An Improved Method for Human Activity Detection with High-Resolution Images by Fusing Pooling Enhancement and Multi-Task Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Methodology
- (1)
- Feature Extractor: It extracts common semantic features from the bitemporal images.
- (2)
- Semantic Segmentation Module: Utilizing the feature maps obtained from the feature extractor as input, it outputs semantic segmentation results.
- (3)
- Pooling Enhancement Module: It captures multi-scale change details within the feature maps.
- (4)
- Change Detection Module: Taking the multi-scale change feature maps extracted by the PEM as input, it produces the change detection results.
2.2.1. Feature Extractor
2.2.2. Semantic Segmentation Module
2.2.3. Pooling Enhancement Module (PEM)
2.2.4. Change Detection Module
2.2.5. Loss Function
3. Results and Discussion
3.1. Experimental Setup and Accuracy Assessment
3.2. Comparative Methods
- (1)
- Fully Convolutional-Early Fusion (FC-EF) [41]: This approach employs an early fusion strategy, where bitemporal images are concatenated and fed into an FCN to obtain a change map. Additionally, skip connections are incorporated to supplement spatial information.
- (2)
- Fully Convolutional Siamese-Concatenation (FC-Siam-conc) [41]: Based on FC-EF, this method replaces the encoder with a dual-branch structure sharing weights. Deep features from both temporal phases are extracted, concatenated, and then input into a decoder to generate a change map.
- (3)
- Fully Convolutional Siamese-Difference (FC-Siam-diff) [41]: This structure is similar to FC-Siam-conc but with one key difference. After the encoder extracts deep features from both temporal phases, they are fused using a difference approach.
- (4)
- Image Fusion Network (IFN) [42]: This network introduces a Deep Difference Discrimination Network (DDN) based on an attention mechanism. It integrates multi-level deep features with image difference features to construct a change map.
- (5)
- ChangeNet [43]: This network utilizes ResNet to extract change information at different scales, which is then processed by a unified decoder for change detection, outputting semantically meaningful change detection results.
- (6)
- DTCDSCN [44]: This network introduces a spatial feature pyramid pooling module as its central component, which expands the receptive field of the feature maps and incorporates contextual features across different scales. Additionally, two extra semantic segmentation decoders are trained simultaneously.
- (1)
- Fully Convolutional Network (FCN) [45]: Based on the VGG16 classification network, this approach replaces the fully connected layers with convolutional layers. Additionally, skip connections are added to combine deep semantic information with superficial information, aiming to generate precise segmentation results.
- (2)
- UNet [46]: This network architecture forms a symmetrical “U” shape, consisting of an encoder and a decoder. The encoder is responsible for feature extraction, while the decoder performs upsampling through deconvolutions layer by layer, restoring the feature map size and outputting the segmentation results.
- (3)
- SegNet [47]: The encoder adopts the network structure of VGG16, while the decoder utilizes pooling indices for upsampling to achieve pixel-level classification.
- (4)
- HRNet [48]: The network maintains high-resolution features of the image through the use of parallel connections while simultaneously fusing features of different resolutions through repeated information exchange modules.
3.3. Change Detection
3.4. Semantic Segmentation
3.5. Effects of PEM
3.6. Human Activity Detection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, Y.D.; Ye, X. Urbanization, urban land expansion and environmental change in China. Stoch. Environ. Res. Risk Assess. 2014, 28, 757–765. [Google Scholar] [CrossRef]
- Jiang, D.; Jones, I.; Liu, X.; Simis, S.G.H.; Cretaux, J.-F.; Albergel, C.; Tyler, A.; Spyrakos, E. Impacts of droughts and human activities on water quantity and quality: Remote sensing observations of Lake Qadisiyah, Iraq. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104021. [Google Scholar] [CrossRef]
- Pricope, N.G.; Mapes, K.L.; Woodward, K.D. Remote Sensing of Human–Environment Interactions in Global Change Research: A Review of Advances, Challenges and Future Directions. Remote Sens. 2019, 11, 2783. [Google Scholar] [CrossRef]
- Bennett, M.M.; Smith, L.C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2018, 11, 48. [Google Scholar] [CrossRef]
- Li, Z.L.; Wu, H.; Duan, S.B.; Zhao, W.; Ren, H.; Liu, X.; Leng, P.; Tang, R.; Ye, X.; Zhu, J.; et al. Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications. Rev. Geophys. 2023, 61, e2022RG000777. [Google Scholar] [CrossRef]
- Li, S.; Cao, X. Monitoring the modes and phases of global human activity development over 30 years: Evidence from county-level nighttime light. Int. J. Appl. Earth Obs. Geoinf. 2024, 126, 103627. [Google Scholar] [CrossRef]
- Brekke, C.; Solberg, A.H.S. Oil spill detection by satellite remote sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Martin, R.V. Satellite remote sensing of surface air quality. Atmos. Environ. 2008, 42, 7823–7843. [Google Scholar] [CrossRef]
- Tronin, A.A. Satellite Remote Sensing in Seismology. A Review. Remote Sensing 2009, 2, 124–150. [Google Scholar] [CrossRef]
- Wang, P.; Bayram, B.; Sertel, E. A comprehensive review on deep learning based remote sensing image super-resolution methods. Earth-Sci. Rev. 2022, 232, 104110. [Google Scholar] [CrossRef]
- Murray, N.J.; Worthington, T.A.; Bunting, P.; Duce, S.; Hagger, V.; Lovelock, C.E.; Lucas, R.; Saunders, M.I.; Sheaves, M.; Spalding, M.; et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 2022, 376, 744–749. [Google Scholar] [CrossRef]
- Singh, A. Review Article Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 2010, 10, 989–1003. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Wang, B.; Hu, X.; Song, C.; Xiang, M. Human Activity Detection Based on Multipass Airborne InSAR Coherence Matrix. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4013905. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Inform. 2019, 12, 143–160. [Google Scholar] [CrossRef]
- Ke, L.; Lin, Y.; Zeng, Z.; Zhang, L.; Meng, L. Adaptive Change Detection with Significance Test. IEEE Access 2018, 6, 27442–27450. [Google Scholar] [CrossRef]
- Massarelli, C. Fast detection of significantly transformed areas due to illegal waste burial with a procedure applicable to Landsat images. Int. J. Remote Sens. 2017, 39, 754–769. [Google Scholar] [CrossRef]
- Sadeghi, V.; Farnood Ahmadi, F.; Ebadi, H. Design and implementation of an expert system for updating thematic maps using satellite imagery (case study: Changes of Lake Urmia). Arab. J. Geosci. 2016, 9, 257. [Google Scholar] [CrossRef]
- Vázquez-Jiménez, R.; Romero-Calcerrada, R.; Novillo, C.J.; Ramos-Bernal, R.N.; Arrogante-Funes, P. Applying the chi-square transformation and automatic secant thresholding to Landsat imagery as unsupervised change detection methods. J. Appl. Remote Sens. 2017, 11, 016016. [Google Scholar] [CrossRef]
- Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [Google Scholar] [CrossRef]
- Radhika, K.; Varadarajan, S.; Zhongwei, L. A neural network based classification of satellite images for change detection applications. Cogent Eng. 2018, 5, 1484587. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, W.; Atkinson, P.M.; Li, Z. Land Cover Change Detection at Subpixel Resolution With a Hopfield Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1339–1352. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef]
- Bai, T.; Wang, L.; Yin, D.; Sun, K.; Chen, Y.; Li, W.; Li, D. Deep learning for change detection in remote sensing: A review. Geo-Spat. Inf. Sci. 2022, 26, 262–288. [Google Scholar] [CrossRef]
- Bao, H.; Zerres, V.H.D.; Lehnert, L.W. Deep Siamese Network for annual change detection in Beijing using Landsat satellite data. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103897. [Google Scholar] [CrossRef]
- de Bem, P.; de Carvalho Junior, O.; Fontes Guimarães, R.; Trancoso Gomes, R. Change Detection of Deforestation in the Brazilian Amazon Using Landsat Data and Convolutional Neural Networks. Remote Sens. 2020, 12, 901. [Google Scholar] [CrossRef]
- Murdaca, G.; Ricciuti, F.; Rucci, A.; Le Saux, B.; Fumagalli, A.; Prati, C. A Semi-Supervised Deep Learning Framework for Change Detection in Open-Pit Mines Using SAR Imagery. Remote Sens. 2023, 15, 5664. [Google Scholar] [CrossRef]
- D’Addabbo, A.; Pasquariello, G.; Amodio, A. Urban Change Detection from VHR Images via Deep-Features Exploitation. In Proceedings of the Sixth International Congress on Information and Communication Technology, London, UK, 25–26 February 2021; Lecture Notes in Networks and Systems. Springer: Singapore, 2022; pp. 487–500. [Google Scholar]
- Zhang, C.-Y.; Zhao, L.; Zhang, H.; Chen, M.-N.; Fang, R.-Y.; Yao, Y.; Zhang, Q.-P.; Wang, Q. Spatial-temporal characteristics of carbon emissions from land use change in Yellow River Delta region, China. Ecol. Indic. 2022, 136, 108623. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Luo, L.; Wang, N. CSA-CDGAN: Channel self-attention-based generative adversarial network for change detection of remote sensing images. Neural Comput. Appl. 2022, 34, 21999–22013. [Google Scholar] [CrossRef]
- Zhu, Q.; Guo, X.; Deng, W.; Shi, S.; Guan, Q.; Zhong, Y.; Zhang, L.; Li, D. Land-Use/Land-Cover change detection based on a Siamese global learning framework for high spatial resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2022, 184, 63–78. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. arXiv 2016, arXiv:1612.01105. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Du, Z.; Shen, H. Spatiotemporal Enhancement and Interlevel Fusion Network for Remote Sensing Images Change Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5609414. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv 2019, arXiv:1912.01703. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Wu, C.; Du, B.; Cui, X.; Zhang, L. A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion. Remote Sens. Environ. 2017, 199, 241–255. [Google Scholar] [CrossRef]
- Rosenfield, G.H.; Fitzpatrick-Lins, K. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 1986, 52, 223–227. [Google Scholar]
- Daudt, R.C.; Saux, B.L.; Boulch, A. Fully Convolutional Siamese Networks for Change Detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4063–4067. [Google Scholar]
- Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L.; Liu, G. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [Google Scholar] [CrossRef]
- Varghese, A.; Gubbi, J.; Ramaswamy, A.; Balamuralidhar, P. ChangeNet: A Deep Learning Architecture for Visual Change Detection. In Proceedings of the Computer Vision—ECCV 2018 Workshops, Munich, Germany, 8–14 September 2019; pp. 129–145. [Google Scholar]
- Liu, Y.; Pang, C.; Zhan, Z.; Zhang, X.; Yang, X. Building Change Detection for Remote Sensing Images Using a Dual-Task Constrained Deep Siamese Convolutional Network Model. IEEE Geosci. Remote Sens. Lett. 2021, 18, 811–815. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. arXiv 2014, arXiv:1411.4038. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. arXiv 2015, arXiv:1511.00561. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep High-Resolution Representation Learning for Human Pose Estimation. arXiv 2019, arXiv:1902.09212. [Google Scholar] [CrossRef]
- Qiu, H.; Yang, S.; Wang, G.; Liu, X.; Zhang, J.; Xu, Y.; Dong, S.; Liu, H.; Jiang, Z. Analysis of Carbon Flux Characteristics in Saline–Alkali Soil Under Global Warming. J. Agron. Crop Sci. 2024, 210, e12720. [Google Scholar] [CrossRef]
Task | Class | Train | Validate |
---|---|---|---|
Change Detection | Changed | 3.7 × 107 | 4.7 × 106 |
Unchanged | 2.0 × 108 | 2.2 × 107 | |
Semantic Segmentation | Others | 9.8 × 107 | 1.5 × 107 |
Building | 1.0 × 107 | 2.0 × 106 | |
Natural Water | 9.4 × 107 | 9.4 × 106 | |
Cropland | 1.5 × 108 | 1.5 × 107 | |
Aquaculture Pond | 5.9 × 107 | 5.0 × 106 | |
Salt Field | 2.3 × 107 | 2.0 × 107 | |
Road | 3.1 × 106 | 3.5 × 105 | |
Oil Depot | 1.3 × 106 | 5.0 × 105 | |
Wetland | 4.4 × 107 | 4.7 × 106 |
Method | F1 (%) | Precision (%) | Recall (%) | OA (%) |
---|---|---|---|---|
FC-EF | 87.68 | 86.17 | 89.41 | 93.29 |
FC-Siam-conc | 88.15 | 86.59 | 89.95 | 93.55 |
FC-Siam-diff | 87.00 | 83.84 | 91.38 | 93.28 |
IFN | 90.13 | 89.72 | 90.91 | 94.85 |
ChangeNet | 91.73 | 91.74 | 91.72 | 95.31 |
DTCDSCN | 95.55 | 96.08 | 95.04 | 97.44 |
PE-MLNet | 96.52 | 96.80 | 96.24 | 98.01 |
Method | mIOU (%) | OA (%) | AA (%) | Kappa (%) |
---|---|---|---|---|
FCN | 76.88 | 92.96 | 87.80 | 91.15 |
UNet | 79.82 | 94.09 | 90.34 | 92.06 |
SegNet | 76.77 | 92.94 | 87.43 | 91.17 |
HRNet | 79.56 | 92.97 | 86.42 | 91.18 |
PE-MLNet | 81.50 | 94.69 | 88.06 | 93.33 |
Method | Building | Natural Water | Cropland | Aquaculture Pond | Salt Field | Road | Oil Depot | Wetland | Others |
---|---|---|---|---|---|---|---|---|---|
FCN | 69.47 | 86.05 | 95.37 | 88.95 | 84.62 | 42.46 | 55.23 | 85.87 | 83.88 |
UNet | 69.88 | 88.63 | 93.19 | 90.22 | 88.06 | 50.14 | 65.39 | 90.62 | 82.25 |
SegNet | 66.96 | 82.28 | 94.94 | 88.99 | 58.54 | 44.84 | 50.46 | 83.59 | 79.60 |
HRNet | 70.65 | 83.14 | 95.93 | 93.01 | 83.99 | 49.75 | 63.04 | 87.97 | 89.58 |
PE-MLNet | 72.94 | 89.67 | 96.58 | 94.58 | 89.37 | 50.55 | 63.65 | 89.43 | 86.70 |
Method | FLOPS (G) | Params (M) | F1 (%) | OA (%) | IOU (%) | Precision (%) | Recall (%) |
---|---|---|---|---|---|---|---|
PE-MLNet_PEM | 37.29 | 34.67 | 96.52 | 98.01 | 93.37 | 96.80 | 96.25 |
PE-MLNet_conc | 66.93 | 19.94 | 95.50 | 97.47 | 91.54 | 95.08 | 95.93 |
PE-MLNet_diff | 36.21 | 14.81 | 95.39 | 97.39 | 91.36 | 95.31 | 95.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Ren, S.; Fang, L.; Chen, J.; Wang, X.; Wang, G.; Zhang, Q.; Wang, Q. An Improved Method for Human Activity Detection with High-Resolution Images by Fusing Pooling Enhancement and Multi-Task Learning. Remote Sens. 2025, 17, 159. https://doi.org/10.3390/rs17010159
Li H, Ren S, Fang L, Chen J, Wang X, Wang G, Zhang Q, Wang Q. An Improved Method for Human Activity Detection with High-Resolution Images by Fusing Pooling Enhancement and Multi-Task Learning. Remote Sensing. 2025; 17(1):159. https://doi.org/10.3390/rs17010159
Chicago/Turabian StyleLi, Haoji, Shilong Ren, Lei Fang, Jinyue Chen, Xinfeng Wang, Guoqiang Wang, Qingzhu Zhang, and Qiao Wang. 2025. "An Improved Method for Human Activity Detection with High-Resolution Images by Fusing Pooling Enhancement and Multi-Task Learning" Remote Sensing 17, no. 1: 159. https://doi.org/10.3390/rs17010159
APA StyleLi, H., Ren, S., Fang, L., Chen, J., Wang, X., Wang, G., Zhang, Q., & Wang, Q. (2025). An Improved Method for Human Activity Detection with High-Resolution Images by Fusing Pooling Enhancement and Multi-Task Learning. Remote Sensing, 17(1), 159. https://doi.org/10.3390/rs17010159