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Abstract. Working in the category T of based spaces, we give the basic
theory of diagram spaces and diagram spectra. These are functors D −→ T
for a suitable small topological category D . When D is symmetric monoidal,
there is a smash product that gives the category of D-spaces a symmetric
monoidal structure. Examples include
• Prespectra, as defined classically.
• Symmetric spectra, as defined by Jeff Smith.
• Orthogonal spectra, a coordinate free analogue of symmetric spectra with

symmetric groups replaced by orthogonal groups in the domain category.
• Γ-spaces, as defined by Graeme Segal.
• W -spaces, an analogue of Γ-spaces with finite sets replaced by finite CW

complexes in the domain category.
We construct and compare model structures on these categories. With the
caveat that Γ-spaces are always connective, these categories, and their simpli-
cial analogues, are Quillen equivalent and their associated homotopy categories
are equivalent to the classical stable homotopy category. Monoids in these cat-
egories are (strict) ring spectra. Often the subcategories of ring spectra, mod-
ule spectra over a ring spectrum, and commutative ring spectra are also model
categories. When this holds, the respective categories of ring and module spec-
tra are Quillen equivalent and thus have equivalent homotopy categories. This
allows interchangeable use of these categories in applications.
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A few years ago there were no constructions of the stable homotopy category
that began from a category of spectra with an associative and commutative smash
product. Now there are several very different such constructions. These allow many
new directions in stable homotopy theory, and they are being actively exploited by
many people. We refer the reader to papers on particular categories [10, 11, 15, 21,
22, 24, 35, 39] and to [30] for discussions of the history, philosophy, advantages and
disadvantages of the various approaches.

To avoid chaos, it is important to have comparison theorems relating the different
constructions, so that the working mathematician can choose whichever category is
most convenient for any particular application and can then transport the conclu-
sions to any other such modern category of spectra. This is one of several papers
that together show that all of the known approaches to highly structured ring and
module spectra are essentially equivalent.

Several of the new categories are constructed from “diagram categories”, by
which we understand categories of functors from some fixed category D to some
chosen ground category. We concentrate on such examples in this paper. In [36]
and [24], the approach to stable homotopy theory based on diagram categories is
compared to the approach based on classical spectra with additional structure of
[11]. The categories of diagram spectra to be studied here are displayed in the
following “Main Diagram”:
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We have the dictionary:
P is the category of N -spectra, or prespectra.

ΣS is the category of Σ-spectra, or symmetric spectra.
I S is the category of I -spectra, or orthogonal spectra.

FT is the category of F -spaces, or Γ-spaces.
W T is the category of W -spaces.
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As will be made precise, N is the category of non-negative integers, Σ is the
category of symmetric groups, I is the category of orthogonal groups, F is the
category of finite based sets, and W is the category of based spaces homeomorphic to
finite CW complexes. We often use D generically to denote such a domain category
for diagram spectra. When D = F or D = W , there is no distinction between D-
spaces and D-spectra, DT = DS . The functors U are forgetful functors, the
functors P are prolongation functors, and in each case P is left adjoint to U. All
of these categories except P are symmetric monoidal. The functors U between
symmetric monoidal categories are lax symmetric monoidal, the functors P between
symmetric monoidal categories are strong symmetric monoidal, and these functors P
and U restrict to adjoint pairs relating the various categories of rings, commutative
rings, and modules over rings.

Symmetric spectra were introduced by Smith, and their homotopy theory was
developed by Hovey, Shipley, and Smith [15]. Symmetric ring spectra were further
studied in [39] and [37]. Under the name of I∗-prespectra, orthogonal spectra
were defined by May [27, §5], but their serious study begins here. They are further
studied in [24]. Related but different notions defined in terms of I were introduced
for use in infinite loop space theory by Boardman and Vogt [5]. Under the name of
Γ-spaces, F -spaces were introduced by Segal [38], and their homotopy theory was
developed by Anderson [2] and Bousfield and Friedlander [7]. Under the name of
Gamma-rings, Lydakis [21] and Schwede [35] introduced and studied F -ring spaces.
A version of W -spaces was introduced by Anderson [3], and a simplicial analogue
of W -spaces has been studied by Lydakis [22]. There are few comparisons among
these categories in the literature.

We develop the formal theory of diagram spectra in Part I, deferring categori-
cal proofs and explanations to Part III. In particular, we explain the relationship
between diagram ring spectra and diagram FSP’s (functors with smash product)
there. Our model theoretic work is in the central Part II. We define and compare
model structures on categories of diagram spaces and on their categories of rings
and modules. The most highly structured and satisfactory kind of comparison be-
tween model categories is specified by the notion of a Quillen equivalence, and most
of our equivalences are of this form. The brief Appendix A records what we need
about this notion. Each Part has its own introduction.

We define “stable model structures” simultaneously on the categories of D-
spectra for D = N , Σ, I , and W . In the case of symmetric spectra, our model
structure is the same as that in the preprint version of [15]; the published version
restricts attention to symmetric spectra of simplicial sets. Although that work
inspired and provided a model for ours, our treatment of symmetric spectra is logi-
cally independent and makes no use of simplicial techniques. As one would expect,
the categories of symmetric spectra of spaces and symmetric spectra of simplicial
sets are Quillen equivalent; see §18.

Curiously, in all cases except that of symmetric spectra, whose homotopy theory
is intrinsically more subtle, the stable equivalences are just the π∗-isomorphisms,
namely the maps whose underlying maps of prespectra induce isomorphisms of
homotopy groups. Using these stable model structures, we prove the following
comparison theorem.

Theorem 0.1. The categories of N -spectra, symmetric spectra, orthogonal spec-
tra, and W -spaces are Quillen equivalent.
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In fact, we prove that the categories of N -spectra and orthogonal spectra are
Quillen equivalent and that the categories of symmetric spectra, orthogonal spectra,
and W -spaces are Quillen equivalent. These comparisons between N -spectra and
orthogonal spectra and between symmetric spectra and orthogonal spectra imply
that the categories of N -spectra and symmetric spectra are Quillen equivalent.
This reproves a result of Hovey, Shipley, and Smith [15, 4.2.5]. The new proof leads
to a new perspective on the stable equivalences of symmetric spectra.

Corollary 0.2. A map f of cofibrant symmetric spectra is a stable equivalence if
and only if Pf is a π∗-isomorphism of orthogonal spectra.

A similar characterization of the stable equivalences in terms of an interesting
endofunctor D on the category of symmetric spectra is given in [39, 3.1.2]. Gen-
eralizations of that functor gave the starting point for a now obsolete approach to
our comparison theorems; see [30].

Of course, the point of introducing categories of diagram spectra is to obtain
point-set level models for the classical stable homotopy category that are symmetric
monoidal under their smash product. On passage to homotopy categories, the
derived smash product must agree with the classical (naive) smash product of
prespectra. That is the content of the following addendum to Theorem 0.1.

Theorem 0.3. The equivalences of homotopy categories induced by the Quillen
equivalences of Theorem 0.1 preserve smash products.

Here again, we compare N -spectra and symmetric spectra to orthogonal spectra
and then deduce the comparison between N -spectra and symmetric spectra; a
partial result in this direction was given in [15, 4.2.16].

Following the model of [37], we prove that, when D = Σ, I , or W , the category
of D-ring spectra and the category of modules over a D-ring spectrum inherit
model structures from the underlying category of D-spectra. Using these model
structures, we obtain the following comparison theorems for categories of diagram
ring and module spectra.

Theorem 0.4. The categories of symmetric ring spectra, orthogonal ring spectra,
and W -ring spaces are Quillen equivalent model categories.

Theorem 0.5. For a cofibrant symmetric ring spectrum R, the categories of R-
modules and of PR-modules (of orthogonal spectra) are Quillen equivalent model
categories. For a cofibrant orthogonal ring spectrum R, the categories of R-modules
and of PR-modules (of W -spaces) are Quillen equivalent model categories.

Here and in the analogous Theorems 0.8 and 0.12 below, the cofibrancy hypoth-
esis results in no loss of generality (see Theorem 12.1).

Corollary 0.6. For an orthogonal ring spectrum R, the categories of R-modules
and of UR-modules (of symmetric spectra) are Quillen equivalent model categories.
For a W -ring spectrum R, the categories of R-modules and of UR-modules (of
orthogonal spectra) are Quillen equivalent model categories.

We would like the category of commutative D-ring spectra to inherit a model
structure from the underlying category of D-spectra. However, because the sphere
D-spectrum is cofibrant in the stable model structure, a familiar argument due to
Lewis [19] shows that this fails. In the context of symmetric spectra, Jeff Smith
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explained1 the mechanism of this failure: if the zeroth term of a symmetric spectrum
X is non-trivial, the symmetric powers of X do not behave well homotopically. As
Smith saw, one can get around this by replacing the stable model structure by a
Quillen equivalent “positive stable model structure”.

In fact, we have such positive stable model categories of D-spectra for all four of
the categories considered so far, and all of the results above work equally well start-
ing from these model structures. In the cases of symmetric and orthogonal spectra,
we show that the categories of commutative ring spectra inherit positive stable
model structures. The proof is closely analogous to the proof of the corresponding
result in the context of the S-modules of Elmendorf, Kriz, Mandell, and May [11,
VII§§3,5]. More generally, we show that the categories of modules, algebras and
commutative algebras over a commutative S-algebra R are model categories. With
these positive stable model structures, we prove the following comparison theorems.

Theorem 0.7. The categories of commutative symmetric ring spectra and commu-
tative orthogonal ring spectra are Quillen equivalent.

Theorem 0.8. Let R be a cofibrant commutative symmetric ring spectrum. The
categories of R-modules, R-algebras, and commutative R-algebras are Quillen equiv-
alent to the categories of PR-modules, PR-algebras, and commutative PR-algebras
(of orthogonal spectra).

Corollary 0.9. Let R be a commutative orthogonal ring spectrum. The categories
of R-modules, R-algebras, and commutative R-algebras are Quillen equivalent to
the categories of UR-modules, UR-algebras, and commutative UR-algebras (of sym-
metric spectra).

We do not know whether or not the category of commutative W -ring spaces
admits a model category structure; some of us suspect that it does not.

We now bring F -spaces into the picture. Most of the previous work with them
has been done simplicially. The category of F -spaces has a stable model structure,
and it is Quillen equivalent to the category of F -simplicial sets; see §18. Since
F -spaces only model connective (= (−1)-connected) prespectra and the category
of connective W -spaces is not a model category (it fails to have limits), we cannot
expect a Quillen equivalence between the categories of F -spaces and connective
W -spaces. However, we have nearly that much. A Quillen equivalence is a Quillen
adjoint pair that induces an equivalence of homotopy categories. We define a con-
nective Quillen equivalence to be a Quillen adjoint pair that induces an equivalence
between the respective homotopy categories of connective objects.

Theorem 0.10. The functors P and U between FT and W T are a connective
Quillen equivalence. The induced equivalence of homotopy categories preserves
smash products.

Theorem 0.11. The categories of F -ring spaces and W -ring spaces are connec-
tively Quillen equivalent.

Theorem 0.12. For a cofibrant F -ring space R, the categories of R-modules and
PR-modules are connectively Quillen equivalent.

Corollary 0.13. For a connective W -ring space R, the categories of R-modules
and UR-modules are connectively Quillen equivalent.

1Private communication
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The model structure on W -spaces relevant to the last four results is not the stable
model structure but rather a Quillen equivalent “absolute stable model structure”.
Lydakis [22] has studied a simplicial analogue of this model category, and we prove
that W T is Quillen equivalent to his category.

We do not know whether or not the homotopy categories of commutative F -ring
spaces and connective commutative W -ring spaces are equivalent. The following
remark provides a stopgap for the study of commutativity in these cases.

Remark 0.14. There is a definition of an action of an operad on a D-spectrum.
Restricting to an E∞ operad, this gives the notion of an E∞-D-ring spectrum.
See [30, §5]. It is an easy consequence of results in this paper (especially Lemma
15.5) that the homotopy categories of E∞ symmetric ring spectra and commutative
symmetric ring spectra are equivalent, as was first noted by Smith in the simplicial
context, and that the homotopy categories of E∞ orthogonal ring spectra and
commutative orthogonal ring spectra are equivalent. We do not know whether or
not the analogues for W -spaces and F -spaces hold, and here the homotopy theory
of E∞-rings seems more tractable than that of commutative rings. It is also an
easy consequence of the methods of this paper that the homotopy categories of E∞
symmetric ring spectra, E∞ orthogonal ring spectra, and E∞-W -ring spaces are
equivalent and that the homotopy categories of E∞-F -ring spaces and connective
E∞-W -ring spaces are equivalent.

Part I. Diagram spaces and diagram spectra

We introduce functor categories DT of D-spaces in §1. When D is symmetric
monoidal, so is DT . If R is a monoid in DT , we have a category DSR of R-
modules, or “D-spectra over R”. It is symmetric monoidal if R is commutative.
In §2, we define a new category DR such that the categories of DR-spaces and
D-spectra over R are isomorphic. This reduces the study of diagram spectra to a
special case of the conceptually simpler study of diagram spaces.

Our focus is on comparisons between such categories as D varies. In §3, we
consider adjoint forgetful and prolongation functors U : DT −→ C T and P :
C T −→ DT associated to a functor ι : C −→ D . The main point is to understand
the specialization of these functors to categories of diagram spectra.

Finally, in §4, we specialize to the examples that we are most interested in. For
particular domain categories D , we fix a canonical D-monoid S that is related to
spheres and obtain the category DS of D-spectra over S. It is symmetric monoidal
when S is commutative. This fails for N but holds for Σ, I , F , and W .

We have chosen to work with functors that take values in based spaces because
some of our motivating examples make little sense simplicially. However, everything
in Parts I and III can be adapted without difficulty to functors that take values in
the category of based simplicial sets. The simplicially minded reader may under-
stand “spaces” to mean “simplicial sets” and “continuous” to mean “simplicial”.
In fact, the categorical constructions apply verbatim to functors that take values
in any symmetric monoidal category that is tensored and cotensored over either
topological spaces or simplicial sets. Examples of such symmetric monoidal functor
categories arise in other fields, such as algebraic geometry.
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1. Categories of D-spaces

Spaces will mean compactly generated spaces (= weak Hausdorff k-spaces). One
reference is [32]; a thorough treatment is given in [18, App]. We let T denote the
resulting category of based spaces. All of our categories are topological, meaning
that they have spaces of morphisms and continuous composition. The category T
is a closed symmetric monoidal topological category under the smash product and
function space functors A ∧B and F (A,B); its unit is S0. We emphasize that the
internal hom spaces F (A,B) and the categorical hom spaces T (A,B) coincide.

Let D be a topological category. We assume that D is based, in the sense that
it has a given initial and terminal object ∗. Thus the space D(d, e) of maps d → e
is based with basepoint d → ∗ → e. When D is given as an unbased category, we
implicitly adjoin a base object ∗; in other words, we then understand D(d, e) to
mean the union of the unbased space of maps d → e in D and a disjoint basepoint.
The base object of T is a one-point space. By a functor between based categories,
we always understand a functor that carries base objects to base objects; that is,
we take this as part of our definition of “functor”. A functor F : D −→ D ′ between
topological categories is continuous if F : D(d, e) −→ D ′(Fd, Fe) is a continuous
map for all d and e.

Definition 1.1. A D-space is a continuous functor X : D −→ T . Let DT denote
the category of D-spaces and natural maps between them.

We think of a D-space as a diagram of spaces whose shape is specified by D .
The category DT is complete and cocomplete, with limits and colimits constructed
levelwise (one object at a time). It is also tensored and cotensored. For a D-space
X and based space A, the tensor X ∧ A is given by the levelwise smash product
and the cotensor F (A,X) is given by the levelwise function space. Thus

DT (X ∧A, Y ) ∼= T (A,DT (X, Y )) ∼= DT (X,F (A, Y )).(1.2)

We define homotopies between maps of D-spaces by use of the cylinders X ∧ I+.
Spaces and D-spaces are related by a system of adjoint pairs of functors.

Definition 1.3. For an object d of D , define the evaluation functor Evd : DT −→
T by EvdX = X(d) and define the shift desuspension functor Fd : T −→ DT by
(FdA)(e) = D(d, e) ∧A. The functors Fd and Evd are left and right adjoint,

DT (FdA,X) ∼= T (A,EvdX).(1.4)

Moreover, Evd is covariantly functorial in d and Fd is contravariantly functorial in
d. We write EvD

d and FD
d when necessary to avoid confusion.

Notation 1.5. We use the alternative notation d∗ = FdS
0. Thus d∗(e) = D(d, e)

and FdA = d∗ ∧A; d∗ is the D-space represented by the object d.

Recall that a skeleton skD of a category D is a full subcategory with one object
in each isomorphism class. The inclusion skD −→ D is an equivalence of categories.
When D is topological and has a small skeleton skD , DT is a topological category.
The set DT (X,Y ) of maps X −→ Y is the equalizer in the category of based spaces
displayed in the diagram

DT (X,Y ) // ∏
d F (X(d), Y (d))

µ̃ //

ν̃
//
∏

α:d→e F (X(d), Y (e)) ,
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where the products run over the objects and morphisms of skD . For f = (fd), the
αth component of µ̃(f) is Y (α) ◦ fd and the αth component of ν̃(f) is fe ◦X(α).
By a comparison of represented functors, this implies that any D-space X can be
written as the coend of the contravariant functor d∗ and the covariant functor X.

Lemma 1.6. Let D have a small skeleton skD and let X be a D-space. Then the
evaluation maps ε : d∗ ∧X(d) −→ X induce a natural isomorphism

∫ d∈skD

d∗ ∧X(d) −→ X.

Explicitly, X is isomorphic to the coequalizer of the parallel arrows in the diagram

∨
d,e e∗ ∧D(d, e) ∧X(d)

ε∧id //

id∧ε
//
∨

d d∗ ∧X(d) ε //X,

where the wedges run over pairs of objects and objects of skD and the parallel arrows
are wedges of smash products of identity and evaluation maps.

We will explain the by now quite standard proof of the following fundamental
result in §21, after fixing language about symmetric monoidal categories in §20. For
the rest of this section, let D be a skeletally small symmetric monoidal category
with unit u and product ¤.

Theorem 1.7. The category DT has a smash product ∧ and internal hom functor
F under which it is a closed symmetric monoidal category with unit u∗.

We often use the following addendum, which is also proven in §21.

Lemma 1.8. For objects d and e of D and based spaces A and B, there is a natural
isomorphism

FdA ∧ FeB −→ Fd�e(A ∧B).

Monoids and commutative monoids are defined in any symmetric monoidal cat-
egory, as are (right) R-modules M over monoids R: there is a map M ∧ R −→ R
such that the evident unit and associativity diagrams commute. The following def-
inition and proposition give a more direct and explicit description of R-modules.
The proof of the proposition is immediate from the definition of ∧ in §21.

Definition 1.9. Let R be a monoid in DT with unit λ and product φ. A D-
spectrum over R is a D-space X : D −→ T together with continuous maps σ :
X(d) ∧R(e) −→ X(d¤e), natural in d and e, such that the composite

X(d) ∼= X(d) ∧ S0 id∧λ // X(d) ∧R(u) σ // X(d¤u) ∼= X(d)

is the identity and the following diagram commutes:

X(d) ∧R(e) ∧R(f)

id∧φ

²²

σ∧id // X(d¤e) ∧R(f)

σ

²²
X(d) ∧R(e¤f)

σ
// X(d¤e¤f).

(Here and below, we suppress implicit use of the associativity isomorphisms for ∧
and ¤.) Let DSR denote the category of D-spectra over R.
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Proposition 1.10. Let R be a monoid in DT . The categories of R-modules and
of D-spectra over R are isomorphic.

We use R-modules and D-spectra over R interchangeably throughout. As we
will explain in §22, we can construct functors ∧R and FR exactly as in algebra, and
we have the following extension of Theorem 1.7.

Theorem 1.11. Let R be a commutative monoid in DT . Then the category DSR

of R-modules has a smash product ∧R and internal hom functor FR under which it
is a closed symmetric monoidal category with unit R.

For a commutative monoid R in DT , we define a (commutative) R-algebra to
be a (commutative) monoid in DSR. As we will also explain in §22, this notion is
equivalent to the more elementary notion of a (commutative) D-FSP over R.

2. An interpretation of diagram spectra as diagram spaces

Let D be symmetric monoidal and fix a monoid R : D −→ T in DT . We do
not require R to be commutative, although that is the case of greatest interest. We
reinterpret the category DSR of D-spectra over R, alias the category of right R-
modules, as the category DRT of DR-spaces, where DR is a category constructed
from D and R. If R is commutative, then DR is a symmetric monoidal category.
In this case, we can reinterpret the smash product ∧R of R-modules as the smash
product in the category of DR-spaces. This reduces the study of diagram spectra
to the study of diagram spaces.

Just as in algebra, for a D-space X, X ∧ R is the free R-module generated by
X. Recall the represented functors d∗ from Notations 1.5 and remember that they
behave contravariantly with respect to d.

Construction 2.1. We construct a category DR and a functor δ : D −→ DR.
When R is commutative, we construct a product ¤R on DR such that DR is a
symmetric monoidal category and δ is strong symmetric monoidal functor. The
objects of DR are the objects of D , and δ is the identity on objects. For objects d
and e of D , the space of morphisms d −→ e in DR is

DR(d, e) = DSR(e∗ ∧R, d∗ ∧R),

and composition is inherited from composition in DSR. Thus DR may be identified
with the full subcategory of DS op

R whose objects are the free R-modules d∗ ∧ R.
Observe that D(d, e) ∼= DT (e∗, d∗). We specify δ on morphisms by smashing maps
of D-spaces with R. When R is commutative, ¤R is defined on objects as the
product ¤ of D . Its unit object is the unit object u of D . The product f¤Rf ′ of
morphisms f : e∗ ∧R −→ d∗ ∧R and f ′ : e′∗ ∧R −→ d′∗ ∧R is

f ∧R f ′ : (e¤e′)∗∧R ∼= (e∗∧R)∧R (e′∗∧R) −→ (d∗∧R)∧R (d′∗∧R) ∼= (d¤d′)∗∧R;

the isomorphisms are implied by the isomorphisms (d¤e)∗ ∼= d∗ ∧ e∗ of Lemma 1.8.

We shall prove the following result in §23.

Theorem 2.2. Let R be a monoid in DT . Then the categories DSR of D-spectra
over R and DRT of DR-spaces are isomorphic. If R is commutative, then the
isomorphism DSR

∼= DRT is an isomorphism of symmetric monoidal categories.

Remark 2.3. If R = (uD)∗, then δ : D −→ DR is an identification. That is, as in
any symmetric monoidal category, D-spaces admit a unique structure of module
over the unit for the smash product.



10 M.A. MANDELL, J. P. MAY, S. SCHWEDE, AND B. SHIPLEY

3. Forgetful and prolongation functors

We wish to compare the categories DT as D varies. Thus let ι : C −→ D be a
continuous functor between (based) topological categories. In practice, ι is faithful.
We often regard it as an inclusion of categories and omit it from the notations.

Definition 3.1. Define the forgetful functor U : DT −→ C T on D-spaces Y by
letting (UY )(c) = Y (ιc).

The following result is standard category theory; we recall the proof in §23.

Proposition 3.2. If C is skeletally small, then U : DT −→ C T has a left adjoint
prolongation functor P : C T −→ DT . For an object c of C , PFcX is naturally
isomorphic to FιcX. If ι : C −→ D is fully faithful, then the unit η : Id −→ UP of
the adjunction is a natural isomorphism.

The isomorphism PFcX ∼= FιcX follows formally from the evident relation
EvcUY = Y (ιc) = EvιcY . The last statement means that, when ι is fully faithful,
P prolongs a C -space X to a D-space that restricts to X on C .

When D is skeletally small, U also has a right adjoint, but we shall make no
use of that fact. We are especially interested in the multiplicative properties of U
and P, and we prove the following basic result in §23. In the rest of this section,
let ι : C −→ D be a strong symmetric monoidal functor between skeletally small
symmetric monoidal categories.

Proposition 3.3. The functor P : C T −→ DT is strong symmetric monoidal.
The functor U : DT −→ C T is lax symmetric monoidal, but with u∗C ∼= Uu∗D . The
unit η : Id −→ UP and counit ε : PU −→ Id are monoidal natural transformations.

The notion of a monoidal natural transformation is recalled in Definition 20.3.
We use the categories DR to reduce comparisons of categories of diagram spectra

to comparisons of categories of diagram spaces. By Proposition 3.3, if R is a monoid
in DT , then UR is a monoid in C T , and UR is commutative if R is. We prove the
first two statements of the following result in §23. The last two statements then
follow from Propositions 3.2 and 3.3.

Proposition 3.4. If R is a monoid in DT , then ι : C −→ D extends to a functor
κ : CUR −→ DR. If R is commutative, then κ is strong symmetric monoidal.
Therefore, the forgetful functor U : DRT −→ CURT has a left adjoint prolongation
functor P : CURT −→ DRT . If R is commutative, then U is lax symmetric
monoidal and P is strong symmetric monoidal.

Using two observations of independent interest, we give an alternative description
of P that makes no use of the categories CUR and DR.

Proposition 3.5. Consider P : C T −→ DT . Let Q be a monoid in C T . Then
PQ is a monoid in DT , P restricts to a functor C SQ −→ DSPQ, and the adjunc-
tion (P,U) restricts to an adjunction

DSPQ(PT, Y ) ∼= C SQ(T,UY ).(3.6)

Proof. The first two statements are immediate from Proposition 3.3. For the last
statement, we must show that if X is a Q-module and Y is a PQ-module, then a
map f : PX −→ Y of D-spaces is a map of PQ-modules if and only if its adjoint
f̃ : X −→ UY is a map of Q-modules. The proof is a pair of diagram chases that
boil down to use of the fact that η and ε are monoidal natural transformations.
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Proposition 3.7. Let f : R −→ R′ be a map of monoids in DT . By pullback of
the action along f , an R′-module Y gives rise to an R-module f∗Y . By extension
of scalars, an R-module X gives rise to an R′-module X∧R R′. These functors give
an adjunction

DSR′(X ∧R R′, Y ) ∼= DSR(X, f∗Y ).

When R and R′ are commutative, the functor f∗ is lax symmetric monoidal and
the functor (−) ∧R R′ is strong symmetric monoidal.

Proof. The proof is formally the same as for extension of scalars in algebra.

Applying these results to Q = UR and the counit map ε : PUR −→ R, we obtain
the following proposition by the uniqueness of adjoints.

Proposition 3.8. Let R be a monoid in DT . Then P : CURT −→ DRT agrees
under the isomorphisms of its source and target with the composite of the functor
P : C SUR −→ DSPUR and the extension of scalars functor DSPUR −→ DSR.

4. Examples of diagram spectra

We now specialize the general abstract theory to the examples of interest in stable
homotopy theory. Here we change our point of view. So far, we have considered
general monoids R in DT , usually commutative. Now we focus on a particular,
canonical, choice, which we denote by S, or SD when necessary for clarity, to suggest
spheres. It is a faithful functor in all of our examples. In this context, we call S-
algebras D-ring spectra. These diagram ring spectra and their modules are our
main focus of interest.

We take Sn to be the one-point compactification of Rn; the one-point compact-
ification of {0} is S0, and it is convenient to let Sn = ∗ if n < 0. Similarly, for
a finite dimensional real inner product space V , we take SV to be the one-point
compactification of V . Our first example is elementary, but crucial to the theory.

Example 4.1 (Prespectra). Let N be the (unbased) category of non-negative in-
tegers, with only identity morphisms between them. The symmetric monoidal
structure is given by addition, with 0 as unit. An N -space is a sequence of based
spaces. The canonical functor S = SN sends n to Sn. It is strong monoidal, but it
is not symmetric since permutations of spheres are not identity maps. This is the
source of difficulty in defining the smash product in the stable homotopy category.
A prespectrum is an N -spectrum over S. Let P, or alternatively N S , denote
the category of prespectra. Since Sn is canonically isomorphic to the n-fold smash
power of S1, the category of prespectra defined in this way is isomorphic to the
usual category of prespectra, whose objects are sequences of based spaces Xn and
based maps ΣXn −→ Xn+1.

The shift desuspension functors to N -spectra are given by (FmA)n = A∧Sn−m.
The smash product of N -spaces (not N -spectra) is given by

(X ∧ Y )n =
n∨

p=0

Xp ∧ Yn−p.

The category NS such that an N -spectrum is an NS-space has morphism spaces

NS(m, n) = Sn−m.
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Because SN is not symmetric, the category of N -spectra does not have a smash
product that makes it a symmetric monoidal category. For all other D that we
consider, the functor SD is a strong symmetric monoidal embedding D −→ T .
Therefore the category of D-spectra over S is symmetric monoidal.

Example 4.2 (Symmetric spectra). Let Σ be the (unbased) category of finite sets
n = {1, . . . , n}, n ≥ 0, and their permutations; thus there are no maps m −→ n
for m 6= n, and the set of maps n → n is the symmetric group Σn. The symmetric
monoidal structure is given by concatenation of sets and block sum of permutations,
with 0 as unit. The canonical functor S = SΣ sends n to Sn. A symmetric spectrum
is a Σ-spectrum over S. Let ΣS denote the category of symmetric spectra. Define
a strong symmetric monoidal faithful functor ι : N −→ Σ by sending n to n
and observe that SN = SΣ ◦ ι. In effect, we have made SΣ symmetric by adding
permutations to the morphisms of N . The idea of doing this is due to Jeff Smith.

The shift desuspension functors to symmetric spectra are given by

(FmA)(n) = Σn+ ∧Σn−m
(A ∧ Sn−m).

The smash product of Σ-spaces is given by

(X ∧ Y )(n) ∼=
n∨

p=0

Σn+ ∧Σp×Σn−p X(p) ∧ Y (n− p)

as a Σn-space. Implicitly, we are considering the set of partitions of the set n. If
we were considering the category of all finite sets k, we could rewrite this as

(X ∧ Y )(k) =
∨

j⊂k

X(j) ∧ Y (k − j),

and this reinterpretation explains the associativity and commutativity of ∧. The
category ΣS such that a Σ-spectrum is a ΣS-space has morphism spaces

ΣS(m,n) = Σn+ ∧Σn−m Sn−m.

Example 4.3. The functor SΣ is the case A = S1 of the strong symmetric monoidal
functor SA : Σ −→ T that sends n to the n-fold smash power A(n) for a based space
A. Moreover, the SA give all strong symmetric monoidal functors Σ −→ T . Ap-
plied to SA, our theory constructs a symmetric monoidal category of “SA-modules”.
The homotopy theory of these categories is relevant to localization theory.

Example 4.4 (Orthogonal spectra). Let I be the (unbased) category of finite
dimensional real inner product spaces and linear isometric isomorphisms; there
are no maps V −→ W unless dim V = dim W = n for some n ≥ 0, when the
space of morphisms V −→ W is homeomorphic to the orthogonal group O(n).
The symmetric monoidal structure is given by direct sums, with {0} as unit. The
canonical functor S = SI sends V to SV . An orthogonal spectrum is an I -
spectrum over S. Let I S denote the category of orthogonal spectra. Define a
strong symmetric monoidal faithful functor ι : Σ −→ I by sending n to Rn and
using the standard inclusions Σn −→ O(n). Observe that SΣ = SI ◦ ι.

The shift desuspension functors to orthogonal spectra are given on W ⊃ V by

(FV A)(W ) = O(W )+ ∧O(W−V ) (A ∧ SW−V ),

where W − V is the orthogonal complement of V in W ; an analogous description
applies whenever dim W ≥ dim V , and (FV A)(W ) = ∗ if dim W < dim V . Note
that we can restrict attention to the skeleton {Rn} of I . For an inner product
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space V of dimension n, choose a subspace Vp of dimension p for each p ≤ n. The
smash product of I -spaces is given by

(X ∧ Y )(V ) ∼=
n∨

p=0

O(V )+ ∧O(Vp)×O(V−Vp) X(Vp) ∧ Y (V − Vp)

as an O(V )-space. This describes the topology correctly, but to see the associativity
and commutativity of ∧, we can rewrite this set-theoretically as

(X ∧ Y )(V ) =
∨

W⊂V

X(W ) ∧ Y (V −W ).

The category IS such that an I -spectrum is an IS-space has morphism spaces

IS(V, W ) = O(W )+ ∧O(W−V ) SW−V

for V ⊂ W .

This example admits several variants. For instance, we can use real vector spaces
and their isomorphisms, without insisting on inner product structures and isome-
tries, or we can use complex vector spaces.

Example 4.5. Let V have dimension n and let TO(V ) be the Thom space of
the tautological n-plane bundle over the Grassmannian of n-planes in V ⊕ V . As
observed in [28, §V.2], which gives many other examples, TO is a commutative
I -FSP (= I∗-prefunctor there). Therefore TO is a commutative S-algebra by
Proposition 22.6 below.

Our formal theory applies to examples like R = TO, but we focus on the canon-
ical functors SD .

Example 4.6 (W -spaces). It is tempting to take D = T , but that does not have
a small skeleton. Instead, we can take D to be the category W of based spaces
homeomorphic to finite CW complexes. The theory works equally well if we redefine
W in terms of countable rather than finite CW complexes or indeed in terms of
any sufficiently large but skeletally small full subcategory of T that is closed under
smash products. We have evident strong symmetric monoidal faithful functors
Σ −→ W and I −→ W under which SW restricts to SΣ and SI .

The shift desuspension functors to W -spaces are given by

(FAB)(C) = F (A,C) ∧B.

This example suggests an alternative way of viewing Σ and I .

Remark 4.7. It is sometimes convenient, and sometimes inconvenient, to change
point of view and think of the objects of Σ and I as the spheres Sn and SV ,
thus thinking of Σ and I as subcategories of W . With this point of view, ¤ is a
subfunctor of ∧ and S is the inclusion of a monoidal subcategory.

All of our examples so far are categories under N . However, our last example
is not of this type.

Example 4.8 (F -spaces = Γ-spaces). Let F be the category of finite based sets
n+ = {0, 1, . . . , n} and all based maps, where 0 is the basepoint. This is the
opposite of Segal’s category Γ [38]. This category is based with base object the one
point set 0+. Take ¤ to be the smash product of finite based sets; to be precise,
we order the non-zero elements of m+ ∧ n+ lexicographically. The unit object is
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1+. The canonical functor SF sends n+ to n+ regarded as a discrete based space;
it is the restriction to F of the functor SW .

In contrast to the cases of symmetric spectra and orthogonal spectra, the action
of SD required of D-spectra gives no additional data when D = F or D = W .
Moreover, since the functor F ⊂ W is fully faithful, P : FT −→ W T is a
“prolongation” in the strong sense described in Proposition 3.2.

Lemma 4.9. Let SD : D −→ T be an embedding of D as a full symmetric
monoidal subcategory of T . Then a D-space X admits a unique structure of D-
spectrum, and the categories of D-spaces and D-spectra are isomorphic. In partic-
ular, this applies to D = F and D = W .

Proof. This is an instance of Remark 2.3, but it is worthwhile to explain it explicitly.
Omit the embedding SD from the notation and write ∧ for ¤. For spaces A,B ∈ D ,
the action map σ : X(A) ∧B −→ X(A ∧B) is the adjoint of the composite

B
α−→ T (A,A ∧B) = D(A,A ∧B) X−→ T (X(A), X(A ∧B)),

where α(b)(a) = a ∧ b. The equality holds because D is a full subcategory of T ,
and X is continuous by our definition of a D-space.

Part II. Model categories of diagram spectra and their comparison

We give some preliminaries about “compactly generated” topological model cat-
egories in §5. We show in §6 that, for any domain category D , the category of
D-spaces has a “level model structure” in which the weak equivalences and fibra-
tions are the maps that evaluate to weak equivalences or fibrations at each object of
D . This structure has been studied in more detail by Piacenza [33], [29, Ch.VI] and
others. There is a relative variant in which we restrict attention to those objects in
some subcategory C of D .

In preparation for the study of stable model structures, we recall some homo-
topical facts about prespectra in §7; we use the terms “prespectrum” and “N -
spectrum” interchangeably, using the former when we are thinking in classical ho-
motopical terms and using the latter when thinking about the relationship with
other categories of diagram spectra.

We define and study “stable equivalences” in §8, and we give the categories of
N -spectra, symmetric spectra, orthogonal spectra, and W -spaces a “stable model
structure” in §9. The cofibrations are those of the level model structure relative to
N , and the weak equivalences are the stable equivalences. We give a single self-
contained proof of the model axioms that applies to all four of these categories. We
prove Theorem 0.1 and Corollary 0.2 in §10. We relate this theory to the classical
theory of CW prespectra and handicrafted smash products and prove Theorem 0.3
in §11.

In §12, we prove that the categories of symmetric spectra, orthogonal spectra,
and W -spaces satisfy the pushout-product and monoid axioms of [37]. This answers
the question of whether or not the monoid axiom holds for (topological) symmetric
spectra, which was posed in the preprint version of [15]. This implies that the
categories of D-ring spectra and of modules over a D-ring spectrum inherit model
structures from the underlying category of D-spectra in these cases. We prove
Theorems 0.4–0.6 in §13.
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We show in §14 that replacing the level model structure relative to N by the
relative model structure relative to N − {0} leads to a “positive stable model
structure” that is Quillen equivalent to the stable model structure but has fewer
cofibrations. Its cofibrant objects have trivial zeroth terms. In §15, we use these
model structures to construct model structures on the categories of commutative
symmetric ring spectra and commutative orthogonal ring spectra. We prove The-
orems 0.7 and 0.8 comparing these and related model categories in §16.

We return to W -spaces in §17. We prove that the category of W -spaces has a
second, “absolute”, stable model structure that also satisfies the pushout-product
and monoid axioms. In the first stable model structure, we start from the level
model structure relative to N . In the second, we start from the absolute level
model structure. The weak equivalences in both stable model structures are the
π∗-isomorphisms. The cofibrations in the absolute stable structure are the same as
those in the absolute level model structure, and there are more of them.

We prove Theorems 0.10–0.12 and Corollary 0.13 comparing F -spaces and W -
spaces in §18. The stable model category of F -spaces that we use is the one
studied in [35]. Its cofibrations are those of the level model structure and its
weak equivalences between cofibrant objects are the π∗-isomorphisms. It has fewer
cofibrations and more fibrations than the simplicial analogue that was originally
studied by Bousfield and Friedlander [7].

We compare diagram categories of spaces and diagram categories of simplicial
sets in §19. The comparison between F -spaces and F -simplicial sets is used in the
proofs of Theorems 0.10–0.12.

5. Preliminaries about topological model categories

We first construct model structures on categories of diagram spectra and then
use a general procedure to lift them to model structures on categories of struc-
tured diagram spectra. The weak equivalences and fibrations in the lifted model
structures are created in the underlying category of diagram spaces. That is, the
underlying diagram spectrum functor preserves and reflects the weak equivalences
and fibrations: a map of structured diagram spectra is a weak equivalence or fi-
bration if and only if its underlying map of diagram spectra is a weak equivalence
or fibration. We here describe the kind of model structures that we will encounter
and explain the lifting procedure.

While we have the example of diagram spectra in mind, the considerations of
this section apply more generally. Thus let C be any topologically complete and
cocomplete category with tensors denoted X∧A and homotopies defined in terms of
X∧I+. We let A be a topological category with a continuous and faithful forgetful
functor A −→ C . We assume that A is topologically complete and cocomplete.
This holds in all of the categories that occur in our work by the following pair of
results. The first is [11, VII.2.10] and the second is [11, I.7.2].

Proposition 5.1. Let C be a topologically complete and cocomplete category and
let T : C −→ C be a continuous monad that preserves reflexive coequalizers. Then
the category C [T] of T-algebras is topologically complete and cocomplete, with limits
created in C .

The hypothesis on T holds trivially when C is closed symmetric monoidal with
product ∧ and T is the monad TX = R ∧ X that defines left modules over some
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monoid R in C , since T : C −→ C is then a left adjoint. The following analogue is
more substantial.

Proposition 5.2. Let C be a cocomplete closed symmetric monoidal category.
Then the monads that define monoids and commutative monoids in C preserve
reflexive coequalizers.

As in [11], we write q-cofibration and q-fibration for model cofibrations and
fibrations, but we write cofibrant and fibrant rather than q-cofibrant and q-fibrant.
The (usually weaker) notion of an h-cofibration plays an important role in model
theory in topology. A map i : A −→ X in C is an h-cofibration if it satisfies the
Homotopy Extension Property (HEP) in C . That is, for every map f : X −→ Y and
homotopy h : A∧I+ −→ Y such that h0 = f◦i, there is a homotopy h̃ : X∧I+ −→ Y

such that h̃0 = f and h̃◦(i∧id) = h. The universal test case is the mapping cylinder
Y = Mi = X ∪i (A∧ I+), with the evident f and h, in which case h̃ is a retraction
X ∧ I+ −→ Mi.

In particular, an h-cofibration of D-spaces is a level h-cofibration and therefore
a level closed inclusion. For some purposes, we could just as well use level h-
cofibrations where we use h-cofibrations, but the stronger condition plays a key role
in some of our model theoretic work and is the most natural condition to verify. The
theory of cofibration sequences works in exactly the same way for h-cofibrations of
D-spaces as for h-cofibrations of based spaces; we will be more explicit later. The
various functors Evd, Fd, U and P defined in Part I all preserve colimits and smash
products with spaces. By the retract of mapping cylinders criterion, they also
preserve h-cofibrations. This elementary observation is crucial to our work, one
point being that right adjoints, such as U, do not preserve q-cofibrations.

Most work on model categories has been done simplicially rather than topolog-
ically. As observed in [11], it is convenient in topological contexts to require some
form of “Cofibration Hypothesis”. We shall incorporate this in our definition of
what it means for A to be a “compactly generated model category”.

Cofibration Hypothesis 5.3. Let I be a set of maps in A . We say that I satisfies
the Cofibration Hypothesis if it satisfies the following two conditions.

(i) Let i : A −→ B be a coproduct of maps in I. In any pushout

A //

i

²²

E

j

²²
B // F

in A , the cobase change j is an h-cofibration in C .
(ii) Viewed as an object of C , the colimit of a sequence of maps in A that are

h-cofibrations in C is their colimit as a sequence of maps in C .

We can use the maps in such a set I as the analogues of (cell, sphere) pairs
in the theory of cell complexes, and the following definition and result imply that
q-cofibrations are h-cofibrations in compactly generated model categories.

Definition 5.4. Let I be a set of maps in A . A map f : X −→ Y is a relative
I-cell complex if Y is the colimit of a sequence of maps Yn −→ Yn+1 such that
Y0 = X and Yn −→ Yn+1 is obtained by cobase change from a coproduct of maps
in I.
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Lemma 5.5. Let I satisfy the Cofibration Hypothesis. Then any retract of a rela-
tive I-cell complex is an h-cofibration in C .

We will define compactly generated model categories in terms of compact objects.

Definition 5.6. An object X of A is compact if

A (X, Y ) ∼= colim A (X, Yn)

whenever Y is the colimit of a sequence of maps Yn −→ Yn+1 in A that are h-
cofibrations in C .

Of course, for spaces, we understand compactness in the usual sense. Since
points are closed in compactly generated spaces, an elementary argument shows
that T (A, Y ) ∼= colim T (A, Yn) if A is compact and Y is the union of a sequence
of inclusions Yn −→ Yn+1.

Lemma 5.7. If A is a compact space, then FdA is a compact D-space. If X is a
compact D-space and A is a compact space, then X ∧ A is a compact D-space. If
Y ∪XZ is the pushout of a level closed inclusion i : X −→ Y and a map f : X −→ Z,
where X, Y , and Z are compact D-spaces, then Y ∪X Z is a compact D-space.

Proofs of the model axioms generally use some version of Quillen’s small object
argument [34, II, p.3.4]. The following version, details of a special case of which
are given in [11, VII.5.2], suffices for most of our work. Abbreviate RLP and LLP
for the right lifting property and left lifting property.

Lemma 5.8 (The small object argument). Let I be a set of maps of A such that
each map in I has compact domain and I satisfies the Cofibration Hypothesis. Then
maps f : X −→ Y in A factor functorially as composites

X
i // X ′ p // Y

such that p satisfies the RLP with respect to any map in I and i satisfies the LLP
with respect to any map that satisfies the RLP with respect to each map in I.
Moreover, i : X −→ X ′ is a relative I-cell complex.

This motivates the following definition.

Definition 5.9. Let A be a model category. We say that A is compactly generated
if there are sets I and J of maps in A such that the domain of each map in I and
each map in J is compact, I and J satisfy the Cofibration Hypothesis, the q-
fibrations are the maps that satisfy the RLP with respect to the maps in J and the
acyclic q-fibrations are the maps that satisfy the RLP with respect to the maps in
I. Note that the maps in I must be q-cofibrations and h-cofibrations and the maps
in J must be acyclic q-cofibrations and h-cofibrations. We call the maps in I the
generating q-cofibrations and the maps in J the generating acyclic q-cofibrations.

Remark 5.10. There is a definition in terms of transfinite colimits of what it means
for a set of maps to be small relative to a subcategory of A . The more general notion
of a cofibrantly generated model category A replaces the compactness condition with
the requirement that I be small relative to the q-cofibrations and J be small relative
to the acyclic q-cofibrations. See e.g. [13, §12.4] or [14, §2.1]. The Cofibration
Hypothesis does not appear in the model theoretic literature, but it is almost always
appropriate in topological settings.
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All of our model categories are “topological”, in the following sense. For maps
i : A −→ X and p : E −→ B in A , let

A (i∗, p∗) : A (X, E) −→ A (A,E)×A (A,B) A (X, B)(5.11)

be the map of spaces induced by A (i, id) and A (id, p) by passage to pullbacks.
Observe that the pair (i, p) has the lifting property if and only if A (i∗, p∗) is
surjective.

Definition 5.12. A model category A is topological provided that A (i∗, p∗) is a
Serre fibration if i is a q-cofibration and p is a q-fibration and is a weak equivalence
if, in addition, either i or p is a weak equivalence.

The following result on lifting model structures is immediate by inspection of the
proofs in [11, VII§5] or by combination of our version of the small object argument
with the proof of [37, 2.3] or [13, 14.3.2]. Of course, viewed as a functor C −→ C [T],
a monad T is the free functor left adjoint to the forgetful functor C [T] −→ C . Since
the forgetful functor preserves sequential colimits, T preserves compact objects.

Proposition 5.13. Let C be a topologically complete and cocomplete category and
let T : C −→ C be a continuous monad that preserves reflexive coequalizers. As-
sume that C is a compactly generated topological model category with generating
sets I of cofibrations and J of acyclic cofibrations. Then C [T] is a compactly gen-
erated topological model category with weak equivalences and fibrations created in C
and generating sets TI of cofibrations and TJ of acyclic cofibrations provided that

(i) TI and TJ satisfy the Cofibration Hypothesis and
(ii) every relative TJ-cell complex is a weak equivalence.

We need two pairs of analogues of the maps A (i∗, p∗). For a map i : A −→ B
of based spaces and a map j : X −→ Y in A , passage to pushouts gives a map

i¤j : (A ∧ Y ) ∪A∧X (B ∧X) −→ B ∧ Y(5.14)

and passage to pullbacks gives a map

F�(i, j) : F (B, X) −→ F (A,X)×F (A,Y ) F (B, Y ),(5.15)

where ∧ and F denote the tensor and cotensor in A .
Inspection of definitions gives adjunctions relating (5.11), (5.14) and (5.15). For-

mally, these imply that the category of maps in A is tensored and cotensored over
the category of maps in T .

Lemma 5.16. Let i : A −→ B be a map of based spaces and let j : X −→ Y and
p : E −→ F be maps in A . Then there are natural isomorphisms of maps

A ((i¤j)∗, p∗) ∼= T (i∗, A (j∗, p∗)∗) ∼= A (j∗, F�(i, p)).

Therefore (i¤j, p) has the lifting property in A if and only if (i, A (j∗, p∗)) has the
lifting property in T .

Now assume that A is a closed symmetric monoidal category with product ∧A

and internal function objects FA . For maps i : X −→ Y and j : W −→ Z in A ,
passage to pushouts gives a map

i¤j : (Y ∧A W ) ∪X∧A W (X ∧A Z) −→ Y ∧A Z,(5.17)

and passage to pullbacks gives a map

F�(i, j) : FA (Y, W ) −→ FA (X, W )×FA (X,Z) FA (Y, Z).(5.18)
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For maps i, j, and k in A , these are related by a natural isomorphism of maps

A ((i¤j)∗, k∗) ∼= A (i∗, F�(j, k)∗).(5.19)

6. The level model structure on D-spaces

We give the category of D-spaces a “level model structure”. We shall be brief,
since this material is well-known. An exposition that makes clear just how close this
theory is to CW-theory in the category of spaces has been given by Piacenza [33],
[29, Ch. VI]. Since the category DSR of D-spectra over a monoid R is isomorphic
to the category of DR-spaces, the category DSR obtains a level model structure
by specialization. Recall that DR has the same objects as D . We assume that D
is skeletally small and fix a skeleton skD .

Definition 6.1. We define five properties of maps f : X −→ Y of D-spaces.

(i) f is a level equivalence if each f(d) : X(d) −→ Y (d) is a weak equivalence.
(ii) f is a level fibration if each f(d) : X(d) −→ Y (d) is a Serre fibration.
(iii) f is a level acyclic fibration if it is both a level equivalence and a level fibration.
(iv) f is a q-cofibration if it satisfies the LLP with respect to the level acyclic

fibrations.
(v) f is a level acyclic q-cofibration if it is both a level equivalence and a q-

cofibration.

Of course, there is also a notion of a level cofibration, defined as in Definition
6.1(ii), but we shall make no use of it.

Definition 6.2. Let I be the set of h-cofibrations Sn−1
+ −→ Dn

+, n ≥ 0 (interpreted
as ∗ −→ S0 when n = 0). Let J be the set of h-cofibrations i0 : Dn

+ −→ (Dn × I)+
and observe that each such map is the inclusion of a deformation retract. Define
FI to be the set of all maps Fdi with d ∈ skD and i ∈ I. Define FJ to be the
set of all maps Fdj with d ∈ skD and j ∈ J , and observe that each map in FJ is
the inclusion of a deformation retract. Note that the domains and codomains of all
maps in FI and FJ are compact.

We recall the following result of Quillen [34, II§3]; see also [14, Ch.2§2.4]. Recall
that a model category is left proper if a pushout of a weak equivalence along a
q-cofibration is a weak equivalence, right proper if a pullback of a weak equivalence
along a q-fibration is a weak equivalence, and proper if it is left and right proper.
All of our model categories are right proper, and many of them are proper.

Proposition 6.3. T is a compactly generated proper topological model category
with respect to the weak equivalences, Serre fibrations, and retracts of relative I-cell
complexes. The sets I and J are the generating q-cofibrations and the generating
acyclic q-cofibrations.

Note that every space is fibrant. The model structure requires use of all based
spaces, but weak equivalences only behave well with respect to standard construc-
tions when we restrict to spaces with nondegenerate basepoints, meaning that the
inclusion of the basepoint is an unbased h-cofibration. Recall that a based h-
cofibration between nondegenerately based spaces is an unbased h-cofibration (sat-
isfies the HEP in unbased spaces) [40, Prop. 9].
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Definition 6.4. The category D is nondegenerately based if each of its morphism
spaces is nondegenerately based. For any D , a D-space X is nondegenerately based
if each X(d) is nondegenerately based.

All of the categories D that we consider are nondegenerately based.

Theorem 6.5. The category of D-spaces is a compactly generated topological model
category with respect to the level equivalences, level fibrations, and q-cofibrations.
It is right proper, and it is left proper if D is nondegenerately based. The sets FI
and FJ are the generating q-cofibrations and generating acyclic q-cofibrations, and
the following identifications hold.

(i) The level fibrations are the maps that satisfy the RLP with respect to FJ
or, equivalently, with respect to retracts of relative FJ-cell complexes, and all
D-spaces are level fibrant.

(ii) The level acyclic fibrations are the maps that satisfy the RLP with respect to
FI or, equivalently, with respect to retracts of relative FI-cell complexes.

(iii) The q-cofibrations are the retracts of relative FI-cell complexes.
(iv) The level acyclic q-cofibrations are the retracts of relative FJ-cell complexes.
(v) If D is nondegenerately based, then any cofibrant D-space is nondegenerately

based.

Proof. The only model axioms that are not obvious from the definitions are the
lifting property that is not given by the definition of a q-cofibration and the two
factorization properties. The latter are obtained by applying the small object ar-
gument of Lemma 5.8 to FJ and FI. The detailed statement of that lemma and
adjunction arguments show that (i) through (iv) follow from their space level ana-
logues; (ii) and (iii) give the remaining lifting property; see e.g. [14, 5.1.3].

To show that DT is topological, we must show that if i : A −→ X is a q-
cofibration and p : E −→ B is a level fibration, then the map DT (i∗, p∗) of (5.11)
is a Serre fibration which is a weak equivalence if i or p is a level equivalence. As
in [34, SM7(a), p. II.2.3] or [14, 4.2.5], this reduces to showing that DT (i∗, p∗) is a
Serre fibration when i is in FI and an acyclic Serre fibration when i is in FJ . By
adjunction, these conclusions follow from their space level analogues.

Right properness also follows directly from its space level analogue. To show
that DT is left proper, we must show that the pushout of a level equivalence along
a q-cofibration is a level equivalence. The functors Fd : T −→ DT preserve h-
cofibrations. Since D is nondegenerately based, FdA is nondegenerately based for
any based CW complex A. Moreover, wedges of nondegenerately based spaces are
nondegenerately based. Thus a relative FI-cell complex i : X −→ Y is obtained
by passage to pushouts and sequential colimits from based maps that are unbased
h-cofibrations. Although X need not be nondegenerately based, i is a level unbased
h-cofibration since pushouts and sequential colimits of unbased h-cofibrations are
unbased h-cofibrations. Therefore any q-cofibration is a level unbased h-cofibration.
The conclusion follows from the space level analogue that the pushout of a weak
equivalence along an unbased h-cofibration is a weak equivalence. Part (v) also
follows from this discussion.

Now assume for a moment that D and therefore DT are symmetric monoidal
categories. We then have the following observation about the maps i¤j of (5.17).

Lemma 6.6. If i and j are q-cofibrations, then i¤j is a q-cofibration which is
level acyclic if either i or j is level acyclic. In particular, if Y is cofibrant, then
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i ∧ id : A ∧ Y −→ X ∧ Y is a q-cofibration, and the smash product of cofibrant
D-spaces is cofibrant.

Proof. Writing in : Sn−1
+ −→ Dn

+, Lemma 1.8 implies that

Fdim¤Fein ∼= Fd�e(im+n).

From here, an easy formal argument using the adjunction (5.19) and the defining
lifting property of q-cofibrations gives that i¤j is a q-cofibration; see [15, 5.3.4].
The acyclicity in the first statement follows by adjointness arguments from the fact
that DT is topological; compare [34, p. II.2.3].

Remark 6.7. The monoid axiom of [37] would require that any map obtained by
cobase change and composition from maps of the form i∧Y , where i is a level acyclic
q-cofibration and Y is arbitrary, be a level equivalence. Without nondegenerate
basepoint hypotheses, this fails in general. Nevertheless, we shall later prove the
monoid axiom for some of our stable model structures.

Let Ho`DT denote the homotopy category obtained from the level model struc-
ture. Let [X, Y ] denote the set of maps X −→ Y in Ho`DT and π(X,Y ) denote
the set of homotopy classes of maps X −→ Y . Then [X,Y ] ∼= π(ΓX, Y ), where
ΓX −→ X is a cofibrant approximation of X. Piacenza [33] has shown that we can
refine the notion of an FI-cell complex to the notion of an FI-CW complex, just
as for based spaces. The cellular approximation theorem holds and any cofibrant
D-space is homotopy equivalent to an FI-CW complex. Similarly, fiber and cofiber
sequences of D-spaces behave the same way as for based spaces, starting from the
usual definitions of homotopy cofibers and fibers.

Definition 6.8. Let f : X −→ Y be a map of D-spaces. The homotopy cofiber
Cf = Y ∪f CX of f is the pushout along f of the cone h-cofibration i : X −→ CX;
here CX = X ∧ I, where I has basepoint 1. The homotopy fiber Ff = X ×f PY of
f is the pullback along f of the path fibration p : PY −→ Y ; here PY = F (I, Y ),
where I has basepoint 0. Equivalently, these are the levelwise homotopy cofiber
and fiber of f .

We record the following basic properties of the level homotopy category. They
are elementary precursors of more sophisticated analogues that appear later.

Theorem 6.9. Assume that D is nondegenerately based.

(i) Let A be a based CW complex. If X is a nondegenerately based D-space, then
X ∧A is nondegenerately based and

[X ∧A, Y ] ∼= [X,F (A, Y )]

for any Y . If f : X −→ Y is a level equivalence of nondegenerately based
D-spaces, then f ∧ id : X ∧A −→ Y ∧A is a level equivalence.

(ii) For nondegenerately based D-spaces Xi,
∨

i Xi is nondegenerately based and

[
∨

i

Xi, Y ] ∼=
∏

i

[Xi, Y ]

for any Y . A wedge of level equivalences of nondegenerately based D-spaces
is a level equivalence.
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(iii) If i : A −→ X is an h-cofibration and f : A −→ Y is any map of D-spaces,
where A, X, and Y are nondegenerately based, then X∪AY is nondegenerately
based and the cobase change j : Y −→ X ∪A Y is an h-cofibration. If i is a
level equivalence, then j is a level equivalence.

(iv) If i and i′ are h-cofibrations and the vertical arrows are level equivalences in
the following commutative diagram of nondegenerately based D-spaces, then
the induced map of pushouts is a level equivalence.

X

²²

A

²²

ioo // Y

²²
X ′ A′

i′
oo // Y ′

(v) If X is the colimit of a sequence of h-cofibrations in : Xn −→ Xn+1 of non-
degenerately based D-spaces, then X is nondegenerately based and there is a
lim1 exact sequence of pointed sets

∗ −→ lim1[ΣXn, Y ] −→ [X, Y ] −→ lim[Xn, Y ] −→ ∗

for any Y . If each in is a level equivalence, then the map from the initial term
X0 into X is a level equivalence.

(vi) Let f : X −→ Y be a map of nondegenerately based D-spaces. Then Cf is
nondegenerately based and, for any Z, there is a long exact sequence

· · · −→ [Σn+1X, Z] −→ [ΣnCf, Z] −→ [ΣnY,Z] −→ [ΣnX, Z] −→ · · · −→ [X, Z].

Proof. The statements about level equivalences are immediate from their analogues
for weak equivalences of based spaces. Using Theorem 6.5(v), the statements about
[−, Y ] follow by first passing to cofibrant approximations and then applying the
analogue with [−, Y ] replaced by π(−, Y ). The latter results are proven exactly
as on the space level. For example, by the naturality of the space level argument,
cofiber sequences give rise to long exact sequences upon application of the functor
π(−, Y ). The essential point is that if i : A −→ X is an h-cofibration, then
the canonical map Ci −→ X/A is a homotopy equivalence. Again, in (v), X is
homotopy equivalent to the telescope of the Xn, and there results a lim1 exact
sequence for the computation of π(X,Y ).

We shall need several relative variants of the absolute level model structure that
we have been discussing.

Variant 6.10. Let C be a subcategory of D . We define the level model structure
relative to C on the category of D-spaces by restricting attention to those levels
in C . That is, we define the level equivalences and level fibrations relative to C
to be those maps of D-spaces that are level equivalences or level fibrations when
regarded as maps of C -spaces. We restrict to maps Fc(−) with c ∈ C when defining
the generating q-cofibrations and generating acyclic q-cofibrations. The proofs of
the model axioms and of all other results in this section go through equally well in
the relative context. Clearly, when C contains all objects of a skeleton of D , the
relative level model structure coincides with the absolute level model structure.
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7. Preliminaries about π∗-isomorphisms of prespectra

We record some results about homotopy groups and π∗-isomorphisms of pre-
spectra that are needed in our study of stable model structures. Recall that we
are using the terms prespectrum and N -spectrum interchangeably. We are follow-
ing [4, 11, 20] in calling a sequence of spaces Xn and maps σ : ΣXn −→ Xn+1

a “prespectrum”, reserving the term “spectrum” for a prespectrum whose adjoint
structure maps σ̃ : Xn −→ ΩXn+1 are homeomorphisms. However, we make no use
of such spectra in this paper. In fact, the following remark shows that, in a sense,
the theory of such spectra is disjoint from the present theory of diagram spectra.

Remark 7.1. If the underlying prespectrum of a symmetric spectrum X is a spec-
trum, then X is trivial, and similarly for orthogonal spectra and W -spaces. Indeed,
the iterated adjoint structure map X(n) −→ Ω2X(n + 2) takes image in the sub-
space of points fixed under the conjugation action of Σ2, where Σ2 acts on S2 by
permuting coordinates and acts on X(n + 2) through the embedding of Σ2 in Σn+2

as the subgroup fixing the first n coordinates. This is a proper subspace unless
Ω2X(n + 2) is a point.

Definition 7.2. The homotopy groups of a prespectrum X are defined by

πq(X) = colim πq+n(Xn).

A map of prespectra is called a π∗-isomorphism if it induces an isomorphism on ho-
motopy groups. A prespectrum X is an Ω-spectrum (more logically, Ω-prespectrum)
if its adjoint structure maps σ̃ : Xn −→ ΩXn+1 are weak equivalences.

The following observation is trivial, but important.

Lemma 7.3. A level equivalence of prespectra is a π∗-isomorphism. A π∗-isomor-
phism between Ω-spectra is a level equivalence.

The following results are significantly stronger technically than their analogues
in the previous section in that no hypotheses about nondegenerate basepoints are
required. There is no contradiction since the suspension prespectrum functor does
not convert weak equivalences of spaces to π∗-isomorphisms of prespectra in general.

Theorem 7.4. (i) If f : X −→ Y is a π∗-isomorphism of prespectra and A is a
based CW complex, then f ∧ id : X ∧A −→ Y ∧A is a π∗-isomorphism.

(i′) A map of prespectra is a π∗-isomorphism if and only if its suspension is a
π∗-isomorphism, and the natural map η : X −→ ΩΣX is a π∗-isomorphism
for all prespectra X.

(ii) The homotopy groups of a wedge of prespectra are the direct sums of the
homotopy groups of the wedge summands, hence a wedge of π∗-isomorphisms
of prespectra is a π∗-isomorphism.

(iii) If i : A −→ X is an h-cofibration and a π∗-isomorphism of prespectra and
f : A −→ Y is any map of prespectra, then the cobase change j : Y −→ X∪AY
is a π∗-isomorphism.

(iv) If i and i′ are h-cofibrations and the vertical arrows are π∗-isomorphisms in
the comparison of pushouts diagram of Theorem 6.9(iv), then the induced map
of pushouts is a π∗-isomorphism.

(v) If X is the colimit of a sequence of h-cofibrations Xn −→ Xn+1, each of
which is a π∗-isomorphism, then the map from the initial term X0 into X is
a π∗-isomorphism.
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(vi) For any map f : X −→ Y of prespectra, there are natural long exact sequences

· · · −→ πq(Ff) −→ πq(X) −→ πq(Y ) −→ πq−1(Ff) −→ · · · ,

· · · −→ πq(X) −→ πq(Y ) −→ πq(Cf) −→ πq−1(X) −→ · · · ,

and the natural map η : Ff −→ ΩCf is a π∗-isomorphism.

Proof. This is standard but hard to find in the literature in this generality. We
sketch the proofs. Part (i′) is clear since an inspection of colimits shows that πq(X)
is naturally isomorphic to πq+1(ΣX), with the isomorphism realized by η∗. Part
(v) is also clear. The first long exact sequence of (vi) results by passage to colimits
from the level long exact sequences of homotopy groups. For the second, we see
from (i′) that it suffices to prove the exactness of πq(X) −→ πq(Y ) −→ πq(Cf), and
this composite is clearly zero. For an element α in the kernel of πq(Y ) −→ πq(Cf),
we may represent α by a map g : Sn+q −→ Yn with n large enough that there
is a null homotopy h : CSn+q −→ Cfn. We then compare the cofiber sequences
starting with the inclusions Sn+q −→ CSn+q and Yn −→ Cfn to obtain a map
k : Sq+n+1 −→ ΣXn such that Σfn ◦ k is homotopic to Σg. The map k represents
a preimage of α. See e.g. [20, III.2.1] or [11, I.3.4] for details of the spectrum
level argument. The last statement in (vi) follows from the last statement of (i′)
by comparing the two long exact sequences in (vi); see e.g. [20, p. 130]. For finite
wedges, (ii) holds by inductive use of split cofiber sequences, and passage to colimits
gives the general case. Part (iii) holds by a comparison of cofiber sequences, and
part (iv) follows from (vi) and a diagram chase; see e.g. [11, I.3.5]. Part (i) follows
from (ii), (iv), and (v).

8. Stable equivalences of D-spectra

In this section and the next, let D be a nondegenerately based symmetric
monoidal domain category with a faithful strong symmetric monoidal functor ι :
N −→ D and a sphere D-monoid S = SD that restricts along ι to the sphere
prespectrum SN . We think of ι as an inclusion of categories. We let DS be
the category of D-spectra over S, or right S-modules in DT . We are thinking of
N S , ΣS , I S , and W T , but there are surely other examples of interest. We
have strong symmetric monoidal inclusions of categories

N ⊂ Σ ⊂ I ⊂ W(8.1)

that send n to n, n to Rn and Rn to Sn. The sphere spectra for the smaller
categories are the restrictions of the sphere spectra for the larger categories. To
mesh notations, we write n for its image in any of the D , and we let Fn = FD

n

denote the left adjoint to the nth space evaluation functor Evn; for a D-spectrum
X, we write X(n) = EvnX = Xn interchangeably.

Convention 8.2. Until §17, we understand the level model structure on D-spectra
to mean the level model structure relative to N , as defined in Variant 6.10. Since
N contains all of the objects of a skeleton of Σ or I , this is the same as the
absolute level model structure in all cases above except the case of W -spaces. We
let [X, Y ] denote the set of maps X −→ Y in the homotopy category with respect
to the level model structure relative to N . Recall that all of the results of §6 apply
to this relative model structure.

Definition 8.3. Consider D-spectra E and maps of D-spectra f : X −→ Y .
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(i) E is a D-Ω-spectrum if UX is an Ω-spectrum.
(ii) f is a π∗-isomorphism if Uf is a π∗-isomorphism.
(iii) f is a stable equivalence if f∗ : [Y, E] −→ [X, E] is a bijection for all D-Ω-

spectra E.

Observe that a level equivalence is a stable equivalence. Certain stable equiva-
lences play a central role in the theory.

Definition 8.4. Define λn : Fn+1S
1 −→ FnS0 to be the map adjoint to the canon-

ical inclusion S1 −→ (FnS0)n+1, namely η : S1 = (FN
n S0)n+1 −→ (FD

n S0)n+1.

Lemma 8.5. For any D-spectrum X,

λ∗n : DS (FnS0, X) −→ DS (Fn+1S
1, X)

coincides with σ̃ : Xn −→ ΩXn+1 under the canonical homeomorphisms

Xn = T (S0, Xn) ∼= DS (FnS0, X)

and
ΩXn+1 = T (S1, Xn+1) ∼= DS (Fn+1S

1, X).

Proof. With X = FnS0, σ̃ may be identified with a map

σ̃ : DS (FnS0, FnS0) −→ DS (Fn+1S
1, FnS0),

and λn : Fn+1S
1 −→ FnS0 is the image of the identity map under σ̃.

The following lemma is crucial. Because of it, the homotopy theory of symmetric
spectra is significantly different, and considerably less intuitive at first sight, than
the homotopy theories of N -spectra, orthogonal spectra, and W -spaces.

Lemma 8.6. In all cases, the maps λn are stable equivalences. In P, I S , and
W T , the λn are π∗-isomorphisms. In ΣS , the λn are not π∗-isomorphisms.

Proof. The first statement is immediate from Lemma 8.5 and the definition of a
stable equivalence. We prove that the λn are or are not π∗-isomorphisms separately
in the four cases. Let Sn = ∗ if n < 0.

N -spectra. Here (FnA)(q) = A∧Sq−n. Thus FnA is essentially a reindexing of the
suspension N -spectrum of A. The map λn(q) is the identity unless q = n, when it
is the inclusion ∗ −→ S0. Thus λn is a π∗-isomorphism.

Orthogonal spectra. We have

(FnA)(q) = O(q)+ ∧O(q−n) A ∧ Sq−n.

For q ≥ n + 1, λn(q) is the canonical quotient map

O(q)+ ∧O(q−n−1) S1 ∧ Sq−n−1 = O(q)+ ∧O(q−n−1) Sq−n −→ O(q)+ ∧O(q−n) Sq−n.

By Theorem 7.4(i′), it suffices to prove that the map Σnλn is a π∗-isomorphism,
and (Σnλn)(q) takes the form

O(q)+ ∧O(q−n−1) Sq −→ O(q)+ ∧O(q−n) Sq.

Since O(q) acts on Sq, this is isomorphic to the map

π ∧ id : O(q)/O(q − n− 1)+ ∧ Sq −→ O(q)/O(q − n)+ ∧ Sq,

where π is the evident quotient map. This map is (2q − n − 1)-connected, hence
Σnλn is a π∗-isomorphism.
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Symmetric spectra. The description of the maps λn is the same as for orthogonal
spectra, except that orthogonal groups are replaced by symmetric groups. However,
in contrast to the quotients O(q)/O(q − n), the quotients Σq/Σq−n do not become
highly connected as q increases. In fact, π∗(FnSn), n ≥ 1, is the sum of countably
many copies of the stable homotopy groups of S0; compare [15, 3.1.10].

W -spaces. The qth map of λn can be identified with the evaluation map

ΣΩ(ΩnSq) −→ ΩnSq.

Applying πq+r and passing to colimits over q, these maps induce an isomorphism
with target the stable homotopy groups of spheres, reindexed by n.

We shall prove the following result at the end of the next section.

Proposition 8.7. A map of N -spectra, orthogonal spectra, or W -spaces is a π∗-
isomorphism if and only if it is a stable equivalence.

For this reason, there is no need to mention stable equivalences when setting up
the stable model structures in P, I S and W T : everything can be done more
simply in terms of π∗-isomorphisms. At the price of introducing an unnecessary
additional level of complexity in these cases, we have chosen to work with stable
equivalences in order to give a uniform general treatment. As suggested by Lemma
8.6, the forward implication of Proposition 8.7 does hold in all cases.

Proposition 8.8. A π∗-isomorphism in DS is a stable equivalence.

Proof. Following the analogous argument in [15], define RX = FS(F1S
1, X), where

FS is the function D-spectrum functor. Since FnSn is isomorphic to the nth
smash power of F1S

1, by Lemma 1.8, the n-fold iterate RnX is isomorphic to
FS(FnSn, X). The map λ = λ1 : F1S

1 −→ F0S
0 = S induces a map λ∗ : X −→ RX

and thus a map Rnλ∗ : RnX −→ Rn+1X. Define QX to be the homotopy colimit
(or telescope) of the RnX and let ι : X −→ QX be the natural map. The defining
adjunctions of the functors FS and Fn, together with the isomorphism

FmA ∧S FnB ∼= Fm+n(A ∧B)

for based spaces A and B, imply that

T (A,EvmFS(FnSn, X)) ∼= T (A, ΩnX(m + n)).

Therefore (RnX)(m) ∼= ΩnX(m + n). Since λ corresponds to σ̃ under adjunction,
a quick inspection of colimits shows that

πq((QX)(m)) ∼= πq−m(X).

Nevertheless, QX need not be a D-Ω-spectrum in general. However, if E is a D-
Ω-spectrum, then λ∗ : E −→ RE is a level equivalence, hence so is ι : E −→ QE,
and QE is a D-Ω-spectrum. Moreover, ι∗ : [X, E] −→ [X,QE] is an isomorphism
for any X. By the naturality of ι, ι∗ is the composite of Q : [X,E] −→ [QX, QE]
and ι∗ : [QX,QE] −→ [X, QE]. Since [QX, E] ∼= [QX,QE], this shows that
[X,E] is naturally a retract of [QX,E]. If f : X −→ Y is a π∗-isomorphism, then
Qf : QX −→ QY is a level equivalence. Thus f∗ : [Y, E] −→ [X,E] is a retract of
the isomorphism (Qf)∗ : [QY, E] −→ [QX,E] and is therefore an isomorphism.

The proof has the following useful corollary.
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Corollary 8.9. If E is a D-Ω-spectrum, then E′ = FS(F1S
0, E) is a D-Ω-spectrum

such that E is level equivalent to ΩE′ (which is isomorphic to RE).

Colimits, h-fibrations, smash products with spaces, and fiber and cofiber se-
quences are preserved by U, since they are specified in terms of levelwise construc-
tions. This implies the following result about the π∗-isomorphisms of D-spectra.

Proposition 8.10. Lemma 7.3 and Theorem 7.4 hold with P replaced by DS .

We have the following analogues of these results for stable equivalences.

Lemma 8.11. A stable equivalence between D-Ω-spectra is a level equivalence.

Proof. This is formal. If f : E −→ E′ is a stable equivalence of D-Ω-spectra,
then f∗ : [E′, E] −→ [E, E] is an isomorphism. A map g : E′ −→ E such that
g ◦f = f∗g = id is an inverse isomorphism to f in the level homotopy category.

Theorem 8.12. (i) If f : X −→ Y is a stable equivalence of D-spectra and A is
a based CW complex, then f ∧ id : X ∧A −→ Y ∧A is a stable equivalence.

(i′) A map of D-spectra is a stable equivalence if and only if its suspension is a
stable equivalence.

(ii) A wedge of stable equivalences of D-spectra is a stable equivalence.
(iii) If i : A −→ X is an h-cofibration and stable equivalence of D-spectra and

f : A −→ Y is any map of D-spectra, then the cobase change j : Y −→ X∪AY
is a stable equivalence.

(iv) If i and i′ are h-cofibrations and the vertical arrows are stable equivalences
in the comparison of pushouts diagram of Theorem 6.9(iv), then the induced
map of pushouts is a stable equivalence.

(v) If X is the colimit of a sequence of h-cofibrations Xn −→ Xn+1, each of
which is a stable equivalence, then the map from the initial term X0 into X
is a stable equivalence.

(vi) If f : X −→ Y is a map of D-spectra and E is an Ω-spectrum, there are
natural long exact sequences

· · · −→ [ΣX, E] −→ [Cf,E] −→ [Y,E] −→ [X, E] −→ [ΩCf, E] −→ · · · ,

· · · −→ [ΣX,E] −→ [ΣFf,E] −→ [Y, E] −→ [X,E] −→ [Ff, E] −→ · · · .

Proof. Under nondegenerate basepoint hypotheses, most of these results follow di-
rectly from the elementary results about the level homotopy category in Theorem
6.9. To obtain them in full generality, we make use of Proposition 8.8 and the re-
sults on π∗-isomorphisms of Theorem 7.4. Cofibrant D-spectra are nondegenerately
based by Theorem 6.5(v), and cofibrant approximations of general D-spectra are
level equivalences, hence π∗-isomorphisms, hence stable equivalences. Thus we can
first use cofibrant approximation and Theorem 7.4 to reduce each statement to a
statement about cofibrant D-spectra and then quote Theorem 6.9. The upshot is
that statements about [X,Y ] that hold for nondegenerately based X and general
Y also hold for general X and D-Ω-spectra Y .

For (i), we see from Theorems 6.9(i) and 7.4(ii) that [X ∧ A, E] is naturally
isomorphic to [X, F (A, E)] when E is a D-Ω-spectrum, in which case F (A, E) is
also a D-Ω-spectrum. Thus f ∧ id is a stable equivalence. For (i′), Theorems 6.9(i)
and 7.4(i′) imply that [ΣX,E] ∼= [X, ΩE] for all X when E is an Ω-spectrum, and
(i′) follows in view of Corollary 8.9. Similarly, Theorems 6.9(ii) and 7.4(ii) imply
that the functor [−, E] converts wedges to products when E is an Ω-spectrum, and
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this implies (ii). Again, (vi) follows from Theorems 6.9(vi) and 7.4(vi). We use (vi)
to prove (iii) and (iv).

For (iii), cofibrant approximation gives a commutative diagram

X ′

²²

A′

²²

i′oo f ′ // Y ′

²²
X A

i
oo

f
// Y

in which X ′, A′, and Y ′ are cofibrant, the vertical arrows are level acyclic fibrations,
and the maps i′ and f ′ are h-cofibrations. By Theorem 7.4(iv), the induced map
of pushouts is a π∗-isomorphism and thus a stable equivalence. By the diagram, i′

is a stable equivalence, and it suffices to prove that the cobase change j′ : Y ′ −→
X ′ ∪A′ Y ′ is a stable equivalence. Thus we may assume without loss of generality
that the given A, X, and Y are cofibrant. We first deduce from the cofiber sequence
A −→ X −→ X/A that [X/A,E] = 0. Since X ∪A Y/Y ∼= X/A, we then deduce
that [Y, E] −→ [X ∪A Y, E] is a bijection.

For (iv), we apply cofibrant approximation to the diagram of Theorem 6.9(iv) to
see that we may assume without loss of generality that it is a diagram of cofibrant
D-spectra. A comparison of cofiber sequences gives that X/A −→ X ′/A′ is a
stable equivalence, and then another comparison of cofiber sequences gives that
X ∪A Y −→ X ′ ∪A′ Y ′ is a stable equivalence.

For (v), we apply cofibrant approximation to obtain a sequence of h-cofibrations
jn : Yn −→ Yn+1 between cofibrant D-spectra together with level acyclic fibrations
pn : Yn −→ Xn such that pn+1 ◦ jn = in ◦ pn. Since the in and pn are stable
equivalences, so are the jn. Let Y = colimYn. The map p : Y −→ X induced by
the pn is a level equivalence, and the lim1-exact sequence of Theorem 6.9(v) implies
that [Y, E] −→ [Y0, E] and thus [X, E] −→ [X0, E] are isomorphisms.

9. The stable model structure on D-spectra

We retain the hypotheses on D given at the start of §8. Definition 6.1 specifies
the level equivalences, level fibrations, level acyclic fibrations, q-cofibrations, and
level acyclic q-cofibrations in DS . Definition 8.3 specifies the stable equivalences.
The class of stable equivalences is closed under retracts and is saturated (satisfies
the two out of three property for composites).

Definition 9.1. Let f : X −→ Y be a map of D-spectra.
(i) f is an acyclic q-cofibration if it is a stable equivalence and a q-cofibration.
(ii) f is a q-fibration if it satisfies the RLP with respect to the acyclic q-cofibrations.
(iii) f is an acyclic q-fibration if it is a stable equivalence and a q-fibration.

We shall prove the following result. In outline, its proof follows that of Hovey,
Shipley, and Smith [15] for symmetric spectra of simplicial sets, but there are
significant differences of detail.

Theorem 9.2. The category DS is a compactly generated proper topological model
category with respect to the stable equivalences, q-fibrations, and q-cofibrations.

The set of generating q-cofibrations is the set FI specified in Definition 6.2. The
set K of generating acyclic q-cofibrations properly contains the set FJ specified
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there. The idea is that level equivalences and stable equivalences coincide on D-Ω-
spectra, by Lemma 8.11, and the model structure is arranged so that the fibrant
spectra turn out to be exactly the D-Ω-spectra. We add enough generating acyclic
q-cofibrations to FJ to ensure that the RLP with respect to the K-cell complexes
forces the adjoint structure maps of fibrant spectra to be weak equivalences. Recall
the maps λn from Definition 8.4 and the operation ¤ from (5.14).

Definition 9.3. Let Mλn be the mapping cylinder of λn. Then λn factors as the
composite of a q-cofibration kn : Fn+1S

1 −→ Mλn and a deformation retraction
rn : Mλn −→ FnS0. For n ≥ 0, let Kn be the set of maps of the form kn¤i, i ∈ I.
Let K be the union of FJ and the sets Kn for n ≥ 0.

We need a characterization of the maps that satisfy the RLP with respect to K.
The following definition is not quite standard, but is convenient for our purposes.

Definition 9.4. A commutative diagram of based spaces

D
g //

p

²²

E

q

²²
A

f
// B

in which p and q are Serre fibrations is a homotopy pullback if the induced map
D −→ A×B E is a weak equivalence or, equivalently, if g : p−1(a) −→ q−1(f(a)) is
a weak equivalence for all a ∈ A.

Proposition 9.5. A map p : E −→ B satisfies the RLP with respect to K if and
only if p is a level fibration and the diagram

En
σ̃ //

pn

²²

ΩEn+1

Ωpn+1

²²
Bn

σ̃
// ΩBn+1

(9.6)

is a homotopy pullback for each n ≥ 0.

Proof. Clearly p satisfies the RLP with respect to K if and only if p satisfies the
RLP with respect to FJ and the Kn for n ≥ 0. The maps that satisfy the RLP
with respect to FJ are the level fibrations. Thus assume that p is a level fibration
in the rest of the proof. By the definition of Kn, p has the RLP with respect
to Kn if and only if p has the RLP with respect to kn¤I. By Lemma 5.16, this
holds if and only if DS (k∗n, p∗) has the RLP with respect to I, which means that
DS (k∗n, p∗) is an acyclic Serre fibration. Since kn is a q-cofibration and p is a
level fibration, DS (k∗n, p∗) is a Serre fibration because the level model structure
is topological. We conclude that p satisfies the RLP with respect to K if and
only if p is a level fibration and DS (k∗n, p∗) is a weak equivalence for n ≥ 0. Let
jn : FnS0 −→ Mλn be the evident homotopy inverse of rn : Mλn −→ FnS0. Then
DS (k∗n, p∗) ' DS ((jnλn)∗, p∗). This is a weak equivalence if and only if

DS (λ∗n, p∗) : DS (FnS0, E) −→ DS (FnS0, B)×DS (Fn+1S1,B) DS (Fn+1S
1, E))

is a weak equivalence. But this is isomorphic to the map

En −→ Bn ×ΩBn+1 ΩEn+1
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and is thus a weak equivalence if and only if (9.6) is a homotopy pullback.

Corollary 9.7. The trivial map F −→ ∗ satisfies the RLP with respect to K if
and only if F is a D-Ω-spectrum.

Corollary 9.8. If p : E −→ B is a stable equivalence that satisfies the RLP with
respect to K, then p is a level acyclic fibration.

Proof. Certainly p : E −→ B is a level fibration. We must prove that p is a level
equivalence. Let F = p−1(∗) be the fiber (defined levelwise) over the basepoint.
Since F −→ ∗ is a pullback of p, it satisfies the RLP with respect to K and is
therefore a D-Ω-spectrum. Since p is acyclic, so is F −→ ∗. Therefore, by Lemma
8.11, F is level acyclic. By the level long exact sequences, each pn : En −→ Bn

induces an isomorphism of homotopy groups in positive degrees. To deal with
π0, observe that, in the homotopy pullback (9.6), the map Ωpn+1 depends only on
basepoint components and is a weak equivalence. Therefore pn is a weak equivalence
as required.

The q-cofibrations are the same for the stable as for the level model structure.
The essential part of the proof of the model axioms for the stable model structure
is to characterize the acyclic q-cofibrations, the q-fibrations, and the acyclic q-
fibrations. Observe that the small object argument applies to K since the domains
of the maps in K are compact by Lemma 5.7.

Proposition 9.9. Let f : X −→ Y be a map in DS .
(i) f is an acyclic q-cofibration if and only if it is a retract of a relative K-cell

complex.
(iii) f is a q-fibration if and only if it satisfies the RLP with respect to K, and X

is fibrant if and only if it is a D-Ω-spectrum.
(iii) f is an acyclic q-fibration if and only if it is a level acyclic fibration.

Proof. (i) Let f be a retract of a relative K-cell complex. Since the maps in K
are acyclic q-cofibrations, f is an acyclic q-cofibration by the closure properties
of the class of q-cofibrations given by the level model structure and the closure
properties of the class of stable equivalences given by Theorem 8.12. Conversely,
let f : X −→ Y be an acyclic q-cofibration. Using the small object argument,
factor f as the composite of a relative K-cell complex i : X −→ X ′ and a map
p : X ′ −→ Y that satisfies the RLP with respect to K. We have just seen that i is
a stable equivalence. Since f is a stable equivalence, so is p. By Corollary 9.8, p
is a level acyclic fibration. Since f is a q-cofibration, it has the LLP with respect
to p. Now a standard retract argument applies. There is a map g : Y −→ X ′ such
that g ◦ f = i and p ◦ g = id. Thus g and p are maps under X and f is a retract of
the relative K-cell complex i.
(ii) Since f satisfies the RLP with respect to K if and only if it satisfies the RLP
with respect to all retracts of relative K-cell complexes, this follows from (i) and
the definition of a q-fibration.
(iii). By the level model structure, a map is a level acyclic fibration if and only if it
satisfies the RLP with respect to the q-cofibrations, and this implies trivially that
it is a q-fibration. Thus, since a level equivalence is a stable equivalence, a level
acyclic fibration is an acyclic q-fibration. Conversely, an acyclic q-fibration satisfies
the RLP with respect to K, by (ii), and is therefore a level acyclic fibration by
Corollary 9.8.
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The proof that DS is a model category. The definition of a q-fibration gives one
of the lifting axioms. The identification of the acyclic q-fibrations as the level
acyclic fibrations gives the other lifting axiom and the factorization of a map as a
composite of a q-cofibration and an acyclic q-fibration, via the level model structure.
It remains to prove that a map f : X −→ Y factors as the composite of an acyclic q-
cofibration and a q-fibration. Applying the small object argument to K, we obtain
a factorization of f as the composite of a relative K-cell complex i : X −→ X ′ and
a map p : X ′ −→ Y that satisfies the RLP with respect to K. By the previous
proposition, i is an acyclic q-cofibration and p is a q-fibration.

The proof that DS is topological. Let i : A −→ X be a q-cofibration and p : E −→
B be a q-fibration. Since p is a level fibration, the map

DS (i∗, p∗) : DS (X,E) −→ DS (A,E)×DS (A,B) DS (X, B)

is a Serre fibration because the level model structure is topological. Similarly, if p
is acyclic, then p is level acyclic and DS (i∗, p∗) is a weak equivalence. We must
show that DS (i∗, p∗) is a weak equivalence if i is acyclic, and it suffices to show
this when i ∈ K. If i ∈ FJ , this again holds by the result for the level model
structure. Thus suppose that i ∈ kn¤I, say i = kn¤j. We have seen in the proof
of Proposition 9.5 that DS (k∗n, p∗) is a weak equivalence. Thus, since T is a
topological model category, T (j∗, DS (k∗n, p∗)∗) is a weak equivalence. By Lemma
5.16, this implies that DS (i∗, p∗) is a weak equivalence.

The proof that DS is proper. Since q-cofibrations are h-cofibrations and q-fibra-
tions are level fibrations, the following lemma generalizes the claim.

Lemma 9.10. Consider the following commutative diagram:

A
f //

i

²²

B

j

²²
X g

// Y.

(i) If the diagram is a pushout in which i is an h-cofibration and f is a stable
equivalence, then g is a stable equivalence.

(ii) If the diagram is a pullback in which j is a level fibration and g is a stable
equivalence, then f is a stable equivalence.

Proof. (i) The induced map X/A −→ Y/B is an isomorphism. We compare the
cofibration sequences [−, E] of Theorem 8.12(vi) for the cofibration sequences A −→
X −→ X/A and B −→ Y −→ Y/B and apply the five lemma. (ii) Dually, the
induced map from the fiber of i to the fiber of j is an isomorphism. We compare
fibration sequences using Theorem 8.12(vi).

We have left one unfinished piece of business from the previous section.

The proof of Proposition 8.7. By Proposition 8.8, we need only show that a stable
equivalence f in DS is a π∗-isomorphism when DS is P, I S , or W T . Factor
f as the composite of an acyclic q-cofibration and an acyclic q-fibration. Since an
acyclic q-fibration is a level acyclic fibration, it is a level equivalence and therefore
a π∗-isomorphim. We must show that an acyclic q-cofibration is a π∗-isomorphism.
We first show that the maps in K are π∗-isomorphisms. The maps in FJ are
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inclusions of deformation retracts and are therefore π∗-isomorphisms. The maps
kn¤i with i ∈ FI specified in Definition 9.3 are also π∗-isomorphisms. Indeed,
by Lemma 8.6, the maps λn and therefore the maps kn are π∗-isomorphisms. By
Theorem 7.4(i), so are their smash products with based CW complexes. By passage
to pushouts and a little diagram chase, this implies that the maps kn¤i are π∗-
isomorphisms. By Theorem 7.4, it follows that any relative K-cell complex is a
π∗-isomorphism. Since the acyclic q-cofibrations are the retracts of the relative
K-cell complexes, the conclusion follows.

In fact, we now see that, in our development of the stable model structure on
DS in these three cases, we can start out by defining the weak equivalences to
be either the stable equivalences or the π∗-isomorphisms. We arrive at the same
acyclic q-cofibrations and acyclic q-fibrations either way.

10. Comparisons among P, ΣS , I S , and W T

We now turn to the proofs that our various adjoint pairs are Quillen equivalences.
Write U : DS −→ C S generically for the forgetful functor associated to any of
the inclusions C ⊂ D of (8.1); the alert reader will notice that the arguments apply
more generally. As noted in Proposition 3.2, for each of the inclusions C ⊂ D , we
have P ◦ FC

n
∼= FD

n .
The characterizations of the q-fibrations and acyclic q-fibrations given by Propo-

sitions 9.5 and 9.9 directly imply the following lemma. Recall Definition A.1.

Lemma 10.1. Each forgetful functor U : DS −→ C S preserves q-fibrations and
acyclic q-fibrations. Therefore each (P,U) is a Quillen adjoint pair.

We wish to apply Lemma A.2(iii) to demonstrate that these pairs are Quillen
equivalences. For that, we need to know that U creates the stable equivalences
in its domain category. This is false for U : ΣS −→ P because the λn are sta-
ble equivalences of symmetric spectra but the Uλn are not stable equivalences (=
π∗-isomorphisms) of N -spectra. This makes a direct proof of the Quillen equiva-
lence between N -spectra and symmetric spectra fairly difficult; compare [15, §4].
However, this is the only case in which the condition fails.

Lemma 10.2. The forgetful functors

U : I S −→ P, U : I S −→ ΣS , and U : W T −→ I S

and their composites create the stable equivalences in their domain categories.

Proof. This is immediate in the first and third case, since there the stable equiva-
lences coincide with the π∗-isomorphisms in both the domain and codomain cate-
gories. To prove that U : I S −→ ΣS creates the weak equivalences of orthogonal
spectra, let f : X −→ Y be a map of orthogonal spectra such that Uf is a stable
equivalence and let f ′ : X ′ −→ Y ′ be a fibrant approximation of f . Then Uf ′ is a
stable equivalence between symmetric Ω-spectra and thus a π∗-isomorphism, and
it follows that f is a π∗-isomorphism.

Thus U : DS −→ C S creates the stable equivalences in DS whenever the
stable equivalences and π∗-isomorphisms coincide in DS . In these cases, we also
have the following result about the unit η : Id −→ UP of the adjunction.
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Lemma 10.3. Consider U : DS −→ C S and P : C S −→ DS . If the stable
equivalences and π∗-isomorphisms coincide in DS , then η : X −→ UPX is a stable
equivalence for all cofibrant C -spectra X.

Proof. Since the functors P and U preserve colimits, h-cofibrations, and smash
products with based spaces and since cofibrant C -spectra are retracts of FI-cell
C -spectra, we see from Theorem 8.12 that it suffices to prove the result when
X = FnSn, n ≥ 0. Let γC

n : FC
n Sn −→ FC

0 S0 be adjoint to the identity map
Sn −→ Sn = (F0S

0)(n). Then γC
n is the composite of the maps Σmλm, 0 ≤

m < n. These maps are stable equivalences by Lemma 8.6; moreover, with C
replaced by D , they are π∗-isomorphisms. Since U preserves π∗-isomorphisms and
π∗-isomorphisms in C S are stable equivalences, the conclusion follows from the
commutative diagram

FC
n Sn

γC
n //

η

²²

FC
0 S0 = SC

η

²²
UFD

n Sn

UγD
n

// UFD
0 S0 = SC ,

in which the right arrow η is an isomorphism.

Theorem 10.4. The categories of N -spectra and orthogonal spectra, of symmetric
spectra and orthogonal spectra, and of orthogonal spectra and W -spaces are Quillen
equivalent.

Proof. This is immediate from Lemmas A.2(iii), 10.1, 10.2, and 10.3.

Corollary 10.5. The categories of N -spectra and symmetric spectra are Quillen
equivalent.

Proof. We have the following pair of adjoint pairs:

P
P // ΣS

P //
U

oo I S .
U

oo

The composite pair (PP,UU) and the second pair (P,U) are Quillen equivalences.
By Lemma A.2, so is the first pair (P,U).

Proof of Corollary 0.2. The result asserts that a map f : X −→ Y of cofibrant
symmetric spectra is a stable equivalence if and only if Pf is a π∗-isomorphism of
orthogonal spectra. By the naturality of η, Lemma 10.3 implies that f is a stable
equivalence if and only if UPf is a stable equivalence. Since U creates the stable
equivalences of orthogonal spectra, this gives the conclusion.

We now turn to the proof of Theorem 0.3, which asserts that our induced equiv-
alences of homotopy categories preserve smash products. In the comparisons that
do not involve P, P is strong symmetric monoidal and the conclusion is formal
(see Lemma A.3). Of course, since the equivalence of homotopy categories induced
by P preserves smash products, so does the inverse equivalence induced by U. We
bring prespectra into the picture and complete the proof in the next section.
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11. CW prespectra and handicrafted smash products

For historical continuity, we bring the abstract theory down to earth by relating
it to the classical theory of CW prespectra and handicrafted smash products, due
to Boardman [4] and Adams [1].

Classically, a CW prespectrum is a sequence of based CW complexes Xn and
isomorphisms from ΣXn onto a subcomplex of Xn+1; we may regard these iso-
morphisms as inclusions of subcomplexes. We have another such notion, which
actually applies equally well to D-spectra for D = N , Σ, I , or W . We define a
CW D-spectrum to be an FI-cell complex whose cells are attached only to cells of
lower dimension, where we define the dimension of a cell FnDm

+ to be m − n. Of
course, a CW D-spectrum is cofibrant. The following description of N -spectra,
which is implied by Lemma 1.6, makes it easy to compare these two notions. Recall
that, for a based space A, (FnA)q = A ∧ Sq−n, where Sm = ∗ if m < 0. The map
λn : Fn+1ΣA −→ FnA is the adjoint of the identity map ΣA −→ (FnA)n+1. For
an N -spectrum X, let X〈n〉 be the evident N -spectrum such that

X〈n〉q =
{

Xq if q ≤ n
Σq−nXn if q > n

and observe that X〈0〉 = F0X0.

Lemma 11.1. An N -spectrum X is isomorphic to the colimit of the right vertical
arrows in the inductively constructed pushout diagrams

Fn+1ΣXn
λn //

Fn+1σn

²²

FnXn
// X〈n〉

²²
Fn+1Xn+1

// X〈n + 1〉.

(11.2)

Lemma 11.3. A CW prespectrum X is a CW N -spectrum and is thus cofibrant.

Proof. For a CW complex A, FnA is easily checked to be a CW N -spectrum,
naturally in cellular maps of A; moreover, λn : Fn+1ΣA −→ FnA is cellular. Just
as for spaces, a base change of a cellular inclusion of CW N -spectra along a cellular
map is a cellular inclusion of CW N -spectra, and a colimit of cellular inclusions of
CW N -spectra is a CW N -spectrum.

As is made precise in the following lemma, the converse holds up to homotopy.

Lemma 11.4. If X is a cofibrant N -spectrum, then the Xn have the homotopy
types of CW complexes and the σn : ΣXn −→ Xn+1 are h-cofibrations. If X is any
prespectrum such that the Xn have the homotopy types of CW complexes and the
σn are h-cofibrations, then X has the homotopy type of a CW prespectrum.

Proof. The first statement is a direct levelwise inspection of definitions when X
is an FI-cell N -spectrum, and the general case follows. The second statement is
classical, but we give a proof in our context. Since the maps Fn+1σn in (11.2) are
h-cofibrations, so are the right vertical arrows in (11.2). Therefore the colimit X
is homotopy equivalent to the corresponding telescope. We can construct based
CW complexes Yn, homotopy equivalences fn : Yn −→ Xn, and isomorphisms
onto subcomplexes τn : ΣYn −→ Yn+1 such that σnΣ ◦ fn ' fn+1 ◦ τn. Then
Y ∼= colim Y 〈n〉 is a CW prespectrum, and Y ' telY 〈n〉 ' tel X〈n〉.
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This implies the following observation, which is unexpected from a model theo-
retic point of view.

Proposition 11.5. Let X be a cofibrant D-spectrum, where D = Σ, I , or W .
Then the underlying prespectrum UX has the homotopy type of a CW prespectrum
and thus of a cofibrant N -spectrum.

Proof. For a finite CW complex A, the spaces (FD
mA)n have the homotopy types of

CW complexes. Therefore, for an FI-cell spectrum X and thus for any cofibrant
D-spectrum X, each Xn has the homotopy type of a CW complex. The conclusion
follows from Lemma 11.4.

We now fix a choice of a naive or “handicrafted” smash product of prespectra.

Definition 11.6. Define the (naive) smash product of prespectra X and Y by

(X ∧ Y )2n = Xn ∧ Yn and (X ∧ Y )2n+1 = Σ(Xn ∧ Yn),

with the evident structure maps.

Proposition 11.7. For any cofibrant prespectrum X, the functor X ∧ Y of Y
preserves π∗-isomorphisms.

Proof. Each Xn has the homotopy type of a CW complex, hence each functor
Xn ∧ Y preserves π∗-isomorphisms by Theorem 7.4(i). The groups π∗(X ∧ Y ) are

πq(X ∧ Y ) ∼= colimn π2n+q(Xn ∧ Yn)
∼= colimm,n πm+n+q(Xm ∧ Yn)
∼= colimm colimn πm+n+q(Xm ∧ Yn)
= colimm πm+q(Xm ∧ Y ),

and the conclusion follows.

We must explain the relationship between the naive smash product and the
smash product of D-spectra for D = Σ, I , and W . The definition of the latter
given in §21 implies that there are canonical maps Xm ∧ Yn −→ (X ∧S Y )m+n.
These maps for m = n and the structure maps Σ(X ∧S Y )2n −→ (X ∧S Y )2n+1 of
the prespectrum U(X ∧S Y ) specify maps

φq : (UX ∧ UY )q −→ U(X ∧S Y )q.(11.8)

As would also be true for any other choice of handicrafted smash product of prespec-
tra, these maps do not form a map of prespectra, due to permutations of spheres.
However, there are natural homotopies φq+1σq ' σqΣφq. That is, φ is a “weak
map” of prespectra. This is the kind of map that appears in the classical represen-
tation of homology and cohomology theories on spaces. The homotopy groups of
prespectra are functorial with respect to weak maps, and the φ behave as follows.

Proposition 11.9. Let D = I or D = W . For a cofibrant D-spectrum X and any
D-spectrum Y , φ : UX ∧ UY −→ U(X ∧S Y ) is a π∗-isomorphism. The analogue
for symmetric spectra is false.

Proof. We shall prove in Proposition 12.3 below that the functor X ∧S Y of Y
preserves π∗-isomorphisms. Applying this to a cofibrant approximation of Y and
using Propositions 11.7 and 11.5, we see that we may assume that both X and Y
are cofibrant. Passing to retracts, we see that we may assume that X and Y are FI-
cell complexes. By double induction and passage to suspensions, wedges, pushouts,
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and colimits, it suffices to prove the result when X = FD
mS0 and Y = FD

n S0. Here
X ∧S Y ∼= FD

m+nS0 by Lemma 1.8 and FD ∼= PFP . We have an evident weak map

φ : FP
m S0 ∧ FP

n S0 −→ FP
m+nS0

that sends Sq−m ∧ Sq−n to S2q−m−n at level 2q and is a π∗-isomorphism. Again,
it is due to permutations of spheres that this is only a weak map. The following
diagram of weak maps of prespectra commutes:

FP
m S0 ∧ FP

n S0
φ //

η∧η

²²

FP
m+nS0

η

²²
UPFP

m S0 ∧ UPFP
n S0

φ
// UPFP

m+nS0.

The maps η and therefore η ∧ η are π∗-isomorphisms, by Lemma 10.3 and Proposi-
tion 11.7, hence the bottom map φ is a π∗-isomorphism. In the case of symmetric
spectra, this argument does not apply and, by inspection of definitions as in Lemma
8.6, the source and target of the bottom map φ have different homotopy groups.

Proof of Theorem 0.3. The maps φ of (11.8) together with the natural homotopies
φq+1σq ' σqΣφq prescribe what May and Thomason call a “preternatural trans-
formation” [31, A.1]. They observe [31, A.2] (see also [20, I.7.6]) that use of the
“cylinder construction” K gives a natural commutative diagram of weak maps

K(U(X) ∧ U(Y ))

ψ

²²

Kφ // KU(X ∧S Y )

ψ

²²
U(X) ∧ U(Y )

φ
// U(X ∧S Y )

in which the ψ are natural π∗-isomorphisms of prespectra and Kφ is a natural
map of prespectra. When D = I or D = W , φ is a π∗-isomorphism, hence so is
Kφ. On passage to homotopy categories, we can invert ψ and conclude that the
equivalence induced by U : DS −→ P preserves smash products. Because the
equivalence induced by U : I S −→ ΣS also preserves smash products, it follows
formally that the equivalence induced by U : ΣS −→ P preserves smash products.
Proposition 11.9 shows that the equivalence is not given in the most naive way.

12. Model categories of ring and module spectra

So far in our work, we have largely ignored the main point of the introduction
of categories of diagram spectra, namely the fact that the category of D-spectra is
symmetric monoidal under its smash product ∧S when the sphere D-space S is a
commutative D-monoid. This holds for all of the categories except P displayed in
the Main Diagram in the introduction. We are writing ∧S to avoid confusion with
smash products with spaces and as a reminder that the category DS of D-spectra
coincides with the category of S-modules.

It is now an easy matter to obtain (stable) model structures on categories of
D-ring and module spectra when D is Σ, I , or W ; we write D generically for any
of these three categories. As we indicate at the end of the section, most of the proof
of the following theorem can be quoted from the axiomatic treatment of Schwede
and Shipley [37].
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Theorem 12.1. Let R be a D-ring spectrum, where D = Σ, I , or W .
(i) The category of left R-modules is a compactly generated proper topological

model category with weak equivalences and q-fibrations created in DS .
(ii) If R is cofibrant as a D-spectrum, then the forgetful functor from R-modules to

D-spectra preserves q-cofibrations, hence every cofibrant R-module is cofibrant
as a D-spectrum.

(iii) If R is commutative, the symmetric monoidal category DSR of R-modules
also satisfies the pushout-product and monoid axioms.

(iv) If R is commutative, the category of R-algebras is a compactly generated right
proper topological model category with weak equivalences and q-fibrations cre-
ated in DS .

(v) If R is commutative, every q-cofibration of R-algebras whose source is cofi-
brant as an R-module is a q-cofibration of R-modules, hence every cofibrant
R-algebra is cofibrant as an R-module.

(vi) If f : Q −→ R is a weak equivalence of D-ring spectra, then restriction and
extension of scalars define a Quillen equivalence between the categories of
Q-modules and of R-modules.

(vii) If f : Q −→ R is a weak equivalence of commutative D-ring spectra, then
restriction and extension of scalars define a Quillen equivalence between the
categories of Q-algebras and of R-algebras.

In the language of [37], we shall prove that DS satisfies the monoid and pushout-
product axioms. We shall make repeated use of the following observation. Recall
that, by Lemma 5.5, a q-cofibration is an h-cofibration.

Lemma 12.2. If i : X −→ Y is an h-cofibration of D-spectra and Z is any D-
spectrum, then i ∧S id : X ∧S Z −→ Y ∧S Z is an h-cofibration.

Proof. Smashing with Z preserves colimits and smash products with spaces and so
preserves the relevant retraction.

The following result is the heart of the proof of the monoid and pushout product
axioms and thus of the proof of Theorem 12.1.

Proposition 12.3. For any cofibrant D-spectrum X, the functor X ∧S (−) pre-
serves π∗-isomorphisms and stable equivalences.

Proof. Of course, when D = I or D = W , π∗-isomorphisms are the same as stable
equivalences. We shall prove the result when X = FnSn shortly. Using the fact
that FnA ∼= (FnS0)∧A together with Theorems 7.4 and 8.12, we deduce first that
the conclusion holds when X = FnS0, next that it holds when X = FnA for a finite
CW-complex A, and then that it holds when X is any FI-cell complex. Passage
to retracts gives the general case. We treat the case X = FnSn separately for
symmetric spectra and for orthogonal spectra and W -spaces.

Symmetric spectra. Using Example 4.2, Lemma 1.8, and (22.2) to write out the
relevant smash product, we find that, for q ≥ n,

(FnSn ∧S Y )(q) ∼= Σq+ ∧Σq−n (Sn ∧ Y (q − n))
∼= (Σn/Σq−n)+ ∧ (Sq ∧ Y (q − n)).

The second isomorphism is obtained by writing the free right Σq−n-set Σq as a
disjoint union of orbits Σq−n and is only an isomorphism of spaces, not of Σq-spaces.
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Even this much depends heavily on the fact that the Σq are discrete. We choose
orbit representatives one q at a time, using the chosen representatives for copies of
Σq−n in Σq as representatives for some of the copies of Σq+1−n in Σq+1. We find
by passage to colimits over q that π∗(FnSn∧S Y ) is naturally the sum of countably
many copies of π∗(Y ). Thus the functor FnSn∧S Y preserves π∗-isomorphisms. To
show that it preserves stable equivalences, we now see by application of functorial
cofibrant approximation in the level model structure that the conclusion holds for
stable equivalences in general if it holds for stable equivalences between cofibrant
symmetric spectra. For cofibrant Y and any E, we have

[FnSn ∧S Y, E] ∼= [Y, FS(FnSn, E)],

naturally in Y . Since FS(FnSn, E) = RnE is a symmetric Ω-spectrum by the proof
of Proposition 8.8, the conclusion follows.

Orthogonal spectra and W -spaces. Let Y be either an orthogonal spectrum or a
W -space. Here we give a proof that does not require an explicit description of the
smash product FnSn ∧S Y . By Theorem 7.4(vi) and Lemma 12.2, it suffices to
prove that π∗(FnSn ∧S Y ) = 0 if π∗(Y ) = 0. Let γn : FnSn −→ F0S

0 = S be the
canonical π∗-isomorphism (as in the proof of Lemma 10.3). Let α ∈ πq(FnSn∧S Y )
and choose a representative map f : FrS

q+r → FnSn ∧S Y . Since π∗(Y ) = 0, we
can choose r large enough that the composite

(γn ∧S id) ◦ f : FrS
q+r −→ FnSn ∧S Y −→ S ∧S Y ∼= Y

is null homotopic. Let g = (γn ∧S id) ◦ f and let g′ be the map

id∧Sg : Fn+rS
n+q+r ∼= FnSn ∧S FrS

q+r −→ FnSn ∧S Y

obtained from g by smashing with FnSn. Then g′ is also null homotopic. Now let
f ′ be the composite

f ◦ (γn ∧S id) : Fn+rS
n+q+r ∼= FnSn ∧S FrS

q+r −→ FrS
q+r −→ FnSn ∧S Y.

Then f ′ also represents α. We show that α = 0 by showing that the maps f ′ and
g′ are homotopic. We can rewrite f ′ and g′ as the composites of the map

id∧Sf : Fn+rS
n+q+r ∼= FnSn ∧S FrS

q+r −→ FnSn ∧S FnSn ∧S Y

and the maps FnSn ∧S FnSn ∧S Y −→ FnSn ∧S Y obtained by applying γn to
the first or second factor FnSn. Thus, it suffices to show that the maps id∧γn

and γn ∧ id from FnSn ∧S FnSn to FnSn are homotopic. So far the argument has
been identical for orthogonal spectra and for W -spaces. We prove this last step for
orthogonal spectra. The conclusion for W -spaces follows upon application of the
functor P. For orthogonal spectra, the adjoints

S2n −→ (FnSn)2n = O(2n)+ ∧O(n) S2n ∼= O(2n)/O(n)+ ∧ S2n

of the two maps send s to 1∧s and to τ ∧s, where τ ∈ O(2n) is the evident transpo-
sition on Rn ×Rn. These maps are homotopic since O(2n)/O(n) is connected.

We shall later need the following consequence of this result.

Corollary 12.4. When D = I or D = W , γk ∧S id : FkSk ∧S Y −→ Y is a
π∗-isomorphism for any D-spectrum Y .

Proof. Let q : X −→ Y be a π∗-isomorphism, where X is cofibrant. By Proposition
12.3, γk ∧S idX and id∧Sq : FkSk ∧S X −→ FkSk ∧S Y are π∗-isomorphisms. Since
q ◦ (γk ∧S idX) = (γk ∧S idY ) ◦ (id∧Sq), this gives the conclusion.
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Proposition 12.5 (Monoid axiom). For any acyclic q-cofibration i : A −→ X of
D-spectra and any D-spectrum Y , the map i∧S id : A∧S Y −→ X ∧S Y is a stable
equivalence and an h-cofibration. Moreover, cobase changes and sequential colimits
of such maps are also weak equivalences and h-cofibrations.

Proof. Let Z = X/A and note that Z is homotopy equivalent to the cofiber Ci.
Then Z is an acyclic cofibrant D-space. Since the functor −∧S Y preserves cofiber
sequences, Theorem 8.12(vi) implies that it suffices to prove that Z ∧S Y is acyclic.
Let j : Y ′ → Y be a cofibrant approximation of Y . By Proposition 12.3, idZ ∧Sj
is a stable equivalence. Thus, we may assume that Y as well as Z is cofibrant.
Here Proposition 12.3 gives the conclusion since ∗ −→ Z is a stable equivalence
and ∗ ∧S Y = ∗. The last statement holds since cobase changes and sequential
colimits of maps that are h-cofibrations and stable equivalences are h-cofibrations
and stable equivalences, by Theorem 8.12.

For maps i : X −→ Y and j : W −→ Z of D-spectra, we have the map

i¤j : (Y ∧S W ) ∪X∧SW (X ∧S Z) −→ Y ∧S Z

of (5.17). By Lemma 6.6, if i and j are q-cofibrations, then so is i¤j.

Proposition 12.6 (Pushout-product axiom). If i : X −→ Y and j : W −→ Z are
q-cofibrations of D-spectra and i is a stable equivalence, then the q-cofibration i¤j
is a stable equivalence.

Proof. By the monoid axiom, i∧S id : X∧S Z −→ Y ∧S Z is a stable equivalence for
any Z. By Theorem 8.12(iii) (or 7.4(iii)), any cobase change of an h-cofibration that
is a stable equivalence is a stable equivalence. It is immediate from the definition of
i¤j that its composite with the cobase change of i∧S idW along idX ∧Sj is i∧S idZ .
Therefore i¤j is a stable equivalence.

Observe that the unit S of the smash product of D-spectra is cofibrant.

Proof of Theorem 12.1. Most of this is given by the general theory of Schwede and
Shipley [37], and we focus on (i) and (iv). For these model structures, we are
thinking of a variant of the theory of [37] that is based on Proposition 5.13. The
generating q-cofibrations and acyclic q-cofibrations are obtained by applying the
free R-module functor R ∧S (−) or the free R-algebra functor T to the generating
q-cofibrations and acyclic q-cofibrations of D-spectra. Here TX =

∨
i≥0 R ∧S X(i).

The defining adjunctions for the functors R ∧S (−) and T imply that, if A is a
compact D-spectrum, then R ∧S A is a compact R-module and TA is a compact
R-algebra, in the sense of Definition 5.6.

The pushout-product and monoid axioms allow verification of (i) and (ii) of
Proposition 5.13. That is, the sets of generating q-cofibrations and generating
acyclic q-cofibrations satisfy the Cofibration Hypothesis 5.3, and the relative cell
complexes generated by the latter are stable equivalences. As in Lemma 5.5, a
relative (R∧S FI)-cell or (R∧S K)-cell R-module is an h-cofibration of R-modules
and thus an h-cofibration of D-spectra. Arguing as in [11, VII.3.9 and 3.10], with
a slight elaboration to deal with maps of K not in FJ , the same is true for relative
TFI-cell or TK-cell R-algebras. This gives the Cofibration Hypothesis 5.3.

The monoid axiom implies directly that a relative R∧S K-cell complex is a stable
equivalence. This gives the model structure in (i), and it is proper and topological
by the same proofs as for the stable model structure on DS . The second statement
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of (i) holds since the right adjoint FS(R,−) to the forgetful functor preserves acyclic
q-cofibrations by the adjoint form of the pushout-product axiom.

The proof that relative TK-cell complexes are stable equivalences and the proof
of (v) require the combinatorial analysis of pushouts (= amalgamated free products)
in the category of R-algebras that is given in [11, VII.6.1] and [37, 6.2]. That the
model structure is right proper and topological is inherited from DS . The role of
iterated smash products in the specification of T makes it clear that this category
cannot be expected to be left proper.

For (vi) and (vii), the following generalization of Proposition 12.3 verifies a
hypothesis that allows us to quote the general results of [37].

Proposition 12.7. For a cofibrant right R-module M , the functor M ∧R N of N
preserves π∗-isomorphisms and stable equivalences.

Proof. It suffices to prove the result when M is an (FI ∧S R)-cell R-module. As
in the proof of Proposition 12.3, we see by induction up the cell filtration that it
suffices to prove the result when M = FnA∧S R for a based CW-complex A. Then
M ∧R N ∼= FnA ∧S N and the result holds by Proposition 12.3.

13. Comparisons of ring and module spectra

We here prove Theorems 0.4 and 0.5 and Corollary 0.6, which compare various
categories of ring and module diagram spectra. We treat the comparisons between
structured symmetric and orthogonal spectra; the comparisons between structured
orthogonal spectra and W -spaces are proven in exactly the same way.

Proof of Theorem 0.4. The functors P and U between symmetric and orthogonal
spectra preserve ring spectra, and they restrict to an adjoint pair relating the
categories of symmetric and orthogonal ring spectra. This is a Quillen adjoint pair
since, in both cases, the forgetful functor to D-spaces creates the weak equivalences
and q-fibrations. Since the underlying symmetric spectrum of a cofibrant symmetric
ring spectrum is cofibrant, by Theorem 12.1(v), the restricted pair is a Quillen
equivalence by Lemma A.2(iii).

Proof of Theorem 0.5. For a symmetric ring spectrum R, (P,U) induces a Quillen
adjoint pair between the categories of R-modules and PR-modules. If R is cofibrant,
then R and all cofibrant R-modules are cofibrant as symmetric spectra, by Theorem
12.1, and the restricted pair is a Quillen equivalence by Lemma A.2(iii).

Proof of Corollary 0.6. For an orthogonal ring spectrum R, the functor U from R-
modules to UR-modules has left adjoint the functor P(−) ∧PUR R. Again, this is
a Quillen adjoint pair. Let γ : Q −→ UR be a cofibrant approximation. Since U
creates stable equivalences, the adjoint γ̃ : PQ −→ R is a stable equivalence. We
have the following commutative diagram of right adjoints in Quillen adjoint pairs
relating categories of modules:

MPQ

U
²²

MR
γ̃∗oo

U
²²

MQ MUR
γ∗

oo

(13.1)



MODEL CATEGORIES OF DIAGRAM SPECTRA 41

The left arrow U and the arrows induced by the stable equivalences γ and γ̃ are
the right adjoints of Quillen equivalences, by Theorems 0.5 and 12.1(vi), hence so
is the right arrow U.

14. The positive stable model structure on D-spectra

We return to the context of §8, letting D be any of N , Σ, I , or W . In the last
three cases, we seek a model category of commutative D-ring spectra. However,
because the sphere D-spectrum is cofibrant, the stable model structure cannot
create a model structure on the category of commutative D-ring spectra. A fibrant
approximation of S as a commutative D-ring spectrum would be an Ω-spectrum
with zeroth space a commutative topological monoid weakly equivalent to QS0.
That would imply that QS0 is weakly equivalent to a product of Eilenberg-Mac Lane
spaces. This is a manifestation of Lewis’s observation [19] that one cannot have an
ideal category of spectra that is ideally related to the category of spaces.

Thus, following an idea of Jeff Smith, we modify the stable model structure in
such a way that SD is no longer cofibrant. This is very easy to do. Basically, we
just modify the arguments of §§6, 8, 9 by starting with the level model structure
relative to N − {0} rather than relative to N .

We define positive classes of maps from the classes of maps specified in Definition
6.1 by restricting to levels n > 0 in (i) and (ii) there. We obtain further positive
classes defined in terms of these positive classes exactly as in Definition 9.1. We
obtain sets of maps F+I, F+J , and K+ by omitting the maps with n = 0 from
the sets FI, FJ , and K specified in Definitions 6.2 and 9.3. We say that a D-
spectrum X is a positive D-Ω-spectrum if the structure maps σ̃ : Xn −→ ΩXn+1 of
its underlying prespectrum are weak equivalences for n > 0. With these definitions,
we have the following results.

Theorem 14.1. The category DS is a compactly generated proper topological
model category with respect to the positive level equivalences, positive level fibra-
tions, and positive level q-cofibrations. The sets F+I and F+J are the generating
sets of positive q-cofibrations and positive level acyclic q-cofibrations. The positive
q-cofibrations are those q-cofibrations that are homeomorphisms at level 0.

Proof. Since the model structure we have specified is the level model structure
relative to N − {0}, only the last statement is not part of the relative version of
Theorem 3.4. The last statement follows from the fact that a map is a positive
q-cofibration if and only if it is a retract of a relative F+I-cell complex and the
observation that a relative FI-cell complex is a homeomorphism at level 0 if and
only if no standard cells F0i occur in its construction.

Theorem 14.2. The category DS is a compactly generated proper topological
model category with respect to the stable equivalences, positive q-fibrations, and pos-
itive q-cofibrations. The sets F+I and K+ are the generating positive q-cofibrations
and generating positive acyclic q-cofibrations. The positive fibrant D-spectra are the
positive D-Ω-spectra. When D = Σ, I , or W , the pushout-product and monoid
axioms are satisfied.

For the proof, we need a characterization of the stable equivalences in terms of
the positive level model structure. Let [X, Y ]+ denote the set of maps X −→ Y in
the homotopy category associated to the positive level model structure.
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Lemma 14.3. For D-Ω-spectra E, [X, E]+ is naturally isomorphic to [X, E].

Proof. Let q : X ′ −→ X be a cofibrant approximation to X in the positive level
model structure. Then q∗ : [X, E]+ −→ [X ′, E]+ is an isomorphism. Since q is a
π∗-isomorphism and thus a stable equivalence by Proposition 8.8, q∗ : [X,E] −→
[X ′, E] is also an isomorphism. However, since X ′ is cofibrant in both model struc-
tures, [X ′, E] = π(X ′, E) = [X ′, E]+.

Proposition 14.4. A map f : X −→ Y is a stable equivalence if and only if
f∗ : [Y, E]+ −→ [X, E]+ is a bijection for all positive D-Ω-spectra E.

Proof. First, let f be a stable equivalence and E be a positive D-Ω-spectrum.
Construct RE as in the proof of Proposition 8.8. Then RE is a D-Ω-spectrum and
the natural map E −→ RE is a positive level equivalence. By application of Lemma
14.3 to RE, f∗ : [Y,E]+ −→ [X, E]+ is a bijection since f∗ : [Y, RE] −→ [X, RE]
is a bijection. Since a D-Ω-spectrum is a positive D-Ω-spectrum, the converse
implication is immediate from Lemma 14.3.

From here, Theorem 14.2 is proven by the same arguments as for the stable model
structure, with everything restricted to positive levels. Its last statement implies
the following analogue of Theorem 12.1 for the positive stable model structure.

Theorem 14.5. Parts (i), (iii), (iv), (vi), and (vii) of Theorem 12.1 are also valid
for the positive stable model structure on DS for D = Σ, I , or W .

Parts (ii) and (v) of Theorem 12.1, concerning q-cofibrations, are not valid here
since S is not cofibrant. However, since we have both model structures on hand,
this is not a serious defect. For example, parts (vi) and (vii) in the previous theorem
no longer follow directly from [37]. Rather, they follow from parts (vi) and (vii) of
Theorem 12.1 and the following comparison result, whose proof is immediate.

Proposition 14.6. The identity functor from DS with its positive stable model
structure to DS with its stable model structure is the left adjoint of a Quillen
equivalence. It restricts to a Quillen equivalence on the category of D-ring spectra,
on the category of left modules over a D-ring spectrum, and on the category of
algebras over a commutative D-ring spectrum.

Remark 14.7. The proofs in the previous section show that Theorems 0.1, 0.4, and
0.5 remain valid when reinterpreted in terms of the positive stable model structures.
The essential point is that, since these structures have fewer cofibrant objects,
verification of the hypothesis of Lemma A.2(iii) for the stable model structures is
more than enough to verify the hypothesis for the positive stable model structures.

15. The model structure on commutative D-ring spectra

We prove the following two theorems. Let D = Σ or D = I throughout this
section. To clarify algebraic ideas, we refer to D-ring spectra as “S-algebras”.
Let C be the monad on D-spectra that defines commutative S-algebras. Thus
CX =

∨
i≥0 X(i)/Σi, where X(i) denotes the ith smash power, with X(0) = S.

Theorem 15.1. The category of commutative S-algebras is a compactly generated
proper topological model category with q-fibrations and weak equivalences created in
the positive stable model category of D-spectra. The sets CF+I and CK+ are the
generating sets of q-cofibrations and acyclic q-cofibrations.
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Theorem 15.2. Let R be a commutative S-algebra.

(i) The category of commutative R-algebras is a compactly generated proper topo-
logical model category whose weak equivalences, q-fibrations, and q-cofibrations
are the maps whose underlying maps of commutative S-algebras are weak
equivalences, q-cofibrations, or q-cofibrations.

(ii) If f : Q −→ R is a weak equivalence of commutative S-algebras, then re-
striction and extension of scalars define a Quillen equivalence between the
categories of commutative Q-algebras and commutative R-algebras.

Exactly as in algebra, the category of commutative R-algebras is isomorphic to
the category of commutative S-algebras under R. Therefore the model structure
in part (i) is immediate from the model structure in the category of commutative
S-algebras [9, 3.10]. The sets R ∧S CF+I and R ∧S CK+ are the generating
sets of q-cofibrations and acyclic q-cofibrations. As in algebra, the smash product
∧S is the coproduct in the category of commutative S-algebras. Thus the maps in
these sets are q-cofibrations of commutative S-algebras because they are coproducts
of q-cofibrations of commutative S-algebras with the identity map of R. In both
theorems, evident adjunctions show that the domains of the maps in our generating
sets are compact. By Propositions 5.1, 5.2, and 5.13, the following two lemmas give
the model structure in Theorem 15.1.

Lemma 15.3. The sets CF+I and CK+ satisfy the Cofibration Hypothesis 5.3.

Lemma 15.3 directly implies that the sets R ∧S CF+I and R ∧S CK+ satisfy
the Cofibration Hypothesis in the category of commutative R-algebras. Indeed, the
right vertical arrow in a pushout diagram

R ∧S CX //

²²

A

²²
R ∧S CY // B

of commutative R-algebras can be identified with the right vertical arrow in the
pushout diagram

CX //

²²

A

²²
CY // B

of commutative S-algebras. The point is that, as for commutative monoids in
any symmetric monoidal category, the pushout of a diagram R′ ←− R −→ R′′ of
commutative R-algebras is the smash product R′ ∧R R′′.

Lemma 15.4. Every relative CK+-cell complex is a stable equivalence.

We single out for emphasis the key step of the proof of Lemma 15.4. It is the
analogue for symmetric and orthogonal spectra of [11, III.5.1] for the S-modules of
Elmendorf, Kriz, Mandell, and May. We do not know whether or not the analogue
for W -spaces or F -spaces holds, and it is for this reason that we do not have results
for commutative rings in those cases. It is an insight of Smith that restriction to
positive cofibrant symmetric spectra suffices to obtain the following conclusion.
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Lemma 15.5. Let K be a based CW complex, X be a D-spectrum, and n > 0.
Then the quotient map

q : (EΣi+ ∧Σi (FnK)(i)) ∧S X −→ ((FnK)(i)/Σi) ∧S X

is a level homotopy equivalence. For any positive cofibrant D-spectrum X,

q : EΣi+ ∧Σi X(i) −→ X(i)/Σi

is a π∗-isomorphism.

Proof. We give the details for D = I . The result for D = Σ is proven by the same
argument, but with orthogonal groups replaced by symmetric groups. By Example
4.4, Lemma 1.8, and inspection of coequalizers,

((FnK)(i) ∧S X)(q) ∼= O(q)+ ∧O(q−ni) (K(i) ∧X(q − ni)).

The action of σ ∈ Σi is to permute the factors in K(i) and to act through σ⊕ idq−ni

on O(q), where σ ∈ O(ni) permutes the summands of Rni = (Rn)i. Since Σi acts
on O(q) as a subgroup of O(ni), the action commutes with the action of O(q−ni).
Therefore, passing to orbits over Σi,

((FnK)(i)/Σi ∧S X)(q) ∼= O(q)+ ∧Σi×O(q−ni) (K(i) ∧X(q − ni)).

Similarly,

((EΣi+ ∧Σi (FnK)(i)) ∧S X)(q) ∼= (EΣi ×O(q))+ ∧Σi×O(q−ni) (K(i) ∧X(q − ni)).

The quotient map EΣi×O(q) −→ O(q) is a (Σi×O(q−ni))-equivariant homotopy
equivalence since O(q) is a free (Σi ×O(q − ni))-space that can be triangulated as
a finite (Σi ×O(q− ni))-CW complex. The first statement follows. For the second
statement, we may assume that X is an F+I-cell spectrum, and the proof then is
the same induction up the cellular filtration as in the proof of [11, III.5.1].

The first statement has the following consequence.

Lemma 15.6. Let K be a based CW complex and let n > 0. Then the functor
CFnK ∧S (−) of D-spectra preserves stable equivalences.

Proof. By induction up the cellular filtration of EΣi+, the successive subquotients
of which are wedges of copies of Σi+ ∧ Sn, and use of results in §8, the functor
EΣi+ ∧Σi (−) preserves stable equivalences.

Similarly, the second statement implies the following result.

Lemma 15.7. The functor C preserves stable equivalences between positive cofi-
brant D-spectra. In particular, each map in CK+ is a stable equivalence.

From here, the proofs of Lemmas 15.3 and 15.4 are analogous to the proofs
of corresponding results about S-modules in [11]. We shall not give details of
arguments that are essentially identical. For the Cofibration Hypothesis 5.3, we
record the following result, whose proof is the same as in [11, XII.2.3].

Lemma 15.8. The functor C : DS −→ DS preserves h-cofibrations.

Since the functor C commutes with colimits, Cofibration Hypothesis 5.3(i) for
the set CF+I is equivalent to the following lemma.

Lemma 15.9. Let X −→ Y be a wedge of maps in F+I and let f : CX −→ R be
a map of commutative R-algebras. Then the cobase change j : R −→ R ∧CX CY is
an h-cofibration.
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Proof. The proof is similar to that of the analogous result for commutative S-
algebras in [11, VII§3]. We use the geometric realization of simplicial D-spectra.
This is constructed levelwise and has properties just like the geometric realization
of simplicial spaces and of simplicial spectra; see [26, §11] and [11, X§1]. We also
use the two-sided bar construction; see [26, §9] and [11, XII].

We first give a convenient, although rather baroque, model for the inclusion
i : Sq−1

+ −→ Dq
+. Think of the unit interval I as the geometric realization of

the standard simplicial 1-simplex ∆[1]. For any space A, (A × I)+ ∼= A+ ∧ I+ is
homeomorphic to the geometric realization of the simplicial space A+∧∆[1]+. Since
∆[1] is discrete, the space of q-simplices of A+ ∧∆[1]+ is the wedge of one copy of
A+ for each simplex of ∆[1]. An explicit examination of the faces and degeneracies
of ∆[1] [25, p.14] shows that A+ ∧∆[1]+ can be identified with the simplicial bar
construction B∗(A+, A+, A+), whose space of q-simplices is the wedge of q+2 copies
of A+. The faces and degeneracies are given by successive applications of the folding
map O : A+ ∨ A+ −→ A+ and inclusions of wedge summands, and all q-simplices
with q > 1 are degenerate. The inclusion of the zeroth and last wedge summands
A+ in each simplicial degree induce the inclusions i0 and i1 of A+ in A+ ∧ I+ on
passage to realization. Write B(−) for the geometric realization of simplicial bar
constructions B∗(−) and let CA be the unreduced cone on A. The quotient map
A+ ∧ I+ −→ (CA)+ is isomorphic to the map

B(A+, A+, A+) −→ B(A+, A+, S0)

induced by the evident map A+ −→ pt+ = S0, and the inclusion i0 : A+ −→ (CA)+
is isomorphic to the map ι : A+ −→ B(A+, A+, S0) induced from the inclusion of
A+ in the space of zero simplices. Taking A = Sq−1 and identifying i : Sq−1

+ −→ Dq
+

with i0 : Sq−1
+ −→ (CSq−1)+, we can identify i with ι : Sq−1

+ −→ B(Sq−1
+ , Sq−1

+ , S0).
The functor Fn commutes with colimits and with smash products with based

spaces, hence commutes with geometric realization and the bar construction. We
can apply wedges to the construction to obtain a similar description of a wedge
of a set of standard cells. Explicitly, if X = ∨iFniS

qi−1
+ and Y = ∨iFniD

qi

+ , then
Y ∼= B(X, X, T ) under X, where T = ∨iFniS

0. Here B(X, X, T ) is the geometric
realization of the evident simplicial D-spectrum whose D-spectrum of q-simplices
is the wedge of q + 1 copies of X and a copy of T .

By Proposition 5.1, the category of commutative S-algebras is tensored over
the category of unbased spaces; an explicit construction of tensors is given in [11,
VII.2.10]. The functor C from D-spectra to commutative S-algebras commutes with
colimits and converts smash products X ∧ A+ to tensors CX ⊗ A, where X is a
D-spectrum and A is an unbased space. As is discussed in an analogous situation in
[11, VII§3], it follows that C converts geometric realizations and bar constructions
to similar constructions defined in terms of the category of simplicial commutative
S-algebras. Exactly as in [11, VII.3.3], the geometric realization of a simplicial
commutative S-algebra R∗ can be computed by forgetting the ring structure on
each Rq, taking the geometric realization as a simplicial D-spectrum, and giving
this geometric realization the structure of commutative S-algebra that it inherits
from R∗. With the notation above, we have the identification

R ∧CX CY ∼= R ∧CX B(CX,CX,CT ) ∼= B(R,CX,CT )(15.10)

under R. It follows as in [11, VII.3.9] that j : R −→ R∧CX CY is an h-cofibration.
In summary, the degeneracy operators of the simplicial D-spectrum B∗(R,CX,CT )
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are inclusions of wedge summands, hence B∗(R,CX,CT ) is proper, in the sense that
its degenerate q-simplices map by an h-cofibration into its q-simplices; compare [11,
X.2.2]. This implies that the map from the D-spectrum of zero simplices into the
realization is an h-cofibration, and the map from R into the D-spectrum R ∧S CT
is the inclusion of a wedge summand and thus also an h-cofibration.

Since the maps in CK+ are relative CF+I-cell complexes, the previous lemma
and Lemma 1.2 imply Cofibration Hypothesis 5.3(i) for CK+. Cofibration Hypoth-
esis 5.3(ii) for both CF+I and CK+ is implied by the following analogue of [11,
VII.3.10], which admits the same easy proof.

Lemma 15.11. Let {Ri −→ Ri+1} be a sequence of maps of commutative S-alge-
bras that are h-cofibrations of D-spectra. Then the underlying D-spectrum of the
colimit of the sequence computed in the category of commutative S-algebras is the
colimit of the sequence computed in the category of D-spectra.

Using Lemma 15.6, the proof of Lemma 15.9 leads to the following analogue of
the monoid axiom.

Proposition 15.12. Let i : R −→ R′ be a q-cofibration of commutative S-algebras.
Then the functor (−)∧RR′ on commutative R-algebras preserves stable equivalences.

Proof. We may assume that i is a relative CF+I-cell complex. First let i be
the map CX −→ CY obtained by applying C to a wedge X −→ Y of maps in
F+I. By (15.10), the functor (−) ∧CX CY is isomorphic to the bar construction
B(−,CX,CT ). In each simplicial degree, the functor Bq(−,CX,CT ) preserves sta-
ble equivalences by inductive use of Lemma 15.6. By the D-spectrum analogue of
[11, X.2.4], it follows that the functor B(−,CX,CT ) preserves stable equivalences.
Given a pushout diagram of commutative D-ring spectra

CX

²²

// R

²²
CY // R′,

we have R′ ∼= R ∧CX CY and thus (−) ∧R R′ ∼= (−) ∧CX CY . Therefore the
conclusion holds in this case, and the general case follows by passage to colimits,
using Lemma 15.11.

Proof of Lemma 15.4. By passage to pushouts and colimits, it suffices to prove that
if i : X −→ Y is a wedge of maps in K+ and f : CX −→ R is a map of commutative
S-algebras, then the cobase change j : R −→ R ∧CX CY is a stable equivalence.
Applying the small object argument, factor f as the composite of a relative CF+I-
cell complex f ′ : CX −→ R′ and a map p : R′ −→ R that satisfies the RLP with
respect to CF+I. By adjunction, p regarded as a map of D-spectra satisfies the
RLP with respect to F+I. Thus p is an acyclic positive q-fibration of D-spectra.
Consider the commutative diagram

R′
j′ //

p

²²

R′ ∧CX CY

p∧id

²²
R

j
// R ∧CX CY.
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Since p is a stable equivalence, p ∧ id is a stable equivalence by Proposition 15.12.
Using R′ ∼= R′ ∧CX CX, Proposition 15.12 also gives that the cobase change j′ is a
stable equivalence. Therefore j is a stable equivalence.

Formal arguments show that the model structures in Theorems 15.1 and 15.2
are right proper and topological. Since the pushout of a diagram A′ ← A −→ A′′

of commutative R-algebras is A′ ∧A A′′ and a q-cofibration of commutative R-
alegbras is a q-cofibration of commutative S-algebras, Proposition 15.12 implies
that the category of commutative R-algebras is left proper. In turn, via Lemma
A.2, this implies Theorem 15.2(ii).

16. Comparisons of modules, algebras, and commutative algebras

We prove Theorems 0.7 and 0.8 and Corollary 0.9 here.

Proof of Theorem 0.7. The functors P : ΣS −→ I S and U : I S −→ ΣS
restrict to an adjoint pair between the category of commutative symmetric ring
spectra and the category of commutative orthogonal ring spectra. We must prove
that (P,U) is a Quillen equivalence. Since weak equivalences and q-fibrations of
commutative ring spectra are created in the positive stable model categories of
underlying spectra, U creates weak equivalences and preserves q-fibrations. Thus
we have a Quillen adjoint pair. By Lemma A.2, it suffices to prove that the unit map
η : R −→ UPR is a stable equivalence for every cofibrant commutative symmetric
ring spectrum R.

We may assume that R is a CF+I-cell complex. We claim first that η is a stable
equivalence when R = CX for a positive cofibrant symmetric spectrum X, and it
suffices to prove that η : X(i)/Σi −→ UP(X(i)/Σi) is a stable equivalence for i ≥ 1.
On the right, P(X(i)/Σi) ∼= (PX)(i)/Σi, and PX is a positive cofibrant orthogonal
spectrum. Applying the second statement of Lemma 15.5 to X and to PX, a quick
diagram chase shows that the claim holds if and only if

η : EΣi+ ∧Σi X(i) −→ UP(EΣi+ ∧Σi X(i))

is a stable equivalence. Using Lemma 10.3 and the fact that suspensions of X(i)

are positive cofibrant, this holds by induction up the skeletal filtration of EΣi. By
passage to colimits, the result for general R follows from the result for an CF+I-cell
complex that is constructed in finitely many stages. We have proven the result when
R requires only a single stage, and we assume the result when R is constructed in
n stages. Thus suppose that R is constructed in n + 1 stages. Then R is a pushout
Rn ∧CX CY , where Rn is constructed in n-stages and X −→ Y is a wedge of maps
in F+I. By (15.10), R ∼= B(Rn,CX,CT ). Since the simplicial bar construction is
proper and since U and P commute with colimits and smash products with spaces
and thus with geometric realization, the analogue of [11, X.2.4] shows that it suffices
to prove that η is a stable equivalence on the D-spectrum

Rn ∧S (CX)(q) ∧ CT ∼= Rn ∧S C(X ∨ · · · ∨X ∨ T )

of q-simplices for each q. By the definition of CF+I-cell complexes, we see that this
smash product (= pushout) of commutative D-ring spectra can be constructed in
n-stages, hence the conclusion follows from the induction hypothesis.

Proof of Theorem 0.8. Let R be a cofibrant commutative symmetric ring spectrum.
Theorems 12.1 and 14.5 give the stable and positive stable model structures on the
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categories of R-modules and R-algebras and Theorem 15.2 gives the positive stable
model structure on the category of commutative R-algebras. The pair (P,U) induces
adjoint pairs between the categories of R-modules, R-algebras, and commutative
R-algebras and the categories of PR-modules, PR-algebras, and commutative PR-
algebras. We must show that these pairs are Quillen equivalences. For the module
and algebra case, the conclusion holds for both the stable model structures and
the positive stable model structures. Since U : I S −→ ΣS preserves (positive)
q-fibrations and creates weak equivalences, the same is true of the induced forgetful
functors. Thus (P,U) is a Quillen adjoint pair in all cases and, by Lemma A.2, we
need only prove that the unit of the adjunction is a stable equivalence when applied
to a cofibrant object. For modules and algebras, a cofibrant object in the positive
stable model structure is also cofibrant in the stable model structure, so we need
only consider the latter case.

Thus consider η : X −→ UPX. Theorem 0.7 gives that η is a stable equivalence
when X is a cofibrant commutative symmetric ring spectrum, such as X = R. If
X is a cofibrant commutative R-algebra, then the unit R −→ X and therefore
its composite with the unit S −→ R are q-cofibrations of commutative symmetric
ring spectra, so that X is a cofibrant commutative symmetric ring spectrum and
η is a stable equivalence. If X is a cofibrant R-algebra, then X is also cofibrant
as an R-module by Theorem 12.1(iii). Thus it remains to prove that η is a stable
equivalence when X is a cofibrant R-module. Arguing as in the proof of Lemma
10.3, it suffices to prove this when X = R ∧S FΣ

n Sn. We have a canonical π∗-
isomorphism γn : FI

n Sn −→ S of orthogonal spectra. Using the mapping cylinder
construction, we can factor γn as the composite of an acyclic q-cofibration and a
homotopy equivalence. Thus, by Proposition 12.5, γn induces a π∗-isomorphism

P(R ∧S FΣ
n Sn) ∼= PR ∧S FI

n Sn −→ PR ∧S S ∼= PR.

Applying U and using a naturality diagram, we see that η is a stable equivalence
when X = R ∧S FΣ

n Sn since η is a stable equivalence when X = R.

Proof of Corollary 0.9. As in the proof of Corollary 0.6 in §12, this follows from
Theorems 12.1, 14.5, 15.2, and 0.8.

17. The absolute stable model structure on W -spaces

The stable model structure on W -spaces studied so far was based on the level
model structure relative to N . That is, the level equivalences and level fibrations of
W -spaces were only required to be weak equivalences or fibrations when evaluated
at Sn for n ≥ 0. The objects of F ⊂ W are the discrete based spaces n+ =
{0, 1, · · · , n}, and these are not spheres. We need a stable model structure based
on the absolute level model structure in order to make a comparison.

Definition 6.1 specifies the absolute level equivalences, absolute level fibrations,
absolute level acyclic fibrations, absolute q-cofibrations, and absolute level acyclic
q-cofibrations of W -spaces. Replacing stable equivalences by π∗-isomorphisms in
Definition 9.1, we define absolute acyclic q-cofibrations, absolute q-fibrations, and
absolute acyclic q-fibrations in terms of these absolute level classes of maps.

For a finite based CW-complex A, let FA : T −→ W T denote the left adjoint
to evaluation at A. We restrict attention to objects A in a skeleton of W . All
of these functors FA are used in Definition 6.2, which specifies the sets FI and
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FJ of generating absolute q-cofibrations and generating absolute level acyclic q-
cofibrations of the absolute level model structure.

As in Definition 8.4 and and Lemma 8.5, define λA : FΣAS1 −→ FAS0 to be
that map of W -spaces such that

λ∗A : W T (FAS0, X) −→ W T (FΣAS1, X)

corresponds under adjunction to σ̃ : X(A) −→ ΩX(ΣA) for all W -spaces X. The
following lemma generalizes part of Lemma 8.6.

Lemma 17.1. The maps λA are π∗-isomorphisms.

Proof. Using Example 4.6, we identify λA(Sq) as the evaluation map

ΣΩF (A,Sq) −→ F (A,Sq).

This gives a π∗-isomorphism by Lemma 8.6 when A is a sphere. Using (i′) and (vi)
of Theorem 7.4 to obtain long exact sequences, it follows in general by induction
on the number of cells of A.

Define K to be the union of the set FJ with the sets kA¤I defined as in Definition
9.3, where kA : FΣAS1 −→ MλA is the absolute acyclic q-cofibration given in terms
of the mapping cylinder of λA.

Theorem 17.2. The category of W -spaces is a compactly generated proper topolog-
ical model category with respect to the π∗-isomorphisms, absolute q-fibrations, and
absolute q-cofibrations (of the absolute level model structure). The sets FI and K
are the generating sets of absolute q-cofibrations and absolute acyclic q-cofibrations.

The comparison of our two stable model structures takes the following form.

Proposition 17.3. The identity functor from W T with its original stable model
structure to W T with its absolute stable model structure is the left adjoint of a
Quillen equivalence.

We insert several preliminary results about W -spaces before turning to the proof
of Theorem 17.2. Recall that W -spaces and W -spectra coincide, so that a W -space
X has a natural pairing

σ : X(A) ∧B −→ X(A ∧B).

With B fixed, these define a map of W -spaces X ∧B −→ X(− ∧B).

Remark 17.4. In view of σ : X(A)∧I+ −→ X(A∧I+), we see that any W -space X is
a homotopy-preserving functor. Of course, a weak equivalence in W is a homotopy
equivalence, by Whitehead’s theorem. Thus any X is a “homotopy functor”, in the
sense that it preserves weak equivalences.

Definition 17.5. Let X be a W -space and A be a finite based CW-complex. De-
fine a prespectrum X[A] by setting X[A]n = X(Sn∧A), with structure maps given
by instances of σ. Note that X[S0] = UX, U : W T −→ P. We also have the
prespectrum X[S0] ∧A. The maps

σ : X(Sn) ∧A −→ X(Sn ∧A)

specify a map of prespectra

σ[A] : X[S0] ∧A −→ X[A].
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The homotopy groups π∗(X[S0]∧A) are the homology groups of A with respect
to the homology theory represented by the prespectrum X[S0]. The insight that
the following result should be true is due to Lydakis, who proved an analogue in
the simplicial setting [22, 11.7].

Proposition 17.6. For every W -space X and finite based CW-complex A, σ[A] is
a π∗-isomorphism. Therefore, if f : X −→ Y is a π∗-isomorphism, in the sense
that f [S0] : X[S0] −→ Y [S0] is a π∗-isomorphism, then f [A] : X[A] −→ Y [A] is a
π∗-isomorphism for every A.

Proof. The second statement follows directly from the first and Theorem 7.4(i).
We prove the first statement in stages. First suppose that X = FBS0, where B is
a finite based CW-complex. Then, on nth-spaces, σ[A] is the canonical map

F (B,Sn) ∧A −→ F (B, Sn ∧A).

It is easy to check directly that this map is a π∗-isomorphism. This is just an explicit
prespectrum level precursor of a standard result about Spanier-Whitehead duality.
Since FBC ∼= (FBS0) ∧ C, Theorem 7.4(i) implies that σ[A] is a π∗-isomorphism
when X = FBC for any based CW-complex C. Using Theorem 7.4, it follows that
σ[A] is a π∗-isomorphism when X is a cell FI-complex. For a general X, we factor
the trivial map ∗ −→ X as the composite of a cell FI-complex ∗ −→ X ′ and a
level acyclic fibration p : X ′ −→ X. Since σ[A] is a π∗-isomorphism for X ′, it is a
π∗-isomorphism for X.

The following definitions and lemma turn out to describe the fibrant W -spaces
in the absolute stable model structure.

Definition 17.7. Consider a commutative diagram of based spaces

A
f //

i

²²

B

j

²²
X g

// Y.

The diagram is a homotopy cocartesian square if the induced map from the homo-
topy pushout M(i, f) to Y is a weak equivalence. It is a homotopy cartesian square
if the induced map from A to the homotopy pullback P (g, j) is a weak equivalence.
(The homotopy pullback diagrams of Definition 9.4 are special cases).

Definition 17.8. A W -space E is linear if it converts homotopy cocartesian squares
to homotopy cartesian squares.

Lemma 17.9. The following properties of a W -space are equivalent.
(i) E is linear.
(ii) E[A] is an Ω-spectrum for all A ∈ W .
(iii) σ̃ : E(A) −→ ΩE(ΣA) is a weak equivalence for all A ∈ W .

Proof. Recall that our functors are assumed to be based, so that E(∗) = ∗. If E
is linear, then E(A) is weakly equivalent to the homotopy pullback ΩE(ΣA) of the
diagram ∗ −→ E(ΣA) ←− ∗. This weak equivalence is homotopic to the adjoint
structure map σ̃, hence E satisfies (iii). Conversely, if E satisfies (iii), then the map
πq(E(A)) −→ πq(E[A]) = colimπq+n(E(Sn ∧A)) is an isomorphism for q ≥ 0, and
these πq(E(A)) form part of a homology theory. By the five lemma, this implies
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that, for a cofiber sequence A −→ B
f−→ C, the induced map from E(A) to the

homotopy fiber of E(f) is a weak equivalence. In turn, this implies that E is linear.
The equivalence of (ii) and (iii) is elementary.

From here, the proof of Theorem 17.2 is exactly the same as the proof of Theorem
9.2, but with the stable equivalences there replaced by the π∗-isomorphisms here;
see also the proof of Proposition 8.7 in §10. We use Proposition 17.6 repeatedly,
and we apply the results on π∗-isomorphisms of §7 to the restricted maps f [A] of
prespectra associated to maps f of W -spaces. We record the main steps of the
proof since they give useful characterizations of the classes of maps that enter into
the model structure.

Proposition 17.10. A map p : E −→ B satisfies the RLP with respect to K if
and only if p is an absolute level fibration and the diagram

E(A) σ̃ //

p(A)

²²

ΩE(ΣA)

Ωp(ΣA)

²²
B(A)

σ̃
// ΩB(ΣA)

(17.11)

is a homotopy pullback for each finite based CW-complex A.

Using the third criterion in Lemma 17.9, this gives the following result.

Corollary 17.12. The trivial map F −→ ∗ satisfies the RLP with respect to K if
and only if F is linear.

Corollary 17.13. If p : E −→ B is a π∗-isomorphism that satisfies the RLP with
respect to K, then p is an absolute level acyclic fibration.

Proposition 17.14. Let f : X −→ Y be a map of W -spaces.
(i) f is an absolute acyclic q-cofibration if and only if it is a retract of a relative

K-cell complex.
(iii) f is an absolute q-fibration if and only if it satisfies the RLP with respect to

K, and X is fibrant if and only if it is linear.
(iii) f is an absolute acyclic q-fibration if and only if it is an absolute level acyclic

fibration.

For the study of W -ring and module spaces, we have the following result, which
implies that Theorem 12.1 applies to W -spaces under the absolute as well as the
original stable model structure.

Proposition 17.15. Under the absolute stable model structure, the category of W -
spaces satisfies the pushout-product and monoid axioms.

Exactly as in the proofs of Propositions 12.6 and 12.5, this is a consequence of
the following analogue of Proposition 12.3.

Proposition 17.16. For any cofibrant W -space X, the functor X∧S (−) preserves
π∗-isomorphisms.

Proof. As in the proof of Proposition 12.3, but taking into account that there are
more cofibrant objects to deal with, it suffices to prove that π∗(FAS0 ∧S Y ) = 0
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if π∗(Y ) = 0, where A is any finite based CW complex. Let Z be a Spanier-
Whitehead k-dual to A, with duality maps η : Sk −→ A ∧Z and ε : Z ∧A −→ Sk.
By adjunction, η gives rise to a map η̃ : FASk −→ F0Z and the adjoint

Z −→ F (A,Sk) = (FAS0)(Sk)

of ε gives rise to a map ε̃ : FkZ −→ FAS0. Consider the composites

α : FΣkASk ∼= FkS0 ∧S FASk id∧η̃−−−→ FkS0 ∧S F0Z ∼= FkZ
ε̃−→ FAS0

and
β : FΣkASk ∼= FkSk ∧ FAS0 γk∧id−−−→ F0S

0 ∧S FAS0 ∼= FAS0.

These maps have adjoints Sk −→ (FAS0)(ΣkA) = F (A,ΣkA), which in turn have
adjoints α : ΣkA −→ ΣkA and β : ΣkA −→ ΣkA. Inspecting definitions, we see
that α is the composite

ΣkA ∼= Sk ∧A
η∧id−−−→ A ∧ Z ∧A

id∧ε−−−→ A ∧ Sk = ΣkA,

which is homotopic to the identity by the definition of a k-duality, and β is the
identity map. Thus α ' β. Since π∗(Y ) = 0, π∗(FkZ ∧S Y ) = 0 by Theorem 7.4(i)
and Proposition 12.3. Therefore α∧S idY induces the zero map on π∗. By Corollary
12.4, β ∧S idY induces an isomorphism on π∗. Therefore π∗(FAS0 ∧S Y ) = 0.

We add some observations about connectivity for use in the next section.

Definition 17.17. A prespectrum X is n-connected if πq(X) = 0 for q ≤ n; X
is connective if it is (−1)-connected. A W -space X is connective if its underlying
prespectrum X[S0] is connective; X is strictly connective if X(A) is n-connected
when A is n-connected.

Observe that, on passage to the homotopy groups πq(X(A)) of its spaces, a
connective linear W -space X defines a homology theory in all degrees.

Lemma 17.18. A connective linear W -space is strictly connective. The following
conditions on a map f : X −→ Y between connective linear W -spaces are equivalent.

(i) f is a π∗-isomorphism.
(ii) f : X(S0) −→ Y (S0) is a weak equivalence.
(iii) f is a level equivalence.

Proof. If T is an n-connected Ω-spectrum, then its zeroth space is n-connected. If
X is connective and linear and A is n-connected, then X[A] is n-connected because
its homotopy groups are the homology groups of A with respect to a connective
homology theory. Since X[A] is an Ω-spectrum with zeroth space X(A), X(A) is
n-connected and X is strictly connective. In the second statement, (i) and (ii) are
clearly equivalent and (ii) and (iii) are equivalent since a map of homology theories
is an isomorphism if and only if it is an isomorphism on coefficients.

18. The comparison between F -spaces and W -spaces

It remains to relate F -spaces to W -spaces. It is important to keep in mind the
two quite different forgetful functors defined on W -spaces, namely

UF : W T −→ FT and UP : W T −→ P.

We write U for the former and write P for its left adjoint FT −→ W T .
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We have the level model structure on the category of F -spaces given by the level
equivalences, level fibrations, and q-cofibrations. We recall what we need about the
stable model structure from [35, App B].

Definition 18.1. Let f : X −→ Y be a map of F -spaces.

(i) f is a π∗-isomorphism if UPPf is a π∗-isomorphism of prespectra.
(ii) f is a stable equivalence if a cofibrant approximation f ′ : X ′ −→ Y ′ of f (in

the level model structure) is a π∗-isomorphism.
(iii) f is an acyclic q-cofibration if it is a stable equivalence and a q-cofibration.
(iv) f is a q-fibration if it satisfies the RLP with respect to the acyclic q-cofibrations.
(iv) f is an acyclic q-fibration if it is a stable equivalence and a q-fibration.

One reason for the distinction between π∗-isomorphisms and stable equivalences
is that we have not proven that P preserves level equivalences or even carries level
equivalences to π∗-isomorphisms in general. Another is that this definition of a
stable equivalence agrees with the one given in [35, App B]; see Remark 19.9 below.

For an F -space X, we write Xn = X(n+); recall that X0 = ∗. Let δi : n+ −→ 1+

be the projection given by δi(i) = 1 and δi(j) = 0 for j 6= i. Let φ : 2+ −→ 1+ be
the based map such that φ(1) = 1 = φ(2).

Definition 18.2. An F -space X is special if the map Xn −→ Xn
1 induced by the

n projections δi : n+ −→ 1+ is a weak equivalence. If X is special, then π0(X1)
is an abelian monoid with product π0(X1)× π0(X1) ∼= π0(X2) −→ π0(X1) induced
by φ. A special F -space X is very special if π0(X1) is an abelian group.

Theorem 18.3. The category FT is a cofibrantly generated model category with
respect to the stable equivalences, q-fibrations, and q-cofibrations. An F -space is
fibrant if and only if it is very special.

We refer the reader to [35] for the proof. While the result is deduced there from
its simplicial analogue, a topological argument works just as well. However, it is not
known and, as explained in [35, A.6], seems unlikely to be true that the stable model
structure on FT is compactly generated, so that a more general version of the small
object argument than Lemma 5.8 is needed. The set of generating q-cofibrations
is FI, and of course its elements have compact domains. However, there does not
seem to be a canonical choice of a set of generating acyclic q-cofibrations, and the
elements of the set chosen in [35, App B] do not all have compact domains. All
elements of the set are π∗-isomorphisms, and this has the following consequences.

Lemma 18.4. All acyclic q-cofibrations are π∗-isomorphisms.

Lemma 18.5. The pair (P,U) is a Quillen adjoint pair.

Proof. Since U : W T −→ FT carries absolute level equivalences and absolute
level fibrations to level equivalences and level fibrations, (P,U) is a Quillen adjoint
pair with respect to these level model structures and thus P preserves q-cofibrations
(and level acyclic q-cofibrations). Now the previous lemma gives that P preserves
acyclic q-cofibrations since it obviously preserves π∗-isomorphisms.

In particular, U preserves fibrant objects, as could easily be checked directly.

Lemma 18.6. If Y is a linear W -space, then UY is a very special F -space.
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The following result, which was left open in [35], is a consequence of its coun-
terpart, Proposition 17.15, for W -spaces. It implies that Theorem 12.1 applies to
F -spaces.

Proposition 18.7. The stable model structure on the category of F -spaces satis-
fies the pushout-product and monoid axioms.

Proof. This is an exercise in the use of cofibrant approximation of maps. The
essential points are that smash products and pushouts of cofibrant approximations
are cofibrant approximations and that the functor P preserves colimits and smash
products and creates the stable equivalences between cofibrant objects.

Because the topological prolongation functor P is harder to analyze than its
simplicial counterpart, we shall derive the following result from its known simplicial
analogue in the next section. In essence, this result goes back to Segal [38] and is
at the heart of his infinite loop space machine.

Proposition 18.8. Let X be a cofibrant F -space. Then PX is a strictly connective
W -space. If X is very special, then PX is a cofibrant linear W -space. That is, the
functor P preserves cofibrant-fibrant objects.

Granting these results, Lemma 17.18 and the fact that UP ∼= Id immediately
give the following consequences.

Lemma 18.9. The following conditions on a map f : X −→ X ′ between cofibrant
very special F -spaces are equivalent.

(i) f is a π∗-isomorphism.
(ii) f : X1 −→ X ′

1 is a weak equivalence.
(iii) f is a level equivalence.
(iv) Pf is an absolute level equivalence of W -spaces.

Lemma 18.10. If Y is a connective linear W -space and f : X −→ UY is a cofi-
brant-fibrant approximation of the F -space UY , then the composite

ε ◦ Pf : PX −→ PUY −→ Y

is an absolute level equivalence of W -spaces.

The results above directly imply Theorems 0.10, 0.11, and 0.12. Corollary 0.13
follows as in the proof of Corollary 0.6 in §13.

19. Simplicial and topological diagram spectra

Let S∗ denote the category of pointed simplicial sets, abbreviated ssets, and let
T : S∗ −→ T and S : T −→ S∗ be the geometric realization and total singular
complex functors. Both are strong symmetric monoidal. Let ν : Id −→ ST and
ρ : TS −→ Id be the unit and counit of the (S,T) adjunction. Both are monoidal
natural weak equivalences. Recall that a map f of spaces is a weak equivalence or
Serre fibration if and only if Sf is a weak equivalence or Kan fibration of ssets.

For a discrete category D , a D-sset is a functor Y : D −→ S∗, and we have
the category DS∗ of D-ssets. When we are given a canonical symmetric monoidal
functor SD : D −→ S∗, we define D-spectra over SD in the evident fashion. Let
us write DS [S∗] and DS [T ] for the categories of D-spectra of ssets over SD and
D-spectra of spaces over TSD . Both are symmetric monoidal categories. Levelwise
application of S gives a lax symmetric monoidal functor S : DS [T ] −→ DS [S∗]
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with unit map ν : SD −→ STSD . Levelwise application of T gives a strong sym-
metric monoidal functor T : DS [S∗] −→ DS [T ]. These functors are right and
left adjoint, and they induce adjoint functors when restricted to categories of rings,
commutative rings, and modules over rings.

Warning 19.1. The functor TS : T −→ T is not continuous. Therefore we do not
have a functor TS : DT −→ DT when the topological category D is not discrete.

When D = W , we shall see how to get around this problem in Theorem 19.11.
As far as the relevant homotopy categories go, we can work interchangeably with

D-spectra of ssets and D-spectra of spaces.

Proposition 19.2. Let D be discrete and suppose that the category of D-spectra
of ssets is a model category such that every level equivalence is a weak equivalence.
Define a weak equivalence of D-spectra of spaces to be a map f such that Sf is a
weak equivalence. Then S and T induce adjoint equivalences of homotopy categories
that induce adjoint equivalences between the respective homotopy categories of rings,
commutative rings, and modules over rings.

Proof. Since η : Y −→ STY is a level equivalence for all D-spectra of ssets, an
argument much like the proof of Lemma A.2 applies.

The proposition applies to symmetric spectra [15] and to F -spectra [35]. In the
latter case, just as for F -spaces, F -spectra of ssets are the same as F -ssets. As
noted in the preprint version of [15] and in [35], Lemma A.2 applies to give the
following stronger conclusion in these cases.

Theorem 19.3. Let D = Σ or D = F . The pair (T, S) is a Quillen equivalence
between the categories DS [S∗] and DS [T ].

Since [15] and [35] give the pushout-product and monoid axioms in DS [S∗],
D = Σ and D = F , and we have proven these axioms in D [T ], we are entitled to
the following multiplicative elaborations of Theorem 19.3.

Theorem 19.4. Let D = Σ or D = F . The functors T and S induce a Quillen
equivalence between the categories of D-ring spectra of simplicial sets and D-ring
spectra of spaces.

Theorem 19.5. Let D = Σ or D = F . For a D-ring R of simplicial sets, the
functors T and S induce a Quillen equivalence between the categories of R-module
spectra (of simplicial sets) and TR-module spectra (of spaces).

By Smith’s result2 that the category of commutative symmetric ring spectra of
simplicial sets is a Quillen model category with definitions parallel to those in §15,
we also have the commutative analogue of Theorem 19.4 in this case.

Theorem 19.6. The functors T and S induce a Quillen equivalence between the
categories of commutative symmetric ring spectra of simplicial sets and commutative
symmetric ring spectra of spaces.

Now focus on F -ssets and F -spaces. We must deduce Proposition 18.8 from its
simplicial analogue. There is a prolongation functor PS∗ from F -ssets to the cate-
gory S S∗∗ of simplicial functors S∗ −→ S∗. We can use it to study the topological
prolongation functor P = PT from F -spaces to the category T T of continuous

2private communication
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functors T −→ T . The advantage of PS∗ is that, although it is characterized as
the left adjoint to the forgetful functor, it has two equivalent explicit descriptions.
First, in analogy with PT (23.3), for a functor Y : F −→ S∗ and a sset K,

(PS∗Y )(K) =
∫ n+∈F

Kn ∧ Yn.(19.7)

Since T commutes with colimits and finite products, this description implies that

(PT TY )(TK) ∼= T((PS∗Y )(K)).(19.8)

Of course, this relationship requires us to begin with an F -sset Y . However, there
is a simple trick that has the effect of allowing us to use (19.8) to study F -spaces
X. Let γ : CY −→ Y be a functorial cofibrant approximation in the level model
structure on F -ssets and define

ξ = ρ ◦ Tγ : TCSX −→ X.

Since ξ is a level equivalence and T preserves cofibrant objects, ξ is a functorial
cofibrant approximation of F -spaces. If X is cofibrant, then Pξ is an absolute level
equivalence. In effect, this allows us to use PS∗CSX to study PX.

Remark 19.9. In [35, App B], a map f : X −→ Y of F -spaces is defined to be
a stable equivalence if Sf is a π∗-isomorphism. It is equivalent that TCSf is a
π∗-isomorphism. Thus, since TCSf is a cofibrant approximation of f , these stable
equivalences are the same as the stable equivalences of Definition 18.1(ii) .

The other description of PS∗ is given as follows. A based set E can be identified
with the colimit of its based finite ordered subsets, and these can be identified with
the based injections n+ −→ E for n ≥ 0. We extend Y to a functor from based sets
to simplicial sets by defining Y (E) to be the colimit of the simplicial sets Y (n+),
where the colimit is taken over the based functions n+ −→ E or, equivalently, over
the based injections n+ −→ E. We then define (PS∗Y )(K) to be the diagonal of
the bisimplicial set obtained by applying Y to the set Kq of q-simplices of K for all
q. This description is exploited by Bousfield and Friedlander [7] and Lydakis [21]
to study the homotopical properties of prolongation. The definitions of special and
very special F -ssets are the same as for F -spaces, and an F -space X is (very)
special if and only if the F -sset SX is (very) special.

Proof of Proposition 18.8. Since any finite CW complex is homotopy equivalent to
TK for some finite simplicial complex K, we may restrict attention to spaces of the
form TK in W . Let X be a cofibrant F -space and let Y = CSX. By the absolute
level equivalence ξ : TY −→ X, it suffices to prove the result for TY , and

(PTY )(TK) ∼= T(PS∗Y (K)).(19.10)

By [7, 4.10], (PS∗Y )(K) is n-connected if K is n-connected. Since a simplicial set
L is n-connected if and only TL is n-connected, this shows that (PTY )(TK) is
n-connected if TK is n-connected, so that TY is strictly connective. Now assume
that X and therefore Y is very special. By Lemma 17.9, it suffices to prove that
σ̃ : (PTY )(TK) −→ Ω(PTY )(ΣTK) is a weak equivalence for all finite simplicial
complexes K, and we may replace the target of σ̃ by the homotopy fiber of the
evident map (PTY )(CTK) −→ (PTY )(ΣTK). By [7, 4.3], (PS∗Y )(K) maps by a
weak equivalence to the homotopy fiber of the map (PS∗Y )(CK) −→ (PS∗Y )(ΣK).
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Since T commutes with cones, suspensions, and homotopy fibers, the conclusion
follows upon applying T and using (19.10).

Finally, as promised in the introduction, we compare the category W T with
Lydakis’ category S F of “simplicial functors”, namely simplicial functors from
the category of based finite ssets to the category of all based ssets; see [22].

Theorem 19.11. There is a Quillen equivalence (PT,SU) from the category S F
to W T with its absolute stable model structure. The functor PT is strong symmetric
monoidal and the functor SU is lax symmetric monoidal.

Proof. For based ssets K and L, let F (K, L) denote the usual sset of based maps
K −→ L. Define a topological category V with objects the based finite ssets and
whose space of maps K −→ L is TF (K, L). There is a natural inclusion of ssets

F (K, L) −→ SF (TK,TL).

Its adjoint is a natural continuous map

t : TF (K, L) −→ F (TK,TL).

There results a continuous functor t : V −→ W that sends K to TK, hence we
have an adjoint pair (P,U) relating V -spaces to W -spaces. For a simplicial functor
Y , we obtain a continuous functor TY : V −→ T such that (TY )(K) = TY (K);
on morphism spaces, TY is given by the composites

TF (K, L) TY−−→ TF (Y (K), Y (L)) t−→ F (TY (K),TY (L)).

For based spaces A and B, the adjoint of the evident map

SF (A,B) ∧ SA ∼= S(F (A,B) ∧A) −→ SB

is a natural map
s : SF (A,B) −→ F (SA, SB).

For a V -space X, we obtain a simplicial functor SX such that (SX)(K) = SX(K);
on morphism ssets, SX is given by the composites

F (K, L) ν−→ STF (K,L) SX−−→ SF (X(K), X(L)) s−→ F (SX(K),SX(L)).

The pair (T, S) relating S F and V T is adjoint, and we have the following diagram
of pairs of adjoint functors:

S F
T //

U
²²

V T
P //

S
oo W T

U
oo

U
²²

ΣS [S∗]
T //

P

OO

ΣS [T ].

P

OO

S
oo

The diagram of right adjoints commutes by inspection, hence the diagram of left
adjoints commutes up to isomorphism. By comparing our characterizations of ab-
solute q-fibrations and absolute acyclic q-fibrations in Propositions 17.10 and 17.14
with the analogous characterizations [22, 9.4, 9.8] given by Lydakis, we see that SU
preserves q-fibrations and acyclic q-fibrations, so that (PT, SU) is a Quillen adjoint
pair. The right pair (P,U) is a Quillen equivalence by Theorem 0.1, the left pair
(P,U) is a Quillen equivalence by the simplicial analogue of that result, and the
bottom pair (T, S) is a Quillen equivalence by Theorem 19.4. Therefore (PT,SU)
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is a Quillen equivalence. The monoidal properties of these functors follow from
Proposition 3.3 and the properties of T and S.

Part III. Symmetric monoidal categories and FSP’s

We fix language about symmetric monoidal categories in §20, and we discuss
symmetric monoidal diagram categories in §21. Briefly, there is an elementary
external smash product that takes a pair of D-spaces to a (D × D)-space. Left
Kan extension internalizes this product to give a smash product that takes a pair
of D-spaces to a D-space. We show how the functors U and P behave with respect
to internal smash products in §23.

Such internal products on functor categories were studied by Day [8], in a gen-
eral categorical setting. The construction made a first brief appearance in stable
homotopy theory in work of Anderson [3], but its real importance only became
apparent with Jeff Smith’s introduction of symmetric spectra.

In §22, we show how functors with smash product, FSP’s, fit into the picture. For
a commutative monoid R in DT , we define D-FSP’s over R in terms of the external
smash product, and we show that the category of D-FSP’s over R is isomorphic to
the category of R-algebras, as defined with respect to the internal smash product.
We are mainly interested in the case R = SD , where D is one of our standard
examples. Here the conclusion is that D-FSP’s are equivalent to D-ring spectra.

The notion of an FSP was introduced by Bökstedt [6], who used it to define topo-
logical Hochschild homology. His FSP’s were essentially the same as our T -FSP’s
(although his definition was simplicial and he imposed convergence and connectiv-
ity conditions). Under the name “strictly associative ring spectrum”, Σ-FSP’s first
appeared in work of Gunnarson [12]. The name “FSP defined on spheres” has also
been used. Jeff Smith first recognized the relationship between these externally
defined FSP’s and his symmetric ring spectra. Similarly, an F -FSP is equivalent
to a Gamma-ring, as defined by Lydakis and Schwede [21, 35]. Under the unprepos-
sessing name “I∗-prefunctor”, commutative I -FSP’s already appeared in work of
May, Quinn, and Ray [28], where they were shown to give rise to E∞ ring spectra.

20. Symmetric monoidal categories

We fix some language to avoid confusion. A monoidal category is a category D
together with a product ¤ = ¤D : D×D −→ D and a unit object u = uD such that
¤ is associative and unital up to coherent natural isomorphism; D is symmetric
monoidal if ¤ is also commutative up to coherent natural isomorphism. See [16,
17, 23] for the precise meaning of coherence here. A symmetric monoidal category
D is closed if it has internal hom objects F (d, e) with adjunction isomorphisms

D(d¤e, f) ∼= D(d, F (e, f)).

There are evident notions of monoids in monoidal categories and commutative
monoids in symmetric monoidal categories. The (strict) ring spectra in any of the
modern approaches to stable homotopy theory are the monoids and commutative
monoids in the relevant symmetric monoidal ground category. To compare such
objects in different ground categories, we need language to describe when functors
and natural transformations preserve monoids and commutative monoids.
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Definition 20.1. A functor T : A −→ B between monoidal categories is lax
monoidal if there is a map λ : uB −→ T (uA ) and there are maps

φ : T (A)¤BT (A′) −→ T (A¤A A′)

that specify a natural transformation φ : ¤B ◦ (T × T ) −→ T ◦ ¤A ; it is required
that all coherence diagrams relating the associativity and unit isomorphisms of A
and B to the maps λ and φ commute. If A and B are symmetric monoidal, then T
is lax symmetric monoidal if all coherence diagrams relating the associativity, unit,
and commutativity isomorphisms of A and B commute. The functor T is strong
monoidal or strong symmetric monoidal if λ and φ are isomorphisms.

The relevant coherence diagrams are specified in [16, 17]. The direction of the
arrows λ and φ leads to the following conclusion.

Lemma 20.2. If T : A −→ B is lax monoidal and M is a monoid in A with unit
η : uA −→ M and product µ : M¤A M −→ M , then T (M) is a monoid in B with
unit T (η) ◦ λ : uB −→ T (uA ) −→ T (M) and product

T (µ) ◦ φ : T (M)¤BT (M) −→ T (M¤A M) −→ T (M).

If T : A −→ B is lax symmetric monoidal and M is a commutative monoid in A ,
then T (M) is a commutative monoid in B.

We also need the concomitant notion of a monoidal natural transformation. Here
we needn’t use an adjective “lax” or “strong” since the definition is the same for
either lax or strong monoidal functors.

Definition 20.3. Let S and T be lax monoidal or lax symmetric monoidal functors
A −→ B. A natural transformation α : S −→ T is monoidal if the following
diagrams commute:

uB

λS

{{wwwwwwww
λT

##GG
GG

GG
GG

G

S(uA )
α

// T (uA )

and

S(A)¤BS(A′) α�α //

φS

²²

T (A)¤BT (A′)

φT

²²
S(A¤A A′)

α
// T (A¤A A′).

The following assertion is obvious from the definition and the previous lemma.

Lemma 20.4. If α is monoidal and A is a monoid in A , then α : S(A) −→ T (A)
is a map of monoids in B. If α is symmetric monoidal and A is a commutative
monoid in A , then α : S(A) −→ T (A) is a map of commutative monoids in B.

21. Symmetric monoidal categories of D-spaces

Let D be a symmetric monoidal (based) topological category with unit object u
and continuous product ¤. We describe the symmetric monoidal structure on the
category DT of D-spaces in this section. After the following definition and lemma,
we assume that D has a small skeleton skD ; skD inherits a symmetric monoidal
structure such that the inclusion skD ⊂ D is strong symmetric monoidal.

Definition 21.1. For D-spaces X and Y , define the “external” smash product
X Z Y by

X Z Y = ∧ ◦ (X × Y ) : D ×D −→ T ;
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thus, for objects d and e of D , (X Z Y )(d, e) = X(d) ∧ Y (e). For a D-space Y and
a (D ×D)-space Z, define the external function D-space F̄ (Y,Z) by

F̄ (Y,Z)(d) = DT (Y, Z〈d〉),
where Z〈d〉(e) = Z(d, e). Then, for D-spaces X and Y and a (D ×D)-space Z,

(D ×D)T (X Z Y, Z) ∼= DT (X, F̄ (Y, Z)).(21.2)

Recall the functors Fd from Definition 1.3.

Lemma 21.3. There is a natural isomorphism

FdA Z FeB −→ F(d,e)(A ∧B).

Proof. Using (21.2), (1.4), and the definitions, we see that

(D ×D)T (FdA Z FeB, Z) ∼= T (A ∧B, Z(d, e)) ∼= (D ×D)T (F(d,e)(A ∧B), Z)

for a (D ×D)-space Z.

We internalize the external smash product X Z Y by taking its topological left
Kan extension along ¤ [23, Ch.X]. This gives DT a smash product ∧ under which it
is a closed symmetric monoidal topological category. For an object d of D , let ¤/d
denote the category of objects ¤-over d; its objects are the maps α : e¤f → d and its
morphisms are the pairs of maps (φ, ψ) : (e, f) −→ (e′, f ′) such that α′(φ¤ψ) = α.
This category inherits a topology from D , and a map d → d′ induces a continuous
functor ¤/d −→ ¤/d′.

Definition 21.4. Let X and Y be D-spaces. Define the internal smash product
X∧Y to be the topological left Kan extension of X ZY along ¤. It is characterized
by the universal property

DT (X ∧ Y, Z) ∼= (D ×D)T (X Z Y, Z ◦¤).(21.5)

On an object d, it is specified explicitly as the colimit

(X ∧ Y )(d) = colime�f→d X(e) ∧ Y (f)

indexed on ¤/d; this makes sense since ¤/d has a small cofinal subcategory. When
D itself is small, (X ∧ Y )(d) can also be described as the coend

(X ∧ Y )(d) =
∫ (e,f)∈D×D

D(e¤f, d) ∧ (X(e) ∧ Y (f))

with its topology as a quotient of ∨(e,f)D(e¤f, d) ∧ (X(e) ∧ Y (f)). By the functo-
riality of colimits, maps d → d′ in D induce maps (X ∧Y )(d) −→ (X ∧Y )(d′) that
make X ∧ Y into a D-space.

Definition 21.6. Let X, Y , and Z be D-spaces. Define the internal function
D-space F (Y,Z) by

F (Y, Z) = F̄ (Y,Z ◦¤).
Then (21.1) and (21.5) immediately imply the adjunction

D(X ∧ Y, Z) ∼= D(X,F (Y, Z)).(21.7)

With these definitions, the proof of Theorem 1.7 is formal; see Day [8]. For
Lemma 1.8, we see by use of (21.5), (21.7), (1.4), and the definitions that

DT (FdA ∧ FeB,X) ∼= T (A ∧B, X(d¤e)) ∼= DT (Fd�e(A ∧B), X)

for a D-space X.
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22. Diagram spectra and functors with smash product

Fix a skeletally small symmetric monoidal category D . We have the symmetric
monoidal category DT of D-spaces, and we consider its monoids and commutative
monoids and their modules and algebras. These are defined in terms of the internal
smash product in DT , and we shall explain their reinterpretations in terms of the
more elementary external smash product Z. The proofs of the comparisons are
direct applications of the defining universal properties of ∧ (21.5) and Fd (1.4).

Recall the definitions in §20. We have the category of lax monoidal functors
D −→ T and monoidal transformations and its full subcategory of lax symmetric
monoidal functors. These are the structures defined in terms of the external smash
product that correspond to monoids and commutative monoids in DT .

Proposition 22.1. The category of monoids in DT is isomorphic to the category
of lax monoidal functors D −→ T . The category of commutative monoids in DT
is isomorphic to the category of lax symmetric monoidal functors D −→ T .

Proof. Let R : D −→ T be lax monoidal. We have a unit map λ : S0 −→ R(u)
and product maps φ : R(d) ∧ R(e) −→ R(d¤e) that make all coherence diagrams
commute. We may view φ as a natural transformation R Z R −→ R ◦ ¤. By the
defining properties of Fu and ∧, λ and φ determine and are determined by maps
λ̃ : u∗ −→ R and φ̃ : R ∧R −→ R that give R a structure of monoid in DT .

Now assume given a lax monoidal functor R : D −→ T . Definition 1.9 gives
the notion of a D-spectrum X over R, and we see that X is defined by means of
a continuous natural transformation σ : X Z R −→ X. Regarding R as a monoid
in DT , we have the notion of a (right) R-module X defined in terms of a map
X ∧ R −→ X. Proposition 1.10 states that R-modules and D-spectra over R are
the internal and external versions of the same notion, and the proof of that result
is immediate from (21.5). We mimic the definitions of tensor product and Hom
functors in algebra to define functors ∧R and FR. For a right R-module X and a
left R-module Y , X ∧R Y is the coequalizer of D-spaces displayed in the diagram

X ∧R ∧ Y
µ∧id //
id∧µ′

//X ∧ Y //X ∧R Y,(22.2)

where µ and µ′ are the actions of R on X and Y . For right R-modules Y and Z,
FR(Y, Z) is the equalizer of D-spaces displayed in diagram

FR(Y,Z) //F (Y, Z)
µ∗ //
ω

//F (Y ∧R, Z).(22.3)

Here µ∗ = F (µ, id) and ω is the adjoint of the composite

F (Y, Z) ∧ Y ∧R
ε∧id //Z ∧R

ν //Z,

where µ and ν are the actions of R on Y and Z.
In the rest of this section, we assume that R is a commutative monoid in DT ;

that is, R is a lax symmetric monoidal functor D −→ T . Here the categories of
left and right R-modules are isomorphic. Moreover, X ∧R Y and FR(X,Y ) inherit
R-module structures from X or, equivalently, Y . For R-modules X, Y , and Z,

DSR(X ∧R Y,Z) ∼= DSR(X, FR(Y,Z)).(22.4)

It is formal to prove Theorem 1.7 from the definitions of ∧R and FR.
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The external version of an R-algebra is called a D-FSP (functor with smash
product) over R. We write τ consistently for symmetry isomorphisms.

Definition 22.5. A D-FSP over R is a D-space X together with a unit map
η : R −→ X of D-spaces and a continuous natural product map µ : XZX −→ X◦¤
of functors D ×D −→ T such that the composite

X(d) ∼= X(d) ∧ S0 id∧λ // X(d) ∧R(u)
id∧η // X(d) ∧X(u)

µ // X(d¤u) ∼= X(d)

is the identity and the following unity, associativity, and centrality of unit diagrams
commute:

R(d) ∧R(e)

φ

²²

η∧η // X(d) ∧X(e)

µ

²²
R(d¤e)

η
// X(d¤e),

X(d) ∧X(e) ∧X(f)

id∧µ

²²

µ∧id // X(d¤e) ∧X(f)

µ

²²
X(d) ∧X(e¤f)

µ
// X(d¤e¤f),

and

R(d) ∧X(e)

τ

²²

η∧id // X(d) ∧X(e)
µ // X(d¤e)

X(τ)

²²
X(e) ∧R(d)

id∧η
// X(e) ∧X(d)

µ
// X(e¤d)

A D-FSP is commutative if the following diagram commutes, in which case the
centrality of unit diagram just given commutes automatically:

X(d) ∧X(e)
µ //

τ

²²

X(d¤e)

X(τ)

²²
X(e) ∧X(d)

µ
// X(e¤d).

Observe that X has an underlying D-spectrum over R with structure map

σ = µ ◦ (idZη) : X Z R −→ X ◦¤.

Proposition 22.6. The category of R-algebras is isomorphic to the category of
D-FSP’s over R. The category of commutative R-algebras is isomorphic to the
category of commutative D-FSP’s over R.

23. Categorical results on diagram spaces and diagram spectra

We prove the categorical results stated in §§2, 3. First, we use (21.5) to prove
Theorem 2.2, which states that the categories of DR-spaces and D-spectra over R
are isomorphic.
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Proof of Theorem 2.2. We return to the notations of Construction 2.1. We have

DR(d, e) = DSR(e∗ ∧R, d∗ ∧R)
∼= DT (e∗, d∗ ∧R)
∼= (d∗ ∧R)(e)
∼= colimα:f�g−→e D(d, f) ∧R(g).

Taking α to be the identity map of d¤e and using the identity map d −→ d, we
obtain an inclusion ν : R(e) −→ DR(d, d¤e). Let X be a DR-space. Pullback
along δ gives X a structure of D-space. Pullback along ν of the evaluation map
DR(d, d¤e) ∧ X(d) −→ X(d¤e) gives the components X(d) ∧ R(e) −→ X(d¤e)
of a map X Z R −→ X ◦ ¤. Via (21.5), this gives an action of R on X. These
two actions determine the original action of DR. Indeed, working conversely, if
X is an R-module and α : f¤g −→ e is a morphism of D , then the composites
displayed in the following diagram pass to colimits to define the evaluation maps
(d∗ ∧R)(e) ∧X(d) −→ X(e) of a functor X : DR −→ T .

D(d, f) ∧R(g) ∧X(d)

id∧τ

²²
D(d, f) ∧X(d) ∧R(g) ε∧id //

((−)� id)∧µ

²²

X(f) ∧R(g)

µ

²²
D(d¤g, f¤g) ∧X(d¤g)

ε
// X(f¤g)

X(α) // X(e).

Here ε is the evaluation map of X and µ is the action of R on X. This gives the
desired isomorphism of categories between DRT and DSR.

Now let R be commutative. To show that the smash products agree under the
isomorphism between DSR and DRT , we can either compare the definitions of the
respective smash products directly or compare the defining universal properties.
The unit (uDR

)∗ of the smash product of DR-spaces is isomorphic to R since

(uDR)∗(d) = DR(uDR , d) = ((uD)∗ ∧R)(e) ∼= R(e).

Returning to the context of §3, let ι : C −→ D be a continuous functor, where
C is skeletally small. The following definition includes the proof of Proposition 3.2.

Definition 23.1. Define P : C T −→ DT on C -spaces X by letting PX be the
topological left Kan extension of X along ι. It is characterized by the adjunction

DT (PX, Y ) ∼= C T (X,UY ).(23.2)

Let ι/d be the topological category of objects ι-over d; its objects are the maps
α : ιc −→ d in D and its morphisms are the maps ψ : c −→ c′ in C such that
α′(ιψ) = α. On an object d, PX is specified explicitly as the colimit

PX(d) = colimιc→d X(c)

indexed on ι/d. If C is small, PX(d) can also be described as the coend

PX(d) =
∫ c∈C

D(ιc, d) ∧X(c).(23.3)

If ι : C −→ D is fully faithful and c ∈ C , then the identity map of ιc is a terminal
object in ι/ιc and therefore η : X −→ UPX is an isomorphism.
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Now assume that C and D are skeletally small symmetric monoidal categories
and that ι is a strong symmetric monoidal functor.

Proof of Proposition 3.3. Observe that left Kan extension also gives a functor

P : (C × C )T −→ (D ×D)T .

A direct comparison of colimits shows that

P(X Z X ′) ∼= PX Z PX ′,(23.4)

and it is trivial to check the analogous isomorphism

U(Y Z Y ′) ∼= UY Z UY ′.(23.5)

We have a unit isomorphism λ : uD −→ ιuC and a product isomorphism φ :
¤D ◦ (ι× ι) −→ ι ◦¤C . For (D ×D)-spaces Z, φ induces a natural isomorphism

U(Z ◦¤D) ∼= (UZ) ◦¤C .(23.6)

The unit isomorphism Pu∗C ∼= u∗D is given by the last statement of Proposition
3.2, and its adjoint gives the unit isomorphism u∗C ∼= Uu∗D . The defining universal
properties of ∧ and P, together with (23.4) and (23.6), give a natural isomorphism

DT (PX ∧ PX ′, Y )
∼=−→ DT (P(X ∧X ′), Y ),

and this implies the product isomorphism PX ∧ PX ′ ∼= P(X ∧ X ′). Note the
direction of the displayed arrow: P would not even be lax monoidal if ι were only
lax, rather than strong, monoidal. Similarly, the defining universal properties of ∧
and P, together with (23.5) and (23.6), give a composite natural map

DT (Y ∧ Y ′, Y ∧ Y ′) ∼= (D ×D)T (Y Z Y ′, (Y ∧ Y ′) ◦¤D)
ε∗−→ (D ×D)T (PU(Y Z Y ′), (Y ∧ Y ′) ◦¤D)
∼= (C × C )T (U(Y Z Y ′),U((Y ∧ Y ′) ◦¤D ))
∼= (C × C )T (UY Z UY ′,U(Y ∧ Y ′) ◦¤C )
∼= C T (UY ∧ UY ′,U(Y ∧ Y ′)).

The product map UY ∧UY ′ −→ U(Y ∧Y ′) is the image of the identity map of Y ∧Y ′

along this composite, and one cannot expect this map to be an isomorphism.

Proof of Proposition 3.4. We are given a monoid R in DT . For objects a and b of
C , we have

CUR(a, b) ∼= colimα:c�c′−→b C (a, c) ∧Rι(c′).

Smash products of maps ι : C (a, c) −→ D(ιa, ιc) and identity maps of the spaces
R(ιc′) pass to colimits to give maps

CUR(a, b) −→ DR(ι(a), ι(b)).

These specify the required extension κ : CUR −→ DR of ι : C −→ D on morphism
spaces. By inspection, κ is symmetric monoidal when R is commutative.
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Appendix A. Recollections about equivalences of model categories

We have made heavy use of basic facts about adjoint functors and adjoint equiva-
lences between model categories. We recall these facts for the reader’s convenience.

Definition A.1. Let P : A −→ B and U : B −→ A be left and right adjoints
between model categories A and B. The functors P and U are a Quillen adjoint
pair if U preserves q-fibrations and acyclic q-fibrations or, equivalently, if P pre-
serves q-cofibrations and acyclic q-cofibrations. A Quillen adjoint pair is a Quillen
equivalence if, for all cofibrant A ∈ A and all fibrant B ∈ B, a map PA −→ B is a
weak equivalence if and only if its adjoint A −→ UB is a weak equivalence.

These notions are discussed thoroughly in [14, §1.3], and the following result is
immediate from [14, I.3.13, I.3.16].

Lemma A.2. Let P : A −→ B and U : B −→ A be a Quillen adjoint pair.
(i) The total derived functors

LP : Ho(A ) −→ Ho(B) and RU : Ho(B) −→ Ho(A )

exist and are adjoint.
(ii) (P,U) is a Quillen equivalence if and only if RU or, equivalently, LP is an

equivalence of categories.
(iii) If U creates the weak equivalences of B and η : A −→ UPA is a weak equiva-

lence for all cofibrant objects A, then (P,U) is a Quillen equivalence.

The following observation [14, 4.3.3] is relevant to Theorems 0.3 and 0.10.

Lemma A.3. Let P : A −→ B and U : B −→ A be a Quillen equivalence, where
P is a strong monoidal functor between monoidal categories (under products ∧).
The natural isomorphism PX ∧ PY −→ P(X ∧ Y ) induces a natural isomorphism

LPX ∧L LPY −→ LP(X ∧L Y ).
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