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Abstract. Let G be a compact Lie group, let RG be a commutative algebra
over the sphere G-spectrum SG, and let R be its underlying nonequivariant
algebra over the sphere spectrum S. When RG is split as an algebra, as holds
for example for RG = MUG, we show how to “extend scalars” to construct a
split RG-module MG = RG ∧R M from an R-module M . We also show how
to compute the coefficients MG∗ in terms of the coefficients RG∗ , R∗, and M∗.
This allows the wholesale construction of highly structured equivariant module
spectra from highly structured nonequivariant module spectra. In particular,
it applies to construct MUG-modules from MU-modules and therefore gives
conceptual constructions of equivariant Brown-Peterson and Morava K-theory
spectra.

1. Introduction

We enrich the theory of highly structured modules over highly structured ring
spectra that was developed in [4] by showing how to construct highly structured
equivariant modules from highly structured nonequivariant modules. Throughout,
we let G be a compact Lie group. As pointed out in its introduction, although [4] is
written nonequivariantly, its theory applies verbatim equivariantly; an equivariant
exposition will be given in [10]. The equivariant ring spectra we are interested in
are the algebras over the equivariant sphere spectrum SG. These are essentially
equivalent to the earlier E∞ ring G-spectra of [9, VII§2]. The prime examples are
SG itself and the spectrum MUG of stabilized equivariant complex cobordism; MUG

is proven to be a commutative SG-algebra in [8]. In [5], Elmendorf and I showed
how to construct examples from nonequivariant S-algebras. For finite groups G, a
great many other examples are known.

In [4], we gave new constructions of the Brown-Peterson spectra BP , the con-
nective and periodic Morava K-theory spectra k(n) and K(n), and all of the other
spectra that are usually constructed from MU by means of the Baas-Sullivan theory
of manifolds with singularities by killing some of the generators of MU∗ and invert-
ing others. The new constructions give all of these spectra module structures over
the commutative S-algebra MU . We also analyzed their multiplicative structure as
“MU -ring spectra”, which are the analogs in the derived category of MU -modules
of classical ring spectra in the stable homotopy category.

In [8], a localization and completion theorem is proven that relates MG
∗ to

M∗(BG) and M∗
G to M∗(BG) for any split MUG-module MG with underlying

nonequivariant MU -module M . To apply this theorem to a given MU -module M ,
such as M = BP , M = k(n), or M = K(n), we must be able to construct a split
MUG-module MG with underlying MU -module M . We shall accomplish this by
means of a kind of “extension of scalars” functor that transforms MU -modules
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into split MUG-modules. This construction commutes with smash products and so
carries MU -ring spectra to MUG-ring G-spectra.

We let MR denote the category of modules over an S-algebra R and let GMRG

denote the category of modules over an SG-algebra RG. We let DR and GDRG

denote the respective derived categories; these are obtained from the respective
homotopy categories by adjoining inverses to the weak equivalences or, equivalently,
by passing to approximations by weakly equivalent cell modules. As usual, we write
EG
∗ for the homotopy groups of the G-fixed point spectrum of a G-spectrum EG.

Theorem 1.1. There is a monoidal functor MUG ∧MU (?) : MMU −→ GMMUG .
If M is a cell MU -module, then MG ≡ MUG ∧MU M is split as an MUG-module
with underlying nonequivariant MU -module M . The functor MUG∧MU (?) induces
a derived monoidal functor DMU −→ GDMUG

. Therefore, if M is an MU -ring
spectrum, then MUG ∧MU M is an MUG-ring G-spectrum. Moreover, there is a
strongly convergent natural spectral sequence

TorMU∗
p,q (MUG

∗ , M∗) =⇒ MG
p+q

of differential MU∗-modules. In particular, if G is Abelian, then

MG
∗ ∼= MUG

∗ ⊗MU∗ M∗.

The term “split as a module” will be given a precise meaning below. The last
statement holds since MUG

∗ is a free MU∗-module when G is Abelian [2]. This is
true in a few other cases, but little is known in general about the algebraic structure
of MUG

∗ . A special case of the theorem solves a problem raised by Carlsson [1]:
“Define and compute equivariant Morava K-theory spectra.”

There is nothing in the literature on this subject. Theorem 1.1 allows the definitions

k(n)G = MUG ∧MU k(n) and K(n)G = MUG ∧MU K(n),

and it computes the coefficients when G is Abelian. Similarly, we can define equi-
variant Brown-Peterson spectra by

BPG = MUG ∧MU BP,

and so on for all of the other standard MU -modules in current use. We point out an
anomaly in one of the few familiar cases: the equivariant form kG = MUG ∧MU k
of the MU -module k that represents connective K-theory cannot represent the
usual “connective equivariant K-theory” since, as observed by Greenlees, the latter
theory does not take values in modules over the RO(G)-graded ring MUG

∗ . We do
not know whether or not the equivariant form MUG ∧MU K of periodic K-theory
that we construct represents equivariant K-theory, but we conjecture that it does.

The theorem is a special case of one that applies to all SG-algebras that are
“split as algebras”, in a sense that we shall make precise below.

Theorem 1.2. Let RG be a commutative SG-algebra and assume that RG is split as
an algebra with underlying nonequivariant S-algebra R. Then there is a monoidal
functor RG∧R (?) : MR −→ GMRG . If M is a cell R-module, then MG ≡ RG∧RM
is split as an RG-module with underlying nonequivariant R-module M . The functor
RG ∧R (?) induces a derived monoidal functor DR −→ GDRG . Therefore, if M is
an R-ring spectrum, then RG ∧R M is an RG-ring G-spectrum. Moreover, there is
a strongly convergent natural spectral sequence

TorR∗
p,q(R

G
∗ ,M∗) =⇒ MG

p+q
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of differential R∗-modules. In particular, if either RG
∗ or M∗ is a flat R∗-module,

then
MG
∗ ∼= RG

∗ ⊗R∗ M∗.

To justify the application to MUG, we need to know that it is split as an algebra.
This is a special case of a general criterion for RG to be split as an algebra. The
notion of a global I∗-FSP was defined in [8], and it was shown there that the sphere
and cobordism functors provide examples.

Theorem 1.3. If T is a global I∗-FSP, then its associated commutative SG-algebra
is split as an algebra for every compact Lie group G.

Although the basic idea and construction predate the writing of [5], this paper
is best understood as a sequel to that one, and we shall freely use its notations
and results. The reader is referred to [9, 6, 10] for the relevant background on
equivariant stable homotopy theory.

2. Change of universe and operadic smash products

The functor RG ∧R M that we shall construct depends on an extension of the
operadic smash product

∧L : GS U [L]×GS U [L] −→ GS U [L]

of [4, Ch I] that incorporates the change of universe functors

IU
U ′ : GS U ′[L′] −→ GS U [L]

of [5, 2.1]. Recall from [5, 1.1] that the functors IU
U ′ are monoidal equivalences of

categories.

Definition 2.1. Let U , U ′, and U ′′ be G-universes. For an L′-spectrum M and
an L′′-spectrum N , define an L-spectrum M ∧L N by

M ∧L N = IU
U ′M ∧L IU

U ′′N.

Obviously, the formal properties of this product can be deduced from those of
the functors IU

U ′ together with those of the operadic smash product for the fixed
universe U . In particular, since the functor IU

U ′ takes SU ′-modules to SU -modules
and the smash product over SU is the restriction to SU -modules of the smash
product over L , we have the following observation. Here SU denotes the sphere
G-spectrum indexed on U .

Lemma 2.2. The functor ∧L : GS U ′[L′]×GS U ′′[L′′] −→ GS U [L] restricts to
a functor

∧SU
: GMSU′ ×GMSU′′ −→ GMSU

.

There is an alternative description of this product that makes its structure more
apparent. It depends on the following generalization of [4, I.5.4], which in fact is
implied by that result; compare [5, 2.2].

Lemma 2.3. Assume given universes U , U ′, U ′′, U ′
r for 1 ≤ r ≤ i, and U ′′

s for
1 ≤ s ≤ j, where i ≥ 1 and j ≥ 1. Then the following diagram is a split coequalizer
of spaces and therefore a coequalizer of G-spaces; the maps γ are given by sums and
compositions of linear isometries.
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I (U ′ ⊕ U ′′, U)×I (U ′, U ′)×I (U ′′, U ′′)×I (⊕i
r=1U

′
r, U

′)×I (⊕j
s=1U

′′
s , U ′′)

γ×id

²²
id×γ

²²
I (U ′ ⊕ U ′′, U)×I (⊕i

r=1U
′
r, U

′)×I (⊕j
s=1U

′′
s , U ′′)

γ

²²
I ((⊕i

r=1U
′
r)⊕ (⊕j

s=1U
′′
s ), U).

Lemma 2.4. There is a natural isomorphism

M ∧L N −→ I (U ′ ⊕ U ′′, U)nI (U ′,U ′)×I (U ′′,U ′′) M ∧N,

where ∧ on the right is the external smash product GS U ′ ×GS U ′′ −→ GS (U ′ ⊕
U ′′).

Proof. Expanding definitions, we see that M ∧L N is

I (U ⊕U,U)nI (U,U)×I (U,U) [(I (U ′, U)nI (U ′,U ′) M)∧ (I (U ′′, U)nI (U ′′,U ′′) N)].

Formal properties of the twisted half-smash product allow us to rewrite this as

[I (U ⊕ U,U)×I (U,U)×I (U,U) I (U ′, U)×I (U ′′, U)]nI (U ′,U ′)×I (U ′′,U ′′) M ∧N.

The previous lemma gives a homeomorphism

I (U ⊕ U,U)×I (U,U)×I (U,U) I (U ′, U)×I (U ′′, U) −→ I (U ′ ⊕ U ′′, U)

of G-spaces over I (U ′ ⊕ U ′′, U), and the conclusion follows. ¤
Similarly, as in the proof of [4, I.5.5 and I.5.6], Lemma 2.3 implies the following

associativity property of our generalized operadic smash products and therefore,
upon restriction, of our generalized smash products over sphere G-spectra.

Lemma 2.5. Let M ∈ GS U ′[L′], P ∈ GS U ′′[L′′], and N ∈ GS U ′′′[L′′′]. Then
both (M ∧L ′ P ) ∧L N and M ∧L (P ∧L ′′′ N) are canonically isomorphic to

I (U ′ ⊕ U ′′ ⊕ U ′′′, U)nI (U ′,U ′)×I (U ′′,U ′′)×I (U ′′′,U ′′′) M ∧ P ∧N,

which in turn is canonically isomorphic to

IU
U ′M ∧L IU

U ′′P ∧L IU
U ′′′N.

Using change of universe explicitly or, via the previous lemmas, implicitly, we
can define modules indexed on one universe over algebras indexed on another.

Definition 2.6. Let R ∈ GMSU′′ be an SU ′′ -algebra and let M ∈ GMSU′ . Say
that M is a right R-module if it is a right IU ′

U ′′R-module, and similarly for left
modules.

It is quite clear how one must define smash products over R in this context.

Definition 2.7. Let R ∈ GMSU′′ be an SU ′′-algebra, let M ∈ GMSU′ be a right
R-module and let N ∈ GMSU′′′ be a left R-module. Define

M ∧R N = IU
U ′M ∧IU

U′′R
IU
U ′′′N.

Here we have used that IU
U ′′

∼= IU
U ′I

U ′
U ′′ and that IU

U ′M is therefore an IU
U ′′R-

module, and similarly for N . Expanding definitions and using the associativity
isomorphism of Lemma 2.5, we obtain the following more explicit description.
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Lemma 2.8. M ∧R N is the coequalizer displayed in the diagram

I (U ′ ⊕ U ′′ ⊕ U ′′′, U)nI (U ′,U ′)×I (U ′′,U ′′)×I (U ′′′,U ′′′) M ∧R ∧N

²² ²²
I (U ′ ⊕ U ′′′, U)nI (U ′,U ′)×I (U ′′′,U ′′′) M ∧N

²²
M ∧R N,

where the parallel arrows are induced by the actions of R on M and on N .

Evidently these smash products inherit good formal properties from those of the
smash products of R-modules studied in [4]. Similarly, their homotopical properties
can be deduced from the homotopical properties of the smash product of R-modules
and the homotopical properties of the IU

U ′ , which were studied in [5].

3. SG-algebras and their underlying S-algebras

We are concerned with genuine G-spectra and their comparison with naive G-
spectra. Recall that these are indexed respectively on a complete G-universe U and
its G-fixed point universe UG. We write SG for the sphere G-spectrum indexed
on U and S for the sphere spectrum indexed on UG. We regard nonequivariant
spectra such as S as G-spectra with trivial G-action. We have the forgetful change
of universe functor i∗ : GS U −→ GS UG obtained by forgetting those indexing
spaces of U that are not contained in UG. The underlying nonequivariant spectrum
E of a G-spectrum EG is defined to be i∗EG, with its action by G ignored. Said
another way, let U# denote U with its action by G ignored and let E#

G denote the
nonequivariant spectrum indexed on U# that is obtained from EG by forgetting
the action of G. Then E = i∗E#

G .
The G-fixed point spectrum of EG is obtained by taking the spacewise fixed

points of i∗EG. We say that EG is split if there is a map E −→ (EG)G of spectra
indexed on UG whose composite with the inclusion of (EG)G in E is an equivalence.
As observed in [7, 0.4], EG is split if and only if there is a map of G-spectra
i∗E −→ EG that is a nonequivariant equivalence, where i∗ : GS UG −→ GS U is
the left adjoint of i∗. In either form, the notion of a split G-spectrum is essentially
a homotopical one. More precisely, it is a derived category notion: its purpose is to
allow the comparison of equivariant and nonequivariant homology and cohomology
theories, which are defined on derived categories. Thus we could have used weak
equivalences in the definitions just given, and we shall use the term equivalence to
mean weak equivalence of underlying spectra or G-spectra in what follows; we will
add the adjective “weak” in cases where we would not expect to have a homotopy
equivalence in general.

We must modify these definitions in the context of highly structured ring and
module spectra. This point was left implicit in both [6] and [8], where reference
was made to “the underlying S-algebra R of an SG-algebra RG”: in fact there is no
obvious way to give R = i∗R#

G a structure of S-algebra. The point becomes clear
when one thinks back to the underlying E∞ ring structures. We are given G-maps

(3.1) I (U j , U)nRj
G −→ RG,
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and there is no obvious way to obtain induced nonequivariant maps

(3.2) I ((UG)j , UG)nRj −→ R.

We therefore think of i∗R#
G as only prescribing the appropriate weak homotopy

type of the underlying S-algebra of an SG-algebra RG.

Definition 3.3. An underlying S-algebra of an SG-algebra RG is an S-algebra
whose underlying spectrum is weakly equivalent to i∗R#

G .

There are several natural ways to construct such an S-algebra. First, forgetting
the G-actions and regarding the maps (3.1) as maps of nonequivariant spectra, we
obtain a nonequivariant S#

U -algebra R#
G indexed on U# from our equivariant SU -

algebra RG. We may choose a nonequivariant linear isomorphism f : UG −→ U#.
By conjugation of linear isometries by f , we obtain an isomorphism between the
nonequivariant linear isometries operads of UG and of U#, and we see immediately
that f∗R#

G is an SG
U -algebra. By Lemma 3.4 below, it is weakly equivalent to i∗R#

G .
Second, instead of making an arbitrary choice of an isomorphism f , we can follow

the philosophy of [4] and consider the twisted function spectrum F [I (UG, U#), R#
G);

Lemma 3.4 shows that F [I (UG, U#), R#
G) is also weakly equivalent to i∗R#

G . As in
[4, I.7.5], one can construct a weakly equivalent operadic modification of the spec-
trum F [I (UG, U#), R#

G) that is an S-algebra. However, there is a simpler way to
arrive at the cited operadic modification: it turns out to be given by a functor that
is right adjoint to the functor IU#

UG : S UG[L] −→ S U#[L], and [5, 2.3] shows that
the right adjoint of IU#

UG is IUG

U# . By [5, 1.1], IUG

U# R#
G is an S-algebra. By Lemma 3.4

and the specialization to G = e of Lemma 3.5 below, IUG

U# R#
G is weakly equivalent

to i∗R#
G .

Lemma 3.4. For nonequivariant spectra F ∈ S U#, there are natural weak equiv-
alences between i∗F and f∗F and between i∗F and F [I (UG, U#), F ).

Proof. Choose a path h : I −→ I (UG, U#) connecting i to f . For spectra E ∈
S UG, there result natural maps i∗E −→ h n E ←− f∗E in S U#, and these are
homotopy equivalences if E is tame, for example if E has the homotopy type of
a CW spectrum [4, I.2.5]. Similarly, the natural map i∗E −→ I (UG, U#) n E is
a homotopy equivalence when E is tame. Conjugation from left to right adjoints
gives the conclusions since simple diagram chases show that the conjugate natural
maps induce isomorphisms of homotopy groups. ¤

Lemma 3.5. Let f : U −→ U ′ be an isomorphism of G-universes. Then there are
natural isomorphisms

f∗E ∼= IU ′
U E and f∗E′ ∼= IU

U ′E
′

for E ∈ GS U [L] and E′ ∈ GS U ′[L′].

Proof. Regard f as a G-map from a point into I (U,U ′). Then the following
composite is a homeomorphism of G-spaces over I (U,U ′):

{∗} ×I (U,U)
f×id // I (U,U ′)×I (U,U) ◦ // I (U,U ′).

By [9, VI.3.1(iii)], there results a natural isomorphism

f∗(I (U,U)n E) ∼= I (U,U ′)n E.
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Passing to coequalizers, we obtain

f∗E ∼= f∗(I (U,U)nI (U,U) E) ∼= I (U,U ′)nI (U,U) E ≡ IU ′
U E.

Since f∗ = f−1
∗ , the second isomorphism follows from the first. ¤

We can now define the terms “split as an algebra” and “split as a module” that
appear in Theorem 1.2.

Definition 3.6. A commutative SG-algebra RG is split as an algebra if there is a
commutative S-algebra R and a map η : IU

UGR −→ RG of SG-algebras such that η

is a (nonequivariant) equivalence of spectra and the natural map α : i∗R −→ IU
UGR

is an (equivariant) equivalence of G-spectra.

Since the composite η ◦ α : i∗R −→ RG is a nonequivariant equivalence and
the natural map R −→ i∗i∗R is a weak equivalence (provided that R is tame, [9,
II.1.8] and [4, I.2.5]), R is weakly equivalent to i∗R#

G . Of course, RG is split as a
G-spectrum with splitting map η ◦α. By abuse, we refer to R as “the” rather than
“an” underlying nonequivariant S-algebra of RG.

Definition 3.7. Let RG be a commutative SG-algebra that is split as an algebra
with underlying S-algebra R and let MG be an RG-module. Regard MG as an
IU
UGR-module by pullback along η. Then MG is split as an RG-module if there is

an R-module M and a map χ : IU
UGM −→ MG of IU

UGR-modules such that χ is a
(nonequivariant) equivalence of spectra and the natural map α : i∗M −→ IU

UGM is
an (equivariant) equivalence of G-spectra.

Again, M is weakly equivalent to i∗M#
G and MG is split as a G-spectrum with

splitting map χ ◦ α : i∗M −→ MG. By abuse, we call M the underlying nonequiv-
ariant R-module of MG.

The ambiguity that we allow in the notion of an underlying object is quite useful:
it allows us to arrange the condition on α in the definitions if we have succeeded
in arranging the condition on η. The proof of this depends on the closed model
category structures on all categories in sight that is given in [4, VII§4].

Lemma 3.8. Let RG be a commutative SG-algebra and MG be an RG-module.
(i) Suppose given a commutative S-algebra R′ and a map η′ : IU

UGR′ −→ RG of SG-
algebras such that η′ is a (nonequivariant) equivalence of spectra. Let γ : R −→ R′

be a weak equivalence of S-algebras, where R is a q-cofibrant commutative S-algebra,
and define η = η′ ◦ IU

UGγ : IU
UGR −→ RG. Then RG is split as an algebra with

underlying nonequivariant S-algebra R and splitting map η.
(ii) Suppose given an R′-module M ′ and a map χ′ : IU

UGM ′ −→ MG of IU
UGR′-

modules such that χ′ is a (nonequivariant) equivalence of spectra. Regard M ′ as an
R-module by pullback along γ, let ϑ : M −→ M ′ be a weak equivalence of R-modules,
where M is a q-cofibrant R-module, and define χ = χ′ ◦ IU

UGϑ : IU
UGM −→ MG.

Then MG is split as an RG-module with underlying nonequivariant R-module M
and splitting map χ.

Proof. It is immediate from [5, 1.4] that α : i∗R −→ IU
UGR and α : i∗M −→ IU

UGM
are equivalences of G-spectra. Thus we need only observe that, ignoring the G-
action, the maps IU#

UG γ and IU#

UG ϑ are weak equivalences since it is immediate from
the case G = e of Lemma 3.5 that the functor IU#

UG preserves weak equivalences. ¤
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Proof of Theorem 1.2. As observed in [4, VII.1.3], the splitting map η : IU
UGR −→

RG of our given split commutative SG-algebra RG is the unit of a structure of
IU
UGR-algebra on RG. The composite

RG ∧SG
IU
UGR

id∧η // RG ∧SG
RG

φ // RG

gives RG a structure of right R-module in the sense prescribed in Definition 2.6,
and RG is an (RG, R)-bimodule with left action of RG induced by the product φ of
RG. Therefore, for an R-module M , we can take U = U ′ and UG = U ′′ = U ′′′ in
Definition 2.7 and define

MG = RG ∧R M.

Clearly MG is an RG-module with action induced by the left action of RG on itself.
The functor IU

UG : MR −→ GMIU

UGR is monoidal by [5, 1.3]. The functor

RG ∧IU

UG R (?) : GMIU

UGR −→ GMRG

is monoidal since RG
∼= RG ∧RG

RG and

(RG ∧RG RG) ∧IU
UG R (M ∧IU

UG R N) ∼= (RG ∧IU
UGR M) ∧RG (RG ∧IU

UG R N)

by a comparison of coequalizer diagrams. Therefore the functor RG ∧R (?) is
monoidal.

As observed in Lemma 3.8, we can assume that our given underlying nonequiv-
ariant S-algebra R is q-cofibrant as an S-algebra. Let M be a cell R-module. Then
M is q-cofibrant and, by [5, 1.4], α : i∗M −→ IU

UGM is an equivalence. To prove
that MG is split as an RG-module, define

χ = η ∧ id : IU
UGM ∼= IU

UGR ∧IU
UG R IU

UGM −→ RG ∧IU
UGR IU

UGM = MG.

Clearly χ is a map of IU
UGR-modules, and we must prove that it is an equivalence

of spectra. Recall from [4, III§1] that we have a free functor FR from spectra to
R-modules given by

FRX = R ∧S (S ∧L LX) ∼= R ∧L LX;

here L and L refer to the universe UG, but we have a similar free functor FRG

from G-spectra to RG-modules based on use of the linear isometries operad for U ,
and similarly for IU

UGR. If we forget about G-actions and compare definitions, we
find by use of an isomorphism f : UG −→ U# that, nonequivariantly,

IU#

UG FRX ∼= F
IU#

UG R
X.

Recalling the definition of cell R-modules from [4, III.2.1], we see that cell R-
modules are built up via pushouts and sequential colimits from the free R-modules
generated by sphere spectra and their cones. The functor IU

UG is a left adjoint,
whether we interpret it equivariantly or nonequivariantly. We conclude that this
functor carries cell R-modules to IU

UGR-modules that, with G-actions ignored, are
nonequivariant cell IU#

UG R-modules. Now [4, III.3.8] gives that χ is an equivalence
of spectra since η is an equivalence of spectra.

The passage to derived categories is immediate, modulo one slight subtlety: our
functor on modules was constructed as the composite of two functors, but, as we saw
in [5, §3], it does not follow that the induced functor on derived categories factors as
a composite. The solution is simple: we ignore the intermediate category GDIU

UGR,
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as it is of no particular interest to us. Since cell approximation of R-modules
commutes up to equivalence with smash products, passage to derived categories
preserves smash products.

Finally, we must construct the spectral sequence claimed in Theorem 1.2. By
definition, RG

∗ = π∗((RG)G), where (RG)G = (i∗RG)G. Similarly,

MG
∗ = π∗((RG ∧R M)G), where (RG ∧R M)G = (i∗(RG ∧R M))G.

Assuming as we may that all given algebras and modules are suitably cofibrant, we
obtain the same groups if we replace the functor i∗ by the more structured change of
universe functor IUG

U . In view of the following lemma, the desired spectral sequence
is a special case of the spectral sequence

TorR∗∗,∗(M∗, N∗) =⇒ π∗(M ∧R N)

constructed in [4, IV.4.1] for an S-algebra R and R-modules M and N . ¤
Lemma 3.9. Let RG be split as an algebra with underlying S-algebra R. For
R-modules M , there is a natural isomorphism of R-modules

(IUG

U RG)G ∧R M ∼= (IUG

U (RG ∧R M))G.

Proof. Passage to G-fixed points commutes with smash products in the category of
naive G-spectra. The same is true in the category GMS of equivariant S-modules
and therefore in the the category GMR for any G-trivial S-algebra R. In our
situation, G acts trivially on both R and M , and it follows that

(3.10) (IUG

U RG)G ∧R M ∼= ((IUG

U RG) ∧R M)G.

Since R ∼= IUG

U IU
UGR, M ∼= IUG

U IU
UGM , and the functor IUG

U is monoidal, we have

(3.11) (IUG

U RG) ∧R M ∼= IUG

U (RG ∧IU
UGR IU

UGM) ≡ IUG

U (RG ∧R M).

We obtain the desired isomorphism by composing (3.10) with the isomorphism
obtained from (3.11) by passage to G-fixed point spectra. ¤

4. Global I∗-functors and split SG-algebras

We must prove Theorem 1.3. The notion of a global I∗-FSP, or G I∗-FSP, was
defined in [8, §§5,6]. We shall only sketch the definition here, referring the reader
to [8] for more details. In fact, we only need a tiny fraction of the structure that
is present on SG-algebras that arise from G I∗-FSP’s. In what follows, we could
work with either real or complex inner product spaces, and of course the complex
case is the one relevant to complex cobordism; see [8, 6.5].

Let G I∗ be the category of pairs (G,V ) consisting of a compact Lie group G and
a finite dimensional G-inner product space V ; the morphisms (α, f) : (G,V ) −→
(G′, V ′) consist of a homomorphism α : G −→ G′ of Lie groups and an α-equivariant
linear isomorphism f : V −→ V ′. Let G T be the category of pairs (G,X), where G
is a compact Lie group and X is a based G-space; the morphisms (α, f) : (G,X) −→
(G′, X ′) consist of a homomorphism α : G −→ G′ and an α-equivariant based map
f : X −→ X ′. Let S• : G I∗ −→ G T be the functor that sends a pair (G,V ) to
the based G-space SV .

A G I∗-FSP T is a continuous functor T : G I∗ −→ G T over the category G of
compact Lie groups together with continuous natural transformations

η : S• −→ T and ω : T ∧ T −→ T ◦ ⊕
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such that the appropriate unity, associativity, and commutativity diagrams com-
mute. Since T is a functor over G , we may write T (G,V ) = (G,TV ), and we
require that

(4.1) T (α, id) = (α, id) : (G,TV ′) −→ (G′, TV ′)

for a homomorphism α : G −→ G′ and a G′-inner product space V ′ regarded by
pullback along α as a G-inner product space. Henceforward, we abbreviate notation
by writing T (G,V ) = TV on objects. For each object (G, V ), we are given a G-map

η : SV −→ TV.

For each pair of objects (G,V ) and (G′, V ′), we are given a G×G′-map

ω : TV ∧ TV ′ −→ T (V ⊕ V ′);

by pullback along the diagonal, we regard ω as a G-map when G = G′.
We insert some observations that show the power of condition (4.1) and are at

the heart of our work. Let e denote the trivial group and let ι : e −→ G and
ε : G −→ e be the unique homomorphisms.

Lemma 4.2. If V has trivial G-action, then TV also has trivial G-action. For
a general G-inner product space V , if V # denotes V regarded as an e-space, then
TV # is the space TV with its action by G ignored.

Proof. For the first statement, the functor T carries the morphism (ε, id) : (G,V ) −→
(e, V ) of G I∗ to the morphism (ε, id) of G T , so that the identity map on TV must
be ε-equivariant. For the second statement, the functor T carries the morphism
(ι, id) : (e, V ) −→ (G,V ) to the identity map on the space TV . ¤

For a compact Lie group G and a G-universe U , we obtain a G-prespectrum
T(G,U) indexed on U with V th G-space TV . The structural maps are given by the
composites

TV ∧ SW−V
id∧η // TV ∧ T (W − V ) ω // TW

for V ⊂ W . Write R(G,U) for the G-spectrum LT(G,U), where L is the spectrification
functor of [9, I.2.2].

Now suppose given G-universes U and U ′. Then there is a canonical map of
G-spectra indexed on U ′

(4.3) ζ : I (U,U ′)nR(G,U) −→ R(G,U ′).

Indeed, if f : U −→ U ′ is a linear isometry and V is an indexing space in U , then the
maps Tf : TV −→ Tf(V ) specify a map of prespectra T(G,U) −→ f∗T(G,U ′) indexed
on U . By adjunction, Tf gives a map of prespectra ζ(f) : f∗T(G,U) −→ T(G,U ′)
indexed on U ′; see [9, p.58]. We record the following observation for later reference.

Lemma 4.4. If f : U −→ U ′ is an isomorphism, then ζ(f) : f∗T(G,U) −→ T(G,U ′)
is an isomorphism; if f is a G-map, then ζ(f) is a G-map.

Intuitively, the twisted half-smash product I (U,U ′) n R(G,U) is obtained by
gluing together the spectrifications f∗R(G,U) of the f∗T(G,U), and the maps ζ(f)
glue together to give the G-map ζ. This sort of argument first appeared in [11,
IV.1.6, IV.2.2], before the twisted half-smash product was invented, and it was
formalized in current terminology in [9, VI.2.17].
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Fixing G and U , a precisely similar argument, formalized in [9, VI.5.5, VII.2.4,
and VII.2.6], shows that the maps

ξj(f) : TV1 ∧ · · ·TVj
ω−→ T (V1 ⊕ · · · ⊕ Vj)

Tf−−→ Tf(V1 ⊕ · · · ⊕ Vj)

for linear isometries f : U j −→ U give rise to maps

ξj : L (j)n (R(G,U))j −→ R(G,U)

that give R(G,U) a structure of L G-spectrum. When the universe U is complete,
so that its linear isometries operad L is an E∞ operad of G-spaces, this means
that R(G,U) is an E∞ ring G-spectrum. The map ξ1 gives R(G,U) an action of
L (1) = I (U,U), and functoriality implies that ξ2 factors through the coequalizer
that defines the operadic smash product, giving

(4.5) ξ : R(G,U) ∧L R(G,U) = L (2)nL (1)2 (R(G,U))2 −→ R(G,U).

As explained in [4, II.3.3 and II§4], the maps ξj for j ≥ 3 can be reconstructed from
the maps for j = 1 and j = 2.

Lemma 4.6. The map ζ of (4.3) factors through the coequalizer to give a map

ζ : IU ′
U R(G,U) = I (U,U ′)nI(U,U) R(G,U) −→ R(G,U ′),

and ζ is a map of L ′ G-spectra, where L ′ is the linear isometries operad of U ′.

Proof. The factorization is clear from functoriality. To check that ζ is a map of L ′

G-spectra, we must show that the following diagram commutes:

L ′(2)nL ′(1)2 (IU ′
U R(G,U))2

idnζ2
//

ξ

²²

L ′(2)nL ′(1)2 (R(G,U ′))2

ξ

²²
IU ′
U R(G,U) ζ

// R(G,U ′).

Using Lemma 2.3 to identify the upper left corner of the diagram and chasing
through the definitions, we see that both composites coincide with the following
one:

I (U ⊕ U,U ′)nI (U,U)2 (R(G,U))2

idnω

²²
I (U ⊕ U,U ′)nI (U⊕U,U⊕U) R(G,U⊕U)

ζ

²²
R(G,U);

here ω is induced by passage to spectra from the evident map of prespectra. ¤

Returning to our fixed G and a complete G-universe U , we consider R(e,UG) and
R(G,U). We deduce from Lemma 4.2 that

(4.7) R(e,UG) = R(G,UG) and R#
(G,U) = R(e,U#).

That is, R(G,UG) is R(e,UG) regarded as a G-trivial G-spectrum indexed on the G-
trivial universe UG, and R(G,U) regarded as a nonequivariant spectrum indexed on
U# is R(e,U#)
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The first of these equalities allows us to specialize the map ζ to obtain a map of
E∞ ring G-spectra

(4.8) ζ : IU
UGR(e,UG) = I (UG, U)nI(UG,UG) R(G,UG) −→ R(G,U).

The second of these equalities allows us to identify the target of the underlying map
ζ# of nonequivariant spectra with R(e,U#).

Lemma 4.9. The map ζ# is an isomorphism of spectra.

Proof. Choose an isomorphism f : UG −→ U#. It is immediate that the composite

f∗R(e,UG)

∼= // IU#

UG R(e,UG)

ζ#
// R(e,U#)

coincides with the isomorphism ζ(f) of Lemma 4.4; here the unlabelled isomorphism
is given by the case G = e of Lemma 3.5. ¤

To pass to SG-algebras, we let R be the S-algebra S ∧L R(e,UG) and RG be the
SG-algebra SG ∧L R(G,U) (where L refers respectively to UG and to U). By [5,
2.4], we have an isomorphism of SG-algebras

IU
UGR ∼= SG ∧L IU

UGR(e,UG),

and this allows us to define an isomorphism of SG-algebras

(4.10) η = id∧ζ : IU
UGR −→ RG.

At this level of generality, we cannot expect to prove that α : i∗R −→ IU
UGR is an

equivalence of G-spectra, although it seems plausible that this holds in the examples
of interest. However, we can appeal to q-cofibrant approximation, as in Lemma 3.8,
to complete the proof of Theorem 1.3, thereby losing that η is an isomorphism in
order to make sure that α is an equivalence.
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