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Abstract. We review geometric and algebraic methods of investiga-
tions of systems of partial differential equations. Classical and modern
approaches are reported.
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Introduction

In this paper we present an overview of geometric and algebraic methods
in the study of differential equations. The latter are considered as co-filtered
submanifolds in the spaces of jets, possibly with singularities. Investigation
of singularities is a very subtle question, so that we will be mainly assuming
regularity.

Jets are formal substitutions to actual derivatives and certain geomet-
ric structure retains this meaning, namely the Cartan distribution. Thus
geometry enters differential equations. Differential-geometric methods, in
particular connections and curvatures, are our basic tools.

Since differential operators form a module, (differential) algebra is also
an essential component in the study of differential equations. This algebra
is non-commutative, but the associated graded object is commutative, and
so commutative algebra plays a central role in the investigation.

Thus we get the main ingredients and the theory is based on the interplay
between them. Our exposition will center around compatibility theory, fol-
lowed by formal/local (and only eventually global) integrability. So we are
mainly interested in the cases, when the number of independent variables
is at least two. Therefore we consider systems of partial differential equa-
tions (PDEs) and discuss methods of investigation of their compatibility,
solvability or integrability.

Part of the theory is trivial for ODEs, but some methods are useful for
establishing exact solutions, discovering general solutions and analysis of
their singularities also for this case.

The exposition is brief and we don’t prove or try to explain the results
in details. The reader is referred to the cited papers/books. We have not
covered some important topics, like transformation theory, equivalence prob-
lem, complete integrability, integro-differential equations etc. However our
short panorama of the general theory of differential equations should help
in understanding the modern progress and a possible future development.

1. Geometry of jets-spaces

1.1. Jet spaces. Let us fix a smooth manifold E of dimension m + n and
consider submanifolds in E of the fixed codimension m. We say that two
such submanifolds N1 and N2 are k-equivalent at a point a ∈ N1 ∩ N2 if
they are tangent (classically ”have contact”) of order k ≥ 0 at this point.
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Denote by [N ]ka the k-equivalence class of a submanifold N ⊂ E at the
point a ∈ N . This class is called k-jet1 of N at a. Let Jk

a (E, m) be the
space of all k-jets of all submanifolds of codimension m at the point a and
let Jk(E,m) = ∪a∈EJk

a (E, m) be the space of all k-jets.
The reductions k-jets to l-jets [N ]ka 7→ [N ]la gives rise the natural projec-

tions πk,l : Jk(E, m) → J l(E,m) for all k > l ≥ 0. The jet spaces carry a
structure of smooth manifolds and the projections πk,l are smooth bundles.

For small values of k these bundles have a simple description. Thus
J0(E,m) = E and J1(E, m) = Grn(TE) is the Grassman bundle over E.

For each submanifold N ⊂ E of codimN = m there is the natural em-
bedding jk : N → Jk(E, m), N 3 a 7→ [N ]ka ∈ Jk(E, m) and πk,l ◦ jk = jl.
The submanifolds jk(N) ⊂ Jk(E, m) are called the k-jet extensions of N .

Let π : Eπ → M be a rank m bundle over an n-dimensional manifold.
Local sections s ∈ C∞

loc(π) are submanifolds of the total space Eπ of codi-
mension m that are transversal to the fibres of the projection π. Let [s]kx
denote k-jet of the submanifold s(M) at the point a = s(x), which is also
called k-jet of the section s at x.

Denote by Jk
x (π) ⊂ ∪a∈π−1(x)J

k
a (Eπ,m) the space of all k-jets of the local

sections at the point x ∈ M and by Jk(π) ⊂ Jk(Eπ,m) the space of all k-jets.
Jk(π) is an open dense subset of the latter space and thus the projections
πk,l : Jkπ → J lπ form smooth fiber bundles for all k > l.

Projection to the base will be denoted by πk : Jkπ → M . Then lo-
cal sections s ∈ C∞

loc(M) have k-jet extensions jk(s) ∈ C∞
loc(πk) defined as

jk(s)(x) = [s]kx. Points of Jkπ will be also denoted by xk and then their
projections are: πk,l(xk) = xl, πk(xk) = x.

If we assume π is a smooth vector bundle (without loss of generality for
our purposes we’ll be doing it in the sequel), then πk,l are vector bundles
and the following sequences are exact:

0 → SkT ∗ ⊗ π → Jk(π)
πk,k−1−→ Jk−1(π) → 0,

where T ∗ = T ∗M is the cotangent bundle of M .
Smooth maps f : M → N can be identified with sections sf of the trivial

bundle π : E = M × N → M and k-jets of maps [f ]kx are k-jets of these
sections. We denote the space of all k-jets of maps f by Jk(M, N).

For small values of k we have: J0(M,N) = M × N and J1
(x,y)(M, N) =

Hom(TxM,TyN).
For N = R we denote Jk(M,R) = Jk(M). In this case J1(M) = T ∗M×R.

In the dual case J1(R,M) = TM × R. The spaces Jk(R,M) are manifolds
of ”higher velocities”.

1The notion of jet was introduced by Ehresmann [Eh], though was essentially in use
already in S.Lie’s time [Lie1].
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1.2. Differential groups and affine structures. Let us denote by Gk
x,y

the subset of k-jets of local diffeomorphisms in Jk
(x,y)(M,M). Then composi-

tion of diffeomorphisms defines the group structure on Gk
x,x. This Lie group

is called a complete differential group of order k (this construction is a basic
example of groupoid and is fundamental for the notion of pseudogroups, see
§4.5). The group G1

x,x is the linear group GL(TxM).
From §1.1 we deduce the group epimorphisms πk,l : Gk

x,x → Gl
x,x for l < k

and exact sequences of groups for k ≥ 2:

0 → SkT ∗x ⊗ Tx → Gk
x,x

πk,k−1−→ Gk−1
x,x → 1.

In other words, groups Gk
x,x are extensions of the general linear group

GL(TxM) by means of abelian groups SkT ∗x ⊗ Tx, k > 1.
The differential groups Gk

x,x(M) act naturally on the jet spaces:

Gk
x,x(M)× Jk

x (M, m) → Jk
x (M, m), [F ]kx × [N ]kx 7→ [F (N)]kx.

The kernel SkT ∗x⊗Tx of the projection Gk
x,x → Gk−1

x,x is the abelian group,
which acts transitively on the fibre F (xk−1) = π−1

k,k−1(xk−1), xk−1 = [N ]k−1
x ,

of the projection πk,k−1 : Jk
x (M,m) → Jk−1

x (M, m). Therefore, the fibre
F (xk−1) is an affine space. The associated vector space for the fibre is

SkT ∗xN ⊗ νx(N),

where νx(N) = TxM/TxN is the normal space to N at the point x ∈ N .
Thus, the bundle πk,k−1 : Jk(M,m) → Jk−1(M, m) has a canonical affine

structure for k ≥ 2. Moreover, each local diffeomorphism F : M → M
has the natural lifts to local diffeomorphisms F (k) : Jk(M,m) → Jk(M,m),
[N ]kx 7→ [F (N)]kF (x) preserving the affine structures.

For a vector bundle π : Eπ → M the affine structure in the fibers of
Jkπ → Jk−1π coincides with the structure induced by the vector bundle
structure. If π is a fiber bundle, the preceding construction provides the
affine structure. This gives rise the following construction.

Let M ⊂ E be a submanifold of codimension m and U ⊃ M be its
neighborhood, which is transversally foliated, so that the projection along
the fibers π : U → M can be identified with the normal bundle. We can
denote U = Eπ. Then the embedding κ : Eπ ⊂ E induces the embedding
κ(k) : Jk(π) ↪→ Jk(E,m) with M (k) being the zero section. The image is
an open neighborhood and the affine structure on Jk(π) → Jk−1(π) induces
the affine structure on Jk(E,m) → Jk−1(E, m), so that both projections
agree and are denoted by the same symbol πk,k−1. These neighborhoods
Jk(π) ↪→ Jk(E,m) together with the maps κ(k) are called affine charts.

Remark 1. Usage of affine charts in general jet-spaces is the exact analog of
independence condition in exterior differential systems. Most of the theory
works for spaces Jk(E, m), though for simplicity we will often restrict to the
case of jets of sections Jkπ.
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1.3. Cartan distribution. In addition to the affine structure on the co-
filtration πk,k−1 : Jk(E, m) → Jk−1(E, m), the space Jk(E, m) bears an
additional structure, which allows to distinguish submanifolds jk(N) ⊂
Jk(E, m), N ⊂ E, among all submanifolds in E of dimension n = dimN .
To describe it denote

L(xk+1) = Txk
[jk(N)] ⊂ Txk

Jk(π), xk+1 = [N ]k+1
x

(this subspace does not depend on a particular choice of N , but only on
xk+1). Define the Cartan distribution on the space Jk(E, m) by the formula:

Ck(xk) = span{L(xk+1) : xk+1 ∈ π−1
k+1,k(xk)} = (dπk,k−1)−1L(xk).

Submanifolds of the form N (k) are clearly integral manifolds of the Cartan
distributions such that πk,0 : N (k) → E are embeddings. The inverse is
also true: if W ⊂ Jk(E, m) is an integral submanifold of dimension n of
the Cartan distribution such that πk,0 : W → E is an embedding, then
W = N (k) for the submanifold N = πk,0(W ) ⊂ E. In other words, the
Cartan distribution gives a geometrical description for the jet-extensions.

In a similar way one can construct the Cartan distributions for the jet
spaces Jk(π). Moreover, any affine chart κ(k) : Jk(π) → Jk(E,m) sends the
Cartan distribution on Jk(π) to the Cartan distribution on Jk(E, m). By
using this observation we can restrict ourselves to Cartan distributions on
the jet-spaces of sections.

For the case Jkπ, there is a description of the Cartan distribution in terms
of differential forms. Namely, let us denote by Ωr

0(J
kπ) the module of πk-

horizontal forms, that is, such differential r-forms ω that iXω = 0 for any
πk-vertical vector field X: dπk(X) = 0.

These forms can be clearly identified with non-linear differential opera-
tors2 diffk(π, ΛrT ∗M) acting from sections of π to differential r-forms on
the manifold M . Indeed the space of such non-linear operators is nothing
else than the space of smooth maps C∞(Jkπ, ΛrT ∗M).

The composition with the exterior differential d : Ωr(M) → Ωr+1(M)
generates the total differential d̂ : Ωr

0(J
kπ) → Ωr+1

0 (Jk+1π). The total
differential is a differentiation of degree 1 and it satisfies the property d̂ 2 = 0.

Hence any function f ∈ C∞(Jk−1π) defines two differential forms on the
jet-space Jk(π): d̂f ∈ Ω1

0(J
kπ) and d(π∗k,k−1f) = π∗k,k−1(df) ∈ Ω1(Jkπ).

Both of them coincide on k-jet prolongations jk(s). Their difference:

U(f) = d(π∗k,k−1f)− d̂f ∈ Ω1(Jkπ)

is called the Cartan form associated with function f ∈ C∞(Jk−1π).
The annihilator of the Cartan distribution on Jkπ is generated by the

Cartan forms: Ann Ck(xk) = span{U(f)xk
: f ∈ C∞(Jk−1π)}.

As an example consider the case m = 1, k = 1. Then the Cartan distri-
bution on J1(E, 1) is the classical contact structure on the space of contact

2These will be treated in §2.4. We introduce here only a minor part of the theory.
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elements. It is known that it cannot be defined by one differential 1-form.
On the other hand, for the affine chart J1(M) = T ∗M × R the Cartan dis-
tribution (=the standard contact structure) can be defined by one Cartan
form U(u) = du− p dq, where u : J1(M) → R is the natural projection and
p dq is the Liouville form on T ∗M .

1.4. Lie transformations. Any local diffeomorphism F : E → E has pro-
longations F (k) : Jk(E, m) → Jk(E, m), [N ]kx 7→ [F (N)]kF (x), and they sat-

isfy: (F ◦ G)(k) = F (k) ◦ G(k), πk,k−1 ◦ F (k) = F (k−1) ◦ πk,k−1. Moreover,
by the construction, the diffeomorphisms F (k) are symmetries of the Cartan
distribution, i.e. they preserve Ck.

For m = 1 the Cartan distribution on the 1-jet space J1(E, 1) defines
the contact structure, and not all contact diffeomorphisms have the form
F (1), where F : E → E. Let φ : J1(E, 1) → J1(E, 1) be a contact local
diffeomorphism and let xk = [N ]kx. We can consider this point as (k− 1)-jet
of an integral manifold N (1) at the point x1 = [N ]1x. Then φ(N (1)) is an
integral manifold of the contact structure, and it has the form N

(1)
φ for some

submanifold Nφ ⊂ E if π1,0 : φ(N (1)) → E is an embedding.
Denote by Σφ ⊂ J1(E, 1) the set of points x1, where the last condition

is not satisfied. Then, for the points xk ∈ Jk(E, 1), such that projections
x1 = πk,1(xk) belong to the compliment Σc

φ, we can define the lift φ(k−1) :

Jk(E, 1) → Jk(E, 1), [N ]kx 7→ [φ(N (1))](k−1)
φ(x1) . As before we get:

(φ ◦ ψ)(k−1) = φ(k−1) ◦ ψ(k−1), πk,k−1 ◦ φ(k−1) = φ(k−2) ◦ πk,k−1.

Diffeomorphisms F : E → E are also called point transformations. So the
local diffeomorphisms F (k) and φ(k−1) are called prolongations of the point
transformation F or the contact transformation φ respectively.

A local diffeomorphism of Jk(E, m) preserving the Cartan distribution
is called a Lie transformation. The following theorem is known as Lie-
Backlund theorem on prolongations, see [KLV].

Theorem 1. Any Lie transformation of Jk(E, m) is the prolongation of

m ≥ 2 : Local point transformation F : E → E,
m = 1 : Local contact diffeomorphism φ : J1(E, 1) → J1(E, 1).

In the same way one can construct prolongations of vector fields on E and
contact vector fields on J1(E, 1) to Jk(E, m) or Jk(E, 1) respectively and the
prolongations preserve the Cartan distribution. A vector field on Jk(E, m),
which preserves the Cartan distribution, is called a Lie vector field. The Lie-
Backlund theorem claims that Lie vector fields are prolongations of vector
fields on E if m ≥ 2 or contact vector fields on J1(E, 1) if m = 1.

The same statements hold for E = Eπ, when the jet-space is Jkπ.
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Remark 2. Prolongations F (k) of the point transformations preserve the
affine structure for any k ≥ 2, i.e. starting from the 2nd jets. The prolon-
gations φ(k) of the contact transformations also preserve the affine structure
for k ≥ 2, but this means starting from the 3rd jets.

Let us briefly introduce here systems of PDEs3. Such a system of pure
order k is represented as a smooth subbundle E ⊂ Jk(π). It is possible to
use more general jet-spaces Jk(E, m); exteriour differential systems concern
the case k = 1. Scalar PDEs correspond to the trivial bundle Eπ = M × R
and E ⊂ Jk(M).

Solutions of E on an open set UM ⊂ M are sections s ∈ C∞
(loc)(π) such that

jk(s)(UM ) ⊂ E . Generalized solutions are n-dimensional integral manifolds
Wn of the Cartan distribution such that W ⊂ E (in this form there’s no
difference with equations in the general jet-space Jk(E, m) ⊃ E). If πk,0 :
W → M is not an embedding, we call such solution multi-valued or singular.

Another description of generalized solutions are n-dimensional integral
manifolds of the induced Cartan distribution CE = Ck∩TE . Then internal Lie
transformations (finite or infinitesimal) are (local) diffeomorphisms of E that
are symmetries of CE (they transform generalized solutions to generalized
solutions [Lie2, LE]).

In general there exist higher internal Lie transformations, which are not
prolongations from lower-order jets. But for certain type of systems E we
have the exact analog of Lie-Backlund theorem, see [KLV].

1.5. Calculations. A coordinate system (xi, uj) on Eπ, subordinated to
the bundle structure, induces coordinates (xi, pj

σ) on Jkπ, where multiindex

σ = (i1, . . . , in) has length |σ| = i1 + · · ·+ in ≤ k and pj
σ

(
[s]kx

)
=

∂|σ|sj

∂xσ
(x).

For a vector field X ∈ D(M) the operator of total derivative along X is
DX = iX ◦ d̂ : C∞(Jkπ) → C∞(Jk+1π) (this is just a post-composition of
a differential operator with Lie derivative along X) and it has the following
expression. Let X =

∑
ξi∂xi . Then DX =

∑
ξiDi, where the basis total

derivation operator Di = D∂xi is given by infinite series

Di = ∂xi +
∑

pσ+1i∂pσ .

If in the above sum we restrict |σ| < k we get vector fields D(k)
i on Jkπ. In

terms of them the Cartan distribution on JkM is given by

Ck = 〈D(k)
i , ∂pσ〉1≤i≤n,|σ|=k .

To write it via differential forms note that the operator of total derivative
equals d̂ =

∑Di ⊗ dxi. Thus for f ∈ C∞(Jk−1π) we get expression for the
Cartan forms U(f) =

∑
i,j;|σ|<k

(
(∂

pj
σ
f) dpj

σ + (∂xif −Dif) dxi
)
.

3Main definitions come only in §2.3,§3.4 after development of algebraic machinery.



8 BORIS KRUGLIKOV, VALENTIN LYCHAGIN

In particular, the differential forms ωj
σ = U(pj

σ) = dpj
σ −

∑
pj

σ+1i
dxi span

the annulator of the Cartan distribution, i.e. Ck = Ker{ωσ}0≤|σ|<k.
Finally let us express in coordinates Lie infinitesimal transformations.
Vector field X =

∑
i a

i(x, u) ∂xi +
∑

j bj(x, u) ∂uj on E = J0π (point
transformation) prolongs to

X(k) =
∑

i

ai(x, u)D(k+1)
i +

∑

j;|σ|≤k

Dσ(ϕj) ∂
pj

σ
, (1)

where ϕj = bj −∑n
i=1 aipj

i are components of the so-called generating func-
tion ϕ = (ϕ1, . . . , ϕr). Though the coefficients of (1) depend seemingly on
the (k + 1)-jets, the Lie field belongs in fact to D(Jkπ).

A contact vector field X(1) = Xϕ on J1π is determined by generating
scalar-valued function ϕ = ϕ(xi, u, pi) via the formula

X(1) =
∑

i

[
D(1)

i (ϕ) ∂pi − ∂pi(ϕ)D(1)
i

]
+ ϕ∂u.

The prolongation of this field to Jkπ is given by the formula similar to (1):

X(k) = −
∑

i

∂pi(ϕ)D(k+1)
i +

∑

|σ|≤k

Dσ(ϕ) ∂pσ . (2)

Again this is a vector field on Jkπ, coinciding with Xϕ for k = 1.

1.6. Integral Grassmanians. Denote

I0(xk) = {L(xk+1) : xk+1 ∈ F (xk)} ⊂ Grn(Txk
Jk)

the Grassmanian of all tangent planes to jet-sections through xk. The let-
ter I indicates that this can represented as the space of integral elements.
Consider for simplicity the space of jets of sections of a vector bundle π.

The map C∞(Jk−1π) 3 f 7→ dU(f)|C(xk) ∈ Λ2(C∗(xk)) is a derivation and
therefore defines a linear map Ωxk

: T ∗xk−1
(Jk−1π) → Λ2(C∗(xk)). Since the

latter vanishes on Im(dπ∗k−1,k−2) it descends to the linear map

Ωxk
: Sk−1Tx ⊗ π∗x → Λ2C(xk)∗,

which is called the metasymplectic structure on the Cartan distribution. We
treat Ωxk

as a 2-form on C(xk) with values in F (xk−2) ' Sk−1T ∗x ⊗ πx.
Remark that for the trivial rank 1 bundle π = 1 and k = 1 the metasym-

plectic structure Ωx1 on J1(M) coincides with the symplectic structure on
the Cartan distribution induced by the contact structure.

Call a subspace L ⊂ C(xk) integral if Ωxk
|L = 0. Then I(xk) consists of

all integral n-dimensional spaces for Ωxk
and I(xk) ⊃ I0(xk). Denote

Il(xk) = {L ∈ I(xk) : dim (πk)∗(L) = n− l} = {L : dim Ker((πk)∗|L) = l}.
Elements I0 (xk) are called regular ; they correspond to tangent spaces of the
usual smooth solutions (jet-extensions of sections). The others are tangent
spaces of singular (multi-valued) solutions.
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The difference dim I0(xk)−dim Il(xk) depends on m, k, l only. We denote
this number by cm,k,l and call formal codimension of Il(xk). Usually this
number is negative. The only cases when m ≤ 4 and c > 0 are listed in the
following tables:

m
‖
1

k�
l 1 2 3 4

1 1 3 6 10
2 1 2 1 -4
3 1 1 -6 -29
4 1 0 -15 -48
5 1 -1 -26 -124

m
‖
2

k�
l 1 2 3 4

1 1 2 3 4
2 1 0 -7 -24
3 1 -2 -21 -74

m
‖
3

k�
l 1 2 3 4

1 1 1 0 -2
2 1 -2 -15 -44

m
‖
4

k�
l 1 2 3

1 1 0 -3
2 1 -4 -23

These tables show that the regular cell I0(xk), as a rule, has smaller di-
mension than I(xk). This means that most elements of I(xk) are not tangent
planes to multi-valued jet-extensions jks with singularities of projection on
the set of measure zero.

To avoid paradoxical integral planes we introduce the notion of R-Grass-
manian and R-spaces. By R-Grassmanian RI(xk) we mean the closure of
the regular cell I0(xk) in I(xk). Its elements are called R-spaces.

When RI(xk) 6= I(xk) (which is often the case by the above mentioned
dimensional reasons), then there are integral manifolds, which represent
singular solutions such that ”all small deformations in the class of integral
manifolds” have singularities too!

This leads to the notion of an R-manifold, which is an n-dimensional
integral manifold N of the Cartan distribution with all tangent spaces Txk

N ,
xk ∈ N , being R-spaces. For a more detailed description of R-spaces and
R-manifolds based on the associated Jordan algebra structures consult [L2].

Remark 3. This discussion makes important distinction between exterior
differential systems and systems of PDEs embedded in jets. While with the
first approach a system is given just as a subbundle in a Grassmanian, the
second case keeps algebraic structures visible, in particular structure of in-
tegral manifolds is graspable and stratification of singularities is prescribed.

Notice that cm,k,l = l2 − mk
(
l+k−1
k+1

)
([L2]). Since

(
l+k−1
k+1

) ∼ 1
(k+1)! lk+1,

we observe that only for k = 1, m ≤ 2 the formal codimensions of Il are
non-negative for all l. These numbers are c1,1,l = l(l−1)

2 and c2,1,l = l.
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For k = m = 1 we have Legendrian Grassmanian I(x1) ⊂ Grn(Tx1J
1(E, 1)).

Its restriction to the affine chart Ĩ(x1) ⊂ Grn(Tx1(T
∗M × R)) induces via

projection the Lagrangian Grassmanian LG(a) ⊂ Grn(Ta(T ∗M)), a = (x, p).
The case k = 1, m = 2 includes complex Grassmanians. All other integral

Grassmanians are singular (with regard to the stratum I0(xk)).
The topological structure of integral Grassmanians is important in inves-

tigation of singularities of solutions.

Theorem 2. [L2]. The cohomology ring H∗(I(xk),Z2) is isomorphic to the
polynomial ring Z2[wk

1 , . . . , wk
n] up to dimension n, where wk

1 , . . . , wk
n are

Stiefel-Whitney classes of the tautological bundle over I(xk).

For a system of differential equations E of order k its integral Grassma-
nian is IE(xk) = I(xk) ∩ Grn(Txk

E). In other words, if CE is the Cartan
structure on E and ΩE = Ωxk

|Txk
E ∈ Λ2C∗E ⊗ F (xk−2) is the restriction of

the metasymplectic structure, then IE(xk) coincides with the space of all
integral n-dimensional planes for ΩE .

Note that the tangent spaces to solutions of the system are integral spaces.
Thus description of integral Grassmanians of systems of PDEs is important
for investigation of solutions (remark that fixation of the subbundle IE(xk)
is essentially the starting point in EDS approach). We shall return to this
problem in §3.7.

2. Algebra of differential operators

2.1. Linear differential operators. Denote by 1 the trivial one-dimensi-
onal bundle over M . Let Ak = Diffk(1,1) be the C∞(M)-module of scalar
linear differential operators of order≤ k andA = ∪kAk be the corresponding
filtered algebra, Ak ◦ Al ⊂ Ak+l.

Notice that the associated graded algebra gr(A) = ⊕Ak+1/Ak is the
symmetric power of the tangent bundle:

gr(A) = ST = ⊕iS
iT, where T = TxM.

Consider two linear vector bundles π and ν. Denote by Diff(π, ν) =
∪k Diffk(π, ν) the filtered module of all linear differential operators from
C∞(π) to C∞(ν). We have the natural pairing

Diffk(ρ, ν)×Diff l(π, ρ) → Diffk+l(π, ν)

given by the composition of differential operators.
In particular, Diff(π,1) is a filtered left A-module, Diff(1, π) is a filtered

right A-module and they have an A-valued A-linear pairing

∆ ∈ Diff l(π,1), ∇ ∈ Diffk(1, π) 7→ 〈∆,∇〉 = ∆ ◦ ∇ ∈ Ak+l,

with 〈θ ◦∆,∇〉 = θ ◦ 〈∆,∇〉, 〈∆,∇ ◦ θ〉 = 〈∆,∇〉 ◦ θ for θ ∈ A.
Each linear differential operator ∆ : C∞(π) → C∞(ν) of order l induces

a right A-homomorphism φ∆ : Diff(1, π) → Diff(1, ν) by the formula:

Diffk(1, π) 3 ∇ 7→ ∆ ◦ ∇ ∈ Diffk+l(1, ν).
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Its 〈 , 〉-dual is a left A-homomorphism φ∆ : Diff(ν,1) → Diff(π,1) given by

Diffk(ν,1) 3 ¤ 7→ ¤ ◦∆ ∈ Diffk+l(π,1).

Denoting by J k(π) = C∞(πk) the space of (non-holonomic) sections of
the jet-bundle we have:

Diffk(π, ν) = HomC∞(M)(J k(π), C∞(ν)), (3)

and differential operators ∆ of order k are in bijective correspondence with
morphisms ψ∆ : Jk(π) → ν via the formula ∆ = ψ∆ ◦ jk, where jk :
C∞(π) → J k(π) is the jet-section operator.

The prolongation ψ∆
l : Jk+l(π) → J l(ν) of ψ∆ = ψ∆

0 is conjugated to
the A-homomorphism φ∆ : Diff l(ν,1) → Diffk+l(π,1) via isomorphism (3).
This makes a geometric interpretation of the differential operator ∆ as the
bundle morphism.

Similarly one can interpret the A-homomorphism φ∆ : Diff l(1, π) →
Diffk+l(1, ν), see [KLV]. More generally lift of the operator ∆, obtained
via post-composition, is ∆̂ : Diff l(ξ, π) → Diffk+l(ξ, ν).

2.2. Prolongations, linear PDEs and formal integrability. A system
E of PDEs of order k associated to an operator ∆ ∈ Diffk(π, ν) is, by
definition, the subbundle Ek = Ker(ψ∆) ⊂ Jk(π). Its prolongation is Ek+l =
E(l)

k = Ker(ψ∆
l ) ⊂ Jk+l(π).

If ν = r · 1 is the trivial bundle of rank ν = r, we can identify ∆ =
(∆1, . . . ,∆r) to be a collection of scalar operators. Then the system Ek+l is
given by the equations Dσ ◦∆j [u(x)] = 0, where 1 ≤ j ≤ r, σ = (i1, . . . , in)
is a multi-index of length |σ| = ∑

is ≤ l and Dσ = Di1
1 · · · Din

n .
Points of Ek can be identified as k-jet solutions (not k-jets of solutions!)

of the system ∆ = 0 and the points of Ek+l are (k + l)-jet solutions of the
l-prolonged system. Formal solutions are points of E∞ = lim←−Ei.

Not all the points from Ek can be prolonged to (k + l)-jet solutions, but
only those from πk+l,k(Ek+l) ⊂ Ek. Investigation of these as well as formal
solutions can be carried successively in l and we arrive to

Definition 1. System E is formally integrable if Ei are smooth manifolds
and the maps πi+1,i : Ei+1 → Ei are vector bundles.

Define the dual E∗ = Cokerφ∆ as the collection of spaces E∗i given by the
exact sequence:

Diffk(ν,1)
φ∆

k−→ Diffk+l(π,1) → E∗k+l → 0.

We endow the dual E∗ with natural maps π∗i+1,i : E∗i → E∗i+1. But it becomes
an A-module only when these maps are injective.

However in general we can define the inductive limit E∆ = lim−→E
∗
i . It is a

filtered left A-module. Thus we can consider the system as a module over
differential operators (D-module).
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The dual E∆ = Ker(φ∆) ⊂ Diff(1, π) is a right A-module and we have
the pairing E∆ × E∆ → A. For formally-integrable systems this pairing is
non-degenerate, as follows from the following statement:

Proposition 3. A system E = Ker(ψ∆) is formally integrable iff E∗i are
projective C∞(M)-modules and the maps π∗i+1,i : E∗i → E∗i+1 are injective.

Proof. The projectivity condition is equivalent to regularity (constancy of
rank of the projection πi+1,i), while invjectivity of π∗i+1,i is equivalent to
surjectivity of πi+1,i. ¤

If we have several differential operators ∆i ∈ Diff(π, νi) of different orders
ki, 1 ≤ i ≤ t, then their sum is no longer a differential operator of pure
order ∆ = (∆1, . . . , ∆t) : C∞(π) → C∞(ν), ν = ⊕νi. Thus φ∆ is not an
A-morphism, unless we put certain weights to the graded components νi.

Namely if we introduce weight k−1
i for the operator ∆i (equivalently to

the bundle νi), then the operator ∆ becomes an A-homomorphism of degree
1. This allows to treat formally the systems of different orders via the same
algebraic machinery as for the systems of pure order k. Geometric approach
will be explained in the next section.

The prolongation theory wholly transforms for systems of PDEs E of
different orders. In particular for formally integrable systems we have left
A-module E∗. It is not a bi-module, but one can investigate sub-algebras
S ⊂ A, which act on E∗ from the right. It will be clear from §4.4 that they
correspond to symmetries of the system E .

2.3. Symbols, characteristics and non-linear PDEs. Consider sym-
bolic analogs of the above modules (we will write sometimes T = TxM for
brevity). Since ST ⊗π∗ = ⊕SiT ⊗π∗ is the graded module associated to the
filtrated C∞(M)-module Diff(π,1) = ∪Diffi(π,1), the bundle morphism
φ∆ produces the graded homomorphisms, called symbols of our differential
operator ∆:

σ∆ : ST ⊗ ν∗ → ST ⊗ π∗.
The value σ∆,x of σ∆ at x ∈ M is a homomorphism of ST -modules.

The ST -module M∆ = Coker(σ∆,x) is called the symbolic module at
the point x ∈ M ([GS]). Its annihilator is called the characteristic ideal
I(∆) = ⊕Iq, where Iq are homogeneous components. The set of covectors
p ∈ T ∗\{0} annihilated by I(∆) is the characteristic variety Charaff(∆). We
will consider projectivization of this conical affine variety Charx(∆) ⊂ PT ∗.

It is often convenient to work over complex numbers. If we complexify
the symbolic module, we get the complex characteristic variety

CharCx (∆) = {p ∈ PCT ∗ | f(p q) = 0∀f ∈ Iq, ∀q}.
Proposition 4. [Go, S2]. For p ∈ T ∗xM \ {0} let m(p) = ⊕i>0S

iT ⊂ ST be
the maximal ideal of homogeneous polynomials vanishing at p. Then covector
p is characteristic iff the localization (M∆)m(p) 6= 0.
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The set of localizations (M∆)m(p) 6= 0 for characteristic covectors p form
the characteristic sheaf K over the characteristic variety CharCx (∆).

The above definitions work for systems E of different order PDEs if we
impose the weight-convention of the previous section. However it will be
convenient to interpret this case geometrically and such approach works
well even in non-linear situation.

A system of PDEs of pure order k is represented as a smooth subbundle
Ek ⊂ Jk(π), non-linear case corresponds to fiber-bundles (in regular situa-
tion; in general the fibers π−1

k,k−1(∗)∩Ek are not diffeomorphic and Ek is just
a submanifold in Jkπ). Prolongations are defined by the formula

E(1)
k ={xk+1 = [s]k+1

x ∈Jk+1π : Txk
[jks(M)] ⊂ Txk

E}.
Higher prolongations can be defined successively in regular case, but in
general E(l)

k equals the set of all points xk+l = [s]k+l
x ∈ Jk+lπ with the

property that jks(M) is tangent to E at xk with order ≥ l.
To cover the case of several equations of different orders we modify the

usual definition. By a differential equation/system of maximal order k we
mean a sequence E = {Ei}−1≤i≤k of submanifolds Ei ⊂ J i(π) with E−1 = M ,
E0 = J0M = Eπ such that for all 0 < i ≤ k the following conditions hold:

(1) πEi,i−1 : Ei → Ei−1 are smooth fiber bundles.

(2) The first prolongations E(1)
i−1 are smooth subbundles of πi and Ei ⊆

E(1)
i−1.

Consider a point xk ∈ Ek with xi = πk,i(xk) for i < k and x = x−1. It
determines the collection of symbols gi(xk) ⊂ SiT ∗xM ⊗ Nx0 , where Nx0 =
Tx0

[
π−1(x)

]
, by the formula

gi(xk) = Txi

[
π−1

i,i−1(xi−1)
] ∩ TxiEi ⊂ SiT ∗xM ⊗Nx0 for i ≤ k.

For i > k the symbolic spaces gi are defined as symbols of the prolongations
Ei = E(i−k)

k , and they still depend on the point xk ∈ Ek.
In this situation g∗(xk) = ⊕g∗i is a graded module over the algebra R =

STxM of homogeneous polynomials on the cotangent space T ∗xM . It is called
the symbolic module of E at the point xk and for systems of linear PDEs
E = Ker(∆) this coincides with the previously defined module M∆.

The characteristic ideal is defined by Ixk
(E) = ann(g∗) ⊂ R (in the

symbolic context denoted by I(g)). The characteristic variety is the (pro-
jectivized/complexified) set of non-zero covectors v ∈ T ∗ such that for every
i there exists a vector w ∈ N \{0} with vi⊗w ∈ gi. If the system is of max-
imal order k, it is sufficient for this definition to take i = k only. We denote
it by CharCxk

(E) ⊂ PCT ∗xM (variants: Char ⊂ PT ∗xM , CharCaff ⊂ CT ∗xM etc).
Denote by diff(π, ν) the space of all non-linear differential operators (lin-

ear included) between sections of bundles π and ν. Let F ∈ diff(π, ν) de-
termine the system E . Then its symbol at xk ∈ Ek resolves the symbolic



14 BORIS KRUGLIKOV, VALENTIN LYCHAGIN

module g∗(xk):

· · · → STxM ⊗ ν∗x
σF (xk)−→ STxM ⊗ π∗x → g∗(xk) → 0.

Here we use the weight convention in order to make the symbol map σF (xk)
into R-homomorphism. Its value at covector p ∈ CharCxk

(E) is the fiber of
the characteristic sheaf: Kp = Coker

[
σF (xk)(p)

]
.

Precise form of the above free resolution in various cases allows to inves-
tigate the system E in details. In particular, results of §3.6 are based on the
Buchsbaum-Rim resolution [BR].

Working with symbolic modules we inherit various concepts from commu-
tative algebra (consult e.g. [E]). Some of them are of primary importance
for PDEs. For instance

dimR g∗ = dimCCharCaff(E) = dimCCharC(E) + 1

is the Chevalley dimension of g∗ = g∗(xk).
System E is called a Cohen-Macaulay system if the corresponding sym-

bolic module g∗ is Cohen-Macaulay, i.e. depth g∗ = dim g∗ (see [BH]). Other
notions like grade and height turns to be important in applications to dif-
ferential equations as well ([KL4]).

Castlnuovo-Mumford regularity of g∗ is closely related to the notion of
involutivity (we’ll give definition via Spencer δ-cohomology in §3.2). It is
instructive to notice that, even though quasi-regular sequences are basic for
both classes, involutive systems exhibit quite unlike properties compared to
Cohen-Macaulay systems (some apparent duality is shown in [KL9]).

2.4. Non-linear differential operators. Let F = C∞(J∞π) be the fil-
tered algebra of smooth functions depending on finite jets of π, i.e. F = ∪iFi

with Fi = C∞(J iπ).
Denote FEi = C∞(Ei). The projections πi+1,i : Ei+1 → Ei induce the maps

π∗i+1,i : FEi → FEi+1, so that we can form the space FE = ∪FEi , the points of
which are infinite sequences (fi, fi+1, . . . ) with fi ∈ FEi and π∗i+1,i(fi) = fi+1.
This FE is a C∞(M)-algebra. If the system E is not formally integrable, the
set of infinite sequences can be void, and the algebra FE can be trivial. To
detect formal integrability, we investigate the finite level jets algebras FEi via
the following algebraic approach.

Let E be defined by a collection F = (F1, . . . , Fr) ∈ diff(π, ν) of non-
linear scalar differential operators of orders k1, . . . , kr (can be repeated).
Post-composition of our differential operator F : C∞(π) → C∞(ν) with
other non-linear differential operators ¤ (composition from the left ¤̂ ◦ F )
gives the following exact sequence of C∞(M)-modules

diff(ν,1) F−→ diff(π,1) → FE → 0. (4)

Denote Jt(F ) = 〈¤̂i ◦ Fi

∣∣ ord¤i + ki ≤ t, 1 ≤ i ≤ r〉 ⊂ difft(π,1) the
submodule generated by F1, . . . , Fr and their total derivatives up to order
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t. Then
FEi = diffi(π,1)/Ji(F1, . . . , Fr). (5)

It is important that the terms of (4) are modules over the algebra of scalar
C -differential operators C Diff(1,1), which are total derivative operators
and have the following form in local coordinates [KLV]: ∆ =

∑
fσDσ, with

fσ ∈ C∞(J∞(M)). We can identify C Diff(1,1) = ∪F1
i ⊗ Diffj(1,1) with

the twisted tensor product of the algebras F1 = C∞(J∞(M)) and Diff(1,1)
over the action

∆̂ : F1
i → F1

i+j for ∆ ∈ Diffj(1,1).

This C Diff(1,1) is a non-commutative C∞(M)-algebra. We need a more
general F-module of C -differential operators C Diff(π,1) = ∪C Diffi(π,1),
where

C Diffi(π,1) = Fi ⊗C∞(M) Diffi(π,1).
Remark that C Diff(π,1) is a filtered C Diff(1,1)-module.

Define now the filtered FE -module C DiffE(π,1) with C DiffEi (π,1) = FEi ⊗
Diffi(π,1). Since the module Diff(π,1) is projective and we can identify
diff(π,1) with F, we have from (5) the following exact sequence

0 → Ji(F )⊗Diffi(π,1) → C Diffi(π,1) → C DiffEi (π,1) → 0. (6)

Similar modules can be defined for the vector bundle ν and they determine
the FE -module E∗ = ∪E∗i by the following sequence:

C DiffEi (ν,1) `F−→ C DiffEi+k(π,1) → E∗i+k → 0, (7)

where ` : diff(π, ν) → F ⊗C∞(M) Diff(π, ν) is the operator of universal lin-
earization [KLV], `F = `(F ) (described in the next section).

This sequence is not exact in the usual sense, but it becomes exact in the
following one. The space to the left is an FEi -module, the middle term is an
FEi+k-module. The image `F (C DiffEi (ν,1)) is an FEi -module, but we generate
by it an FEi+k-submodule in the middle term. With this understanding of
the image the term E∗i+k of (7) is an FEi+k-module and the sequence is exact.
In other words

E∗s = C DiffEs (π,1)/(FEs · Im `F ).
Sequences (7) are nested (i.e. their union is filtered) and so we have the

sequence
E∗s−1 → E∗s → Fg∗s → 0, (8)

which becomes exact if we treat the image of the first arrow as the corre-
sponding generated FEs -module. Thus Fg∗s is an FEs -module with support on
Es and its value at a point xs ∈ Es is dual to the s-symbol of the system E :

(Fg∗s)xs = g∗s(xs); gs(xs) = Ker[Txsπs,s−1 : TxsEs → Txs−1Es−1].

In general non-linear situation Definition 1 should be changed to

Definition 2. System E is formally integrable if the maps πi+1,i : Ei+1 → Ei

are submersions.
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Proposition 5. A system E is formally integrable iff the modules Fg∗s are
projective and the maps π∗i+1,i : E∗i → E∗i+1 are injective.

Note that whenever prolongations Ek+l exist and k is the maximal order,
the fibers of the projections πt,s : Et → Es carry natural affine structures for
t > s ≥ k.

2.5. Linearizations and evolutionary differentiations. Consider a non-
linear differential operator F ∈ diffk(π, ν) and two sections s, h ∈ C∞(π)
(we assume π to be a vector bundle, though it’s not essential). Define

`F,s(h) = d
dtF (s + th)|t=0

This operator is linear in h and depends on its k-jets, so we have

`F,s ∈ HomC∞(M)(J k(π), C∞(ν)) = Diffk(π, ν).

Moreover value of this operator at x ∈ M depends on k-jet of s, so that
`F,s = jk(s)∗(`F ). We will also denote `F,xk = `F,s for xk = [s]kx. This
dependence is however non-linear and we get `F ∈ F⊗C∞(M) Diff(π, ν).

In such a form this operator generalizes to the case of different orders.

Definition 3. Operator ` : diff(π, ν) → C Diff(π, ν) = F⊗C∞(M) Diff(π, ν)
is called the operator of linearization (universal linearization in [KLV]).

It is instructive to note that whenever the evolutionary PDE (t being an
extra variable)

∂tu = G(u), G ∈ diff(π, π), u ∈ C∞(π),

with initial condition u(0) = s is solvable, then for each xk = [s]kx we get:
`F,xk

(G) = d
dtF

(
u(t)

)|t=0 for (any if non-unique) solution u(t).
In canonical coordinates (trivializing ν) linearization of F = (F1, . . . , Fr)

is `F = `(F ) = (`(F1), . . . , `(Fr)) with

`(Fi) =
∑

(∂
pj

σ
Fi) · D[j]

σ ,

where D[j]
σ denotes the operator Dσ applied to the j-th component of the

section from C∞(π).
Recall that F is an algebra of functions on J∞π with usual multiplication

and diff(π, ν) is a lef F-module: Fi · diffk(π, ν) ⊂ diffmax{i,k}(π, ν). With
respect to this structure the operator of linearization satisfies the Leibniz
rule:

`H·F = `H · F + H · `F , H ∈ diff(π,1), F ∈ diff(π, ν). (9)

Since `F is a derivation in F , we can introduce the operator �G by the
formula

� ν
G(F ) = `F (G), F ∈ diff(π, ν), G ∈ diff(π, π).

Definition 4. The operator � ν
G : diff(π, ν) → diff(π, ν) is called the evolu-

tionary differentiation corresponding to G ∈ diff(π, π).
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In canonical coordinates with G = (G1, . . . , Gm) the i-th component of
the evolutionary differentiation equals

� ν
G; i =

∑
(DσGj) · ∂pj

σ

[i],

where ∂
pj

σ

[i] denotes the operator ∂
pj

σ
applied to the j-th component of the

section from C∞(ν).
As a consequence of (9) evolutionary differentiations satisfy the Leibniz

rule:

� ν
G(H ·F ) = � ν

G(H) ·F +H ·� ν
G(F ), H ∈ diff(π,1), F ∈ diff(π, ν). (10)

Moreover since linear differential operators commute with d
dt , we get:

K̂ ◦ � ν
G = � ξ

G ◦ K̂, ∀K ∈ Diff(ν, ξ). (11)

Proposition 6. [KLV]. R-linear maps satisfying (10) and (11) are evolu-
tionary differentiations and only them.

Corollary 7. The space Ev(π, ν) = {� ν
G : G ∈ diff(π, π)} for fixed vector

bundles π, ν is a Lie algebra with respect to the commutator.

Consider the surjective R-linear map

� π : diff(π, π) → Ev(π, π), G 7→ � π
G. (12)

It is injective because � π
G(Id) = G, and so can be used to introduce Lie alge-

bra structure on diff(π, π), with respect to which (12) is an anti-isomorphism
of Lie algebras:

� π
{F,G} = [� π

G,� π
F ], F,G ∈ diff(π, π).

Definition 5. The bracket {F, G} is called the higher Jacobi bracket.

This bracket generalizes the Lagrange-Jacobi bracket from classical me-
chanics and contact geometry as well as Poisson bracket from symplectic
geometry. It coincides with the commutator for linear differential operators.

We can calculate {F,G} = � π
G(F )−� π

F (G) = `F (G)−`G(F ). In canonical
coordinates the bracket writes:

{F,G}i =
∑(Dσ(Gj) · ∂pj

σ
Fi −Dσ(Fj) · ∂pj

σ
Gi

)
.

2.6. Brackets and multi-brackets of differential operators. Let π =
m · 1 be the trivial bundle of rank m. Then linearization of the operator
F ∈ diff(π,1) can be written in components: `(F ) = (`1(F ), . . . , `m(F )).

Multi-bracket of (m + 1) differential operators Fi on π is another differ-
ential operator on π, given by the formula [KL4]:

{F1, . . . , Fm+1} =
1
m!

∑

α∈Sm,β∈Sm+1

(−1)α (−1)β `α(1)(Fβ(1))◦. . .◦`α(m)(Fβ(m))
(
Fβ(m+1)

)
.

When m = 1 we obtain the higher Jacobi bracket.
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For linear vector differential operators ∇i : m · C∞
loc(M) → C∞

loc(M), rep-
resented as rows (∇1

i , . . . ,∇m
i ) of scalar linear differential operators, the

multi-bracket has the form:

{∇1, . . . ,∇m+1} =
m+1∑

k=1

(−1)k−1 Ndet[∇j
i ]

1≤j≤m
i6=k ◦ ∇k,

where Ndet is a version of non-commutative determinant [KL4].
If we interchange Ndet and ∇k in the above formula, we obtain the oppo-

site multi-bracket {F1, . . . , Fm+1}† (taking another representative for Ndet).

Theorem 8. [KL10]. Let Fi ∈ diff(π,1) be vector differential operators,
1 ≤ i ≤ m + 2, and let Fk,i denote component i of Fk and {· · · }i the ith

component of the multi-bracket. Then the multi-bracket and the opposite
multi-bracket are related by the following identities (check means absence of
the argument) for any 1 ≤ i ≤ m:

m+2∑

k=1

(−1)k
[
`{F1,...,F̌k,...,Fm+2}†i

Fk − `Fk,i
{F1, . . . , F̌k, . . . , Fm+2}

]
= 0.

For m = 1 this formula becomes the standard Jacobi identity. In this
case Fi ∈ diff(1,1) are scalar differential operators, multi-bracket becomes
the higher Jacobi bracket {F,G} and we get:

∑

cyclic

(
`F {G,H} − `{G,H}F

)
=

∑

cyclic

{F, {G,H}} = 0.

Thus the multi-bracket identities could be considered as generalized Ja-
cobi identities (but neither in the sense of Nambu, generalized Poisson, nor
as SH-algebras [N, LS]). We called them non-commutative Plücker identities
in [KL10], because their symbolic analogs are precisely the standard Plücker
formulas. Symbolic counterpart of the above identities can be interpreted
as multi-version of the integrability of characteristics ([GQS, KL10]).

Finally we give a coordinate representation of the introduced multi-bracket.
As in the classical contact geometry there is a variety of brackets (see more
in [KS]). The following is the multi-bracket analog of the Mayer bracket:

[F1, . . . , Fm+1] =
1
m!

∑

σ∈Sm+1

ν∈Sm

sgn(σ)
sgn(ν)

∑

1≤i≤m

|τi|=kσ(i)

m∏

j=1

∂Fσ(j)

∂p
ν(j)
τj

Dτ1+···+τmFσ(m+1),

where Fi ∈ diffki(m · 1,1). For m = 1 this gives Mayer brackets instead of
Jacobi brackets [KL1]. We have ([KL10]):

Proposition 9. Restrictions of the two multi-brackets to the system E =
{F1 = · · · = Fm+1 = 0} coincide:

{F1, . . . , Fm+1} ≡ [F1, . . . , Fm+1] modJk1+···+km+1−1(F1, . . . , Fm+1).
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3. Formal theory of PDEs

3.1. Symbolic systems. Consider vector spaces T of dimension n and N
of dimension m (usually over the field R, but also possible over C). The
symmetric power ST ∗ = ⊕i≥0S

iT ∗ can be identified with the space of poly-
nomials on T .

Spencer δ-complex is the graded de Rham complex of N -valued differen-
tial forms on T with polynomial coefficients:

0 → SkT ∗ ⊗N
δ→ Sk−1T ∗ ⊗N ⊗ T ∗ δ→ · · · δ→ Sk−nT ∗ ⊗N ⊗ ΛnT ∗ → 0,

where SiT ∗ = 0 for i < 0. By Poincaré lemma δ-complex is exact.
For a linear subspace h ⊂ SkT ∗ ⊗N its first prolongation is

h(1) = {p ∈ Sk+1T ∗ ⊗N | δp ∈ h⊗ T ∗}

Higher prolongations are defined inductively and satisfy (h(k))(l) = h(k+l).

Definition 6. Symbolic system is a sequence of subspaces gk ⊂ SkT ∗ ⊗N

such that gk+1 ⊂ g
(1)
k , k ≥ 0.

If E is a system of PDEs of maximal order k and xk ∈ Ek, then the symbols
of E , namely {gi(xk)} form a symbolic system.

We usually assume g0 = N (if g0 $ N one can shrink N). With every
such a system we associate its Spencer δ-complex of order k:

0 → gk
δ→ gk−1 ⊗ T ∗ δ→ gk−2 ⊗ Λ2T ∗ → · · · δ→ gk−n ⊗ ΛnT ∗ → 0.

The cohomology group at the term gi ⊗ ΛjT ∗ is denoted by H i,j(g) and is
called Spencer δ-cohomology.

When g is the symbolic system corresponding to a system of PDEs we
denote the cohomology by H i,j(E ;xk) and often omit reference to the point.

Another way to deal with the system g
i

↪→ ST ∗⊗N is to consider its dual
g∗ = ⊕g∗k, which is an epimorphic image of ST ⊗ N∗ via the map i∗. The
last space is naturally an ST -module and we can try to carry the module
structure to g∗ by the formula w · i∗(υ) = i∗(w · υ), w ∈ ST , υ ∈ ST ⊗N∗.
Correctness of this operation has the following obvious meaning:

Proposition 10. System g ⊂ ST ∗ ⊗N is symbolic iff g∗ is an ST -module.

Orders of the system is the following set:

ord(g) = {k ∈ Z+ | gk 6= g
(1)
k−1}.

Multiplicity of an order k is m(k) = dim g
(1)
k−1/gk and this equals to the

dimension of the Spencer δ-cohomology group Hk−1,1(g).
Hilbert basis theorem implies finiteness of the set of orders.
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Definition 7. Call formal codimension of a symbolic system g the number
of elements in ord(g) counted with multiplicities. In other words

codim(g) =
∞∑

k=1

dimHk−1,1(g).

3.2. Spencer δ-cohomology. Let us show how to calculate the Spencer
δ-cohomology in some important cases. Denote m = dimN , r = codim(g)
and U = Rr. Then minimal resolution of the symbolic module starts as
follows:

· · · → ST ⊗ U∗ −→ ST ⊗N∗ → g∗ → 0.

Definition 8. Call a symbolic system g generalized complete intersection if
the symbolic module satisfies: depth ann(g∗) ≥ r −m + 1.

This condition will be interpreted for systems of PDEs in §3.6. It is a
condition of general position for module g∗ in the range m < r < m + n.

Any generalized complete intersection g is a Cohen-Macaulay system. By
standard theorems from commutative algebra we have in fact equality for
depth in the definition above.

Theorem 11. [KL10]. If g is a generalized complete intersection, then the
only non-zero Spencer δ-cohomology are given by the formula:

H∗,j(g) =





N for j = 0,
U for j = 1,
Sj−2N∗ ⊗ Λm+j−1U for 2 ≤ j ≤ r + 1−m ≤ n.

In this formula we suppressed bi-grading. If g corresponds to a system
E of different orders PDEs, then H∗,j is a sum of different cohomology
spaces. They can be specified as follows (if there’re several equal H i,j in
the sum below, we count only one and the rest contributes to the growth of
dimension):

H∗,0(g) = H0,0(g), H∗,1(g) =
⊕

i∈ord(g)

H i−1,1(g),

H∗,2(g) =
⊕

i1,...,im+1∈ord(g)

H i1+···+im+1−2,2(g),

H∗,3(g) =
⊕

i1,...,im+2∈ord(g)

H i1+···+im+2−3,3(g) etc . . .

One of the most important techniques in calculating Spencer δ-cohomology
of a symbolic system g comes from commutative algebra, because they R-
dualize to Koszul homology of the symbolic module g∗ ([S2]). In particular,
homology calculus can be equivalently represented by calculating free resol-
vents of g∗, see [Gr].

However Spencer δ-cohomology are related to certain constructions spe-
cific to PDEs, which we are going to describe.



GEOMETRY OF DIFFERENTIAL EQUATIONS 21

Having a symbolic system g = {gl ⊂ SlT ∗ ⊗N} and a subspace V ∗ ⊂ T ∗

we define another system g̃ = {gl∩SlV ∗⊗N} ⊂ SV ∗⊗N . This is a symbolic
system, called the V ∗-reduction.

It is important that such g̃ are precisely the symbolic systems correspond-
ing to symmetry reductions, with respect to Lie group actions [AFT].

Theorem 12. [KL2]. Let g be a Cohen-Macaulay symbolic system and a
subspace V ∗ ⊂ T ∗ be transversal to the characteristic variety of g:

codim(CharC(g) ∩ PCV ∗) = codimCharC(g).

Then Spencer δ-cohomology of the system g and its V ∗-reduction g̃ are iso-
morphic:

H i,j(g) ' H i,j(g̃).

Another important transformation is related to solving Cauchy problem
for general PDEs. Let W ⊂ T . The following exact sequence allows to
project along the subspace V ∗ = ann(W ):

0 → V ∗ ↪→ T ∗ → W ∗ → 0

Applying this projection to the symbolic system g we get a new symbolic
system ḡk ⊂ SkW ∗ ⊗N , called W -restriction.

In order to describe the result we need to introduce some concepts.
The first is involutivity. With every symbolic system g ⊂ ST ∗ ⊗ N and

any k ≥ 0 we can relate the symbolic system g|k〉, which is generated by all
differential corollaries of the system deduced from the order k:

g
|k〉
i =

{
SiT ∗ ⊗N, for i < k;
g
(i−k)
k , for i ≥ k.

Note that g is a system of pure order k if and only if g = g|k〉. In this case
classical Cartan definition of involutivity can be equivalently expressed via
vanishing of Spencer δ-cohomology (see Serre’s letter in [GS]):

H i,j(g) = 0 ∀i 6= k − 1.

For a system of different orders we have:

Definition 9. A system g is involutive if all systems g|k〉 are involutive.

The number of conditions in this definition is not infinite, since only
k ∈ ord(g) are essential. This general involutivity can still be expressed via
vanishing of δ-cohomology for systems g|k〉, but not for the system g ([KL9]).

Let us denote

Υi,j =
⊕

r>0

SrV ∗⊗ δ(Si+1−rW ∗⊗Λj−1W ∗)⊗N, Θi,j =
⊕

q>0

Υi,q⊗Λj−qV ∗,

where δ is the Spencer operator. Let also Πi,j = δ(Si+1V ∗ ⊗N ⊗ Λj−1V ∗).
Call a subspace V ∗ ⊂ T ∗ strongly non-characteristic for a symbolic system

g if gk∩V ∗ ·Sk−1T ∗⊗N = 0 for k = rmin(g) the minimal order of the system.
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Theorem 13. [KL9]. Let V ∗ be a strongly non-characteristic subspace for
a symbolic system g. If g is involutive, then its W -restriction ḡ is also
involutive.

Moreover the Spencer δ-cohomology of g and ḡ are related by the formula:

H i,j(g) '
⊕

q>0

H i,q(ḡ)⊗ Λj−qV ∗ ⊕ δi+1
rmin(g) · [Θi,j ⊕Πi,j ]⊕ δi

0δ
j
0 ·H0,0(ḡ),

where δt
s is the Kronecker symbol.

If ḡ is an involutive system of pure order k = rmin(ḡ) = rmax(ḡ), then g
is also an involutive system of pure order k and the above formula holds.

The first two parts of this theorem generalize previous results of pure first
order by Quillen and Guillemin, see [Gu2].

3.3. Geometric structures. These are given by specification of a Lie group
G in light of Klein’s Erlangen program [Kl], though prolongations usually
make this into infinite-dimensional Lie pseudo-group, see [GS, SS, Ta] and
also §4.5. Not going much into details, we consider calculation of Spencer
δ-cohomology and restrict, for simplicity, to the first order structures.

They correspond to G-structures, discussed in [St]. More general cases
are studied in [Gu1, L1]. Thus g = g|1〉 is generated in order 1 with subspace
g1 = g ⊂ gl(n) being a matrix Lie algebra, corresponding to G.

Respective system of PDEs describes equivalence of a geometric structure,
governed by a Lie group G, to the standard flat model. PDEs describing
automorphism groups can be investigated similarly.

As we shall see in the next section, the group H∗,2(g) plays an impor-
tant role in investigation of formal integrability. For geometric structures
this is the space of curvatures/torsions. We shall illustrate this with three
examples:

(1) Almost complex geometry: g = gl(n
2 ,C). It is given by a tensor

J ∈ C∞(T ∗M ⊗ TM), J2 = −1;
(2) Riemannian geometry: g = so(n). It is given by a tensor q ∈

C∞(S2T ∗M), q > 0;
(3) Almost symplectic geometry: g = sp(n

2 ). It is given by a tensor
ω ∈ C∞(Λ2T ∗M), ωn 6= 0.

In all three cases T = TxM = N and there is a linear structure J , q or ω
respectively on T .

In the first case (T, J) is a complex space and we can identify g1 = T ∗⊗CT .
The prolongations are gi = Si

CT ∗ ⊗C T (all tensor products over C). The
only non-zero Spencer δ-cohomology are:

H0,k(g) = Λk
C̄T ∗ ⊗C̄ T,

which is the space of all skew-symmetric k-linear C-antilinear T -valued forms
on T . The system is involutive.
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In the second system identification T
q' T ∗ yields g1 = Λ2T ∗. Since

g2 = T ∗ ⊗ Λ2T ∗ ∩ S2T ∗ ⊗ T ∗ = 0, prolongations vanish g1+i = 0 and the
system is of finite type. The only non-zero Spencer δ-cohomology are:

H0,k(g) = ΛkT ∗ ⊗ T, H1,k = Ker(δ : Λ2T ∗ ⊗ ΛkT ∗ → T ∗ ⊗ Λk+1T ∗).

Thus g is not involutive. We can rewrite the cohomology in bi-grade (1, 2)
as H1,2(g) = Ker(S2Λ2T ∗ → Λ4T ∗). Note that H0,2 is the space of torsions
and H1,2 the space of curvature tensors.

In the last case we identify T
ω' T ∗ and then get g1 = S2T ∗. Therefore

prolongations gi = Si+1T ∗ and the system is of infinite type. The only
non-zero Spencer δ-cohomology are:

H0,k(g) = Λk+1T ∗.

The system is involutive.

3.4. Cartan connection and Weyl tensor. We define regular system of
PDEs E of maximal order k as a submanifold Ek ⊂ Jkπ co-filtered by
El, with E(1)

i ⊃ Ei+1 and πi : Ei+1 → Ei being a bundle map, such that the
symbolic system and the Spencer δ-cohomology form graded bundles over it.
We define orders ord(E) of the system and its formal codimension codim(E)
as these quantities for the symbolic system.

Cartan distribution on Ek is CEk
= Ck ∩ TEk. Cartan connection on Ek

is a horizontal subdistribution in it, i.e. a smooth family H(xk) ⊂ CEk
(xk),

xk ∈ Ek, such that dπk : H(xk) → TxM is an isomorphism. A Cartan
connection yields the splitting CEk

(xk) ' H(xk) ⊕ gk(xk) of the Cartan
distribution into horizontal and vertical components.

Given a distribution Π on a manifold its first derived differential system
∂Π is generated by the commutators of its sections. In the regular case it
is a distribution and one gets the effective normal bundle ν = ∂Π/Π. The
curvature of Π is the vector-valued 2-form ΞΠ ∈ Λ2Π∗ ⊗ ν given by the
formula:

ΞΠ(ξ, η) = [ξ, η] mod Π, ξ, η ∈ C∞(Π)
(it is straightforward to check that ΞΠ is a tensor).

The metasymplectic structure Ωk on Jk(π) is the curvature of the Cartan
distribution [L1, KL6]. At a point xk it is a 2-form on Ck(xk) with values in
the vector space Fk−1(xk−1) = Txk−1

[
π−1

k−1,k−2(xk−2)
] ' Sk−1T ∗xM ⊗Nx.

To describe it fix a point xk+1 ∈ Jk+1(π) over xk and decompose Ck(xk) =
L(xk+1)⊕Fk(xk). Then Ωk(ξ, η) = 0 if both ξ, η belong simultaneously either
to L(xk+1) or to Fk(xk). But if ξ ∈ L(xk+1) corresponds to X = dπk(ξ) ∈
TxM and η ∈ Fk(xk) corresponds to θ ∈ SkT ∗xM ⊗ Nx, then the value of
Ωk(ξ, η) equals

Ωk(X, θ) = δXθ ∈ Sk−1T ∗xM ⊗Nx,

where δX = iX ◦ δ is the differentiation along X. The introduced structure
does not depend on the point xk+1 determining the decomposition because
the subspace L(xk+1) is Ωk-isotropic.
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Restriction of the metasymplectic structure Ωk ∈ Fk−1 ⊗ Λ2C∗k to the
equation is the tensor ΩEk

∈ gk−1⊗Λ2C∗Ek
. Given a Cartan connection H we

define its curvature at xk to be ΩEk
|H(xk) ∈ gk−1 ⊗ Λ2T ∗xM . Considered as

an element of the Spencer complex it is δ-closed and change of the Cartan
connection effects in a shift by a δ-exact element.

The Weyl tensor Wk(E ; xk) of the PDEs system E is the δ-cohomology
class [ΩEk

|H(xk)] ∈ Hk−1,2(E ; xk) ([L1]). For G-structures it coincides with
the classical structural function [St]. For more general geometric structures
it equals torsion/curvature tensor [G1].

Prolongation Ek+1 = E(1)
k is called regular if πk+1,k : Ek+1 → Ek is a bundle

map. For regular systems a necessary and sufficient condition for regularity
of the first prolongation is vanishing of the Weyl tensor: Wk(E) = 0.

This gives the following criterion of formal integrability:

Theorem 14. Let E = {El}k
l=0 be a regular system of maximal order k.

Then the system is formally integrable iff Wi(E) = 0 for all i ≥ k.

Note that the number of conditions is indeed finite due to Poincaré δ-
lemma: starting from some number i0 all groups H i,2(E) = 0 for i > i0 (see a
bound for i0 in [Sw1]). This in fact was an original sufficient (cf. to necessary
and sufficient in the above statement) criterion of formal integrability in
[Go, S2]: If all second cohomology groups H i,2 vanish, i ≥ k, then the
regular system is formally integrable.

Tensor Wk(E) plays a central role in equivalence problems [KL6]. Calcu-
lating Weyl tensor is a complicated issue, see e.g. [KL1, KL2, KL3], where it
was calculated for complete intersection systems of PDEs. Let us perform
calculation for the examples from §3.3.

(1) In this case W1 = NJ is the Nijenhuis tensor of the almost complex
structure J . Its vanishing gives integrability condition of almost complex
structure. The space H0,2(g) = Λ2

C̄T ∗⊗C̄T is the space of Nijenhuis tensors.
(2) Here Cartan connection is a linear connection ∇, preserving q. Tensor

W1 = T∇ ∈ H0,2 is the torsion and its vanishing leads us to Levi-Civita
connection ∇q. The next Weyl tensor is the Riemannian curvature Rq ∈
H1,2 and its vanishing yields flatness of the metric q.

(3) Curvature is W1 = dω ∈ H0,2. Thus integrability W1 = 0 gives us
symplectic structure ω.

Remark 4. Looking at these examples we observe that searching for invo-
lutivity is sometimes superfluous: All three geometries are equally important
and from the point of view of getting solutions one just studies formal in-
tegrability, which usually occurs at smaller number of prolongations than
involutivity.

Let us finish by mentioning without calculations that Wk(E) equals the
conformal Weyl tensor for the conformal Lie algebra g = co(n) and the Weyl
projective tensor for the projective Lie algebra g = sl(n + 1). Whence the
name.
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3.5. Compatibility and solvability. Investigation of overdetermined sys-
tems of PDEs begins with checking compatibility conditions. Riquier-Janet
theory makes finding compatibility conditions algorithmic.

With Riquier approach [Ri] one expresses certain higher order derivatives
via others (i.e. bring equations to the orthonomic form), differentiate PDEs
and substitute the expressed quantities. If new equations arise, the system
is called active, otherwise passive. In modern language we talk of formal
integrability. Riquier’s test on passivity allows to disclose the compatibility
conditions.

Janet monomials [J] (and also Thomas’s [To]) allow to check compatibility
via cross differentiations of respective equations, which is determined by
their differential monomials in certain ordering. To a large extent this can
be seen as an origin of computer differential algebra (Gröbner bases etc).

Being algorithmic, these approaches are heavily calculational and so good
luck in generators in E and coordinates in jet spaces plays a major role. On
the contrary Cartan’s theory [C2] has a geometric base (Vessiot’s dual ap-
proach [V] is of the same flavor) and so coupled with Spencer’s homological
technique [S1] allows to calculate compatibility conditions in a visibly min-
imal number of steps.

Remark 5. Original Cartan’s approach aims though to involutivity, not just
to formal integrability, cf. Remark 4. In this respect Riquier-Janet theory is
more economic.

Using the machinery of the previous section we can describe one step
prolongation as follows. Assume E is a regular system of PDEs of maximal
order k, which includes compatibility to order k. Then Wk(E) ∈ Hk−1,2(E)
is precisely the obstruction to prolongation to (k + 1)-st jets.

The number of compatibility conditions is dimHk−1,2(E) (this quantity is
constant along E due to regularity) and they are just components of the Weyl
tensor Wk(E). These latter are certain differential equations of ord ≤ k.

If Wk(E) = 0, the system can be prolonged to level (k + 1) and we get a
system Ek+1, with projections πk+1,k : Ek+1 → Ek being a vector bundle, so
that we get new regular system and can continue prolongations. By Hilbert’s
theorem H i,2(E) = 0 starting from some number i0. Then there’s no more
obstructions to compatibility and the system is formally integrable.

If the Weyl tensor is non-zero, we disclose new equations in the system
E , which are differential corollaries of ord ≤ k, and so we change the system
by adding them. The new system is

Ẽ = E ∩ πk+1,k(E(1)
k ) = {xk ∈ Ek : Wk(E ; xk) = 0}.

We restart investigation of formal integrability with this new system of equa-
tions. This approach is called prolongation-projection method.

The following statement, known as Cartan-Kuranishi theorem, states that
we do not continue forever:
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Theorem 15. After a finite number of prolongations-projections system E
will be transformed into a formally integrable system Ē ⊂ E.

This statement was formulated by Cartan in [C2] without precise condi-
tions. It was proved by Kuranishi [Kur1] under suitable regularity assump-
tions (see also [Ma]), but essentially the proof was published long before by
the Russian school [Ra, Fi].

With regularity assumptions we remove points, where the ranks of symbol
bundles/δ-cohomology drop, together with their projections and prolonga-
tions. One hopes that most points will survive, so that the above theorem
holds at a generic point.

While in general this is not known, it holds in some good situations. In
algebraic case the result is due to Pommaret [Pom] and in analytic case due
to Malgrange [M2].

Note that we started with regular systems E of maximal order k, though
one should start from E1. Arriving to El one can either add compatibility
conditions or new equations of the system of order l + 1. In the latter case
the projection πl+1,l : El+1 → El is a fiber bundle (in regular case). The
prolongation-projection method can be generalized to this situation and
Theorem 15 holds in the same range of assumptions.

As a result of the method we get a minimal formally integrable sub-system
Ē ⊂ E . If it is non-empty the system E is called (formally) solvable. Indeed
all (formal) solutions of E coincide with these of Ē . This alternative E.Cartan
[C2] characterized as follows: ”after a finite number of prolongations the
system becomes involutive or contradictory”.

3.6. Formal integrability via multi-brackets and Massey product.
Though Weyl tensors Wk(E) are precisely compatibility conditions, it is
important to have a good calculational formula for the latter, at least for
some classes of PDEs. The following is a wide class of systems, important
in applications.

Let E ⊂ Jk(π) be a regular system of maximal order k, consisting of
r = codim(E) differential equations on m = rank(π) unknown functions.

Definition 10. System E is of generalized complete intersection type if
(1) m ≤ r < n + m;
(2) The characteristic variety has dimCCharCxk

(E) = n + m − r − 2 at
each point xk ∈ E (we assume dim ∅ = −1);

(3) The characteristic sheaf K over CharCxk
(E) ⊂ PCT ∗ has fibers of

dimension 1 everywhere.

If E is a generalized complete intersection in this sense, then its symbolic
system g is a generalized complete intersection in the sense of definition 8.

Note that vanishing of the multi-brackets due to the system is a necessary
condition for formal integrability, because they belong to differential ideal
of the system.
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Theorem 16. [KL4, KL10]. Consider a system of PDEs

E =
{

Fi

(
x1, . . . , xn, u1, . . . , um,

∂|σ|uj

∂xσ

)
= 0 : 1 ≤ i ≤ r

}
, ord(Fi) = ki.

If E is a system of generalized complete intersection type, then it is formally
integrable if and only if the multi-brackets vanish due to the system:

{Fi1 , . . . , Fim+1} modJki1
+···+kim+1

−1(F1, . . . , Fr) = 0.

In particular, we get the following compatibility criterion for scalar PDEs:

Corollary 17. Let E = {F1[u] = 0, . . . , Fr[u] = 0} be a scalar system of
complete intersection type, i.e. r ≤ n and codimCCharC(E) = r. Then
formal integrability expresses via Mayer-Jacobi brackets as follows:

{Fi, Fj} = 0 modJki+kj−1(F1, . . . , Fr), ∀ 1 ≤ i < j ≤ r.

This criterion is effective in the study of not only compatibility, but also
solvability of systems of PDEs. Examples of applications are [GL, KL10].
Moreover, since differential syzygy is provided explicitly, it is more effective
than the method of differential Gröbner basis or its modifications [K].

Let now describe a sketch of the general idea how to investigate systems
of PDEs E = {F1[u1, . . . , um] = 0, . . . , Fr[u1, . . . , um] = 0} for compatibility.

Take a pair of equations Fi and Fj , i < j. Even though the system
{Fi = 0, Fj = 0} is underdetermined (for m > 1) it can possess compat-
ibility conditions Θij = 0 of order tij (this actually means that after a
change of coordinates this pair of PDEs will involve only one dependent
function; but rigorously can be expressed only via non-vanishing second
Spencer δ-cohomology). We denote ΘE

ij = Θij modJtij (F1, . . . , Fr). Thus
we get compatibility conditions ΘE

ij = 0 of orders τij ≤ tij .
Then we look to triples Fi, Fj , Fh with i < j < h, get in a similar way

compatibility conditions ΘE
ijh = 0 of orders τijh and so forth. In general we

get ”generalized s-brackets” ΘE
i1...is

of orders τi1...is for all 2 ≤ s ≤ r (see
[KL1] §3.2 for an example of 3-bracket in the case n = k = 2, m = 1, r = 3).

The formula of the operator ΘE
i1...is

and the number τi1...is (i1 < · · · < is)
strongly depends on the type of the system and varies with the type of
characteristic variety/symbolic module. For each type of normal form or
singularity one gets own formulas. In the range m ≤ r < m + n the generic
condition is that all generalized s-brackets for s ≤ m are void and the first
obstruction to formal integrability are (m + 1) multi-brackets. Theorem 16
states that this will be the only set of compatibility conditions.

Remark 6. Important case of an overdetermined system with r = m con-
stitute Einstein-Hilbert field equations [Eb]. They possess compatibility con-
ditions, which hold identically, implying formal integrability of the system.

Note that the idea of calculating successively 2-product for a pair, then
3-product for a triple (in the case it vanishes for all sub-pairs) etc is very
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similar to Massey products in topology and algebra. Resembling situation
is observed in deformation theory of module structures4.

We note however that in the context of PDEs the situation is governed
by order. We examine the set {τij , τijh, . . . , τ1...r} (some numbers can be
omitted if respective ΘE

i1...is
are void) and take the minimal order. These

compatibility conditions are investigated first. Being non-zero, they are
added to E and one considers a new system Ẽ (which can be simpler with
lower order compatibility conditions, cf. §3.5). If these compatibility condi-
tions are satisfied, we take the next ones and so on. The procedure is finite
in the same sense as in Cartan-Kuranishi prolongation-projection theorem.

3.7. Integral Grassmanians revisited. A system of PDEs E ⊂ J1(E, m)
is said to be determined if codim E = m and codimCCharC(E) = 1. We
usually represent such systems as the kernel of a (non-linear) operator F :
C∞(π) → C∞(ν) with rankπ = rank ν = m.

In this section we restrict to the case k = 1 of first order equations.
Let w1

i be Stiefel-Whitney classes of the tautological vector bundle over the
Grassmanian I(x1), as before.

Theorem 18. [L2]. Let E ⊂ J1(E, m) be a determined system such that
the characteristic variety CharCx1

(E) does not belong to a hyperplane for any
x1 ∈ E. Then the embedding IE(x1) ↪→ I(x1) induces an isomorphism of
cohomology with Z2-coefficients up to dimension n in all cases except the
following:

(1) m = 2, n ≥ 3. Then H∗(IE(x1),Z2) is isomorphic to the algebra
Z2[w1

1, . . . , w
1
n, Un−1,Sq Un−1] up to dimension n, where Un−1 has

dimension n− 1 and Sq is the Steenrod square.
(2) m = 3, n = 2. Then H∗(IE(x1),Z2) is isomorphic to the alge-

bra Z2[w1
1, w

1
2, ρ1, . . . , ρr] up to dimension 2, where dimensions of

ρi equal 2 and r is a number of components of CharC(E , x1) with
the fibers of the kernel sheaf K of dimension 1.

(3) m = n = 2. Then IE(x1) is diffeomorphic to the torus S1 × S1 in
hyperbolic case or to the complex projective line CP1 in elliptic case.

This yields calculation of cohomology of integral Grassmanians for deter-
mined systems. Underdetermined systems can be treated similarly.

Finding cohomology of IE(xk) in general overdetermined case seems to
be a hopeless problem. However in many cases they stabilize after a suffi-
cient number of prolongations. This constitutes a topological version of the
Cartan-Kuranishi theorem:

Theorem 19. [L2]. Let E be a system of differential equations of pure first
order E1 ⊂ J1(E, m). Suppose that it is formally integrable and characteris-
tically regular and such that the characteristic variety CharCx1

(E) does not be-
long to a hyperplane for any x1 ∈ E1. Assume also that dimCCharC(E) > 0.

4We thank A. Laudal for a fruitful discussion on this topic.
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Then the embeddings IEl(xl) ↪→ I(xl) induce an isomorphism in cohomology
with Z2-coefficients up to dimension n for sufficiently large values of l.

Let Ik(E, m) =
⋃

I(xk) be the total space of all integral Grassmanians.
Then any integral n-dimensional manifold L ⊂ Jk(E,m) defines a tangen-
tial map tL : L → Ik(E, m), where tL : L 3 xk 7−→ Txk

L ∈ I(xk). Each
cohomology class κ ∈ H l(Ik(E, m),Z2) gives rise to a characteristic class
κ(L) = t∗L(κ) on integral manifolds L. By Theorem 2 H∗(Ik(E, m),Z2),
considered as an algebra over H∗(Jk(E, m),Z2), is generated by the Stiefel-
Whitney classes wk

1 , . . . , wk
n of the tautological bundle over Ik(E, m) up

to dimension n. Moreover since the bundle J l(E, m) → J l−1(E,m) is
affine for l > 1 and for l = 1 is the standard Grassmanian bundle, we
get that H∗(Jk(E,m),Z2) = H∗(J1(E, m),Z2), considered as an algebra
over H∗(E,Z2), is generated by the Stiefel-Whitney classes w1, . . . , wn of
the tautological bundle over J1(E, m), provided that π1(E) = 0.

Let Ek ⊂ Jk(E,m) be a formally integrable system of PDEs of maxi-
mal order k and IEk+l =

⋃
IEk+l(xk+l) ⊂ Ik+l(E, m) be a total space of

all integral Grassmanians associated with l-th prolongation Ek+l = E(l)
k . If

the differential equation satisfies the conditions of Theorem 19, then for a
sufficiently large l the cohomology H∗(IEk+l,Z2), considered as an algebra
over H∗(Ek+l,Z2), is generated by the Stiefel-Whitney classes wk

1 , . . . , wk
n

of the tautological vector bundle up to dimension n. On the other hand
all bundles πk+l,k+l−1 : Ek+l → Ek+l−1 are affine for l > 0 and hence
H∗(Ek+l,Z2) = H∗(Ek,Z2).

By a Cauchy data we mean an (n− 1)-dimensional integral manifold Γ ⊂
Ek+l together with a section γ : Γ → IEk+l such that Txk+l

Γ ⊂ γ(xk+l) for
all xk+l ∈ Γ. A solution of the Cauchy problem is an integral n-dimensional
submanifold L ⊂ Ek+l with boundary such that Γ = ∂L. Each cohomology
class θ ∈ Hn−1(IEk+l,Z2) defines a characteristic number θ(Γ) = 〈γ∗θ,Γ〉.

Theorem 20. If the Cauchy problem (Γ, γ) has a solution, then the char-
acteristic numbers θ(Γ) vanish for all θ ∈ Hn−1(IEk+l,Z2).

4. Local and global aspects

4.1. Existence theorems. System of PDEs E is called locally/globally in-
tegrable, if for its infinite prolongation E∞ and any admissible jet x∞ ∈ E∞
there exists a local/global smooth solution s ∈ C∞(π) with [s]∞x = x∞ (this
clearly can be generalized to more general spaces Jk(E;m) of jets).

If the system E is of finite type and formally integrable, then it is locally
integrable. Indeed, the Cartan distribution CEk

for k so large that gk = 0
has rank n and is integrable by the Frobenius theorem. Its local integral
leaves are solutions of the system E .
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For infinite type systems, dim gk 9 0, formal integrability does not im-
ply local integrability in general, some additional conditions should be as-
sumed. One sufficient condition for existence of local solutions is analyticity
as Cartan-Kähler theorem claims [Kah]:

Theorem 21. Let a system E be analytic, regular and formally integrable.
Then it is locally integrable, i.e. any admissible jet x∞ ∈ E∞ is the jet of a
local analytic solution.

This theorem is a generalization of Cauchy-Kovalevskaya theorem [Pe].
Other generalizations are known, see [ES]. In particular we should mention
Ovsyannikov’s theorem, according to which for a system E , written in the
orthonomic form

∂kiui

∂tki
= Fi(t, x, u,Dσu), i = 1, . . . ,m

(Fi does not contain derivatives of order higher than ki and it is free of ∂ki
t ui)

it is enough to require analyticity only in x = (x1, . . . , xn−1) and continuity
in t in order to get solution to the Cauchy initial value problem

∂lui

∂tl
(0, x) = U i

l (x), l = 0, . . . , ki − 1, i = 1, . . . , m. (13)

Notice that the solution to a formally integrable system E in general form
of Theorem 21 is given by a sequence of solutions of Cauchy problems, see
[Kah, BCG3]. The initial value problem is specified similar to (13), with pre-
scribed collection of sp functions of p arguments, . . . , s0 constants, where si

are Cartan characters [C2], see also §4.3. Thus one can, in principle, slightly
relax analyticity conditions of Theorem 21 via Ovsyannikov’s approach.

Also note that according to Holmgren’s theorem ([Pe]) a local solution to
the Cauchy problem for a formally integrable analytic system E is unique
even if the (non-characteristic) initial data is only smooth. In general smooth
case formal integrability implies local integrability only in certain cases.

One of such cases is when the system E is purely hyperbolic, i.e. when
complex characteristics complexify the real ones: CharC(E) = (Char(E))C.
In other words any real plane of complimentary dimension in PCT ∗ intersects
Char(E) in deg CharC(E) real different points.

More general case is represented by involutive hyperbolic systems, which
are given by the condition that on each step of Cartan-Kähler method the
arising determined systems are hyperbolic (these systems are non-unique,
see [Y] for the precise definition) on the symbolic level.

Theorem 22. [Y]. If an involutive hyperbolic system E is formally inte-
grable and the Cauchy data is non-characteristic, there exists a local solu-
tion. In particular, if not all covectors are characteristic for E, then there
is a local solution through almost any admissible jet x∞ ∈ E∞.

In particular one can solve locally the Cauchy problem for the second order
hyperbolic quasi-linear systems of the type arising in general relativity [CB].
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Another important example constitute purely elliptic systems, i.e. such
E that the real characteristic variety is empty: Char(E) = ∅.

A system E = {Fi(x, u,Dσu) = fi(x)} (independent and dependent vari-
ables x, u are multi-dimensional) is said to be of analytic type if locally
near any point xk ∈ Ek the (non-linear in general) differential operator
F = (Fi)r

i=1 is analytic in a certain chart (but the charts may overlap
smoothly and f = (fi)r

i=1 is just smooth).

Theorem 23. [S1, M1]. Elliptic formally integrable system E of analytic
type is locally integrable.

Spencer conjectured [S2] that any formally integrable elliptic system is
locally integrable5, but this was not proved in the full generality.

A certain progress was due to the works of MacKichan [McK1, McK2]
and Sweeney [Sw2]. They studied solvability of the Neumann problem and
related this to the δ-estimate on a linear operator ∆: For any large k in

0 → gk+1
δ−→ gk ⊗ T ∗ δ−→ gk−1 ⊗ Λ2T ∗ and any ξ ∈ gk ⊗ T ∗ ∩Ker δ∗

(operator δ∗ is conjugated to δ with respect to some Hermitian metrics on
T ∗, π, ν), we have ‖δξ‖ ≥ k√

2
‖ξ‖. Their results imply (see [S2], also [Tar]):

Theorem 24. Let E = Ker ∆ be a formally integrable system, with not
all covectors being characteristic. Suppose that the operator ∆ satisfies the
δ-estimate. Then the system E is locally integrable.

4.2. Local solvability. E is called solvable if we can guarantee existence
of a local/global solution. Obviously one should first carry prolongation-
projection method to get a maximal formally integrable system Ē ⊂ E (this
is usually called bringing E to an involutive form, compare though with
Remark 4), so we can assume that already E fulfills compatibility conditions.

In light of Cartan-Kähler theorem one would like to specify an admissible
jet of solution. It is possible for hyperbolic systems and their generalizations
(see Theorem 22), but not for all systems. However even the problem of
finding some solution can be non-solvable.

Consider at first smooth linear differential operators. Let us restrict to
C-scalar PDEs, i.e. differential operators ∆ = ∆1 + i∆2 : C∞(M ;C) →
C∞(M ;C) of order k (∆i are real, so one can think of determined real
system E with rankπ = 2, but it is of special type: codim Char(E) = 2).

The first example of operator of this type such that the corresponding
PDE ∆(u) = f not locally solvable for some smooth f ∈ C∞(M ;C), was
constructed by H. Levi [Lw]6.

This example was later generalized by Hörmander, Grushin and others.
In fact, Hörmander found a necessary condition of solvability of for principal

5In fact, we cannot prescribe the value of jet of the solution, and so it’s better to talk
here of local solvability from the next section.

6His ∆ was a very nice analytic operator of order 1, namely Cauchy-Riemann operator
on the boundary of the pseudo-convex set {|z1|2 + 2 Im z2 < 0} ⊂ C2.
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type operators. Using the bracket approach of §3.6 we can formulate it as
follows. Let E be the above PDE written as the real system {∆1(u) =
f1,∆2(u) = f2} (∆1 = Re ∆, ∆2 = Im ∆ and similar for f) and let σs

denote the symbol of order s. Then local solvability of a system E implies

σ2k−1

(
{∆1(u),∆2(u)}mod E

)
= 0. (14)

Hörmander formulated his condition differently [Ho2]. Namely denote
H = σk(∆1), F = σk(∆2). Then the Poisson bracket {H, F} vanishes on
Σ = Charaff(E) = {H = 0, F = 0} ⊂ T ∗M . In other words, whenever Σ is a
submanifold, it is involutive7.

The condition that the operator ∆ has a principal type means that the
Hamiltonian vector field XH on {H = 0} is not tangent to the fibers of
the projection T ∗M → M (it is possible to multiply ∆ by a function a ∈
C∞(M ;C), so that a particular choice of H and F is not essential, but the
condition involves linear combinations of dH and dF ).

Trajectory of the vector field XH are called bi-characteristics and consid-
ered on the invariant manifold {H = 0} they are called null bi-characteristics.

Note that even when Σ is not a submanifold, condition (14) can be refor-
mulated as follows

Along null bi-characteristics XH function F vanishes to at least 2nd order.

This condition was refined by Nirenberg-Treves to the following condition:

Along null bi-characteristics XH function F does not change its sign. (P)

If Σ is a submanifold in T ∗M and dH, dF are independent on its normal
bundle, this condition is equivalent to (14). In general it strictly includes
(implies) Hörmander condition. Indeed if order of zero for F along null
bi-characteristics is finite, it should be even.

It turns out that this new condition is not only necessary, but also suffi-
cient for solvability ([NT] with the condition of order k = 1 or base dimension
n = 2 or that the principal part is analytic; [BF] in general):

Theorem 25. If ∆ is of principal type and satisfies condition (P), then for
any smooth f linear PDE ∆(u) = f is locally solvable.

This theorem was generalized to pseudo-differential operators (see [Le]
for important partial cases and review; [De] in general), with condition (P)
being changed to a similar condition (Ψ). In such a form it is sometimes
possible to give a sufficient condition for global solvability (see loc.cit).

In the second paper [NT] Nirenberg and Treves gave a vector version (de-
termined system of special type with rankR(π) = 2m) of the above theorem:

7Note that for real problems, when F = 0 and Im(u) = 0 this condition is void.
Indeed linear determined PDEs of principal type with real (nonconstant) coefficients in
the principal part are locally solvable [Ho1] (this also follows from Theorem 25).
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Theorem 26. If ∆ = ∆1 + i∆2 ∈ Diffk(m · 1C,m · 1C) is a complex
smooth operator of principal type and the homogeneous Hamiltonian H +
iF = det[σ∆] of order mk satisfies condition (P), then the system of linear
PDEs ∆(u) = f is locally solvable for any smooth vector-valued function
f ∈ C∞(M ;Cm).

Note however that the principal type condition of [NT] is formulated so
that multiple characteristics are excluded (this is equivalent to the claim
that K is a 1-dimensional bundle over CharC(E)), though in some cases this
condition can be relaxed.

For general systems the solvability question is still open and one can be
tempted to approach it via successive sequence of determined systems, like
in Cartan-Kähler theorem (see Guillemin’s normal forms in [Gu2, BCG3]).

Remark 7. The solutions obtained via the above methods are usually dis-
tributions, though in some cases they can be proved to be smooth by using
elliptic regularity or Sobolev’s embedding theorem [Ho2, Pe]. The methods
can be generalized to weakly non-linear situations, but for strongly non-linear
PDEs effects of multi-valued solutions require new insight [KLR].

Finally let us consider an important case of evolutionary PDEs ut = L[u],
where L is a non-linear differential operator involving only Dx differentia-
tions, in the splitting of base coordinates R × U = {(t, x)}. The Cauchy
problem for such systems is often posed on the characteristic submanifold
Σn−1 = {t = 0}, which contradicts the approach of Cartan-Kähler theorem.

Nevertheless in many cases it is possible to show that the solution exists.
For instance, consider the system ∂tu = Au + F (t, x, u) with A being a
determined linear differential operator on the space W of smooth vector-
functions of x and F can be non-linear (usually of lower order). If the
homogeneous linear system ∂tu = Au is solvable and eAt is a semi-group (on
a certain Banach completion of W), then provided that F is Lipschitz on W,
we can guarantee existence of a local solution to the initial value problem
u(0, x) = u0(x) (in fact weak solutions; strong solutions are guaranteed if
W can be chosen a reflexive Banach space [SY]).

This scheme works well for differential operators A with constant coeffi-
cients. Moreover, global solvability can be achieved. Consider, for instance
a non-autonomous reaction-diffusion equation

∂tu = a∆u− f(t, u) + g(t, x),

where x ∈ U b Rn−1, a ∈ Gl+(Rm) is a positive constant matrix, ∆ the
Laplace operator and the functions f, g belong to certain Hölder spaces.
The boundary behavior is governed by Dirichlet or Neumann or periodic
conditions. Then provided that function f has a limited growth behavior
at infinity (see [CV] for details) the initial problem u(0, x) = u0(x) for this
system is globally solvable.

Similar schemes (with characteristic Cauchy problems) work also for PDEs
involving higher derivatives in t, for example damped hyperbolic equation
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[CV]. This allows to consider evolutionary PDEs as dynamical systems. In
fact, bracket approach for compatibility and generalized Lagrange-Charpit
method of §4.4 allows to establish and investigate finite-dimensional sub-
dynamics, see [KL, LL].

4.3. Dimension of the solutions space. In his study of systems E of
PDEs [C2] (interpreted as exterior differential systems) Cartan constructed
a sequence of numbers si, which are basic for his involutivity test. These
numbers depend on the flag of subspaces one chooses for investigation of the
system and so have no invariant meaning.

The classical formulation is that a general solution depends on sp functions
of p variables, sp−1 functions of (p − 1) variables, . . . , s1 functions of 1
variable and s0 constants (we adopt here the notations from [BCG3]; in
Cartan’s notations [C2] we should rather write sp, sp + sp−1, sp + sp−1 +
sp−2 etc). However as Cartan notices just after the formulation [C2], this
statement has only a calculational meaning.

Nevertheless two numbers are absolute invariants and play an important
role. These are Cartan genre, i.e. the maximal number p such that sp 6= 0,
but sp+1 = 0, and Cartan integer σ = sp. As a result of Cartan’s test a
general solution depends on σ functions of p variables (and some number of
functions of lower number of variables, but this number can vary depending
on a way we parametrize the solutions).

Here in analytical category a general solution is a local analytic solution
obtained as a result of application of Cartan-Kähler theorem and thus being
parametrized by the Cauchy data. In smooth category one needs a condition
to ensure existence of solutions with any admissible jet, see §4.1-4.2.

In general we can calculate these numbers in formal category. We call
p functional dimension and σ functional rank of the solutions space Sol(E)
[KL5]. These numbers can be computed via the characteristic variety. If the
characteristic sheaf K over CharC(E) has fibers of dimension k, then

p = dim CharC(E) + 1, σ = k · deg CharC(E).

The first formula is a part of Hilbert-Serre theorem ([Ha]), while the second
is more complicated. Actually Cartan integer σ was calculated in [BCG3]
in general situation and the formula is as follows.

Let CharC(g) = ∪εΣε be the decomposition of the characteristic variety
into irreducible components and dε = dimKx for a generic point x ∈ Σε.
Then

σ =
∑

dε · deg Σε.

The clue to this formula is commutative algebra. Namely Hilbert polyno-
mial ([Ha]) of the symbolic module g∗ equals

PE(z) = σzp + . . .

A powerful method to calculate the Hilbert polynomial is resolution of a
module. In our case a resolution of the symbolic module g∗ exists and it can
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be expressed via the Spencer δ-cohomology. Indeed, the Spencer cohomology
of the symbolic system g is R-dual to the Koszul homology of the module
g∗ and for algebraic situation this resolution was found in [Gr].

This yields the following formulae [KL5]. Let
(
z+k

k

)
=

1
k!

(z + 1) · (z + 2) · · · (z + k).

Denote Sj(k1, . . . , kn) =
∑

i1<···<ij

ki1 · · · kij the j-th symmetric polynomial

and let also

sn
i =

(n− i)!
n!

Si(1, . . . , n)

Thus

sn
0 = 1, sn

1 =
n + 1

2
, sn

2 =
(n + 1)(3n + 2)

4 · 3!
, sn

3 =
n(n + 1)2

2 · 4!
,

sn
4 =

(n + 1)(15n3 + 15n2 − 10n− 8)
48 · 5!

etc.

If we decompose
(
z+n

n

)
=

n∑

i=0

sn
i

zn−i

(n− i)!
,

then we get the expression for the Hilbert polynomial

PE(z) =
∑

i,j,q

(−1)ihq,isn
j

(z − q − i)n−j

(n− j)!
=

n∑

k=0

bk
zn−k

(n− k)!
,

where

bk =
k∑

j=0

∑

q,i

(−1)i+j+khq,isn
j

(q + i)k−j

(k − j)!
.

Let us compute these dimensional characteristics p, σ for two important
classes of PDEs.

If E is an involutive systems, then H i,j(E) = 0 for i /∈ ord(E)− 1, (i, j) 6=
(0, 0), and the above formula becomes more comprehensible.

Let us restrict for simplicity to the case of systems of PDEs E of pure first
order. Then

PE(z) = h0,0
(
z+n

n

)− h0,1
(
z+n+1

n+1

)
+ h0,2

(
z+n+2

n+2

)− . . .

= b1
zn−1

(n− 1)!
+ b2

zn−2

(n− 2)!
+ · · ·+ b0.

Vanishing of the first coefficient b0 = 0 is equivalent to vanishing of Euler
characteristic for the Spencer δ-complex, χ =

∑
i(−1)ih0,i = 0, and this is

equivalent to the claim that not all the covectors from CT ∗ \ 0 are charac-
teristic for the system g.
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The other numbers bi are given by the above general formulas, though
now they essentially simplify. For instance

b1 = n+1
2 b0 −

∑
(−1)ih0,ii =

∑
(−1)i+1i · h0,i.

If codimCharC(E) = n − p > 1, then b1 = 0 and in fact then bi = 0 for
i < n− p, but bn−p = σ.

Theorem 27. [KL5]. If codim CharC(E) = n− p, then the functional rank
of the system equals

σ =
∑

i

(−1)ih0,i (−i)n−p

(n− p)!
.

One can extend the above formula for general involutive system and thus
compute the functional dimension and functional rank of the solutions space
(some interesting calculations can be found in classical works [J, C2]).

Consider also an important partial case of Cohen-Macaulay systems:

Theorem 28. [KL10]. Let E be a formally integrable system of generalized
complete intersection type with orders k1, . . . , kr. Then the space SolE has
formal functional dimension and rank equal respectively

p = m + n− r − 1, σ = Sr−m+1(k1, . . . , kr).

4.4. Integrability methods. Most classical methods for integration of
PDEs are related to symmetries ([Lie1, G1, F]).

A symmetry of a system E is a Lie transformation of Jkπ, resp. Jk(E, m),
that preserves E (k is the maximal order of E). Internal symmetry is a struc-
tural diffeomorphism of E , i.e. a diffeomorphism of Ek (not necessary induc-
ing diffeomorphisms of El for l ≤ k) that preserves the Cartan distributions
CEk

. In many important cases, the systems E are rigid [KLV], in which case
internal and external symmetries coincide.

In practice the group (in fact, pseudo-group, see the next section) of
symmetries Sym(E) is difficult to calculate and it is much easier to work
with the corresponding Lie algebra of infinitesimal symmetries ([Lie2, LE]).
These are Lie vector fields Xϕ on the space8 Jkπ, which are tangent to E .

The generating function ϕ has order 0 or 1 in the classical case (point
or contact transformations). Equation for ϕ to be a symmetry of a system
E = {Fα = 0} can be written in the form (for some differential operators
Qα):

Xϕ(Fα)|E = 0 ⇔ `Fαϕ =
∑

QαFα.

Notice that when the system is scalar, i.e. π = 1, and deg Fα = kα, deg ϕ =
κ, then the defining equations can be written in the form

{Fα, ϕ} = 0 modJkα+κ−1(E). (15)

When ϕ ∈ Fi, i > 1, the field Xϕ does not define a flow on any finite
jet-space, but rather on J∞(π). If this flow leaves E∞ invariant, then ϕ

8We take the affine chart to have formulas (2) representing Xϕ.
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(or Xϕ) is called higher symmetry ([KLV]). Denoting by `EF the restriction
`F |E∞ we obtain the defining equations of higher symmetries:

ϕ ∈ sym(E) ⇔ `EFα
(ϕ) = 0.

Here sym(E) = DC(E∞)/CD(E∞) is the quotient of the Lie algebra DC of all
symmetries of the Cartan distribution CE on E∞ by the space CD of trivial
symmetries, tangent to the distribution CE .

Conservation laws ωψ with generating function ψ are obtained from the
dual equation

(`EFα
)∗(ψ) = 0,

where ∆∗ is the formally dual to an operator ∆.

Remark 8. Both symmetries and conservation laws enter variational bi-
complex or equivalently C-spectral sequence for the system E, see [T, SCL,
Kru, A] and references therein.

Notice that classical (point and contact) symmetries as well as classical
conservation laws are widely used to find classes of exact solutions and par-
tially integrate the system, see [CRC, Ol]. In fact, almost all known exact
methods are based on the idea of symmetry or intermediate integral [G2, F].

Due to Corollary 17 this also holds for higher symmetries/conservation
laws. Indeed if G = 〈ϕ1, . . . , ϕs〉 ⊂ sym(E) is a Lie subalgebra of symmetries
of a compatible system E , then the joint system Ẽ = E∩{ϕ1 = 0, . . . , ϕs = 0},
provided that regularity assumptions are satisfied, is compatible too.

Classical Lagrange-Charpit method [G1, Gun] for first order PDEs con-
sists in a special type overdetermination of the given system E , so that
the new system is again compatible9. Generalized Lagrange-Charpit method
[KL3] works for any system of PDEs and it also consists in overdetermination
to a compatible system.

For systems of scalar PDEs it is often more convenient to impose addi-
tional equations Fr+1, . . . , Fr+s to the system E = {F1 = 0, . . . , Fr = 0}, so
that the joint system Ẽ = {F1 = 0, . . . , Fr+s = 0} is of complete intersection
type. Then if E is compatible, the compatibility of the sub-system Ẽ ⊂ E
can be expressed as follows (see Corollary 17):

{Fi, Fj} = 0 modJki+kj (Ẽ) for 1 ≤ i ≤ r + s, r < j ≤ r + s.

Note that (15) is a particular case of these equations. For a system of vector
PDEs (rankπ > 1) the corresponding situation, when the compatibility
condition writes effectively, should be the generalized complete intersection
(see Theorem 16), and then the conditions of generalized Lagrange-Charpit
method can be written via multi-brackets.

Let us remark that intermediate integrals are partial cases of this approach
(we called additional PDEs Fr+1 = 0, . . . , Fr+s = 0 auxiliary integrals in

9This stays in contrast with the method of differential ansatz, where the additional
equations are imposed with only condition that the joint system is solvable.
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[KL2]). More generally, most integrability schemes (Lax pairs, Sato theory,
commuting hierarchies etc) are closely related to compatibility criteria.

For instance, Backlund transformations [PRS, IA] can be treated as fol-
lows. Let E1 = {F1 = 0, . . . , Fr = 0} ⊂ J∞(π1) be a compatible sys-
tem. Extend π1 ↪→ π = π1 ⊕ π2 and let us impose new PDEs {Fr+1 =
0, . . . , Fr+s = 0}, which are not auxiliary integrals in the sense that the
joint system Ẽ = {F1 = 0, . . . , Fr+s = 0} is not compatible. If the compati-
bility conditions modulo the system E1 are reduced to a compatible system
E2 ⊂ J∞(π2), then any solution of E1 gives (families of) solutions of E2.

For the sin-Gordon equation uxy = sinu the additional equations are
vx = sinw, wy = sin v, u = v + w and we get E2 = E1 for z = u − v; here
π1 = 1 (fiber coordinate u) and π2 = 1 (fiber coordinate z).

Finally consider the classical Darboux method of integrability [D, G2,
AK]. It is applied to hyperbolic second-order PDEs F = 0 on the plane
(if quasi-linear, then local point transformation brings it to the form uxy =
f(x, y, u, ux, uy); in general denote the characteristic fields by X, Y ), which
by a sequence of Laplace transformations reduce to the trivial PDE uxy = 0.

In this case the equation possesses a closed form general solution de-
pending on two arbitrary functions of 1 variable. They are obtained via
a pair of intermediate integrals I1 = 0, I2 = 0, such that the system
{F = 0, I1 = 0} is compatible and has one common characteristic X, while
the system {F = 0, I2 = 0} is compatible and has one common characteris-
tic Y . All three equations are compatible as well (and this system is already
free of characteristics, i.e. of finite type).

For Liouville equation uxy = eu the pair of second order intermediate
integrals is I1 = uxx − 1

2u2
x = f(x) and I2 = uyy − 1

2u2
y = g(y), i.e. we have

Dy(I1) = 0 and Dx(I2) = 0 on E .
Thus Darboux method can be treated as a particular case of generalized

Lagrange-Charpit method, but in this case we relax the condition of com-
plete intersection (for overdetermined system in dimension two this yields
CharC(E) = ∅) to possibility of common characteristics (in this case criterion
of Theorem 16 fails and compatibility conditions become of lower orders and
simpler).

4.5. Pseudogroups and differential invariants. Let a group G act on
the manifold E by diffeomorphisms. Its action lifts naturally to the jet-space
Jk(E, m). An important modification of this situation is when G acts by
contact transformations on J1(E, 1).

A general G-representation via Lie transformations is a prolongation of
one of these by the Lie-Backlund theorem, see §1.4. We also investigate
group actions on differential equations E . We again require that the group
acts by symmetries of CE , but now they need not to be external, and if
the system is not rigid (§4.4), they may not to be prolongation of point of
contact symmetries.
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It is often assumed that G is a Lie group, because then one can exploit
the formulas of §1.5 to lift transformations to the higher jets, without usage
of the inverse function theorem.

A function I is called a differential invariant of order k with respect to the
action of G, if it is constant on the orbits Gk · xk ⊂ Jk(E, m) of the lifted
action. For connected Lie groups this writes simpler: X̂(I) = 0, X ∈ g,
where g = Lie(G) is the corresponding Lie algebra.

Denote by Ik the algebra of differential invariants of order ≤ k. Then
I = ∪Ik is a filtered algebra, with the associated graded algebra O = ⊕Ok

called the algebra of covariants ([KL7]). The latter plays an important role
in setting a Spencer-type calculus for pseudo-groups ([KL8]).

Similar to invariant functions there are defined invariant (multi-) vec-
tor fields, invariant differential forms, various invariant tensors, differential
operators on jet-spaces etc.

Invariant differentiations play a special role in producing other differen-
tial invariants. Levi-Civita connection is one of the most known examples.
Tresse derivatives are the very general class of such operations and they are
defined as follows.

Suppose we have n = dim E−m differential invariants f1, . . . , fn on Ek ⊂
Jk(E, m). Provided πk+1,k(Ek+1) = Ek we define the differential operator

∂̂i : C∞(Ek) → C∞(E ′k+1),

where E ′k+1 is the open set of points xk+1 ∈ Ek+1 with

df1 ∧ . . . ∧ dfn|L(xk+1) 6= 0. (16)

We require that {fi}n
i=1 are such that E ′k+1 is dense in Ek+1. For the

trivial equation Ei = J i(E, m) this is always the case. But if the equation E
is proper, this is a requirement of ”general position” for it. Given condition
(16) we write:

df |L(xk+1) =
n∑

i=1

∂̂i(f)(xk+1) dfi|L(xk+1),

which defines the function ∂̂i(f) uniquely at all the points xk+1 ∈ E ′k+1. This
yields an invariant differentiation ∂̂i = ∂̂/∂̂fi : Ik → Ik+1. The expressions
∂̂i(f) = ∂̂f/∂̂fi are called Tresse derivatives of f with respect to fi ([KL8]).

For affine charts Jk(π) ⊂ Jk(E, m) this definition coincides with the
classical one ([Tr, T, Ol]). Consider some examples of calculations of scalar
differential invariants10.

(1) Diffeomorphisms of the projective line.
1a. Left SL2-action. For a diffeomorphism f : RP1 → RP1 and g ∈ SL2(R)

define the left action by g(f) = g◦f . The corresponding Lie algebra g = sl(2)

10Some of these facts are contained in classical textbooks. We obtained the formulas
thanks to the wonderful Mapple-11 package DiffGeom by I.Anderson.
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is generated by the vector fields
〈
∂u, u∂u, u2∂u

〉
on J0(R). The algebra I of

differential invariants is generated by x, the Schwartz derivative

j3 =
2p1p3 − 3p2

2

2p2
1

and all total derivatives Dk
x(j3), k > 0.

1b. Right SL2-action. The right action of G = SL2(R) on RP1 is defined
by the formula: g(f) = f ◦ g−1. The corresponding Lie algebra g = sl(2) is
generated by the vector fields

〈
∂x, x∂x, x2∂x

〉
on J0(R). The algebra I of

differential invariants is generated by u, the inverse Schwartz derivative

J3 =
2p1p3 − 3p2

2

2p4
1

and the Tresse derivatives
∂̂k

∂̂uk
(J3), k > 0.

(2) Curves in the classical plane geometries.
2a. Metric plane. The Lie algebra of plane motions m2 is generated by

the vector fields 〈∂x, ∂u, x∂u − u∂x〉 on the plane R2 = J0(R). There is an
m2-invariant differentiation (metric arc)

∇ =
1√

p2
1 + 1

d

dx
,

and the algebra of m2-differential invariants is generated by the curvature

κ2 =
p2

(p2
1 + 1)3/2

and the derivatives ∇rκ2, r > 0.

2b. Conformal plane. The Lie algebra of plane conformal transformations
co2 is generated by the vector fields 〈∂x, ∂u, x∂u − u∂x, x∂x + u∂u〉 on the
plane R2 = J0(R). There is a co2-invariant differentiation (conformal arc)

∇ =
p2
1 + 1
p2

d

dx
,

and the algebra of co2-differential invariants is generated by the conformal
curvature

κ3 =
p2
1p3 + p3 − 3p1p

2
2

p2
2

and the derivatives ∇rκ3, r > 0.

2c. Symplectic plane. The Lie algebra of plane symplectic transforma-
tions sp2 is generated by the vector fields 〈∂x, ∂u, x∂u, u∂x, x∂x − u∂u〉 on
the plane R2 = J0(R). There is an sp2-invariant differentiation (symplectic
arc)

∇ =
1

3
√

p2

d

dx
,

and the algebra of sp2-differential invariants is generated by the symplectic
curvature

κ4 =
3p2p4 − 5p2

3

3p
8/3
2

and the derivatives ∇rκ4, r > 0.
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2d. Affine plane. The Lie algebra of plane affine transformations a2

is generated by the vector fields 〈∂x, ∂u, x∂u, u∂x, x∂x, u∂u〉 on the plane
R2 = J0(R). There is an a2-invariant differentiation (affine arc)

∇ =
p2√

3p2p4 − 5p2
3

d

dx
,

and the algebra of a2-differential invariants is generated by the affine curva-
ture

κ5 =
9p2

2p5 + 40p3
3 − 45p2p3p4

9(3p2p4 − 5p2
3)3/2

and the derivatives ∇rκ5, r > 0.

2e. Projective Plane. The Lie algebra of plane projective transforma-
tions sl3 is generated by the vector fields 〈∂x, ∂u, x∂u, u∂x, x∂x, u∂u, x2∂x +
xu∂u, xu∂x + u2∂u〉 on the plane R2 = J0(R).

There are two relative differential invariants:

Θ3 =
−9p2

2p5 + 45p2p3p4 − 40p3
3

54p3
2

, Θ8 = 6Θ3
d2Θ3

dx2
− 7

(dΘ3

dx

)2

of degrees 3 and 8, and of orders 5 and 7 respectively. There is also an sl3-
invariant differentiation (projective arc, or Study invariant differentiation)

∇ =
1

3
√

Θ3

d

dx
,

and the algebra of sl3-differential invariants is generated by the projective
curvature

κ7 =
Θ3

8

Θ8
3

and the derivatives ∇rκ7, r > 0.

Pseudogroups are infinite-dimensional Lie groups, which can be obtained
by integrating Lie equations [C1, Eh, Kur2, SS, KS]. Differential invariants
and Tresse derivatives are defined for them in the same manner.

Theorem 29. Algebra I of differential invariants of pseudogroup G action
is finitely generated by algebraic operations and Tresse derivatives.

This theorem (with a proper assumption of regularity) was formulated and
sketched by A. Tresse [Tr], though important partial cases were considered
before by S. Lie [Lie1] (see also [H]). The proof for (finite-dimensional) Lie
groups was given by Ovsiannikov [Ov], for pseudogroups acting on jet-spaces
by Kumpera [Kum]. The general case of pseudogroups G acting on systems
of PDEs E was completed in [KL8].

Similar to Cartan-Kuranishi theorem one hopes that generic points of E
are regular. This is possible to show in good (algebraic/analytic) situations.

Pseudogroups constitute a special class of Lie equations. With general
approach of [KL8] one does not require their local integrability from the
beginning. It is important that passage from formal integrability to the
local one is easier for pseudogroups compared to general systems of PDEs.



42 BORIS KRUGLIKOV, VALENTIN LYCHAGIN

For instance, formally integrable transitive flat pseudogroups are locally
integrable [BM, P].

Pseudogroups are basic for solution of equivalence problem. Pseudogroups
are also fundamental for establishing special symmetric solutions of PDEs,
they can be used to multiply transversal solutions and in some cases (if the
pseudogroup is big enough) to integrate PDEs [Ov, KLV, CRC, Ol, SCL,
AFT, KLR].

4.6. Spencer D-cohomology. The Spencer differential

D : J k(π)⊗ Ωl(M) → J k−1(π)⊗ Ωl+1(M)

is uniquely defined by the following conditions:
(i) D is R-linear and satisfies the Leibniz rule:

D(θ ⊗ ω) = D(θ) ∧ ω + πk,k−1(θ)⊗ dω, θ ∈ J k(π), ω ∈ Ωl(M).

(ii) The following sequence is exact:

0 → C∞(π)
jk→ J k(π) D→ J k−1(π)⊗ Ω1(M).

The latter operator can be described as follows. Let x ∈ M , v ∈ TxM ,
θ ∈ J k(π) and xk = θ(x) ∈ π−1

k (x). Since θ̃ = πk,k−1(θ) ∈ C∞(πk−1), the
value Dvθ = iv ◦D(θ) ∈ Jk−1

x π equals ρv
k−1 ◦ (jk−1θ̃)∗(v), where

ρv
k−1 : Txk−1

(Jk−1π) ' L(xk)⊕ Jk−1
x π → Jk−1

x π

is the projection to the second component (the splitting depends only on
xk). Thus D(θ) = 0 if and only if θ̃(M) is an integral manifold of the
Cartan distribution on Jk−1(π) and therefore has the form jk−1(s), which
yields θ = jk(s) for some s ∈ C∞(π).

The above geometric description implies that the Spencer operator D is
natural, D ◦ πk+1,k = πk,k−1 ◦D. Moreover let α : Eα → Mα and β : Eβ →
Mβ be two vector bundles and Ψ : α → β be a morphism over a smooth
map ψ : Mα → Mβ, ψ ◦ α = β ◦ Ψ, such that Ψx : α−1(x) → β−1(ψ(x))
are linear isomorphisms for all x ∈ M . Then Ψ generates a map of sections:
Ψ∗ : C∞(β) → C∞(α), where Ψ∗(h)(x) = Ψ−1

x

(
h(ψ(x))

)
. This in turn

generates a map of k-jets: Ψ∗
k : J k(β) → J k(α) and Ψ∗

k ◦ jk = jk ◦Ψ∗. Then
naturality of D means that

D ◦Ψ∗
k ⊗ ψ∗ = Ψ∗

k−1 ⊗ ψ∗ ◦D.

The above properties of the Spencer differential yield D2 = 0. Hence the
following sequence is a complex:

0 → C∞(π)
jk→ J k(π) D→ J k−1(π)⊗Ω1(M) D→ · · · D→ J k−n(π)⊗Ωn(M) → 0.

It is called the first (naive) Spencer complex .
Let E = {Ek ⊂ Jkπ} be a system of linear PDEs. Assume that E is

formally integrable. Then the 1-st Spencer complex can be restricted to E ,
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meaning that D : Ek → Ek−1 ⊗ Ω1(M), where Ek = C∞(πk|Ek
) denotes the

space of sections (non-holonomic solutions of Ek). The resulting complex

0 → Ek
D−→ Ek−1 ⊗ Ω1(M) D−→ · · · D−→ Ek−n ⊗ Ωn(M) → 0 (17)

is called the first Spencer complex associated with the system E .
The exact sequences 0 → gk → Ek → Ek−1 → 0 induce the exact sequences

of the Spencer complexes and this together with δ-lemma shows that the
cohomology of the 1st Spencer complex are stabilizing for sufficiently large
k. The stable cohomology are called Spencer D-cohomology of E and they
are denoted by H i

D(E), i = 0, 1, . . . , n.
Remark that H0

D(E) = Sol(E) is the space of global smooth solutions of E .
Other cohomology group H i

D(E) describe the solutions spaces of the systems
of PDEs corresponding to the place i of the Spencer complex and H∗

D(E) is
a module over the de Rham cohomology of the base H∗(M).

Due to the summands gk the first complex is not formally exact (=exact
on the level of formal series). The construction of the second (sophisticated)
Spencer complex amends this feature. This 2nd complex is defined as follows.

Pick a vector bundle morphism Θ : Ek → Ek+1 that is right-inverse to
the projection πk+1,k: πk+1,k ◦ Θ = id. Let DΘ = D ◦ Θ : Ek ⊗ Ωi(M) →
Ek ⊗ Ωi+1(M). Another right-inverse Θ′ : Ek → Ek+1 gives:

DΘ −DΘ′ : Ek ⊗ Ωi(M) → δ(gk+1 ⊗ Ωi(M)).

Therefore for the quotient Ci
k = Ek⊗ΛiT ∗M/δ(gk+1⊗Λi−1T ∗M) the factor-

operators (denoted by the same letter D) are well-defined and they consti-
tute the factor complex

0 → C0
k

D−→ C1
k−1

D−→ · · · D−→ Cn
k−n → 0,

which is called the 2nd Spencer complex. Its cohomology stabilize for suf-
ficiently large k and coincide with stable cohomology of the 1st Spencer
complex. Moreover the second Spencer D-complex is formally exact [S2].

Another approach to the Spencer D-cohomology is via the compatibility
complex. Let ∆1 : C∞(π1) → C∞(π2) be a differential operator. Denote by
∆2 : C∞(π2) → C∞(π3) its compatibility operator, i.e. ∆2 ◦ ∆1 = 0 and
Im[ψ∆1∞ : J∞(π1) → J∞(π2)] = Ker[ψ∆2∞ : J∞(π2) → J∞(π3)].

Denoting ∆3 the compatibility operator for the operator ∆2 and so on we
get the compatibility complex

C∞(π1)
∆1−→ C∞(π2)

∆2−→ C∞(π3)
∆3−→ · · · .

Existence of such complexes was proved by Kuranishi (also Goldschmidt,
see [S2] and references therein) whenever E = Ker(∆1) is formally inte-
grable. Moreover any two such formally exact complexes are homotopically
equivalent. Hence the 2nd Spencer D-complex provides us with an explicit
construction of such a complex.
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However the Spencer D-complexes are not necessary minimal in the sense
that ranks of the bundles πi can be reduced. Important method for con-
structing minimal compatibility complexes comes from resolutions in com-
mutative algebra. In such a form they can even be generalized to the non-
linear situation. For (non-linear) systems of generalized complete intersec-
tion type the compatibility complexes were constructed in [KL10].

Remark 9. Since cohomology of a compatibility complex equal H∗
D(E), this

gives a way to calculate non-linear Spencer D-cohomology. To define the
non-linear version of Spencer D-complex one can use the machinery of §2.4.
4.7. Calculations of Spencer cohomology. Consider some examples.

(1) If E = Ker
[
∆ : C∞(π) → C∞(π)

]
is a determined system of PDEs,

CharC(∆) 6= PCT ∗, then

H0
D(E) = Ker(∆) = Sol(E), H1

D(E) = Coker(∆) ' Ker(∆∗).

(2) Spencer D-cohomology of a system E of PDEs, defined by the de
Rham differential d : C∞(M) → Ω1(M), coincide with the de Rham’s
cohomology of the base manifold: H∗

D(E) = H∗
dR(M).

(3) Let ∇ : C∞(π) → C∞(π) ⊗ Ω1(M) be a flat connection. Then the
Spencer cohomology of the corresponding system E coincide with the
de Rham cohomology of M with coefficients in π: H∗

D(E) = H∗
∇(π).

(4) Let M be a complex manifold and π a holomorphic vector bundle
over it. Denote by Ωp,q(π) the (p, q)-forms on M with values in
π. Then the Spencer D-cohomology of the Cauchy-Riemann equa-
tion given by the operator ∂̄ : Ωp,0(π) → Ωp,1(π) are the Dolbeault
cohomology H ∗̄

∂
(M, Ωp(π)).

(5) Let E be a formally integrable system of finite type. Then πk+1,k :
Ek+1 → Ek are isomorphisms for large k. Thus the Spencer differen-
tial D : Ek ' Ek+1 → Ek ⊗Ω1(M) defines a flat (Cartan) connection
∇ in the vector bundle πk and the Spencer cohomology equal the de
Rham cohomology of this connection: H∗

D(E) = H∗
∇(Ek).

Finally consider the calculations of Spencer cohomology using the tech-
nique of spectral sequences. We will investigate a formally integrable system
E = {Ek ⊂ Jkπ} of linear PDEs of maximal order l in a bundle π : E → M .

Assume that the base manifold M is itself a total space of a fibre bundle
κ : M → B. We say that κ is a noncharacteristic bundle if all fibres
Fb = κ−1(b), b ∈ B, are strongly noncharacteristic for E in the sense of §3.2.

A vector field X on M is said to be vertical if κ∗(X) = 0. A differential
form θ ∈ Ei ⊗ Ωr(M) is called q-horizontal if X1 ∧ · · · ∧Xq+1cθ = 0 for any
vertical vector fields X1, . . . , Xq+1 on M . Denote by Ei⊗Ωr

q(M) the module
of q-horizontal elements with Ei-values.

Let Fp,q = El−p−q ⊗ Ωp+q
q (M). Then {Fp,q} gives a filtration of Spencer

complex (17) and D(Fp,q) ⊂ Fp,q+1. Denote by {Ep,q
r , dp,q

r : Ep,q
r →

Ep+r,q−r+1
r } the spectral sequence associated with this filtration.
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In order to describe the spectral sequence we assume that κ is a nonchar-
acteristic bundle and consider the restriction π̄b : Eb → Fb of the bundle π
to a fibre Fb. Denote the respective restrictions of πi : Ei → M to Fb by Ei;b

(cf. §3.2 for restrictions of symbolic systems). They satisfy the condition
Ei+1;b ⊂ Ei

(1)
;b . Due to Cartan-Kuranishi prolongation theorem there exists

a number i0 such that Ei+1;b ⊂ Ei
(1)
;b for i ≥ i0.

We call system E(b) = {Ei;b ⊂ J i(π̄b)} the restriction of E to the fibre Fb.
By Theorem 13 involutivity of E implies involutivity of E = E(b) for all b ∈ B
(in fact, the theorem concerns only symbolic levels, while the claim involves
restrictions of the Weyl tensors). Similar, E is formally integrable provided
that E is formally integrable (but for the needs of Spencer D-cohomology
we can restrict to systems E |i〉 for i ≥ i0).

The following theorem is a generalization of the classical Leray-Serre the-
orem into the context of Spencer cohomology.

Theorem 30. [L3, LZ2]. Let E be a formally integrable system of linear
PDEs on a bundle π over M and let κ : M → B be a noncharacteristic
bundle. Assume that the Spencer D-cohomology H∗

D

(E(b)
)

form a smooth
vector bundle over B. Then the above spectral sequence Ep,q

r converges to
the Spencer D-cohomology H∗

D(E) and the first terms of it equal:
(0) Ep,q

0 = Fp,q/Fp+1,q−1 ' El−p−q⊗C∞(M) [Ωq(κ)⊗C∞(B) Ωp(B)], where
Ωq(κ) = Ωq(M)/Ωq

q−1(M) is a module of totally vertical q-forms;
(1) Ep,q

1 'Hq
D(E)⊗Ωp(B), the differential d0,q

1 : Hq
D(E) → Hq

D(E)⊗Ω1(B)
is a flat connection ∇ on the bundle of Spencer cohomology Hq

D(E);
(2) Ep,q

2 ' Ep,q
2 = Hp

∇
(
B,Hq

D(E)
)
, i.e. the usual ∇-de Rham cohomology

with coefficients in the sheaf of sections of Spencer D-cohomology.

Assuming that the Spencer cohomology Hq
D(E) are finite dimensional we

define the Euler characteristic χ(E) as

χ(E) =
n∑

i=0

(−1)i dimH i(E).

Then the above theorem shows that χ(E) = χ(E) ·χB, where χB is the Euler
characteristic of B.

Remark 10. Borel theorem on computation of cohomology of homogeneous
spaces together with Leray-Serre spectral sequence constitute the base for
computations of de Rham cohomology of smooth manifolds. Borel theorem
was generalized to the context of Spencer cohomology in [LZ1], when the
symmetry group was assumed compact.

Note that δ-estimate from §4.1 guarantees local exactness of the Spencer
complex ([Sw2, McK1, McK2], Theorem 24 is a partial case). Thus Spencer
D-cohomology is the cohomology of the base M with coefficients in the sheaf
Solloc(E).
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Finite-dimensionality of H∗(E) can be guaranteed if the system E is ellip-
tic and the manifold M is compact. Another situations is the generalization
of the above construction, when the manifold M is foliated (not necessary
fibered) and the leaves wind over the manifold densely.

Finally we remark that vanishing of the Spencer cohomology Hq
D(E) = 0

means global solvability of the PDEs corresponding to the operator D at the
q-th place of the Spencer complex, provided that compatibility conditions
are satisfied.
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ordere, Hermann, Paris (1891)

[G2] E. Goursat, Lecons sur l’intégration des équations aux dérivées partielles du second
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