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81. Introduction.

The class of problems known as extension problems is central ©0 nearly all
of topology. Many of the basic theorems of topoiogy, and some of its most sﬁcm
cesgful applicatiocns in‘sahér areas of mathemstics are solutions of ?ar%icul&x
extension problems. The deepest.resulta of this kind havé been obtained by the
meth&d-sf algebralic topoiogy, The egsence of the metha&-is & conversion of the
geometric proviem loto an algebraic problem which ds sufficlently complex to
smbody the essential fé&tareﬁ of the geowetric problem, yet sufficianﬁly aimplé
%o be solvsble by standsrd algebraic metbods. Many ex%ensi@ﬁ problems remsin
unsolved, and much of the current development of algebraic topclogy is insgir&i
by the hope of finding & truly gene?&& solution,

T pl%ce#my contribution to these developments in its proper setiing, X
will begin with a di&cgssien sﬁ the extension ﬁrablemg snd the methods of finding

solutions in special cases,

$2. 7The extension problem.

et Z and ¥ be topological spaces. Let A be & closed subset of I,
and let by A weedr ¥ %a a mapping, i.2. & continuous function from A& to Y.
A mapping f: X ~> ¥ iz called an extension of h 1F f£{x) = h(x) for esch

¥ € A, The inclusion mapplng g: & —> ¥ 13 defined by glx) = x for x £ 4.

k- - f
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Then the condition that £ be an extension can be restated: h 1z the compoaition

fg of f and z.
£

&% P =
j%ﬁg N\ fg = h.
b¥

A e b4

Vhen X,Y,A and bk are glven, we have an extension problem: Does an

extension ¥ of h exist?

§3. Transforming geometric into algebraic problems.

Ehe'genexal method of attack on an extenaion.yrehlem is to apply hemﬁlogy
theory to transform the problem into an algebralc problem. To the diasgram of
spaces and mappings we assign a8 diagra@ of groups and homomorphlsms. Bach space
hag g hameiegy group Hq for easch dimension g, and each mapping induces homo-
_m@r§hisﬁs of the corresponding groups. Thue, for each g, we have an algebrale

dingram

H (X}

4
SN iy = B
W
& " T S {
Hq{ } o f%.{ }

Given ine three groups and the homomorphisms g,,h,, we can now ask the question:
Does there exist a homomorphism ¢ such that ég* =h, 1 {It should be noted that
£, 1le not usually an inclusion, because a non-bounding cycle of 4 wmay bound in
¥).  If an extensiocn I exists, sotting ¢ = T, solves the algebrale problem

becsuse of the property (fz), = f,g, of induced homomorphisms.  Thus, the exist-

eace of a solutlon of the algebralc problem 18 o necessary condition Tor the



existence of an extension. But it iz oot usually & sufficient condition. The
reason for this is that mﬁeh of the ge@metry has Deen lost io the transition %o
8lg8brs. |

It is & prime objective of research in algebralc topology to improve the
algebraic machinéry 80 as to give & sharper algebrsic gicture_cf the geometric
problem. For example, in place of homclogy we may use cohomology. We obtain an

analogous disgram

q

H(X) * % % %
g - Ko7 . gf =h,
#{f- - % '

BYUA) < EYY)

The chief difference islﬁhe reversal of the directicns of the induced homomcrphiems,
If we consider cohomology solely as additive groups, they have no resl advantage
over homology groups. However, unlike homology, the cobomology groups of s

space admit & ring structure; if u‘g () end v e HYY), then they have a

7

product, called the cup-product,

Tois product 1s bilinear, and satisfies the commutetive lav uwy = (u1§§%v§dA§

Furthermore a mepping I3 X —~> ¥ induces a ring homomorphism
#* #* *
T (uwv } = F uwl v,

*
Ietting H (Y] = {ﬂq(fﬁg 4 = 0;1,...) denote the resulting graded ring, the

algebraic diagram Leoomes




and the algebraic §robiem ie sharpened by the éequﬁrement that the solubtion é
of g*é =h st be & ring homomorphisu.

This provides & considerable improvement in the slgebraic Picture'ef the
geometric problem.  However it le not the best that cen be done. The cohomo-

logy groups possess not only a ring structure but alsc a more involved structurs

referred to as the system of cohomology operations. A cobomology operation T,
relative to dimensions ¢ and r, is a collection of functions igxiﬁene for

each space X, such that
T.: BH(X) —> H (),
and, for each mapping £3 X — ¥,
# 3 . e}
f?yu=$xfa for all w g H{Y).

The simplest non-irivial coperations are the squaring operations. For
each dimension q and each integer 1 > O, there is a cohomology oOperation,

called square-i,
i +1
8¢ B{X;Z,) —> BV (%32, ).

Here the coefficient group ZE cousists of the integers 2 reduced modulo 2.
Also for each prime p > 2, there are cohomology operations generslizing the -

squares called cyclic reduced pth powers. These are funciions

+21 (p -1
o ﬁq(}{;zp)wnq (e )(X;,Zy},

I wiil discuss these”dperaﬁisﬁs in detsail Jsater on. At the present itime
I wish only %o emphasize the lmportance of cohomology eperaéians to the study of
the sytension problem: In the derived slgebraic problem using cohomclogy, the

. ‘
solution &3 H{Y} = H (X) of the algebraic problem g9 = h* must be a



w3t

ring homomorphism, end also mist satisfy s§TY = Xé ‘for every cohomology
eperation T, Thus, by cramming as much structure as possible into cohomology
theory, we endeavor Lo 5btain the strongest peésible necessary condltions for
a aolution of the extension yrob&emgr
The ultimate objective ig 0 5o refine the aigebraié machinery that the
derived algebralc problem is & falthful piciure of the geomeiric problem. This
has not yet been accomplished; but it appears %o be within reach.

We turn now %o s more detalled discussion of the ideas presented so far.

§4, Examples of extension problems,

Examples of selutions of extensicn problems are plentiful even in the most
elemaniary aspects of topologys_ The Uryschn lemms is an example. In this cass
X 1s & normal space, A = AV Al is the union of two disjoint closed subsets,

Y is the 1nterval {0,1] of real nﬁmhersg and h(ﬁg} = O; h<Al) = 1. ‘'The con-
clusion of the lemms asseris that an extension always exists. |

The Tieize extension thaorem ﬁs another example., In this case X is nor-
mal, Y,m_{@,l}; and h ds arbitrary. Again an extension alwsys exisits,

The study of the arcwise connectivity of a space ¥ is another example.
In thie cese X = {0,1], A consists of the two points O and 1, and h{0) =
Yo B{1} = yl; An extensi§n f of b isapathin Y from y, to ;.

There is & special class of extension problems called retraction problems,
If A(C X, then a mepping f3 X —> A ig called a retraction if flx} = x
for each % g A. Given a space X =nd a closed subspace A, there is the pro-
blew of deciding vhether or not such & retraecition exdsts. By setiing ¥ = 4,
and teking ht A =P ¥ to be the identity, it is seen that each retraction

problem is an extension problem.



cAn important ex&ﬁ@le from @leﬁentary alzebralc Lopology i the following.

n
et E be the closed n-cell, i.e. the sei ziml:xi < 1 in cartesian n-space,
and let £ be its boundary, i.e. the {(n-1)-sphere 2§§1X§ = 1. Then

Thoe boundary 8. of the n-cell E- is not a retract of #,

The proof of this for n =1 is readily deduced from the fact that E
‘is connected end S is not. For mn > 1, the proof 1s not trivial, slthough the
senclusion for n % 2 is intuitiyeiy &ppeaiing to snyone who has tighiened s
drum head, or siretched canvas tautly over & frame.  The proof utillzes the
general methed of converting ihe problem into an algebraie one. We take homology

groups in the dimension n-l, and obtain the diasgram

5 (B}

%;f‘ N fx
¥

%mﬁﬁ) : mg;w> gnml(ss

The dimepsion n~-k 318 used since this gives the only non-trivial homology group

of 8. Using integer coefficients %, we bave Hﬁmiis} =~ 7, and ﬁnmiiﬁ} = e

How b = identity imyliga by, m-iﬁeﬁtitys_' Tals glves an impossibility: the

identity hcmoms;phism of Z caﬁnot be factored into bomomorphlsns

2y o> {3 E§#> Zie liherefara the retraction f of E iatoe 8 dose not exisi.
It may be felt that a non-existence theorem is of 1ittle use. This is not

the case. By é mi;d twist, a neggﬁiv& regull can be given s positive form. In

the case at band; we oblain &8s a corollar§ the well-known Brouwer fixed-point

theorem: E§ch mapping gy & —~—3> § has at least one Tixed poinit. For supposs
o the contrary that there iz & g with é@ fixed~-point. As x and gl{x) are
distinct points,they lle on & unique ﬁtraéght lineg and - divides this lins
into {wo belf ldnes, The half line not containing g{x) meets S 1in a single

point dencted by F{x}. The continuity of g dmplies that of f£. In cass



% & 8, it 18 clear that £{x) =x, Sc £ 15 & retraction ¥ —> 8. As this

ies impossible, & fixed point free g cannot exist.

§5. The use of the cohomology z’ing@'

e next exemple 15 one in vwhieh t};e sobomology ring most be useld o mive
at & decision. Let X denote the complex projective 'planes i.e. the apace of
3 homogEneous coﬁiplex varisblen Ezyzl;zg} not all zéro. It is &7 compect mani-
fold of dimension b, Tet A be the complex projective lime in X ﬁefiaeé by
the equation 22% 0. Topologically, A ig a Z2-sphere. In thils case the con-

clusion ie that A iz not a retract of. X.

Suppose that 1 X ~-> 4 1g & retraction so that fg = ldentity vhere

gy A == ¥ dig the inclusion. Pessing to cohomology. we heve the diag
" _

£ % # |
H (%) &= & (a), g ¢ = identity.
£

Wnen two groups sre so related by bomomorphlams, the" left band group splits into

g direct sums
% % *
B (X} = Image of £ + Kernsl of g
The abbreviated notetion is
o % # #
(5.1} H{X)=Ie? +Kerg.
Parthermore g’% gives an iaamamhim

{5.2) g3 I f s H (A

i _ % %
it we inciude the ring structure, ané use the fect that ¢ , g are ring

homomorphlisms, then



' _ C ‘ #*
(5.3} Im £ is 8 subring, and Xer g is an ideal.

Turning to the example under consideration, we are given X,A and the
inelusianf g, and we cen ask if Ker g* is & direct summand. The cobomology
of X is zeroc in dimensions > k. In dimensions < b, the cobomology of X

and A with integer coefficients Z 48 given by the table

0 1 2 3 &

A Z 0 Z 0 ©C

¥{%2 00%¢0¢ 2

Furthermore g* 48 an isomorphism in the dimensions 0O and 2. It is seen
then that the direct sum decompoaitien.required by 5.1 does éxist and, in fact,
is &niqueﬁ‘ﬁamely, in the dimﬁﬁéions 0 and 2, Ker g* is zers 8o £hat Eﬁ fﬁ
iz tﬁe whole group, and in the dimension %, Ker g* ia the vwhole group and
In £ =0, | |

However, oo examining the ?iﬁg structure, we find that.the uniguely deter=-
mined candidate for Im f* is not & subring. For let u be a generator of-
a?{x) so that uelImf . Since X iz & manifold, the Poincard duality
theorem sgaserts that B?- is pelf-dual under the cup product pairing to E%g
It follows that uwu must generate 3k(x)a Eherefore uen  is not in Dm fﬁg
and therefore A ies nol a retract.

Ehié example ls intimetely related {0 the mspping h: 83 s SQ of the
3-sphere into the 2-sphere situdied first by H. Hopf [14]. In the space of

B

two complex variables, let 87 be the unit apbkere i, and E

Batyt ByBy =
the unit becell z.Z. 4 2 3 < 1. Let 8% be the space of two bomogenecus |
complex verisbles §2Q,zl§¢ Then 1 sends the point {2sgzi} of 80 into

izggzzz in Sgﬁ' This iz & very smooth mapping. The inverse images of points



of S° give m fibretion of S° into great circles. Hopf proved that b

is not extendsble to s mapping Eh — G, {Notlce that {z } e {zﬁgzi}

0’¥1
hes a singularity at (0,0}, )} If we form & nev space oui of ﬁa by collapsing
its boundsry 83 into Sg according to b, the resuliing gpace is homeo-
morphic to the complex projective pléne %, and 52 corresponds to the complex
projective line..ﬂs Since' & ie not a retract of X, it follows thet 1 can~

not be extended over Ei#s

§6. The use of the sguaring operations.

The next éxém§ie is e rétractien problem for which the cchomology ring
does not provide an ans%er; "but the squaring operations do give an anewer. Let
P’ denote the real projective space of dimension 5 {6 homogeneous real variables}s
1et ?g :}P3 :3?2 be projective subspaces of the indicated dimensions. Let X
be the space obiained from P5 by collapsing ?2 to & point, and let AC X
be tﬁe.image of '?h ‘under the coll&psiﬁg map ¢ . ?§ "l &gain the sspertion

is that 4 is-aoct & retracid o% X.

We tsckle this problem in the same manner ss the preceding one, snd begin:
* #
by asking whether Ker g is a direct summand of E {x}. _Kﬂswing the echomology
of ?55 one readily deduces that of X and A, With Z, as coefficlents, the

cobomclogy le given by the following table
G L 2 3 bk 5

A {Z,0 0 2,20

¢ 2% o O 22 Zg 22

- #
Farthermore, g 18 an isomorphism io Qimensions < 5. ‘'herefore there is a

%
direct sum splittinog as in 5.1 &nd 4% 16 uniques s £ must be the whole group
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in dimensicons < 5, and it is zers in the dimension 5.

In fhis case the éandiﬁate for it f%é is é&viausly 8 subring. The
reason is that the cup product of elements of dim > 3 has dim > 6, and is
therefore zeroc. Tous, inscfar as the cchomology ring is concerped, A could be
8 retract of X. To shov that it is not s retract, we maet use the cohomology

operation

80%: 33(}{5223 > B (%32,)

If u 1e the non-zerc element of 53, & sultable calculation sghows that ﬁq?u

5

‘ *
is the non~-zerc element of H”. Now the unique candidate for Im f comtains u

and is zero in dimensibn 1 hence it is not closed under Sq?‘ But 1t would
have to be closed 1f s retraction f  existed bhecauss f*§§? = Eggf*. Therefore
a revraction does not exist.

fhis resull bas a good application in diffsrenitlial geowetry. It is well
known that a differentisble manrifold has a contioucus field F of non-Zero
tangent vectors. if and oniy if its Buler number ls zerc, This impliles that the
n-sphere 8" has a tangent field ¥ if and ondy 319 n 1s odd. Sg in fact has
3 fields which are independent at each point because 1t is a group manifold {(unii
Qﬁ&ﬁﬁrﬁiﬁﬁ§§§ The question arises as to the maximum mumber of fields tangent
to Sﬁ which are independent &t esch point, The answer is 1. For, by a direct
construction, two independent flelde cen be made to yleld s relraction of %
into A {see [28]}.

The same ﬁeth@d can be used o yéﬁvé a more general result 28], If n
i a positive integer, and Ek is the lergest power of 2 dividing n+l, then
poy set of 2% yector fieléa tangent to g% ars dependent at some polint. Toils

result is the best possible for o < 15,



daving demonstre.ﬁe& the ziead of finer ané finer algebraic tocls, it is
naturel to ask i1f there i1z an end to tﬁe process. The snswer ig that therse is
real hope of achieving a compl_ete solution. To exhibit the basis for my hope,
I must delve more deeply into ﬁhg gecme,tri.c aa?ects of the extension problem.
For this s the concefpt of 'hémotop}} is vit.al‘e Le?; h be a mapping A —> 4,
and let I = [0,1] be the unit interval, then a mapping H: AX I——> Y is called
a homotopy of h if H{x,0} = a{x}) for x g 4. Set‘ting ht{x) = H{x,1), H
is called a homotopy of B into h' and we write b h' ,(h is homotopic Lo
‘htl, This is an _equiMence rei&tion,_ aﬁ&.the set of maps homotopic to & is
called the hdmtopjr éla.ss of h., The sei of homotopy classes of mappings
A —3>Y is denoted by Map(X, ¥ ). | |

A pasic result, due to Borsuk, is the

Homotopy.ﬁbctension ﬁl‘xe.crem,. If £3 X —~—> ¥, A is closed in X, and
h = f]A. Then any nomotopy H of h may be extended to & homotopy of f.
Precisely, the ma.;)x&ing G of the subset AXQwAXI of X XI inte ¥, given
by 6{x,0) = £(x) for x & ¥ and G(x,t) = H({x,t) for x e A, t £ I, may be

extendsd to & mapping Fr X X I — Y,

The intuitive ides of the theorem is that if ve grab hold of the lmege of
A and pull it slong, then t}zé image of ¥ will come sliding after.

The theoresm is not trus i_n the generality stated; some restriction on
lﬁi? A er. ¥ ie necessary. It aufffiées for 'ampie i.fx.: is ta‘ia,ngulah}.e or 1f
X and A are ‘trianguié}b,};e; It aiso s;alufﬁﬁles o im@;éa%é ‘the condition of being
an absolute naighbarhaad raﬁr‘act o ¥ k' Qr“an b o and A, In the future ve

assume some such vestriction ‘wi'thaafit; further mention.
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Notice that the theorem asserts the extendability of certain kinds of
mappings. This solution of a special extension problem is of the winost ime

portance for the general problem because of the following

Corcllary. The extendability of hi A > ¥ to & mapping 3 K o> ¥
depends only on the homotopy class of h: If h ie extendsble and h 22 h°,

then h' iz extendable.

It is only necesgary to exitend the homotopy to F: X X I «=> ¥ and zetb
Ti{x) = F<X:l}*

Une advantage this glves us is that, in any particui&r extension problem,
we may vary h by a homotopy and obtain g simpler but equivalent prablemaa For
example, suppose 1t were known that 1  1s homotopic to a constant mapping k'
{1.e. B*{A} 1s o single point). Since such an k' is cbvicusly extendeble,
sc is h.

The result also enzbles us To repbrase the extension problem in an appar-

erxtly weaker form: Does there exist an £ such that fg = h? Given such an

£, we heve that - £]A is obviocusly extendable, and f|A > k, and 80 h is
extendeble,

Baving freed one aépect of the extension problem (replacing fg = ﬁ by
fg = b}, it is natural to consider freeing other parts of WANSCeSEArY Te=
trictions. The csn&iﬁion that .g be the inclusion mapping A ( X is no
longer an essential feature. ILet X, A ;Y bs any three spaces and let
i Aw—> Y spd gt 4 —> X be mappings. Does there exist a mspping
4 ¥ w2 ¥ guch that fg~ h%7 This problem is called the *left-factorization™
problem. The class of these problems inciudes the extension problems and many
more.  Broadening thus the class of problems does not increass the difficuities

pecauze of the following resulil.



¥ach lefi-factorization problem is eguivalent to some retractlon problem,

v Tp see this, we start with a left-factorization §rableg as above, and
construct a space Z as follows. In the union of ¥, Ax I snd ¥, i&entify-
each point {2,0) with g{a) in x, and identify esach point (a,l} with h{a} in
Y. The resulting space Z contains X =and ¥ and & bhomotopy of g into h.
It follows guickly that ¥ is a retract of % if and only A7 there exisis &
mapping £ X —> ¥ such that fg X h.

Thus the broadest type'of problem is equivalent to the narrowest type.

it is easily sho%n that a ieftwfaetorization problem depends only on the
nomotopy classes of g and h. Even more it depends only on the homotopy
types of the three gpacés involved. Two spaces Xy X° havg the same homotopy
type {are homotopically equivalent} if there exist mappings $1 X ~> X' and
$'s X' ——> X such thet ¢4’ ™ ldentity of X' and $'¢ = ddentity of X.

We may substitute X' for X in any problem if we set g’ = ¢g. Apelogous eube
stiiutieng can be made for A and Y.

An advantage of this flexibility is that any particular problem can often
e greatly sim@lified by homotoplce sliteraticns of the spaces and mapplings in-
yolived. .

More important however is the light which it casts on the class of all
proviems. If we counsider only those spaces admltting finite triangulations,
then there are only a countable number of homotopy types of spaces, and for any
WO spaces therearezxﬁy;?csunta%le numiber of homotopy classes of mappings.

This siatement can be proved by the use of the well»kgown sinmpiicial approxisma-

tion theorem. it is a consequence that there are only a countable number of

extension problems. This in itself makes it reasonable 1o hope for effsctive

methods of solving any extension problem.

To substantiate this hope, consider the notlon of the induced homomorphism
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£ of cohomology sssigned to o mepping T & — ¥, & well-kEnown property

iz thet homotopic maps induce the same homomorphiem. Hence we have a function

Reyt Map (X,Y) ~=> Homg,:z*{xg,g*{x}}

%*
defined by Exf{f> = £ . By Hom we mean sll functions preserving whatever
slgebraic structure Wwe are able to put inte the ccochomology theory of spaces.

Suppose we have an extension problem with spaces X, 4, Y such that RX¥ is

onto, and RAX

* # : :
g€ ¢ =h has a solution ¢. Since Ryy 1s onto, there exists an f3 X — ¥

is 1-1 Into. Bupbuse moreover that the sigebraic problen

such that f* = ¢, Then {fg)% ;h%, Since RAX' is 1-1 mtegéhia impiies
fg 2 h, Hence the sclvabiliiy of the algebriac problem 1s both necessary end
sgufficient for solving the geometrlic problem. |

Thus we would have a complete hold on the extension problem if we knew
that RXY iz 1~1 onte for all trianguleble spaces X, Y. Thiz iz true for soms
spaces and false for others. For example, let ¥ = 83 and ¥ = 82; then
Hom {E%{SE),ﬂ*(S3)} = (o, end Mﬁp(83,82} = ﬁg{ﬁg} 1s infinite., However our
point of view above has been 100 narrow in specifying the range of Rxgﬁ HBome
more intricate mlgebralc gadget sbould do the trick. The possibllities are many.
For example Exy(f) couié be taken to be the cohomology sequence associaied with
the mapping cylinder of £, |

fhe finding of & suiliteble 1i-~1 mapping RXY é% Map (X,¥} dinto s computable

algebraic object 1s called the homotopy classification problem, Solving it come

pletely will solve the extension problem commpletely. Why should we be hopePul
of solving this? First, Map {¥,Y) is a countable set, and is therefore suitw
sble for salgebraization, Becondly, io many special cases‘{as will be shown)
¥e have obtained sclutions. Thirdly, we have avallable novw a varlety of

funcitions 3X§ which taken together may provide the conpleis soluticn,
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§8., Lifting problems,

There 18 & cless ;:sf probleme called }.‘iftiﬁg probleme which are dusl in
& cariain sense toc extension 1)r':3‘o:l.ems'a In & lifting problem, we are given &
fivre bundle ¥ over a base spece ¥ with projectlon £ ¥ —> ¥, This
megns that each ¥ ¢ Y+'has a neighborhooé ¥ such that f"l‘\?’ is repireaentéh}.e. |
88 & product space ;x F for some Tixed space ¥ called the fibre. PFurther- |
more, ¥ restricited to tf”l‘f is the projection VX F > ¥, In the 1ilting
problem, we are also given a space A and a mapping h: A —> ¥; and the
problem is to decide whether- there exis"tg & mapping g: A~ X suck thet

fg = h.

.

g/ \5 fg = h.

¢
A > ¥

The condition that X -£—»> ¥ is a bDundle is dusl 1o the condition of an sxien-

gion problem that A _5_.;. ¥ is an inpclusion mepping,

An elementary example of a iifting problem and its solution is the

&

Monodromy theorem. If X 18 & covering space of Y with projection £,

then a mapping h: A m-> ¥ cen be lifted t0 g: A —~> X Iif and only if the

algebraic problem posed by the fundamental groupshes a solution;

w, (X)

gf;“’ 7 Ly Tuly = by o

'ﬁé‘iﬁ} “-g;ww;‘ W}D(X}K

It should be recalled thet, since ¥ covers Y, £, imbeds ?rlix} 150~

morphically into 3?3”{3*}& Also, since base points are not specified, the images
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of £, end h, are only defined up to inner automorphisms of HE{Y}Q
ous to declde whether the slgebraic problem hss & solutdon 1t suffices 1o
determine whether some conjugate of fﬁﬁi(x} contains h*ﬂiié}@

The mcnodfomy theorem is used in complex varisble theory in order to fipd &
single-valued branch of the composition of a single~-valued and a muitliple-valued
funtiion. .

I X ds a bundle over ¥ with pfogection £, we obtain a specisl 1ift-
ing problem by teking A=Y and h = identity. A solutdon g1 ¥ w> X of

fg = identity ies called & cross-section of the bundle, Crosamseét%qning problems

are the duals of retraction problems.

A great variety of these problems arise in differential geometry (see [2b]),
et Y be a differentiable manifold. For any tensor of & specified.glgehraic
type, the set of all such tepsors at all points of ¥ forms & fibpe bundle  X.
cverl ¥. A cross-section of this bundle is s tensor fieid defined on ¥ of the
gpecified type. For exemple, let X Dbe ithe manifold of non-zero tangent s
vectors of Y. A cross-section is & continuous field of non-zers vectors, For
a compact ¥, such & fleld exlsts il and only i7 the BEuler mumber of ¥ is zero.
This 1s proved by using cohomology groups of the dimension of Y. Many applica-
tions of algebralc topology to preblems of this type have been made., Bol many
more remain ﬁut of reach,

We propose to show novw thaet the duallty between exiension end lifting per-

sists in considerable detall. The dual of the homoiopy extension theorem ig the

fiovering homotopy theorem. Yo the situation

o
=3

x o
;g/‘f’ \f £z

where X 4s & bundle over ¥, ist H Dbe any homotopy of h. Then there existe




s homobopy G of g such thet ¢ = H,. i.e. any motion In the base space

¥ can be coverad by a motion in the bundle space X.

The proposition asserts that a certain kind of lifting problem always

has a solution, In analogy with the case of the extension problem, we have the

Corollary. In any 1ifting problem, the 1liftability of & mapping
%

by 4 - ¥ depends only on the homotopy class of h.

In any 1ifting problem, a solution g' of the weeker problem f£g° ~h
leads to 8 sclutlion of the problem fz = h. It is only necessary Lo cover the
homotopy of fg°' into Bk Dby a homotopy of gf.

As before we can abandon nov the restriction that X is & Fibre bundle

over Y. We dafine s right-factorization problem to consist of three spaces

4, ¥, ¥ and mappings h;. A > ¥ and £t Y~ ¥, A solution is o mapping
g3 A —> X such that fg % h. The existence of & solutlion depends only on
the homotopy clesses of the mappings and the homotopy types of the spaces,

The general method of handling a 1lifting problem or a right-Tactorization
problem is the same as that used for extension and left-factorization problems.
We transform the prohle# to an algebrisc one by applying & functor from topology
te algebra. ALL of the discussion of the derived algebralc problems appliiszs
squally well to the new situation, When we are able %o cram into the algebraic
functor enough structure to be eble to solve the homotepy clessification problem,

then we will be able to solve any Lifting problenm.
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£G, The classification theorems of Hopf and Hurewlcs

There are certain restricted situstions where homaicgyfand'cﬁhommlagy,
considered as having additive structure only, are sdeguate to solve the homo
topy classification problem. Two theorems proved about 1935 mark high spots in

this direction. 'These are the theorems of Hop? and Hurewicz.

Hopf's classification theorem. If K 1s g finite complex, and 1n > 0

18 an integer such that HK) = 0 for sll q > u, then the natural function
vap ( K,8%) —> Hom ( B (8%}, B (K))
is one-to-one and onto,

Since H°(s") 1s infinite cyclic, we have

Hom (HE(s7),E¥(K) ) =~ £(K); T
therefore Map { K,8") - is id 1.1 correspondence with HH(K){

Hurewicz's classification theorem. If ¥ 1s a connected and simply-

connected space, and n Is an integer such thai §1(Y) =0 for G<1<mn,

then the natural funcition

Map (8°,¥) —> Hom (H, (8%),H, {¥))

ig one-to-one and onto.

Again an{sn} ig infinite cyclic, and therefore Map (87,Y) 48 in 1.1

correspondence with ﬁniz}‘

Ag is well known, Hurewicz defined & group structure in M&§{§§ﬂ§§}

giving an sbelian group dencied by ﬁg{f} and called the »n®B homotopy group.
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The conclusion of the theorem can be restated: Then ﬂi(f} = 0 §§§ o<i<n,
and ’ﬁ“n{i} =5 Hﬁ{?}s | |

The homotopy groups, iike the homology gréupsﬁ form & functor from topology
to elgebra, and convert gsometric préblemﬁ into algebraic ones, They can be and
are used to solve extension problems. However, uniike homology groups, there
ie a Bevere reatrictlon on thely use, Homotopy groups are very &iffﬁéﬁlt to
calculate effectively. Computing s hometopy group requires us to solve a homow
topy classification problem; and ithis may be a problem of the same order of
difficulty as the extension problem under consideration. A chief virtue of
Burevwicz's theorem is that 1t reduces the calculation of a partliculsr homotopy
group to that of s homology group.

e Hopf and Hurewicsz theorems have an intersection: the hémgtapy classes
of mappings §" > 5% are in 1-l corréspendéace with the homomorphisms
Eﬁisﬁ} ™ Hﬁign}a Since En{ﬁn} 15 infinite cyelic, any such homomorphism
f, 1is characterized by an integer d callied the degres of the mapping f, and
it satisfies £ {z) =dz for z g ﬁg(ﬁn}a

There is & union of the Two thecorems which is due to Eileaberg 11l

Homotopy classification theorem. et X be a finite complex and n &

positive integer such that H4K} =0 for g>n. Let ¥ be a connected and
simply-connected space such that Ei(Y} =0 for O« 4i<n. Then Map{XK,¥}
is in 1-1 correspondence wiih H?{K;EQ(YE}; i.e, the n! cohomology group of

X using EQ{XE as coefficients.

Hotice that the hypotheses allow only & single dimension n in which
the cohomology of X is non-zero and the bomology of ¥ s non-zero. 4s
soon as ¥e allovw en overlapping of non-trivialiiy in more than one dimension,

the additlve structurs of homology and cohomclogy becomes inadequate,



810, Chetrucltions.

The mothod introduced by Bllenberg to prove the above result has very

general applicability, and is called obstruction theory (see {24, Part III] ).

Let K be o complex, L o subcomplex and T: L — ¥, For the sake of simpli-
gity sssume thot ¥ ip crewlse comnected and simpiynaonnecteé, Leat Kg dencte
the g-dimenslonsl skeleion of K. The subcomplexes Low Kq for g=90,1,:--
form an expanding secquence. Let us atlempt to extend f over each in turn,
An extéﬂsion £ over L u KQ iz cobtained by defining f

G G
and to have arbitrary values on the vertices of K not in L. For any l-cell

to be f on L,

g of K-L, fﬁ is defincd on its vertices and glves two polnts in Y. As

¥ is srcvilse comnected, we muy map ¢ dnto a path jolning the two polints.

Doing this for each such o gives en extension £ of £ over L ¢ K;, For

i G
gach Z-cell o of K-L, fl is defined on its boundary % giving a loop in
¥. Bince wiéy} = 0, the mapping fl on © muy be extended over g, Dodng
this for ench ¢ glves an extension f2 of fl over L w K?. How 11 ench

ﬁg(Y} = 0 for i < dim{K -1}, there 1s nothing to stop us Lrom continuing this
process and obteining an extension over all of K. Dut this is too severs a
reguirement, and we muﬂé pok what happens in the general case,

Assume now that somehow an extenslon fq of f over L u K has been
achieved for some g, and consider the extension problem posed by each (g4l )-
eell o of K-L. VWe have that fqéé is defined, and 1o a mapplng of &
g-gphere into Y. This determines an element of the homotopy group ﬁéig} PG
vided we glve & an orientation. Uhis Is dowe‘%y first orienting o, and then
giving & +the orientation of the algebrulc boupdnry 3, Then, Tor such orient-
ed ecell g, fﬁgéﬁ defines an element of ﬁé{f} denoted by c§§§§5}s ihnie
function of {g+l)-cells may b regarded us o {gtl)-dlm.cochain of K with co-

effloients in ﬁ%{Y}; and is dencled by ?ff%}, Bince f§ can be cxlended



Cover o iﬁ"ﬁndéni? if cii‘q,g} = 0, we call c(i‘q) the sbsﬁmciicn- o exe
tending f a Since f‘-q is ﬁei‘iggc‘i on each cell of I, c{fg} is zero on |
L. It is therefore a cochain of K modulo L.

Most important is the fact that c(fq) is a coeycle, i.e. it vanishes on
boundaries., 'This follows because 1t wes defined using the boundary, and &B = {3,

It detemmines therefore a cohomology class

s(e,) : E;‘l'*‘l(xc,z,;wq@f)) .

Consider new.what happeﬁs if we retreat one stage to fé_‘}‘ and extend it
over &qu’ in some other fashion obtaining f;{ On any q-éé}l T of K»—isg
the two mappings fq,f’fq‘ agree on the boundary, and glve two cells ih ¥ with.
é. COmmRon ‘bounda.r;ya These detemiﬁe a map of a g-sphere in ¥, and hence an
element of ‘If‘q('x’) denoted by d‘(fq,f&,*{). The resulting q&ochaﬁn iz called
the difference eochaln, Tta main property is that its coboundary is the differ-

ence of the two obstruction cocycles.
8a(f ,t') = el ) - {2’
( q::q) af q) { q)
This gives E(qu = 'E"(ﬁ?q) . ‘erefore E(fq} depends only on f£_ . and can

g=1

be written qu*l(fq_l)a It 18 the obstruction to extending f over

g=-1

atl knowing that i1t can be extended over L wk®,

Lek
Bow suppose we retresat two stages to fq_e and extend over Lviig'“l in
some other fashion obtaining f;dls Thie gives a (g-1)-cochain d(fg_.,;, 92’;‘“‘1}3
T8 ‘cobogndary_ is ”cq(fé.,l}* So 41f the alteration f;iwl is chosen so that
d{fq-}.’féml) is & cocycle, it may be extended to & map f% of Luk?Y, In
this cese o{f q} and '"5(?3%} can be different cohomology classes. Thelrp

d4ifference ie some function of the cocycle 4(f In fact they are

§
qfl’fq@} )
related by the squaring operation
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P oam ? - e E
8¢ & (r ;.0 ) =¢8(f) CRE IS

Tt follows that the obstruction to extending £ over 1, KQ&ﬁy assuming
; g-2

it cen be extended over Ltﬁqu islaa element of the quotlent group

§q¢lj Sq? gi-t,

If we now retreat three stages to qug and extend over anKg' in some

other fashion obtaining fé, then é{fqﬂa,férg) is & {g-2)-cycle, and 8q° of

-its cohomology class is zerc. The differsnce z(fq)a 51f;) is some function of

Eg(quesféwa)a Toe relationship in this case has been studied by Adem [1].

Fe has defined quite gensrally & cchomology cperation, denoted by 5®Ei which

increases dimension by 3, is defined on the kernel of Sé?' and bas values in

the cokerrnel of ngu Tne operation provides the desired commection .
The three stage retreat is as far as this game has been apalysed in a de-

tailed and effective manper. The general pattern is clear. If fq and fé

are two extensions of £ over LuK% which agree oo LwK' (0 <r<g-3)

. -
then d(fr+i’fr+l

Sq?; hence @3 -is defined oo 1%, and 1%t lies in the kernel of @35 hence

some unknown operation ¢h is defined on it. If = < g-4, 1t lies in the kernel

} is an (r+l)-cocycle, Furthermore it lles in the kernel of

of @g} and some operation @5 is defined on it. This contimues up to @@“%g

and this operation applied to 4(f } gives the differencs g{fq}m’E(f;}

fs
1?4l
modulo images of Sq?s @39 very pa¥t,
The method of successive obstiictions has two main phases. Firsi_one
must compute effectively those bomotopy groups ﬂi{Y} which sppeer as co-
efficient groups. This in itegelf is a difficult problem. It 1s worth noting
in this connection thet E.H. Brown [6] hss shown that the homotopy groups of a

simply-connected finite complex are effeciively computeble. The second phase

is to give effective methods of computing the cperatiocns @i for 1> 3. Huch
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work remalns o e done, But enough has been accomplished 1o make one hope-

ful of vliimste succeséa

8§11, The cchomology ring.

We shall turn now ©o the methods of constructing ecchomology operations.
Parhsps the simplest operation iz the cup product which gives the ring structurs
tc the cohomoclogy groups., When first discovered about 1936 by Alexander, Tecn
end Whitney, the cup @fcduct_a@ye&red_to be very mysterious. It was not known
for exemple why.cohomology admits a ring structures bud homolcgy does not. The
formulas Gefining the cup product gave little insight inte the structure of the
cohomology ring. | | ,

lLefschetz in his Colloguium book of 1942 presented a new apyroachjte PO
éucts which dispelled much of the mystery. It was hased on produdts of com-
plexes, If K and L are éell complexes, then thelr topologicsel product
¥ % L may be regaréed 8s & cell complex in #hich the cells are the products
gx T of cella ceX and 7Teg L. It follows é?at the chein groups of

Kx L are sums of tensor products of the chain groups of K and L

clkxr)~z  _ clkiec (v

Introducing orientations sultably {{.e. defining incidence numbere in K x L

in terms of those in K and L}, one arrives at the boundary formule
Ma®b)=23a @b+ (-1 a®3b, dime = p.

From this it follovs that the product of two cyoles i a eyele, and if elither is

& houndery so 1s their product., Twe ve have an induced howmomorphism

o3 %{x} ® 8 (L) —> EQ%Q{KX L}
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In fact, with integer coefficiente; ¢ 1s an Isomorphism of E@ - §P® g@
with & direct pummand of H?(K X L),  Abbreviating o{x®y) by xxy, we
obtain a bilinear product which is associative and commutative: if T inter~

changes X and L, then
T lx X y) = («1P%y x x.

An entirely anslogous geme can be played with cochains and cchomolomy. If
u and v are cochains of X and L vrespectively, define u X v by specify-

ing its values on product cells as follows

fuxvic{oxT) = {usa}{veﬂr}

#

{It 1s understcod here that w+o 18 zero if u and ¢ have different dimen .

sions). ‘Thie gives an isomorphism (X or L finlte)

r
c(Kx L)~ L,

P q
' Wc () ® ¢ (L},

satisfying the wcoboundary relstion

BluXxv)=Buxv+ («l)? u X by,
Cand inducing
o B(K) @ 8Ly —> B K x 1),

This vields a bilinear product which is associative, and commutative, It is
also highly non-triviel in that & maps % _ B° ®E' tsomorphically onto

s direct summand of H (K X L),
Up to this point the resulis for homology and cobhomOlogy arse oOn & par.

How take K= L, and let

d: K> KxK
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be the diagonal x&i&@ping d{x} = {x,x). Passing to homology and cohomology

gives two diagreams of Homomorphlsms

dy
q(z{ K K S B

4
% )& Eq{K) S s

- (),

L3
BP(K) ® BYHK) ~d BPFAK X K) i HPFA(K),

*
Cleariy 4, end @ cannob be composed, but & end O cah be hecause o=
homclogy ie contravariant. The cup-product of u g #F(K) snd v e g4x) s

defined by

uv = d*a(u Bv) = ﬁ*(u ® Ve

Tais gives & product in the cohomology of K which is associative snd commuta-
tive: uv = {mlkyq'vu . -

This method of Lefschetz makes 3t completely clesr why cohomology has a
ring structurse but homology does not. It slso shows that the study of the oow
homology ring reduces to the study of the hommsrphissﬁ d*, i.e. to an investi-
gation of the way in which the diagonel is imbedded in the product.

& very beautiful applieation’ of the ring structure was made by Hopf [15]

in determinipg the cohgmology of Lie groups as follows

Hopf's theorém on group manifolds. if G is the space of & Lie group,

then the cchomology ring of § over a field of coefficiente of characteristic’

0 4is the same a8 the cobomology ring of ithe product space of a collection of
#

spheres of odd dimensions, Egquivalently, H {G) is an exterior slgebra with

odd dimensiopal geperators.

There ls an extension theorem hidden in this proposition, To see this,
lst ¥ be a finite cosplex, and let 1 depote a selected vertex of XK. In

the profuct K X ¥, lst K + K dencte the union of the subsets K xX 1 and



1 X ¥; 1% is the unlom of two coples of ¥ with a polnt in common,

Deline
Wt Ev K-> K by hkix,1} = x =h{l,x}

Then for sach K, we have an extension problem: Can I be extended to
fi KX K —~> K7 A very divong neceseary condition for this is that E%{K}
et be an exterior aigebra with ofdd dimensionsl generalors, For the exist-
ence of £ defines & continuous miltiplication in K by xv = fix,y) having
1 &8 e two-gided unit. And such & multiplicstion was all that Hopf sssuped
in proviog his theorem.

An extensive g@&&?&iﬁz&ﬁiﬁa of Bopf's theorem has been glven by A. Eorel
b, He reloxes the hypotheses by allowiog the gpace ¢ Lo be infiplie
dimensional , and the coefficlent fieid to have a prime characteristlc {§§@vi§iag

-ﬁnﬁ
H

the field is perfect). He concludes that ¥ {G) is & tensor product of sx-

terior mlgebras apnd polynomizl rings (vhich may be truncsted).
Another application of the cobomclogy ring was made by Pontrjagin fto the

computation of arn obesiruction [19]. A simplified form of the vesult goes as

3

follove, et b3 7 > Sﬁ map the J-skeleton of & complex B into the

2-gphere; and ket u be & geperator of the infinite cyciic group H(8°) using

integer coafliclienia, inoe gg ie tha Jeskeleton, the inclusion ‘3§: i

£
2 2

induces an isomorphism ¢; ¥ (K} %ﬁﬁﬁigﬁf& Then the cchomology class «

2

i the

&

i e
cbatruction to extending b over X' 45 the sguare of ¢ if u. Therefore

PR UL N _ _ 2

{ tt %%Eg = O is & necessary snd sufficient condition that B|X™ be extend-
E%
able over K.

i



§19, HMotivation for nga

Because the method of construciing the squaring operstions sppears to
be semewhét arpitrary, it iz %mrthwhile to give the motivation vwhich led thely
discovery. DBriefly, obstrucilon theory gave s non-constructive proof of the
existéaee of Sigga

To see this clearly, let K be s complex;, and let v be an a-cocycle of
¥ representing u £ HD{ng}s Construct a mapping £ of the (n+l }mﬁk&i@%@ﬁ
& 1nto the n-sphere S° s follows., First, shrink K% to a polst to
be mapped by § into a polot Yo € g", Bach oriented n-cell g of K be-
somes an n-sphere and may be mapped onto 8" with the degree v s ﬁ. {= the
value of v omn o). For each {n#l)~cell 7T, the boundary of T is mapped
on §n with totel degres = v+ 30, By deflnition of coboundary, vwe bhave
yedg. = Bveog= 0 because v is a ceeyeﬁiég Bo the mapping of the boundary of
T =extends over T. Doing this for each 'zl defines I: Kﬂﬂ’ — B0,

The obstruction to extending £ over "2 is an {042 j-coeyle c{f} with

soefficients in- v

o _ﬁésﬁ}g Its cohomology class ¢ (f) depends only on the

clase u of v, and may be written z(f) = ngu. When m = 2, we have

?%é{ﬁg} = 7, and Pontrjagin's extension theorem ({§11) gives ¢(f) =uu.

nda
fa

When n > 2, Freudenthal proved that w_ ﬂ_{;‘f‘n} = Z,, end thersfore S%E

a mepping H {K;Z) —> Eﬂ%giiisze:és

§13. The homology of groups.

The Tivst effective definition of the sguares used explisit formilas in
simplicial complexes. These vere generaslizations of the Alexender formuls for
whe cup profuct; and they gave no Intultive insight. To obtaln such insight

it was deporitant o find & conceptual definition ansicgous to Lefschetz's
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construction of cup products using K X K and the diagonsl mapping d:
¥ = K%K This was found; and, surprisingly, 1t revealed a comnection
with enother development of algébraic topology, namely, the homology groups
of a group. We turn to this now, |

iet 1w he‘a group {possibly non-sbelian}. In the &pplications we have
o mind ¥ is & finite group. A complex W is called & TW-complex if 7 is
represented as & group of automorphisms of W. A wecomplex W 1is said to be
w-free 1if, for each cell ¢ of W, the transfoims of ¢ under the various
elements of ¥ are all dilstinct. Let W/w denote the complex obtained by
identifying points of W equivalent under T, Then Tw-freeness impliés
that the collapsing map W = wa is & covering uith‘ ¥ a8 the group of
covering transformations. Let A(w) denote the family of 7w-free complexes
which are also acyclic {i.e. all homology groupe are zero ), There sxe two
important fmeis about the family A{w). First, it is non-empty. BSBecondly,
if W and W' are in A{m), then there are chain mappings |
Wf¥ e W;@ e W!W giving a homotopy equivalence., It follows that the

homology of Wf# depends on ¥ alone; and we define the homology of ¥ by
aq(?r} = HQ(W/?!) for W e Alwl.

Tois concept was developed first by Bllenberg and MacLsne, and independently
by Hopf.
Ap an example, let w be the cyclic group of order 2 with generator T,

izt ¥ he the union of & gequence of spheres

Lrstcsfc.CdC e

vhere the n-sphers 8% is gn equator of SR%EQ L=t T be ihe éﬁtip@éal

trangformstion in each gﬁg The two hemispheres of 8% determined oy Sﬂwl



are n-cells denoted by _dm and Tdﬁﬁ The eollection of these cells for
=0 31; 2,00s gives.s cellular structure on W. Obvicusly W i1s 7m-free,

We orient the cells 20 that the following sre the boundary relations:

aal =M -d, aTd, =do- Tdy,
34, =d,+ 14, dTd, = M, + 4,,
33, = Tdy-d,, OTdy= d,-Td, ,

® & &

08, =y 1+ Tdy 45 STy = Tdy 485 o)
0Tdy 41 Agy= Ty -

In an even (odd)dimension, every cycle is & mitiple of M, -4,

{&233+1+ Td2n+1} and this cycle bounds. Therefore W 18 acyclic. Collepsing

a4 = Td

94 5= Ty~ d

2n’

W > ‘%?f?s' giver a seguence of real projective spaces
0O L 7
? C ? C 22 & g ? Q ®ew "

The cells &a,‘ Ta, ~come together to form s single cell 4,5 ond the boundary

relations become

w

H - H —
aéEn - &déawl 4 aé?; ndl 0.

Using Z, {= the integers mod 2) as coefficlents, we obtein 'Eé?&;ﬂz} = 2y

for 81l Q.
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€1k, Construction of the sguares.

We are prepared now to define the sguaring operations in & complex K.
Recall thaet the disgonal map§ing‘ d: K == K x K is used to construct cup
- * *
products by the rule uwv =4 (ux v}, To compute d , one must cbtain

from 4 & chaln mapping
aq¢ cg(;c} i cq(x XxK), ¢20.

Since the cells of K X K are the products of cells of K, the dlagonal 1s

not a subcomplex of XK x K. Hence there is mo uniqnely determined éa, but
one mist choose ﬁo from a collection of algebraic'approximaticns to 4.

We proceed to describe these, For each cell ¢ of K, define 1ts carrier

¢(o) = jo x ¢ to be the subcomplex of K X K consieting of ¢ x o and all

of its faces. We refer to C{g} as the dlagonal carrier, Because o and

1tas faces form an acyclié complex, G{o) is likewise acyclic. It is the
minimal carrier of 4 Dbecause C(o} 1s the least subcomplex containing é{s};
Any chaln mapping a@ such that dga is & chain on C{o} 4is called an
eyproximation to 4. The two principal facts sabout such approximations are
that they exist, and any two are chaln homotoplic. These facts are proved by
constructing the chsain maep, or the chein bomotopy, inductively with respect

€0 the dimension astarting in the dimension zero. The acyclicity of the carrier
iz g1l that iz needed for the general Step, Any approximation &Q induces a
‘homomorphism d*§ and the homotopy eguivalence of any two insures thati they

%
glve the same 4 .
The imporitent point to be observed about the construction of d§ is
this: although the mepping 4 is symmetric, there is no symmeirvic approxims-

tlon ﬁﬁs Precisely, if 7T 4s the sutomorphism of K X X which interchanges



the two factors, then Td =4 but there is no ég such that Tdﬁ = ﬁgg
) H o
This is essily sean by taking K '“to be a l-simplex- ¢ 80 thet K X K 4s

& sguare. The l-chain &Qg must connect the two end poinits of the diagonal

and lie on the periphery of the square, s0 It muat go arcund one way or the
other.

Thisz difficulty cen he restated in a move 1lluminating fashion. Tet T
act also on X as the‘identity mag'ef K. Then 4  is equivarlant, i.s.
Td =4T. But there is no chain a@prdxiﬁatien_ d@ woich is equivarisnt. The

reason 1s that 7 acts freely on the set of possible cholces fsrwaﬁgg bub

leaves g Tixsd.

Given s 4 we can measure 1lits deviation from symmetry. Since 4. and

o° A [¥]
0 are carried by €, there is a chain homotopy ﬁl of éé into Tﬁ§ N

Precisely, for each ge-cell o, thers is a {q+l)-chain 4,0 on ¢{c) 'such

Td

that

3&1@=:Td g - &Qa=-ﬁlésﬁ

o

Then

3lea=aﬁ sﬁffdegw ?dléc R

O

E

It followe that di & Tdi‘ is & bomotopy of 4. arcund s oircult back inito

O
itself. For sach gecell ¢ this homotopy lles on C{a}; it is therefore

homotopic to the constent homotopy of 4 Precisely, there is a {g+2)-chain

@a
d,o on G{s) such that

5&26==§3§%°T§1$“%ﬁ255

At this stage, the construction should remind one of the construction,
glven in the preceding section, of the w-free complex W. The anslogy is

made precise as follows. Form the product complex W X K. Define the
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action of W in WX X by Tiwx o) = (M) X ¢. 'The composition of the
projection W X X > K and dy K —> K X K bas the minimel carrier
ofw x o) = gf} * G!; 1t is acyclic, and satisfies TC = (%, Since ¥ s

w-free, so also is W X K. Tt follows that ihere is = chaln wmapping
¢t WOK~—> K@K

carried by C Whicﬁz is equivariant: ¢T = Tf. (The tensor product ® is

used instead of X because W and K =are now vegarded as chaln cozrgplexea},
Reca}ling that W conslsts of cells di s Td 37
o, end ¢(d, ® o) with the chain homotopy

we now identity f}(dgi& g}

with the diagonsl approximation .d{}

dlﬁ’, etc, ‘Then the J-relations given above for dgﬁ,'ﬁlg, ége correspond
exactly to the fact that ¢ is a chain mepping: o = 43.
For each integer 1 > 0, we define & product called cup-i, as follows.

If uwe F(K), and v e CHX), then Uag V€ Cyw“i(x) is defined by

{K}s

\;Q = [ é
(2~ v) @y ¢( ; ®¢e); ¢ € et

Using the fact that é is equivavriant we obbtalin the coboundary relations

module 2

&(u e V) B U (VR Vg U b B Vo u g BV

{By cc;iwes;t.{cn,i o, Vo= 0j. If we set u = v and assume Su = O mod 2,

it follows that u 4 0 is a cocycle mod 2, Passing to cohomology classes

gives a function dencted by
Ba, s H}}{K;Zg) e ng“if‘?f;z )

which assigns to the class of u  the class of u Sy e It 45 notationslly

more convenlient o defliae
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Sg‘jg H?(K;zé} — Ep'%"j {E{;ZEB

by setting Sq_éu = SQP_”;_} U,

The cup-i products depend on the choice of ¢. However many two ¢'s
are connected by a chaln homotopy which is equivariant. It follows that Sq3

is independent of the cholce of é

§15, Properties of the Squares.

The elementary p;'op'ertiés of the é:;’w:g_i are as follows.

. . ) #* H#
1. Iz £ is & mepping, then qu’ = Sqif . Thise expresses the

toplogleal inverlance of Sq_i.
2. Sqi is s homomorphism.
3. SqO = identity.

il

Y. 8du =uwu if p = dim u.

5 ch,iu O 4if 1 > dim u.

ft

6, If LK, and b: B(L) —> }IP:'J‘{K,E.;} i the usual coboundary,

then 83q¢> = Sq'.

k3
7. If &3 ap(x;zg} e H?*l(x;ze} is the Bockstein coboundary for

the coefficient sequence ¢ —p Z, > 2 > L > 0, then Sql = 3*

and

gL L %2

= § Bg for 120,

Thege can be proved readily by using the machinery elready set up. Less

glementary 18 the Cayrtan Tormmiia:

8. Sz;’j{u s V) E‘é@ Sif‘xs qué"g’v .
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is can be proved by su explicit computation of a 7T-mapping W —> W & W.

Using these properties one can compute the sgqueres in meny specisl cases.

L

*
If ddmu =1, its only non-zero squares are ngu u oand Jgu = &u o= ulesu,

H

It

% .
If dimu = 2, 1ts only non-zZero BQUATEs are ngu U, Sq}a = B u, and
Sq?u = U s Us These facts combined with formule 8 ensble us to compute
#*
sguares in the subring of H (K;ZQ) generated by 1 and 2Z-dimensional clasees,

For example,

9. 8¢ () m(i}uk“ if dimu = 1.

In this formula, (i) is the binomial coeffliclent mod 2, and ls zerc if 4 > k.
In the real projective n-space Pn, the cohomology ring is the poly-

nomial ring generated by the non-zerc element u g El(Pngza)g truncated by the

relation uu+l = (O, Clearly formuls 9 glves all squares in Pﬁg Let ?r

ve & projective subspace of Pn’{0<:z“< n}, and form a space Eﬁ%jPr by cellagsing

Pr to & point. The collapsing map 1 Pn o Pan? induces lsomorphisms

£ Ek(Pnf?r) ~ Hk(Pﬂ} for all k > r because P is an r-dimensimnal

ekeleton of P, Let W, £ H&{Pn/?r} be such that f*wk = u¥. Using 9

and 1, we have Sq,iwéc = (?}Wk+1 for k>r eand all 1. In particular,

when n=5% and r==2,! we have Sq?wB = wﬁs I used this example in §6 %o show

that ngyg is not & retract of ?ﬁjPe, This is the simplest case known %o

ms Whers a Sq} gives & relation between cocycles which are not alrsedy re-

lated by a cup product or s Bocksteln coboundary opsrator.
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§16. Reduced power operations.

Tne sguaring G?ex;a.i:iens are assoclated with the symmetric group of
degree 2, It is %0 be expected that more cohomology operations are 1o he
cbtained by studying the n-fold power K =K X ++- x K, and the action of
the symmetric group 8{n) as permutetions of the factors of k', This 4e
the cese. The general definition goes as followe.

Let 7 be any subgroup of 8(n); and let W be a w-free scyclic
complex. Let C{d X g) = |o|® be the disgonal carrier from W x K to X,

As 1t is equiveriant and acyelic, ihex‘é is an equiveriant chain mepping
é‘é ?&’ ® K " Kn L

Iet K* = Hom{l{,z) e the c¢cochaln complex of K. Define a cochain complex
WRK® by

&

FHERKT) = Egci(w} e ¢ ™)

The terms of the sum sre zero for i >p dlm K-, If ysﬁi(w} and

v g §r+i(§§§n), set
By ®v) =3v® v+ {»;L}iwﬁ v,

Thie defines B in W@ K*ﬁ and makes of it s cochaln complex, Define a

cochaln mappling
MR e K
dusl to ¢ a&s follows

v @v)eo = {«l}i{imljﬁw ${vw ®5)
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*1 * ;
where 4 =dimw, v is & cochain of K 7 = x" , and g 1s a chain of
¥ with dim o = éim ¥V =1

The setion of ¥ Iin W ®>K§n is defined by
@y =Tu® Tv, Tem

ind 7 acts as the identity ino K'. Then the equivarience of  § limplies that
of '¢'. It follows thet ¢' ‘transforms cochains squivelent under T into |
the same cochaln. If we identlfy equivalent cochains of ¥ & i{%ﬁg we obtain
the quotient complex denoted by W& "2, Then ¢’ 4nduces a cochain

mapping

i #n # .
G HE K —> K

Passing 4o cchomology with coefficlent group G, we obtaln an Induced

nomomorphism
§: e K™ o) — 1K ®6) = 1 (K;0)

How let u be & g-cooycle mod @ of K Treating u 88 an integer
cochain, we have bu = §v  for some V., Then the mizl’tij}les of u and v
\ # . '
form a cochain subcomplex M of X . Let ¥ dencte the inclusion mepping

5 _
Moz K The product pappiog ag:n: M > Ei:*ﬁ is equlvarient, bhence

g:ﬁ and the ldentliiy msp of ¥ Iinduce a cochslin mapsming

B, ) ]
Ve M > W @gﬁﬁe
Tensoring with 8 and passing to echomology gives an Induced mapping
% "
i EMeN ®s) —> K @%K%® G).

Composing Q‘ and 5 gives a mapping



o (W 8 M ® 6}~ T (K;G).

It depends apparently on fth@ choice of % and the cocycle u md & In
fact it iz independent of ¢ f{any two ¢'s are eguivariently homotople)j
and 1% depends only on the cch@ﬁology class u of wu. The image of @,
for a1l r, is called the set of w-reduced powers of u £ EQ{ngg)c

The groups H (W g ¥ ® G) depend only on the groups W, G and the
integers &, 4, n. They are genersalizations of the ordipsry homology groups
of 7. In the special case that u dis an integral cecycle'{ﬁ =0} and g

is even; we have
v ®,§ 20~ Eﬁqﬁr(’?@(}}a

For, ip this case, M = 7 i1s generated by w, and MY~ 2 dis generated by
w’ with 7 ecting as the identity, Terefore W& M ~W @& % ~W/m,
If we take asccount of the dimensional indexing,the assertion follows, Then,

to put 1% roughly, each homology class of a permutabion group of degree n

glves & cohemolo%y operation,
If we recall that the sguares 5@1 are the mod 2 homology classes of
8{2), 1t is clear that we have avallable a great wealth of cohomology opera-

ticons, and that these demand analysis.

817. A vasis for reduced power operations,

A vather elaborate snalysis [26,27] shows that a relatively small col-
lection of reduced power operations generate all others by forming coampositions,
The analysis bhas two main steps. The first shows that ve do not need to cone
gider all permutation groups; 1t sulfices 1o consider, for each prime p, the

ayelic group §§ of order p =and degree p. The second step analyzes the
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homology {(in the generalized sense) of o,

Just as Hgingza} = Zy; We have Héippgg?ﬁ = zga A generstor §§
for this group gives a cohomology operation analogous o Sqég When p > 2,
this operation is ddentically zerc for most of the values of J. The reason
for this is that the homomorphism ©f homology induced by the inclusion mapping
Qp —a Sg bas & large kernel for p > 2. If we discard the operaticuos

which are zero, vwe obtaln an infinite seguence of operations celled the oyelic

reduced powers
i +21 (p-1
G Hq(x;zp> — g3 }ix;zb?.e 1=0,1,...

The operation <?§> reduces to Sq?i when p = 2, aﬁd the main prapeftie&
of these operations are mild modifications of the propertiecs of Sg?i listed
in §15.

To complete our list of basic cobomology operations, we need to adjoin
for sach prime p‘ the Ponirjegin pth power. For each integer k > O, it

is a function

Z ).
L

B qu(xgz?k} —> EPY;

At firet glance, the bperatien may seem mysterious; however it is only a
mild modification of the p ) power in the mense of cup products. For, 1f
g?Pu is reduced mod §k; it becomes ur. Pontriapgin [20] discovered the

operation for p = 2. He cbeerved that, 1f u 18 & cocycle mod 2&3 then

13%%>u + mxfi&u

is 8 cocycle mod Qk*la The cperaltions for o > 2 were found and studled

by P.E. Thomas [29,30].

There are ceritain slementsry cchomology operations which are taken for



granted but must be mentioned in corder to state the malp result. These
are: sddition, cup products, homomorphisms induced LY homomorphlsme of

coaefficient groups, and Bocksteln coboundary operators associated with exact

coaefficient sequences O > 3F > > " > O, Then the melin ree
suli becomes:

The elementary operati@né and the operatioms Sq? %9 (?1 ‘%P genarate
PRetY ptlp R

gll raeduced pover operations by forming compesitions,

§18. Relations on the basic operations,

The generators listed above satisfy mumercus relations. Some of the
relations satislied by the 8q% are given in §15. They patisly als0 & mors
complicated set of relations which were found by J, Adem {1} If &< 2 b,

then

fa/2] :
a_ b Dawd=l A =3
8¢°89" = I awgi}s%&

Sq% .

Thig holds for theindicated operstions applied to & cocycle of any dimension,
Toe clarify the rough lmplication, let us call an iterated squars Sq?é?qg
reducible if 1 < 8%, Then the formule expresses sach reéucible itersted
square &s & sum of irreducible ones. Iterated squares, as réduced power
operations, appear ss homology classes of the Z-Sylow subgroup of sk},
These relations were found by computing the kernel of the bomomorphism in-
duced by the inclusion of the subgroup in the whole group. They have two
important conseguences.

L. Each sgé can be expressed as a sum of lterates of

od
g% }gggfl;2§a§@ =
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2. Tet us call the iterated sguare Sq ~Sg. seefg © admissible 1f

22, 1,220, 1, 2P,

il 2 r-1 T

Then every lierated square is unlguely expressible as a sum of sdmissible
iterated sQuares.

The first result shows that the systenm of generators given in §17 is
too large, we can throw out each Sqé for which 1 1is not a power of 2.
{E§ is to be noted thatrif we do éhis, then the fel&tieng satisfied by the
remaining sqgarés are not readily written).

The second resilt was proved first by J.-P. Serre [22] using an entire-
iy different meithod involving the Ellenberg-Maclane coumplexes., The result
can be expressed In & more illuminating fashion. Let A be the associative
(non-commutative ) aluebra over ZE generated by the Sqé subjJect to the
relations of Adem with qu = 1., Then the admissible elements form an addi-
tive vasis for A.

u

J. Milnor has shown [17] that the mapping é: A > A@ A given by
i i3 1-3 .
$(sq”) = =z sg’ ®3q -
J=0
(compare with formule 8 of §15) defines a homcomorphism of algebras, and con-
varts A Into s Ho§f aloebra, He shows that the dual Hopl algebra &i
(which is commutative) is & polynomlal ring in an easily specified set of
genarators. Dualizing gives an additive base for A gquite diffsrent from
that of Serre. An important conseguence of Milporis work is that the algcbra
A is nilpotent.
Analogous repulis have been oblained for Lhe (?%g for primes p > 2,
Adem [2,3) wnd Cartan [7] found independently the iteration relations, and
proved the analops of proposition 1 ané.ﬁ above. Milnor hondles wlso the

case Do Ze
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k3

To state the situation roughly, we have a very zZood hold on the rew
lations satiefied by the cyclic reduced powers In spite of the fact tﬁa%
these relations are complicsied.

A5 for the Pontrjiegin pth powers, the situatioa ia not as satisfactory;
however it ls excesdingly interesting. Thomas has glven a set of relations
which the'gth povwers satisfy, but in & most indirect fashion. He tekes as
coefiicient domain a graded ring A with divided powers, The divided DOWETE
are funciions Tt ﬁr e Anr having the formal properties of the function

*
xnfnz o The cohomology H (K;A) vecomes & bigrafed ring. He then externds

the definition of ‘?; o operations %21 for all integers n 20 . 7The

‘ collection {%21} sre then shown to form a set of divided novwers 1o the sube

*
ving of H (K;ﬁ} of elements with even bidegrees, In thiz way he obtains

relations such as

%riu}u%s{uﬁ = {r:%'?r,s_E(u)}

Bow) = 5 BWLE, ),

§g %;(u} N 2§:§) 3§:§ e <S§:§} ﬁri&}°
Although eachggn ;5 expresslble In terms of the %%} for primes p dividing
n, it would be exeee&ingly clumsy to write the above relations using only the
povers with prime indices.
It is not yét known vhether we bhave a complete set of relations on the
basic generators. One can msk, for example, whether expressions of the

form %%p(?%g aré reducible?
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§1%. The Eillenberp-Maclane complexes,

There is aﬁother‘apprcach tg the subgecﬁraf cobomoloyy operations which
mekes use of the speclal complexes, called {7,n}-spaces, due to Eilenberg and
MﬁcLaaa, {12,131 . Theae spaces appear to be fundemental to any siudy of
homatap%; and it seems likely that the complete sclution of the exiension
problem will make wvital use of them.

i§ﬁ H 18 &n apelian group send n > O 1s an integer, then a spece ¥
- 1g said to be & (w,n)-space if 1t is arcwise connected and all of its homo-
LOpY Eroups are zero excepi ghgzg which 1&g isomorphic to .

There sre & few relatively simple examples. The circle Sl is a
{Z,1)-space (all ite higher homotopy groups are zero because 1te universal
covering space, the straipght line, is contractible ). The infinite dimensimnal
real projsctive space (§13) is = {zeglespace {it is covered twice by 8"
whose homotopy Zroups are zero ). Another example is the complex projective
space of infinite dimensione It is a {Z,2)-space because it iz the base
gpace of & fibration of 5 by circles, 1.e. by fibres which are (Z,1})-
spaces,

There are {#,ﬁ)mspaces for any prescribved 7 and n. This fact is
not evident, and will be discussed in some detall in leter secilons., For the
present, it ls helpful to antlcipate two breoad conclusions of this discussion.
First, & {7,n}-space 18 usually infinite dimensional, Secondly, although
the homotopy siructure of & (7,n)-space is simple, its homology structure is
usually most intricate. This iz in sha:y contrest witk & space such as g"
vhose homology 1s simple, and whose bomotowy ils intricatle.

Let Y be w {7,n)-space, Atbtached to Y is its fundamentsl class

@Ga iz 1s 8o eleoment of Bﬁf§§§§ gbtalined sg follovs. #ince gﬁ{f} = £}
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for 1 < n, Hurewlcz's theorem asserts that the naﬁaral map ¢ of ﬁﬁ{f}
into EH(XB is an lsomorphism. Since also Hn“}(Y} = 3, 1% follows that

the natural mapplng
Ifl(”-f;?fﬂm} —> Hom (ﬂniy}ﬁn(t{)}

is an isomorphiem. Then u0 is the element on the left whose image on

the right is é”ls We mey alsc describe u ‘is the primary obstruction to

G
contracting ¥ 4o a point [2h; p. 2187 1 . The first important result sbout

{w,n)-spaces, is the

Homotopy classification theorem: If ¥ is a (w,n}-space, and X

0

: # A is "
is a complex, then the assignment to each f: X —> ¥ of T u 8bis Up &8 . .opwel
1-1 correspondence between Mep(X,Y) and E {X;7). T ke

A proof of this proposition, in the geometric case;, can be found in
[11; p.2k3, ™.II); and, for the purely algebraic case of semi-simplicisl
conplexes, see. [13; paper III, pp.520-521]. C In egsence, the argument is
the one used in proving Hopf's theorem {(§9). If ¥, in the theorem, 1s alsc
& {w,n)-space, the conclusion meserts that there is a map fiy X —> ¥ such
that f*&e is the Dundamental class of ¥, and this mapging_is a bomotopy :
equivalence:

Corollary. Within the realm of complexes, any two {w,n}-spaces have
the same homotopy type. Thus thelr homology and cobomology depend only on
w and n; hence ﬁ*{Ygﬁ} may be written E%{wymgﬁ}s

The importance of (w,n}-spaces to the study of cohomology operations
is gseen as follows. Recall that a cohomology operation 7T, relative to

dimensions q, r and coefficient groups &, G' is & set of functions



T, s BH¥;0) —> H(X;00)

X
tet OMa,Gr,6') dencte the set of all such operationms. If we add opers-

_ . # * .
for each space X such that I ’.’{‘Y = ¢ for. esch mapping i1 X~ ¥,

ations in the usual wvay {%—Tg}x = Ty + ?'X; then  OF{q,03r,0') is an
abellan group.
Now let ¥ be & (G,q)-space, and let u, be its fundamental class.

it T e (Hq,6;7,6"), then
Tu, & §{Y;G’) = Hr(ﬁ;%ﬁ*% _

Theorem, The assignment T 3> Tu defines an isomorphism

0

GHe,657,6') = H (G, 36 ).

R

This result is due to Serre [22;p.220], and ‘Tinﬁepenéemly to Eilenberg~
Maclane [13]. The proof runs as follows, Suppose T, T are operations
such that Tu, = T'w,. let X be & complex and u e ENX;0). By the

ci&asificatinn—- theorem, there is a mapplng i X —> ¥ such that f%ﬁg = U

Tnerefore

S S _E s bt o
T&w?fugmfﬁuﬁmeuG Tfua T u.

Thus T = T¢ in  (F{q,G;r,G' ). For the other part, let w g H (3,430 ).
Construct &  Te (q,Gjr,G') as follows. If X is any complex, and

W E ﬁqix‘;i}lg choose & mapping f: X ——> ¥  such that f%ug =u end define
=% by taking X =¥, u

fl

u and

#
Ty o= LW, One verifies that Tu 5

0
£ = identity.
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8§20, BSemi-simpliclal complexes.

The rough conclusion of the preceding section is that éhe determination
of all cohomology operations is eguivalent to the problem of ccmputing the ¢o-
nomology of the {w,n)-spaces. The latter problem has been the subject of
extensive research by Eilenberg-MacLane [13}, H. Cartan §?;3,9§, and others.
A brief vevievw of thelr work is in order, |

The basic construction of (w,n)-spaces is glven in the language of EE&%?
simplicial complexes. This eppears to be & most convenlent e@nce@t for néarly
all question concerned with homotopy. The following definition of an sbstract
semi~simplicial complex K 1s obitained by writing down fairly covious properiies
of the singular complex of & space. |

.lEirst, f@r-each dimension q 2 O, there is & set Kq lwhose eiemenig are

called g-eimplexes (4o be thought of as ordered simplexes). For each g and

each 1 = 0, 1,...;,49, there is a fTunction 51: Kq — Kﬁyl called the 1%B
face operator, and 1f X € K,» then 9% 1s the 1% face of x.  Again,
for each gq and each 1 = 0, 1,...,q, there is & function 4,: Kq{nwwb Ké&l

called the ith degeneracy operator. (Plcture the collapsing of a {g+l)-

slmplex into & g-simplex obtained Dy bringing the 1% ana {i+§}g§ vertices

i
by dmposing the ldentities:

together; then s is the inverse operation), The definition is completed

aiaé = 83_,1313, 1< 3,
518§ = Sésimi’ i» g,
5153 = sémléig 1< 4,
éis g ai 41%q = identity
i vls

aigg B A PR
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A mopping fi ¥ e I of one semi-simplicial complex into snother

3

consists of & function £ : ¥ —> I, for each ¢ such that 3. f = ¢
g 9 g ‘ i*q gel"1

and # -

sif% = q+15i”
An ordinary simplicisl complex X csn be aéhverteﬁ in various ways into
8 seml-simpiicial cemélex X'. TFor example, if an ordering of the vertices
of K 1s given, one deflnes Kgq) to be the set of order preserving (men@taniﬁ}
simplicial mappings of the standard ordered qfsimplex £s§ inte K.
As already remarked, the concept of the singular complex of a space is &
functor 8§ from the categery'(EL of spaces and mappirgs o the category @% of

seml-simplicial complexes and mappings. There is a functor R: B ——p (2

called the geometric realization, In fact if X é @% then R{K) is a
Gﬁucomylexg The particular réaliz&tien given by Milnor [18] has very.ﬁsef&l
properties.  Each non-degenerate simplex of K determines a cell of "R(X).
Algo R behaves well with respect to standard operatlions such as suspensions

and products. How there sre paiural mappings

RS{X) —> X for X &

K —-> SR(K} for ke (.

The second of these 1s always a homotopy equivalegcee . If X is a ressonable
apacs (esgn triaﬂgulabie}, the first mappling is ais& a homotopy equivalence,
The conclusion ls that all questions in CZ; depending on hmgctoyy type only,
are equivalent to the corresponding questions in é% - Thie is true in
particular of extenslon problems and homotopy classification problems. Since
this is our msin concern we will 1dmii sll subsegquent é;seussisa o the
category 58 ®

Each K ¢ (8  determines a simpiiclsal chaln complex C{K} as follows.

The free abelish group genersited by the get Kg is denoted by SQQK} and is
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called the group of g-chalns., The functions 5i, g, extend uniguely to

i
homomorphisms of the chaln groups dencted by the same symbols. The identi-
ties listed sbove remain valid. Now define O: CgiKE e Gleix} by

3= Egﬁg(wl}*éig " Then 33 = 0, and one defines homology and cohomology in

the usual way.

§21, Conetructions of {w,a}éspacesa

3

Bilenberg and Maclane assign to (ﬁ,ﬁ} a pemd~simplicial complex K{w,n)
in the foll;wing raﬁhér glmple way. Let &Q denote the compliex ol the
standard g-simplex with ordered vertices. let Zﬁ(égéﬂﬁ be the group of
n-cocycles of éq with coefTiclents in_ Wwe. 'These are normallzed cooycles
in the sense that they have the value zero opn degenerate n-gimplexes. Then

& ge-simplex of K{w,n} 1is defined to be such & cocycle: KQ = ZﬂgéQFﬁﬁg The

Jth

stendard msp &Qal e &qg gotten by skipping the vertex, dnduces a

Y _ od Ty . :
homomorphism 28 ;1) —> f{aqql,’g} which is demoted by 3: K —> X ..

Te degeneracy s, 1s likewise induced by the ith degeneracy 4 wwwﬁ-égg

1 gl

Mach work must be done to show that the homotopy groups of K{w,n) sre
ero save T, = ¥, l.e. 1t is a (H;ﬁ}mﬁPaCGa Granting this, one can ask
what hinders a successful computation of Iis homology or cohomology. I
wols #nfinite, 8. ¥ = L, then each Kﬁw ie infinite. This means that
Cq(x} is not finitely generated; and therefore the standard methods of
acmpgt&tion can not be appliede It 7 ;a & finite group, esch K% is finite,
and we are in the realm of effective computabillty. Put due to the large
pumber of n-dlmenslonal faces of ﬁ§§ the standard methods are not practical,

S0, in either case; some large scale reduction of the problem must be achileved,
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The first observation is that K{w,n) and K{7,n+l) are related,

Define a complex W(m,n) in the same manner as K{w,n) except for setting

g
B Cﬁiéﬁgnﬁ mmwkrzn+l{éh;ﬁ), and 5 1is an epimorphism. From this it follows

W= @n{égéﬁ}s 9ince éé is acyclic, z?(éﬁ§ﬁi 18 the kermel of

that we have semi-simplicial mapplings

k{mw,n) =

> Wim,n)

> K{m,n+l)

where p is s fibre mapping with the fibre K{w,n}. The argument which shovs
that K{wm,n) is & (7,n)-space, shows alsc that W{w,n) is.hcmetopicalxy
equivalent to s point. Ehe second observatlion is that K{wr,n} 18 an abelian
group complex. This means that each Kq is sn gbe}iaa group, i.8. Zn{éégw}§
and each Bi’ 8

i
ring stracture in Gq(K}g

is & homomorphism. The group-structur@ of Kq induces 8

These obaservations motivate the constructlon of a new sequence of com-
vlexes A(w,n} given by Ellenberg end MacLane. They start with A{7,0) = K{(v,0).
Then, for any abelian group complex [, they construct A homotopleslly trivial

complex B(r), and a fibrs wmapping
1 P ey
© T e B{P) — B(r)

with fibre TI. Floally, A{m,n) is defined inductively by Alw,n) = B(A(w,n-1}).
This construction is referrsd to as the gﬁgtcogétructicna An inductive srgu-
ment based on the two Librations leads to the conclusion that A{H,n} is homo-
topieally equivalent to Kim,n).

In case T is Tinitely generated, the complexes A{wr,n) are finite
i each dimension, and hence thelr homolopgles are effectively computable. Thils

is s large reduction of the problem. Using the A{w,n), Eilenberg and Maclane
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successfully copputed the flrst few aanmtriviai:hsmﬁlagy groups, and obtained
laportant a@plieatiensg. However the eampuﬁaﬁibn problem was still far from
aclived. |

The next large reductlon of ﬁh@ ovroblem was made by ﬁs Cartan. He

formaleted s general concept of fibre space construction of which the two con-

gtructions given above are exomples, He showed ﬁhat any two acyelic cone
structions appiied to homotopicelly eguivaleni group complexes gave homo-
topically equivalent base spaces. He was then able to glve relatively simple
constructions for cyelic groups 7. Qéisg these, the computation of g%{ﬁ}ni
Por finitely genersted w's is slmost practical.

To 1llustrate the cooplexlty of the situstion, we will state Cartan’s
result on %he structure of the ring E%{w}agzh}l when 7 is infinite cyclic
and p 1s an odd prime., Flrst, there is a sequence Xy5 Xppees of elements

o

of H such that g is isomorphlic to the tensor product ﬁ@:'lP{xi}

“where P{xi} is the polynomisl ring over Zp generated by x, 1if dim x

i i
is even, and it is the exterior algebra generated by Xy if dim Xy is odd,
¥or any dimension g, only & finite number of xi’s have dimensiony < g,

Tt remains Lo specify the x,'s. Thls is done most efficiently by using the

f

evelic reduced pt DOVETS @ﬁi, A finite sequence of posiilve dntegers

(8,5 000,8, )} is called admissible if
S £ e

{1} each a is a positive integer,

s has the form BRE{§M1}€m€ where A

i i

and €y s O or 1L,
{11} By 2 P8y, 1<i <k

(124) pa, < &wi}{a%&i%***%&k}



Define S@ai = Q?Ai it € 7 O and Stai e %%iji if
is the DBocksteln operator for 0O —> 2§ Lo v L
be the fundamental class of K{w,n}. Then ﬁhepseﬁ {xié
alement Uy moed ¢ snd the elements

Stak swe St&lilg

as (alﬁaag,ak} ranges over all admissible sequenges.

s

. N . .*
£, = 1 whore ©

s

et u

O

consists of the

e (G,

A corollary of this result is that ell cohomology operationa with Z as

initial and zp as terminal coefficlent group are generated by ithe operatlions:

¥
addition, cup-product, & and the Giﬁ,

Using the full strengil of (artanfs results, Moore [18] has shown that

all cohomology operations, whose indtial coefficient groups are finitely gencr-

aﬁed}'are generated by the cohomolegy operations listed at the end of §17.

§22, Symmetric products.

We have described two methods of obtalning cohomology operations.

first involved nth
on the factors.
Each method has its advantages.

convenient properties. The second glves all operations,

The

powers of complexes and the sction of the symmetric uroup
The second made use of the BEilenberg-Maclane complexes,

The first glves specific operations with

fince they lead to

the same results; 1t should be possible to bring the two methods together as

& aingle meéhéds The basis for accomplishing this'is provided by s theorem

of Dold and Tuom [10] 88 follows.

Iet SPX  denote the symmetric ntd power of a space {or conmplex ) ¥,

i.8. oollepse X? by identifving points eguivalent under 2inl,

Lase polnt x., e ¥, and use 1t to glve an imbedding

Q

Choose &



7
{22.1) - gy ¢ s x

+1,

by identifying {xlga,¢;x$} e X° with {xg,xl3agsgx Ve ¥, The unton

o
over n of SPX gives the inflvite symmetric product SP™X. The rough

agsgertion of the Dold.Thom resuli is that there are isomorphisms

(22.2) wi(sy‘”x ) = 1 (X)), 1> 1.

Tis iz s most surprising result. It offers an entirely new method of
constructing (m,n)-spaces. For example, if X 1s the n-sphere 8", it
follows that 8P (8") is & (Z,n)-space. The case n=2 of this was already

known for elementary reasong: SPm(SE) is the infinite dimensional complex

projective space. To see this, regard §° as the space of 2 homogeneous

0 i

fongider the complex projective n-space cP” as the space of o+l homogenecus

complex varlables {aeﬁalj, and alsc as the space of lipnear functions s .+ &8.% »

varisbles {ag,al,.,.,aﬁj} and slso as the apace of polynomials zi:{;&izi*
‘Each polynomial factors into the product of n linear functions, and determines
thereby an unordered set of n elements of 52, This gives & 1.1 corres-
pondence between SPn(SE) and CP", Letting n -~ o  ylelds the above
assertion.

It i easy t; construct & space ‘X whose homology 1s zerc save gn(x}
which is prescribed, If ER{X} is a eyclic group of order €, let ¥ be
8" with en (n+l)-cell attached by a map of degree 6. If H (X) is a
direct sum of cyelice groups, let X be a cluster of n-spheres having a
common point together with {n+l}-cells sttached to the spheres with sultable
degrees,

Al of this can be done guite effectively., The cuestion of the moment

is the effectiveness of the construction of SP°Y, The latter, as &
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complex, sppears to have infinitely many cells 1n each dimension, The fact

which renders the construction effective is & natural direct sum decomposition
22

of the chain complex C{SP 1} The basic step iz a splitiing into chain sub-

complexas

{22.3) c(sF%) ~ olsP™ Yy + U,

The existence of such a subcomplex Uk is essily established in the language
of semi-slmwplicial complexes as follows., Let X be semi-simplicial, let 1

denote the O-gimplex which acts as the base point x , and let lq‘ be the

0?
g-simplex {so}q 1. The kB power X 1s taken in the sense of cartesien
products, and S?kX hae as g-simplexes unordered seguerices XyoeaXy of
g-gimpiexes of X. Buch s simplex is in SPk"lX if some .xi = iqe The
g-dimensional pa;t of ﬁk is defined to be those g-chalne generated by chains

of the form
i
{32-‘4‘} {Xl“ lg} ® & @ (Xk* lq}o

(It i3 clesr thét expanding this product into & sum gives a chain of SFKX}Q
Under a face or degeneracy operator, this expression retsins the sane form or
becomes Zero. Thus v& is & chain subcomplex {FD-complex in the.l&nguage of
Eilenberg-ﬁacL&ne)wl x
If we lierate the decomposition 22.3, we obialn
cisp™) = E§=Q U, ;

(8P =~ g;:@ Uy -

Paseing to cobomology gives
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& o) e
{22.5) 8 (5P =~ DS w}i}e
By 22.3,
(22.6) H*(ﬁk) ~E (8P, 85 )

Since the Tiniteness of X {in each dimension) implies the same for S?kX$
.

there 1% no guestion about the effective computability of Uk snd H (Uk},

If ¥ is connected, there is an additional fact: Ei{ﬁk) =0 for i<k,

Thus for any dimension ¢, the sum in 22.5 isg finite, To state 1t othervise:
{22.7) - BY(sP™%) ~ Hq(S?kX} for k2 g.

Eiements of H*{ﬁk} are sald to be cf.§§§§ X.  We obtain then & -
natursel bigrading of ﬁ*(SPeK) by dimension and rank. Dold [18] has shown
that the decomposition 22,5 depends only on the homology groups of X. It
follows that ﬁ*{vgﬁ) admits a natural bigrading by dimension and rank, In
E§{§,ﬁ} the rank of & product is the sum of the ranke (for homogeneous elements ).
In faci this holds in ﬁ*(83§k} whgnever X ig & s&sgeﬁsiona

When the ﬁecﬁm@@sit&on‘by rank was dlscovered tarcugh the symmetric pro-
ducts, 1t was then seen hovw to define it directly through the gonstrucitions of
Carten. It follows that Carta&*ﬁ_methods of computetion may be aspplied to
compute effectively the homology aﬁ SP'X. This is an ola provlem of sigebrais
topology, and meny papers have treated specisl cases, ﬁ?wg Tor the first
time, we have a gEﬁerally vaild method.

The welding together of the two methods of construciing eo&omﬁiagf |
cperatlions is not yet complete. By the methods described in $156, one can

define & bopomorphism

H (e M) — B {SP"M)



which, for 7 = S{n}, iz an isomorphism for large T but oot for all. Much

work remains to be done 0 complete the plcture,

§23, Spaces with two non-zerc homotopy Zroups.,

A good start has been made on the snalysis of spaces with Just iwa BT =
zero homotopy groups. The rough overall pleture is known bub most of the de-
tails are missing.

First, we know how o construet such spaces, duppose the prescribed

i

with g > o, The product

NOn~ZeT0 Eroups are ﬁh(Y} =, end ?Q(Y) =7

space K{w,n) X X{7',q} bas the required homotopy groups; but there are many
oiners wbich are homctoplceally distinct, To obtain these, we must consider
fibre spaces having X({7,n) as base and X{w!,q) for fibre. BRecall (§21)

that W{(r',q} is an acyclic Tibre space over the base space K{w',g+1) with
fibre K(qu}g Any mapping f£: K{w,n) —> K{(7',q+l} induces a fibre space

¥

o over K{w,n} with the same Tibre {see [2k, §10] ). Using & semi-
simplicial version of the claseification theorem [24,§19], it follows that
the asslignment wef Yf tc £ sets up a 1-1 correspondence beitween equiva-
lence classes of such fibre spaces and homotopy classes of mapplngs. That such
a fibre apace has the presceribed homotopy groups follows from the exaciness of
the homotopy sequence of the fibre space [24, §17].

The homotopy classification theorem of §19 implies that the homotopy
classes of mapplups ¥{w,n) —> K{mw?,q+l) are in 1.1 correspondence with
the elements of ﬂq%liﬁgngﬁ’}, Thus to any clement XK & EQ%liﬁ;ngﬁg} corres -
ponds & homotopy class of spaces with the prescribed homotopy proups, in
fact this pgives a1} such in & 1-1 monner, It Y hag the prescribed homotopy

groups, there is a unlgue kK such that ¥ belongs to the closs corresponding

, Lo, X . . s
0 k. This is seen by mapping Y > K{r,n) 30 a3 to carry the fundamental
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class of K(w,n) into that of ¥, and defining k(Y) e EQ+1{ﬁ;n;ﬁs} 1]

be the primary obstruction to retracting the mapping cylinder of gz dnto Y.

-

The class k{Y) 1is called the Eilenberg-MacLape k-inveriant of ¥ (see [12]}).

£

i

futomorphiems of 7 and 7' induce avtomorpbisms of §Q#1{W,ﬁ;¥*}$
ir kl and xg £ HQﬁliw}n;ﬁ‘) are equivalent under such an sutomorphism then
the corresponding spaces have the same homotopy type. ‘Thus the homotopy type
problem for such spaces réduces Lo determininé equivalence classes of elements
of HQ&l{ﬁ;n;ﬂﬁé under such sutomorphisms.  This problem is not yet solved.
In essence we know how. to compute the group HQ#l(Hga;W‘}g' but, if two
elements of the group are given, we dc not knovw how to tell in s finite nuwber
of steps, whsther or not they are eguivalent under auﬁemorpnismﬁ of w,vwt.

Becoll {§l@} that, in the theory of cbstructions, we have need of gecond-
ary cohomology operniions {such as Adem%%_ @3} which are defined only on the
kernel of an ordinary {primary} cobomology operation. In §10 we have ssen
that any k g H%+l(ﬁ$ﬁgﬁg} determlnes s primary operetion P{k}: for any

-~

space X,
P(k)e B X7) > 13 (57 ).

Farthermore k determines, as above, a {ibre gpace Y over K{ﬁ;m} with
fiore K{m'jal).

Eoch ¢chomology class ¥ € Hr(Y;G} determines o sscondary operotion

defined on the kernel of T(kj,

To see this, suppose w g H (X;7) Lies in the kernel of TD(k). There is
g mapping - hi ¥ —> K{w,n} which carries the fundementnl class of ¥{w,n)
into u, snd its homotopy cloass ls unlque. Since Plrlu = 0, we must have

5

% - T : <
bk =0 {see $19), 8ince k Is the charmoteristic closs of ¥ {i.e. the

obstruction to lifting K{w,n) into Y}, there i8 u mepping g: X —> ¥ which



composes with the projesction ¥ ——> X{w,n} +to give h. Define the
secondary operation T(k,y), when applied té u, to be the set of images
g*y Tor all liftings g of h. In the stable case r < nt+g, one can
describe precisely the nature of the set T{k,yJu as follows., The res-
triction of y to the fidbre K(w',q) determines a primary cohomology
operation T(y): HA;7') ——> H (X;G). Then the set of possible images
g*y is obtained by edding one of them to the image of T(y).

The result just proved emphasizes the importance of computing the co-
homology of Y. Thils problem has barely been touched. As a fibre space,
we know the cobomology of its base X(w,n) and its Tibre K{w',q}), and
we know alse 1ts characterisbic class k. 'This gives us & hold on ite co-
homology structure via the spectral sequence. But we are far from having

it in our grosp.

§24. Postnikov systeums

fpaces with three or more noﬁwzefo homotopy groups can be built by
continuing %hé pattern of the precedlng section, Bupposs we wish to build
spaces having homotopy groups w, w', W' 1in the dimensions n < g < r
respectively. First we bulld a space Y having two non-zero homotopy
groups 7w, 7' in the dimensions n, g. Let k e ﬁ§$1iﬁ§ﬂ5¥*} be its
k~invariant. Now choose an element k' ¢ Hr+l(Y5ﬁ”}a The homotopy classi-
fication theorem (§19) assigns to k' a mepping ¢ Y ——> K{m',v4l),

Let X' be the fibre space over ¥ 1Induced by f and the seyelie Ffibre

space  W{r",r) > K(r", 1), Then ¥' —> ¥ has k(v",r} as ite fibre;
and thersfors Y' has the required three non-zerc homoLopy groups.
fiven a fourth homobopy group, 82y o, Lo be dlnserisd in the dimension

. : : L
5 > T, we start with the ¥' above, choose o cchomology class k"™ ¢ H - {Y'ja),



select a corrvesponding map Y -2 K{o,s+1}, and form the fibre spuce Y
over Y¥' induced by W(g,s) —> K(o,8+1),

It is clear thai we have described a'semi«egfeétive mebthod @f‘buildiﬁg &

L3

great variety of spsaces using the Eilenberg-MaeLané‘complexes a8 bullding blocks,

The fact of the matter is that any space can be built, in the sense of homotopy
type, by a sequence of such constructlons. "This'i&aais due to Poginikov [21].
Precisely, with any connected épacg X, we can assoclate a sequence of 5PACcES

Xng n = ﬁf'l, 23 000, & seguence of projections Py Xﬁ e Xﬂ and &

16’

sequence of mappings £ : X —> X such that ¥ is & single point; and for

0
each n > 0
{1} \?ri(xn) = Q - for i >n,
{113} L ”i{K} R:%i(XnB | for ; §.n5
{411} pnfn o fnf-l 5

{iv) X, is s fibre space over X .o vith respect to ,, the fibre is a

{ﬁﬁix}yn}wspace and can be taken to be Kiﬁ%{X},n}§

Such & system is called a Fostnikov system for X, It is not unigque but any
tWo {Xn}, iX’n} are equivalent in the sense that there are mappings
Xn o X?n — Xn which give a homotopy equivelence, and, in fact; a fibre

bomotopy eguivalence of the {ibre spaces Xn o Xﬁ_l and X?ﬁ —_— X

n=1°
This is indeed s most interesting way of éisseciing a space. It pro-

vides a fresh pelnt of vlew, and ralses many questions whose angwers moy cast

iipht on our basilc problems. Some useful answers nave already besn obiained,

E.H. Brown [6] has proved the following theorem:

If ¥ dis o Tinite complex which 1s comnnected and simply-connected, then

a Fostnlkov systenm for X is effectlvely constructible.




An immediate corollary Is that the homotopy groups of ¥ are effectivew
ly computable. At one time this problem was thought o be of the same order
of mapnitude zs the extension problem itself. It was regarded as a hasic
weakne§5 of obstruction theory that it used homotopy groups as coefficients
when these groups were not knownlo be computable.

t may be useful to conclude with some questions suggested by these
results, Can PBrown's result be improved? If ¥ is a finite connected
complex, and the word problem for ﬂjﬁx} is effectively solvable, does it
follow that a Postnikov system for X is effectively constructible? £ usee
ful speciel case is that in which Hl(XE is abelian., It will be important
to find efficient methods of computing the Postnikov systems of special kinds
of spaces such as spheres and spaces wlth one or two non-zero homology groups.

Perhaps it is more important to analyse the basic extensicon problem in
terms of the Postnikov systems of the spaces involved in the problem. Brown
has given a partial result in this direction,

Let X, ¥ be finite simplicial complexes, let A be a subcomplex of ¥,

and let h: A —> ¥ be simpiicial. AMso let Y be simply-connected and such

that Hq{Y;Z) is a finite group for all q > 0. Then there is & Tinite pro-

‘cedure for declding whether h  is extendable to a mapping X we—> Y,

Tuis resull is obiained by studying & Postnikov gystem for Y. The ras-
triction that each I—EQ{Y) be finite is most severe, and should ultimately be
UNNEeesSarY.

It may be that what 1s needed is a method of dlssecting o mapping {or its
homotopy class) eimilar to the dissccition of spaces. {ne can alvays treat a
mappling as an inclusion mopping {into the mapping cylinder)., This supggests
trying Lo construct simeltancous Postulkov systems for o Eﬁiis censlsting of u

apace and o subspace. Agaln, & mapping is always homotopically equivoelent to
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the projection of some Tibre space onto its base. Starting with such a
projection one can represent 1t as the composition of & sequence of fibre
gpace projections for which the successive fibres are Ellenberg-MacLans
complexes. This is done by dissecting the original fibre a homotopy group
st a time, How effective ie this procedure? How does it behave under come-
positions of meppinge? It is easy to ask questions, it is hard %o finﬁ good

Qneg.
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