ/2 = 3F2

"
i, −i, 10

9
3
2
, 1

9

####
1

2

$
+
√
2 3F2

" 1
2
+ i, 1

2
− i, 49

34
5
2
, 15

34

####
1

2

$

and

3eπ/2 = 3F2

"
i, −i, 17

16
3
2
, 1

16

####
1

2

$
+
√
2 3F2

" 1
2
+ i, 1

2
− i, 73

58
5
2
, 15

58

####
1

2

$
.

Similarly other results can be obtained.

4. Generalisations of Gelfond’s constant

The natural generalisation of Gelfond’s constant established in this section is given

by the following theorem.

Theorem 4.1. For µ > 0 and ν an arbitrary complex parameter with λ = π−1 ln µ+

ν, the following result holds true:

µeπν = eπλ = 2F1

"
iλ, −iλ

1
2

#### 1
$
+ 2λ 2F1

" 1
2
+ iλ, 1

2
− iλ

3
2

#### 1
$

(4.1)

Proof. The proof of (4.1) follows along similar lines to that outlined for (1.1). □

Remark 1. Other ways of expressing eπλ are:

eπλ = (ii)−2λ (i =
√
−1);

eπλ = 0F1

"
−−
1
2

####
π2λ2

4

$
+ πλ 0F1

"
−−
3
2

####
π2λ2

4

$
,
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Remark 2. The result (4.1) yields the alternative expression for e±π/2 given by

e±π/2 = 2F1

" 1
2
i, −1

2
i

1
2

#### 1
$
± 2F1

" 1
2
+ 1

2
i, 1

2
− 1

2
i

3
2

#### 1
$
.

Here we mention several mathematical constants that are derivable from our new

constant µeπν by suitable choice of the parameters µ and ν. Each constant can

consequently be expressed in terms of Gauss hypergeometric functions by (4.1).

These constants are enumerated below:

If we choose µ = 1, ν =
√
19,

√
43,

√
67 and

√
163 in (4.1), we obtain hypergeo-

metric function representations of the four largest Heegner numbers, viz.

eπ
√
19 = 8.85479 77768 01543 19497 . . .× 105

.
= 963 + 744− 0.22;

eπ
√
43 = 8.84736 74399 97774 66034 . . .× 108

.
= 9603 + 744− 0.00022;

eπ
√
67 = 1.47197 95274 39999 98662 . . .× 1011

.
= 52803 + 744− 0.0000013;

eπ
√
163 = 2.62537 41264 07687 43999 . . .× 1017

.
= 6403203 + 744− 7.5× 10−13,

the last number being Ramanujan’s constant.

Other choices for µ and ν in (4.1) yield hypergeometric representations of the

following constants:

µ = 1, ν = 1 : Gelfond eπ = 23.14069 26327 79269 00572 . . . ;

µ = π2/8, ν = 0 : Favard
3

4
ζ(2) = 1.23370 05501 36169 82735 . . . ;

µ = π2/12, ν = 0 : Nielsen-Ramanujan

1

2
ζ(2) = 0.82246 70334 24113 21823 . . . ;

µ =
Γ
'
1
3

(
Γ
'
5
6

(

Γ
'
1
6

( , ν = 0 : Bloch-Landau

L = 0.54325 89653 42976 70695 . . . ;

µ = 2
√
2, ν = 0 : Gelfond-Schneider

GGS = 2.66514 41426 90225 18865 . . . ;

µ =
π2

12 log 2
, ν = 0 : Khinchin-Lévy

β = 1.18656 91104 15625 45282 . . . ;
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µ =
4
√
π

23/4Γ2
'
1
4

( , ν =
1

8
: Weierstrass

σ
)1
2

*
= 0.47494 93799 87920 65033 . . . ;

µ =
π

log 2
, ν = 0 : Van der Pauw α = 4.53236 01418 27193 80962 . . . ;

µ =
6

π2
log 2 log 10, ν = 0 : Loche LLo = 0.97027 01143 92033 92574 . . . ;

µ =
1

4π3/2
Γ2

)1
4

*
, ν = 0 : Chebyshev λCh = 0.59017 02995 08048 11302 . . . .

Similarly several other constants available in the literature can be easily found

from (4.1).
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