


The class of probberns known as  externion problem is central t o  nearlr;r ELQP 

of togolo~;y, Many of dhe basic theorem of Lopolo@, and 6- of its m e %  sue- 

cees4iP1 applications i n  other areae of mtberaetics are solutiom of parLPcular 

exlemion problem. Tne deepest results  of this klnd have been ohtan& by the  

mthod of atgebrde topclo@;y, %e essence of -the method i s  a eonvereioa of the 

geomezric problm i n b  8n algebraic problem whlcb is sufficiently c q f e x  t o  

embody Wle essential. features of the geometric pmblem, yet sulaficienL1y sim1e 

Lo he solvRble by s d a n d d  algebraic metbads. W y  extension problem remain 

unsolved, and mcb o f  the current develapenl o f  dgebraic topolom is inspired 

by isbe hope of" finding a t ru ly  general ~o lu t l on ,  

%I place my contribution Lo these developlnents i n  its groper setting, P 

will begin with a diecwsion of the extension problem, and Lbe =made aP filadlcg 

~c lu t i one  i n  sgeciaP eases. 

Led X arid 'x: be LopLogleaP. spaces, IxlC A be a closed subset of X, 

arid Let h: A ---> Y be a mppPng, t e e ,  a continuous mncLion f i&p A to P, 

A mppiag f :  X 4 41 i a  caLled im of h bP f(x) = b(x) for each 

x E A, B e  ine1wlob;. mpplag ig: A -> X i a  defined by 64x1 -.; x for x e A, 



men the condition that 9 be an extension can be restated: h is the eo%osiilon 

Pg o f  f and g. 

fg  = ii. 

When X,Y,A and h are given, we have an extension problem: Does an 

extension f of h exist? 

$3.  Tsansfoming geometric into algebraic problem, 

B e  general method of attack on an extension problem is to apply bomloey 

theory to transfom the problem into an algebraic problem. To the diagram o f  

trpaces and mappings we assign a diagram of groups and homomosphlsms. Each space 

has a hoinology group II for each dimension q, and each mapplng inducea homo- 
4 

norphiams of the corresponding groups, !&~s, for each q, we have an algebraic 

6iegrtim 

Given tne tnree groups arid the hommorphisms gx,h,, we can now ask the question: 

Does thtbre exist a homoimrphism such that (6f3, = h, '3 (It should be noted that 

g, i s  net 11sudLy an inelu.~~.lon, because a non-hounding cycle o f  A may Sound in 

X), I P  an extension f exists, ,petting 4 = f, solves the algcbmle problem 

because of the prcperzy (fg), = f,g, of induced homomowhisns. %%us, the  ex i s t -  

i eaee of a ~olution of the algebraic problem is a necessary condition for the 



ede tence  of an extension, But it l a  not u s u a y  a auff ie ient  condition. Bxe 

reason Per U~ie, i s  Lmt much of the geometrJr haa been Lost i n  the t rane i l ian  LO 

talp7ebra. 

It i s  a prime objective of research i n  algebraic topolo$y Lo improve %be 

dgebra ic  roachinery so  as t o  give a sharper Bigebraic pielure of the geolnetric 

problem. For exanrple, i n  place of homology we my use c o h o m o l o ~ ~  We obtain an 

andogous d iag rm 

The chief difference i s  the  r e v e r e d  of the directions of the induced homam%phism, 

If we eoosider c o h m o l o ~  so le ly  as additive groups, they have no r e e l  &vantage 

over h o m l o ~  groups. However, unlike homo lo^, the eohomolo~a, @oups of a 

space admi t  a r ing  s tn rc lwe :  if u E $(Y) and v E EI'(u), then they have a 

product, called Ghe cup-product, 

' 9 Tbie prcduet i~ bilinear,-and s a t i s f i e s  the corndat ive  law u-v = (-1f v ~ u ,  

FurLherroore a mapping f: X -> Y inducea a r ing  homniorpbism 

* 
b t l i n g  B (u) = [H'(Y), q = O , l , ,  , ,) denote the resul t ing graded ring, the  

d g e b r a l c  dlagraol beeoaee 



anfl the digebraic problem i~ sharpened by the regrrlrement that the solution $ 

of g*t+ = h* mad be a r ing bomomo~hlsrn, 

This p m d d e s  a considerable improvement i n  the  d g e b r a l c  picturt? o f  the 

geometric problem. However it i s  not the  bes t  that can be done. m e  cobom- 

logy groups possess not only a r ing s t ruc ture  but a l so  a more lnvolved stracLure 

referred t o  as the  system of cohomolo~y operations. A cohomology operation T, 

re la t ive  t o  dimensions q and r, is a coUection of hnc t ions  (%I, one f o r  

each spaee X, such t h a t  

and, f o r  each laspping f i  X -> U, 

* * 9 
f f u = TXf u f o r  aU u c W (U). 

Y 

The sinrplest non-trivial  operations a re  the  sque r iw  operations, For 

each dimension q an& each integer 1 ,  - 0, there is a cohomolo~  operation, 

called square-i, 

Bere the coeff ic ient  group- Z2 cozisiats of the integers Z re&aced modulo 2, 

Also f o r  each prime p > 2, there are cohomolog. operations g e n e d a z i n g  the 

squares called cyclic reduced pW1 powers, lPhese a re  functions 

a": fiq(xi zp ) H9+2i ( ~ - l ) ( ~ ~  Z P 1. 

I w l U  dlseuss these operations i n  d e t a i l  l a t e r  on. A t  the present d ime  

a wish c d y  Lo emphasize the lrnportance or? eobomoloty operatione t o  the study o f  

the extenalon problem: In the derived algebraic problem using coi ro~nolo~,  tne 
* 

8olu"caon 48 H*(Y) -> II (X) o f  the algebraic pmblem g*d = bY muat be a 



r ing  honomorpbism, and a lso  must s a t i s f y  4~~ = TX+ fo r  every eohom01ol;y 

operation T, IPhus, by cramming as muen structtire as possible in to  cohomoloa 

theow, we endeavor t o  obtain t h e  strongest possible necessaly conditions fo r  

a solution oP the externion problem, 

%be ultimate objective i s  t o  so  ref ine the a g e b r a i c  mchinery t h a t  the 

derived abgebraic problem i s  5 f a i t h i W  picture of the geometric problm- C&is 

hat? not yet  been accomplishedj but it appears t o  be within reach. 

We turn now t o  a more d e t d l e d  discussion of a e  ideas presented so  f a r ,  

$4, bearplea of extension problem, 

Bramples of solutions of' extension problem a re  plenti%ul even i n  the  most 

elernentaw aspects of topology. Toe Urysobn lenzaa i s  an exmple, In t h i s  ease 

X i s  a nomal space, A = Aou 5 is the union of  two d i s j o i n t  closed s u b s e t ~ ,  

Y is Lhe i n t e r v d  j0,1] of r e a l  nmbers, m d  h ( ~ ~ )  = 0, h ( 5 )  = 1. Tbe con- 

clusion of the lensraa asser t s  t h a t  an extension dways exls ts .  

m e  TPetze extension theorem i s  another example, in t h i s  case X i s  nor- 

mal, V = [0,1], and h i s  B;rbitrq. Again m extension always e d s t s ,  

me study of the =$wise connectivity of a space U Is mother  exemple, 

In Lhie ease X = (O,11, A consists of  Lhe two polnta 0 md 1, m d  h(0) = 

yo, l = y An extenefon f of' h is a path i n  U from yo t o  J"I. 

There i s  a special. claea of extension problem celled retract ion problem, 

If A C X, then a mpping f :  X ---> A is c.&.led a re t rac t ion  i f  f ( x )  -. x 

for  each x E A. Given a space X and a closed subspace A, there Is the  gro- 

blem of deeidiaf~ whether o r  not such a re t rac t ion  exis t s ,  By se t t ing  Y = A, 

and taking b: A Y d o  be the ident i ty ,  It ia seen tha t  each retraction 

problem l e  an extension pra5bera, 



An w o f i a n - t  e x w l e  STom elementaw algebraic topolom I s  the fobLwing, 
n 

Let E be the closed a-cel l ,  i , e ,  the  s e t  Xi- - x 1 i n  castesiaa a -apee ,  

n 2 . and l e t  9 be its boundmy, i , e ,  the (n-i)-s@ere x i  = 1 Then 

Toe boundary S of the n-ceU E i s  not a r e t r a c t  of E, 

Tne proof of Lhis fo r  n = 1. is readi ly deduced from the f a c t  t h a t  E 

i e  coanected and 9 is cot. For n > 1) the proof is not t r i v i a ,  &thou& the 

conclusion f o r  a = 2 i s  i n tu i t ive ly  appeabing t o  myone who hae ti&tened a 

d m  head, o r  stretched canvas tau t ly  o-fer a frame. The proof u t i l i z e s  Lbe 

general roethd of converting the  problem i n t o  an a g e b r e i c  one, We take hornlo@ 

groups i n  the dimension n-1, and obtain the  d i s g r m  

%-e dimension n-3. is used since t h i s  gives the  only non-%rid& homolorn group 

o f  5 ,  Using integer eoefficiente Z, we have En - 1(8) SJ Z, and. Hnin16(~)  = 0, 

Now h = ident i ty  implies h, = ident i ty ,  Tbis gives an i ~ o s a i b i l i t y :  the 

ident i ty  homomc~hism of Z cannot be factored i n t o  h o m m ~ h i s m e  

% f x 
Z -----> 0 --> Z, 'Berefwe the retract ion E of T: into B does not exist .  

It may be f e l t  t h a t  a non-exletence theorem l a  of l i t t l e  uee, %l ie  ie not 

the caae, By a mild twlet, a negative r e s u l t  c m  be given a pal 'c ive foam, isa 

she ease at hand, we obtain as a corollary "cbe well-known Brouxef fixed-point 

theorem: Each snapping g :  E -> E has ad l e a s t  one flxea point,  For suppose --. 
ea %be c o n t r q  that there i s  a g with no fixed-point, As x and gjx) are 

drlatiact poLnts,LDey l i e  on a U q u e  a t m i & t  IPnc, ma x divides Lbie l i n e  

";aL &YO hulf Pines, me half Line not containing g ( x f  meets 9 i n  s sicgle 

p i n t  denoted by f (x ) ,  me continuity s f  g impLiee that 0% f, in case 



05- I 

The next e m L e  i e  one in which ?Ae c&omlog?l r i ~ g  gust be wed to srrive 

at a decision, Let  X denote the conrplex groJective plme, fee .  L$s Prpce of 

3 h0a50geneous coloplex variablee [z0,z1~z2] mt  819 zero. EL f i ~  a e-ct d- 

fold of dwnsioo 4. Let A be the c w l e x  projective Line i n  X defined by 

the eqwtion z 2 =  0 .  mpologic&y, A i S  a 2-s@ere. En cesle tb eon- 

elusion is that A f e  aoL a re t ract  of 3%. 

& m a e  mat PI X A is a retraction so mt i~ = identity whare 

men two groupe are 80 related by bomnao~hiams, the l e f t  hsnd -up epULe inLB 

a direct s m r  

%be amredated notation 5s 



m n i n g  LQ the ex-le under consideration, we are given X,A Bnd. dhe 

X 
loeluebn g,and we can ask i f  Ker g l a  a direct  s The c o b o m I o ~  

of X is zero i n  dirnensiom > 4, In dhemione 5 - 4, the cohoenclogjr sf X 

and A with integer coefficients Z i s  given by the table 

W 
F ~ r t h e m r e  g is  aa isornorphiem in  the damenslolls 0 and 2, It La seen 

Lben that  Lhe direct  sum decoqosition requlred by 5.1 doe8 exist  a d ,  i n  fact,  
* U 

i s  unique '-elys i n  Lbe dimensions 0 and 2, Ker g i e  zero 80 that  Xh f 
X 

is the whole group, and i n  the dlntensbn 4, Ker g 1s the w b l e  grow 811(1 

h ffr = 0, 

Emever, on exmining the ring stmcture,  we fin& Chat the uniquely deter- 
* 

mined candidate fo r  3% P is not a sub r ix .  Fbr l e t  u be e, generaCor of 
X 21x1 so L ~ L  u E f . Bince x i s  a nranifold,  he ~ i n c a r k  dua;iity 

4 Lbeorem asserts that  8 is se l faual .  unaer the cup preduet p i r i a g  Lo B . 
4 9 It fcllgwa that u ~ u  must generate B (X), merefore uuu i~ not i n  Bn f J 

and  eref fore A l a  not a retract .  

This exaolple i e  int-tely related La the ~ 1 ~ ~ 1 ) i a j j  h: 83 -> s2 of the 

3-sphere in to  the 2-sphere studied f i r s t  by ElB, Bopf 1141, fr, the apace o f  

two complex w i a b l e s ,  l e t  fI3 he the u n i t  sphere z 2 $. z 4 
Q O  11=1/B"ad $ 

L$e unit !+-cell z o o  + z 1 kt a2 be tbe apace o t  two bomgese~ue 

cowlex m l a b l e s  "en h ~ e n d e  the papolat (zO, zl) of 8' fnto 

2 
[sg,aa] i n  El . %ta f a  a very anmoth mpginp, ihe inver~cs; images o f  potsta 



9 

of 82 give a fibration of lnto great circles, Hopf proved that h 

4 2 
i s  not extendable t o  a . m m n g  E ----2- 3 . (sottee that (zOgl) -=-+ [ z ~ ~ z ~ I  

4 
baa a e i n d a r i t y  a t  (0,O). ) If we Porn a new space out of E by cal*aps%w 

i t s  baundw s3 into S2 according t o  h, the resulting apace i e  homo- 

wmphlc t o  the conlplex proJective plane X, and S' corresponds t o  the c-1.e~ 

proJective l ine  A. Slnce A is not a re t ract  of X, it foUowe -that b cm- 

4 oot be extended over E . 

Ihe next exanrple is a retraction problem for which the cob om lo^ ring 

dcee not iprovfde m mswerj but the squaring operationor do give an anewer. Led 

P' denote the rea l  groJecLive space of dhension 5 (6  bomgeneoua, reah var"rablee), 

k t  P4 4 pa 3 p2 be proJective aubspecee of the iodicated dhenelons. Let X 

be the space abtainea from p5 by collapsing 8 Go a goint, and l e t  A C X 
1( be the image of P under the caUapeing mp r , e5 X. h a i n  the aasertioa 

Is that A i s ~ n o t  a retract  of X. 

We tacble this problem i n  the 6- e r  an the preeedinl~ one, and begin 
+i 

by asklog wheaer i(er g i s  a direct  6 d of B*(x), fulowiag Lfie eobmIc@ 

5 of I" , one madily deduce8 that  of! X and A. With % 88 coe%fleieala, the 

cobwlc@ i e  gglven by the following table 

* 
maemre, $ Is w. lsm@lsro i n  bbmemlom < 5 merefore %bere :el a 

* 
direct  am a p l i t t l n g  tw i n  5-1 and it i a  uniques Im Psi frwret be the vhofe $roup 



in dimensions < 5, an3 It is zero in the dimension 5. 
* 

In tbls case the candidate for Im 1" is obviously a subring, %ae 

reason ia that the cup product of elements of dim 2 - 3 bas dim 2 - 6 ,  and ia 

therefort, zero. Thus, insofar as the c o h c w l o ~  ring 18 concerned, A eouLd he 

a retract of X, Io show %.hat it is not a retract, we must uae the cobornolo@ 

3 2 If u la the noo-zero element o f  8 , a suitable calcu?Lation shows that 84 u 

5 * 
PB the non-zero elelaent of €3 . Now the unique candidate for Lra P contaias u 

2 and is zero lo dbension 51 hence it is not closed under Bq , But it would 

+ 2 2 + have Lo be closed if a retraeGioa f existed because P 9q = 8q f . Therefore 
a retraction does not exist. 

This renal?; bas a good application in differentid geometry-, Bt is well 

h o r n  Chat a differentiable -ifold has a continuous field F of noa-zero 

tangent vectors if and only if' its Euler nmber is zero, This iqliea that she 
2 

n-sphere 9' has a tangent field 3' if and only if n is d d ,  SJ la racd has 

3 fields which are indepeiiderrt at each point becauause it i s  8, group m n l f a  (unit 

qualerniona 1, Tbe queslion arises as Lo the rnaxinriim nwbes of fields Laogent 

5 do 9 which are independent at each point, B e  arrijwer is 1, For, by a direct 

construetian, two independent f ielda can be inade to yield a retraction o f  X 

in to  A (see [281]. 

m e  a m  nethd can be used to prove a more general result [&I, 1 n 

k ie a positive integer, and 2 ie the l a rge t i t  power of 2 di-xidlng 04-2, then 

any eed of zb vector PleLde tangent Go are dependent at some mint, T h i s  

result i i?. the beat possible for n < 15, 



Baving demoatrated the need of f iner and finer algebrdc b;oeLe, It i m  

natural. t o  ask 18 there is an end to  the process. The enswer i a  LhEtf Lhem i a  

r e d  hope of achieving a cowlete solution. TQ exhibit the baeis for  zay hop ,  

I mst delve inore deeply into the geometric aspects of the extension problm. 

E'or this ,  the concept of hohnotopy i s  v b t d ,  L e t  h be a wpping A ua 

and l e t  I = [O,l] be the unit  i n t e rvd ,  then a lltamiag B:AXI----> Y is c u e d  

a of h if H ( ~ , o )  = h(x9 for  x E A. Sekting h q x )  = ~ ( ~ , l ) ,  )I 

i s  caUed a homtopy of h into h s  and we write h z?Lh" (b i s  h0m~a3topl~ iGO 

h*)) ,  'Bls is an equiwence relation, and the s e t  of mpe homtapic to I\ fs 

called Lhe hombpy claes of h. The s e t  of honrotogy elassee'of mmings 

A > Y i e  denoted by Wp(X, U ). 

Abasie result,  due t o  &re&, i e  Lhe 

Bomatopy Exteneian Beorem. If f: X -----> Y, A is closed i n  X, srlrd 

h f11. Then any hoglohpy H of h may be extended t o  a homtopy of i. 

I"refiseQhy, the mpping G of the subset X X O U A X X  of X x l  in%@ V, given 

by Q(x,O) = f ( x )  for  x E X and a (x , t )  = H(xIt) for  x E Ag t E I p  m y  be 

extended t o  a mpping F:X X I  -> X, 

m e  intuitive idee of the Wleoresr is Lbat if' we grab hold of" Wle w e  o f  

A am3 puU it along, then the image 0% X w i l l  come s l i d l w  after.  

me theorm is not true i n  the generdi ty  stated3 some sestrfction on 

X,A or Y i s  neeessaw. It ~~suffices for exanip3.e i f  X i e  trimgulable or if 

X %mi A erre Lrimguleble. It sufflcee Lo i ~ a e  the condition 02' beiae; 

an abibsolute nei@borh-hood re t rac t  on ?l or on X and A, in the f i tuse ve 

a.~sume some such restriction without further mention, 



Notice &at the  theorem asser t s  the  extenaabili ly of cer ta in  kinds of 

mappings. This sopation of a special  extension problem i s  o f  the utmost i m -  

portance f o r  the general problem because of the  EoUowing 

. The extendabili ty of h: A =--> Y Lo a mpping f: X -> X' 

degenils only on the  homotopy c lass  of h: If h i s  extenilable Esd b 2 h 9 >  

then h i  i s  extendable. 

It i s  only necessery t o  extend the hornotopy t o  3': X x X -----> U sod s e t  

rV(x) = P ( x , ~ ) ~  

One advantage t h i s  gives us is that ,  i n  m y  p r t l c f i a r  exLenelon problem, 

we r ~ a y  v q  h by a homotopy and obtain a sinrpler but equivalent ssobaem, FQr 

e x q l e ,  suppose It were known t h a t  h is bomctaplc t o  a co&tm% h v  

( i , e ,  h1 ((A) i s  a s ingle  point) ,  Binee such an b ¶ is obviousZy extendame, 

50 is h e  

me resUIt 8380 eImblef3 us t o  rephrase the extension problem i n  an alrpsr- 

en t ly  weaker form: Does there e x i s t  an f such tha t  fg 2 h? Given such an 

f, we have t h a t  f !A is obviously extendable, and f 11% 2 \" , and s o  b is 

extendable. 

Ilaving freed one aapeet o f  the  extension problem (replacing fg .; b ~ J I  

f g  Z h ) ,  it i s  natural  t o  consider freeing other  par t s  of u m e c e s e w  r e -  

Lrictlons. 2he condition t h a t  g be Lhe inclusion mapping A C X is no 

Longer an e e s e n t l d  feature. fit X , A , V  be any three spaces and l e t  

h: A -> Y aod gi A 4 X be mapl)ings. b e a  there e x i s t  a mpping 

f: X -> U euch t b a t  f$ 2 b2  This problem i s  eaLled the ?el"%-facLoriza~iw~*~ 

problem, The clans of t h e ~ e  problem includes the exkension problem and @any 

more, Brodeoiog thue the e%ass of problem doee net increase the dfff lc is i l les  

because s f  the foUmira~.  sesul*. 



Each lef t - factor izst ior ,  p r~b lem i s  equivalent t o  some re t rac t ion  problem, 

To see th is ,  we start with a le fc- fac tor izaaon problem as above, and 

constnict  a space Z as follows, in the union of X, A x I and Y, identi* 

each point (a,~) with gba) i n  x, and ident i fy each point (a&) with h(a)  i n  

W. The resul t ing apace Z contains X &ria Y md a bomotopy of" g i n t o  b, 

It follows quickly that Y is a r e t r a c t  of Z i f  and only If there sxis"c a 

mapping f :  X -> Y such 'chat f g  2 h. 

%us the broadest type'of problem i s  equivdent  t o  the  narrowest type, 

It i s  eas i ly  shorn 'chat a le f t - fac tor iza t ion  problem aepends oK4.y on the  

homotopy classes of g and h. Even more it depends only oa the bomtopy 

of the three spaces involved, Two spaces X, X-avve Wle same b o r o o h ~  

type (are homtopieaUy equivalent) i f  there ex la t  maDplngs 6 . 8  X ----$. X'  and 

4 \ XX1 -> X such t h a t  44' 1: i den t i ty  of X b d  4'4 '2% ident l ly  of X. 

WJ m y  sLlbstitute X' f o r  X i n  any problem if' we s e t  g" Edg, Aoalogous sub- 

s t l tudlons can he made for  A and Y. 

An acrdvantage of tb1s f l e x l b l l i t y  i s  thnt any p a r t i c u i a ~  problem can often 

be great ly  simplified by horntopic a l te ra t ions  of the  apacee and mppiags in- 

volved, 

More in~portant hawever i s  the l i g h t  which it casts  on the c lass  of aai 

pro,ihems, i f  we consider only those spaces admlttlng f i n i t e  t r i a n ~ a a t l o n s ,  

then there a re  only a countable nuniber o f  ;laimtopy types o f  spaces, and f o r  my 

t w o  spaces thereare or;lyp. countable nurriber of homtopy classes of  mappings. 

%is statement can be proved by the  use of %he well-known slnrplicial approxlfiia- 

t i on  "cneorem, It is s consequence that there are orily n countable number of 

extension problems. This i n  i t s e l f  makes It renoorreble t o  hope f o r  e f f i c t i v e  

me%bda of ~ o i v i n g  any extension problem, 

To subfitantiate tb le  bopel ~ O n 8 i d ~ r  the notion of the induced hom~10sa,blsm 



P* of cobornolorn asaimed to a mapping f: X -> Y, A weU-1aom property 

i s  t ha t  homotopic m p s  ,induce the same hawr&ism, Hence we have a finetion 

* 
defined by ~ ( f )  = f . By Iiom we mean Punctiona preserrPng whatever 

T 

Erlgebralc stmcture we are able to put into the cob om lo^ theow of spaces. 

Suppose we W e  an extension problem &Lh spaces X,A,U such that % 
R~~ 

is 1-1 into. Suppose moreover thatthe aigebraic problem 

* 
fg*4 = h has a solution 4. Since % is onto, there exists an f :  Ti: -> ?C 

* X + 
such that f = I$. llhen (fg) = b . Since RAY is 1-1 into, Lhie icnpiies 

fg rh. Hence the solvability of the algebriac groblem is both necessaw fmd 

sufficient for solvlw the geometric problem. 

%bus we wodd bave a complete hold on the extension problem if we knew 

that % i s  1-1 onto for FU. trimguiable spaces X, Y. %is if. true lfsr some 

2 spaces and false for others. For exmple, let X = El3 and Y = S ; then 

* 2  * 3  3 2 2 
Earo ( a  (8 ),El (8 ) )  = 0, and Hap (8 ,,% / = n. (B ) is infinite. Bwever o w  

3 
polnt of view above has been too narrow in speciwag the range oP 

%a 
Borne 

more intricate dgebraic gad&et should do Lbe trick, 'Ilne poscllbilitles are mny, 

F?lr ex;cunple %(f) could be taken to be the C O ~ D ~ Q M  sequence associated w i t h  

the raapplw cylinder of E, 

?he r i d i n g  of 8 suitable 1-1 mppIw % of Map ( X ,  Y) into a conrput-e 

algebraic object is called the hornotopy elassificetion problem, Solvlng i d  earn- 

pledely solve the extension problem cowleteiy, Way 6hoUa.d we be hope- 

o f  soivlng this? Hrst, W p  ( x,Y) is a cciw'cable set, aad is therefore suit- 

able for &gebralzalian, Secoadiy, in m y  special cases (ss he s h a m )  

are have obtained salutians, Trtir&1y, we have available BCPM a varieky of 

kunetbonp: % "abieh taken togezber nay provlde the complete solution, 



$8. WPting problem. 

mere  is a c lass  of  problem cal led l i f t i n g  prcibleroe which w e  d u a  i n  , 

a cer ta in  sense t o  extension problems. Xn a l i f t i ~  problem, we are given a 

f i b r e  bundle X over a base space Y with projection r": X -> Y. 'bbia 

meaim t h a t  each y E Y +'has a neigfiborhood V such that P-'V i~ represenhble  
C 

ail a product space V x F f o r  some fixed sgace F c a e d  tbe f ibre ,  FurLher- 

m r e ,  P res t r ic ted  t o  f - ' ~  i s  the projection V X F ---+ V. bn the  l i f t i n g  

problelo, we art3 &so given a apace A and a mpplng hz A-> VJ sad the 

problem i a  t o  decide whether there  ex i s t s  a mpping g: A 4 X such tbat 

f g  = h. 

P Wie condition tbt X ----> ?1 i s  a bundle i s  dual t o  t h e  conBiLion of aa exten- 

a ioa problem t h a t  A A> X i s  an inclusion mpplng. 

An e l e t o e n t q  exarnple of a l i f t i n g  problen and i t a  solut ion is Lbe 

. If X is B covering epace of U w i ~  p roJeb tba  fg 

then a mpping h i  A --+ Y e m  be l i f t e d  Lo g: A -> X i f  and on9.y if Lbe 

aaLgebraie problem posed by the & d e n t a l  groupbas a solutions 

It "csbould be r e c a e d  tha t ,  mince X covers Y, P, lmbsde x iria- 

m m h i c a l l y  b;rnaiD T ~ ( X ) ,  Aha, since base pints are nod s p e c i f i d ,  the inrages 



of f, and h, a r e  only defined up to inner  a u t o m q h i s m  of rI(y)* 

iLPlua Lo decide whether the algebraic problem hss 8 soiut ioa it suf f ices  do 

d e t e d n e  whether some conjugate of f ,% (x) contains b,rl(~), 

Tne moncdromy theorem is used i n  complex variable 'cheoqy i n  order t o  find a 

single-valued branch of the compositioo of a single-vaEuc?d a& a d t i p l e - m u e d  
fun  ction. 

If X i s  a bundle over U with projection f, we obtain a a p e c i a  Uft- 

ing problem by taking A =  Y and h = ident i ty ,  A solut ion gs Y' + X oP 

Eg = i den t i ty  i s  called a cross-section of the bundle, Cross-seca,~ning pmblem 

are  the duals of re t rac t ion  problems. 

A great  var ie ty  of  these problem a r i s e  i n  d i f f e r e n t i a  geomew (me :24)), 

Let Y be a d i f fe ren t iab le  manifold. For any tensor of a specif ied aLgebrale 

type, the s e t  . . of all such t e s a o r ,  at,m points of Y fay a fibre . w a p . ,  X 
,.. . . . . , , '  ., ,$ .:: :,, ". ,., , ,, . ' ,  ' ' ,,**.*.,. 

over Y. A cross-section of t h i s  bundle is a tensor f i e l d  defined on Y of the 

agecified L-fie, For ex~tmple, l e t  X be the manifold of non-zero tangent ' , 
D 

vector6 o f  Y, A crose-section is a continuous f i e l d  of non-zem vectore, For 

a compact Y, sueh a f i e l d  ex i s t s  i f  and only i f  the E d e r  nurnber of U i s  zero. 

This i s  proved bj. using cobio~~~ology groups of the dimension of U, MBny apbtlica- 

t ions  of Eilgebralc topology t o  problem of t h i s  type have been d e ,  h t  mn;i 

mre r e m l n  out of re&&, 

We propose Lo show now t h a t  the dua l i ty  between externion .and 1iBLing per- 

s i s t s  "r considerable d e t a i l .  m e  d u d  of  the horntony extension theorem is Lhe 

Covering horntom theorem. 3 3  the  s i tua t ion  

, . 
, .:. ' , .  

where X ls a hrrndld over Y, lot' H be any homl0p.y o f  hi B e n  there  s x l o t a  



a bonotopy G of g such that f G  = M, i.e, any motion i n  the base space 

U can be covered by' a motion i n  the bundle space X, 

Tbe proposition asser t s  t h a t  a cer tain irlnd of l i f t i n g  problem &ways 

has a solution. In analogy with the case of the extension problem, we have the  

Corollary. Ln any l i f t i n g  problem, the l i f t a b i l i t y  of a mapping 
0 

b: A ---+ Y depends only on the  homotopy class  of h. 

L1 m y  l i f t i n g  problem, a ~ o l u t i o n  gi of the weaker problem fg '  2'4;h 

leads t o  a solution of  the problem f g  = h, It is only necessarJI t o  cover the  

homtopy of P g V n t o  h by a homotopy of  gt. 

AB before we can abaodon now the r e s t r i c t ion  t h a t  X i e  a f ib re  b u a e  

over V, We define a r i@t- fac tor iza t ion  problem to consiat o f  t h e e  spaces 

.& X, U rzad mappings h: A ----> U and f :  X 4 U. A solution i s  a mapping 

g :  A ---4 X such t h a t  f g  h. b. lZIe existence of a aolution depend6 only on 

the  bomtopy classes of the rnapplngs and the hornotopy types of  the  apaeee, 

The general method of handling a l i f t i n g  problem o r  u, r$gl~t-PacLorizaLS_on 

problem i s  the stme as t h a t  used f o r  extension and le f t - fac tor iza t ion  problems. 

We t ransfom the problem t o  m d g e b r i a c  one by applylng a a n c t o r  from topalogy 

t o  algebra, All of the discuseion of  the  derivea d g e b r a i c  problem appl ies  

equaUy well t o  the new s i tua t ion ,  When we are able t o  e r a  i n t o  the  a g e b r a l c  

finetor enough e tmcture  t o  be able t o  solve the homtapy c lass i f ica t ion  problem, 

then we w l U  be able do aolve any l i fLing  problem. 



$9, The classification theorem of ETopl" and Burewicz 

!%ere are certain restricted situations where hornlogy and cohornoboa, 

considered a~ having additive structure only, are adequate to solve the horn- 

Lopg classification problem. "Iko theorems proved about 1935 mark hi& aspots in 

this direction, These are the theorems of Hopf and Hurewicz. 

Hopfls classification theorem. If X is a finite cornex, 8nd a > 0 

ia an integer such that E ~ ( K ]  = 0 for q > n, *en the aatusal mctlan 

W p  (K,s*) -> Horn (8(sn), H~(K)) 

is one-to-one and onto. 
-, 1 p"" 

Since bl(sn) is infinite cyclic, we have . k , ,,8 : i ,<& ,i. ; .. .*,:,A+. : A, 

therefore Map ( x,s~) is in 1-1 correspondence with $(K). 

Bureuricz" classification theorem. If Y is a comected m a  8LGlply- 

connected space, and n is an integer such that B~(Y) = 0 for 0 < I < a, 

then the natural finction 

is one-lo-sne and onto. 

&aln H~(s~) is infinite cyclic, and therefore ~ilap(8~,~) is in 1-1 

correspondence with %(Y 1. 

n 
As i a  weU knom, l?urevicz defined a group structure in Wp(9 ,v) 

givlas ari ebellan group denoted by n , ( ~ )  and called Lbc nth  homatopy group, 



m e  conclusion of tihe theorem can be reetazed: - %en ri(l(V) = 0 o r  o < i < a, 
P 

and wn(Y) = E ~ ( Y ) .  - 
The boraotopy groups, l i k e  the  homology groups, form a functor from t o m l o a  

t o  algebra, and convert geometric problem i n t o  a l g e b r d c  ones. B e y  can be arsd 

are  used t o  solve extension problem. Elowever, unlike h o w l o m  groups, there  

i s  a eevere r e s t r i c t ion  on t h e i r  use. Nomotopy groups are very d i f f i c u l t  La 

calculate effect ively,  Conrputlng a homotopy group requires ue t o  solve FL horn- 

topy classiSicat ion problemj and Ynis m y  be a problem of the  same order of 

d i f f i c u l t y  a s  the extension problem under consideration. A chief Vlrtue of 

Hurewicz% theorem i a  t h a t  it reduces the celculation of a parlicubm homlopy 

group t o  t h a t  of a homology group, 

The Bopf and Eurewicz theorem have an intersection: Lse homtopy claesea 

of mappings sn -----i. kin are  i n  1-1 correspondence wlth the hommrphiam 

n H ~ ( s ~ ]  -> B ~ ( S  f. Since ~ ~ ( 8 ~ )  i s  i n f i n i t e  eyslie,  any such hommrphlsm 

f++ Is characterized by an integer  d called the degree of the  m a p p i ~  P, a d  

~t s a t i s f i e s  f*(zj  = dz f o r  z E %(sn),  

B e r e  i s  a union of the two theorem which i s  due t o  Eilenberg [Uir 

Homotopy c l sss i f ica t ion  theorem. Let I( be a f i n i t e  compLex and n a 

posiLIve in teger  such H'(K) = 0 f o r  q > n, ?LeL Y be a connected and 

obiply-connected space silch Chat Hi(Y) = 0 f o r  0 < i < n, Then Eiuzp(K,Y) 

Is i n  1-1 correspondence with K e dbe nth coho~r~lo&y group s f  

K using H ~ ( Y )  8s coefficients.  

Notice that  the hypocbeses allow only a, single dimension n in vhieb 

Yoe cobornology of X is nsn-zero and tho homology of Y i s  non-zero, Aa 

soon as we allow en overlapping a" non-trlvlaLity i n  rrsare than one dllrienslon, 

the d ~ i t i i v e  structure o f  homolo@;y and mhomaiop~ becomes inadequate, 



2Ie me-tbod iri-lroduccd by E:iicz~bcrg t o  prove t h e  above reoul t  bas w r y  

genera; apiilicribili-by, utd l a  called obotruction Ljieory (see [2kli, Part III] ) ,  

Let K be a co~riplex, L u. subcornpiex and f: L -2- V. For the  sake of sinrpli- 

c i t y  aoomre t h a t  Y i n  i~rcwice i:ollnect!:d and olm~ply-con*iected. Let K~ denote 

tbc q-dimenaionnl olrelcton of K, The subconqlexes L u K' f o r  q = 0, I ,. . . 
form an expailding secgxenee. Led us attempt t o  extend f over eacb i n  turn, 

An exteneion fo o v e r  L u KO i u  o b t n l ~ ~ e d  by defining fo do be f on L, 

t o  have a rb i t rury  values on the vcrticcu of I: nod in &, For any 1 -ce l l  

o of K - 2 ,  is defined on i t o  vertlccu and eivee two points i n  Y, As 

1: Is arcwise connecteii, we m ~ y  map a i n t o  a path joining tbc two  point^, 

Doing th ia  fo r  each such o gives an extension f of f over L u 2. For 1 0 

each 2-cell  a of K-E , f1 is defined. on i t a  bounrilrry i- giving a loop i n  

Y, Bince ir (Y) = 0, the mapping f on b nny be extended over a, Doing I a. 
thie f o r  eacb a gives an exLcrlnioa f. of fi over L u 8. Now i f  eacn 2 

(Y) = 0 for  i <  dim(^ -L), there  i e  nothing t o  atop uus ib.onh continuing dhia 
i 

procesn and obtaliiinc tm exLennion over aU of K. B u t  tlriii i s  dao severe a 

requirement, arid we m o t  aek wiri i t  hqpenn i n  the general, cam, 

h s m e  now ttmt sanehow un ext-ennion f of f over L u K' has heen 
9 

achieved for some q, uriSi consider the extension problem pooed by each (q+l)- 

cell. a of. K - L. We have thu t  f 1 b i u  defined, and i o  a mapping of n 
4 

q-sphere i n t o  Y, %is  detcrmlncu tin elernen& of Llhe hornotopy t~mup 71. /Y) pro- 
"2. 

vlded we give b an naricrrLution, 1blc 16 done by first orPenLiri(: 5, uiid then 

givlng i- the  or ientat ion of the  nlfiebrulc bouruliiry &a, Then, fo r  each or ien t -  

ed eel1 a, 5 130 deflncu un clement of (Y )  denoted by c ( f  0 ) .  I b i o  
9 (I' 

firaction of (ii+l)-eello nuy bsn regarded itu n (qklf-iiix~i~cochriin of K w i t h  en-. 

ef f ic ien t8  i n  ?rq(Yj, and l o  denoted by f '  airice I' crtn bc cxturidi:d 
4 



over o i f  and onLy i f  c(lC , a )  = 0, we ca l i  c(f ) the obstmction t o  ex- 
9 9 

tellding f 
9' 

Since f. i s  defined on each ceU of" L, c ( f  ) i s  zem on 
9 9 

L, It is therefore a eochain of K nmdulo L. 

&st inrpcrtant is the fac t  that  c(f ) i s  a cocycle, i .e,  it vanishes on 
9 

boundaries. mis PoUowa because it waa defined usin@; the houada~y, and a = 0, 

It d e t e d n e s  therefore a cohomolo(gy class 

- e(f9) E E~+'(K,L~W~(Y)) . 

Gowider now what happens i f  we re t reat  one s k g e  t o  f 
9-1 

and extend, it 

over L u flq i n  some other fashion obtaining f" any q-WU s of K - L, s- 
the two mppings f , f ' a g r e e  on the boundary, and give Lwo*eella i n  U ula 

9 9 

a coolmon boundary, mese determine a map of a q-sphere i n  Y, a hence ao , 
element of n (Y)  denoted by d(fq,f\,%). The resulting q-cochaln is c a e d  

9 

the difference eoehaio. Its main property i s  LhsL its cobouadary is the differ-  

ence of the two obstmctIon cocycles. 

- 
Tnis gives c(fq) = F(4h) . m e r e a r e  c ( f  ) depends oaly on P an& can 

9 n-1 
be written ~'"(f 1. It i s  the obstruction t o  extesdipg f 

q-l 
over 

q-l 
L o K "I knDwiqb~ that  it can be extended over L u K', 

Now suppse we retreat  two stages t o  %-2 Bnd extend over L v K  Q-L i n  

some other fashion obtaining fi-l. '&is gives a (q-b )-coeheia d(f f ", 9-I* q-l 

Its aoboundar~~ is - c ? ~ ; _ ~ ) ,  90 i f  the al terat ion P' i s  chosen so that  
4-1 

d(Pq-i,f4_l) is a cocycle, it m y  be extended t o  8 map fi of LUX'. ~n 
th i s  case ;( f ) and z( P" )can be different cob or no lo^;;^ clasaes, %eir 

9 9 

difference is sow function cP the eccycle d(fq_l,P;-l), in fact  they are 

related by the squttrlw opretlorm 



1% foUows that  the obstruction t o  extending P over L K'*', a s s m i ~  
9-2 

it can be extended over L (J K' , i s  an element of the quotient group 

2 s-l* aq+l/ ss r; 

If we now re t reat  three stages t o  f and extend over L u K' i n  some 
4-3 

oLher fashion obtaining f 1  then d(f f 1  1 i s  a (q-2)-cycle, Bnd Sq2 of 
9' 9 - 2 9 - 2  - 

i ts  eohomclogy class i s  zero, The difference c(fq) - C(P" i s  sozne Panction of 
q - 

f '  1. !be relationship i n  t h i s  case has been studied by Adem [I],  ( fq,29 q-2 
3 Be has defined quite generally a cohomolom operation, denoted by Q" , M c b  

increases dimmion by 3, i s  aefined on the kermel of $q2 aad has sues i n  

2 the cokernel of Sq . Ihe weration prov;ldee the desired codection . 
Ihe three stage retreat  is as f a r  a5 this g m  ha6 been sea i n  a de- 

Lalied and effective m e r .  The general pattern i s  clear, I f  fq and f' 
9 

are txt3 e&enaioos of f over L u K' which agree on L u K (0 5 r < q-3  1, 
%hen d(fr+l,fi+l) i s  an (r+l)-cocycle. W t h e m r e  it l ie8  i n  the kernel of 

2 3 Sq ; hence is defined on it, and it Uee i n  the kernel of dp j hence 

so= m o w n  operation t l  is defined on it, If r < 9-4, it Ues  i n  the kernel 

4 s-.4 of Q, j and eome operation dp5 is defined on it. "fhls continues up t o  tl , 
- 

rend th i s  operation appUed t o  d l  gives the difference c(f q) - ( f i) 
2 3 mcdul.0 m g e s  of Sg , dp , ..., #q-r -1 e 

B e  methd of eueceeaive obsCmctiom has two W n  phases, EYrsL-one 

mmt c w a t e  effectively t b s e  homctopy gmups T~(v) which appear as GO- 

ekflcient groups. TLais i n  i t s e l f  is a d i f f i cu l t  problem* it ba worth noting 

I n  Lhie C O ~ ~ C ~ I O C  that  E,H, Brown 161 has ahom that the homotopy groupa o f  a 

airaply-connected f in i t e  complex are effeeCiveLy c~mputable, m e  second phase 

%e do &ve effective m o l M a  of cowutlng the operetione ai for i > 3, Mch 



work reinalas t o  be done, mi, enough 'nas been aeceqi l shed  do make one hope- 

f u l  of ulLIrnaLe success, 

m e  c o h o m o l o ~  ring. 

We shaU t u n  now t o  the methods of constructing c o h o m l o ~  operations, 

Perhaps the sdmplest operation i s  the  cup psoduct which gives Lhe r ing  s t n r e t m e  

to the cohomo1ogy groups, %en first discoverea about 1936 by Alexender, Eech 

and Whltney, the cup product appeared t o  be very ~ s t e r i o u s ,  1% was not know 

for  extu4ple why cohontology d t s  a r ing  s t m c t u r e  but hornoloa does not, B e  

forolulas ciefiaing the cup product gave l i t t l e  ins ight  i n t o  the s t ructure  8% the  

cohoraolow ring. 

Eefsehetz i n  hi3 Collowium book of 1942 presented a new approach do pro- 

ducts which dispelled m e h  of the m s l e v ,  It was based on products of com- 

plexes. If K and L are c e l l  complexes, then t h e i r  topological product 

K x L mqf be regarded as  a c e l l  complex i n  dhich the c e l l s  a re  the  prDduct8 

o x  a of c e U s  a E K and T E E, It follows t h a t  the chain group8 of 

K x L are  sum of tensor products of the  chain groups of X m d  t 

Sntrduciag  orientations su i tab ly  ( i .e ,  defining incidence umbers i n  K x L 

i n  terms of those in K and t), one ar r ives  a t  the bousldary f o m a  

&om Chis i d  PoiSou.3 that the  produet of two cycles it3 a cycle, a d  i f  elbher l e  

a boundary so  is t h e i r  p r d u c t .  "Phu~ we have an induced honiomori,Gism 



In fact,  with integer coeffieiente, 6; 1s an isomrpblsar of G B @ H  
P + F  P 4 

with a direct  s aP ~l,(lC X L). bbreviat ing a(x 63 y) by r X y, we 

obtain a bilinear product which i s  associative abd c-tative: i f  T in ter-  

changes X Bsrd Z, then 

An eatireby analogous g ~ ~ l e  can be played wiLh  eoehalns d echomlogy, 1P 

u and v are cochaim of K and L respectively, define u x v by epeeii"jr- 

ing i t s  vdues on prcduct ceUs as PaUowa 

(Id i s  understood here that  u ~ a  i s  zero if u and o hsve dimerent dmrz,- 

4?L0ZW 1- This gives an isomrphlsm (K o r  L f l d t e )  

C~(K x L) = C 
P+4"r 

eP (K) 63 c9(L1, 

seliaFflng the eoboundary relation 

and inducing 

%fa #eMs a bilinear product which is associative, and conanutative. St i a  

alee h i m y  a o n - d r i e d  i n  that a map8 $+qEr LIP @ B~ ismrpblca%ay onto 

a Birect s of $(K x L), 

Up La "cis point the resuita fo r  hornlorn a d  deohomlo~ mare on a par, 

Bidteke K =  &, end L e t  



be tihe diagod m;l?ping d(x)  = (x,x), Passing to laomlorn and cohornoloa 

givee Lvo diwrarris of hoonomrpbielns 

* 
Clearly d, and a c m o t  be conrposed, but d and O cab be because co- 

homloa is contravssiaet. lZle cup-product ol" u E @ f ~ )  and, v e B'(K) is 

defined by 

-a * 
u v = d  a(u@v) = ( P  (uxv), 

W e  @yes a product in the coho~llclop~y of K whlch ia asscclative d c m t a -  

tive: uv = i-aP"qvu . - 

Thle melhod 0% kfschetz olakes it conrpletely clew why co-loa h a 

ring structure "Jut hornlow doee not, It also show Lhat the shtdy of the ea- 
* 

h o m l o a  ring reduces to the study of the hommrphisln d , i.e, to 8.s inveesi- 

gatian of the way in which the diagona is imbedded in the product, 

A very beautiful appPicatlon of the ring structure was rnade by HopP 1151 

i n  detenalging the coh~molom of Lie groups as foUow 

. U1 G is the space of a Lle group, 

then the cohomlogy ring of Ci over a field of coefficients of characteristic 

0 18 the s m  as the cohomlom ring o f  the prcducl space of a cobaectioa 0% 
Si 

spheres of odd dknslone, Equivalently, H (a) is an exterior agebra with 

d B  dimneioaal genersldara. 

There is an exlenaion Wearem bidden la thPe prop@ltion, To eee dbfa, 

let a: be a finite cowlex, a& let 1 denote a eelected vertex of K, Pia 

+Ae pspoduet K x K, lie$ S v K bena%e the union o f  the subeets K 4: L and 



1 X K i t i s  the union of 'iwo copies O? K with a po-ia?; in ccmncn, 

Define 

men for each K, we have an extension problem: C a n  b be extended to 
Z 

f r K x K ---> K? A very hP6koag mceeasry condfdlen for tiiPa I s  that H (K) 

must be m exLerIor algebra 6iiTn d d  dimensiand generatom, For the eai lst-  

ecee sf P defines r? continuous mtdtipltcrjition i n  K +JJ xy = P(x,y) haviw 

P be a tvo-eided mi%, And eueb a maaltipliciltioa "dae &I. 'that Bopf =aimed 

I n  proving his theorem, 

Wa extensive geaerdizatiea o f  Hcpf'e Lheore~i  ha^ been gPfen by A, &re1 

[ b ] ,  He relaxes the hypotheses by al lowing the space hi. to be hnfhiaite 

e n  md the coefficient f i e i d  to have a gtime -baa-ederistlc (providing 

* 
Yne f ield i s  perfect), Iif- concludes that H (01 is a %eneor product of ex- 

terior E;lg&rai; and poI3xar;i.d r ings  (wh ich  m y  be l;l-imcadehi), 

h o t h e r  applSea%iaa of the cohomlogy rPln was d e  by Pcntr$ag%a Lo the 

c-utatioa o f  an obaLwc.l;ioa j191. W s h p l i f i e d  form ni' the re~uit goea as 

2 
liaUsrirs. Led @: K~ + 8 rap the 3-skeleton o f  a complex 5; in%o $ne 

* fi 

%-~;phei.e~ and l e t  u Be a generator o f  the infinite cyclic group L f ( f f )  u d o g  

3 integer coefficients. Since 153 i e  the 3-skeleLern, the inclu-isian K C K 
i 2 3 \ 

l i d u c e s  an ia~mo~gbisn 4; ( Tnen the coh0:si)pag-j ciasc of ?A,.. 

-3. * obstruction to extendire h over K4 i s  the aware o f  4 f u . Berefore 

. i -1 +** 9 
f , l2 = 0 i e  a neee~aa ry  and s u f f i c i e n t  cordition that h be extend- 

4 able over K . 



2 
S E 2 ,  Motivation Pos 9q . 

Because the olothod of conslmctlng the maring operations appears La 

be somewhat Flsbitraq, It is worthwhile to give the motivation which Led their 

ddrecovem, Biefly, obstmctioa theory gave a. non-constructive prwf o f  the 

2 
existence of Sq . 

%I see this clearly, let K be a conrplex, and led v be aa n-cseyele o f  

K representing u ~3 ~ ( K ~ z ) ,  Canatmet a raapping f o f  tibe (n+l)-skeleton 

&?+I into the n-sphere sa 86 PoLLows. First, ski& Lo a polat LB 

be mqpod by f into a point yo E sn, Each osiente8 n-cell n. of K be- 

come8 rta n-sphere and m y  be mapped onto t? with the degree v - a ( =  tbe 

vdue of v on a), For each /n+l)-cell T the boptasal-jr of T 1.9 olappd 

on iSa with total degree = v * ?I a .  &d%in.ltion of eobounda~.;., we have 

v -  a a  = F.r - a  = 0 because v is a eocycle. &I the m m l n g  of the beuhndmy o f  

a 
T exdenda over T, king this for each T defbes P: ecS, -> E! . 

m e  abstruedinn to extendine P over ?'2 ile m (n+2)-eocyle e ( f  ) w i t h  

n - 
coef flciends in - i7,+l(9 ). 1 t ~  cabomolo~ claaa c ( P depends only on the 

- 2 
class u of v, aad my be wri"iea e(P) = Sq u . Mhen n = 2, we have 

2 - n 48 1 = Z, and PaaLrJagin'a ex'ceoslon theorem (glib) gives c ( f )  = u w u . a 
Wnen n 3 2, B e u d e n a d  proved that nn+a.(8nj = $, and Gherefore 8q2 i s  

li mapping @(KJZ) 4 892(~1%2), 

B e  f i rs t  effective def in i t ion  o f  t h e  squmcs used explicit formilas in 

8 impEic id  complexes. %cae were genercslizstierafi of the Alexander formula for 

t h e  cup prducl ,  and they gave no i n t u i t i v e  insight, I$ obtain auch ifislghi: 

i t  weas bord&?L t o  find a conceptual deflatithoe malogous to Lefachetz0a 



constmetion of cup products using I( x K and the diag0,oiEd mapsing d: 

K -> K x K. %is xae found; and, suwris ingly ,  id revealed a eonneedion 

with another developend of algebraic topolom, omely, the  homaloa groups 

of a group. We turn t o  t h i s  now. 

kt n be a group (possibly non-abelim). In the applications we have 

i n  d n d  s is a f i n i t e  group. A eomplex W i s  called a i f  r i s  

represented a8 a group of automqWsms of W. A +-conrplex W l e  said t o  be 

r - f ree  i f ,  f o r  each c e l l  o of W, the  t r a n s f o m  of a under the various 

eleroenta of w a re  all d i s t inc t .  Let W/T denote the c o d e x  obtBl_ned by 

i d e n t i m n g  points of W equivalent under n, men r-freeness ilnpiiee 

t h a t  the  collapeing m p  M ---> W/n is a covering with n as the p u p  op 

coverin@, t r a n s f o m t i o m .  Let A(a) denote the  f a l y  of w-Pree comlexer: 

which are  &so acyclic ( t ee ,  aU. homolow groupe a re  zero ), There a re  two 

i ~ o r t m t  f ac t s  about the f d l y  A(T). Mrs t ,  it is non-empty, Beconay, 

I f  W and W b r e  i n  ~ ( 7 ~ 1 ,  then there  are c h d n  m ~ i n g a  

WIT -> W$ -> W l n .  glvlng a ho~notopy ewlvalence, It foUows t h a t  tbe 

hornlogy of ~ / n  depends on n alone, and we define the  hoanoloa of n by 

aq(r) = ag(ulr1 f o r  w E ~ ( 1 ~ 1 .  

Tbia concept was developd f i r s t  by Ellenberg and WcLase, sod i&epeadent%y 

by Hopf, 

AB an e-10, l e t  n be the  cycl ic  group of  order 2 w i t h  generator T ,  

kt W be the mion  OP a sewence of spheree 



are o-cell# denoted by dn ad. Bin. %be collection 0% these c e a s  for 

a 9 0,1, 2, .. - gives ,a ceLlulm atrac-ture on. W, ObvLouew W %a r-free. 

We orien* the ceUe so that  tbe foILowiw are the boundam relatlone: 

an even (&)dimension, evem cycle is a d d i p l e  of ma- 

(d2n+~+ '%,+I ) an& th is  cycle borne.  merefore W is acyclic, Collapsing 

W ---> W/V gives a sequence o f  rea l  projective sgaeee 

The c e U ~  an," Wn come Loge%her do Porn a single cell 4;; a8d the b o u r n  

relations beconre 

% (= the integers mod 2) as cwfficiente, we ob-n B ( ~ ~ 7 1 ~ 2 )  - % 
Q 

for B;U 4. 



$14, Construction of the squares, 

We a re  prepared naw t o  define Lhe swar ing  operations i n  a complex X, 

Recall t ha t  the diagonal mpping d.: K -> K x K i s  used do constmct  cup 

M Y 
prQdUct6 by the ru le  u wv = d (u x v),  To c o ~ o t e  d , one mat obtain 

Prom d a chain mppi~?@; 

Since Lhe c e l l s  of K x K are  the  products of c e l l s  of K, the diagonah i s  

not a subcowlex of K x K, Eence there i s  no uoiquely d & e a n e d  d but  0, 

one m e t  choose d from a col lect ion of algebraic appmximaaone t o  d. 
0 

We proceed t o  deacribe these. For each c e l l  a  of" K, define its ca r r i e r  

~ ( a )  = lo x a[ t o  be Lhe eubco~oplex of X X K e o n e i s t i ~  of u x x on11 all 

of i t s  faces. We re fe r  Lo C(o)  as  the diagonal car r ie r ,  Because x and 

i t e  faces form an acyclic conrplex, ~ ( a )  is likewise acyclie, It is the 

minimal ca r r i e r  of d because C(u) 1% the l e a s t  subccroplex c o n t a i n i q  dia) ,  

chain mapping do such tha t  d o i s  a chain on C ( o )  i s  called en 0 

approximation t o  d. The two principal  f ac t s  about such apgroximr;tions a re  

that they exls t ,  a & , q  two are  chain homolopic. Theee f ac t s  a re  proved by 

conetrvcting the  chain imp, or the  chain homotopy, i&uctivePy 'aatb respect 

t o  the dimneton s t a r t i n g  i n  the dheneion zero, m e  acyel ici ty  of the c a r r i e r  

i s  aU t h a t  is needed f o r  the  general step. Any appmxlmation do i d u c e s  a 
* 

h m w f p h i s m  d , and the homtopy equivdence of any two lnsuree tha t  they 

*L 
give the s m e  d . 

The q r d a a t  point t o  be o b s e d  about the conetmctioa of 
do 

is 

th i s :  alLhou@ the mpping d i s  e m e t r i e ,  there 16  no s m e l r l e  appro*- 

t ion  do, fieciseiy, i f  T i&, the  automlpbiam of K x K which in"caschange8 



the two factors, then Td = d but these i s  no d such that Tdg = do, 
i .- 

6 

ahis i s  easily s e a  by taking K ' $ t o  be a. 1-simplex- a so that M x K is 

a square, 'Be 1-chain d a m e t  connect the twa end p i n b  of the ddiqcna9 
0 

and lie an the periphery o f  Cne square, so $t =st go around one way or the !  

o$her. 

mis difficulty can be restated i n  a more iP3.Wnati~.f=bloaa Let T 

act also on K 8s the identity msp o f  K, !Ehen d i i r  bee, 
, . 

Td = d T .  Bud there is no chaln approximation do,whieh is e&variat, "Fbe 

reason is Lhat act8 freely on the set of pcssible chcicee for, d a but 
0 

leavee o fixed, 

Given a do, we can measure its devfdion from s m e l w ,  Biuce d and 
0 

Tdo 
are carried by C, there Is i chain homatopy dl o f  d& into Td 

0 "  

Psecisely, for each q-cell a, there is a (q+l )-chain dla on G(s) such 

Chat 

Id foILcxe that dl + Tdl is a homodopy of d around a circuit back into 
0 

itself, Por each q-ceU a this homtopy iiea on ~ ( o ) ;  it i e  threfore 

d2ci on C(a) such that 

At this stage, the construction should remind one of the c o n e l r u c t i ~ n ~  

given Pn the preceding section, o f  the n-free cmplex W, m e  a n d o e  is 

made precise as followe, Form the  product complex W X X, Define the  



action of n i n  W X K by T(w x o) = ( W )  x a, The conposition of the  

projection W x E; -----> K and G :  K -> X x K bas .the dnimal .  ca r r i e r  

C(W x a) = l o  x o I j  it i s  acyclic, and s a t i s f i e s  'iT! = GT, Since W i s  

+free, so  &so is m' x K. it follows t h a t  there i s  a chain mpping 

carried by C which is equlvariant: +T = ~ 4 .  (The terxor product @ i s  

used instead of X because bl and K are  now regarded a s  chain eoqlexes] ,  

Rscs3liw t h a t  W consists of c e l l s  dl, Tdi,  we now iden t i ty  4(d0@ a) 

w l L b  the  d i a g o d  approAmai;ion doo, and d(dl @ o )  w i t h  the  chain hmlwy 

d a, etc.  men the  a-relatioee given above f o r  d a, d a, d2a correspond 
3. 0 I 

exactly Lo Lhe f a c t  t h a t  4 i s  a chain mpping: 4 - + a ,  
For each integer  i > 0, we define a product called cup-I, as follows, - 

If u e $(K), and v iz c'(K), then u- v E 
i 

$+4-i(~)  is defined by 

Using the f a c t  t h a t  4 i s  equivariant we obtain the coboundarj re lat ions 

modulo 2 

S(U uI vv) = u w ~ _ ~ v  + v v  u t hi u v + u c?; 6 v .  
4. I 

(By convention, u .wl v = 01, If we s e t  u = v and assme = 0 rnQd 2, 

it follows t h a t  u ulu i s  a cvcycle moil 2 ,  Passing Lo cohomloa  elasses  

gives a function denoted by 

which aesigns Lo the  ciase of u the elaes of u w u ,  I* ica nataLionsUy 
I 

more eanvenlenl; t o  define 



by seLting ~ q J u  = s 8-J " ' 
!The cup-i products depend on the cnoice of 4, However any two des 

J a re  connected by a chain homotopy which i s  equivariant, It fo3dw5 that Sq 

is independent of the choice of 4. 

$1. Properties of the Squares, 

The elementary properties of the §qi a re  a s  foUow8. 

* i * 
1, If f i s  a mapping, then f §qi = Sq f . Thicl expresses the  

i toplogical invariance of Sq . 
2 .  k3qi i s  a homomnphism. 

3. S$ = ident i ty .  

4, 8qpu = u w u i f  p = dim u. 

i 5. Bq u = 0 if i > dim u. 

6 ,  If L C K, and 6: $(L) -----> KI) '~(K,L) l a  t he  usual coboundary, 

i 
then ~ q '  = Sq 6. 

7. If L*: @ ( K ~ z ~ )  ----> K~."(K*z ) i a  the Bockstein coboundary f o r  
' 2  

the coeff ic ient  sequedce 0 ---+ Z2 z4 -> % 4 0, then 92 - $ 

and 

mese  can be proved readily by uriing the machinery &ready set up, Lees 



Tbls can be proved by ~n e~lici"ccompuGation of a n-inapping W -> W @W, 

Uelsing these properties one can compute the sqiisree i n  many special  cases, 

0 1 X 
If dim u = I, i t s  only non-zero squares are  54: u = u and Sq u = G u = u w u ,  

0 1 * 
Id' dim u = 2 ,  i t s  only non-zero squares a re  Sq u = u, Sq u = 6 u, and 

2 
Sq u = u u. These f ac t s  combined w i t h  formula 8 enable us t o  coropute 

X 
squares i n  the subring of H ( K ; z ~ )  generated by L and 2-dimemianal classes. 

For exenrple, 

i f  dim u = I .  

In t h i s  fonmi?a, (:) i s  the binonrial coeff ic ient  mod ,2, and is zero i f  i > k, 

I n  the real proJective n-space pn, the eohomoloa r ing  1s the poly- 

node;? r ing generated by the  non-zero element u e ~ ( P ~ ~ Z ~ ) ,  tmneated by the  

r e l a t ion  un*' = 0. Clearly fonmira 9 gives ail. equaree i n  pn, kt pr 

be a project ive sut;spaee o f  P" (0 < r < n),  and form a space pn/pr by coUapeing 

pr t o  a point,  The collapsing rnap f: pn P"/P' induces isomo~hielas  

n r 
fUs #(p /P ) ru $(pnj fo r  all k > r because pr is an r-dimeneinnd 

X 
skeleton of pn. Let wk E 8 ( p n / p r ]  be such t h a t  f wk = uk. Using 9 

i k and we have wk = (i f o r  k > r and aU i, i n  partlcuPar, 

2 
when 1135 and r = 2 ,  we have Sq w 

3 = X5" 
I used t h i s  e x q l e  i n  06 Lo show 

5 2 t h a t  $/p2 is not a r e t r a c t  of P /P . '11~16 i s  the sirnplest caae known t o  

i m e  where a Sq. gives a r e l a t ion  between coeycles .which are  hot already r e -  

l a t ed  &fa cup product o r  a Bockstein eaboundarg. operator. 



6 Reduced power operations. 

scylaring opera"Lons a re  associated y i t b  the s v e t r i c  gmup of 

degree 2, 1t i s  t o  be expected tha t  rnare eohorri3loa operations a re  t o  Be 

obtained by ~ t u d y i n g  the n-fold power I? = K x - x K, end the action of 

Lbe sy~unetric group S (n )  as  pennutations of the factors  of Pi", mi8 ?is 

the case. The general def in i t ion  goes as  follows. 

Let r be sny subgroup of 9 (n ) j  and l e t  W be a T-free acyclic 

complex, Let C(d x o) = 101"  be the diagonal c a r r i e r  from W x K Lo K?, 

Ae it, is equivedant  and acyclic, there  is an equivar imt  chain mpplng 

kt K* = Horn ( K,Z) be tbe eocbain complex of K. Befine 8 eochan  6 q P e x  

w @K* by 

T h e t e r n o f  $ b e o u r a m  z e r o f o r  i > a d b K - r .  If w e C % ( ~ )  and 

aSlla defines 8 i n  U 63 KI" and rnakes of it a ccohain complex, Define a 

c o c a n  mmlng 



where i = dim n, v is a cachaia of K * ~  = 3: and o is a c M a  of 

g nlGh dim o = dim v - i , 
%he action of a in W 8 K~ is defined by 

M 
Aad n acts as the identity i n  K . Then the equdvarianee of Zmpliee that 

of 4" T.t fouows that 4' transforms cochaina equivalent under n into 

the same CoChain, if we identify ewivelent cochaim of M @ K*, we o b W n  

"An the quotient complex denoted by W @ K men Qhiaducetl a cochePn 
Ti- 

-Tppine: 

Passing to cobomo1og;v with coefficient group G, we &ti&-n an induced 

Laomornarphism 

* 
Nov Lez u be a q-cocycle rood Q of K . Treating u aa cia integer 

cocbain, we have ba = 8 v  for some v, Ben the mltiplea of u and v 

?# 
Esm a cocbain subcobplex M of K . kt denote the inclusion mppiilg 

", 
M -> K . The prduc t  wppisg ?n: b? ----> 1s equivarlmt, hence 

4' and the identity nap sf W induce a cocbain -ping 

Teaeor-lng with C3 an& passing t4 e o h a o ~  givea an induced mapping 

i4 
mpor~ing Y* mc~ 4 gives a mpgiag 



%t depenas ai2parendly an the  choice of and the  cocycle u m d  €4, &a 

f a c t  I% is independent of (any two 4" a re  equiivarimtly h ~ m a t o p i c ) ~  

and it depende only on the cohomology c lass  u of u, The image of B, 

fir a3a r, i s  called the  s e t  of a-reduced powers of u E H ' ( K ~ Z ~ ) ,  
M 

m e  g;roups X (W 8 5 G )  depend only on the  groups a, G arad the  

integers B, g, a, mey a re  generdizaGions of the  ordinary hom1og;y groups 

o f  n, I n  the special  case t h a t  u is an in tegra l  coeycle (u  = 0 i, aad q 

la even, we have 

Fbr, I n  t h i s  ease, M rt Z i s  generated by u, and &? Z i s  generated by 

n u w i t h  T acting as the  identity.  %erefore W 43 X" = W @T Z ~s W,/X~ 
X 

I% we take account o f  the  dinreasion& indexina;,tbe asser t ion follows, %en, 

Lo put it r o u a g ,  

If we r e c a l l  t h a t  the  squares 
9% 

a re  the rood 2 bomlo.ogy classes of 

El(&?), it is c lear  t h a t  we have available a great wealth of c & o m i o ~  opera- 

t ions,  and tha t  Lbese denand aaalysis,  

$17. A basis  f o r  reduced power operations, 

A ra ther  elaborate ana lye i s  126,273 shows t h a t  a relall lrely BwLI. col-  

lec t ion  o f  seduced p e r  operatione generate all others by P o d n g  c q o s i t l o n s .  

m e  analysis has two main s teps,  %!be first ahows +,hatwe do not need to con- 

~ i d e c  % pamtatlon groupej it aufficea to consider, for each prim p, the  

qyclic group p of order g gprd degree g ,  W:e second BLep analyzes she 
P 



homology ( i n  the generalized ;mse )  of 
pD. 

Just as E I J ( P ~ ; ~ )  = Z2, we have ii (p - 2  1 = .Z  
J P'P P' 

A generator 
J 

f o r  group give6 a cohomoloa operation a d o g o u s  do 9$ When p > 2, 
3 "  

this operation i s  i d e n t i c a y  zero for  most of the -?dues of j, m e  reaaon 

fo r  t h i s  i s  t h a t  the homomorphism of homology induced by the inclusion mapping 

-----> 6 has a large kernel fo r  p > 2, I f  we discard the operetions 
B 

which are  zero, we obtain an i n f i n i t e  sequence of operetions eebled the  cycl ic  

reduced powers 

21 
!!be operation (Pi reduces t o  Sq when p = 2, cLnd the  main p r o p r t i e s  

P 
of 'cfiese o p r a t i o n s  a re  mild modifications of the properties of gq2' l iated. 

i n  $1-5. 

To c o q l e t e  our L i s t  of basic cohornalo~ operations, we need t o  &Join 

for each prime p the Pontrjagln pth power, For each integer  k > 0, it 

A t  f i r s t  g l a c e ,  the 'operation m y  seem m t e r i o u s j  however it i s  only a 

mild olodifieation of ttie pth power i n  the sense of cup products, For, if 

k P p u  l a  r educd  p , i t  becomes 2. PontrJagin (201 disco-fered the 

operation for g = 2, Lie observed that ,  if u i s  a cocycle olod ik, then 

i s  a cocycle .rim3 The operatiom fo r  p > 2 were found and s+adied. 

by P, E. Tboms 129,361, 

mere are certain elementary cglhonioloj~y operatiom which are c&en for 



g r a t e d  but must be mentioned i n  order to atate the main resu l t ,  Tbese 

are:  dcl i t lon,  cup products, hornc~wrphiems induced by liamomrgMsms of 

coeff ic ient  g~oups,  and Bockstein coboundary operators aseoeiated with exact 

coeff ic ient  sequences 0 -> G g  -> G ---9 6" ---> 0, %en the  main re- 

sult becomes: 

m e  elementary operations and the operations 92 ,B  2,@i ?? generate 
P?  P 

reduced power operations by f o d n g  compositions, 

8 Relations on the basic operations, 

%e generators l i s t e d  above s a t i s f y  nmerous r e l a t i o m ,  Some o f  %he 

re la t ions  ea t i s f i ed  by the sqi a re  given i n  $15. mibey s a t i s f y  a lso  a more 

complicated s e t  of re la t ions  which were found. by 5, Mem If' a < 2 b, 

then 

Tbls holds f o r  ae lnd ica t ed  operations applied Lo a socycle of any diinensloa. 

i S To c l a r i fy  the rough implication, l e t  us  c d l  an i t e r a t ed  square Sq Sq 

reducible if f < 2J, %en the  foxmula expresses each reducible i t e r a t ed  

square as a sum of i r reductble  ones, i t e r a t ed  squares, as reduced power 

operations, appear as  homology classes of the 2-Sylow subgroup of 9(4), 

mese  re la t ions  were fiund by e a ~ u l i n g  the kernel. o f  the hommwhism i a -  

duced by the inciuaion of the subgroup i n  the  whole group, They have two 

ingortaat comequences. 

1, Each 9qf can be expressed es c iium of i t e r a t e s  3P 

2-3 B q  * J = o > l # 2  s 



ii l2 i r 2 Let us call the iterntui: i; 4 *li.,irf: Sq Sq .Sq a6&-sihle if 

2 2 1 2 i > 2i r - l =  r 

%en every iterated sqcare is mlquely expreselble as a e m  of adri?issible 

The first result shows t1m.t t'nc systeu: of zenerators given ria $17 is 

I too lar~e, we can throw out each Sq for whicll i is not a power of 2. 

(1t is to be noted that if we do this, then t h e  relations satisfied by the 

remaining squares are not readily written), 

'Oie secorid resllt was proved first by J, -Pa Serre [ 2 2 ]  using an entire- 

ly different method involving t h e  Eflenberg-MacLane corrtpbexes. The result 

can be expressed in e more illuminating f~shion. Let A be tbe a~saclative 

(non-eomiltative) algebra over Z2 8enerated by the sqi subJect Lo Lhe 

0 reiatlians of Aaem with Sq = 1, Theti the adrnissibie ele~nents form an addi- 

tive basis for A. 

J. Milnor has shown that the rapping b :  A -----> A C3 A given by 

(cornpare with formula 8 of' 515) defiries u lioxno~norphism of algebras, arid con- 

.u;irts A irito a ifopf aiiiebru, He shows that the dual  iiopf al~ebra A* 
(which is coirmutative] 16 a polynonl-id ring iri uri easily specified a r - t  of 

generators. D~~alizln~, elves a ~ ,  additive base for A quite different from 

that of Serre. h important cG11seqUiucnCi: of Milnor's work i s  that the algebra 

A is nilpotent. 

&iaiogoun results iluve been oiii;ained i"or l.he @ '  for psirncs $7 > 2, 
P 

M e m  [2,3] uiia Certun .four13 lnuei~crrdend~{ tile lii:ribtlon reiiiiioiis, tirid 

proved the annlogi; or propo:;Ltion 1 aria 2 above ,. VdLnor i i t indl i .~  ilL::o Li!e 

caue y 3 2 ,  



To s t a t e  the s i tua t ion  roughly, we have a very good bold on the re-  

latiions sa t i s f i ed  by the eq-cbic reduced parers i n  s p i t e  of the f a c t  t h a t  

these relat ions a re  cowlieated. 

h for  the Pontrjagin pth powers, the s i tua t ion  i a  not a s  s a t i e f a e t o r y ~  

bowever it i s  exceedingly in t e resang ,  I$.oms has given a s e t  of relat ions 

which the pth powers sa t i s fy ,  but i n  a most indi rec t  fashion. lie takes a s  

coeff ic ient  d o d n  a graded r ing  R with divfded powers, Tne divided powers 

a re  functions 7 : n Ar -> Am having the fonnal propertzes of the f ine t ion  
* 

xn/n! . The cohonwloa S. ( ( x ~ A )  becomes a b i g r d e d  ring. He then extende 

the  d e f i d t i o n  of t o  operations 
P 

+n f o r  aU integers n > 0 . D e  - 
collection (qn I &re then shown t o  f o m  a s e t  of divided powers i n  the sub- 

1' * 
r ing  of LI (K~A) of elements vltb even hidegrees, i n  t h i s  way he obtains 

re la t ioas  such as 

AItbou* each pn is  ewress ib le  i n  G e m  of the gP for  primes p dividing 

n, it would be exeeedin&y clumsy t o  write the d o v e  relat ione uslng only the 

powers with p r i m  indices. 

It i s  not yet  known whether we have a conlplete Be& of re la t ions  on tiie 

basic generators. One can ask, for example, whether expressions o f  the 

f o m  @' are reducible? e P 



There is another approach t o  the subject of cohomoLo~y operations which 

makes use of the special  complexes, c d l e d  {~r~nl -spaces ,  due Lo Eilenberg and 

McLaae 112,131 . %ese spaces appear t o  be fundmerit& t o  m y  study of 

horntop*; and it seem l i k e l y  t h a t  the complete solution of the externion 

problem w l U  make vld& use of them, 

1f 7 i  is an abelian group and n > O is an integer, then a apace Y 

i s  said t o  he a (a,n)-space i f  i t  i s  arcwise connected and of i t s  homo- 

topy groups a re  zero except n,(Y) which i s  isomorpf?ic t o  n, 

%ere a re  a few re l a t ive ly  simple examples. The c i r c l e  9' is a 

(Z,l)-space (aU i t 6  higher homotopy groups a r e  zero because i t s  universal  

covering space, the s t r a igh t  l i ne ,  is contract ible) .  B e  i n f i n i t e  diroerislanal 

r e a l  projective space ($13) i s  a (Z2,1j-space (it i s  covered twice by 9- 

whose homodopy groups a re  zero).  AneLher exan~ple i s  the complex proJective 

space of i n f i n i t e  dbeaaion.  It is a (2,2)-space because it is the base 

space of a f ib ra t loa  of 9- by c i rc les ,  i . e .  by fibbres which a r e  ( ~ ~ 1 ) -  

epaces , 

lbere  are  js,o)-spaces f o r  any prescribed n and n, This f a c t  i e  

not evic?ent, ant3 will be discussed i n  some d e t a i l  i n  l a t e r  sect ions,  F"or the  

present, it i s  helplW. t o  an t ic ipa te  two broad conciusione of t h i s  discuseion, 

First, B (7i.>n)-space i s  usueliy i n f i n i t e  dimensional, Secondly, although 

the homotopy s t ructure  of a (~ ,n) -space  i s  simple, i t s  bon:o:ogy s t ruc ture  I s  

ueualPy most intr icaxe.  % l a  i s  i n  s b w  contrast  with a epace such aa 

whose hom~logy is simple, and who~e hornotopy i s  in t r i ca t e ,  

Let II l i t :  i (a,ra)-space, Attached t o  U i s  i t s  findm.entdi c lass  

U 
0" 

%is de an denlcnt cis' $~(Y~T) obtalneci as follbwdo, Sirice ?ri(Y) = 0 



for 1 < o, Iiurewlczb thearexi asserts i n e t  the natural  rnap 4 of n n ( ~ )  

In to  H,(Y) is an isomorphism. Since a lso  X (Y) = 0, it follows Wat n -1 

the natura l  msppla& 

i s  an isomorphism. Then uo i f i  the  element on the l e f t  whose i m g e  on 

the r igh t  i s  4-'. We m y  a l s o  describe u i s  the p r  
0 obstruction Lo 

contracting Y t o  a point I24; p. 187 1 . me first important r e s a t  about 

( r a n  )-spaces, is the 
,.- 

r t  , ?  

Y klr-;T' 
Womotopy c lass i f ica t ion  theorem: If Y is a (5,nf-space, and X %',y ,,q. 

i * i 5 
i s  a coniplex, then the aasignrnrnt t o  each f: X --> Y of f u ,  5kts up B - 3,:..i~h-,-'?' 

0 
h * , . 

1-1 correspondence between ,Map (X, Y) and $(x ;T) .  CJ ,y: ?,  ,., ; 

A proof of t h i s  aroposition, i n  the geometric case, can be found i n  

1 ;  2 1 and, fo r  %he purely s lgehraic  case of s e r a i - s i q l i e i a l  

conplexes, see. [L3 j  paper III, pp.520-5211, In essence, the  a r m e n t  i i e  

the  one used i n  provlng Nopf8s theorem ($9).  If X ,  i n  the  theorem, is a l s o  

B (~)n) -apace ,  the conclufilon etaserts t h a t  there i s  a map f t  X -> V such 
* 

t h a t  f uo is the  Fandmentd c lass  of  X, and t h i s  rnapping l a  a homlopy 

equlvaienee : 

Within the r e a h  of compiexes, any two (~r,n)-spaces hove 

the erne hornctopy type, %us t h e i r  howlogy and c o h o m o l o ~  depena only on 
* 

w and nj hence H ( ~ j i i /  may be wr i t ten  ~ * j n , n ~ ~ ) ,  

'dhe importance or" (a,n)-spaeee to the  8Ludgr of cohomalogy opesatlane 

i s  seen as fol%ow~, Recall %hat a ec-bolos operation T, r e l a t ive  to 

dia~neions q, r and coeff ic ient  groups 6,  Gi i r i s ;  a s e t  of functions 



* Y 
for  each space X such t h a t  f Ty = TXI" f o r  each mppinp P: X U. 

kt , denote the s e t  o f  aU such operations. If we opera? - 
at tons i n  the  usual way (T+T "X = TX C T ' X P  theen & ( q , ~ j r , ~ q  i s  m 

bibellan group, 

Now l e t  Y be a (G,¶)-space, and l e t  u be i t s  findamend& claae. 
0 

If I: E C l ( q , G j r , ~ q ~  then 

Theorem. %e ass igment  T -----> Tug defines an isonaor~,hiem 

%is r e s u l t  i a  due t o  Serre I22jp.2201, and independently t o  Ellenberg- 

MacLane j3.31, The proof mns aa h l lows .  Suppose T, T I  are operatiom 

aueh t h a t  T u g  = !Chug. kt X be a e o q l e x  asrd u E H'(x~G). By "&be 

* 
e laas i f iea t ion  theorem, *ere i s  a mapping i": X --> U such that  t uo = u, 

merefore 

B u e  T = T V n  @(q, 6 ; r , ~ "  ). For the  other  per t ,  l e t  w E $(G, q i ~ g  I), 

Constmet a T E O ( q , ~ j s , ~ "  aas Tollowa, If X l a  any cowlex, and 
*( 

u E H'(X~G), chooile a n ~ p p l o g  f: X -> Y such t h a t  f ug = u and define 
* * 

* 
Tu * P M, One verif ies  "tat 'iuo = x by taking X = U, u = u and 

0 

f = ident i ty ,  



$20- Semi -sii lpLi~iaL complexes, 

B e  rough conclusion of the preceding section i s  tha t  the  d e t e d n a t i o r r  

of all cohomlogy- operations i s  equivalent t o  the problem of c o v l i n g  the  cc- 

hornlow of the (~r;n)-spaces. Tbe l a t t e r  problem bas been the subject of 

extemive research by Eilenberg-meLane I131, H, Cartan [/7,8,9], and othere. 

A br ie f  review of t h e i r  work is i n  order, 

The basic construction of (qn)-spaces i e  given i n  the language aQ semi- - 
complexes, %is appears t o  be a most convenient concept for newly 

all question concerned with bomotopy. The fobfowing def in i t ion  o f  an abs t rac t  

a d - s i w l i c i a l  conrplex K i s  obtained by writing darn f a i r l y  obdoue pmper l les  

of the singolar complex of a space, 

First, f o r  each dimenelion q;. 0, there i s  a s e t  K whose elemente are  - 9 

caUed q-sinrplexes ( to  be thought of a s  ordered eimplexes), Pos each q and 

each i = 0, I , . , , ,q ,  there i s  a h c t i o n  : K ----A> K caUed the id' 
(I s-a 

face operator, and i f  x E K then six is %be ith a7ace of x, Again, - 4' 

for each q and each I = 0 1,. . q there i s  a finc-tT on s, t X -> Kq+l 
* 9 

ca.Ued the it' degeneracy operator, (Picture the colLap6ing of a (~4 ) -  

simplex i n t o  a g-simplex ohtainea by b r i n a n g  the it' and (ii-1jBt verticee 

together) then si i s  the inverse operation),  i be  def in i t ion  is conapleted 

by imposing the ident i t ies :  



A mapping f :  K -> L of one semi-simplicia1 c o w e x  in", onother 

consists of a fuaction f . K -> 1; for  each q such that f = f 3 
9- 9 9 i q q-P h 

ma s f  - 
i q - fq+lSi" 

An ordinary s i q l i e i a i  complex K can be cQnverted i n  various ways l a t o  

a sernl-sinrplici& complex K\ For example, i f  an ordering of the vertfces 

of K i s  given, one defines t o  be the s e t  of order preserving (mneto&e) 

simplicia1 mppings of the standard or-dered q-simplex A i n t o  K, 
9 

As already remarked, the  concept of the singular cowlex  of a space i s  a 

f ine to r  9 from the  category 6: of spaces and mmlrgs t o  the  cstego:ory @ of 

sed-s impl ic ia l  complexes and mappings, There i s  a i'uactor R: @-2- a 
eelled the In f a c t  i f  K E @, then R(X) Is a 

GGI-complex, B e  par t icu lar  r e d i z a t i o n  given by Milnor j181 has very u s e m  

properties. Each non-degenerate simplex of K determines a c e l l  o f  - .R(K).  

Aiso Ii behavee well with respect t o  standard operations such ae suspensfqne 

arid products, Now taere  a re  natural  mappings 

RS(XJ ----> x f o r  x E Q, 

K ---> SR(K) fo r  K C  

m e  second of these ' is  always a hoinotopy equivalence, If X i s  a reasomble 

space (e,g.  tr iangulable),  the firs% mapping i s  a l so  a homotopy equivrilence, 

B e  conclusion i s  tha t  all questions irr a,  depending on hwoLopy type only, 

are eqailivabenl t o  the corresponding questions i n  This i s  t rue  in 

par t icu lar  of extension problem and bomtopy c lass i f ica t ion  problenia, Since 

this i s  our m i x  concern we will l l x r l t  aU subsequent discussion Lo the 

category C%: , 
Each K E 63 deteParlnes a aimpilcldl chain complex c ( M )  as f011ows. 

5be f r ee  abeliao group ~ e a e r a t e d  by the set K i a  denoted by C ( K )  is 
4 9 



called the group of q-chains, me fincdlons dl, si extend uuaigrrely to 

homomorphisms of the chain groups denoted by the same symbols. B e  ident i -  

t i e s  Listed above remain valid, Now define a: eq(K) ---> C (K) by 
$-I 

a = 2'4 (-1 1% . i" Tnen a h  = 0, and one defines homology and cohomoloa i i n  
i =o 

the usual way, 

2 1  Constructions of (n,n)-spaces. 

Eilenberg and hbcbne assign t o  ( ~ # n )  a sed-sinp2llc"i complex K ( T , ~ )  

i n  the following rather  simple way, Let A denote the conrplex a i  the 
9 

sttlridard q-simplex with ordered vert ices ,  Let ?(A vir) be the group :,f s" 
n-cocycles of A with coefficients i n  ?I-, %ese are  normalized cocycles 

4 

In the sense tha t  they have the value zero on degenerate a-simplexes, #&en 

n a q-simplex of  K(~i.,n) i s  defined t o  be such a eocycle: K = Z (A n), m e  
9 Cf 

standard map A -----> G gottee by skipping the ILb vertex, induces a q-l 9' 

homomqhism Z"(A .n) 4 $I(aq lt'ri) which is denoted by hi: K ----> K 
.. .. 9 9-1" 

degeneracy si is liicerrise induced by the  ith degeneracy Aq+l---> A 
$* 

Much work must be done t o  show t h a t  the hoinotopy eroupc of K.(x,n) are  

zt:so save li- = n,' i , e ,  it i s  a (r,n)- pace, Granting t a a ,  one cnri aek n 
wb; t  hindcro a succeasfili conputntlon of ilx i~omology o r  cohomolo~;3r, 11' 

n i.8 infinite, e , ~ ,  7r = Z, then each K i s  i t  This means tha t  
9 

G ( K )  i s  not f i n i t e l y  generatedl and therefore the fitantlard. me-thods of 
9 

eourputation can not be upplied, If n i n  a f i n i t e  grow, each K i a  MnLte, 
c1 

we a re  i n  the redla of ef fec t ive  cowwtabLIILy, Eut due to the  3.ure- 

autcber of n-diioensional. faces of A the akindaxd methodo a rc  not prucdlcel, 
4' 

So, i n  e i the r  case, oorne l a rge  seu le  reduction of the  problem must be aciiievi:d, 



The f i r s t  observation i s  t ha t  ~ ( ? r , n j  and K(?i,r .+l)  are related,  

Define a coniplex ~ ( ~ r , n )  i n  the same manner as K(li,n 1 except fo r  s e t t i ng  

a 
W = C (nq,n), Since A i s  acyclic,  Z ~ ~ A ~ ~ T )  is: the  kernel of 

4 9 
4-1 6: c ' ( A ~ ~ T )  -> 8 ( ~ ~ ~ n ) ,  and 6 i s  an eplmrpbism. From chis it follows 

that we haw s e d - s i ~ ? p i i c i a l  mppiags 

where p i s  a f i b r e  mapping with the  f i b r e  K(a,n), m e  argwnent which shows 

t h a t  K(rPn) i s  a (~,n)-space,  shows a l so  t h a t  ~ ( n , a )  i s  homotopicaUp 

equivaient t o  a point,  B e  second obsermtion i s  t h a t  K(n,n) 18 an ~ b e l i m  

group complex, Tnis means t h a t  each K i s  an abelian group, I , e ,  Z ~ ( A ~ ~ T ) ,  
4 

and each a,, s i s  a homomorphismr Tbe group s t ruc ture  of K i n h e e s  a 
i 4 

ring s t m e t u r e  i n  G ~ ( K ) .  

These observations motivate the  constmcUon of a new sequence o f  com- 

plexes ~ ( n , n )  given by Blenberg and FlacLane, !bey start wlth A(w,O) = K(n ,O) ,  

Then, for any abelian group complex r, they construct a honrotopicay trPvla5. 

complex ~ ( r ) ,  and & f i b r e  mapping 

with f i b r e  l', = n a y ,  A(r,n) l a  defined inductively by A ( s , a )  = f j ( ~ ( 8 , n - 1 ) ) .  

I%ia conetruetion i s  referred t o  as the bar  eo&truction, A n  inductive arm- - 
merit based on the two f lbra t ions  leads Lo the conclusion t h a t  A(?T,~) is horn-. 

dopicRb7.y equivdent  to K(T# n ) ,  

In case n is f i n i t e l y  ~ e n e r a t e d ,  the complexes A(?r,n) are f i n i t e  

i n  each dlmeseion, anil hence ";heir hoanoioeles are ef fec t ive ly  emputable, 91411 

i s  a large reduction of tbc problem, U s i a ~  the A(n,n), Ellenberg end &cL;ine 



s u c e e s a P ~ ~ y  computed the f i r s t  few noa-trifled. homology groups, and obtained 

important applications. However the computation problem was stlif far from 

seli.ed, 

The next large reduction o f  the problem was rade by 8, Cas"caa, We 

f o d a t e d  a general concept of f i b r e  space construction of which the  two eon- 

s t rue t iom given above are  examples, He showed t h a t  any two acyelie con- 

s tmc t ions  applied t o  b o m t o p i c U y  equivalent group conrplexes gave born- 

toopieally equivalent base spaces, He was then able t o  give re la t ive ly  8Iqp;ipie 

constructions f o r  cyclic groups n, ming  these, the eo~r;~uia%b;ion o f  h?;*(n,n) 

f o r  f i n i t e l y  generated 1~'s i s  slniost prac t ica l ,  

To iUustrai;e the complexity of the  s i tuel ioo,  we w i l l  s t a t e  Cartangs 

* 
r e s u l t  on the s t ructure o f  the r ing  E f ~ ~ n j Z ~ )  when n. is i n f i n i t e  cyclic 

and p i s  an d d  prime, Etrst, there i s  a seqience 51 x ~ ~ ~ " ~  of elements 

of 2 such t h a t  H* is  isomrpblc t o  the tensor produes @" P(xI] 
i =I 

'where ~ ( x  ) i s  the polpornid  r ing  over Z generated by x i f  dim xi 
i - P i 

l a  even, and i t  is  "cne ex ter ior  algebra generated by xi if dim xi is odd, 

8 For any dimension q, only a f i n i t e  nmher of  xi f i  have dirnerjsioni < q, 

T t  remains to epeei* -the x,'s, %is i s  done most e f f i c i en t ly  53' usine the  
A 

cyclic reduced ptb powers pi, A f i n i t e  aequence of posi t ive integers 

a .  a i s  called a&dsslhle i f  
i 

(1 1 each a bas the form 2hi (p- l )  + E where 
. I 

A Is a poaitlve integer, 

,, ,' 
and e i s  0 or I, 

1 2 .P ai  # l < i < k *  - 

j i i t ]  pak < (p-1) (n+ai+ * - * + a k )  



a: s"ip X: .'. Y 
ai - p h i  if : 0 iirlu SL = Define S t  - if e ,  - 'i 3 , f j j < . i . < .  .-.. C 

.L i 

is  the ii3eksteiri operator T0.r 0 -> Z ----> Z -i % ----+ 0. ii. 
P p2 P " 0  

be the rfndziiental c lass  of 1~(- i i ,a)~ Then the s e t  jx ) eoi:i;ists of Ltie 
i 

element u nod p and the elements 
O 

as  (al8 ,a 1 ranges over all admissible sequences, k 

A corol lary of t h i s  r e s a t  is t h a t  a l l  cohomolo~y operations with Z as 

i n i t i a l  and Zp as  t e rmlnd  coeff ic ient  group are  generatea by the operations: 

* 
addition, cup-prcziuct, E and the sip. 

Wing the full strength of Cartan" resu l t s ,  Moore / l 8 ]  has shorn t h a t  

ated, are  generated by the cohornology operations l i s t e d  a t  the end of $17, 

2 .  Synunetric products. 

iJe have described two methods of obtaining cohomlogy operations, m e  

first involved nth powers of complexes and the action of the eym%e"crie group 

an the factors ,  m e  second M e  use of the Hlenberg-MncUne complexeo, 

Each method has i t s  advantages. m e  *+rot gives specif ic  operatione w i t h  

convenient properties. The second gives aU operations, Since they lead to - 
the s m e  reeul ts ,  it should be possible t o  bring the two raethods together eu 

a ~ i n g l e  methodii, The basis  for r r e c o r ~ i s h i n g  t h i s  i s  provided by a theorem 

of Bold an& Tnom [lO] as ;foUows, 

Led SP% denote the symmetslc ritk p o w r  of a space (or complex) #,  

1-9, colhpae  X? by iCen+LQrini; points equivdent  under Sjn] ,  Choose rb 

Se8e poiat  xg E X, and use it t o  eive an iiribeddir;i: 



n+l 
by ident i tying (xL, .. . ,x ) e 2 with ( x O , 5 #  * -, ,X 1 E X . The m i o n  n n 

over n of SP% gives the i n f i n i t e  s y m e t r i c  product SP%. Tbe rougb 

asser t ion of the  Dm-Thorn res- j i t  i s  t h a t  there a re  isomori,?rlsm 

!&is i s  a most surprising r e su l t .  It offers an en t i r e ly  new mead 0% 

constmeting (~,n)-spaces.  For example, i f  X i s  the  n-sphere sn, it 

follows tha t  sprn(sn) i s  a (Z,n)-space, The case n = 2 of t h i s  was &re* 

2 
known f o r  elementary reasons: SP-(S ) i s  the  i n f i n i t e  dimensional complex 

projective space. To see th i s ,  regard s2 as  the space of 2 homgeneoua 

c o q l e x  variables [a O,y&l j ,and a lso  as the space of l i n e a r  ?unctions a c a z . 
0 l 

Consider the complex projective n-space C P ~  as the  space of n+l homogeneous 

i 
varlabLes [ao,alp ,a a], and a lso  as the space of polyr.omials q4 ai z n 

Each polpomieS. factors  i n t o  the  product of n l i n e a r  f\mctions, and deter;alnes 

2 
thereby an unordered s e t  of n elements of S . lllis gives a 1-1 corree- 

2 poslilence between S P ~ ( S  ) and &Pn. Letting n ----> m yields the above 

assertion. 

It i s  ea6y to  construct a space X whose howloar. Is zero save i l n ( ~ )  

which i s  prescribed. 1f N,(X) i s  a cyclic group of order €3, l e t  X be 

8" with an (a-r-1)-ceU attached by a map of degree $. If Hn(x) Is a 

d i r e c t  sum of cyclic groups, l e t  X be a c lus t e r  of n-sphere6 ha'l-ing o 

c o m n  point together wizh (n+l)-cel ls  attached t o  the spheres w i t h  siil"cb2lle 

degrees, 

All- of t h i s  can be done quite effect ively,  Tbc question of the moment 

I s  the effectlveneso of the eon~ t ruc t ion  o f  S P ~ ,  Wie latter, as u 



cairiplex, appears t o  have i~f'initely zany cells  i n  each dimension, B e  f a c t  

which renders the construction eifeezive i s  a natured d i r e c t  sum decoqofiiidon 
m 

of the chain complex C(Sp XI* m e  basic s t ep  i s  a s p l i t t i n g  in to  chain sub- 

C O ~ ~ ~ ~ C X ~ S  

The existence of such a subcornplex Uk i s  eas i ly  established i n  the language 

of semi-simpiicial corcplexes as  follows. Let X be semi-simpiicieii, l e t  L 

denote the 0-simplex which ac t s  as  the base point x and Let E be the  
0" 9 

4 q-simplex (s  ) 1. B e  kth power xk is taken i n  the sense of ear tes lan 
0 

proCIucts, and SPkX has as  q-simplexes unordered sequences 5.. .&& o f  

q-simplexes of X. Such a simplex i s  i n  SP~-'X i f  some x = 3 
i -qs m e  

q-dimension& pa r t  of Uk i s  &fined t o  be those q-chatns generated by clia"ins 

of the form 

( I t  i s  c lear  t ha t  expanding t h i s  product i n t o  a sum gives a chain of S P ' ~ ) ~  

Under a face o r  degeneracy operator, t h i s  expression re ta ins  $he same fonn or 

becomes zero. Ttrus" iJlC i s  u. chain subeonrplex (;"D-complex i n  t h e  langaage of 

Ei1eilber.i;-Hachne 1. 

IS we i t e r a t e  the deco&posillon 22.3, we obtain 

Passing to oahornologlr f;ives 



Since the finiteness of X (in each dimension) implies the same fo :. s&, 
* 

there lie no question about the effective computability of uk and B (u~). 

I r "  X ia connected, there is an dditional fact: $(u~) = 0 for i < k, 

%UB for any dimension q, the sum in 22.5 is fidte. %ti state it othewse: 

* 
Bements of E (u~) are said to he of rank k. He obtain then a- - 

* 
natural bigrcsding of B (SP~XJ  by dimension and rank, Dold ll8l baa shorn 

%hat the decomposition 22.5 depends only on the homloa groups o f  X, 1% 
* 

foil ow^ that, H ( r a n )  admit6 a. naturad. bigrading by dimeneion md rank, in 
* 

li (n, n ) the rank of B product is the e m  of ';he ra& (for homgeneous elemenla 1, 
* 

In Pact this holds in B (sP%] whenever X is a suspension, 

Idhen the decomiposition by rank was discovered tbrou& t h e  smetrie pro- 

ducts, it was then seen how to define it directly through the eons.tmc"cions of 

Car tes r ,  It followd that Cartanoa sethods of conrputation ozay be applied "to 

compute effecLively the hornlow of SP%, TPlis is an old problem of dgebraic 

topology, and inmy papers have treated special caclee. Ny, for "the mrst 

t ime,  we have E generay valid method, 

m e  welding together of the two methoda of constructing cohomlou 

cperatioae i s  not yet complete, By the metficde described in $16, one can 

&Tine a h o m o ~ h i e m  



which, f o r  -r = ~ ( n ) ,  i s  an isornorgbism f o r  large I: but not f o r  a, mch 

work rfsleiris t o  be done te coarpiete the picture ,  

Spaces with two non-zero boinotopy groups, 

A good s t a r t  bas been made on the analysis of spaces with Jus t  two non- 

zero homtopy groups. l f i e  rough overa l l  p ie ture  i s  known but  most of t h e  de- 

tails are  missing, 

First, we know how Lo cons tmct  such spaces, Suppose the preacribed 

non-zero groups a r e  m ((Y) = T, and. T (Y) = TI with q > n, Tne product n 0 

space K(r,n) X x(T~,~) has the required homotopy groupsj but there  a r e  many 

others wbicb a re  hornot?pically d i s t i n c t .  To obtain these, ne must consider 

f i b r e  spaces having ~ ( n , n )  as base and K(nl,q) for  f ibre ,  Recall ($21) 

t h a t  ~ ( n * , ~ )  is  an acyclic f i b r e  space over the base space K(?~~,~+L] with 

f i b r e  ~ ( n i q ) .  Any mnapping f: K(rr,n 1 X(?r l ,  q+i)  induces a f ibre  space 

Yf over ~ ( ~ r , n )  with the swnc f ib re  (see 124, $101 1, Using a sexni- 

simplicia1 version of the c lass i f ica t ion  theorem [24, $191, it follows t h a t  

the assignment of t o  f s e t s  up a 1-1 correspondence between equirra- 

lence classes of such f ib re  spaces and homo-to~y classes of mappings. Tbnt such 

n f ibre  space has tne prescribed hornolopy groups folio'iis fro% the exactness of 

the honiotopy sequence of the f i b r e  space [24> $l'(]* 

The homotopy c lass i f ica t ion  tiieorein of $19 iinplicn t h a t  W e  homotopy 

classes of mappine; ( T  -> K T ,  are  111 2-1 corrcnpandence with 

q i l  qi-l the elements of I! r 1. Tnuc to airiy clr~ccrit ic E ii ( a , n ; ? ~ ~  j correa- 

pond8 a ilonotopy class of sptnces w l i h  the  pr.c;cribcc! holno'topy groups. in 

fact this ~ i v c c  a l l  such ii; ii 1 i n  ii' 41 ha:: the prescribed hoi:io+cpy 

group", there i s  8 unique li si:cir tiirit 5' bcler;gs to U i c  c:.ri?:s eorrcipo~iciii~'. '6 

(.' 

(;o 1 i s  is e by r Y -> ~ ( 7 i , : i )  so as to carry the P~ii~idiuneiitUI 



class of ~ / ? r , n )  i n t o  tha t  of V, an2 defining k ( Y )  E ~ ~ " ( n , n ; n * )  do 

be the p r i m r y  obstructloxi t o  re t rac t ing  the mapping cylinder o f  g i n t o  Y. 

The c lass  k(~) 9s called the Eiien5erg-Eikzean@e k- invar iant  of Y (see  [I;] 1. 

Automorphisms of .ir and n 9 i n u c e  autornorphisms of N ~ ( K , I ~ ; T ~  ). 

if" kL and lk2 E ~"'(-ir,n;n') a re  equivalent under such an automorpbism then 

the correspondlrig spaces have the same homotopy type. '&US the homtopy type 

problem fo r  such spaces reduces t o  detemiininy equivdence classes  of elements 

of  ~1~*'(n,n;nq under such autornorphislns. This problem 1s not yet  solved. 

i n  essence we know how to compute the group ~ ~ ~ ( ~ n ~ r r " ) )  but, i f  t;wo 

elements of the group are  given, we do not know bow t o  t e l l  i n  a f i n i t e  number 

of steps,  wlre-ther o r  not they a re  equivalent under audorwrpbisms of r#r8.  

Recnli ($10) Lhut, i n  the theory of fOb6tmcl;lonsr We have need of" second- 

- 3 ary cohomoiogy operations (such as  Aderr'@ @ ) which are aefiaed only on the 

kernel 017 an ordinary (primary) c o h o m o l o ~  operation, Zri 519 ve have seen 

t h a t  any k E ~'+;?(7i-,ii;?r9 determines a primary operation ~ ( k ) :  f o r  any 

space X I  

F3,irLher~nore k de;tennlnes, as obovc, a f ib re  space Y over K(T,R) with 

P ime  X ( . F > ~ ) .  

s  u seconuary operalion 

d e f l  
P 

"lu sce ch i c ,  suppose u F. I ? ( x ~ ~ T )  lies i n  t h e  kernel of I ai2nca*i i s  

u mapping l i  X > r ,  wtiich c l i s r i i ? ~  .the i 'undm~icntnl cluoc ;i' ~(r~11) 

io ta  u, arid its hoanolopy c lass  i s  unique, Sirice T(k)u = 6, u- ~r,i is~ i i i i v i  

* 
h k = 0 ( see  $13)- Sinec k i s  the! c h a r ~ o t e r i s l l c  c lass  of Y (i,t, t h c  

obstruction SO l i f t i n g  K(n,n) i n t o  Y), t he re  ia n iiisppini: ; X - 4  Y wliieh 



composes w i t h  the projection U ------> K / T , ~ )  to give he Define the 

secondary operation T(k,yj, when applied to u, to be the set of irnagetl 

K 
g y ior all lifting6 g of h, In the stable case r < n+q, one can 

describe precisely the nature of the set T(k,y)u as foUows. m e  res- 

triction of y to the fibre K(nV,q) determines a primary eohomology 

operation ~ ( g r ) :  I~~(x;T* 1 -> .$(X;G). Then the set of possible iniases 
* 
g y is obtained by adding one of them to the imee of T(y). 

The result just proved emphasizes the importance of coquling the CO- 

hornlogy of Y. This problem has barely been touched, AG a fibre space, 

we know the cohomology of its base K(?r,n) 5nd its fibre K ( T \ ~ ) >  and 

we know also its characteristic class k. %is elves us a hold on its co- 

homology etructure via the speetrul seqiience. Bat we are far from having 

it in our gmsp. 

2 Postnlkov systerw 

Spaces with three or inore non-zero bomotopy groups can be built by 

eontiming the pattern of the preceding section, Suppose we wish to build 

spaces having hornotopy groups n, n" IJ'"~ the dimensions n < q < r 

respectively, First we build a space Y having two non-zero aonlolopy 

groups n, n V n  the dimenoioi= n, q. Let k E ~'~(n,n~.r# ) be ids 

k-lnvar;l&nt, Now choose an elerncrit k v  c ~ i a ( ~ j ~ " s ) ,  The homtopy classi- 

fication theorem ($19) assigns to i c s  a mappint: i': Y ------> ~(n"",rlij, 

Let Y9 be the fibre space over Y induced by f and the aeyeilc fibre 

space r - r l )  Then '5' -> Y ha% k as its Sibrcj 

and therefore Y1 haas t h e  rcquired thrtif non-zero iiorcioti;liy croupfi, 

Given a fourth boiiialopy group, stiy o, to be iriverted in t h e  dinenslon 

o > I-, i ie start wi th  the ~"bixbve, chooce ;i cciaoiriolo[:y clam k" e ~i?ii''(l!~~ii)~ 



selec"c corresponding rnap Y '  --> ~ ( 5 , s - b l ) ,  and fom -the i'ibrt. sp:ice Y" 

over YYnduceO by W(a,sj ----> i<(o,s+l). 

It i s  c lear  t h a t  we have described a sea i -e f fec t ive  metkod of building a 
j 

. < 
great  var ie ty  of spaces using the ~ i 1 e : i b e r ; ; - M C  coinpiexes as  building blocits, 

B e  f a c t  of t h e  matter i s  t h a t  my space cmi be b u i l t ,  i n  the  sense a? hommtapy - 
type, by a sequence of such constructions. Tois idea is  due t o  Po~tni i rav [21], 

Precisely, with any connected space X, we can associate a sequence o i  spaces 

Xn, n = 0, L, 2 , . . , ,  a sequence of projections p - Xn----> n"  ana a 

sequence of mappings fn : X ---> X such t h a t  Xo i s  a s ing le  point, and for  
n 

each n > 0 

(1 i q x , )  = 0 f o r  I > ns 

( i i  1 fa*: ?"@I = T i ( X n i  f o r  i ";> - 

i i i i  1 Pnfn " fa-1 ' 
( i v )  Xn is a f i b r e  space over Xn-l with respect t o  p,, the  f i b r e  i s  a 

(%(X),n)-space and can be taken t o  be K(n (~),n), n 

Such a system i s  cal led a Postnikov system f o r  X, It i s  riot unique hut any 

"Uwo (X,], [X"] a r e  equivalent i n  t he  sense t h a t  there  a r e  inspings 

Xn -> X "  n -> Xn which give a hornotopy equivale!!ce, and, i n  fact ,  a f i b r e  

bomotopy equivalence of the  f i b r e  spaces 
1 

Xn ----2= xL,-l and X 1  11 -> X -1, 

Thls i s  indeed a most i n t e r e s t i ng  way of dissect ing a space, It pro- 

vides n f resh point of view, and r a i s e s  many questions whom answers nvzy cast 

light on our basic probicms, Some usefz*l, ariswer6 have already beer: iihtiirincd, 

E, H , Brown [63 has proved the following theorem: 

Sf X i s  u. f i n i t e  complex -dilich i s  conneetcd and simply-connecr,<-d, elicn 

a Foatnikov syatem for  X i s  e f fec t ive iy  constmet iblc .  



imed ia t c  corollary i s  t h a t  the homotopy groups of X a r e  effect ive-  

15" coinputable. A t  one time t h i s  problein was thought t o  be of  the saae order 

of magnitude 8s the extension problem itself ' ,  It was regarded a s  a basic  

weakness of obstruction theory t h a t  it used bornotopy croups as coeff ic ients  

%?hen these groups were not lmowlto be computable. 

It ?nay be u s e m  t o  conclude with some questiotis suggested by these 

resu l t s .  Can Brown's r e s u l t  be i~nproved? If X is a f i n i t e  comected 

complex, and the word problem f o r  n (x)  is  effect ively solvable, does it 
l 

follow t h a t  a Postni1;ov systeni f o r  X i s  effect ively constrdct ibie? A use- 

i'ul special  case is t h a t  i n  which ?r ( X )  is abelian, it w-XU, he importaanl 1 

t o  f ind  e f f i c i en t  methods of computing the Postnikov sys t em of- special  kinas 

of spaces such as spheres and spaces with one o r  two non-zero homology groups, 

Perhaps it i s  niore important t o  anjlyse the basic extension problem i n  

t e n m  of the Postriikov systems of the  spaces involved i n  the  problem, Brown 

has given a p n r t i a l  r e s u l t  is t h i s  d i rec t ion ,  

Let X, Y be f i n i t e  s implicial  complexes, l e t  A be a subcomplex of X, 

and l e t  h: A -> Y be simplicial.. N s o  l e t  Y be simply-connected and such 

t h a t  H (Y;z) i s  a f i n i t e  g ~ o u p  f o r  aU q >  0. Then there  28 a f i n i t e  pso- 
9 

ee&ure for  d e e i d i n ~  wliether h is  extendable t o  a mapping X -1 Y, 

Ib i s  r e s u l t  is obtaiiled by studying a Postrilhov system for  Y. Tile res-  

t r i c t i o n  thohat each I! (Y) be f i n i t e  i s  most severe, and :;hould u l t i an te ly  be 
9 

unrieci:sasry. 

It may be  hut what is needed i s  a method o f  d i m c c t i n ~  a mpl3ing (or its 

honlotopy c l a s s )  similar t o  the dlsscctlori of spaces, Oric can nluays t r ea t  ti. 

rnppi l? .~ ris un inclusion mapping ( in to  the mappins cylinder);  Tk1.s suggests 

tryhi: t o  construct eirroltarieous Postriikov cyste.m far  a p a i r  ccnsleldnz ai" a - 



the  proJection of some f ib re  space on30 i t s  base, S ta r t ing  with such a 

projection one can represent i d  as  the cornposition of a secyenee of f ibre  

space project ians  fo r  which the  successive f ib re s  a re  Hlenberg-&cl;snc-e 

complexes, %is is done by dissect ing the  or ig ina l  f i b r e  a b m t o p y  group 

at a t i roe ,  Kow ef fec t ive  i s  t h i s  procedure? Bow does it behave under corn- 

posit ions of mppings? It i s  easy t o  ask questions, it i s  bard t o  find good 

ones 
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