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Abstract. The Dynkin algebras are the hereditary artin algebras of
finite representation type. The paper exhibits the number of support-
tilting modules for any Dynkin algebra. Since the support-tilting mod-
ules for a Dynkin algebra of Dynkin type ∆ correspond bijectively to the
non-crossing partitions of type ∆, the calculations presented here may
also be considered as a categorification of results concerning non-crossing
partitions. An appendix is included with a proof of the Ingalls-Thomas
bijections for hereditary artin algebras in general: these bijections show
that the number of support-tilting modules is the same as the number
of antichains and the number of normal or of conormal modules without
self-extensions.

1. Introduction. Let Λ be a hereditary artin algebra. We will consider here left
Λ-modules of finite length and call them just modules. The category of all modules will
be denoted by mod Λ. We will denote by n = n(Λ) the rank of Λ, this is by definition the
number of simple modules (always, when counting numbers of modules of a certain kind,
we actually mean the number of isomorphism classes). Following earlier considerations of
Brenner and Butler, tilting modules have been defined in [HR1]. In the present setting,
a tilting module is a module without self-extensions with precisely n isomorphism classes
of indecomposable direct summands. The endomorphism ring of a tilting module is said
to be a tilted algebra. There is a wealth of papers devoted to tilted algebras, and the
Handbook of Tilting Theory [AHK] can be consulted for references.

The present paper deals with the Dynkin algebras, these are the connected hereditary
artin algebras which are representation-finite, thus their valued quivers are of Dynkin type
∆n = An, Bn, . . . , G2, see [DR1]. The corresponding tilted algebras have been classified by
various authors in the eighties. It seems to be clear that a first step of such a classification
result was the determination of all tilting modules, however there are only few traces in
the literature (also the Handbook [AHK] is of no help). Apparently, the relevance of the
number of tilting was seen at that time only in special cases. The tilting modules for a
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linearly ordered quiver of type An were exhibited in [HR2] and Gabriel [G] pointed out
that here we encounter one of the numerous appearances of the Catalan numbers 1

n+1

(

2n

n

)

.
For the cases Dn, the number of tilting modules was given by Bretscher-Läser-Riedtmann
[BLR] in their study of self-injective representation-finite algebras.

Given a module M , we denote by Λ(M) its support algebra, this is the factor algebra
of Λ modulo the ideal which is generated by all idempotents e with eM = 0, this is again
a hereditary artin algebra (but usually not connected, even if Λ is connected). The rank
of the support algebra of M will be called the support-rank of M . A module T is said to
be support-tilting provided M considered as a Λ(M)-module is a tilting module. It may
be well-known that the number of tilting modules of a Dynkin algebra only depends on its
Dynkin type, but we could not find this result in the literature, thus section 2 provides a
direct proof. It follows that also the number of support-tilting modules of a Dynkin algebra
with support-rank s only depends on the type ∆n, we denote this number by as(∆n). Of
course, an(∆n) is just the number of tilting modules, and we denote by a(∆n) the number
of all support-tilting modules, thus a(∆n) =

∑n

s=0 as(∆n).
The present paper presents the numbers a(∆n) and as(∆n) for 0 ≤ s ≤ n in a unified

way. Of course, the exceptional cases E6, E7, E8, F4, G2 can be treated with a computer
(but actually, also by hand), thus our main interest lies in the series A, B, C, D. In the case
A, we obtain in this way the Catalan triangle, in the case B and C the increasing part
of the Pascal triangle, and finally in the case D an expansion of the increasing part of
the Lucas triangle (see section 6, an outline will be given later in the introduction).

Results. All the numbers which are presented here for the cases A, B, C, D are related
to the binomial coefficients

(

s
t

)

and they coincide for Bn and Cn (as we will show in section
2), thus it is sufficient to deal with the cases A, B, D. For B, the binomial coefficients
themselves will play a dominant role, for the cases A and D, suitable multiples are relevant.
In case A, these are the Catalan numbers Cn = 1

n+1

(

2n

n

)

, as well as related numbers. For

the case D, it will be convenient to use the notation
[

t

s

]

= s+t
t

(

t

s

)

as proposed by Bailey
[B], since the relevant numbers in case D can be written in this way.

The numbers a(∆n) and as(∆n) for 0 ≤ s ≤ n:

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................

∆n An Bn, Cn Dn E6 E7 E8 F4 G2

an(∆n) 1
n+1

(

2n
n

) (

2n−1
n−1

)

[

2n−2

n−2

]

418 2 431 17 342 66 5

as(∆n)
0≤s<n

n−s+1
n+1

(

n+s
s

)
(

n+s−1
s

)

[

n+s−2

s

]

see section 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a(∆n) 1
n+2

(

2n+2
n+1

)
(

2n

n

)

[

2n−1

n−1

]

833 4 160 25 080 105 8

Remark 1. In parallelity to the Bailey notation
[

t

s

]

one may be tempted to introduce

the following notation for the Catalan triangle:
]

t

s

[

= t−2s+1
t−s+1

(

t

s

)

. Then the numbers for

2



the case A are written as follows:

an(An) =
]

2n

n

[

, as(An) =
]

n+s

s

[

, a(A) =
]

2n+2

n+1

[

.

Remark 2. The reader should observe that for An and Bn, the formula given for as(∆n)
and 0 ≤ s < n works also for s = n. This is not the case for Dn: Whereas

(

2n−2
n−2

)

=
(

2n−2
n

)

,

the numbers
[

2n−2

n−2

]

and
[

2n−2

n

]

are different (the difference will be highlighted at the end

of section 6). The Lucas triangle consists of the numbers
[

t

s

]

for all 0 ≤ s ≤ t, it uses the

numbers
[

2n−2

n

]

at the positions, where the D-triangle (which we now will consider) uses

the numbers
[

2n−2

n−2

]

.

The triangles A, B, D. The non-zero numbers as(∆n) with ∆ = A, B, D yield three
triangles which have similar properties, we will exhibit them in section 6. In the case
∆ = A, we obtain the Catalan triangle, this is A009766 in Sloane’s OEIS [S]. The triangle
B is the triangle A059481, it is the increasing part of the Pascal triangle (thus it consists
of the binomial coefficients

(

t
s

)

with 2s ≤ t + 1). The triangle D is an expansion of the
increasing part of the Lucas triangle: taking the increasing parts of the rows in the Lucas

triangle (thus the numbers
[

t

s

]

with 2s ≤ t + 1), we obtain numbers which occur in the

triangle D, namely the numbers as(Dn) with 0 ≤ s < n. But then the numbers an(Dn)
on the diagonal are still missing — as we have seen above, these numbers are given by a
similar, however deviating formula (they are listed as the sequence A129869). The Lucas
triangle is A29635, but the triangle D itself was at the time of the writing of the paper not
yet recorded in OEIS.

Each of the Catalan, Pascal and Lucas triangle, say with numbers zs(t), can be ob-
tained inductively using suitable initial conditions and the recursion formula

zs(t) = zs−1(t − 1) + zs(t − 1).

In the case of the Catalan triangle, the initial conditions are z0(t) = 1 and zt+1(2t) = 0 for
all t ≥ 0. For the Pascal triangle, the initial conditions are z0(t) = zt(t) = 1 for all t ≥ 0,
and for the Lucas triangle, the initial conditions are z0(t) = 1, zt(t) = 2 for all t ≥ 1 (these
initial conditions are the reason for calling the Lucas triangle also the (1, 2)-triangle). The
recursion formula can be rewritten as zs(t) =

∑s

i=0 zi(t− s + i + 1) (sometimes called the
hockey stick formula). A consequence of the hockey stick formula is the fact that summing
up the rows of any of the three triangles A, B, D, we obtain again numbers which appear
in the triangle.

As we have mentioned, the relevance of the numbers of tilting and support-tilting
modules for the Dynkin algebras was not realized in the eighties. It became apparent
through the work of Fomin and Zelevinksy when dealing with cluster algebras and the cor-
responding cluster complexes (see in particular [FZ] and [FR]): the support-tilting modules
correspond bijectively to the cluster-tilting objects of a cluster category. There is an in-
dependent development, namely the theory of generalized non-crossing partitions (see for
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example [Ar]) which has to be mentioned. The basic setting for using the representa-
tion theory of hereditary artin algebras in order to deal with non-crossing partitions was
pointed out by Ingalls and Thomas [IT], they have shown (at least for path algebras of
quivers) that there are many counting problems for mod Λ which yield the same answer,
namely the numbers a(∆n) and as(∆n). Since we will need this result also in the case
∆ = B and C (where Λ is not the path algebra of a quiver), we include an appendix with a
proof of the Ingalls-Thomas bijections for hereditary artin algebras in general. Our proof
draws attention to three additional counting problems with the same answer: to count the
number of antichains in mod Λ as well as the number of normal or of conormal modules
without self-extensions.

Here are the definitions: An antichain A = {A1, . . . , At} in mod Λ is a set of pairwise
orthogonal bricks (a brick is a module whose endomorphism ring is a division ring, two
bricks A1, A2 are said to be orthogonal, provided Hom(A1, A2) = 0 = Hom(A2, A1)).

A module X is said to generate a module Y provided Y is a factor module of a direct
sum of copies of X. Dually, a module X cogenerates a module Y provided Y is a submodule
of a direct sum of copies of X. A module M is defined to be normal provided given a direct
decomposition M = M ′ ⊕M ′′ such that M ′ generates M ′′, we have M ′′ = 0. And M is
conormal provided given a direct decomposition M = M ′ ⊕M ′′ such that M ′ cogenerates
M ′′, we have M ′′ = 0.

Since the support-tilting modules for a Dynkin algebra of Dynkin type ∆ correspond
bijectively to the non-crossing partitions of type ∆, the calculations presented here may be
considered as a categorification of results concerning non-crossing partitions (for a general
outline see [HK]). For the corresponding discussion of the number of ad-nilpotent ideals of
a Borel subalgebra of a simple Lie algebra see Panyushev [P].

The case of the Coxeter diagrams H3 and H4 can be treated in a similar way, using
hereditary artinian rings which are not artin algebras, see [FR].

Outline of the paper: We repeat that there is an inductive procedure which provides
an inductive procedure, namely the hook formula (and a modified hook formula), in order
to obtain the numbers as(An) for 0 ≤ s ≤ n, as well as the numbers as(∆n) for ∆ = B, C, D
for 0 ≤ s < n, provided we know the numbers an(∆n), see section 4. As we have mentioned,
for the numbers an(Dn) we may refer to [BLR]. In section 2, we will show that the numbers
an(Bn) and an(Cn) coincide, thus it remains to determine just the numbers an(Bn), this will
be done in section 3. In section 5, we calculate a(∆n) for ∆ = A, B, D. Section 6 presents
the triangles A, B, D as well as the corresponding Catalan, Pascal, and Lucas triangles, and
some observation concerning repetition of numbers in the triangles are recorded. The final
section 7 provides the numbers as(∆n) for the exceptional cases ∆n = E6, E7, E8, F4, G2.

2. The valued quiver of a hereditary artin algebra.

Let Λ be a hereditary artin algebra. Since by assumption Ext Λi = 0 for i ≥ 2, we write
Ext(M,M ′) instead of Ext1Λ(M,M ′). The quiver Q(Λ) has as vertices the isomorphism
classes [S] of the simple Λ-modules and there is an arrow [S]→ [S ′] provided Ext(S, S ′) 6=
0. Note that Q(Λ) is finite and directed (the latter means that the simple modules can be
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labeled S(i) such that the existence of an arrow [S(i)] → [S(j)] implies that i > j). We
endow Q(Λ) with a valuation as follows: Given an arrow [S]→ [S ′], consider Ext(S, S ′) as
a left End(S)op-module and also as a left End(S ′)-module and put

v([S], [S ′]) = (dim End(S) Ext(S, S ′))(dim End(S′)op Ext(S, S ′))

provided v([S], [S ′]) > 1. Given a vertex i of Q(Λ), we denote by S(i) = SΛ(i), P (i) =
PΛ(i), I(i) = IΛ(i) a simple, a projective or an injective module corresponding to the vertex
i, respectively.

We also will be interested in the corresponding valued graph Q(Λ) which is obtained
from the valued quiver Q(Λ) by replacing the arrows by edges, one says that one forgets

the orientation of the quiver.
In the special case where v([S], [S ′]) = v with v = 2 of v = 3, it is usual to replace

the arrow [S] −→ [S ′] by a double arrow [S] =⇒ [S ′] (if v = 2) or a similar triple arrow
(if v = 3). Using the bimodule Ext(S, S ′) one obtains an embedding either of EndS into
EndS ′, or of EndS ′ into EndS, thus one of the division rings is a subring of the other, with
index equal to v. One marks the relative size of the endomorphism rings by an additional
arrowhead drawn in the middle of the edge, pointing from the larger endomorphism ring
to the smaller one (it should be stressed that these inner arrowheads must not be confused
with the outer ones). For example, in case there are two simple modules labeled 1 and 2
with an arrow 1← 2 and v(1, 2) = 2, there are the following two possibilities:

◦ ◦
1 2

...........................................

...........................................
................................

................................ ◦ ◦
1 2

...........................................

...........................................
................................

................................

On the left, we see that EndS(1) is a division subring of EndS(2), on the right, EndS(2)
is a division subring of EndS(1). (Let us exhibit corresponding algebras: Let K : k be a

field extension of degree 2 and consider the algebras Λ =
[

k K

0 K

]

, and Λ′ =
[

K K

0 k

]

, the left

quiver shown above is Q(Λ), the right quiver is Q(Λ′).)
Here are for both valued quivers the valued graphs which are obtained by forgetting

the orientation (thus deleting the outer arrowheads, but not the inner ones)

◦ ◦
1 2

...........................................

...........................................
................................ ◦ ◦

1 2

...........................................

...........................................
................................

they are called B2 and C2, respectively (observe that there is a difference between B2 and
C2 only if they occur as subgraphs of larger graphs).

We recall the following [DR1]: A connected hereditary artin algebra Λ is representation-

finite if and only if Q(Λ) is one of the Dynkin diagrams An, Bn, Cn, Dn, E6, E7, E8, F4, G2

and in this case the indecomposable Λ-modules correspond bijectively to the positive roots.

We want to show that the number of basic tilting modules is independent of the
orientation We recall that a module is said to be basic provided it is a direct sum of pairwise
non-isomorphic indecomposable modules; an artin algebra Λ is basic provided the regular

5



representation ΛΛ is basic. In the case of the tensor algebra of a species (in particular in
the case of the path algebra of a quiver), any change of orientation is obtained by applying
a sequence of BGP-reflection functors, see [DR2]. For a general hereditary artin algebra Λ,
we have to deal with APR-tilting functors as defined by Auslander, Platzeck and Reiten
[APR]. In order to do so, we may assume that Λ is basic. We start with a simple projective
module S, write ΛΛ = S ⊕ P with a projective module P and consider W = P ⊕ τ−S
(where τ = τΛ is the Auslander-Reiten translation in mod Λ) and Λ′ = (EndW )op. Note
that W is a tilting module (called an APR-tilting module) and the quiver Q(Λ′) is obtained
from the quiver Q(Λ) by changing the orientation of all the arrows which involve the vertex
ω = [S]. Let Λ′′ = (EndP )op, this is the restriction of Λ to the quiver Q′′ obtained from
Q(Λ) by deleting the vertex ω and the arrows ending in ω. Of course, Q′′ is also a subquiver
of Q(Λ′) and Λ′′ is the restriction of Λ′ to Q′′ (thus Λ is a one-point coextension of Λ′′,
whereas Λ′ is a one-point extension of Λ′′). We denote by S ′ the simple Λ′-module with
support ω.

Proposition 1. Let Λ be a hereditary artin algebra and S a simple projective module.

Let W be the APR-tilting module defined by S and Λ′ = (EndW )op. Then there is a

canonical bijection η between the basic tilting Λ-modules and the basic tilting Λ′-modules.

Proof: In order to define η, we distinguish two cases.
First, if T is a basic tilting module such that S is not a direct summand of T , let

η(T ) = Hom(W,T ), this is a basic tilting Λ′-module and S ′ is not a direct summand of
η(T ).

Second, consider a basic tilting Λ′-module such that S is a direct summand, say let
S ⊕ T be a basic tilting Λ′-module. Let T ′′ = T/U , where U is the sum of the images of
all the maps S → T . Obviously, T ′′ is a basic tilting Λ′′-module which we may consider as
a Λ′-module. We form the universal extension T ′ of T ′′ using copies of S ′. Then T ′ ⊕ S ′

is a basic tilting Λ′-module (and S ′ is a direct summand). �

Remark. We may identify the Grothendieck groups K0(Λ) and K0(Λ
′), using the

common factor algebra Λ′′ and identifying the dimension vectors of S and S ′. Then, in
the first case, the dimension vector of η(T ) is obtained from the dimension vector of T by
applying the reflection σ defined by S. In the second case, the dimension vectors of T and
η(T ) coincide. Actually, here we use twice the internal reflection defined by S in [R2], first
in the category modΛ, second in the category mod Λ′.

Let Λ be a Dynkin algebra and assume that the vertices of both Q(Λ) are labeled
1 ≤ i ≤ n. Let P (i) = PΛ(i) be indecomposable projective. Since we assume that
Λ is a Dynkin algebra, there is a natural number q(i) = q(P (i)) such that τ−q(i)P (i) is
indecomposable injective; the modules M(i, u) = τ−uP (i) with 0 ≤ u ≤ q(i) and 1 ≤ i ≤ n
furnish a complete list of the indecomposable Λ-modules.

Proposition 2. Let Λ,Λ′ be Dynkin algebras and assume that the simple modules of

both algebras are indexed by 1 ≤ i ≤ n. Assume that q(PΛ(i)) = q(PΛ′ (i)) = q(i) for all

1 ≤ i ≤ n. If the support of M(u, i) = τΛ−uPΛ(i) and M ′(i, u) = τ−u
Λ′ PΛ(i) coincide for

all 0 ≤ u ≤ q(i) and 1 ≤ i ≤ n, then as(Λ) = as(Λ
′) for all s.
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Proof. We may interpret the numbers as(Λ) and as(Λ
′) as the number of antichains

in mod Λ and mod Λ′, respectively, which have support-rank s. Note that the support of
a module M is the set of numbers 1 ≤ i ≤ n such that Hom(P (i),M) 6= 0.

We show that Hom(M(i, u),M(j, v)) = 0 if and only if Hom(M ′(i, u),M ′(j, v)) = 0.
If u ≤ v, the Auslander-Reiten translation (see for example [ARS]) furnishes a group
isomorphism

Hom(M(i, u),M(j, v)) ' Hom(M(i, 0),M(j, v − u)) = Hom(PΛ(i),M(j, v − u)),

and similarly, we have Hom(M ′(i, u),M ′(j, v)) ' Hom(PΛ′(i),M ′(j, v−u)). It follows that
Hom(M(i, u),M(j, v)) = 0 if and only if i is not in the support of M(j, v − u) if and only
if i is not in the support of M ′(j, v − u) if and only if Hom(M ′(i, u),M ′(j, v)) = 0.

If u > v, then

Hom(M(i, 0),M(j, v)) ' Hom(M(i, u − v),M(j, 0)) = 0,

since M(i, u − v) is indecomposable and non-projective, whereas M(j, 0) is projective.
Similarly, we also have Hom(M ′(i, 0),M ′(j, v)) = 0.

As a consequence we see that given an antichain A = {A1, . . . , At} in mod Λ, the
function M(i, u) 7→ M ′(i, u) yields an antichain A′ = {A′

1, . . . , A
′
t} in mod Λ′, Of course,

the support-rank of A and A′ are the same. This completes the proof. �

Corollary. For all 0 ≤ s ≤ n, we have as(Bn) = as(Cn).

Proof: Apply the Proposition to the algebras Λ and Λ′ with valued quiver

◦ ◦ ◦ ◦ ◦· · ·......................................................
.

............ ......................................................
.

............ .................................
.

............ ......................................................
.

..................................

1 2 3 n−2 n−1 n

...........................................

...........................................
................................

................................ ◦

◦ ◦ ◦ ◦ ◦· · ·...................................................................
...................................................................

..............................................
...................................................................

......................

1 2 3 n−2 n−1 n

...........................................

...........................................
................................

................................ ◦

respectively; the first valued quiver is of type Bn, the second of type Cn. It is well-known
(and easy to see) that q(PΛ(i)) = n− 1 = q(PΛ′ (i)) for all 1 ≤ i ≤ n and that the modules
M(i, u) and M ′(i, u) for 1 ≤ i ≤ n and 0 ≤ u ≤ n− 1 have the same support.

3. The tilting modules for Bn.

We are going to determine the number of tilting modules for the Dynkin algebras of
type Bn, namely we will show that an(Bn) =

(

2n−1
n−1

)

. By induction, we assume knowledge
about the representation theory of Bi with i < n and the calculation of as(Bn) for s < n
as shown in section 4. We consider a Dynkin algebra Λ with quiver

◦ ◦ ◦ ◦ ◦· · ·......................................................
.

............ ......................................................
.

............ .................................
.

............ ......................................................
.

..................................

1 2 3 n−2 n−1 n

...........................................

...........................................
................................

................................ ◦

We interpret an(Bn) as the number of sincere antichains and write is as the sum

an(Bn) = u(Bn) + v(Bn)
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where u(Bn) is the number of antichains with a sincere element, whereas v(Bn) is the num-
ber of sincere antichains without a sincere element. These two numbers will be calculated
separately.

Let us denote by w(Bn) the number of antichains which do not contain any injective
module. We claim that

w(Bn) = an(Bn).

Proof: Let W be the set of antichains without injective modules and S the set of sincere
antichains. We want to construct a bijection η : S →W. Note that an element of S contains
at most one injective modules, since the injective modules are pairwise comparable with
respect to Hom . If A ∈ S contains no injective module, then let η(A) = A. If A ∈ S
contains the injective module I(i), let η(A) be obtained from A by deleting I(i). Note that
η(A) is no longer sincere, since all the modules A(i) in η(A) satisfy (A(i))i = 0. Conversely,
assume that B is an antichain inW. If B is sincere, then it belongs to S and by definition
η(B) = B. If B is non sincere, let i be the smallest number such that i is not in the
support of B. Let A be obtained from B by adding I(i). Then clearly A is sincere and
η(A) = B. This completes the proof.

Now let us determine u(Bn). Note that the sincere indecomposable representations
of Λ are the modules X(i) = τ−n+iP (i) with 1 ≤ i ≤ n, the dimension vector of X(n)
is (1, . . . , 1), whereas for 1 ≤ i < n, it has height n + i and is of the form (1, . . . , 1) +
(0, . . . , 0, 1, . . . , 1). Let ui(Bn) be the antichains which include X(i), thus

u(Bn) =
∑n

i=1
ui(Bn).

Let Xi be the set of indecomposable modules M such that Hom(X(i),M) = 0 = Hom(M,X(i)).
Thus, the antichains which contain X(i) correspond bijectively to the antichains in Xi. In
general, the set Xi consists of three triangles I, II, III:
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

X(i)

I

II

III

The triangle I is the wing at the vertex τ−1P (n− i− 1), the triangle II is the wing at the
vertex τ−n+i−1P (i + 2), and the triangle III is the wing at the vertex τ−n+i+1P (i − 2).

We also are interested in a larger triangle II′ which contains the triangle II as well
as n− i additional modules (all being successors of X(i)), namely the wing at the vertex
τ−n+iP (i + 1).
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The full subcategory X ′ with the indecomposables in the wings I, II′, III is an abelian
subcategory, namely the thick subcategory with simple objects

S(2), S(3), . . . , S(n− i + 1); τn−iP (n); S(n− i + 3), . . . , S(n− 1).
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.

.

.

.

.

.

.

.

.

.

.

.

.
..

X(i)

I

II′

III
• • • •

•

It is of type Bn−i ∪ Ai−2 (the Ai−2-part is given by the triangle III, whereas the Bn−i-
part is given by the triangle I and II′, these are the representations M of Λ such that
M0 = 0 and such that the restriction to [i, n] is a direct sum of copies of its thin sincere
indecomposable representation). Note that the indecomposables in I and II just correspond
to the non-injective indecomposables in the Bn−i-part. This shows that

ui(Bn) = w(Bn−i)a(Ai−2) = an−i(Bn−i)ai−1(Ai−1)

In the special cases i = 1, 2, n− 1, n, the same formula holds: For i = 1 and i = 2, the
triangle III is empty, whereas the triangles I and II′ together yield a category of type Bn−i.
In the cases i = n− 1 and i = n, the triangles I and II are empty, whereas the triangle III
yields a category of type Ai−2.

Thus we see:

u(Bn) =
∑n

i=1
ui(Bn) =

∑n

i=1
ai−1(Ai−1)an−i(Bn−i).

But the latter expression is the recursion formula for an−1(Bn), since the number of
support-tilting modules T with support {1, 2, . . . , n} \ {i} is just ai−1(Ai−1)an−i(Bn−i).

This shows that

u(Bn) = an−1(Bn) =

(

2n− 2

n− 1

)

.

Second, let us determine v(Bn). Let V be the set of sincere antichains without a sincere
element. Let A = (A(1), . . . , A(r)) be in V . We may assume that (A(1))1 6= 0 and that A(1)

is maximal with this property. Since A(1) is not sincere, we must have (A(1))n = 0, thus
A(1) is a representation of a Dynkin algebra of type An−1 and actually an indecomposable
projective representation (also as a Λ-module), thus A(1) = P (i) for some i with 1 ≤ i < n.

9



Denote by Vi the sincere antichains A such that A(1) = P (i). For 2 ≤ j ≤ r, we have
Hom(A(1), A(j)) = 0, thus (A(1))j = 0. It follows that (A(2), . . . , A(r)) is an antichain with
support in [1, i−1]∪ [i+1, n]. Altogether, we see that any element of A has support either
in [1, i] or in [i+1, i]. The elements of A with support in [1, i] but different from A(1) form
an arbitrary antichain with support in [2, i − 1], thus the number of elements is a(Ai−2),
at least if i ≥ 2. Note that a(Ai−2) = ai−1(Ai−1).

The elements of A with support in [i + 1, n] form a sincere antichain for Bn−i, thus
the number of such antichains is an−i(Bn−i). This shows that for i ≥ 2, the set Vi has
cardinality ai−1(Ai−1)an−i(Bn−i). This formula holds true also for i = 1, since the number
of elements of V1 is an−i(Bn−i) and a0(A0) = 1. Thus we see that

v(Bn) =
∑n−1

i=1
ai−1(Ai−1)an−i(Bn−i)

= −an−1(An−1) +
∑n

i=1
ai−1(Ai−1)an−i(Bn−i)

= −
1

n

(

2n− 2

n− 1

)

+

(

2n− 2

n− 1

)

=

(

2n− 2

n− 2

)

.

Thus

v(Bn) =

(

2n− 2

n− 2

)

.

Altogether we see:

u(Bn) + v(Bn) =

(

2n− 2

n− 1

)

+

(

2n− 2

n− 2

)

=

(

2n− 1

n− 1

)

.

Remarks. (1) Note that we have

u(Bn) =

(

2n− 2

n− 1

)

= an−1(Bn), v(Bn) =

(

2n− 2

n− 2

)

= an−2(Bn+1),

(2) The calculation of v(Bn) shows the following relationship between the cases A and B:

an−1(Bn) = an−2(Bn+1) + an−1(An−1)

4. The hook formula for support-tilting modules.
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Proposition (hook formula). Let ∆ = A, B, D, E. Then

as(∆n) = as(∆n−1) + as−1(∆n)

for all n ≥ m and 1 ≤ s ≤ n− c, where m = 1, 2, 3, 4 and c = 0, 1, 2, 3 for ∆ = A, B, D, E,

respectively.

Here we use the convention that B1 = A1, D2 = A1 tA1, E3 = A2 tA1, E4 = A4, E5 =
D5. In the triangles depicted in section 7 and 8, this equality concerns the following kind
of hooks:

....

....

....

....

....

....

....

....

....

....

.....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

.....................................................................................................................................................................................................................

..................................
....
....
....
....
....
....
..............................................................•
•
◦

The hook formula asserts that the sum of the values at the positions marked by bullets is
the value at the position marked by the circle.

The various assertions concern the following general situation: Up to the choice of
an orientation, we deal with an artin algebra Λ with the following valued quiver with n
vertices:

◦ ◦ ◦ ◦ ◦· · ·......................................................
.

............ ......................................................
.

............ .................................
.

............ ......................................................
.

..................................

1 2 3 n−c−1 n−c

......................................
.....
.

............

.........
.........

........
..............................

.
..
..
..
..
..
...
....

....................................................................
....

...
..
..
..
..
..

on the left, we have a quiver of type An−c with arrows i← i+1, the remaining c vertices
are in the dotted ”cloud” to the right, all arrows between the cloud and the An−c–quiver
end in the vertex n− c. We denote by Q′ the valued quiver obtained by deleting the vertex
1 and the arrow ending in 1; let Λ′ be the corresponding factor algebra of Λ.

◦ ◦ ◦ ◦ ◦· · ·...................................................................
...................................................................

..............................................
...................................................................

...................................................................
......................

1 2 3 n−2 n−1 n
◦An c = 0

◦ ◦ ◦ ◦ ◦· · ·................................................................... ................................................................... .............................................. .........................................................................................

1 2 3 n−2 n−1

...........................................

...........................................
................................

................................ ◦.. . .
. . . . . . . . . . . . .. . . . .......................
....

Bn c = 1

◦ ◦ ◦ ◦ ◦· · ·...................................................................
...................................................................

..............................................
...................................................................

......................

1 2 3 n−3 n−2

..........................................................
.....
.

............

.......
.......

........
........

.......
.......

.......
.........................

◦

◦

.
.
.
.
.
.
.
.
..
..

....
. . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.........
..

..
.
.
.
.
.
.
.
.

Dn c = 2

◦ ◦ ◦ ◦ ◦· · ·......................................................
.

............ ......................................................
.

............ .................................
.

............ ......................................................
.

..................................

1 2 3 n−4 n−3

..........................................................
.....
.

............

........
........

.......
.......

.......
.......
................................

...................................................................

◦

◦ ◦

.
.
.
.
.
.
.
..
..

...
.. . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.........
..

..
.
.
.
.
.
.
.
.

En c = 3
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Lemma. Let 1 ≤ s ≤ n− c. Then

as(Λ) = as(Λ
′) + as−1(Λ).

Proof: The support-tilting modules T for Λ with 1 not in the support are just the
support-tilting modules for Λ′. Thus let us consider the set Ss(Λ; 1) of the basic support-
tilting Λ-modules T with support-rank s and T1 6= 0 and construct a bijection

α : Ss(Λ; 1) −→ Ss−1(Λ),

where Ss−1(Λ) is the set of basic support-tilting Λ-modules T with support-rank s − 1.
This will establishe the formula.

Let X be an indecomposable representation with support-rank s ≤ n− c and X1 6= 0,
thus the support of X is contained in the An−c-subquiver, thus X is thin, thus its support
is an interval of the form [1, v] with 1 ≤ v ≤ n − c (a module is said to be thin provided
the composition factors are pairwise non-isomorphic; in our setting thin indecomposable
modules are uniquely determined by the support, thus we may write just X = [1, v]).

Let T be a module in Ss(Λ; 1). At least one of the indecomposable direct summand
of T , say X, satisfies X1 6= 0 and we choose X of largest possible length. We claim that
Tw = 0 for any arrow v ← w. Assume, for the contrary, that there is an indecomposable
direct summand Y of T with Yw 6= 0. The maximality of X shows that Y1 = 0. But then
Ext(Y,X) 6= 0 contradicts the fact that T has no self-extensions (namely, if the support
of X and Y is disjoint, then the arrow v ← w yields directly a non-trivial extension of X
by Y ; if the support of X and Y is not disjoint, then there is a proper non-zero factor
module of X which is a proper submodule of Y , thus there is a non-zero map X → Y
which is neither injective nor surjective — again we obtain a non-trivial extension of X by
Y ). Thus the support of T is the disjoint union of the set {1, 2, . . . , v} and a set S ′′ which
does not contain a vertex w with an arrow v ← w.

The indecomposable direct summands of T with support in {1, 2, . . . , v} yield a tilting
module for this Av-quiver, and X is the indecomposable projective-injective representa-
tion of this Av-quiver. Deleting X from this tilting module, we obtain a support-tilting
representation of Av with support-rank v − 1.

Thus if we write T = X ⊕ T ′, then T ′ is a support-tilting Λ-module with support-
rank s− 1 (namely, it is the direct sum of a support-tilting module with support properly
contained in {1, 2, . . . , v} and a support-tilting module with support S ′′. We define α(T ) =
T ′, this yields the map

α : Ss(Λ; 1) −→ Ss−1(Λ)

we are looking for. It remains to be shown that α is surjective and that we can recover T
from α(T ).

Thus, let T ′ be in Ss−1(Λ). Then there are at least c+1 vertices outside of the support
of T ′.

Case 1: These are the vertices in the cloud and precisely one additional vertex, say
i (with 1 ≤ i ≤ n − c). Note that in this case s = n − c. Let T = T ′ ⊕ [1, n − c]. Since
T ′ is a support-tilting module of An−c with support-rank n − c − 1 and [1, n − c] is the

12



indecomposable projective-injective representation of An−c, we see that T = T ′⊕ [1, n− c]
is a tilting module for An−c.

Case 2: At least two vertices between 1 and n − c do not belong to SuppT ′, say let
i < j be the smallest such numbers. Then let T = T ′ ⊕ [1, j − 1]. �

Proposition 2 (modified hook formula).

an−1(Dn) = an−1(Dn−1) + an−2(Dn) + an−2(An−2),

an−2(En) = an−2(En−1) + an−3(En) + an−3(An−2),

Again, we consider a general setting, namely we consider an artin algebra Λ with the
following valued quiver with n vertices and we assume that c ≥ 2:

◦ ◦ ◦ ◦ ◦

◦

◦

· · ·......................................................
.

............ ......................................................
.

............ .................................
.

............ ......................................................
.

..................................

1 2 3 n−c−1 n−c

n−c+1

n−c+2

.......................................................
.....
............

.........
.........

.........
.........

.........
...........................

.
..
..
..
..
..
...
....

....................................................................
....

...
..
..
..
..
..

on the left, we have a quiver of type An−c with arrows i← i + 1, the remaining c vertices
are in the dotted ”cloud” to the right, there are precisely two vertices in the cloud, namely
n − c + 1 and n− c + 2 with arrows n− c ← n − c + 1 and n − c ← n− c + 2 and there
is no other arrows between the cloud and the An−c quiver. Again, we denote by Q′ the
valued quiver obtained by deleting the vertex 1 and the arrow ending in 1 and by Λ′ the
corresponding factor algebra of Λ and we show:

Lemma.
an−c+1(Λ) = an−c+1(Λ

′) + an−c(Λ) + an−c(An−c).

The proof follows closely the previous proof. The support-tilting modules T for Λ with
1 not in the support are just the support-tilting modules for Λ′. We construct a surjection
α from the set Sn−c+1(Λ; 1) of the support-tilting Λ-modules T with support-rank n−c+1
and T1 6= 0 onto the set Sn−c of support-tilting Λ-modules T with support-rank n− c. In
the present setting, α will not be injective, but there will be pairs in S(Λ; 1) which are
identified by α, the number of such pairs will be just an−c(An−c).

As above, one shows that any module T in Sn−c+1 is of the form T = X ⊕ T ′

where X is indecomposable, X1 6= 0 and X is of maximal possible length. Note that the
support of X is contained either in {1, 2, . . . , n− c +1} or in {1, 2, . . . , n− c, n− c +2}. In
particular, X is uniquely determined (since the support of T cannot contain all the vertices
1, 2, . . . , n− c + 2). As above, the mapping α will be the deletion of the summand X.

Let Z be the indecomposable module with support {1, 2, . . . , n − c + 1} and Z ′ the
indecomposable module with support {1, 2, . . . , n − c, n − c + 2}. Starting with a tilting
module T ′ for An−c, we may form the direct sums Z ⊕ T ′ and Z ′ ⊕ T ′. Then these are
elements of Sn−c+1(Λ; 1) which both are mapped under α to the same module T ′. These
are the an−c(An−c) pairs of elements of S(Λ; 1) which are identified by α.

13



It follows that S(Λ; 1) has cardinality an−c(Λ) + an−c(An−c). �

Corollary.

an−1(Dn) =

[

2n− 3
n− 1

]

.

Proof: We start with the previous observation

an−1(Dn) = an−1(Dn−1) + an−2(Dn) + an−2(An−2)

=
3n− 7

n− 1

(

2n− 5

n− 3

)

+
3n− 6

2n− 4

(

2n− 4

n− 2

)

+
1

n− 1

(

2n− 4

n− 2

)

Write
(

2n− 5

n− 3

)

=
n− 1

2n− 3

(

2n− 3

n− 1

)

,

(

2n− 4

n− 2

)

=
(n− 2)(n − 1)

(2n− 4)(2n − 3)

(

2n− 3

n− 1

)

.

One easily shows that

3n− 7

n− 1
·

(n − 2)(n − 1)

(2n − 4)(2n − 3)
+

3n− 6

2n− 4
·

n− 1

2n− 3
+

1

n− 1
·

n− 1

2n− 3
=

3n− 4

2n− 3
.

As a consequence, we get

3n− 7

n− 1

(

2n− 5

n− 3

)

+
3n− 6

2n− 4

(

2n− 4

n− 2

)

+
1

n− 1

(

2n− 4

n− 2

)

=
3n− 4

2n− 3

(

2n− 3

n− 1

)

=

[

2n− 3
n− 1

]

.

�

5. Summation formulas.

An immediate consequence of the previous section is the following assertion

Proposition. Let ∆ = A, or B and n ≥ 0, or ∆ = D and n ≥ 2. If 1 ≤ s ≤ n − 1,
then

∑s

i=0
ai(∆n) = as(∆n+1).

Proof, by induction: For s = 0, both sides are equal to 1. For s ≥ 1, we write

∑s

i=0
ai(∆n) = as(∆n) +

∑s−1

i=0
ai(∆n)

= as(∆n) + as−1(∆n+1)

= as(∆n+1)

at the end, we have used the hook formula.
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Corollary. Let ∆ = A, B or D. Then

a(∆n) = an(∆n) + an−1(∆n+1)

Case An.

a(An) =
1

n + 1

(

2n

n

)

+
3

n + 2

(

2n

n− 1

)

=
1

n + 2

(

2n + 2

n + 1

)

.

Case Bn.

a(Bn) =

(

2n− 2

n− 1

)

+

(

2n− 1

n

)

=

(

2n

n

)

.

Case Dn.

a(Dn) =

[

2n− 2
n− 2

]

+

[

2n− 2
n− 1

]

=

[

2n− 1
n− 1

]

.
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6. The three triangles A, B, D and the Catalan, Pascal, Lucas triangles.

The triangle of type A, this is A009766.

as(An) =
n− s + 1

n + 1

(

n + s

s

)

1

1

1

1

1

1

1

1

1

1

1

2 2

3 5 5

4 9 14 14

5 14 28 42 42

6 20 48 90 132 132

7 27 75 165 297 429 429

8 35 110 275 572 1001 1430 1430

9 44 154 429 1001 2002 3432 4862 4862

n

0

1

2

3

4

5

6

7

8

9

........................................

s 0 1 2 3 4 5 6 7 8 9 sum

1

2

5

14

42

132

429

1430

4862

16796

The triangle of type B, this is A059481.

as(Bn) =

(

n + s − 1

s

)

1

1

1

1

1

1

1

1

1

1 1

1

2 3

3 6 10

4 10 20 35

5 15 35 70 126

6 21 56 126 252 462

7 28 84 210 462 924 1716

8 36 120 330 792 1716 3432 6435

9 45 165 495 1287 3003 6435 12870 24310

n

0

1

2

3

4

5

6

7

8

9

........................................

s 0 1 2 3 4 5 6 7 8 9 sum

2

6

20

70

252

924

3432

12870

48620

The triangle of type D

as(Dn) =



















[

n + s− 2
s

]

for 0 ≤ s < n,

[

2n− 2
n− 2

]

for s = n.
1

1

1

1

1

1

1

1

·

· ·

·

·

2 1

3 5 5

4 9 16 20

5 14 30 55 77

6 20 50 105 196 294

7 27 77 182 378 714 1122

8 35 112 294 672 1386 2640 4290

9 44 156 450 1122 2508 5148 9867 16445

n

0

1

2

3

4

5

6

7

8

9

........................................

s 0 1 2 3 4 5 6 7 8 9 sum

4

14

50

182

672

2508

9438

35750

........

........

........ ........ ........ ........ ........ ........
........
........ ........ ........ ........ ........ ........

........

........
........ ........ ........ ........ ................

........

........ ........ ........ ........ ........ ........
........
........ ........ ........ ........ ........ ........

........

........ ........ ........ ........ ........ ........
........
........
........ ........ ........ ........ ................

........

........ ........ ........ ........ ........ ........
..
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The Catalan triangle, read by rows: A008315

(

t

s

)

−

(

t

s − 1

)

=
t− 2s + 1

t− s− 1

(

t

s

)

1

1

1

1

1

1

1

1

1

1

1

2

3 2

4 5

5 9 5

6 14 14

7 20 28 14

8 27 48 42

9 35 75 90 42

t

0

1

2

3

4

5

6

7

8

9

....................................

s 0 1 2 3 4 5 6 7 8 9

....

....

....

....

....

....

....

....

....

....

....

....

......................................................................
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
.......................................................................

....

....

....

....

....

....

....

....

....

....

....

....

....

....

......................................................................
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
......................................................................

....

....

....

....

.....

....

....

....

....

....

....

....

....

....

....

......................................................................
....
....
....
....
....
....
....
...

..............................................................

.............................................................

.................................................................................

.....................................................................................................

.....................................................................................................

.................................................................................

.............................................................

.........................................

.....................

The Pascal triangle A007318, left of the staircase line is the increasing part.

(

t

s

)

1

1

1

1

1

1

1

1

1

1

1

2 1

3 3 1

4 6 4 1

5 10 10 5 1

6 15 20 15 6 1

7 21 35 35 21 7 1

8 28 56 70 56 28 8 1

9 36 84 126 126 84 36 9 1

t

0

1

2

3

4

5

6

7

8

9

....................................

s 0 1 2 3 4 5 6 7 8 9

....

....

....

....

....

....

....

.....

....

....

....

......................................................................
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
......................................................................

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

.......................................................................
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
......................................................................

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

......................................................................
....
....
.....
....
....
....
....
..

..............................................................

.............................................................

.................................................................................

.....................................................................................................

.....................................................................................................

.................................................................................

.............................................................

.........................................

.....................

The Lucas triangle A029635, left of the staircase line is the increasing part.

[

t
s

]1

1

1

1

1

1

1

1

1

·

2

3 2

4 5 2

5 9 7 2

6 14 16 9 2

7 20 30 25 11 2

8 27 50 55 16 13 2

9 35 77 105 91 49 15 2

10 44 112 182 196 140 64 17 2

t

0

1

2

3

4

5

6

7

8

9

....................................

s 0 1 2 3 4 5 6 7 8 9

....

....

....

....

....

....

....

....

....

....

....

....

......................................................................
....
....
....
....
....
....
....
....
....
.....
....
....
....
....
......................................................................

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

......................................................................
....
....
....
....
....
....
....
....
....
....
....
....
....
....
.....
......................................................................

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

......................................................................
....
....
.....
..

.........................................

.............................................................

.................................................................................

.....................................................................................................

.....................................................................................................

.................................................................................

.............................................................

.........................................

.....................
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Remarks concerning the presentation of the triangles.

In the triangle of type D and in the corresponding Lucas triangle some values are left
open (this is indicated by a dot).

In the Lucas triangle, this concerns the value at the position (0, 0). This value which

would be denoted by
[

0

0

]

should be one of the numbers 1 or 2 (in OEIS A029635, the

number is chosen to be 2). Note that here we deal with the product 0
0

(

0
0

)

: whereas
(

0
0

)

= 1
is well-defined, there is the ambiguous fraction 0

0
.

In the triangle of type D, the positions (0, 0), (0, 1), (1, 1) are left open, since the series
of Dynkin diagram Dn starts with n = 2 (but see A129869); by definition D2 = A1 t A1

and D3 = A3. As a consequence, also the corresponding entries in the summation sequence
are missing.

Some observations concerning the triangles A, B, D.

The sum sequence occurs as a diagonal.

In the A-triangle, the sum sequence is the same sequence as the main diagonal (and
these are just the Catalan numbers):

a(An) = an+1(An+1)

In the B-triangle, the sum sequence is the same sequence as the second diagonal

a(Bn) = an(Bn+1)

In the D-triangle, the sum sequence is the same sequence as the fourth diagonal

a(Dn) = an−1(Dn+2)

The main diagonal uses the same sequence as one of the other diagonals.

In the A-triangle, this concerns the main diagonal and the second diagonal:

an(An) = an−1(An)

In the B-triangle, this concerns the main diagonal and the second diagonal:

an(Bn) = an−1(Bn+1)

In the D-triangle, this concerns the main diagonal and the fifth diagonal:

an(Dn) = an−2(Dn+2)

It may be of interest to exhibit explicit bijections between the corresponding sets of
support-tilting modules. It seems that only in the case A, this can be done easily!
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Comparison between the Lucas triangle and the D-triangle.

The difference between the number

[

2n− 2
n

]

and

[

2n− 2
n− 2

]

seems to be of interest:

[

2n− 2
n

]

−

[

2n− 2
n− 2

]

=
1

n

(

2n− 2

n− 1

)

This means that
[

2n− 2
n

]

− an(Dn) = an−1(An−1)

Proof: We show that

3n− 4

n

(

2n− 2

n− 2

)

+
1

n

(

2n− 2

n− 1

)

=
3n− 2

2n− 2

(

2n− 2

n

)

We rewrite

(

2n− 2

n− 2

)

=
n

2n− 2

(

2n− 2

n

)

,

(

2n− 2

n− 1

)

=
n

n− 1

(

2n− 2

n

)

.

The assertion now follows from the equality

3n− 4

n
·

n

2n− 2
+

1

n
·

n

n− 1
=

3n− 2

2n− 2
.

Here is a table of these numbers

n

[

2n− 2
n

] [

2n− 2
n− 2

]

1

n

(

2n− 2

n− 1

)

2

3

4

5

6

7

8

9

2

7

25

91

336

1254

4719

17875

1

5

20

77

294

1122

4290

16445

1

2

5

14

42

132

429

1430
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7. The exceptional cases.

Here are the numbers as(∆n) and a(∆n) in the exceptional cases E6, E7, E8, F4, G2

(we add some suitable additional rows in order to stress the induction scheme):

1 3 4 2

1 4 9 14 14

1 5 14 30 55 77

1 6 20 50 110 228 418

1 7 27 77 187 429 1001 2431

1 8 35 112 299 728 1771 4784 17342

1 3 6 10

1 4 10 24 66

1 2 5

E3 = A2 t A1

E4 = A4

E5 = D5

E6

E7

E8

B3

F4

G2

........................................

s 0 1 2 3 4 5 6 7 8 sum

10

42

182

833

4160

25080

20

105

8

Appendix. The Ingalls-Thomas bijections.

(A.1) Let Λ be a hereditary artin algebra. We need some further definitions: Given a
class X of modules, we denote by addX the class of modules which are direct summands
of direct sums of modules in X . If X = {X} for a single module X, we write add X instead
of add{X} (the same convention will be used in similar situations). Given a class X of
modules, let G(X ) be the subcategory of all modules which are generated by modules in
X , and let H(X ) be the subcategory of all modules which are cogenerated by modules in
X .

The modules M,M ′ are said to be Morita equivalent provided add(M) = add(M ′).
Note that basic modules which are Morita equivalent are actually isomorphic.

Starting with an antichain A = {A1, . . . , At}, its Ext-quiver has t vertices, and
there is arrow i → j provided Ext(Ai, Aj) 6= 0. The antichains A = {A1, . . . , At} and
A′ = {A′

1, . . . , A
′
t′} are said to be isomorphic, provided the modules

⊕

i Ai and
⊕

j A′
j are

isomorphic.
A full subcategory A of mod Λ is called a thick subcategory provided it is closed under

kernels, cokernels and extensions. Note that a thick subcategory is an abelian category,
and the inclusion functor A→ mod Λ is exact.

If C is a subcategory and C ∈ C, then C is said to be a cover of C provided C ⊆ G(C),
and C is said to be a cocover of C provided C ⊆ H(C).

A torsion class in modΛ is a class of modules which is closed under factor modules
and extensions. A torsionfree class in mod Λ is a class of modules which is closed under
submodules and extensions.
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There is the following well-known fact (see, for example [R3]): A sincere module

without self-extensions is faithful, thus any module X without self-extensions is a faithful
Λ(X)-module.

Here is the main result of the appendix:

(A.2) Theorem. Let Λ be a hereditary artin algebra. There are bijections between

the following data:

(1) Isomorphism classes of Ext-directed antichains.

(2) Thick subcategories with a cover.

(3) Isomorphism classes of normal modules without self-extensions.

(4) Morita equivalence classes of support-tilting modules.

(5) Torsion classes with a cover.

If Λ is in addition representation-finite, then
(1′) All antichains are Ext-directed.
(2′) All thick subcategories have a cover.

(5′) All torsion classes have a cover.

In the case when Λ is the path algebra of a quiver, bijections between the sets (2), (4)
and (5) were exhibited by Ingalls-Thomas in [IT]. Actually, a bijection between (4) and
(5) has been known before, and the decisive idea of [IT] was to relate the support-tilting
modules to thick subcategories. A bijection between (1) and (2) was exhibited already in
1976, see [R1], for a bijection between (1) and (3), we will refer below to [DR3].

Let us write down such bijections in detail, with an outline of the proofs.

(A.3) The bijections between (1), (2) and (3).

From (1) to (2): If A is an antichain, take F(A), this is the set of all Λ-modules with a
filtration with factors in A. This is an abelian category with exact embedding functor and
obviously closed under extensions, its simple objects are just the elements of A; the process
of considering the elements of A as objects in F(A) is called simplification in [R1]. In case
the antichain A is Ext-directed, the category F(A) is equivalent to the module category of
a finite-dimensional algebra, thus it has projective generators. Such a projective generator
is a cover for F(A).

For the step (1) to (2), we also may refer to [DR3]. Namely, an antichain A with
directed Ext-quiver is a standardizable set as considered in [DR3] and the proof of Theorem
2 in [DR3] asserts that there is a quasi-hereditary algebra B such that the subcategory
F(A) is equivalent to the category of ∆-filtered B-modules. Since the standardizable set
A consists of pairwise orthogonal modules, the same is true for the ∆-modules of B, and
consequently the ∆-modules of B are just the simple M-modules. This shows that the
category of ∆-filtered B-modules is the whole category modB.

From (2) to (1): If A is a thick subcategory with a cover, let S(A) be the set of simple

objects in A, one from each isomorphism class. Then S(A) is an Ext-directed antichain.
From (2) to (3): If A is a thick subcategory with a cover, let P be a minimal projective

generator of A. Then P is a normal module without self-extensions.
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If we start with (1), say with an Ext-directed antichain A, and use [DR3] in order to
find an equivalence η : F(A) → mod B, the proof of Theorem 2 in [DR3] first constructs
indecomposable objects in F(A) which correspond under η to the indecomposable projec-
tive B-modules. In this way, one constructs a minimal projective generator for the abelian
category F(A).

From (3) to (1). Let N be a normal module without self-extensions. Write N =
⊕

i Ni

with indecomposable modules Ni. For any i, let ui : Ui → Ni be a minimal right Ni-
approximation of Ni, where Ni = add({Nj | j 6= i}. Since N is normal, the map ui

cannot be surjective. Since Λ is hereditary, it follows that ui is injective and we denote
by pi : Ni → ∆(i) the cokernel of ui. Since ui is not surjective, we see that ∆(i) 6= 0. We
claim that the modules ∆(i) are pairwise orthogonal bricks. Let h : N(j) → ∆(i) be a
map, and form the induced exact sequence

0 −−−−→ Ui −−−−→ M −−−−→ Nj −−−−→ 0
∥

∥

∥





y





y
h

0 −−−−→ Ui
ui−−−−→ Ni

pi

−−−−→ ∆(i) −−−−→ 0

Since Ui belongs to Ni and N has no self-extensions, we have Ext(Nj , Ui) = 0, thus the
upper sequence splits. It follows that there is a map h′ : Nj → Ni such that h = pih

′.
First of all, it follows that for any endomorphism g of ∆(i), there is an endomorphism
g′ : Ni → Ni with gpi = pig

′. Since all non-zero endomorphisms of Ni are invertible, the
same is true for ∆(i). In this way, we see that ∆(i) is a brick. Second, let g : ∆(j)→ ∆(i)
be a homomorphism with j 6= i. Then there is g′ : Nj → Ni such that gpj = pig

′. Since
ui is a left Ni-approximation, it follows that g′ = uig

′′ for some g′′ : Nj → Ui. But then
gpj = pig

′ = piuig
′′ = 0 and therefore g = 0.

Thus, ∆ = {∆(i) | i} is an antichain. Using induction on the length |Ni| of Ni, we
see that Ni belongs to F(∆). Namely, if Ni is of length 1, then Ui = 0 since ∆(i) 6= 0.
If |Ni| ≥ 2, then Ui is a direct sum of modules of the form Nj with |Nj | < |Ni|, thus by
induction Ui belongs to F(∆) and therefore also Ni belongs to F(∆).

The surjective map pi : Ni → ∆(i) yields a surjective map Ext(N,Ni)→ Ext(N,∆(i)),
thus Ext(N,∆(i)) = 0 for all i, and therefore Ext(N,M) = 0 for all M ∈ F(∆). This
shows that the objects Ni are indecomposable projective objects in F(∆); actually, Ni

is the projective cover of ∆(i) in F(∆). As usual, one sees now that Ext(∆(i),∆(j) 6= 0
if and only if Nj is a direct summand of Ui. If Nj is a direct summand of Ui, then, in
particular, |Nj | < |Ni|. This shows that the Ext-quiver of ∆ is directed.

Starting with an Ext-directed antichain A in (1), and going via (2) to (3), we obtain
the minimal projective generator P of F(A). Going from (3) to (1), we attach to P
the antichain ∆ whose elements are just the simple objects in F(A), but these are just
the elements of A. Conversely, starting in (3) say with a normal module N without self-
extensions, then going to (1), we attach to it the antichain ∆. Going via (2) to (3), we form
a minimal projective generator in F(∆). But N is up to isomorphism the only minimal
projective generator in F(∆). �

(A.4) The bijection between (3) and (4).
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From (4) to (3): If T is a support-tilting module, let ν(T ) be its normalization. This
clearly is a normal module without self-extensions. Here we use that any module M can
be written in the form M = M ′ ⊕M ′′ where M ′ is normal and generates M ′′ (this of
course is trivial), and that such a decomposition is unique up to isomorphism (this is not
so obvious); the module M ′ is called a normalization of the module M . The uniqueness
was first shown by Roiter [Ro] and then also by Auslander-Smalø [AS], see also [R4]. The
uniqueness shows that the map ν going from (4) to (3) is well-defined.

Let us show that ν is injective when we are dealing with support-tilting modules.
We claim the following: if T, T ′ are support-tilting modules with ν(T ) = ν(T ′),, then T
and T ′ are Morita equivalent. For the proof, we may replace Λ by the support algebra
Λ(T ) = Λ(T ′), thus we may assume that T, T ′ are tilting modules. Now, if T ′ is generated
by ν(T ′) = ν(T ), thus therefore by T . But it is well-known (and easy to see) that the only
modules without self-extensions which are generated by a tilting module module T belong
to add(T ). Similarly, we see that T belongs to add(T ′).

In order to see that ν is also surjective, we need to find for any normal module N
without self-extensions a support-tilting module T with ν(T ) = N. This we will show next.

From (3) to (4): If N is a module without self-extensions, there is a module N ′, with
the following properties: first, N ′ is generated by N , and second, N ⊕ N ′ is a support-
tilting module; we call N ′ a factor complement for N (this is the dual version of forming
a Bongartz complement, see for example [R3]).

Here is the construction of a factor complement N ′ of a module without self-extensions
(we follow [R3]). Let Λ(N) be the support algebra for N and Z an injective cogenerator for
mod Λ(N). Choose an epimorphism Y → Z with kernel in addN such that Ext(Y,N) = 0.
Such an epimorphism can be obtained as a universal foundation of Z by N (sometimes
also called a universal extension of Z by N from below): take exact sequences 0 → N →
Yi → Z → 0 such that the corresponding elements in Ext(Z,N) form a k-basis, and form
the direct sum of these sequences. The induced sequence with respect to the diagonal
inclusion u : Z →

⊕

i Z

0 −−−−→
⊕

i N −−−−→
⊕

i Yi −−−−→
⊕

i Z −−−−→ 0
∥

∥

∥

x





x





u

0 −−−−→
⊕

i N −−−−→ Y
g

−−−−→ Z −−−−→ 0

yields a universal foundation g : Y → Z. In general, given a universal foundation g : Y → Z
of Z by N , say with kernel N ′, the module Y is generated by N . Namely, since N has no
self-extensions, it is a faithful Λ(N)-module, thus Z is generated by N . An epimorphism
h : N t → Z yields a commutative diagram with exact rows

0 −−−−→ N ′ −−−−→ Y
g

−−−−→ Z −−−−→ 0
∥

∥

∥

x



h′

x




h

0 −−−−→ N ′ −−−−→ N ′′ −−−−→ N t −−−−→ 0

Since Ext(N,N) = 0, the lower sequence splits, thus N ′′ belongs to addN . Since h is
surjective, also h′ is surjective, thus Y is generated by N .
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Actually, if we choose a minimal direct summand φ(N) of N ′ such that N ⊕ φ(N)
is a support tilting module, then φ(N) is uniquely determined by N and may be called a
minimal factor complement for N . Thus, going from (3) to (4), we may attach to a normal
module N without self-extension the multiplicity-free support-tilting module N ⊕ φ(N).

Of course, in case N is normal, then N is the normalization of N ⊕ Y . Thus starting
with a normal module N without self-extensions, then going from (3) to (4) and back
to (3), we obtain N . On the other hand, let T be support-tilting. From (4) to (3) we
take ν(T ). From (3) to (4), we add to ν(T ) a factor complement, say N ′. But T and
T ′ = ν(T )⊕N ′ both are support-tilting modules with ν(T ) = ν(T ′) and generated by this
module, thus they are Morita equivalent. �

(A.5) The bijection between (4) and (5).

First, we show the following: If T is a suport-tilting module and G = G(T ), then addT
is the class of the Ext-projective modules in G. Tilting theory asserts that G is the class of
Λ(T )-modules M such that Ext(T,M) = 0. Let M be in G and g : T ′ → M be a right T -
approximation of M . Then g is surjective and the kernel M ′ of g satisfies Ext(T,M ′) = 0,
thus belongs to G. If M is Ext-projective, then the exact sequence 0→M ′ → T ′ →M → 0
splits, thus M is in addT. This shows that the Ext-projective modules in G are just the
modules in addT.

From (4) to (5); If T is a module without self-extensions, let G(T ) be the class of
modules generated by T . Then it is well-known (and easy to see) that T is a torsion class.
Of course, T is a cover for G(T ).

From (5) to (4): If C is a torsion class with a cover C , then we attach to it a module
T such that addT is the class of Ext-projective modules in G. In order to do so, we need
to know that the class E of Ext-projective modules in C is finite, say G = addT for some
module T . We also have to show that T is support-tilting.

With C also its normalization ν(C) is a cover. A normal cover of a torsion class has
no self-extension (see Proposition 1 of [R4]). Let B be a factor complement for ν(C). As
we have seen, T = ν(C)⊕ B is a support-tilting module. Since B is generated by ν(C),
we have G(T ) = G(ν(C)) = G(C) = C. But we have shown already that addT is the class
of Ext-projective modules in G(T ).

From (4) to (5) to (4): Let us start with a support-tilting module T and attach to it
G = G(T ). As we have seen, the class of Ext-projectives in G is addT . We choose T ′ with
addT ′ = addT . But this just means that T, T ′ are Morita equivalent.

From (5) to (4) to (5). We start with a torsion class C with a cover, we choose a
support-tilting module T with C = G(T ), thus we are back at C. �

(A.6) Duality.

Using duality, the sets (1), (2) and (4) are preserved. Of course, the dual concept of a
thick subcategory with a cover is a thick subcategory with a cocover (note that an abelian
k-category with finitely many simple objects and finite-dimensional Ext-groups has a cover
if and only if it has a cocover).

Dualizing (3) we get:
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(6) The isomorphism classes of conormal modules without self-extensions.

Dualizing (5) we get:

(7) The torsionfree classes with a cocover.

Both assertions are equivalent to (1), . . . ,(5). �

Remark: The bijections between the set (2) of thick subcategories A and the sets
(1), (3) and (6) of isomorphism classes of modules can be reformulated as follows: In an
abelian category we may look at the semi-simple, the projective and the injective objects:
the set of simple objects in A is an antichain in mod Λ, a minimal projective generator
in A is a normal module without self-extensions, a minimal injective cogenerator is a
conormal module without self-extensions. These are the procedures to obtain from a thick
subcategory the corresponding antichain, as well as a normal or conormal module without
self-extensions.

Conversely, let us start with (1), (3) or (6). It has been mentioned already that
starting with an antichain A, we take the full subcategory F(A) of all modules with a
filtration with factors in A. Starting with a normal module P without self-extensions,
the corresponding thick subcategory A consists of all modules which arise as the cokernel
of a map in addP (in this way, we specify projective presentations of the objects in A).
Dually, starting with a conormal module I without self-extensions, the corresponding thick
subcategory A consists of all modules which arise as the kernel of a map in add I (in this
way, we specify injective presentations of the objects in A). �

(A.7) The support.

Proposition. The bijections which we have constructed preserve the support.

�

(A.8) Sincere modules and subcategories.

Specializing the Ingalls-Thomas bijections to sincere modules, it follows from (A.7)
that we get bijections between:

(1) Isomorphism classes of Ext-directed sincere antichains.

(2) Thick subcategories with a sincere generator.

(3) Isomorphism classes of normal sincere partial tilting modules.

(4) Morita equivalence classes of tilting modules.

(5) Torsion classes with a sincere generator.

(6) Isomorphism classes of conormal sincere partial tilting modules.

(7) Torsionfree classes with a sincere cogenerator. �

Of course, conversely this special case implies the general case. �
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[AHK] L. Angeleri-Hügel, D. Happel, H. Krause: Handbook of tilting theory. London Math.
Soc. Lecrure Note Series 332. Cambridge University Press (2007).

[APR] M. Auslander, M. .I. Platzeck, I. Reiten: Coxeter functors without diagrams.
Trans. Amer. Math. Soc. 250 (1979), 1-46.

[ARS] M. Auslander, I. Reiten, S. Smalø: Representation Theory of Artin Algebras. Cam-
bridge Studies in Advanced Mathematics 36. Cambridge University Press. 1997.

[Ar] D. Armstrong: Generalized Noncrossing Partitions and Combinatorics of Coxeter
Groups. Memoirs of the Amer. Math. Soc. 949 (2009).

[AS] M. Auslander, S. S. Smalø: Preprojective modules over artin algebras. J.Algebra 66
(1980), 61-122.

[Ba] D. F. Bailey: Counting arrangements of 1’s and -1’s. Math. Mag. 69 (1996), 128-131.
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