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Abstract. With motivation from algebraic topology, algebraic geometry, and
string theory, we study various topics in differential homological algebra. The
work is divided into five largely independent parts:

I Definitions and examples of operads and their actions
II Partial algebraic structures and conversion theorems

III Derived categories from a topological point of view
IV Rational derived categories and mixed Tate motives
V Derived categories of modules over E∞ algebras
In differential algebra, operads are systems of parameter chain complexes

for multiplication on various types of differential graded algebras “up to homo-
topy”, for example commutative algebras, n-Lie algebras, n-braid algebras, etc.
Our primary focus is the development of the concomitant theory of modules
up to homotopy and the study of both classical derived categories of modules
over DGA’s and derived categories of modules up to homotopy over DGA’s
up to homotopy. Examples of such derived categories provide the appropriate
setting for one approach to mixed Tate motives in algebraic geometry, both
rational and integral.
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Part . Introduction

There are many different types of algebra: associative, associative and commuta-
tive, Lie, Poisson, etc., etc. Each comes with an appropriate notion of a module and
thus with an associated theory of representations. Moreover, as is becoming more
and more important in a variety of fields, including algebraic topology, algebraic
geometry, differential geometry, and string theory, it is very often necessary to deal
with “algebras up to homotopy” and with “partial algebras”. The associated theo-
ries of modules have not yet been developed in the published literature, but these
notions too are becoming increasingly important. We shall study various aspects
of the theory of such generalized algebras and modules in this paper. We shall also
develop some related algebra in the classical context of modules over DGA’s. While
much of our motivation comes from the theory of mixed Tate motives in algebraic
geometry, there are pre-existing and potential applications in all of the other fields
mentioned above.

The development of abstract frameworks in which to study such algebras has
a long history. It now seems to be widely accepted that, for most purposes, the
most convenient setting is that given by operads and their actions [46]. While
the notion was first written up in a purely topological framework, due in large
part to the resistance of topologists to abstract nonsense at that period, it was
already understood by 1971 that the basic definitions apply equally well in any
underlying symmetric monoidal (= tensor) category [35]. In fact, certain chain level
concepts, the PROP’s and PACT’s of Adams and MacLane [42], were important
precursors of operads. From a topological point of view, the switch from algebraic to
topological PROP’s, which was made by Boardman and Vogt [11], was a major step
forwards. Perhaps for this reason, a chain level algebraic version of the definition of
an operad did not appear in print until the 1987 paper of Hinich and Schechtman
[31]. Applications of such algebraic operads and their actions have appeared in a
variety of contexts in other recent papers, for example [27, 28, 29, 32, 34, 33, 56].

In the algebraic setting, an operad C consists of suitably related chain complexes
C (j) with actions by the symmetric groups Σj . An action of C on a chain complex
A is specified by suitably related Σj-equivariant chain maps

C (j)⊗Aj → A,

where Aj is the j-fold tensor power of A. The C (j) are thought of as parameter
complexes for j-ary operations. When the differentials on the C (j) are zero, we
think of C as purely algebraic, and it then determines an appropriate class of (dif-
ferential) algebras. When the differentials on the C (j) are non-zero, C determines
a class of (differential) algebras “up to homotopy”, where the homotopies are de-
termined by the homological properties of the C (j). For example, we say that C is
an E∞ operad if each C (j) is Σj-free and acyclic, and we then say that A is an E∞
algebra. An E∞ algebra A has a product for each degree zero cycle of C (2). Each
such product is unital, associative, and commutative up to all possible coherence
homotopies, and all such products are homotopic. There is a long history in topol-
ogy and category theory that makes precise what these “coherence homotopies”
are. However, since the homotopies are all encoded in the operad action, there is
no need to be explicit. There is a class of operads that is related to Lie algebras as
E∞ operads are related to commutative algebras, and there is a concomitant notion
of a “strong homotopy Lie algebra”. In fact, any type of algebra that is defined in
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terms of suitable identities admits an analogous “strong homotopy” generalization
expressed in terms of actions by appropriate operads.

We shall give an exposition of the basic theory of operads and their algebras
and modules in Part I. While we shall give many examples, the deeper parts of the
theory that are geared towards particular applications will be left to later parts. In
view of its importance to string theory and other areas of current interest, we shall
illustrate ideas by describing the relationship between the little n-cubes operads of
iterated loop space theory on the one hand and n-Lie algebras and n-braid algebras
on the other. An operad S of topological spaces gives rise to an operad C#(S )
of chain complexes by passage to singular chains. On passage to homology with
field coefficients, there results a purely algebraic operad H∗(S ). There is a partic-
ular operad of topological spaces, denoted Cn, that acts naturally on n-fold loop
spaces. For n ≥ 2, the algebras defined by H∗(Cn;Q) are exactly the (n− 1)-braid
algebras. Even before doing any calculation, one sees from a purely homotopical
theorem of [46] that, for any path connected space X, H∗(ΩnΣnX;Q) is the free
H∗(Cn; bQ)-algebra generated by H∗(X;Q). This allows a topological proof, based
on the Serre spectral sequence, of the algebraic fact that the free n-braid algebra
generated by a graded vector space V is the free commutative algebra generated by
the free n-Lie algebra generated by V . Actually, the results just summarized are
the easy characteristic zero case of Cohen’s much deeper calculations in arbitrary
characteristic [15, 16], now over twenty years old.

Operads and their actions are specified in terms of maps that are defined on
tensor products of chain complexes. In practice, one often encounters structures
that behave much like algebras and modules, except that the relevant maps are
only defined on suitable submodules of tensor products. For geometric intuition,
think of intersection products that are only defined between elements that are in
general position. Such partial algebras have been used in topology since the 1970’s,
for example in [48] and in unpublished work of Boardman and Segal. In Part II, we
shall generalize the notions of algebras over operads and of modules over algebras
over operads to the context of partially defined structures. Such partially defined
structures are awkward to study algebraically, and it is important to know when
they can be replaced by suitably equivalent globally defined structures. We shall
show in favorable cases that partial algebras can be replaced by quasi-isomorphic
genuine algebras over operads, and similarly for modules. When k is a field of
characteristic zero, we shall show further that E∞ algebras and modules can be
replaced by quasi-isomorphic commutative algebras and modules and, similarly,
that strong homotopy Lie algebras and modules can be replaced by quasi-isomorphic
genuine Lie algebras and modules. The arguments work equally well for other kinds
of algebras.

One of the main features of the definition of an operad is that an operad deter-
mines an associated monad that has precisely the same algebras. This interpreta-
tion is vital to the use of operads in topology. The proofs of the results of Part II
are based on this feature. The key tool is the categorical “two-sided monadic bar
construction” that was introduced in the same paper that first introduced operads
[46]. This construction has also been used to prove topological analogs of many of
the present algebraic results, along with various other results that are suggestive
of further algebraic analogs [47, 49, 26, 52]. In particular, the proofs in Part II are
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exactly analogous to a topological comparison between Segal’s Γ-spaces [55] and
spaces with operad actions that is given in [26].

While these results can be expected to have other applications, the motivation
came from algebraic geometry. For a variety X, Bloch [7] defined the Chow complex
Z(X). This is a simplicial abelian group whose homology groups are the Chow
groups of X. It has a partially defined intersection product, and we show in Part
II that it gives rise to a quasi-isomorphic E∞ algebra, denoted N (X). After
tensoring with the rationals, we obtain a commutative differential graded algebra
(DGA) NQ(X) that is quasi-isomorphic to N (X)⊗Q. The construction of these
algebras answers questions of Deligne [20] that were the starting point of the present
work. His motivation was the intuition that, when X = Spec(F ) for a field F , the
associated derived categories of modules ought to be the appropriate homes for
categories of integral and rational mixed Tate motives over F .

This raises several immediate problems. On the rational level, it is necessary to
connect this approach to mixed Tate motives with others. On the integral level, in
order to take the intuition seriously, one must first construct the derived category
of modules over an E∞ algebra. As a preliminary to the solution of these problems,
in Part III we shall give a new, topologically motivated, treatment of the classical
derived category of modules over a DGA. We shall give a theory of “cell modules”
that is just like the theory of “CW spectra” in stable homotopy theory, and we
shall prove direct algebraic analogs of such standard and elementary topological
results as the homotopy extension and lifting property, the Whitehead theorem,
and Brown’s representability theorem. One point is that there is not the slightest
difficulty in handling unbounded algebras and modules: except that the details
are far simpler, our substitute for the usual approximation of differential modules
by projective resolutions works in exactly the same way as the approximation of
arbitrary spectra by (infinite) CW spectra with cells of arbitrarily small dimension,
which has long been understood. Similarly, derived tensor products of modules
work in the same way as smash products of spectra.

In Part IV, we shall specialize this theory to study the derived category DA of
cohomologically bounded below A-modules, where A is a cohomologically connected
commutative DGA over a field of characteristic zero. In the language of [3], we
shall give the triangulated category DA a t-structure. Its heart HA will be the
Abelian subcategory of modules whose indecomposable elements have homology
concentrated in degree zero. In the language of [21], we shall show that the full
subcategory FHA of finite dimensional modules in HA is a neutral Tannakian
category. It is therefore the category of representations of an affine group scheme
or, equivalently, of finite dimensional comodules over a Hopf algebra.

In fact, without using Tannakian theory, we shall prove directly that HA is
equivalent to the category of comodules over the explicit commutative Hopf algebra
χA = H0B̄(A). The “cobracket” associated to the coproduct on χA induces a
structure of “co-Lie algebra” on its vector space γA of indecomposable elements,
and we shall see that HA is also equivalent to the category of generalized nilpotent
representations of the co-Lie algebra γA.

Part IV is really a chapter in rational homotopy theory, and it may well have
applications to that subject. As was observed by Sullivan [58], a co-Lie algebra γ
determines a structure of DGA on the exterior algebra ∧(γ[−1]), where γ[−1] is a
copy of γ concentrated in degree one. For a cohomologically connected DGA A,
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∧(γA[−1]) is the 1-minimal model of A. We shall prove the rather surprising result
that the derived category of modules over the DGA ∧(γA[−1]) is equivalent to the
derived category of the Abelian category HA. Curiously, although the theory of
minimal rational DGA’s has been widely studied since Sullivan’s work, the analo-
gous theory of minimal modules does not appear in the literature. That theory will
be central to our work in Part IV.

In view of the relationship between Chow groups and K-groups, the Beilinson-
Soulé conjecture for the field F is equivalent to the assertion that the DGA NQ =
NQ(Spec(F )) is cohomologically connected. When the conjecture holds, the results
just summarized apply to A = NQ. Assuming the Beilinson-Soulé conjecture (and
assuming our construction of the DGA A), Deligne [20], [17], proposed FHA as
a candidate for the Abelian category MT M (F ) of mixed Tate motives over F .
He (in [18]) and Bloch also proposed the category of finite dimensional comodules
over χA as a candidate for MT M (F ), and [6] proves realization theorems in étale
and Hodge theory starting from this definition. Our work shows that these two
categories are equivalent, and it gives a fairly concrete and explicit description of
them. When A is a K(π, 1), in the sense that A is quasi-isomorphic to its 1-minimal
model, we shall have the relation

Extp
MT M (F )(Q,Q(r)) ∼= grr

γK2r−p(F )⊗Q

between the Abelian category MT M (F ) and the algebraic K-theory of F . (Un-
defined notations are explained in the introduction to Part IV.)

Finally, in Part V, we shall construct the derived category of modules over an
A∞ or E∞ k-algebra A, where k is a commutative ground ring. Here A∞ algebras
are DGA’s up to homotopy (without commutativity). There are a number of sub-
tleties. From Part I, we know that A-modules are equivalent to modules over an
associative, but not commutative, universal enveloping DGA U(A). In particular,
U(k) = C (1). In earlier parts, all E∞ operads were on the same footing. In Part V,
we work with a particular E∞ operad C that enjoys special properties, but we show
that restriction to this choice results in no loss of generality. Remarkably, with this
choice, the category of E∞ k-modules, alias the category of C (1)-modules, admits
a commutative and associative “tensor product” £. This product is not unital on
the module level, although there is a natural unit map k £ M → M that becomes
an isomorphism in the derived category. This fact leads us to introduce certain
modified versions of the product M £ N that are applicable when one or both of
M and N is unital, in the sense that it has a given map k → M . The product “¡”
that applies when both M and N are unital is commutative, associative, and unital
up to coherent natural isomorphism; that is, the category of unital E∞ k-modules
is symmetric monoidal under ¡.

Conceptually, we now change ground categories from the category of k-modules
to the category of E∞ k-modules. It turns out that A∞ and E∞ algebras can be
described very simply in terms of products A £ A → A. In fact, an A∞ k-algebra
is exactly a monoid in the symmetric monoidal category of unital E∞ k-modules,
and an E∞ k-algebra is a commutative monoid. There is a similar conceptual
description of modules over A∞ and E∞ algebras. From here, the development of
the triangulated derived category DA of modules over an A∞ algebra A proceeds
exactly as in the case of an actual DGA in Part III. When A is an E∞ algebra, the
category of A-modules admits a commutative and associative tensor product £A
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and a concomitant internal Hom functor Hom�A. Again, there is a natural unit map
A£AM → M that becomes an isomorphism on passage to derived categories. There
are Eilenberg-Moore, or hyperhomology, spectral sequences for the computation of
the homology of M £A N and Hom�A(M,N) in terms of the classical Tor and Ext
groups

TorH∗(A)
∗ (H∗(M), H∗(N)) and Ext∗H∗(A)(H

∗(M),H∗(N)).

Thus our new derived categories of modules over A∞ and E∞ algebras enjoy all of
the basic properties of the derived categories of modules over DGA’s and commu-
tative DGA’s.

In view of the unfamiliarity of the constructions in Part V, we should perhaps
say something about our philosophy. In algebraic topology, it has long been stan-
dard practice to work in the stable homotopy category. This category is hard to
construct rigorously, and its objects are hard to think about on the point-set level.
(Although the definitional framework in algebraic geometry is notoriously abstract,
the objects that algebraic geometers usually deal with are much more concrete
than the spectra of algebraic topology.) However, once the machinery is in place,
the stable homotopy category gives an enormously powerful framework in which
to perform explicit calculations. It may be hoped that our new algebraic derived
categories will eventually serve something of the same purpose.

Actually, the analogy with topology is more far-reaching. There are analogs
of E∞ algebras in stable homotopy theory, namely the E∞ ring spectra that were
introduced in [47]. With Elmendorf [25], we have worked out a theory of module
spectra over A∞ and E∞ ring spectra that is precisely parallel to the algebraic the-
ory of Part V. Although it is much more difficult, its constructive and calculational
power are already evident. Basic spectra that previously could only be constructed
by the Baas-Sullivan theory of manifolds with singularities are easily obtained from
the theory of modules over the E∞ ring spectrum MU that represents complex
cobordism. Spectral sequences that are the precise analogs of the Eilenberg-Moore
(or hyperhomology) spectral sequences in Part V include Künneth and universal
coefficient spectral sequences that are of clear utility in the study of generalized
homology and cohomology. Some other applications were announced in [24], and
many more are now in place. An exposition of the analogy between the algebraic
and topological theories is given in [51].

Parts II and V constitute a revision and expansion of material in the preprint [37],
which had a rather different perspective. That draft was intended to lay foundations
for work in both algebra and topology, but it has since become apparent that,
despite the remarkably close analogy between the two theories and the resulting
expository duplication, the technical differences dictate separate and self-contained
treatments. Some of the present results were announced in [38].

Each part has its own introduction, and we have tried to make the parts readable
independently of one another. Part III has nothing whatever to do with operads
and is wholly independent of Parts I and II. Although the examples that motivated
Part IV are constructed by use of Part II, the theory in Part IV also has nothing
to do with operads and is independent of Parts I and II. Part V is independent of
Part IV and nearly independent of Part II.

A reference of the form “II.m.n” is to statement m.n in Part II; within Part II,
the reference would be to “m.n”. We shall work over a fixed commutative ground
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ring k. There are no restrictions on k in Parts I, III, and V; k is assumed to be a
Dedekind ring in Part II and to be a field of characteristic zero in Part IV.

We wish to thank many people who have taken an interest in this work. Part I
can serve as an introduction not only to this paper, but also to the closely related
papers of Ginzburg and Kapranov [29], Getzler and Jones [27, 28], and Hinich and
Schechtman [31, 32]. Some of the more interesting insights in Part I are due to
these authors, and we are grateful to them for sharing their ideas with us. The
second author wishes to take this opportunity to offer his belated thanks to Max
Kelly and Saunders MacLane for conversations in 1970-71. Discussions then about
operads in symmetric monoidal categories are paying off now. We are also very
grateful to Jim Stasheff, who alerted us to how seriously operads are being used
in mathematical string theory, urged us to give the general exposition of Parts I
and II, and offered helpful criticism of preliminary versions. We also thank our
colleague Spencer Bloch for detecting an error in the first version of Part II and
for ongoing spirited discussions about motives. We are especially grateful to our
collaborator Tony Elmendorf; the original version of the theory in Part V was far
more complicated, and this material has been reshaped by the insights developed
in our parallel topological work with him. It is a pleasure to thank Deligne for his
letters that led to this paper and for his suggestions for improving its exposition.

Part I. Definitions and examples of operads and operad actions

We define operads in Section 1, algebras over operads in Section 2, and modules
over algebras over operads in Section 4, giving a number of variants and examples.
The term “operad” is meant to bring to mind suitably compatible collections of
j-ary product operations. It was coined in order to go well with the older term
“monad” (= triple), which specifies a closely related mathematical structure that
has a single product. As we explain in Section 3, operads determine associated
monads in such a way that an algebra over an operad is the same thing as an
algebra over the associated monad. While not at all difficult, this equivalence of
definitions is central to the theory and its applications. Section 4 includes a precisely
analogous description of modules as algebras over a suitable monad, together with
a quite different, and more familiar, description as ordinary modules over universal
enveloping algebras. Both points of view are essential.

In Section 5, we discuss the passage from topological operads and monads to
algebraic operads and monads via chain complexes and homology. We speculate
that similar ideas will have applications to other situations, for example in alge-
braic geometry, where one may encounter operads in a category that has a suitable
homology theory defined on it. In Section 6, we specialize to the little n-cubes
operads Cn. These arose in iterated loop space theory and are now understood to
be relevant to the mathematics of string theory. We show that H∗(Cn) contains
a suboperad which, when translated to degree zero, is isomorphic to the operad
that defines Lie algebras, and we observe that work in Cohen’s 1972 thesis [15, 16]
implies that the full operad H∗(Cn) defines n-braid algebras. While current inter-
est focuses on characteristic zero information, we shall give some indications of the
deeper mod p theory. In particular, in Section 7, we shall describe the Dyer-Lashof
operations that are present on the mod p homologies of E∞ algebras. Such opera-
tions are central to infinite loop space theory, and our later work will indicate that
they are also relevant to the mod p higher Chow groups in algebraic geometry.
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1. Operads

We work in the tensor category of differential Z-graded modules over our ground
ring k, with differential decreasing degree by 1. Thus ⊗ will always mean ⊗k.
Readers who prefer the opposite grading convention may reindex chain complexes
C∗ by setting Cn = C−n. While homological grading is most convenient in Parts
I and II, we shall find it convenient to switch to cohomological grading in later
parts. We agree to refer to chain complexes over k simply as “k-modules”. As
usual, we consider graded k-modules without differential to be differential graded
k-modules with differential zero, and we view ungraded k-modules as graded k-
modules concentrated in degree 0. These conventions allow us to view the theory of
generalized algebras as a special case of the theory of differential graded generalized
algebras. The differentials play little role in the theory of the first four sections.
As will become relevant in Part II, everything in these sections works just as well
in the still more general context of simplicial k-modules.

We begin with the definition of an operad of k-modules. While there are perhaps
more elegant equivalent ways of writing the definition, the original explicit version
of [46] still seems to be the most convenient, especially for concrete calculational
purposes. Whenever we deal with permutations of k-modules, we implicitly use the
standard convention that a sign (−1)pq is to be inserted whenever an element of
degree p is permuted past an element of degree q.

Definition 1.1. An operad C consists of k-modules C (j), j ≥ 0, together with a
unit map η : k → C (1), a right action by the symmetric group Σj on C (j) for each
j, and maps

γ : C (k)⊗ C (j1)⊗ · · · ⊗ C (jk) → C (j)

for k ≥ 1 and js ≥ 0, where
∑

js = j. The γ are required to be associative, unital,
and equivariant in the following senses.
(a) The following associativity diagrams commute, where

∑
js = j and

∑
it = i;

we set gs = j1 + · · ·+ js, and hs = igs−1+1 + · · ·+ igs for 1 ≤ s ≤ k:

C (k)⊗ (
k⊗

s=1

C (js))⊗ (
j⊗

r=1

C (ir))

shuffle

²²

γ⊗Id // C (j)⊗ (
j⊗

r=1

C (ir))

γ

²²
C (i)

C (k)⊗ (
k⊗

s=1

(C (js)⊗ (
js⊗

q=1

C (igs−1+q)))
Id⊗(⊗sγ)

// C (k)⊗ (
k⊗

s=1

C (hs)).

γ

OO

(b) The following unit diagrams commute:
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C (k)⊗ (k)k

Id⊗ηk

²²

∼= // C (k) k ⊗ C (j)

η⊗Id

²²

∼= // C (j)

C (k)⊗ C (1)k

γ

88rrrrrrrrrr
C (1)⊗ C (j)

γ

99rrrrrrrrrr

(c) The following equivariance diagrams commute, where σ ∈ Σk, τs ∈ Σjs
,

σ(j1, . . . , jk) ∈ Σk permutes k blocks of letter as σ permutes k letters, and τ1 ⊕
· · · ⊕ τk ∈ Σk is the block sum:

C (k)⊗ C (j1)⊗ · · · ⊗ C (jk)

γ

²²

σ⊗σ−1
// C (k)⊗ C (jσ(1))⊗ · · · ⊗ C (jσ(k))

γ

²²
C (j)

σ(jσ(1),...,jσ(k)) // C (j)

and

C (k)⊗ C (j1)⊗ · · · ⊗ C (jk)

γ

²²

Id⊗τ1⊗···⊗τk // C (k)⊗ C (j1)⊗ · · · ⊗ C (jk)

γ

²²
C (j)

τ1⊗···⊗τk // C (j)

The C (j) are to be thought of as modules of parameters for “j-ary operations”
that accept j inputs and produce one output. Thinking of elements as operations,
we think of γ(c⊗ d1⊗ · · · ⊗ dk) as the composite of the operation c with the tensor
product of the operations ds. We emphasize that the definition makes sense in any
symmetric monoidal ground category, with product ⊗ and unit object k. In the
present algebraic context, the unit map η is specified by a degree zero cycle 1 ∈
C (1). The definition admits several minor variants and particular types. Recall that
a map of k-modules is said to be a quasi-isomorphism if it induces an isomorphism
of homology groups.

Variants 1.2. (i) Non-Σ operads. When modelling non-commutative algebras, it
is often useful to omit the permutations from the definition, giving the notion of
a non-Σ operad. However, one may also keep the permutations in such contexts,
using them to record the order in which products are taken. An operad is a non-Σ
operad by neglect of structure.
(ii) Unital operads. By convention, the 0th tensor power of a k-module A is inter-
preted to be k (concentrated in degree 0). The module C (0) parametrizes “0-ary
operations” k → A. In practice, one is most often concerned with unital algebras,
and one thinks of the unit element 1 ∈ A as specifying a map k → A. In such
contexts, it is sensible to insist that C (0) = k, and we then say that C is a unital
operad. For types of algebras without units, such as Lie algebras, it is natural to
set C (0) = 0.
(iii) Augmentations. If C is unital, the C (j) have the augmentations

ε = γ : C (j) ∼= C (j)⊗ C (0)j → C (0) = k.
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Definition 1.3. Let C be a unital operad. We say that C is acyclic if its augmen-
tations are quasi-isomorphisms. We say that C is Σ-free (or Σ-projective) if C (j)
is k[Σj ]-free (or k[Σj ]-projective) for each j. We say that C is an E∞ operad if it
is both acyclic and Σ-free; C (j) is then a k[Σj ]-free resolution of k.

Example 1.4. An explicit example of an E∞ operad C can be obtained as fol-
lows. There is a standard product-preserving functor D∗ from sets to contractible
simplicial sets [46, §10]. The set Dq(X) of q-simplices of D∗(X) is the (q + 1)-fold
Cartesian power Xq+1; the faces and degeneracies are given by projections and
diagonal maps. For a group G, D∗(G) is a free simplicial group, and its normalized
k-chain complex is the classical homogeneous bar resolution for the group ring k[G]
(e.g. [14, p. 190]). Letting C (j) be the normalized k-chain complex of D∗(Σj), we
can use functoriality to construct structural maps γ making C an E∞ operad.

Passage to normalized singular k-chain complexes from E∞ operads of spaces
gives other examples; see Section 5.

2. Algebras over operads

Let Xj denote the j-fold tensor power of a k-module X, with Σj acting on the
left. Again, X0 = k. (We shall never use Cartesian powers in the algebraic context.)

Definition 2.1. Let C be an operad. A C -algebra is a k-module A together with
maps θ : C (j)⊗Aj → A, j ≥ 0, that are associative, unital, and equivariant in the
following senses.
(a) The following associativity diagrams commute, where j =

∑
js:

C (k)⊗ C (j1)⊗ · · · ⊗ C (jk)⊗Aj

shuffle

²²

γ⊗Id // C (j)⊗Aj

θ

²²
A

C (k)⊗ C (j1)⊗Aj1 ⊗ · · · ⊗ C (jk)⊗Ajk
Id⊗θk

// C (k)⊗Ak

θ

OO

(b) The following unit diagram commutes:

k ⊗A
∼= //

η⊗Id

²²

A

C (1)⊗A

θ

::vvvvvvvvv

(c) The following equivariance diagrams commute, where σ ∈ Σj ;

C (j)⊗Aj

γ
$$III

III
III

I
σ⊗σ−1

// C (j)⊗Aj

γ
zzuuu

uuu
uuu

u

A
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One way to motivate the precise data in the definition is to define the endomor-
phism operad End(X) of a k-module X. For k-modules X and Y , let Hom(X, Y )
be the k-module whose elements of degree n are the homomorphisms f : X → Y
of graded k-modules (not commuting with differential) that raise degree by n. The
differential is specified by

(df)(x) = d(f(x))− (−1)nf(d(x)).

If K denotes the category of k-modules and maps of degree 0, then

K (X ⊗ Y,Z) ∼= K (X, Hom(Y, Z)).

Now define
End(X)(j) = Hom(Xj , X).

The unit is given by the identity map X → X, the right actions by symmetric
groups are given by their left actions on tensor powers, and the maps γ are given
by the following composites, where

∑
js = j:

Hom(Xk, X)⊗Hom(Xj1 , X)⊗ · · · ⊗Hom(Xjk , X)

Id⊗(k-fold tensor product of maps)

²²
Hom(Xk, X)⊗Hom(Xj , Xk)

composition

²²
Hom(Xj , X)

Conditions (a)-(c) of Definition 1.1 are then forced by direct calculation. An action
of C on A can be redefined in adjoint form as a morphism of operads C → End(A),
and conditions (a)-(c) of Definition 2.1 are then also forced by direct calculation.

Examples 2.2. (i) The unital operad M has M (j) = k[Σj ] as a right k[Σj ]-
module (concentrated in degree 0). The unit map η is the identity and the maps γ
are dictated by the equivariance formulas of Definition 1.1(c). Explicitly, for σ ∈ Σk

and τs ∈ Σjs ,
γ(σ; τ1, . . . , τk) = σ(j1, . . . , jk)(τ1 ⊕ · · · ⊕ τk).

An M -algebra A is the same thing as a “DGA”, that is, a unital and associative
differential graded algebra. The action θ on a DGA A is given by the explicit
formula

θ(σ ⊗ a1 ⊗ · · · ⊗ aj) = ±aσ(1) ⊗ · · · ⊗ aσ(j),

where σ ∈ Σj and ai ∈ A. (The sign is given by our standing convention.)
(ii) The unital operad N has N (j) = k for all j. The Σj-actions are trivial, the
unit map η is the identity, and the maps γ are the evident identifications. An
N -algebra is the same thing as a commutative DGA. If we regard N as a non-Σ
operad and delete the equivariance diagram from Definition 2.1, then the resulting
notion of an N -algebra is again a not necessarily commutative DGA.
(iii) For a unital operad C , the augmentations ε : C (j) → k give a map ε : C → N
of operads. Therefore, by pullback along ε, an N -algebra may be viewed as a
C -algebra.
(iv) We define an E∞ algebra to be a C -algebra for any E∞ operad C . We do not
insist on a particular choice of C . Hinich and Schechtman [31] studied algebras of
this type, which they called “May algebras”.
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One can treat operads as algebraic systems to which one can apply versions of
classical algebraic constructions. An ideal I in an operad C consists of a sequence
of sub k[Σj ]-modules I (j) of C (j) such that γ(c⊗ d1⊗ · · · ⊗ dk) is in I if either c
or any of the ds is in I . There is then a quotient operad C /I with jth k-module
C (j)/I (j). As observed by Ginzburg and Kapranov [29], one can adapt work of
Boardman and Vogt [11, 11§2] to construct the free operad FG generated by any
sequence G = {G (j)} of k[Σj ]-modules, and one can then construct an operad that
describes a particular type of algebra by quotienting out by the ideal generated by
an appropriate sequence R = {R(j)} of defining relations, where R(j) is a sub
k[Σj ]-module of (FG )(j). Actually, there are two variants of the construction, one
unital and one non-unital.

In many familiar examples, called quadratic operads in [29], G (j) = 0 for j 6= 2
and R(j) = 0 for j 6= 3. Here, if G (2) is k[Σ2] and R(3) = 0, this reconstructs
M . If G (2) = k with trivial Σ2-action and R(3) = 0, this reconstructs N . In
these cases, we use the unital variant. If k is a field of characteristic other than 2
or 3, we can use the non-unital variant to construct an operad L whose algebras
are the Lie algebras over k. To do this, we take G (2) = k, with the transposition
in Σ2 acting as −1, and take R(3) to be the space (FG )(3)Σ3 of invariants, which
is one dimensional. Basis elements of G (2) and R(3) correspond to the bracket
operation and the Jacobi identity. As we explain in Section 6, L can be realized
homologically by the topological little n-cubes operads for any n > 1. Various other
examples of quadratic operads are described in [29]. Note that, in these “purely
algebraic” examples, all C (j) are concentrated in degree zero, with zero differential.

The definition of a Lie algebra over a field k requires the additional relations
[x, x] = 0 if char(k) = 2 and [x, [x, x]] = 0 if char(k) = 3. Purely algebraic oper-
ads are not well adapted to codify such relations with repeated variables, still less
such nonlinear operations as the restriction (or pth power operation) of restricted
Lie algebras in characteristic p. The point is simply that the elements of an op-
erad specify operations, and operations by their nature cannot know about special
properties (such as repetition) of the variables to which they are applied.

As an aside, since in the absence of diagonals it is unclear that there is a work-
able algebraic analog, we note that a topological theory of E∞ ring spaces has
been developed in [49]. The sum and product, with the appropriate version of the
distributive law, are codified in actions by two suitably interrelated operads.

Remarks 2.3. (i) A k-module X also has a “co-endomorphism operad” Co-End(X);
its jth k-module is Hom(X,Xj), and its structural maps are given in an evident
way by composition and tensor products. We define a coaction of an operad C on
a k-module X to be a map of operads C → Co-End(X); such an action is given by
suitably interrelated maps C (j)⊗X → Xj .
(ii) We have defined operads in terms of maps. If we reverse the direction of every
arrow in Definition 1.1, we obtain the dual notion of “co-operad”. Similarly, if we
reverse the direction of every arrow in Definition 2.1, we obtain the notion of a
coalgebra over a co-operad. Again, if we reverse the direction of every arrow in
Definition 4.1 below, we obtain the notion of a comodule over such a coalgebra.

3. Monadic reinterpretation of algebras

We recall some standard categorical definitions.
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Definition 3.1. Let G be any category. A monad in G is a functor C : G → G
together with natural transformations µ : CC → C and η : Id → C such that the
following diagrams commute:

C
ηC //

Id !!CC
CC

CC
CC

CC

µ

²²

C
Cηoo

Id}}{{
{{

{{
{{

and CCC

µC

²²

Cµ // CC

µ

²²
C CC

µ // C

A C-algebra is an object A of G together with a map ξ : CA → A such that the
following diagrams commute:

A
η //

Id !!CC
CC

CC
CC

CA

ξ

²²

and CCA

µ

²²

Cξ // CA

ξ

²²
A CA

ξ // A

Taking ξ = µ, we see that CX is a C-algebra for any X ∈ G . It is the free C-
algebra generated by X. That is, for C-algebras A, restriction along η : X → CX
gives an adjunction isomorphism

(3.2) C[G ](CX, A) ∼= G (X, A),

where C[G ] is the category of C-algebras. The inverse isomorphism assigns the
composite ξ ◦ Cf : CX → A to a map f : X → A. Formally, we are viewing C
as a functor G → C[G ], and our original monad is given by its composite with
the forgetful functor C[G ] → G . Thus the monad C is determined by its algebras.
Quite generally, every pair L : G → H and R : H → G of left and right adjoints
determines a monad RL on G , but many different pairs of adjoint functors can
define the same monad.

Returning to the category of k-modules, we have the following simple construc-
tion of the monad of free algebras over an operad C .

Definition 3.3. Define the monad C associated to an operad C by letting

CX =
⊕

j≥0

C (j)⊗k[Σj ] Xj .

The unit η : X → CX is η⊗ Id : X = k⊗X → C (1)⊗X and the map µ : CCX →
CX is induced by the maps (j =

∑
js)

C (k)⊗ C (j1)⊗Xj1 ⊗ · · · ⊗ C (jk)⊗Xjk

shuffle

²²
C (k)⊗ C (j1)⊗ · · · ⊗ C (jk)⊗Xj

γ⊗Id

²²
C (j)⊗Xj

Proposition 3.4. A C -algebra structure on a k-module A determines and is deter-
mined by a C-algebra structure on A. Formally, the identity functor on the category
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of k-modules restricts to give an isomorphism between the categories of C -algebras
and of C-algebras.

Proof. Maps θj : C (j) ⊗Σj Aj → A that together specify an action of C on A are
the same as a map ξ : CA → A that specifies an action of C on A. ¤

Not all monads come from operads. Rather, operads single out a particularly
convenient, algebraically manageable, collection of monads.

For the operad M , the free algebra MX is just the free associative k-algebra
generated by X, with the differential induced from that of X. Similarly, for the
operad N , the free algebra NX is the free associative and commutative algebra
generated by X, with its induced differential. Again, for the operad L , we obtain
the free Lie algebra functor L. While these observations can be checked by obser-
vation, they are also formal consequences of the freeness adjunction (3.2). Some
less obvious examples are discussed in Section 6 and are generalized to situations
of particular interest in string theory in [27, 28].

In the rest of this section, we suppose that C is a unital operad. In this case,
there is a monad that is different from that defined above but that nevertheless has
essentially the same algebras. Since C is unital, a C -algebra A comes with a unit
η ≡ θ0 : k → A. Thinking of the unit as preassigned, it is natural to change ground
categories to the category of unital k-modules and unit-preserving maps. Working
in this ground category, we obtain a reduced monad C̃. This monad is so defined
that the units of algebras that are built in by the θ0 component of operad actions
coincide with the preassigned units η.

In detail, note that we have “degeneracy maps” σi : C (j) → C (j − 1) specified
by

(3.5) σi(c) = γ(c⊗ 1i−1 ⊗ ∗ ⊗ 1j−i)

for 1 ≤ i ≤ j, where 1 denotes η(1) in C (1) and ∗ denotes the identity element in
k = C (0). For a unital k-module X with unit 1, define C̃X to be the quotient of
CX obtained by the identifications

(3.6) c⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ 1⊗ xi+1 ⊗ · · · ⊗ xj =

σi(c)⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xj

for 1 ≤ i ≤ j. With unit map η and product map µ induced from those of the
monad C, C̃ is a monad in the category of unital k-modules.

Proposition 3.7. Let C be a unital operad. Then a C -algebra structure satisfy-
ing η = θ0 on a unital k-module A determines and is determined by a C̃-algebra
structure on A.

The proof is immediate from Proposition 3.4 and the definitions. With a slight
restriction, the monads C and C̃ determine each other. Define an augmentation of
a unital k-module X to be a map ε : X → k whose composite with the unit is the
identity.

Proposition 3.8. (i) For a k-module X, let X+ be the unital k-module X ⊕ k.
Then CX ∼= C̃(X+) as C -algebras.
(ii) For an augmented k-module X, let X̃ be the K-module Ker(ε). Then C̃X ∼= CX̃
as C -algebras.
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Proof. Part (i) can be viewed as a special case of part (ii). For (ii), the composite
of the map CX̃ → CX induced by the inclusion X̃ → X and the quotient map
CX → C̃X gives the required isomorphism, and the following diagrams commute:

X̃ //

η

²²

X

η

²²

CCX̃
∼= //

µ

²²

CC̃X // C̃C̃X

µ

²²
CX̃

∼= // C̃X CX̃
∼= // C̃X. ¤

There is an obvious analogy with the adjunction of a disjoint basepoint to a
space X to obtain a space X+ such that H∗(X) ∼= H̃∗(X+). In the original topo-
logical theory of [46], all operads were unital and the reduced topological monad
C̃ associated to an operad C was denoted C. In that context, as we shall recall in
Sections 5 and 6, there is a great difference in homotopy types between C̃ and C,
with C̃ being by far the more interesting construction. While there is an evident
topological analog of the first part of the previous proposition, there is no analog
of the second part: topologically, the reduced construction is strictly more general.
In the preprint version of this paper [37], C̃ was denoted by C. We have followed a
suggestion of Deligne in placing the emphasis on the simpler construction C in the
present algebraic context.

4. Modules over C -algebras

Fix an operad C and a C -algebra A.

Definition 4.1. An A-module is a k-module M together with maps λ : C (j) ⊗
Aj−1 ⊗ M → M for j ≥ 1 that are associative, unital, and equivariant in the
following sense.
(a) The following associativity diagrams commute, where j =

∑
js:

(C (k)⊗ (
k⊗

s=1

C (js)))⊗Aj−1 ⊗M
γ⊗Id //

shuffle

²²

C (j)⊗Aj−1 ⊗M

λ

²²
M

C (k)⊗ (
k−1⊗
s=1

(C (js)⊗Ajs))⊗ (C (jk)⊗Ajk−1 ⊗M)
Id⊗θk−1⊗λ

// C (k)⊗Ak−1 ⊗M

λ

OO

(b) The following unit diagram commutes:

k ⊗M
∼= //

η⊗Id

²²

M

C (1)⊗M

λ

::uuuuuuuuuu
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(c) The following equivariance diagram commutes, where σ ∈ Σj−1 ⊂ Σj ;

C (j)⊗Aj−1 ⊗M
σ⊗σ−1⊗Id //

λ
''NNNNNNNNNNNN

C (j)⊗Aj−1 ⊗M

λ
wwpppppppppppp

M

A map f : M → N of k-modules between A-modules M and N is a map of A-
modules if the following diagram commutes for each j ≥ 1:

C (j)⊗Aj−1 ⊗M

Id⊗Id⊗f

²²

// M

f

²²
C (j)⊗Aj−1 ⊗N // N

We think of these as left modules. However, motivated by the first of the follow-
ing examples, one can also think of them as bimodules [29].

Examples 4.2. (i) For an M -algebra A, an A-module M in our sense is the same
as an A-bimodule in the classical sense. Precisely, given the maps λ, we define
am = λ(e ⊗ a ⊗m) and ma = λ(σ ⊗ a ⊗m), where e and σ are the identity and
transposition in Σ2. Conversely, just as in Example 2.2(i), given an A-bimodule
M , we define

λ(σ ⊗ a1 ⊗ · · · ⊗ aj) = ±aσ(1) · · · aσ(j),

where σ ∈ Σj , ai ∈ A for 1 ≤ i < j and aj ∈ M .
(ii) For an N -algebra A, an A-module in our sense is the same as an A-module
in the classical sense. If we use N regarded as a non-Σ operad to define non-
commutative algebras and delete part (c) of the definition, then a module over an
N -algebra A is a classical left A-module.
(iii) For an L -algebra L, an L-module in our sense is the same as a Lie algebra
module in the classical sense.

Just as for algebras, modules admit a monadic reinterpretation.

Definition 4.3. For k-modules X and Y , define

C(X;Y ) =
⊕

j≥1

C (j)⊗k[Σj−1] Xj−1 ⊗ Y.

Define η : Y → C(X; Y ) to be η ⊗ Id : Y = k ⊗ Y → C (1)⊗ Y and define

µ : C(CX; C(X; Y )) → C(X; Y )

to be the map induced by the following composites (j =
∑

js):

C (k)⊗ C (j1)⊗Xj1 ⊗ · · · ⊗ C (jk−1)⊗Xjk−1 ⊗ C (jk)⊗Xjk−1 ⊗ Y

shuffle

²²
C (k)⊗ C (j1)⊗ · · · ⊗ C (jk)⊗Xj−1 ⊗ Y

γ⊗Id

²²
C (j)⊗Xj−1 ⊗ Y



18 IGOR KRIZ AND J. P. MAY

Define a monad C[1] in the category of pairs (X; Y ) by letting

C[1](X; Y ) = (CX;C(X; Y )).

The unit η and product µ of C[1] are given by the evident pairs (η; η) and (µ; µ).

Proposition 4.4. A C -algebra structure on a k-module A together with an A-
module structure on a k-module M determine and are determined by a C[1]-algebra
structure on the pair (A; M). Formally, the identity functor on the category of pairs
of k-modules restricts to an isomorphism between the evident category of C -algebras
together with modules and the category of C[1]-algebras.

When C is unital, there is a similar reduced monad C̃[1] in the category of pairs
(X; Y ), where X is a unital k-module and Y is an arbitrary k-module. Explicitly,
define C̃(X;Y ) to be the quotient of C(X; Y ) obtained by the identifications

(4.5) c⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ 1⊗ xi+1 ⊗ · · · ⊗ xj =

σi(c)⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xj

for 1 ≤ i < j, where xi ∈ X if i < j and xj ∈ Y . Then define

C̃[1](X; Y ) = (C̃X; C̃(X; Y )).

The unit map η and product map µ are induced from those of C[1].

Proposition 4.6. Let C be a unital operad. A C -algebra structure satisfying η = θ0

on a unital k-module A together with an A-module structure on a k-module M
determines and is determined by a C̃[1]-algebra structure on the pair (A; M).

Proposition 4.7. (i) For k-modules X and Y , C(X; Y ) ∼= C̃(X+;Y ).
(ii) For an augmented k-module X with X̃ = Ker(ε) and a k-module Y , C̃(X; Y ) ∼=
C(X̃; Y ).

Observe that free objects in our monadic context are pairs (CX; C(X; Y )), where
C(X; Y ) is a module over CX. Formally, we can rewrite the present instance of
the freeness adjunction (3.2) in the form

C[1][K [1]]((CX; C(X; Y )), (A; M)) ∼= K [1]((X; Y ), (A;M)),

where K [1] denotes the category of pairs of k-modules.
Of course, this is quite different from fixing an algebra A and constructing free

A-modules FY = F (A; Y ). Such a free module functor F is characterized by an
adjunction

HomA(FY, M) ∼= Hom(Y,M)
relating maps of A-modules and maps of k-modules. We shall construct the free
A-module functor F (A; ?) for an algebra A over an operad C in a moment, and we
will then have the following formal comparison of definitions.

Proposition 4.8. For any operad C and any k-modules X and Y , C(X;Y ) is
isomorphic to the free CX-module F (CX;Y ) generated by Y .

Proof. The forgetful functor C[1][K [1]] → K [1] factors through the category of
pairs (A; Y ), where A is a C -algebra and Y is a k-module. That is, we can first forget
the module structure on the second coordinate and then forget the algebra structure
on the first coordinate. These two forgetful functors have left adjoints (Id, F (Id, ?))
and (C, Id). Their composite must coincide with C[1] by the uniqueness of adjoints.

¤
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With the morphisms of Definition 4.1, it is clear that the category of A-modules
is abelian. In fact, as was observed in [29] and [32], it is equivalent to the category
of modules over the universal enveloping algebra U(A) of A. Of course, at our
present level of generality, U(A) must be a DGA. This gives us the free A-module
functor F just asked for as the ordinary free U(A)-module functor. The definition
of U(A) is forced by Definition 4.1.

Definition 4.9. Let A be a C -algebra. The action maps

λ : C (j)⊗Aj−1 ⊗M → M

of an A-module M together define an action map

λ : C(A; k)⊗M = C(A; M) → M.

Thus C(A; k) may be viewed as a k-module of operators on A-modules. The free
DGA M(C(A; k)) generated by C(A; k) therefore acts iteratively on all A-modules.
Define the universal enveloping algebra U(A) to be the quotient of M(C(A; k))
by the ideal of universal relations. Explicitly, reading off from Definition 4.1, the
element 1 ∈ C (1) must be identified with the unit element of the algebra and the
element

γ(d⊗ c1 ⊗ · · · ⊗ ck)⊗ a1 ⊗ · · · ⊗ aj−1 ∈ C (j)⊗Aj−1

must be identified with the product

[d⊗ θ(c1; b1)⊗ · · · ⊗ θ(ck−1; bk−1)][ck ⊗ bk] ∈ [C (k)⊗Ak−1][C (jk)⊗Ajk−1],

where d ∈ C (k), cs ∈ C (js), ai ∈ A, and bs is the tensor product of the sth block
of a’s; bs has js tensor factors if s < k and jk − 1 factors if s = k. Taking ci = 1
for i < k and changing notation, we obtain the relation

[c⊗ a1 ⊗ · · · ⊗ aj ][d⊗ a′1 ⊗ · · · ⊗ a′k] = γ(c⊗ 1j ⊗ d)⊗ a1 ⊗ · · · ⊗ ak ⊗ a′1 ⊗ · · · ⊗ a′j

for c ∈ C (j + 1) and d ∈ C (k + 1). Reinterpreting this formula as a product on
C(A; k), we see that U(A) can be described more economically as the quotient of
the algebra C(A; k) by the relations originally specified.

The following result is immediate from the definition.

Proposition 4.10. The category of A-modules is isomorphic to the category of
U(A)-modules.

It is an illuminating and not quite trivial exercise to check the first of the fol-
lowing examples from the explicit relations just specified.

Examples 4.11. (i) For an M -algebra A, U(A) is isomorphic to A⊗Aop.
(ii) For an N -algebra A, U(A) is isomorphic to A.
(iii) For an L -algebra L, U(L) is isomorphic to the classical universal enveloping
algebra of L.

In Part V, we shall construct a derived tensor product on modules over an
E∞ algebra A. From the universal enveloping algebra point of view, this should
look most implausible: a U(A)-module is just a left module, and, since U(A) is
far from being commutative, there is no obvious way to define a tensor product of
A-modules, let alone a tensor product that is again a module.
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5. Algebraic operads associated to topological operads

Recall that operads can be defined in any symmetric monoidal category, such as
the category of topological spaces under Cartesian product. Thus an operad S of
spaces consists of spaces S (j) with right actions of Σj , a unit element 1 ∈ S (1),
and maps

γ : S (k)×S (j1)× · · · ×S (jk) → S (j)

such that associativity, unity, and equivariance diagrams precisely like those in
Definition 1.1 commute. For definiteness, we assume that S (0) is a point.

Via the singular complex functor, an operad of topological spaces gives rise to an
operad of simplicial sets. Via the free k-module functor, an operad of simplicial sets
gives rise to an operad of simplicial ungraded k-modules. By passage to normalized
chains, which we denote by C#, an operad of simplicial ungraded k-modules gives
rise to an operad of k-modules in our original differential graded sense. The proof of
the last assertion depends on the associativity and commutativity of the standard
shuffle quasi-isomorphism (e.g. [44, §29], or [30, Appendix])

C#(X)⊗ C#(Y ) → C#(X × Y ).

Therefore the normalized singular k-chain functor restricts to a functor from oper-
ads of spaces to operads of k-modules. We write C#(S ) for the operad of k-modules
associated to an operad S of spaces.

The operad S is said to an E∞ operad if each space S (j) is Σj-free and
contractible (a universal Σj-bundle), and C#(S ) is then an E∞ operad in the
sense of Definition 1.3. Similarly, the chain functor C# carries S -algebras (= S -
spaces) to C#(S )-algebras and carries modules over an S -algebra to modules over
the associated C#(S )-algebra.

Following [29, 27, 28] and others, we can go further and define homology operads.
We take k to be a field in the rest of this section, and all homology groups are to
be taken with coefficients in k.

Definition 5.1. Let S be an operad of spaces. Define H∗(S ) to be the uni-
tal operad whose jth k-module is the graded k-module H∗(S (j)), with algebraic
structure maps γ induced by the topological structure maps. For n ≥ 0, define
Hn(S ) to be the suboperad of H∗(S (j)) whose jth k-module is Hn(j−1)(S (j))
for j ≥ 0; in particular, the 0th k-module is zero unless n = 0. The degrees are
so arranged that the definition makes sense. We retain the grading that comes
naturally, so that the jth term of Hn(S ) is concentrated in degree n(j − 1). We
obtain a “degree zero translate” operad associated to Hn(S ) by regrading so that
all terms are concentrated in degree zero.

If the spaces S (j) are all connected, then H0(S ) = N and H∗(X) is a com-
mutative algebra for any S -space X. If the spaces S (j) are all contractible, for
example if S is an E∞ operad, then H∗(S ) = N . Thus, on passage to homol-
ogy, E∞ operads record only the algebra structure on the homology of S -spaces,
although the chain level operad action gives rise to the homology operations dis-
cussed in Section 7. It is for this reason that topologists did not formally introduce
homology operads decades ago.

In fact, there is a sharp dichotomy between the calculational behavior of oper-
ads in characteristic zero and in positive characteristic. The depth of the original
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topological theory lies in positive characteristic, where passage to homology oper-
ads jettisons most of the interesting structure. In characteristic zero, in contrast,
the homology operads completely determine the homology of the monads S and S̃
associated to an operad S . Here, for a space X,

SX =
∐

S (j)×Σj
Xj .

For a based space X, S̃X is the quotient of SX obtained by basepoint identifica-
tions, exactly as in (3.6). The space S̃X has a natural filtration with successive
quotients

S (j)+ ∧Σj X(j),

where X(j) denotes the j-fold smash power of X. (X ∧ Y is the quotient of the
product X × Y obtained by identifying the wedge X ∨ Y to a point.)

The calculational difference comes from a simple general fact: if a finite group π
acts on a space X, then, with coefficients in a field of characteristic zero, H∗(X/π)
is naturally isomorphic to H∗(X)/π. (We are assuming that our spaces are not
pathological; for example, they may be π-CW complexes.) In fact, H∗(X/π) is a
homology theory on X—this being true in any characteristic—and H∗(x)/π is a
homology theory on X since the functor M/π = M ⊗k[π] k on k[π]-modules M is
exact (e.g. because k is a direct summand of k[π]). It is obvious that these theories
agree on orbits π/ρ, and it follows exactly as in nonequivariant algebraic topology
that they are isomorphic. In the cases of interest to us, the shuffle map induces a
chain map

(∗) C#(S (j))⊗Σj C#(X)j → C#(S (j)×Σj Xj),

from which we obtain an instance of our general isomorphism on passage to homol-
ogy, and similarly for S (j)+ ∧Σj X(j). This leads to the following result.

Theorem 5.2. Let S be any operad of spaces. Let S denote both the monad in
the category of spaces associated to S and the monad in the category of k-modules
associated to H∗(S ). Similarly, let S̃ denote both the monad in the category of
based spaces associated to S and the monad in the category of unital k-modules
associated to H∗(S ). If k is a field of characteristic zero, then

H∗(SX) ∼= SH∗(X) and H∗(S̃X) ∼= S̃(H∗(X))

as H∗(S )-algebras for all spaces X (based spaces in the reduced case).

Proof. On passage to homology, the unit X → SX and the action of S on SX
induce the composite map

α : S(H∗(X)) → S(H∗(SX)) → H∗(SX)

of H∗(S )-algebras. Similarly, in the reduced case we have a composite

α̃ : S̃(H∗(X)) → S̃(H∗(S̃X)) → H∗(S̃X).

In the unreduced case, α is the direct sum of isomorphisms induced by the chain
maps (∗). For the reduced case, observe that if V is an augmented k-module, then
the k-module S̃V has an evident filtration with successive quotients H∗(S (j))⊗Σj

Ṽ j . The map α̃ is filtration-preserving, and its successive quotients are isomor-
phisms

H∗(S (j))⊗Σj H̃∗(X)j ∼= H∗(S (j)+ ∧Σj X(j))
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induced by the chain maps (∗). Therefore α̃ is an isomorphism by induction up the
filtration and passage to colimits. ¤

This allows us to realize free algebras topologically. For example, we have the
obvious topological (actually, discrete) versions of the operads M and N , with
M (j) = Σj and N (j) a point. For a based space X, M̃X is the James construction
(or free topological monoid) on X, and it is homotopy equivalent to ΩΣX if X is
connected. Similarly, ÑX is the infinite symmetric product (or free commutative
topological monoid) on X, and it is homotopy equivalent to the product over n ≥ 1
of the Eilenberg-MacLane spaces K(Hn(X), n) if X is connected. Note that the
unreduced constructions MX and NX are just disjoint unions of Cartesian powers
and symmetric Cartesian powers and are therefore much less interesting. At least
in characteristic zero, we conclude that

H∗(M̃X) ∼= M̃(H∗(X)) and H∗(ÑX) ∼= Ñ(H∗(X)).

By Proposition 3.5, these are the free and free commutative algebras generated by
H̃∗(X). Note that any positively graded k-module can be realized as H̃∗(X) by
taking X to be a suitable wedge of spheres.

6. Operads, loop spaces, n-Lie algebras, and n-braid algebras

We here specialize to the operads that come from the study of iterated loop
spaces. These operads turn out to encode notions of n-Lie algebra and n-braid
algebra. Implicitly or explicitly, the case n = 1 has received a great deal of attention
in the recent literature of string theory. See, e.g. [27, 28, 56], and the references
therein.

For each n > 0, there is a little n-cubes operad Cn. It was invented (before
the introduction of operads) by Boardman and Vogt [11]; see also [46]. Its jth
space Cn(j) consists of j-tuples of little n-cubes embedded with parallel axes and
disjoint interiors in the standard n-cube. There is an analogous little n-disks operad
defined in terms of embeddings of little disks in the unit disk via radial contraction
and translation. These are better suited to considerations of group actions and of
geometry, but they do not stabilize over n. There is a more sophisticated variant,
due to Steiner [57], that enjoys the good properties of both the little n-cubes and
the little n-disks operads. Each of these operads comes with a canonical equivalence
from its jth space to the configuration space F (Rn, j) of j-tuples of distinct points
of Rn. The little n-cubes operad (and any of its variants) acts naturally on all
n-fold loop spaces ΩnY .

Since C1 maps by a homotopy equivalence to M , we concentrate on the case
n > 1. When k is a field of characteristic p > 0, the homology of a Cn-space,
such as ΩnY , has an extremely rich and complicated algebraic structure, carrying
Browder operations and some of the Dyer-Lashof operations that are present in
the homology of E∞ algebras (see the next section). For a detailed description,
see Cohen, [16, II§1]. (Minor corrections are given in Wellington, [61, I,§1].) We
will here describe the characteristic zero information and a portion of the mod p
information in Cohen’s exhaustive mod p calculations. We take k to be a field
throughout this section.

Cohen’s calculations have two essential starting points. One is his complete and
explicit calculation of the integral homology of F (Rn, j), with its action by Σj ,
for all n and j [16, II §§6–7]. He used this to define homology operations. The



OPERADS, ALGEBRAS, MODULES, AND MOTIVES 23

other is the “approximation theorem” of [46]. It asserts that, for a based space X,
the reduced free Cn-space C̃nX maps to ΩnΣnX via a natural map of Cn-spaces
that is an equivalence when X is connected. This allowed Cohen to combine the
homology operations with the Serre spectral sequence to compute simultaneously
both H∗(C̃nX) and H∗(ΩnΣnX) for any X.

In characteristic zero, the calculations simplify drastically since Theorem 5.2
shows that calculation of the homology operads H∗(Cn) is already enough to de-
termine H∗(C̃nX). Cohen showed that each space F (Rn, j) has the same integral
homology as a certain product of wedges of (n − 1)-spheres. Therefore, with the
notations of Definition 5.1, the operad H∗(Cn) can be written additively as the re-
duced sum N ⊕̃Hn−1(Cn) of its suboperads N and Hn−1(Cn), where the reduced
sum is obtained from the direct sum by identifying the unit elements in N (1) and
H0(Cn(1)). When char(k) = 0 and n = 1, the following result was implicit in [4]
and was made explicit by Schechtman and Ginzburg. It was observed by Getzler
and Jones [28] that the general case was already implicit in Cohen’s thesis [15].

Theorem 6.1. If char(k) 6= 2 or 3, then, for all n ≥ 1, the degree zero translate of
the operad Hn(Cn+1) is isomorphic to the operad L that defines Lie algebras over
k.

We are more interested in the algebras defined by the untranslated operads and
by the full homology operads. If char(k) 6= 2 or 3, these turn out to be the n-Lie
algebras and n-braid algebras. (A 1-braid algebra is also called a braid algebra
or a Gerstenhaber algebra.) Recall our standing convention that k-modules are
Z-graded and have differentials.

Definition 6.2. An n-Lie algebra is a k-module L together with a map of k-
modules [ , ]n : L ⊗ L → L that raises degrees by n and satisfies the following
identities, where deg(x) = q − n, deg(y) = r − n, and deg(z) = s− n.
(i) (Anti-symmetry)

[x, y]n = −(−1)qr[y, x]n.

(ii) (Jacobi identity)

(−1)qs[x, [y, z]n]n + (−1)qr[y, [z, x]n]n + (−1)rs[z, [x, y]n]n = 0.

(iii) [x, x]n = 0 if char(k) = 2 and [x, [x, x]n]n = 0 if char(k) = 3.

Of course, a 0-Lie algebra is just a Lie algebra. For a k-module Y and an integer
n, define the n-fold suspension ΣnY by (ΣnY )q = Yq−n, with differential (−1)nd.
(The sign depends on conventions: see III, §1.)

Proposition 6.3. The category of n-Lie algebras is isomorphic to the category of
Lie algebras. There is an operad Ln whose algebras are the n-Lie algebras, and its
degree zero translate is isomorphic to L .

Proof. For an n-Lie algebra L, ΣnL is a Lie algebra with bracket

[Σnx, Σny] = Σn[x, y]n.

Similarly, for a Lie algebra L, Σ−nL is an n-Lie algebra. This gives the first
statement. For the second, Ln can be constructed by a precisely similar use of
suspensions, and the isomorphism with L is then obvious. ¤
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Definition 6.4. An n-braid algebra is a k-module A that is an n-Lie algebra and a
commutative DGA such that the bracket and product satisfy the following identity,
where deg(x) = q − n and deg(y) = r − n.
(i) (Poisson formula)

[x, yz]n = [x, y]nz + (−1)q(r−n)y[x, z]n.

The Poisson formula implies and is implied by the following identities, where
deg(x) = q − n, deg(y) = r − n, deg(z) = s− n, and deg(w) = t− n.
(ii) [1, x]n = 0, where 1 is the unit for the product.
(iii) [xy, zw]n = x[y, z]nw + (−1)(r−n)s[x, z]nw + (−1)(q+r−n)(s−n)zx[y, w]n

+(−1)q(s−n)+(r−n)(s+t−n)z[x, w]ny.

The Poisson formula asserts that the map dx = [x, ?]n is a graded derivation, in
the sense that

dx(yz) = dx(y)z + (−1)deg(y)deg(dx)ydx(z).
Batalin-Vilkovisky algebras are examples of 1-braid algebras [27], hence the general
case, with non-zero differentials, is relevant to string theory. However, our concern
here is with structures that have zero differential.

Theorem 6.5. The homology H∗(X) is an n-braid algebra for any Cn+1-space X
and any field of coefficients.

The n-bracket is denoted λn and called a Browder operation in [45, §6], and
[16, II], where the theorem is proven. The first appearance of λn was in [12], in
characteristic 2. We have displayed (iii) since that is the version of the Poisson
formula given in [16] (where signs are garbled on page 216 but correct on page
317). Identity (iii) of Definition 6.2 is of conceptual interest: it cannot be visible in
the operad Hn(Cn+1), but it follows directly from the chain level definition of λn.

For a k-module V , let LnV be the free n-Lie algebra generated by V ; as in
Proposition 6.3, LnV = Σ−nLΣnV . For the moment, let Λn denote the monad
on k-modules associated to the operad Hn(Cn+1), and recall the duplicative use
of the notation C̃n+1 from Theorem 5.2. For a Cn+1-space X, the action of Cn+1

induces an action of Hn(Cn+1) on H∗(C̃n+1X). It is clear from the decomposition
of H∗(Cn+1) as a reduced direct sum that all of the iterated n-bracket operations
must be codified as part of this action.

Theorem 6.6 (Cohen). Assume that char(k) = 0. For any based space X,

C̃n+1H∗(X) ∼= H∗(C̃n+1X) ∼= NLnH̃∗(X)

is the free commutative algebra generated by the free n-Lie algebra generated by
H̃∗(X). Moreover, the image of ΛnH̃∗(X) in H∗(C̃n+1X) under the composite

ΛnH̃∗(X) → ΛnH̃∗(C̃n+1X)) → H∗(C̃n+1X)

induced by the unit X → C̃n+1X and the action of Hn(Cn+1) coincides with the
n-Lie algebra LnH̃∗(X).

The first isomorphism is given by Theorem 5.2 and the second by Cohen’s cal-
culations. With char(k) = 0, the deduction of Theorem 6.1 from Proposition 6.3
and Theorem 6.6 is a conceptual exercise. The fact that Hn(Cn+1) induces the
n-Lie bracket on the homology of Cn+1-spaces implies that there is a map of oper-
ads Ln → Hn(Cn+1). Any positively graded k-module V is the homology of some
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space. Therefore this map of operads induces an isomorphism LnV → ΛnV for
all such V . This is enough to conclude that Ln → Hn(Cn+1) is an isomorphism.
A similar exercise gives the char(k) = 0 case of the following further consequence
of Theorem 6.6. The second statement can be proven algebraically, but it is more
amusing to deduce it from the topology.

Theorem 6.7. If char(k) 6= 2 or 3, then, for all n ≥ 1, the algebras over the operad
H∗(Cn+1) are exactly the n-braid algebras. The free n-braid algebra generated by a
k-module V is isomorphic to NLnV .

It remains to say something about the proofs of Theorem 6.1 and 6.7 in positive
characteristic. Here we still have a natural map

C̃n+1H∗(X) → H∗(C̃n+1X),

but it is no longer an isomorphism. Cohen’s complete calculation of the target
shows that it contains NLnH̃∗(X), and one again sees that all iterated Browder
operations are determined by the action of elements of Hn(Cn+1). Now the dimen-
sion of the k-module Ln(j) is independent of the characteristic by Proposition 6.3
and the corresponding fact for Lie algebras, while the dimension of Hn(Cn+1(j))
is independent of the characteristic by Cohen’s integral calculations. By the char-
acteristic zero result, these dimensions must be equal for all characteristics. We
deduce that the displayed map must be an isomorphism onto NLnH̃∗(X), and the
rest of the argument goes as before.

7. Homology operations in characteristic p

When C is an E∞ operad, an action of C on A builds in the kinds of higher
homotopies for the multiplication of A that are the source, for example, of the
Dyer-Lashof operations in the homology of infinite loop spaces and the Steenrod
operations in the cohomology of general spaces. We describe the form that these
operations take in the homology of general E∞ algebras A in this section. When
we connect up partial algebras and E∞ algebras in Part II, this will give new
homological invariants on the mod p higher Chow groups. Many other examples
are known to topologists, such as the Steenrod operations in the Ext groups of
cocommutative Hopf algebras (e.g. [45, §11]) and in the cohomology of simplicial
restricted Lie algebras (e.g. [53], [45, §8]).

We begin with the trivial observation that, in characteristic zero, E∞ operads
carry no more homological information than the operad N .

Lemma 7.1. Let ε : C → P be a quasi-isomorphism of operads over a field k
of characteristic zero, such as the augmentation ε : C → N of an acyclic operad.
Then the maps CX → PX and C(X;Y ) → P (X;Y ) induced by ε are quasi-
isomorphisms for all k-modules X and Y .

Proof. This is an easy consequence of the definitions and the fact that all modules
over the group ring k[G] of a finite group G are projective. ¤

Taking P = N and P = L , we will see in Part II that this leads to a proof
that, when k is a field of characteristic zero, E∞ algebras are quasi-isomorphic
to commutative DGA’s and strong homotopy Lie algebras are quasi-isomorphic to
differential Lie algebras, and similarly for modules.

We take k = Z and consider algebras A over an integral E∞ operad C in the
rest of this section. Let Zp = Z/pZ and consider the mod p homology H∗(A;Zp).
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Theorem 7.2. For s ≥ 0, there exist natural homology operations

Qs : Hq(A;Z2) → Hq+s(A;Z2)

and
Qs : Hq(A;Zp) → Hq+2s(p−1)(A;Zp)

if p > 2. These operations satisfy the following properties
(1) Qs(x) = 0 if p = 2 and s < q or if p > 2 and 2s < q.
(2) Qs(x) = xp if p = 2 and s = q or if p > 2 and 2s = q.
(3) Qs(1) = 0 if s > 0, where 1 ∈ H0(A;Zp) is the identity element.
(4) (Cartan formula) Qs(xy) =

∑
Qt(x)Qs−t(y).

(5) (Adem relations) If p ≥ 2 and t > ps, then

QtQs =
∑

i

(−1)t+i(pi− t, t− (p− 1)s− i)Qs+t−i−1Qi;

if p > 2, t ≥ ps, and β denotes the mod p Bockstein, then

(7.3) QtβQs =
∑

i

(−1)t+i(pi− t, t− (p− 1)s− i)βQs+t−iQi

−
∑

i

(−1)t+i(pi− t− 1, t− (p− 1)s− i)Qs+t−iβQi;

here (i, j) =
(i + j)!

i!j!
if i ≥ 0 and j ≥ 0 (where 0! = 1), and (i, j) = 0 if i

or j is negative; the sums run over i ≥ 0.

The proof is the same as in [16, I§1]; as there, one simply checks that one is
in the general algebraic framework of [45], which does the relevant homological
algebra once and for all. (Actually, [45] should be read as a paper about operad
actions. Unfortunately, it was written shortly before operads were invented.) The
point is that C (p) is a Σp-free resolution of Z, so that the homology of C (p)⊗Σp Ap

is readily computed, and computation of θ∗ : H∗(C (p) ⊗Σp Ap;Zp) → H∗(A;Zp)
allows one to read off the operations. The Cartan formula and the Adem relations
are derived from special cases of the diagrams in Definition 2.1(a) via calculations
in the homology of groups.

Notice the grading. The first non-zero operation is the pth power, and there can
be infinitely many non-zero operations on a given element. This is in marked con-
trast with Steenrod operations in the cohomology of spaces, where the last non-zero
operation is the pth power. In fact, Steenrod operations are defined on cohomo-
logically graded E∞ algebras that are concentrated in positive degrees, where the
cochain complexes C (j) of the relevant E∞ operad are concentrated in negative
degrees. If we systematically regrade homologically, then Dyer-Lashof and Steen-
rod operations both fit into the general context of the theorem, except that the
adjective “Dyer-Lashof” is to be used when the underlying chain complexes are
positively graded and the adjective “Steenrod” is to be used when the underlying
chain complexes are negatively graded.

Part II. Partial algebraic structures and conversion theorems

As in Part I, let C be an operad of k-modules, where k-modules are understood
to be Z-graded and to have differentials. We assume that k is a Dedekind ring in
this part. In Part I, we defined C -algebras and modules over C -algebras, and we
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showed how to interpret these notions in terms of actions of monads associated to C .
We here generalize these ideas by specifying partial C -algebras and their modules
in Section 2 and then expressing these notions in terms of monads in Section 3.
As with the theory of Part I, everything in these sections works equally well in the
greater generality of simplicial Z-graded differential k-modules.

The main point of this part is the conversion of partial algebras and modules
to quasi-isomorphic genuine algebras and modules. As we shall see in Part V, we
can construct derived categories of modules over E∞ algebras that enjoy all of the
standard properties of derived categories of modules over commutative DGA’s. One
might instead try to develop a theory of derived categories of partial modules over
partial algebras. However, modules over E∞ algebras are much more tractable
for this purpose since they are defined entirely in terms of actual iterated tensor
products rather than the tensor products up to quasi-isomorphism that are intrinsic
to the definition of partial algebras and modules.

For subtle technical reasons, explained in Section 5, our conversion theorems do
not work in the full generality of our definitions. Rather, we must work in the
category of “simplicial k-modules”, where k-modules may or may not be graded
but do not have differentials. Fortunately, this is the situation that occurs in the
motivating examples that arise in algebraic geometry. We discuss these examples
briefly in Section 6. We explain the proofs of our conversion theorems in Sections
4 and 5.

1. Statements of the conversion theorems

Modulo precise definitions, our conversion theorems read as follows.

Theorem 1.1. Let C be a Σ-projective operad of simplicial k-modules. Then there
is a functor V that assigns a quasi-isomorphic C -algebra V A to a partial C -algebra
A. There is also a functor V that assigns a quasi-isomorphic V A-module V M to a
partial A-module M .

When k is a field of characteristic zero, every operad C is Σ-projective and we
have the following complement.

Theorem 1.2. Let k be a field of characteristic zero and let ε : C → P be a
quasi-isomorphism of operads of simplicial k-modules. Then there is a functor W
that assigns a quasi-isomorphic P-algebra WA to a partial C -algebra A. There
is also a functor W that assigns a quasi-isomorphic WA-module WM to a partial
A-module M .

An acyclic operad C is one that maps by a quasi-isomorphism to the operad
N that defines commutative simplicial k-algebras, hence the following result is a
special case.

Corollary 1.3. Let k be a field of characteristic zero and let C be an acyclic operad
of simplicial k-modules. Then there is a functor W that assigns a quasi-isomorphic
simplicial commutative k-algebra WA to a partial C -algebra A. There is also a
functor W that assigns a quasi-isomorphic WA-module WM to a partial A-module
M .

As usual, we apply the normalized chain complex functor to pass from simpli-
cial k-modules to differential graded k-modules, and a map of simplicial k-modules
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is said to be a quasi-isomorphism if the associated map of differential graded k-
modules is a quasi-isomorphism (induces an isomorphism on homology). The pas-
sage from simplicial k-modules to differential graded k-modules carries an operad
of simplicial k-modules to an operad of differential graded k-modules. Similarly,
it preserves algebras and modules. However, it does not preserve partial algebras
and modules. For essentially the same technical reason, we do not have an analog
of Theorem 1.1 in the category of partial differential graded k-modules. Therefore,
although our motivation and applications concern chain complexes, we are forced
to work on the simplicial level as long as possible, only passing to the differential
graded level after the conversion of partial algebras and modules to genuine algebras
and modules.

Of course, in view of Theorem 1.1, Theorem 1.2 is only needed when A is already
a genuine C -algebra. There is a version of this case of Theorem 1.2 that does work
in the differential graded context.

Theorem 1.4. Let k be a field of characteristic zero and let ε : C → P be a quasi-
isomorphism of operads of differential graded k-modules. Then there is a functor
W that assigns a quasi-isomorphic P-algebra WA to a C -algebra A. There is also
a functor W that assigns a quasi-isomorphic WA-module WM to an A-module M .

Corollary 1.5. Let k be a field of characteristic zero and let C be an acyclic operad
of differential graded k-modules. Then there is a functor W that assigns a quasi-
isomorphic commutative DGA WA to a C -algebra A. There is also a functor W
that assigns a quasi-isomorphic WA-module WM to an A-module M .

While our original motivation came from algebraic geometry, these results may
also be of interest in other subjects. For example, operads of differential graded
k-modules whose algebras are “strong homotopy Lie algebras” are becoming in-
creasingly important in string theory (see [32, 56] and the references therein). The
defining property of such an operad J is that it must admit a quasi-isomorphism
ε : J → L , where L is the operad that defines Lie algebras over k. We then say
that J is a strong homotopy Lie operad. Theorem 1.4 applies directly to replace
strong homotopy Lie algebras by quasi-isomorphic genuine differential graded Lie
algebras. A version of this result is known to the experts, via an entirely different
proof, but the corresponding result for modules is new.

Corollary 1.6. Let k be a field of characteristic zero and let J be a strong homo-
topy Lie operad of differential graded k-modules. Then there is a functor W that
assigns a quasi-isomorphic differential graded Lie algebra WL to a J -algebra L.
There is also a functor W that assigns a quasi-isomorphic WL-module WM to an
L-module M .

Similarly, modulo the appropriate definitions, Theorems 1.1 and 1.2 apply to
convert partial simplicial strong homotopy Lie algebras first to genuine simplicial
strong homotopy Lie algebras and then, when k is a field of characteristic zero, to
simplicial Lie algebras.

2. Partial algebras and modules

One often encounters k-modules A that come with products that are only defined
on appropriate submodules of A⊗A. We first define the ground categories for such
partial algebras and their modules, then specify partial commutative DGA’s and
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their partial modules, and finally generalize to define partial structures defined by
operad actions for any operad C of k-modules. In the following definition, “domain”
should be thought of as shorthand for “domain of definition”. As in Part I, we let
Xj denote the j-fold tensor power of X, with X0 = k.

Definition 2.1. Let X be a flat k-module. A domain X∗ in X is a sequence of
Σj-invariant submodules Xj of Xj such that the given inclusions δj : Xj → Xj

satisfy the following properties.
(a) δo and δ1 are identity maps and each δj is a quasi-isomorphism.
(b) For each partition j = j1 + · · · + jk, δj factors through Xj1 ⊗ · · · ⊗ Xjk

, as
indicated in the following commutative diagram:

Xj1 ⊗ · · · ⊗Xjk

∼= // Xj

Xj1 ⊗ · · · ⊗Xjk

δj1⊗···⊗δjk

OO

Xj .? _oo

δj

OO

Our standing assumption that k is a Dedekind ring and our requirement that X
be a flat k-module ensure that the tensor product δj1⊗· · ·⊗δjk

in the diagram just
given is both an inclusion and a quasi-isomorphism. This is a consequence of the
following lemma and the fact that, over any commutative ring k, a tensor product
of flat k-modules is flat and a tensor product of inclusions of flat modules is an
inclusion.

Lemma 2.2. Assume that k is a Dedekind ring. Then submodules of flat k-modules
are k-flat. Let X be a k-module and f : Y → Y ′ be a quasi-isomorphism of k-
modules, where either X or both Y and Y ′ are flat. Then 1⊗ f : X ⊗ Y → X ⊗ Y ′

is a quasi-isomorphism.

Proof. The first part is standard, and it implies that the cycles and boundaries of
flat k-modules are flat. In turn, this implies that a flat k-module X is the union of
its bounded below flat k-modules X[n], where X[n]q = 0 for q < n, X[n]n = ZnX
(the cycles of degree n), and X[n]q = Xq for q > n. For positively graded k-
modules X and Y , one of which is flat, there is a Künneth spectral sequence that
converges from Tork

∗,∗(H∗(X),H∗(Y )) to H∗(X⊗Y ) [41, XII.12.1]. By generalizing
from positive to bounded below k-modules and passing to direct limits, we obtain
a natural convergent Künneth spectral sequence for any two k-modules X and Y ,
one of which is flat. The conclusion follows. ¤

A map f∗ : X∗ → X ′
∗ between domains in X and X ′ is a sequence of maps

fj : Xj → X ′
j such that fj is the restriction of f j , where f = f1. The map f∗ is

said to be a quasi-isomorphism if f : X → X ′ is a quasi-isomorphism. It follows
from the lemma and the definitions that each fj is then also a quasi-isomorphism.

Let K be the category of flat k-modules and D be the category of domains in flat
K -modules. Let L : D → K be the functor that sends X∗ to X and R : K → D
be the functor that sends X to {Xj}. Then LR = Id and the inclusions δj define
a natural map δ : X∗ → RX = RLX∗ such that Lδ = Id. We therefore have an
adjunction

(2.3) K (LX∗, Y ) ∼= D(X∗, RY ).

Informally, given any type of algebraic structure that is defined in terms of maps
Aj → A, we define a partial structure on A to be a domain A∗ in A together with
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maps Aj → A that satisfy the same formal properties as the given type of structure.
We shall shortly formalize this with a general definition of a partial operad action.

For motivation, and because it is the type of structure that we are most interested
in, we first consider commutative DGA’s explicitly. Such an algebra A has a j-fold
product µj : Aj → A, with µ0 = η : k → A and µ1 = Id. For σ ∈ Σj , j ≥ 2,
µj ◦ σ = µj . For any partition j = j1 + · · · + jk with ji ≥ 0, the following
associativity and unity diagram commutes:

Aj1 ⊗ · · · ⊗Ajk

∼= //

µ⊗···⊗µ

²²

Aj

µ

²²
Ak

µ // A

Recall that 2x2 = 0 if x has odd degree. It is standard in topology to say that
a commutative DGA is “strictly commutative” if x2 = 0 when x has odd degree.
Unless A is strictly commutative (or the ring k is of characteristic two), A will not
be a flat k-module.

We have the concomitant notion of a partial commutative DGA A∗. The only
point that might require clarification is the partial version of the previous diagram,
which now takes the form

Aj1 ⊗ · · · ⊗Ajk

µ⊗···⊗µ

²²

Aj? _oo

~~}}
}}

}}
}}

µ

²²
Ak Ak

? _oo µ // A

That is, the restriction to Aj of µ⊗ · · · ⊗ µ : Aj1 ⊗ · · · ⊗Ajk
→ Ak factors through

Ak, and the two resulting maps from Aj to A coincide. More generally, we have
the following direct generalization of I.2.1.

Definition 2.4. Let C be an operad. A partial C -algebra is a domain A∗ in a flat
k-module A together with Σj-equivariant maps

θj : C (j)⊗Aj → A, j ≥ 0,

such that
(a) θ1(1⊗ a) = a,
(b) the map

C (j1)⊗ · · · ⊗ C (jk)⊗Aj → Ak

that is obtained by including Aj in Aj1⊗· · ·⊗Ajk
, shuffling, and applying θk factors

through Ak, where j =
∑

js, and
(c) the following associativity diagrams commute:

C (k)⊗ C (j1)⊗ · · · ⊗ C (jk)⊗Aj
γ⊗Id //

� _

²² ++WWWWWWWWWWWWWWWWWWWW
C (j)⊗Aj

θ

$$HHHHHHHHHH

C (k)⊗ C (j1)⊗ · · · ⊗ C (jk)⊗Aj1 ⊗ · · · ⊗Ajk

shuffle

²²

C (k)⊗Ak
� _

²²

θ
// A

C (k)⊗ C (j1)⊗Aj1 ⊗ · · · ⊗ C (jk)⊗Ajk
Id⊗θk

// C (k)⊗Ak
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Note that RA = {Aj} may be viewed as a partial C -algebra if A is a C -algebra.
In our formal theory, we generally write A∗ for a partial C -algebra. Informally,
however, as in the statements of the results in the introduction, we think of the
submodules Aj of the Aj as implicitly given and simply write A. The following
examples generalize I.2.2.

Examples 2.5. (i) A partial M -algebra is a partial DGA.
(ii) A partial N -algebra is a partial commutative DGA, as defined above.
(iii) By pullback along ε : C → N , a partial commutative DGA is a partial C -
algebra for any unital operad C .
(iv) We define a partial E∞ algebra to be a partial C -algebra, where C is any E∞
operad.

Remark 2.6. We noted in I.7.2 that the mod p homology of an integral E∞ algebra
has homology operations. The cited result is true precisely as stated with E∞
algebras replaced by partial E∞ algebras. In fact, one can construct the operations
by passing to mod p homology from the diagram

C (p)⊗Σp
Ap ←− C (p)⊗Σp

Ap −→ A.

The first arrow is induced by the inclusion Ap ⊂ Ap, and this arrow induces an
isomorphism on mod p homology by Lemma 3.1 below. The second arrow is θp.
If we start with a partial commutative DGA A∗, then θp = εp ⊗ µp. Use of the
augmentation εp : C (p) → Z may make it appear that the resulting operations
ought to be trivial. However, as is explained in [26], nontriviality is allowed by the
fact that the inclusion Ap ⊂ Ap need not be a Σp-equivariant homotopy equivalence.

We have a precisely parallel definition of a partial module over a partial algebra.

Definition 2.7. Define a domain (X∗; Y∗) in a pair of flat k-modules (X; Y ) to be
a domain X∗ in X together with a sequence of Σj−1-invariant submodules Yj of
Xj−1 ⊗ Y , j ≥ 1, such that the given inclusions δj : Yj → Xj−1 ⊗ Y satisfy the
following properties.
(a) δ1 = Id and each δj is a quasi-isomorphism.
(b) For j = j1 + · · ·+ jk, δj factors through Xj1 ⊗ · · · ⊗Xjk−1 ⊗ Yjk

, as indicated
in the following commutative diagram:

Xj1 ⊗ · · · ⊗Xjk−1 ⊗Xjk−1 ⊗ Y
∼= // Xj−1 ⊗ Y

Xj1 ⊗ · · · ⊗Xjk−1 ⊗ Yjk

δj1⊗···⊗δjk

OO

Yj

δj

OO

? _oo

A map (f∗; g∗) : (X∗; Y∗) → (X ′
∗; Y ′

∗) consists of a map of domains f∗ : X∗ → X ′
∗

and a sequence of maps of k-modules gj : Yj → Y ′
j such that gj is the restriction

of f j−1 ⊗ g, where g = g1. The map (f∗; g∗) is said to be a quasi-isomorphism if
f : X → X ′ and g : Y → Y ′ are quasi-isomorphisms, and then each fj and gj is
also a quasi-isomorphism.

Let K [1] be the category of pairs of flat k-modules and D [1] be the category
of domains in such pairs. Let L : D [1] → K [1] send (X∗; Y∗) to (X; Y ) and
R : K [1] → D [1] send (X; Y ) to ({Xj}; {Xj−1 ⊗ Y }). Again, LR =Id and the δj

specify a natural map δ : X∗ → RX = RLX∗ such that Lδ =Id, hence we have an
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adjunction

(2.8) K [1](L(X∗; Y∗), (X ′; Y ′)) ∼= D [1]((X∗; Y∗), R(X ′; Y ′)).

We shall often abbreviate (X∗; Y∗) to Y∗ when X∗ is implicit from the context.
Let A∗ be a partial commutative DGA. An A∗-module (informally, a partial

A-module) is a domain M∗ together with maps of k-modules λj : Mj → M such
that λ1 =Id, λj ◦σ = λj for σ ∈ Σj−1, and the following diagrams commute, where
ji ≥ 0 for i < k, jk ≥ 1, and j = j1 + · · ·+ jk;

Aj1 ⊗ · · · ⊗Ajk−1 ⊗Mjk

µ⊗···⊗µ⊗λ

²²

Mj

µ

²²

? _oo

λ}}||
||

||
||

Ak−1 ⊗M Mk
? _oo // M

That is, the restriction to Mj of µ ⊗ · · · ⊗ µ ⊗ λ factors through Mk, and the two
resulting maps from Mj to M coincide. This is the special case C = N of the
following definition, which generalizes I.4.1.

Definition 2.9. Let C be an operad and A∗ be a partial C -algebra in A. An A∗-
module M∗ in M is a domain (A∗; M∗) in (A; M) together with Σj−1-equivariant
maps

λj : C (j)⊗Mj → M, j ≥ 1,

such that
(a) λ1(1⊗m) = m,
(b) the map

C (j1)⊗ · · · ⊗ C (jk)⊗Mj → Mk

that is obtained by including Mj in Aj1⊗· · ·⊗Ajk−1⊗Mjk
, shuffling, and applying

θk−1 ⊗ λ factors through Ak, where j =
∑

js, and
(c) the following associativity diagrams commute:

C (k)⊗ (⊗k−1
s=1C (js))⊗ C (jk)⊗Mj

//

++WWWWWWWWWWWWWWWWWWWWWWWW� _

²²

C (j)⊗Mj

λ

&&MMMMMMMMMMMM

C (k)⊗ (⊗k−1
s=1C (js))⊗ C (jk)⊗ (⊗k=1

s=1Ajs)⊗Mjk

shuffle

²²

C (k)⊗Mk
λ

//
� _

²²

M

C (k)⊗ (⊗k−1
s=1C (js)⊗Ajs)⊗ C (jk)⊗Mjk

Id⊗θk−1⊗λ

// C (k)⊗Ak−1 ⊗M

Remark 2.10. There is also a notion of a partial operad C , with structural maps γ
defined on submodules C (k; j1, . . . , jk) of C (k)⊗C (j1)⊗ · · · ⊗C (jk). In topology,
the little convex bodies partial operads of [47, VII §2], were the first examples,
but Steiner [57] later showed how to replace these particular partial operads by
equivalent genuine operads with all of the desired properties. Partial operads have
arisen more recently, and more substantially, in work of Huang and Lepowski on
vertex operator algebras [34, 33]. It is an easy matter to generalize the definitions
above to specify partial algebras and modules over partial operads. However, from
an algebraic point of view, the resulting concepts are harder to work with since
they apparently cannot be described in equivalent monadic terms.
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3. Monadic reinterpretation of partial algebras and modules

In this section, we assume given a fixed operad C that is Σ-projective, in the sense
that each C (j) is a projective k[Σj ]-module. This condition holds automatically
when k is a field of characteristic zero since every module over the group ring k[G]
of a finite group G is then projective. It allows us to make use of the following
standard observation, which complements Lemma 2.2.

Lemma 3.1. Let G be a group and P be a projective k[G]-module. Then a quasi-
isomorphism X → X ′ of k[G]-modules induces a quasi-isomorphism P ⊗k[G] X →
P ⊗k[G] X ′ of k-modules.

Proof. If we filter P ⊗k[G] X by the degrees in P , we obtain a natural spectral
sequence that converges from H∗(P ⊗k[G] H∗(X)) to H∗(P ⊗k[G] X). ¤

In I §§3–4, we constructed monads C in K and C[1] in K [1] such that a C-
algebra determines and is determined by a C -algebra and a C[1]-algebra determines
and is determined by a C -algebra together with a module over it. In this part, K
and K [1] are restricted to flat k-modules and pairs, and our assumption on C
ensures that C and C[1] take flat modules and pairs to flat modules and pairs. We
generalize these constructions to the context of partial algebras and modules.

Definition 3.2. Define the monad C∗ in D associated to C as follows. Let X∗ be
a domain in X. Define

CX∗ =
⊕

j≥0

C (j)⊗k[Σj ] Xj .

For k ≥ 0, define CkX∗ ⊂ (CX∗)k to be the direct sum of the images of the following
composites (where js ≥ 0 and j =

∑
js):

C (j1)⊗ · · · ⊗ C (jk)⊗k[Σj1×···×Σjk
] Xj

� _

²²
C (j1)⊗ · · · ⊗ C (jk)⊗k[Σj1×···×Σjk

] Xj1 ⊗ · · · ⊗Xjk

shuffle

²²
C (j1)⊗k[Σj1 ] Xj1 ⊗ · · · ⊗ C (jk)⊗k[Σjk

] Xjk

This inclusion is a quasi-isomorphism by Lemma 3.1, hence the inclusion CkX∗ ⊂
(CX)k is a quasi-isomorphism. The action of Σk on CkX∗ is induced from the action
on (CX)k; more explicitly, it is obtained from permutations of the variables C (js)
and action of the permutations σ(j1, . . . , jk) associated to σ ∈ Σk on the factors
Xj (see I.1.1). Condition (b) of Definition 2.1 is inherited from the corresponding
condition for X∗. Let ηk : Xk → CkX∗ be induced by the map

η ⊗ · · · ⊗ η ⊗ Id : Xk = k ⊗ · · · ⊗ k ⊗Xk → C (1)⊗ · · · ⊗ C (1)⊗Xk.
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Similarly, let µk : CkC∗X∗ → CkX∗ be induced by the following maps, where∑
js = j,

∑
it = i, gs = j1 + · · ·+ js, and hs = igs−1+1 + · · ·+ igs

for 1 ≤ s ≤ k:

C (j1)⊗ · · · ⊗ C (jk)⊗ C (i1)⊗ · · · ⊗ C (ij)⊗Xi

shuffle
²²⊗

s

(C (js)⊗ C (igs−1+1)⊗ · · · ⊗ C (igs))⊗Xi

(
⊗

s

γ)⊗ Id

²²
C (h1)⊗ · · · ⊗ C (hk)⊗Xi

It is easy to check that (C∗, µ∗, η∗) is a monad in D .

The following observation is immediate from Lemma 3.1.

Lemma 3.3. If f : X∗ → X ′
∗ is a quasi-isomorphism of domains, then so is

C∗f : C∗X∗ → C∗X ′
∗.

We have the following generalizations of I.3.4. Recall (2.3).

Theorem 3.4. Let C be a Σ-projective operad.
(i) A partial C -algebra determines and is determined by a C∗-algebra in D . For-
mally, the identity functor on D restricts to an isomorphism between the categories
of partial C -algebras and of C∗-algebras.
(ii) RC = C∗R, hence C = LC∗R, and the unit η and product µ for C are given
as follows in terms of the unit η∗ and product µ∗ of C∗:

η = Lη∗R : Id = LR → LC∗R = C,

and
µ = Lµ∗R : CC = LC∗RC = LC∗C∗R → LC∗R = C.

Proof. If A∗ is a partial C -algebra, then the given maps θ : C (j)⊗Aj → A together
induce a map ξ : CA∗ → A. For k ≥ 1, the maps

C (j1)⊗ · · · ⊗ C (jk)⊗Aj → Ak

that factor the evident map to Ak (as in Definition 2.4) together induce a map
ξk : CkA∗ → Ak. It is easily checked that (A∗, ξ∗) is a C∗-algebra. Conversely, if
(A∗, ξ∗) is a C∗-algebra, then the evident composites

C (j1)⊗ · · · ⊗ C (jk)⊗Aj → CkA∗ → Ak, k ≥ 1,

give A∗ a structure of a partial C -algebra. Part (ii) is easily verified by a direct
comparison of definitions. ¤

The theory for partial modules is precisely analogous and generalizes material
in I §4. Recall (2.8).

Definition 3.5. Define the monad C∗[1] in D [1] associated to C as follows. Let
(X∗; Y∗) be a domain in (X;Y ). Define

CY∗ =
⊕

C (j)⊗k[Σj−1] ⊗Yj .
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For k ≥ 1, define CkY∗ ⊂ (CX∗)k−1 ⊗ CY∗ to be the direct sum of the images of
the following composites (where js ≥ 0 and j =

∑
js):

C (j1)⊗ · · · ⊗ C (jk)⊗k[Σj1×···×Σjk−1×Σjk−1] Yj
� _

²²
C (j1)⊗ · · · ⊗ C (jk)⊗k[Σj1×···×Σjk−1×Σjk−1] Xj1 ⊗ · · · ⊗Xjk−1 ⊗ Yjk

shuffle

²²
C (j1)⊗k[Σj1 ] Xj1 ⊗ · · · ⊗ C (jk−1)⊗k[Σjk−1 ] Xjk−1 ⊗ C (jk)⊗k[Σjk−1] Yjk

This inclusion is a quasi-isomorphism by Lemma 3.1, hence the inclusion CkY∗ ⊂
(CX∗)k−1 ⊗ CY∗ is a quasi-isomorphism. The action of Σk−1 on CkY∗ is induced
from the action on (CX∗)k−1⊗CY∗. Condition (b) of Definition 2.7 is inherited from
the corresponding condition for Y∗. Maps ηk : Yk → CkY∗ and µk : CkC∗Y∗ → CkY∗
are defined as in Definition 3.2 and I.4.3. Taking C[1]∗(X∗;Y∗) to be (C∗X∗; C∗Y∗)
and using the pairs of maps (η∗; η∗) and (µ∗;µ∗) as the unit and product, we obtain
the desired monad in D [1].

Lemma 3.6. If (f∗; g∗) : (X∗; Y∗) → (X ′
∗; Y

′
∗) is a quasi-isomorphism of domains,

then the induced map C∗(f∗; g∗) : C∗Y∗ → C∗Y ′
∗ is a quasi-isomorphism.

Theorem 3.7. Let C be a Σ-projective operad.
(i) A C[1]∗-algebra structure on a domain (A∗; M∗) determines and is determined
by a partial C -algebra structure on A∗ together with a partial A∗-module structure
on M∗.
(ii) RC[1] = C[1]∗R, hence C[1] = LC[1]∗R, and the unit η and product µ of
C[1] are given in terms of the unit η∗ and product µ∗ of C[1]∗ by η = Lη∗R and
µ = Lµ∗R.

Remark 3.8. For a unital operad C , there are generalizations to the partial context
of the reduced monads that we constructed in I §§3–4. These were used in the
preprint version [37] of this paper. Since the reduced monads are not essential to
the theory and the details are fairly technical, we shall omit these constructions in
the interests of brevity.

4. The two-sided bar construction and the conversion theorems

We begin by recalling some categorical definitions from [46, §§2,9]. Their use to
prove the theorems stated in the introduction will follow a conceptual pattern that
is explained in detail in [49, §5].

Definition 4.1. Let (C, µ, η) be a monad in a category T . A (right) C-functor
in a category V is a functor F : T → V together with a natural transformation
ν : FC → F such that the following diagrams commute:

FC

ν

²²

F
Fηoo

Id}}{{
{{

{{
{{

and FCC

Fµ

²²

νC // FC

ν

²²
F FC

ν // F
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For a triple (F, C, A) consisting of a monad C in T , a C-algebra A, and a C-
functor F in V , define a simplicial object B∗(F, C,A) in V by letting the q-simplices
Bq(F,C, A) be FCqA (where Cq denotes C composed with itself q times); the faces
and degeneracies are given by

∂0 = νCq−1,

∂i = FCi−1µCq−i−1 for 1 ≤ i < q,

∂q = FCq−1ε, and

si = FCiηCq−i.

In an evident sense, B∗(F,C, A) is functorial in all three variables. Given a monad
C ′ in V and a left action λ : C ′F → F , we say that F is a (C ′, C)-bifunctor if the
following diagram commutes:

C ′FC
λC //

C′ν
²²

FC

ν

²²
C ′F

λ // F

For such an F , B∗(F, C, A) is a simplicial C ′-algebra.

Example 4.2. An obvious example of a (C, C)-bifunctor is C itself, with both left
and right action µ. Thus we may regard C as a functor from T to the category
C[T ] of C-algebras in T . This example gives a simplicial C-algebra B∗(C,C, A)
associated to a C-algebra A. Let A denote A regarded as a constant simplicial
object, Aq = A for all q, with each face and degeneracy the identity map. Iterates
of µ and ξ give a map ψ∗ : B∗(C, C,A) → A of simplicial C-algebras in T . Similarly,
iterates of η give a map η∗ : A → B∗(C, C, A) of simplicial objects in T (but not
in C[T ]) such that ψ∗η∗ = Id. Moreover, there is a simplicial homotopy η∗ψ∗ ' Id
[46, 9.8]. This is a generalized version of the classical bar resolution in homological
algebra, and we shall often abbreviate notation by setting

B∗(A) = B∗(C, C,A).

The following examples should be viewed as formal precursors of Theorems 1.1,
1.2, and 1.4. Fix a Σ-projective operad C .

Example 4.3. (i) As explained in [49, 5.5], part (ii) of Theorem 3.4 implies that
CL : D → K is a (C, C∗)-bifunctor with C∗-action the composite

µL ◦ CLC∗δ : CLC∗ → CLC∗RL = CCL → CL

and that C∗δ : C∗ → C∗RL = RCL is a map of (C∗, C∗)-bifunctors D → D . Since
δ is a natural quasi-isomorphism, Lemma 3.3 allows us to view C∗δ as inducing a
quasi-isomorphism of simplicial C∗-algebras

δ∗ : B∗(C∗, C∗, A∗) → B∗(RCL, C∗, A∗) = RB∗(CL, C∗, A∗)

for any C∗-algebra A∗. Introduce the abbreviated notations

B∗A∗ = B∗(C∗, C∗, A∗) and V∗A∗ = B∗(CL,C∗, A∗).

Then B∗A∗ is a simplicial C∗-algebra, V∗A∗ is a simplicial C-algebra, and ψ∗ and
δ∗ give a natural diagram of simplicial C∗-algebras

A∗ ← B∗A∗ → RV∗A∗.
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(ii) Similarly, part (ii) of Theorem 3.7 implies that we may replace C by C[1] in
(i) and obtain the analogous conclusions: C[1]L : D [1] → K [1] is a (C[1], C[1]∗)-
bifunctor with C[1]∗-action given by µL◦C[1]LC[1]∗δ, and C[1]∗δ : C[1]∗ → RC[1]L
is a map of (C[1]∗, C[1]∗)-bifunctors D [1] → D [1]. By Lemma 3.6, we may view
C[1]∗δ as inducing a quasi-isomorphism of simplicial C[1]∗-algebras

δ∗ : B∗(C[1]∗, C[1]∗, (A∗;M∗)) → RB∗(C[1]L,C[1]∗, (A∗; M∗))

for any C[1]∗-algebra (A∗;M∗); recall that A∗ is a C∗-algebra and M∗ is an A∗-
module. We extend the abbreviated notations of (i) by setting

(B∗A∗; B∗M∗) = B∗(C[1]∗, C[1]∗, (A∗;M∗))

and
(V∗A∗; V∗M∗) = B∗(C[1]L,C[1]∗, (A∗; M∗)).

Then B∗M∗ is a simplicial B∗A∗-algebra, V∗M∗ is a simplicial V∗A∗-algebra, and
ψ∗ and δ∗ give a natural diagram of simplicial C[1]∗-algebras

(A∗; M∗) ← (B∗A∗; B∗M∗) → R(V∗A∗; V∗M∗).

Example 4.4. Let ε : C → P be a quasi-isomorphism of Σ-projective operads
and let ε also denote the induced maps of monads C → P and C[1] → P [1]. If k is
a field of characteristic zero, then ε : CX → PX and ε : C(X; Y ) → P (X; Y ) are
quasi-isomorphisms for all k-modules X and Y . (This is I.7.1, and it also follows
directly from Lemma 3.1.) In this case, the maps ε∗ in the rest of this example are
all quasi-isomorphisms.
(i) PL : D → K is a (P, C∗)-bifunctor with C∗-action the composite

µL ◦ PεL ◦ PLC∗δ : PLC∗ → PLC∗RL = PCL → PPL → PL;

εL : CL → PL is a map of (C, C∗)-bifunctors and therefore induces a map of
simplicial C-algebras

ε∗ : V A∗ = B∗(CL, C∗, A∗) → B∗(PL, C∗, A∗) ≡ W∗A∗

for any C∗-algebra A∗, where W∗A∗ is abbreviated notation for the simplicial P -
algebra B∗(PL,C∗, A∗).
(ii) P [1]L : D [1] → K [1] is a (P [1], C[1]∗)-bifunctor; εL : C[1]L → P [1]L is a map
of (C[1], C[1]∗)-bifunctors and therefore induces a map of simplicial C[1]-algebras

ε∗ : (V∗A∗; V∗M∗) → (W∗A∗; W∗M∗),

where W∗M∗ is abbreviated notation for the second coordinate of the simplicial
P [1]-algebra B∗(P [1]L,C[1]∗, (A∗; M∗)).
(iii) For a C-algebra A, define

B∗A = B∗(C, C,A) and W∗A = B∗(P,C, A).

Then W∗A is a simplicial P -algebra and ε∗ : B∗A → W∗A is a map of simplicial
C-algebras. Similarly, for a C[1]-algebra (A; M), define

(B∗A; B∗M) = B∗(C[1], C[1], (A; M)), and

(W∗A; W∗M) = B∗(P [1], C[1], (A; M)).

Then W∗M is a simplicial W∗A-module and

ε∗ : (B∗A;B∗M) → (W∗A; W∗M)
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is a map of simplicial C[1]-algebras. That is, ε∗ : B∗M → W∗M is a map of
simplicial B∗A-modules, where W∗M is a simplicial B∗A-module by pullback along
ε∗ : B∗A → W∗A.

To go from these examples to the theorems of Section 1, we need only transport
the information that they give from the category S K of simplicial k-modules to
the category K of k-modules. Recall that, so far, the term “k-module” has been
used in all-embracing generality, allowing Z-graded differential k-modules or even
simplicial Z-graded differential k-modules. To obtain a sufficiently well-behaved
functor S K → K , one that preserves all kinds of algebras and modules in sight,
we must shrink K . This is the subject of the next section.

5. Totalization and diagonal functors; proofs

We change notational conventions at this point and use the term “k-module” in
the classical sense of an ungraded k-module without differential. We use the term
“chain complex” for a differential graded k-module. We shall have to consider, and
carefully distinguish among, simplicial k-modules, simplicial chain complexes, and
bisimplicial k-modules (which arise naturally as simplicial simplicial k-modules).

Recall that the tensor product of simplicial k-modules X and Y has q-simplices
Xq ⊗ Yq, with faces and degeneracies ∂i ⊗ ∂i and si ⊗ si. Indeed, this defines the
tensor product between simplicial objects in any category with a tensor product.

For the applications of the next section, we must allow simplicial graded k-
modules X. This means that X = {X(r)|r ∈ Z} is a sequence of simplicial
k-modules. A map X → Y is a sequence of maps X(r) → Y (r) of simplicial
k-modules. The grading r is vital to the geometric context, where it is closely re-
lated to the grading of rational algebraic K-theory by the eigenvectors of Adams
operations, but it will carry through the theory of this section without introduc-
ing substantive complications. We will generally call it the “Adams grading” to
avoid confusion with any other grading that we may have. Write Xp(r) for the
k-module of p-simplices in X(r) and define (X ⊗ Y )(r) =

∑
X(s) ⊗ Y (r − s),

where the tensor products on the right are as specified above. The unit for the
tensor product is the constant simplicial k-module k, thought of as concentrated in
Adams grading zero.

We must also allow Adams graded chain complexes X. This means that X =
{X(r)|r ∈ Z} is a sequence of chain complexes. For the general theory, the X(r)
can be Z-graded, but they will be positively graded in our examples. A map X → Y
is a sequence of chain maps X(r) → Y (r). Define (X⊗Y )(r) =

∑
X(s)⊗Y (r−s),

where the tensor products on the right are the usual tensor products of chain
complexes. The unit is k regarded as a chain complex concentrated in degree zero
and Adams grading zero.

We view the Adams grading as if it were concentrated in even degrees: it will not
contribute to signs under permutations. While the examples in the next section are
concentrated in positive Adams grading, a satisfactory theory of modules requires
us to allow negative degrees.

Let K denote the category of Adams graded k-modules and let C C denote the
category of Adams graded chain complexes. For any category T , let S T denote
the category of simplicial objects in T . We thus have categories S K , S C C , and
S S K . The last is the category of bisimplicial Adams graded k-modules, and such
objects will arise as simplicial bar constructions B∗(F,C, A), where F takes values
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in S K . These categories are all symmetric monoidal under their respective tensor
products.

To understand our conversion theorems, we must understand the properties of
the normalized chain complex functor

C# : S K → C C ,

its generalization to the totalization functor

C# : S C C → C C ,

and the diagonal functor
∆ : S S K → S K .

(We are using the notation C# to avoid confusion with our use of the notation C∗
for the monads in domains associated to an operad C .)

For a simplicial k-module X, C#(X) is just the chain complex X/D(X) with
differential d =

∑
(−1)i∂i, where D(X) is the subcomplex of X generated by the

degenerate simplices (which is acyclic [44, 22.3]). Since D(X) is a direct summand of
X [44, 22.2], C# preserves inclusions. If X is Adams graded, we define (C#X)(r) =
C#(X(r)).

The functor C# preserves algebraic structures that are defined in terms of tensor
products, but it does not carry partial algebras to partial algebras in general. To
see this, recall that, for simplicial k-modules X and Y , we have the shuffle map

g : C#(X)⊗ C#(Y ) → C#(X ⊗ Y )

and the Alexander-Whitney map

f : C#(X ⊗ Y ) → C#(X)⊗ C#(Y ).

These are inverse chain homotopy equivalences and, because we are working on the
normalized level, f ◦ g =Id [44, 29.10]. Thus g is a split inclusion. Moreover, g is
commutative, associative, and unital by [44, 29.9] and inspection.

Given any kind of algebraic structure defined in terms of maps θ : X1⊗· · ·⊗Xj →
X in S K , we obtain a similar kind of algebraic structure in C C by composing the
maps C#θ with iterates of g. Here, if we start with a structure defined in terms of
an operad C of simplicial k-modules, we end with a structure defined in terms of
the operad C#(C ) of chain complexes. All of our operads, in both S K and C C ,
are to be concentrated in Adams grading zero.

If A∗ is a partial algebra in a simplicial k-module A, so that Aj is a simplicial
submodule of Aj and the inclusion is a quasi-isomorphism, then the obvious way
to try to define a domain C#(A∗)∗ in the chain complex C#(A) is to set

C#(A∗)j = g−1(C#(Aj) ∩ g(C#(A)j)) = f(C#(Aj) ∩ g(C#(A)j)) ⊂ C#(A)j .

Thus the following diagram is a pullback, where g′ is the restriction of g:

C#(A∗)j
� � //

g′

²²

C#(A)j

g

²²
C#(Aj)

� � // C#(Aj)

In general, the top inclusion need not be a quasi-isomorphism. It is a quasi-
isomorphism if f restricts to a left inverse f ′ of g′, that is, if

f(C#(Aj)) ⊂ f(C#(Aj) ∩ g(C#(A)j)) = C#(A)j ,
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since we then have compatible direct sum decompositions. While one can write
down explicit conditions in terms of faces and degeneracies which ensure that these
inclusions hold, this approach is not very satisfactory.

Thus we accept that the functor C# fails to carry partial algebras of simplicial
k-modules to partial algebras of chain complexes in general. To get around this, we
prove our conversion functors for partial algebras on the simplicial level, as stated
in Theorems 1.1 and 1.2, and then apply C#.

Before getting to this, we briefly consider the generalization of C# to a functor
S C C → C C . This is needed to prove Theorem 1.4 and will also be used in Part V.
For a simplicial Adams graded chain complex X, let Xp,q(r) denote the k-module of
p-simplices of ordinary grading q and Adams grading r. Then C#X is constructed
by letting (C#X)n(r) be the quotient of

∑
Xp,q(r) by its subgroup of degenerate

simplices. The differential on C#X is the sum of the simplicial differential
∑

(−1)idi

and (−1)p times the internal differential; see [30, pp. 65-68] for details (some of
which will be recalled in IV §4).

By [30, A.2], the functor C# carries simplicial homotopies of the sort occurring
in Example 4.2 to chain homotopies, and a standard spectral sequence argument
shows that it carries simplicial quasi-isomorphisms to quasi-isomorphisms. The
shuffle product and Alexander-Whitney map are generalized and shown to continue
to enjoy all of the properties that we mentioned above in [30, A.3].

Therefore, given any kind of algebraic structure defined in terms of maps θ :
X1⊗· · ·⊗Xj → X in S C C , we obtain a similar kind of algebraic structure in C C
by composing the maps C#θ with iterates of g. We are interested in simplicial C -
algebras and their modules, where C is an operad of chain complexes. These are the
same things as C -algebras and their modules, where C is the operad of simplicial
chain complexes given by the constant simplicial chain complexes C (j). Clearly,
C#(C ) = C , and it follows that the functor C# carries simplicial C -algebras and
modules to C -algebras and modules. Of course, this fails on the partial level.

Proof of Theorem 1.4. With the hypotheses and notations of Theorem 1.4 and Ex-
ample 4.4(iii), we define functors B = C#B∗ and W = C#W∗ on both C -algebras
A and A-modules M . Noting that A = C#A, we define

ψ = C#ψ∗ : BA → A and ε = C#ε∗ : BA → WA.

Then WA is a P-algebra and ψ and ε are quasi-isomorphisms and maps of C -
algebras. Thus these maps give a natural quasi-isomorphism between the C -algebra
A and the P-algebra WA. The argument for modules is identical. ¤

Now consider S S K . An object X = {Xp,q(r)} in this category has a “horizon-
tal” simplicial variable p and a “vertical” simplicial variable q, as well as the Adams
grading r. We again have a total chain complex functor C# : S S K → C C , and
we say that a map f : X → Y is a quasi-isomorphism if C#f is a quasi-isomorphism.
More generally, we must consider S S D , the category of bisimplicial domains of
Adams graded k-modules. Such an object X∗ consists of inclusions δj : Xj → Xj of
Σj-invariant subobjects, where δ0 is the identity of k, δ1 is the identity of X = X1,
and each of the δj is a quasi-isomorphism.

Definition 5.1. The diagonal functor ∆ : S S K → S K sends

X = {(Xp,q)(r)} to ∆X = {(Xq,q)(r)},
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with the diagonal face and degeneracy operations and the obvious Adams grading.
Extend ∆ to a functor ∆∗ : S S D → S D by setting ∆jX∗ = ∆Xj ; the required
inclusion ∆jX ⊂ (∆X)j is obtained by restriction of the given inclusions Xj ⊂ Xj .

To validate this definition, we need to check that the cited inclusions are equiv-
alences, but this is immediate from the first statement of the following standard
result. As usual, the horizontal and vertical simplicial structures of a bisimpli-
cial k-module X give rise to corresponding iterated homology groups, and there
are spectral sequences that converge from these iterated homology groups to the
homology of the total chain complex of X.

Lemma 5.2. ([22, Satz 2.9]) For a bisimplicial k-module X, the total chain complex
of X is naturally quasi-isomorphic to the chain complex associated to ∆X. There-
fore there are spectral sequences converging to H∗(∆X) from the vertical homology
of the horizontal homology simplicial k-module and from the horizontal homology
of the vertical homology simplicial k-module.

We are concerned with actions by an operad C of simplicial k-modules. We say
that C is Σ-free or Σ-projective if each Cq(j) is Σ-free or Σ-projective, and we
say that C is acyclic if C#C is acyclic. We say that C is an E∞ operad if it is
Σ-free and acyclic; C#C is then an E∞ operad of chain complexes. As observed
in I §5, examples arise naturally from operads of topological spaces. We repeat
that everything in §§2-4 works precisely as written with “k-modules” interpreted
as “simplicial k-modules”.

We think of the given simplicial structure on C as vertical, and we let C be
the associated horizontally constant bisimplicial operad. When the functor F takes
values in simplicial C -algebras, B∗(F, C,A) takes values in simplicial simplicial C -
algebras, which are the same things as bisimplicial C -algebras. Partial actions
work similarly. The crucial, if trivial, fact about the functor ∆ is that it manifestly
preserves any such operad actions, even partial ones. This makes ∆ a valuable
technical substitute for the total chain complex functor.

Proofs of Theorems 1.1 and 1.2. With the hypotheses and notations of Theorem
1.1 and Example 4.3, define functors B = ∆B∗ and V = ∆V∗ on both partial C -
algebras and their modules. Note that ∆A∗ = A∗ and define ψ = ∆ψ∗ : BA∗ → A∗.
While the horizontal homotopy η∗ψ∗ ' Id does not give rise to a homotopy on
application of ∆, it does imply that ψ∗ restricts to a horizontal equivalence on each
fixed vertical degree, and ψ is therefore a quasi-isomorphism. Define δ = ∆δ∗ :
BA∗ → RV A∗. Since δ∗ restricts to a vertical quasi-isomorphism on each fixed
horizontal degree, δ is a quasi-isomorphism. Since ψ and δ are maps of partial
C -algebras, they define a natural quasi-isomorphism

A∗ ← BA∗ → RV A∗

between A∗ and the genuine C -algebra V A∗. Similarly, with the hypotheses and
notations of Theorem 1.2 and Example 4.4, define functors W = ∆W∗ on both
algebras and modules and define ε = ∆ε∗ : V A∗ → WA∗. Since ε∗ restricts to
a vertical equivalence on each fixed horizontal degree, ε is a quasi-isomorphism.
Since ε is a map of C -algebras, it combines with ψ and δ to define a natural quasi-
isomorphism between A∗ and the P-algebra WA∗. The proofs for modules are
identical. ¤
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6. Higher Chow complexes

Before getting to our motivating examples, we insert some general remarks about
extension of scalars and about the specialization of the arguments just given to
partial commutative simplicial k-algebras.

Remark 6.1. Let k be a subring of K such that K is a flat k-module. If C is an
operad over k, A is a C -algebra, and M is an A-module, then C ⊗k K is an operad
over K, A⊗k K is a (C ⊗k K)-algebra, and M ⊗k K is an (A⊗k K)-module. This
remains true of partial structures (in view of our flatness hypothesis). All of our
monads, hence also our bar constructions, also commute with extension of scalars.
Under the varying hypotheses of Theorems 1.1, 1.2, and 1.4, there are natural
isomorphisms

(BA)⊗k K ∼= B(A⊗k K),

(V A)⊗k K ∼= V (A⊗k K), and

(WA)⊗k K ∼= W (A⊗k K)

that preserve all structure in sight and are compatible with the various natural
quasi-isomorphisms that were used in the proofs of the cited results. The same
conclusions hold for modules.

Remark 6.2. (i) (A shortcut). Consider a partial commutative simplicial k-algebra
A∗, where k is a field of characteristic zero. Then A∗ is a partial N -algebra, or,
equivalently, an N∗-algebra, and we can work directly with N and its monads to
effect the conversion of Theorems 1.1 and 1.2. That is, we set

BA∗ = ∆B∗(N∗, N∗, A∗) and V A∗ = ∆B∗(NL, N∗, A∗).

Then V A∗ is a commutative simplicial k-algebra, and we have quasi-isomorphisms
of N∗-algebras

ψ = ∆ψ∗ : BA∗ → A∗ and δ = ∆δ∗ : BA∗ → RV A∗.

A similar shortcut converts partial A∗-modules to genuine V A∗-modules. If C is
another acyclic operad, we have compatible quasi-isomorphisms

B∗(C∗, C∗, A∗) → B∗(N∗, N∗, A∗) and B∗(NL, C∗, A∗) → B∗(NL, N∗, A∗).

(ii) Now let A∗ be a partial commutative simplicial k-algebra over a general com-
mutative ring k. Here, to effect the conversion of Theorem 1.1, we choose an
E∞ operad C of simplicial k-modules and regard A∗ as a partial C -algebra by
pullback along the augmentation ε : C → N . The point is that Σ-projectivity is
essential to the proof. Thus Theorem 1.1 eliminates the partialness of our struc-
tures at the expense of fattening up the operad. When k = Z, we obtain operations
on mod p homology by passage to homology from the diagram

C#(C (p))⊗Σp C#(A)p → C#(C (p)⊗Σp Ap) ← C#(C (p)⊗Σp Ap) → C#A.

The left arrow is the shuffle map, and it and the middle arrow induce isomorphisms
on mod p homology. The rights arrow is C#(ε ⊗ θ). A diagram chase shows that
the resulting operations agree with those of the quasi-isomorphic C -algebra V A∗,
and Theorem I.7.2 is still valid as stated (compare [26]). The only point worth
mentioning is that we have added an Adams grading, and the operations Qs and
βQs carry elements of Adams grading r to elements of Adams grading pr.
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We now recall the motivating examples, as defined by Bloch [7]. These are partial
commutative simplicial rings, with ground ring k = Z.

Example 6.3. Let X be a (smooth, quasi-projective) variety over a field F . Bloch
[7] has defined an Adams graded simplicial Abelian group Z(X). Its group Zr(X, q)
of q-simplices in Adams grading r is free Abelian on the set of those codimension r
irreducible subvarieties of X ×∆q which meet all faces properly, where

∆q = Spec(F [t0, . . . , tq]/(
∑

ti − 1)).

There is a partially defined intersection product on this graded simplicial Abelian
group. In Adams grading r and simplicial degree q, the domain Z(X)j of the j-fold
product is the sum over all partitions {r1, . . . , rj} of r of the subgroups of

Zr1(X, q)⊗ · · · ⊗ Zrj (X, q)

spanned by those j-tuples of simplices all intersections of subsets of which meet
all faces properly. An “easy” moving lemma of Bloch, implicit in [7] and proven
in detail when X = Spec(F ) in [8], gives that the inclusion Z(X)j → Z(X)j is
a quasi-isomorphism. It is evident that the intersection product is commutative,
associative, and unital. If π : X → Y is a flat map, we obtain a map π∗ : Z(Y ) →
Z(X) of Adams graded simplicial Abelian groups by pulling cycles in simplices back
along the flat maps π : X×∆q → Y ×∆q. It extends to a map of partial rings. That
is, the partial commutative simplicial ring Z(X)∗ is contravariantly functorial on
flat maps. In particular, letting Z = Z(Spec(F )), we obtain a map π∗ : Z∗ → Z(X)∗
of partial commutative simplicial rings for any X.

The integral higher Chow groups of X are defined by

CHr(X, q) = Hq(Zr(X, ∗);Z).

By the previous remarks, if we define the mod p Chow groups by taking mod p
homology, then these groups admit homology operations just like those familiar
in algebraic topology. A harder moving lemma of Bloch, first claimed in [7] and
recently proven in [9], implies that

CHr(X, q)⊗Q ∼= (Kq(X)⊗Q)(r).

Here the right side is the nr-eigenspace of the Adams operation ψn for any n > 1
(which is independent of n); Kq(X) ⊗ Q is the direct sum of these eigenspaces.
Levine [39] has recently given a different proof of this isomorphism that avoids
Bloch’s hard moving lemma.

As in Remark 6.2(ii), we choose an E∞ operad C of simplicial Abelian groups
and regard our partial commutative simplicial rings as partial C -algebras. We apply
Theorem 1.1 to convert partial C -algebras to quasi-isomorphic genuine C -algebras,
still in the category of simplicial Abelian groups. We then apply the functor C# to
convert to algebras over the associated E∞ operad C#C of chain complexes. It is
these chain complex level structures that really interest us. Recall that we defined
an E∞ algebra to be an algebra over any E∞ operad of chain complexes, such as
C#C . Of course, we can proceed in the same way for modules.

Definition 6.4. Fix a field F and consider varieties X over F .
(i) Let A (X) be the E∞ algebra obtained from Z(X)∗ by applying the functor
C#V . Write A , or A /F , for A (Spec(F )). Write π∗ : A (Y ) → A (X) for the map
of E∞ algebras induced by a flat map π : X → Y ; A (X) is an A (Y )-module via
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π∗. In particular, A (X) is an A -module for every X.
(ii) Let AQ(X) be the commutative DGA obtained from Z(X)∗⊗Q by applying the
functor C#W . Write AQ, or AQ/F , for AQ(Spec(F )). Write π∗ : AQ(Y ) → AQ(X)
for the map of DGA’s induced by a flat map π : Y → X.

Proposition 6.5. For varieties X, A (X) ⊗ Q is an E∞ algebra, and there is a
quasi-isomorphism A (X)⊗Q→ AQ(X) of E∞ algebras.

Proof. By Remark 6.1, A (X)⊗Q ∼= C#V (Z(X)⊗Q). The map ε : V → W used
in the proof of Theorem 1.2 gives the desired quasi-isomorphism. ¤

Remark 6.6. In order to relate these definitions to the usual cohomology theories
in algebraic geometry, it is appropriate to regrade by setting

N 2r−p(X)(r) = Ap(X)(r).

With this grading, it is reasonable to define

(6.7) Hi
Mot(X;Q(r)) ≡ Hi(NQ(X))(r).

Write N , or N /F , for N (Spec(F )). The E∞ algebras N (X) may be viewed
as N -modules and thus as objects of the derived category DN . It is a suggestion
of Deligne [20, 17] that this derived category should provide an appropriate site in
which to define integral mixed Tate motives. In fact, if one accepts the integral
analog of (6.7) as the definition of integral motivic cohomology, one can view DN

as a “derived category” of integral mixed Tate modules. If there is a good Abelian
category of integral mixed Tate motives, it should be an admissible Abelian subcat-
egory [3, 1.2.5] of this triangulated derived category, and it would then necessarily
be its heart with respect to a suitable t-structure [3, 1.3.13]. However, in order to
take this idea seriously, we must first understand such derived categories of modules
over E∞ algebras: that is the subject of Part V.

Most work on mixed Tate motives has concentrated on the rational theory, and
our work gives a classical category of derived modules in which to think about the
subject. We shall return to consideration of mixed Tate motives in Part IV, after
developing a new approach to the study of classical derived categories in Part III.

Part III. Derived categories from a topological point of view

Let k be a commutative ring and let A be a differential graded associative and
unital k-algebra (= DGA). As many topologists recognize, there is an extremely
close analogy between the derived category DA of differential graded A-modules and
the stable homotopy category of spectra. However, there is no published account of
derived categories from this point of view. With the goal of developing an integral
theory of mixed Tate motives, we shall generalize the derived category DA to the
case of E∞ algebras A over k in Part V. Understanding of that more difficult theory
requires a prior knowledge of our treatment of the derived categories of ordinary
DGA’s. This elementary theory is adequate and illuminating for one approach to
rational mixed Tate motives ([20, 17, 6]), as we shall show in Part IV.

Therefore, with the hope that our way of thinking about derived categories will
prove useful to others, we here give a topologically motivated, although purely
algebraic, exposition of the classical derived categories of DGA’s. These categories
admit remarkably simple and explicit descriptions in terms of “cell modules”, which
are the precise algebraic analogs of cell spectra. Such familiar topological results as
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Whitehead’s theorem and Brown’s representability theorem transcribe directly into
algebra. There is also a theory of CW modules, but these are less useful (at least
in our motivating examples), due to the limitations of the cellular approximation
theorem. Derived tensor products and Hom functors, together with differential Tor
and Ext functors and Eilenberg-Moore (or hyperhomology) spectral sequences for
their computation, drop out quite easily.

Our methods can be abstracted and applied more generally, and some of what we
do can be formalized in Quillen’s context of closed model categories [54]. We prefer
to be more concrete and less formal. We repeat that many topologists have long
known some of this material. For example, although the emphasis is quite different,
our work overlaps that of [30] and [2]. On a technical note, we emphasize that, as
in [30], k is an arbitrary commutative ring and we nowhere impose boundedness or
flatness hypotheses.

1. Cell A-modules

Motivated by the motivic context, we take all k-modules X to be Z-bigraded,
with gradings written X = {Xq(r)}. We call q the ordinary grading or degree
and r the Adams grading or degree. We assume given a differential d : Xq(r) →
Xq+1(r). Thus X is really an “Adams graded differential graded k-module”. By
convention, the grading does and the Adams grading does not introduce signs
under permutations. The reader with other motivations may prefer to forget the
Adams grading and to regrade homologically, setting Xq = X−q; this makes the
analogy with topology far more transparent. Except where otherwise specified, a
map f : X → Y of k-modules means a map of bidegree (0, 0) that commutes with
the differentials; f is a quasi-isomorphism if it induces an isomorphism on homology.

We sometimes write x ∈ (q, r) to indicate that an element of some module is of
bidegree (q, r). We begin with some utterly trivial notions, expressed so as to show
the analogy with topology. Let I denote the “unit interval k-module”. It is free
on generators [0] ∈ (0, 0), [1] ∈ (0, 0), and [I] ∈ (−1, 0), with d[I] = [0] − [1]. A
homotopy is a map X ⊗ I → Y , where ⊗ means ⊗k. Of course,

(X ⊗ Y )q(r) =
⊕

m+n=q,s+t=r

Xm(s)⊗ Y n(t),

with d(x ⊗ y) = dx ⊗ y + (−1)deg(x)x ⊗ dy. The cone CX is the quotient module
X ⊗ (I/k[1]) and the suspension ΣX is X ⊗ (I/∂I), where ∂I has basis [0] and [1].
Additively, CX is the sum of copies of X and ΣX, but with differential arranged so
that H∗(CX) = 0. The usual algebraic notation for the suspension is ΣX = X[1],
and(ΣX)q = Xq+1. Since we have tensored the interval coordinate on the right, the
differential on ΣX is the same as the differential on X, without the introduction of
a sign.

The cofiber of a map f : X → Y is the pushout of f along the inclusion X =
X ⊗ [0] → CX. There results a short exact sequence

0 → Y → Cf → ΣX → 0.

Up to sign, the connecting homomorphism of the resulting long exact homology
sequence is f∗. Explicitly, (Cf)q = Y q ⊗Xq+1, with differential

d(y, x) = (dy + (−1)qfx, dx).
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The sequence

X → Y → Cf → ΣX

is called a cofiber sequence, or an exact triangle.
Now assume given a DGA A over k; A is to be associative and unital, but not

necessarily commutative, and A-modules will usually mean left A-modules. If X is
a k-module and M is an A-module, then M ⊗X is an A-module, hence the notion
of a homotopy between maps of A-modules is defined. Since we defined cofiber
sequences in terms of tensoring with k-modules, the cofiber sequence generated
by a map of A-modules is clearly a sequence of A-modules. Let MA denote the
category of A-modules and hMA its homotopy category. Then the derived category
DA is obtained from hMA by adjoining formal inverses to the quasi-isomorphisms
of A-modules. In Construction 2.7, we shall give an explicit description that makes
it clear that there are no set theoretic difficulties. (This point is typically ignored
in algebraic geometry and obviated by concrete construction in algebraic topology.)

The sequences isomorphic to cofiber sequences in the respective categories give
hMA and DA classes of exact triangles with respect to which they become triangu-
lated categories in the sense of Verdier [60]. More precisely, they become so after
the introduction of graded maps or rather, in our context, bigraded maps. A map
of bidegree (s, t) consists of maps Mq(r) → Nq+s(r + t) that commute with the
differentials and A-actions. Such maps can be thought of as maps M → Σs(t)N of
bidegree (0, 0), where the suspension functor Σs(t) is specified by

(Σs(t)M)q(r) = Mq+s(r + t),

with differential and A-action inherited from M . Since we have allowed ourselves
Z-bigrading, each such functor is an automorphism of MA, and the introduction
of bigraded morphisms is in principle a notational device that can add nothing of
substance to the mathematics. It becomes crucial when we define Hom modules
of bigraded morphisms, but until then it is convenient to think solely in terms of
maps of bidegree (0, 0).

It is also convenient to think of the suspension functors in a different way. Let
Ss(t) be the free k-module generated by a cycle is(t) ∈ (s, t). Then our suspension
functors are just

Σs(t)M = M ⊗ Ss(t).

We think of the Ss(t) as sphere k-modules. We let F s(t) = A⊗ Ss(t) and think of
the F s(t) as sphere A-modules; they are free on the generating cycles is(t). Since
s and t run through Z, the analogy is with stable homotopy theory: that is where
negative dimensional spheres live.

In fact, the modern description of the stable homotopy category [40] translates
directly into our new description of the derived category. (The preamble of [40]
explains the relationship with earlier treatments of the stable homotopy category,
which do not have the same flavor.) In brief, one sets up a category of spectra.
In that category, one defines a theory of cell and CW spectra that allows negative
dimensional spheres. One shows that a weak homotopy equivalence between cell
spectra is a homotopy equivalence and that every spectrum is weakly homotopy
equivalent to a cell spectrum. The stable homotopy category is obtained from
the homotopy category of spectra by formally inverting the weak homotopy equiva-
lences, and it is described more concretely as the homotopy category of cell spectra.
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With spectra and weak homotopy equivalences replaced by A-modules and quasi-
isomorphisms, precisely the same pattern works algebraically—but of course far
more simply.

Definitions 1.1. (i) A cell A-module M is the union of an expanding sequence of
sub A-modules Mn such that M0 = 0 and Mn+1 is the cofiber of a map φn : Fn →
Mn, where Fn is a direct sum of sphere modules F s(t) (of varying bidegrees). The
restriction of φn to a summand F s(t) is called an attaching map and is determined
by the “attaching cycle” φn(is(t)). An attaching map F s(t) → Mn induces a map

CF s(t) = A⊗ CSs(t) → Mn+1 ⊂ M,

and such a map is called an (s − 1, t)-cell. Thus Mn+1 is obtained from Mn by
adding a copy of F s−1(t) for each attaching map with domain F s(t), but giving the
new generators js−1(t) = is(t)⊗ [I] the differentials

d(js−1(t)) = (−1)sφn(is(t)).

We call such a copy of F s−1(t) in M an open cell; if we ignore the differential, then
M is the direct sum of its open cells.
(ii) A map f : M → N between cell A-modules is cellular if f(Mn) ⊂ Nn for all n.
(iii) A submodule L of a cell A-module M is a cell submodule if L is a cell A-module
such that Ln ⊂ Mn and the composite of each attaching map F s(t) → Ln of L
with the inclusion Ln → Mn is an attaching map of M . Thus every cell of L is a
cell of M .

We call {Mn} the sequential filtration of M . It is essential for inductive ar-
guments, but it should be regarded as flexible and subject to change whenever
convenient. It merely records the order in which cells are attached and, as long
as the cycles to which attachment are made are already present, it doesn’t matter
when we attach cells.

Lemma 1.2. Let f : M → N be an A-map between cell A-modules. Then M
admits a new sequential filtration with respect to which f is cellular.

Proof. Assume inductively that Mn has been filtered as a cell A-module Mn =
∪M ′

q such that f(M ′
q) ⊂ Nq for all q. Let x ∈ Mn be an attaching cycle for the

construction of Mn+1 from Mn and let χ : CF s(t) → Mn+1 be the corresponding
cell. Let q be minimal such that both x ∈ M ′

q and f ◦χ has image in Nq+1. Extend
the filtration of Mn to Mn+1 by taking x to be a typical attaching cycle of a cell
CF s(t) → M ′

q+1. ¤

From a topological point of view, our cohomological grading has the effect that
we are looking at things upside down: the bottom summand of a cone CF s(t) is
the one that involves the unit interval. That may help explain the intuition behind
the following definition.

Definition 1.3. The dimension of a cell CF s(t) → Mn+1 is s−1. A cell A-module
M is said to be a CW A-module if each cell is attached only to cells of higher
dimension, in the sense that the defining cycles φn(is(t)) are elements in the sum of
the images of cells of dimension at least s. The n-skeleton Mn of a CW A-module
is the sum of the images of its cells of dimension at least n, so that Mn ⊂ Mn−1.
We require of cellular maps f : M → N between CW A-modules that they be
“bicellular”, in the sense that both f(Mn) ⊂ Nn and f(Mn) ⊂ Nn for all n. By
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Lemma 1.2, the latter condition can be arranged by changing the order in which
the cells of M are attached.

Definition 1.4. A cell A-module is finite dimensional if it has cells in finitely many
dimensions. It is finite if it has finitely many cells.

Just as finite cell spectra are central to the topological theory, so finite cell
A-modules are central here, especially when we restrict to commutative DGA’s
and discuss duality. The collection of cell A-modules enjoys the following closure
properties, which imply many others.

Proposition 1.5. (i) A direct sum of cell A-modules is a cell A-module.
(ii) If L is a cell submodule of a cell A-module M , N is a cell A-module, and
f : L → M is a cellular map, then the pushout N ∪f M is a cell A-module with
sequential filtration {Nn ∪f Mn}. It contains N as a cell submodule and has one
cell for each cell of M not in L.
(iii) If L is a cell submodule of a cell A-module M and X is a cell submodule
of a cell k-module Y , then M ⊗ Y is a cell A-module with sequential filtration
{∑p(Mp ⊗ Yn−p)}. It contains L ⊗ Y + M ⊗ X as a cell submodule and has a
(q + s, r + t)-cell for each pair consisting of a (q, r)-cell of Mp and an (s, t)-cell of
Yn−p, 0 ≤ p ≤ n.
(iv) The mapping cylinder Mf = N ∪f (L⊗ I) of f : L → N is the pushout defined
by taking L = L⊗ k[0] ⊂ L⊗ I. If f is a cellular map between cell A-modules, then
Mf is a cell A-module, L = L ⊗ k[1] is a cell submodule, the inclusion N → Mf
is a homotopy equivalence, and Cf = Mf/L.

Proof. Parts (i) and (ii) are easy and (iv) follows from (ii) and (iii). For (iii),
observe that there are evident canonical isomorphisms

Sq(r)⊗ Ss(t) ∼= Sq+s(r + t) and F q(r)⊗ Ss(t) ∼= F q+s(r + t).

M ⊗ Y has an open cell F q+s(r + t) for each open cell F q(r) of M and Ss(t) of Y ;
the differential on its canonical basis element is the cycle

d(jq(r))⊗ js(t) + (−1)q(jq(r))⊗ d(js(t)). ¤

2. Whitehead’s theorem and the derived category

A quick space level version of some of the results of this section may be found
in [50], and the spectrum level model is given in [40, I §5]. We construct the
derived category explicitly in terms of cell modules. As in topology, the “homotopy
extension and lifting property” is pivotal. It is a direct consequence of the following
trivial observation. Let i0 and i1 be the evident inclusions of M in M ⊗ I.

Lemma 2.1. Let e : N → P be a map such that e∗ : H∗(N) → H∗(P ) is a
monomorphism in degree s and an epimorphism in degree s− 1. Then, given maps
f , g, and h such that f |F s(t) = hi0 and eg = hi1 in the following diagram, there
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are maps g̃ and h̃ that make the entire diagram commute.
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Proof. Let i = is(t) ⊗ [0] and j = is(t) ⊗ [I] be the basis elements of CF s(t), so
that d(j) = (−1)si. Then eg(i) = h(i⊗ [1]) and f(i) = h(i⊗ [0]), hence

d(h(i⊗ [I])− f(j)) = (−1)s+1eg(i).

Since eg(i) bounds in P , g(i) must bound in N , say d(n′) = g(i). Then

p ≡ e(n′) + (−1)s(h(i⊗ [I])− f(j))

is a cycle. There must be a cycle n ∈ N and a chain q ∈ P such that

d(q) = p− e(n).

Define g̃(j) = (−1)s(n′ − n) and h̃(j ⊗ [I]) = q. ¤

Theorem 2.2 (HELP). Let L be a cell submodule of a cell A-module M and let
e : N → P be a quasi-isomorphism of A-modules. Then, given maps f : M → P ,
g : L → N , and h : L ⊗ I → P such that f |L = hi0 and eg = hi1 in the following
diagram, there are maps g̃ and h̃ that make the entire diagram commute.
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Proof. By induction up the filtration {Mn} and pullback along cells not in L, this
quickly reduces to the case (M, L) = (CF s(t), F s(t)) of the lemma. ¤

For objects M and N of any category Cat, let Cat(M, N) denote the set of
morphisms in Cat from M to N .

Theorem 2.3 (Whitehead). If M is a cell A-module and e : N → P is a quasi-
isomorphism of A-modules, then e∗ : hMA(M, N) → hMA(M, P ) is an isomor-
phism. Therefore a quasi-isomorphism between cell A-modules is a homotopy equiv-
alence.

Proof. Take L = 0 in HELP to see the surjectivity. Replace (M, L) by the pair
(M ⊗ I, M ⊗ (∂I)) to see the injectivity. When N and P are cell A-modules, we
may take M = P and obtain a homotopy inverse f : P → N . ¤
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Theorem 2.4 (Cellular approximation). Let L be a cell submodule of a CW A-
module M , let N be a CW A-module such that Hs(N/Ns) = 0 for all s, and let
f : M → N be a map whose restriction to L is cellular. Then f is homotopic
relative to L to a cellular map. Therefore any map M → N is homotopic to a
cellular map, and any two homotopic cellular maps are cellularly homotopic.

Proof. By Lemma 1.2, we may change the sequential filtration of M to one for
which f is sequentially cellular. Proceeding by induction up the filtration {Mn}, we
construct compatible cellular maps gn : Mn → Nn and a homotopy hn : Mn ⊗ I →
Nn from f |Mn to gn. The result quickly reduces to the case of a single cell of M that
is not in L and thus to the case when (M, L) = (CF s(t), F s(t)). The conclusion
follows by application of Lemma 2.1 to the inclusions e : (Nn)s−1 → Nn. ¤

Remark 2.5. If Hs(A) = 0 for all s > 0, then the hypothesis holds for all N , and we
can work throughout with CW A-modules and cellular maps rather than with cell
A-modules. Of course, if we regrade homologically, then this means that Hs(A) = 0
for s < 0, which matches the intuition: CW theory works topologically because the
homotopy groups of the zero sphere spectrum are zero in negative degrees.

Theorem 2.6 (Approximation by cell modules). For any A-module M , there is a
cell A-module N and a quasi-isomorphism e : N → M .

Proof. We construct an expanding sequence Nn and compatible maps en : Nn → M
inductively. Choose a cycle ν ∈ (q, r) in each homology class of M , let N1 be the
direct sum of A-modules F q(r), one for each ν, and let e1 : N1 → M send the νth
canonical basis element to the cycle ν. Inductively, suppose that en : Nn → M has
been constructed. Choose a pair of cycles (ν, ν′) in each pair of unequal homology
classes on Nn that map under (en)∗ to the same element of H∗(M). Let Nn+1

be the “homotopy coequalizer” obtained by adjoining a copy of F q(r) ⊗ I to Nn

along the evident map F q(r) ⊗ ∂I → Nn determined by each such pair (ν, ν′) ∈
(q, r). Proposition 1.5 implies that Nn+1 is a cell A-module such that Nn is a cell
submodule. Any choice of chains µ ∈ M such that d(µ) = ν − ν′ determines an
extension of en : Nn → M to en+1 : Nn+1 → M . Let N be the direct limit of the
Nn and e : N → M be the resulting map. Clearly, N is a cell module, e induces
an epimorphism on homology since e1 does, and e induces a monomorphism on
homology by construction. ¤

Construction 2.7. For each A-module M , choose a cell A-module ΓM and a quasi-
isomorphism γ : ΓM → M . By the Whitehead theorem, for a map f : M → N ,
there is a map Γf : ΓM → ΓN , unique up to homotopy, such that the following
diagram is homotopy commutative:

ΓM
Γf //

γ

²²

ΓN

γ

²²
M

f
// N

Thus Γ is a functor hMA → hMA, and γ is natural. The derived category DA can
be described as the category whose objects are the A-modules and whose morphisms
are specified by

DA(M, N) = hMA(ΓM, ΓN),
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with the evident composition. When M is a cell A-module,

DA(M,N) ∼= hMA(M,N).

Using the identity function on objects and Γ on morphisms, we obtain a functor
i : hMA → DA that sends quasi-isomorphisms to isomorphisms and is universal
with this property. Let CA be the full subcategory of MA whose objects are the cell
A-modules. Then the functor Γ induces an equivalence of categories DA → hCA

with inverse the composite of i and the inclusion of hCA in hMA.

Therefore the derived category and the homotopy category of cell modules can
be used interchangeably. Homotopy-preserving functors on A-modules that do not
preserve quasi-isomorphisms are transported to the derived category by first apply-
ing Γ, then the given functor, a point that we return to in Section 4. Much more
is made of this simple procedure in the algebraic than the topological literature:
topologists routinely transport constructions to the stable category by passing to
CW spectra, without change of notation. In fact, while a great deal of modern work
depends heavily on having a good underlying category of spectra, earlier construc-
tions of the stable homotopy category did not even allow spectra that were more
general than CW spectra. For this and other reasons, topologists are accustomed
to work with CW spectra and their cells in a concrete calculational way, not as
something esoteric but rather as something much more basic and down to earth
than general spectra. An analogous view of differential graded A-modules is rather
intriguing.

3. Brown’s representability theorem

Functors of cohomological type on DA are of considerable interest, and we here
recall a categorical result that characterizes when they can be represented in the
form D(?, N). The topological analogue has long played an important role.

We have said that we think of the F q(r) as analogs of sphere spectra. Just as
maps out of spheres calculate homotopy groups and therefore detect weak equiv-
alences, so maps out of the F q(r) calculate homology groups and therefore detect
quasi-isomorphisms. We display several versions of this fact for later use: for all
A-modules N ,

(3.1) Hq(N)(r) ∼= hMk(k, N ⊗ Sq(r)) ∼= hMk(S−q(−r), N)
∼= hMA(F−q(−r), N) ∼= DA(F−q(−r), N).

The category DA has “homotopy limits and colimits”. These are weak limits
and colimits in the sense that they satisfy the existence but not the uniqueness
property of categorical limits and colimits. For example, the homotopy pushout of
maps f : L → M and g : L → N is obtained from M ⊕ (L⊗ I)⊕N by identifying
l⊗[0] with f(l) and l⊗[1] with g(l). More precisely, we first apply cell approximation
and then apply the cited construction. We used a similar homotopy coequalizer in
the proof of Theorem 2.6. The homotopy colimit, or telescope TelMi, of a sequence
of maps fi : Mi → Mi+1 is the homotopy coequalizer of Id: ⊕Mi → ⊕Mi and
⊕fi : ⊕Mi → ⊕Mi; equivalently, it is the cofiber of g : ⊕Mi → ⊕Mi, where
g(m) = m − fi(m) for m ∈ Mi. We now have enough information to quote the
categorical form of Brown’s representability theorem given in [13], but we prefer to
run through a quick concrete version of the proof.
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Theorem 3.2 (Brown). A contravariant functor J : DA → Sets is representable in
the form J(M) ∼= DA(M, N) for some A-module N if and only if J converts direct
sums to direct products and converts homotopy pushouts to weak pullbacks.

Proof. Necessity is obvious. Thus assume given a functor J that satisfies the spec-
ified direct sum and Mayer-Vietoris axioms. Since homotopy coequalizers and tele-
scopes can be constructed from sums and homotopy pushouts, J converts homotopy
coequalizers to weak equalizers and telescopes to weak limits. Write f∗ = J(f) for
a map f . Consider pairs (M,µ) where M is an A-module and µ ∈ J(M).

Starting with an arbitrary pair (N0, ν0), we construct a sequence of pairs (Ni, νi)
and maps fi : Ni → Ni+1 such that f∗i (νi+1) = νi. Let N1 = N0 ⊕ (⊕F q(r)),
where there is a copy of F q(r) for each element φ of each set J(F q(r)). Let ν1

have coordinates ν and the elements φ, and let f0 : N0 → N1 be the inclusion.
Inductively, given (Ni, νi), let Li be the sum of a copy of F q(r) for each (q, r) and
each unequal pair (x, y) of elements of Hq(Ni)(r) such that, when thought of as
maps F q(r) → Ni in DA, x∗(νi) = y∗(νi). Let fi : Ni → Ni+1 be the coequalizer
of the pair of maps Li → Ni given by the x’s and the y’s. By the weak equalizer
property, there is an element νi+1 ∈ J(Ni+1) such that f∗i (νi+1) = νi.

Let N = Tel Ni. By the weak limit property, there is an element ν ∈ J(N) that
pulls back to νi for each i. For an A-module M , define θν : DA(M, N) → J(M)
by θν(f) = f∗(ν). Then, by construction, θν is a bijection for all F q(r). We claim
that θν is a bijection for all M .

Suppose given elements x, y ∈ DA(M, N) such that θν(x) = θν(y). Replacing M
by a cell approximation if necessary, we can assume that x and y are given by maps
M → N . Let c : N → N ′

0 be the homotopy coequalizer of x and y and choose an
element ν′0 ∈ J(N ′

0) such that c∗(ν′0) = ν. Construct a pair (N ′, ν′) by repeating
the construction above, but starting with the pair (N ′

0, ν
′
0). Let j : N ′

0 → N ′ be
the evident map such that j∗(ν′) = ν′0. Then, since (jc)∗(ν′) = ν and both θν

and θν′ are bijections for all F q(r), jc : N → N ′ is an isomorphism in DA. Since
cx = cy by construction, it follows that x = y. Therefore θν is an injection for all
A-modules M .

Finally, let ω ∈ J(M) for any module M . Repeat the construction, starting with
the zeroth pair (M ⊕N, (ω, ν)). We obtain a new pair (N ′, ν′) together with a map
i : M → N ′ such that i∗(ν′) = ω and a map j : N → N ′ such that j∗(ν′) = ν.
Again, j is an isomorphism in DA since both θν and θν′ are bijections for all F q(r).
Therefore ω = (ij−1)∗(ν) and θν is a surjection for all A-modules M . ¤

Observe that we can start with N0 = 0, in which case N can be given the
structure of a cell A-module. Of course, it is formal that the module N that
represents J is unique up to isomorphism in DA and that natural transformations
between representable functors are represented by maps in DA.

There is an analog due to Adams that applies when the functor J is only given
on finite cell A-modules. The proof is a direct translation from topology to algebra
of that given in [1] and will be omitted.

Theorem 3.3 (Adams). A contravariant group-valued functor J defined on the
homotopy category of finite cell A-modules is representable in the form J(M) ∼=
DA(M, N) for some cell A-module N if and only if J converts finite direct sums
to direct products and converts homotopy pushouts to weak pullbacks of underlying
sets.
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Here N is usually infinite and is unique only up to non-canonical isomorphism.
More precisely, maps g, g′ : N → N ′ are said to be weakly homotopic if gf is
homotopic to g′f for any map f : M → N defined on a finite cell A-module M .
There is a resulting weak homotopy category of cell A-modules, and N is unique
up to isomorphism in that category.

4. Derived tensor product and Hom functors: Tor and Ext

We first record some elementary facts about tensor products with cell A-modules.

Lemma 4.1. Let N be a cell A-module. Then the functor M ⊗A N preserves exact
sequences and quasi-isomorphisms in the variable M .

Proof. With differential ignored, N is a free A-module, and preservation of exact
sequences follows. The sequential filtration of N gives short exact sequences of free
A-modules

0 −→ Nn −→ Nn+1 −→ Nn+1/Nn −→ 0,

where the subquotients Nn+1/Nn are direct sums of sphere A-modules. The preser-
vation of quasi-isomorphisms holds trivially if N is a sphere A-module, and the gen-
eral case follows by passage to direct sums, induction up the filtration, and passage
to colimits. ¤

It is usual to define the derived tensor product, denoted M ⊗L
A N , by replacing

the left A-module N (or the right A-module M) by a suitable resolution P and
taking the ordinary tensor product M ⊗A P , in line with the standard rubric of
derived functors (see e.g. Verdier [60], who restricts to bounded below modules).
Our procedure is the same, except that we take approximation by quasi-isomorphic
cell A-modules as our version of resolution and, following the pedantically imprecise
tradition in topology, we prefer not to change notation. That is, in Dk, M ⊗A N
means M ⊗A ΓN . The lemma shows that the definition makes sense. We leave
it as an exercise to verify that this definition of the derived tensor product agrees
with the usual one. (For example, one might use Theorem 4.13 below.) We can
also use the lemma to show that the derived category DA depends only on the
quasi-isomorphism type of A.

Proposition 4.2. Let φ : A → A′ be a quasi-isomorphism of DGA’s. Then the
pullback functor φ∗ : DA′ → DA is an equivalence of categories with inverse given
by the extension of scalars functor A′ ⊗A (?).

Proof. For M ∈ MA and M ′ ∈ MA′ , we have

MA′(A′ ⊗A M,M ′) ∼= MA(M,φ∗M ′).

The functor A′ ⊗A (?) preserves sphere modules and therefore cell modules. This
implies formally that the adjuction passes to derived categories, giving

DA′(A′ ⊗A M, M ′) ∼= MA(M, φ∗M ′).

If M is a cell A-module, then

φ⊗ Id : M ∼= A⊗A M −→ φ∗(A′ ⊗A M)

is a quasi-isomorphism of A-modules. These maps give the unit of the adjunction.
Its counit is given by the maps of A′-modules

Id⊗φγ : A′ ⊗A ΓM ′ −→ A′ ⊗A′ M ′ ∼= M ′,
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where ΓM ′ is a cell A-module and γ : ΓM ′ −→ M ′ is a quasi-isomorphism of A-
modules. Since the composite of this map with the quasi-isomorphism φ ⊗ Id for
the A-module ΓM ′ coincides with γ, this map too is a quasi-isomorphism. ¤

For left A-modules M and N , let HomA(M, N)q(r) be the k-module of homo-
morphisms of A-modules of bidegree (q, r) with the standard differential (df)(m) =
d(f(m))− (−1)qf(d(m)). For k-modules L,

(4.3) MA(L⊗M, N) ∼= Mk(L,HomA(M,N)),

where A acts on L⊗M through its action on M (with the usual sign convention).
This isomorphism clearly passes to homotopy categories. Letting L run through
the sphere k-modules and using (3.1) and the Whitehead theorem, we see that if
M is a cell A-module then the functor HomA(M, N) preserves quasi-isomorphisms
in N .

This allows us to define HomA(M,N) in DA for arbitrary modules M and N by
first replacing M by a cell approximation ΓM and then taking HomA(ΓM,N) on
the level of modules. Thus, in Dk, HomA(M, N) means HomA(ΓM,N). This gives
a well-defined functor such that

(4.4) DA(L⊗M, N) ∼= Dk(L, HomA(M, N)).

Remark 4.5. The argument we have just run through is a special case of a general
one. If S and T are left and right adjoint functors between two categories of the
sort that we are considering, then S preserves objects of the homotopy type of cell
modules if and only T preserves quasi-isomorphisms, and in that case the resulting
induced functors on derived categories are still adjoint. See [40, I.5.13] for a precise
categorical statement.

We can now define differential Tor and Ext (or hyperhomology and hypercoho-
mology) groups as follows. We cheerfully ignore questions of justification in terms
of standard homological terms: these are of little interest to us, and such language
would be unavailable in the precisely analogous E∞ context of Part V (let alone
the topological context of [25]).

Definition 4.6. Working in derived categories, define

Tor∗A(M, N) = H∗(M ⊗A N) and Ext∗A(M, N) = H∗(HomA(M,N)).

These are Adams graded k-modules (with notation for the Adams grading sup-
pressed). However Tor and Ext are defined, the essential point is to have Eilenberg-
Moore, or hyperhomology, spectral sequences for their calculation.

Theorem 4.7. There are natural spectral sequences of the form

(4.8) Ep,q
2 = Torp,q

H∗A(H∗M, H∗N) =⇒ Torp+q
A (M, N)

and

(4.9) Ep,q
2 = Extp,q

H∗A(H∗M, H∗N) =⇒ Extp+q
A (M,N).

These are both spectral sequences of cohomological type, with

(4.10) dr : Ep,q
r → Ep+r,q−r+1

r .

In (4.8), p is the negative of the usual homological degree, the spectral sequence is
non-zero only in the left half-plane, and it converges strongly. In (4.9), the spectral
sequence is non-zero only in the right half plane, and it converges strongly if, for
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each fixed (p, q), only finitely many of the differentials (4.10) are non-zero. (The
best study of the convergence of spectral sequences, unfortunately still unpublished,
is given in [10].)

Our construction of the spectral sequences follows [30], which is a precursor of
the present approach to derived categories. Let ε : P → N be a quasi-isomorphism
of left A-modules, where P is a cell A-module. Refilter P by setting F 1−nP = Pn.
Thus

0 = F 1P ⊂ F 0P ⊂ F−1P ⊂ · · · ⊂ F−nP ⊂ · · · .

Suppressing the Adams grading, we see that this filtration gives rise to a spectral
sequence that starts from

Ep,q
0 P = (F pP/F p+1P )p+q ∼= A⊗ (P̄ p,∗)p+q,

where P̄ p,∗ is k-free on the canonical basis elements of the open cells of P1−p. The
definition of a cell module implies that d0 = d⊗ 1. Therefore

Ep,∗
1 P ∼= H∗(A)⊗ P̄ p,∗.

Thinking of N as filtered with F 1N = 0 and F pN = N for p ≤ 0, we see that
E∗,∗

1 P gives a complex of left H∗(A)-modules

(4.11) · · · → Ep−1,∗
1 P → Ep,∗

1 P → · · · → E0,∗
1 P → H∗(N) → 0.

Definition 4.12. Let P be a cell A-module. A quasi-isomorphism ε : P → N is
said to be a distinguished resolution of N if the sequence (4.11) is exact, so that
{Ep,∗

1 P} is a (negatively indexed) free H∗(A)-resolution of H∗(N).

Observe that ε : P → N is necessarily a homotopy equivalence if N is a cell
A-module, by Whitehead’s theorem. The following result of Gugenheim and May
[30, 2.1] should be viewed as a greatly sharpened version of Theorem 2.6: it gives
cell approximations with precisely prescribed algebraic properties.

Theorem 4.13 (Gugenheim-May). For any A-module N , every free H∗(A)-re-
solution of H∗(N) can be realized as {Ep,∗

1 P} for some distinguished resolution
ε : P → N .

A distinguished resolution ε : P → N of a cell A-module A-module N induces a
homotopy equivalence M ⊗A P → M ⊗A N for any (right) A-module M . Filtering
M ⊗A P by

F p(M ⊗A P ) = M ⊗A (F pP ), p ≤ 0,

we obtain the spectral sequence (4.8).
Similarly, a distinguished resolution ε : P → M of a cell A-module A-module M

induces a homotopy equivalence HomA(M,N) ∼= HomA(P, N) for any (left) A-
module N , and the filtration

F pHomA(P,N) = HomA(P/F 1−pP,N), p ≥ 0,

gives rise to the spectral sequence (4.9).
In both cases, the identification of E2-terms is immediate from the definition

of a distinguished resolution. Details and applications may be found in [30]. A
different construction of the spectral sequences can be obtained by specialization of
V§7. It will be immediate from the discussion in the next section that, when A is
commutative, Tor∗A(M, N) and Ext∗A(M, N) are H∗(A)-modules and the spectral
sequences are spectral sequences of differential H∗(A)-modules.
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5. Commutative DGA’s and duality

Let A be commutative throughout this section. We give DA a structure of
a symmetric monoidal category (= tensor category [21, 1.2]) with internal hom
objects. We also discuss duality, characterizing the strongly dualizable objects
or, in another language, identifying the largest rigid tensored subcategory of DA.
Again, in DA, M ⊗A N means M ⊗A ΓN . Of course, since A is commutative, this
is an A-module. From our present point of view, it makes good sense to resolve
both variables since we now have the canonical isomorphisms

F q(r)⊗A F s(t) ∼= F q+s(r + t).

As in Proposition 1.5(iii), this directly implies that tensor products of cell A-
modules are cell A-modules.

Proposition 5.1. If M and M ′ are cell A-modules, then M ⊗A M ′ is a cell A-
module with sequential filtration {∑p(Mp⊗A Nn−p)}. It has a (q + s, r + t)-cell for
each pair consisting of a (q, r)-cell of Mp and an (s, t)-cell of M ′

n−p, 0 ≤ p ≤ n.

For A-modules M and N , HomA(M,N) is an A-module such that

(5.2) MA(L⊗A M, N) ∼= MA(L,HomA(M, N)).

In DA, HomA(M,N) means HomA(ΓM, N), and we have an isomorphism

(5.3) DA(L⊗A M, N) ∼= DA(L, HomA(M,N)).

The standard coherence isomorphisms (= associativity and commutativity con-
straints) on the tensor product pass to the derived category, which is thus a sym-
metric monoidal closed category in the sense of [43, 36].

There are general accounts of duality theory in such a context in the literature
of both algebraic geometry [21, §1], [19] and algebraic topology [23]; we follow
[40, III §§1–2]. Observe first that, by an easy direct inspection of definitions, the
functor HomA(M,N) preserves cofiber sequences in both variables. (Actually, in
the variable M , the functor HomA converts an exact triangle into the negative of
an exact triangle.)

The dual of an A-module M , denoted M∨ or DM , is defined to be HomA(M, A).
The adjunction (5.2) specializes to give an evaluation map ε : M∨ ⊗A M → A and
a map η : A → HomA(M,M). There is a natural map

(5.4) ν : HomA(L,M)⊗A N → HomA(L,M ⊗A N),

which specializes to

(5.5) ν : M∨ ⊗A M → HomA(M, M).

M is said to be “finite” or “strongly dualizable” or “rigid” if, in DA, there is a
coevaluation map η : A → M ⊗A M∨ such that the following diagram commutes,
where τ is the commutativity isomorphism.

(5.6)

A
η //

η

²²

M ⊗A M∨

τ

²²
HomA(M,M) M∨ ⊗A Mν

oo

The definition has many purely formal implications. The map ν of (5.4) is an
isomorphism (in DA) if either L or N is finite. The map ν of (5.5) is an isomorphism
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if and only if M is finite, and the coevaluation map η is then the composite γν−1η
in (5.6). The natural map

ρ : M → M∨∨

is an isomorphism if M is finite. The natural map

⊗ : HomA(M, N)⊗A HomA(M ′, N ′) → HomA(M ⊗A M ′, N ⊗A N ′)

is an isomorphism if M and M ′ are finite or if M is finite and N = A.
Say that a cell A-module N is a direct summand up to homotopy of a cell A-

module M if there is a homotopy equivalence of A-modules between M and N⊕N ′

for some cell A-module N ′.

Theorem 5.7. A cell A-module is finite in the sense just defined if and only if it
is a direct summand up to homotopy of a finite cell A-module.

Proof. Observe first that F q(r) is finite with dual F−q(−r), hence any finite direct
sum of A-modules F q(r) is finite. Observe next that the cofiber of a map between
finite A-modules is finite. In fact, the evaluation map ε induces a natural map

ε# : DA(L,N ⊗A M∨) → DA(L⊗A M, N),

and M is finite if and only if ε# is an isomorphism for all L and N [40, III.3.6].
Since both sides turn cofiber sequences in the variable M into long exact sequences,
the five lemma gives the observation. We conclude by induction on the number of
cells that a finite cell A-module is finite. It is formal that a direct summand in
DA of a finite A-module is finite. For the converse, let M be a cell A-module that
is finite with coevaluation map η : A → M ⊗A M∨. Clearly η factors through
N ⊗A M∨ for some finite cell subcomplex N of M . By [40, III.1.2], the bottom
composite in the following commutative diagram is the identity (in DA):

N ⊗A M∨ ⊗A M
1∧ε //

²²

N ⊗A A

²²

∼= // N

²²
M ∼= A⊗A M

55llllllllllllll

η∧1
// M ⊗A M∨ ⊗A M

1∧ε
// M ⊗A A

∼= // M

Therefore M is a retract up to homotopy and thus, by a comparison of exact
triangles, a direct summand up to homotopy of N . (Retractions split in triangulated
categories.) ¤

Let FCA be the full subcategory of CA whose objects are the direct summands up
to homotopy of finite cell A-modules. In the language of [21, 1.7], the theorem states
that the homotopy category hFCA is the largest rigid tensored subcategory of the
derived category DA. Note that the sequential filtration of a finite cell A-module can
be arranged so that a single cell is attached at each stage. That is, such a module is
just a finite sequence of extensions by free modules on a single generator, and each
quotient module Mn/Mn−1 has the form F q(r) for some (q, r). A direct summand
up to homotopy of a finite cell A-module, which is the appropriate analog in DA

of a finitely generated projective A-module, need not be an actual direct summand
and need not be isomorphic in DA to a finite cell A-module. The situation demands
the introduction and study of the K-theory K0(FCA), but we shall desist.
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6. Relative and unital cell A-modules

We here revert to a general DGA A, not necessarily commutative, and we assume
given a fixed A-module K. There is a theory of cell A-modules relative to K that
is exactly like the absolute theory, except that we start with M0 = K rather than
M0 = 0 in the definition of a cell module (Definition 1.1(i)). When A is augmented,
so that k is an A-module, this theory applies with K = k to give a theory of unital
cell A-modules. It will be needed in Part V.

The relative theory is adapted to the study of the category of A-modules under
K, by which we understand A-modules with a given map of A-modules η : K → M ;
a map f : M → N of A-modules under K must satisfy f ◦ η = η. We let M K

A

denote the category of A-modules under K. We observe an obvious difficulty: the
sum of maps under K is not a map under K, hence M K

A is certainly not an additive
category. We say that two maps under K are homotopic (or homotopic rel K) if
they are homotopic via a chain homotopy h of A-modules such that h◦η = 0. That
is, if we regard h as a map M ⊗ I → N , then h(η(x)⊗ [I]) = 0 for all x ∈ K. The
notion of quasi-isomorphism is unchanged: a map under K is a quasi-isomorphism
if it induces an isomorphism on homology. We have the homotopy category hM K

A of
A-modules under K, and we construct the derived category DK

A from the homotopy
category by formally inverting the quasi-isomorphisms.

The theory of relative cell A-modules makes this definition rigorous. In fact, if
K ⊂ L ⊂ M , where L is a relative cell submodule of the relative cell A-module
M , then HELP (Theorem 2.2) applies verbatim, by the same proof. The relative
Whitehead theorem reads as follows.

Theorem 6.1. If M is a relative cell A-module and e : N → P is a quasi-
isomorphism under K, then e∗ : hM K

A (M, N) → hM K
A (M,P ) is an isomorphism.

Therefore a quasi-isomorphism under K of relative cell A-modules is a homotopy
equivalence under K.

Proof. We see that e∗ is surjective by applying HELP to the pair (M, K), taking
g = η, h to be the evident homotopy η ' η rel K, and f : M → P to be any given
map under K. Injectivity is shown as in the proof of Theorem 2.3. ¤

Approximation by relative cell A-modules works exactly as in Theorem 2.6.

Theorem 6.2. For any A-module M under K, there is a relative cell A module N
and a quasi-isomorphism ε : N → M under K.

Now Construction 2.7 applies verbatim to the category of A-modules under K.

Corollary 6.3. The category DK
A is equivalent to the homotopy category of relative

cell A-modules.

The forgetful functor M K
A → MA obviously preserves quasi-isomorphisms and

so induces a functor DK
A → DA. However, this functor fails to take relative cell

A-modules to A-modules of the homotopy type of cell A-modules unless K itself
is of the homotopy type of a cell A-module, which is generally not the case in the
applications.

Part IV. Rational derived categories and mixed Tate motives

We shall do some rational differential homological algebra—alias rational homo-
topy theory—and use it to prove that two proposed definitions of rational mixed
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Tate motives agree [19, 18, 6]. One of them has been proved to admit Hodge
and étale realizations [6], but is intrinsically restricted to the rational world. The
other can be linked up to a proposed definition of integral mixed Tate motives (or
modules). We describe our results in Section 1, which recapitulates much of our
announcement [38], and prove them in the remaining sections. We refer the reader
to [38] for a number of related conjectures and speculations.

1. Statements of results

Let A be a commutative, differential graded, and Adams graded k-algebra, ab-
breviated DGA, where k is a field of characteristic zero. Thus A is bigraded via
k-modules Aq(r), where q ∈ Z and r ≥ 0. We assume that Aq(r) = 0 unless 2r ≥ q.
The differential and product behave as follows with respect to the gradings:

d : Aq(r) → Aq+1(r) and Aq(r)⊗As(t) → Aq+s(r + t).

We assume that A has an augmentation ε : A → K. Write Hq(A)(r) for the
cohomology of A in bidegree (q, r). In the following three theorems, we assume
that A is “cohomologically connected” in the sense that

Hq(A)(r) = 0 if q < 0,H0(A)(r) = 0 if r > 0,

and ε induces an isomorphism H0(A)(0) → k. While the Adams grading is present
and important in our motivating examples, all of our results apply verbatim to
DGA’s without Adams grading.

Let DA be the derived category of cohomologically bounded below A-modules.
Its objects are differential bigraded A-modules M , where Mq(r) may be non-zero
for any pair of integers (q, r), such that Hq(M)(r) = 0 for all sufficiently small
q. All of our A-modules are to satisfy this cohomological condition. We agree to
write ⊗ for the derived tensor product in DA. With this convention, we define the
“indecomposable elements QM” by setting QM = k⊗AM . Thus QM is a bigraded
differential k-module. Recall the notion of a t-structure and its heart from [3, §1.3],
and recall the definition of a neutral Tannakian category from [21, 2.19]. We shall
prove the following result in Section 4, after reviewing the theory of minimal DGA’s
in Section 2 and developing the theory of minimal modules over DGA’s in Section 3.
Let HA be the full subcategory of DA consisting of those M such that Hq(QM) = 0
for q 6= 0. Let FHA be the full subcategory of HA consisting of the modules M
such that H0(QM) is finite dimensional and define ω(M) = H0(QM).

Theorem 1.1. The triangulated category DA admits a t-structure whose heart is
HA. In particular, HA is Abelian. Moreover, FHA is a (graded) neutral Tan-
nakian category over k with fiber functor ω.

When A is a polynomial algebra on finitely many generators of even positive
degree, most of this is proven in [5, pp.93-101]. It follows from [21, 2.11] that
FHA is equivalent (in possibly many ways) to the category of finite dimensional
representations of an affine group scheme. What amounts to the same thing [21,
2.2], FHA is equivalent to the category of finite dimensional comodules over a
Hopf algebra (= bialgebra). We next specify an explicit such Hopf algebra.

The algebra A has a bar construction B̄(A). Let IA denote the augmentation
ideal of A. Then B̄q(A)(r) is the direct sum over p ≥ 0 of the submodules of the
p-fold tensor power of IA in bigrading (q + p, r). As we recall in Section 2, we
can arrange without loss of generality that A is connected, so that Aq = 0 for
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q < 0 and A0 ∼= k. In that case, B̄0(A) is additively isomorphic to the tensor
algebra on the (Adams graded) k-module A1. Following [6], let χA = H0B̄(A).
This is a commutative Hopf algebra, and it turns out to be a polynomial algebra.
Its k-module of indecomposable elements is a co-Lie algebra, which we denote by
γA. (The notation MA was used in [6], but this conflicts with our notation for
the category of A-modules.) We think of χA as a kind of universal enveloping
Hopf algebra of γA. We shall prove the following theorem in Section 5, where its
undefined terms are specified. It gives a concrete and explicit description of the
categories HA and FHA.

Theorem 1.2. Let A be a connected DGA. Then the following categories are equiv-
alent.
(i) The heart HA of DA.
(ii) The category of generalized nilpotent representations of the co-Lie algebra γA.
(iii) The category of comodules over the Hopf algebra χA.
(iv) The category TA of generalized nilpotent twisting matrices in A.
The full subcategories of finite dimensional objects in the categories (i), (ii), and
(iii) and of finite matrices in the category (iv) are also equivalent.

The hypothesis that A be connected and not just cohomologically connected is
needed to allow use of the category TA. The other three categories are invariant
under quasi-isomorphisms of cohomologically connected DGA’s. The DGA A has
a “1-minimal model” ι : A〈1〉 → A. The map ι induces an isomorphism on H1 and
a monomorphism on H2. A quick construction, explained in Section 2 and justified
in Section 6, is to let A〈1〉 = ∧(γA[−1]), with differential induced by the cobracket
on γA, where γA[−1] denotes a copy of γA concentrated in degree one. We say that
“A is a K(π, 1)” if ι is a quasi-isomorphism. It is apparent from the equivalence of
(i) and (ii) in Theorem 1.2 that the Abelian category HA depends only on A〈1〉.
We shall prove the following result in Section 7.

Theorem 1.3. The derived category of bounded below chain complexes in HA is
equivalent to the derived category DA〈1〉.

Let k(r) be a copy of k concentrated in bidegree (0, r) and regarded as a repre-
sentation of γA in the evident way.

Corollary 1.4. If A is a K(π, 1), then

ExtqHA
(k, k(r)) ∼= Hq(A)(r).

While the results above are statements in differential homological algebra, we
formulated them as general results that would have to be true if two seemingly
different definitions of mixed Tate motives were to agree. We briefly explain the
relevance. Let X be a (smooth, quasi-projective) variety over a field F . As we
recalled in II§6, Bloch [7] defined an Adams graded simplicial Abelian group Z(X)
whose homology groups are the Chow groups of X:

(1.5) CHr(X, q) = Hq(Z(X))(r).

Bloch [7, 9] (see also Levine [39]) proved that

(1.6) CHr(X, q)⊗Q ∼= (Kq(X)⊗Q)(r),

where the right side is the nr-eigenspace of the Adams operation ψn (for any n > 1),
and Kq(X)⊗Q is the direct sum of these eigenspaces.
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The simplicial Abelian group Z(X) has a partially defined product. In II§6, we
constructed an E∞ algebra A (X) quasi-isomorphic to the associated chain complex
of Z(X). We also constructed a commutative DGA AQ(X) and a quasi-isomorphism
of E∞ algebras A (X) ⊗ Q → AQ(X). These objects are graded homologically.
Cohomological considerations dictate the regrading

(1.7) N 2r−p(X)(r) = Ap(X)(r) and N 2r−p
Q (X)(r) = (AQ)p(X)(r).

Since Ap(X) = 0 if p < 0, N q(X)(r) = 0 unless 2r ≥ q. Thinking of the eigenspaces
on the right side of (1.6) as successive terms of the associated grading with respect
to the γ-filtration, we may rewrite (1.6) in the form

(1.8) Hq(NQ(X))(r) = grr
γ(K2r−q(X)⊗Q).

The “Beilinson-Soulé conjecture for X” asserts that these groups are zero if q < 0
or if q = 0 and r 6= 0, and that the group in bidegree (0, 0) is Q. That is, the
Beilinson-Soulé conjecture is that NQ(X) is cohomologically connected. When it
holds, our general results above apply to NQ(X).

Specializing to X = Spec(F ), let N denote the E∞ algebra N (Spec(F )) and let
NQ denote the commutative DGA NQ(Spec(F )). Even without the Beilinson-Soulé
conjecture, [6] proposed the following definition.

Definition 1.9. Let χmot denote the Hopf algebra χNQ = H0B̄(NQ). Define the
category of (rational) mixed Tate motives of the field F , denoted MT M (F ), to
be the category of finite dimensional comodules over χmot.

Such a definition had been proposed in general terms by Deligne [18]. Actually,
since the equivalence between categories (ii) and (iii) in Theorem 1.2 was not yet
understood, the preprint version of [6] confused this category with the category
of all finite dimensional representations of γNQ . Technically, [6] worked with the
rationalization of a cubical version of the Chow complex Z(Spec(F )). The simpli-
cial version is known to be quasi-isomorphic to the cubical one ([6, 39]). Lack of
commutativity makes the cubical version ill-suited to an integral theory, although
it is conceivable that a suitable E∞ operad acts on it—we have not explored this
possibility. Theorem 1.2 specializes to give the following equivalence of categories.

Theorem 1.10. If the Beilinson-Soulé conjecture holds for Spec(F ), then the cat-
egory MT M (F ) is equivalent to the category FH NQ .

Deligne [20] first suggested that, if a suitable commutative DGA NQ could in fact
be constructed, then FH NQ should give an appropriate definition of MT M (F )
when the Beilinson-Soulé conjecture holds for Spec(F ). Thus Theorem 1.10 is the
promised equivalence of two approaches to mixed Tate motives. In view of (1.8),
Corollary 1.4 has the following immediate consequence.

Theorem 1.11. If NQ is a K(π, 1), then

ExtpMT M (F )(Q,Q(r)) ∼= grr
γ(K2r−p(F )⊗Q).

This verifies one of the key properties desired of a category of mixed Tate mo-
tives. The results of [6] start from Definition 1.9 and give realization functors from
MT M (F ) to the category of mixed Tate l-adic representations in étale theory and
to the category of mixed Tate Hodge structures in Hodge theory.

The reinterpretation Definition 1.9 given by Theorem 1.10 leads to a category of
integral mixed Tate motives that is related to MT M (F ) by extension of scalars.
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In fact, in Part V, we shall construct the derived category DA associated to an
E∞ algebra A. Just as if A were a DGA, DA is a triangulated tensor category
satisfying all of the usual properties. Like the derived category of modules over a
DGA, DA can be described as a homotopy category of cell modules. The conve-
nience and workability of such a description will become apparent in our proofs of
Theorems 1.1–1.3.

Deligne [20], [17, §3] proposed the resulting derived category DN as an integral
“catégorie triangulée motivique D(F )”, and he gave speculations about its motivic
role. One can define Adams graded Ext groups

Extq
N (M,N) = D(F )(M, N [q])

for modules M and N . These agree with the cohomology groups of the right derived
module HomN (M, N) that we shall define in Part V, and we shall there construct
a spectral sequence that converges from

Ext∗,∗H∗(N )(H
∗(M),H∗(N))

to Ext∗N (M, N). Here H∗(N ) is the integral Chow ring of Spec(F ), regraded as
dictated by (1.7) and (1.8).

Little is known about the integral Chow groups and there is only speculation as
to their relationship to the higher algebraic K-groups of F . However, our results
on derived categories work equally well if we reduce mod n, and Suslin [59] has
recently proven that if F is an algebraically closed field of characteristic prime to
n and X is a smooth affine variety over F , then, for r ≥ dim(X),

CHr(X, q;Z/n) ∼= H2r−q
ét (X,Z/n (r)).

2. Minimal algebras, 1-minimal models, and co-Lie algebras

In the interests of intelligibility, we first review some basic rational homotopy
theory, working over our given field k of characteristic zero. We assume once and
for all that all DGA’s in this part are commutative.

Definition 2.1. A connected DGA A is said to be minimal if it is a free commu-
tative algebra with decomposable differential: d(A) ⊂ (IA)2.

Definition 2.2. Let A be a connected DGA and define sub DGA’s A〈n〉 and
A〈n, q〉 as follows.
(i) For n ≥ 0, let A〈n〉 be the subalgebra generated by the elements of degree ≤ n
and their differentials; note that A〈0〉 = k.
(ii) For n ≥ 1, let A〈n, 0〉 = A〈n − 1〉 and let A〈n, q + 1〉, q ≥ 0 be the subalgebra
generated by

A〈n, q〉 ∪ {a|a ∈ An and d(a) ∈ A〈n, q〉}.
Say that A is generalized nilpotent if it is free commutative as an algebra and
if A〈n〉 = ∪A〈n, q〉 for each n ≥ 1. This means that every element of An is in
some A〈n, q〉. Say that A is nilpotent if, for each n ≥ 1, there is a qn such that
A〈n〉 = A〈n, qn〉.
Proposition 2.3. A connected DGA (with Adams grading) is minimal if and only
if it is generalized nilpotent.
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Proof. If A is generalized nilpotent, then d(A) ⊂ (IA)2 by an easy double induction
on n and q (e.g. [4, 7.3]). Assume that A is minimal. Suppose for a contradiction
that A is not generalized nilpotent and let n be minimal such that there is an
element of An not in any A〈n, q〉. Let a be such an element of minimal Adams
degree and consider a typical summand a′a′′ of the decomposable element d(a). We
may assume that 0 < deg(a′) ≤ deg(a′′), and a′a′′ ∈ A〈n − 1〉 unless deg(a′) = 1.
Since Aq(r) = 0 unless 2r ≥ q, a′ and a′′ have strictly lower Adams grading than
a. By the assumed minimality, both a′ and a′′ are in some A〈n, q〉. Therefore d(a)
is in some A〈n, q〉, hence so is a. ¤

Except when A is simply connected, the “only if” part would be false without
the Adams grading, and we shall not use this implication. Without the Adams
grading, the useful notion is that of a generalized nilpotent DGA (hence [4] redefined
“minimal” to mean generalized nilpotent). The following result is standard: see
[58, §5], or [4, 7.7 and 7.8]. Its proof is just like that of Theorem 3.7 below, except
that one adjoins generators of algebras rather than generators of free modules.

Theorem 2.4. If B is a cohomologically connected DGA, then there is a quasi-
isomorphism φ : A → B, where A is generalized nilpotent. If φ′ : A′ → B is another
such quasi-isomorphism, then there is an isomorphism ξ : A → A′ such that φ′ξ is
homotopic to φ.

Definition 2.5. An n-minimal model of B is a composite map of DGA’s

A〈n〉 ⊂ A → B,

where A is generalized nilpotent and A → B is a quasi-isomorphism.

The 1-minimal model admits a canonical description in terms of co-Lie algebras,
as we recall next. Here and later, we write X∨ = Hom(X, k) and we regard the
dual of a map X → Y ⊗ Z of k-modules to be the evident composite

Y ∨ ⊗ Z∨ → (Y ⊗ Z)∨ → X∨

.

Definition 2.6. A co-Lie algebra is a k-module γ together with a cobracket map
γ → γ ⊗ γ such that the dual γ∨ is a Lie algebra via the dual homomorphism.
Here γ is concentrated in ordinary grading zero; its Adams grading (if it has one),
is concentrated in positive degrees.

It is natural to think of the bracket of a Lie algebra L as defined on the subspace
of invariants with respect to the involution x ⊗ y → −y ⊗ x in L ⊗ L. The sign
suggests that one should think of elements of L as having degree 1. Dually, it is
natural to think of the cobracket operation of a co-Lie algebra γ as a k-linear map
d : γ[−1] → ∧2(γ[−1]), where γ[−1] is a copy of γ concentrated in degree 1 and
∧2(γ[−1]) is the second exterior power. Sullivan observed the following fact, [58,
p. 279].

Lemma 2.7. A co-Lie algebra γ determines and is determined by a structure of
DGA on ∧(γ[−1]).

That is, the (dual) Jacobi identity is equivalent to the assertion that d induces a
differential on the exterior algebra ∧(γ[−1]). Explicitly, if {ar} is an ordered basis
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for γ[−1] and if

(2.8) d(ar) =
∑
p<q

kr
p,qap ∧ aq,

then, with kr
p,p = 0 and kr

q,p = −kr
p,q, the kr

p,q are the structural constants of a Lie
algebra structure on γ∨ if and only if d2 = 0. We say that γ is generalized nilpotent
if ∧(γ[−1]) is generalized nilpotent. By Proposition 2.3, this always holds when γ
is suitably Adams graded.

Recall that a Hopf algebra χ has a sub Lie algebra of primitive elements. Dually,
it also has a quotient co-Lie algebra of indecomposable elements. Explicitly, let
Iχ = Ker(ε) be the augmentation ideal and note that the coproduct ψ satisfies

ψ(x) ≡ x⊗ 1 + 1⊗ x mod Iχ⊗ Iχ for x ∈ Iχ.

We have the cobracket ψ − τψ on χ, where τ : χ⊗ χ → χ⊗ χ is the transposition.
If γ = Iχ/(Iχ)2 denotes the k-module of indecomposable elements, then ψ − τψ
induces a cobracket on γ such that the quotient map Iχ → γ is a map of co-Lie
algebras.

Definition 2.9. For a DGA A, let χA be the Hopf algebra H0B̄(A) and let γA be
its co-Lie algebra of indecomposable elements.

We shall recall the definition of the bar construction and prove the following
result in Section 6; much of it is implicit or explicit in [6].

Theorem 2.10. Let A be a cohomologically connected DGA.
(i) The 1-minimal model A〈1〉 of A is isomorphic to ∧(γA[−1]).
(ii) The Hopf algebras χA〈1〉 and χA are isomorphic, hence the co-Lie algebras γA〈1〉
and γA are isomorphic.

3. Minimal A-modules

We assume familiarity with the cell theory of Part III. As explained there, the
derived category DA is equivalent to the homotopy category hCA of cell A-modules.
Remember that we require all modules to be cohomologically bounded below. By
III.3.4, we have the following invariance statement; an E∞ generalization will be
proven in V§4.

Proposition 3.1. If φ : A → A′ is a quasi-isomorphism of cohomologically con-
nected DGA’s, then φ induces an equivalence φ∗ : DA′ → DA of triangulated tensor
categories.

In particular, by Theorem 2.4, we can and will assume that our given DGA A
is connected. Let M be a cell A-module. Then QM is the ordinary tensor product
k ⊗A M . Ignoring the differential, M is A-free on the canonical basis elements 〈j〉
of its open cells, and this basis projects to a canonical basis of QM . We write

d〈j〉 =
∑

ai,j〈i〉,
where 〈i〉 runs through the basis elements of the open cells. Define M≤n ⊂ M to
be the sum of those open cells with basis elements in (ordinary) degree ≤ n. Note
that M≤n is not necessarily closed under the differential.

Definition 3.2. A bounded below cell A-module M is minimal if it is A-free and
has decomposable differential: d(M) ⊂ (IA)M .
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Proposition 3.3. The following conditions on a bounded below cell A-module M
are equivalent.
(i) M is minimal.
(ii) QM = H0(QM); that is, d = 0 on QM .
(iii) All coefficients ai,j have positive degree.
(iv) Each M≤n is closed under d and is thus a cell submodule of M .
If f : M → N is a quasi-isomorphism between minimal A-modules, then f is an
isomorphism.

Proof. Since Aq = 0 for q < 0 and ε : A0 → k is an isomorphism, the equivalence of
(i)–(iv) is immediate by inspection of definitions. A quasi-isomorphism f : M → N
induces a quasi-isomorphism Qf : QM → QN and, if M and N are minimal,
Qf itself is then an isomorphism. Thus the last statement follows by Nakayama’s
lemma: a map f of bounded below free A-modules is an isomorphism if and only
if Qf is an isomorphism. ¤

There is an equivalent condition in terms of generalized nilpotency.

Definition 3.4. Let M be a bounded below A-module (not a priori a cell module)
and define sub A-modules M〈n〉 and M〈n, q〉 as follows.
(i) Let M〈n〉 be the sub A-module generated by the elements of degree ≤ n and
their differentials; note that M〈n〉 = 0 for n sufficiently small.
(ii) Let M〈n, 0〉 = M〈n− 1〉 and let M〈n, q + 1〉, q ≥ 0, be the sub A-module gen-
erated by

M〈n, q〉 ∪ {m|m ∈ Mn and d(m) ∈ M〈n, q〉}.
(iii) Define the “nilpotent filtration” {FtM} by letting F0M = 0 and, inductively,
letting FtM be the sub A-module generated by

Ft−1M ∪ {m|d(m) ∈ Ft−1M}.
Say that M is generalized nilpotent if it is free as an A-module and if

M〈n〉 = ∪M〈n, q〉
for each n. This means that every element of Mn is in some M〈n, q〉. Say that M
is nilpotent if, for each n, there is a qn such that M〈n〉 = M〈n, qn〉.

In marked contrast with the case of algebras, the following result for modules is
true regardless of whether or not there is an Adams grading.

Proposition 3.5. A bounded below A-module M is generalized nilpotent if and
only if it is a minimal cell A-module, and then {FtM} specifies a canonical choice
of sequential filtration for the cell structure on M .

Proof. Suppose that M is generalized nilpotent. Then d(M) ⊂ (IA)M since an
A-basis element in degree n must have differential in the sub A-module generated
by the M j for j ≤ n. We claim that M is a cell A-module with {FtM} as sequential
filtration. Certainly M is the union of the FtM since, if not, there would be a min-
imal pair (n, q) in the lexicographic ordering such that M〈n, q〉 was not contained
in the cited union and this would contradict the generalized nilpotency. Assuming
inductively that Ft−1M is A-free, we easily check that FtM is A-free with basis
obtained by extending a basis for Ft−1M . Conversely, assume that M is a minimal
cell A-module. Suppose for a contradiction that M is not generalized nilpotent and
let n be minimal such that there is an element of Mn that is not in any M〈n, q〉.



66 IGOR KRIZ AND J. P. MAY

Let m be such an element of minimal sequential filtration. By the definition of a
cell A-module, d(m) has lower sequential filtration than m. But then d(m) is in
some M〈n, q〉 and m is in M〈n, q + 1〉. This proves the result. ¤

Remark 3.6. A minimal A-module M need not have bounded below Adams grading,
as we see by considering infinite direct sums. However, if M has bounded below
Adams grading, then it admits a second canonical sequential filtration {FAd

t M}.
Precisely, let {rt|t ≥ 1} be the ordered set of integers for which the free A-module M
has a basis element of Adams grading rt. Then FAd

0 M = 0 and FAd
t is the sub

A-module spanned by the basis elements of Adams grading at most rt. Clearly
FAd

t M ⊂ FtM , and the inclusion can be proper.

Theorem 3.7. Let N be an A-module. Then there is a quasi-isomorphism e :
M → N , where M is a minimal A-module. If e′ : M ′ → N is another such quasi-
isomorphism, then there is an isomorphism f : M → M ′ such that e′f is homotopic
to e.

Proof. Let n0 be sufficiently small that Hq(N) = 0 for q < n0 and let M [n0, 0] = 0.
Assume inductively that an A-map e : M [n, 0] → N has been constructed such
that e∗ is an isomorphism on Hi for i < n and a monomorphism on Hn. Then,
proceeding by induction on q, construct A-maps e : M [n, q] → N for q ≥ 0 as
follows. If q = 0, choose a set {ns} of representative cycles in N for a basis of

Coker(Hn(M [n, q]) → Hn(N)).

If q ≥ 0, choose a set {mr} of representative cycles in Hn+1(M [n, q]) for a basis of

Ker(Hn(M [n, q]) → Hn(N))

and choose elements nr in N such that d(nr) = (−1)n+1e(mr). Then construct
M [n, q + 1] from M [n, q] by attaching n-cells js (if q = 0) and ir via attaching
cycles 0 and mr; thus the basis elements of the adjoined open n-cells satisfy

d〈js〉 = 0 and d〈ir〉 = (−1)n+1mr.

Extend e to M [n, q + 1] by setting e〈js〉 = ns and e〈ir〉 = nr. An easy colimit
argument shows that if we define

M [n + 1, 0] = ∪M [n, q]

and let e : M [n + 1, 0] → M be the induced map, then e∗ is an isomorphism on Hi

for i ≤ n and a monomorphism on Hn+1. Define M = ∪M [n, 0]. Then the induced
map e : M → N is a quasi-isomorphism, and M is minimal since it is generalized
nilpotent with M〈n, q〉 = M [n, q]. For the last statement, the Whitehead theorem
(III.2.3) gives a map f : M → M ′ such that e′f is homotopic to f . Obviously f is
a quasi-isomorphism, and it is therefore an isomorphism by Proposition 2.3. ¤

4. The t-structure on DA

We here prove Theorem 1.1. Let A be a cohomologically connected DGA. We
agree to abbreviate notation by writing D = DA, and similarly for other categories
that depend on A.

Definition 4.1. Define full subcategories D≤n and D≥n of D by

D≤n = D≤0[−n] = {M |Hq(QM) = 0 for q > n}
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and
D≥n = D≥0[−n] = {M |Hq(QM) = 0 for q < n}.

Observe that D≤0 ⊂ D≤1 and D≥0 ⊃ D≥1. Define

H = D≤0 ∩D≥0 = {M |Hq(QM) = 0 for q 6= 0}.
The following result is a more explicit statement of the first part of Theorem 1.1.

Theorem 4.2. Definition 4.1 specifies a t-structure on D .

Proposition 3.1 implies that the result will be true for A if it is true for a DGA
quasi-isomorphic to A. Therefore, by Theorem 2.4, we may as well assume that
A is connected. This allows us to use the theory of minimal A-modules. Taken
together, the following two lemmas constitute a restatement of Theorem 4.2.

Lemma 4.3. For M ∈ D , there is an exact triangle M≤0 → M → M/M≤0 in D
with M≤0 in D≤0 and M/M≤0 in D≥1.

Proof. It suffices to assume that M is minimal, in which case the conclusion is
immediate from Proposition 3.3(iv). ¤
Lemma 4.4. If M is in D≤0 and N is in D≥1, then D(M, N) = 0.

Proof. It suffices to assume that M and N are minimal. In that case, (QM)q = 0 for
q > 0 and Nq = 0 for q ≤ 0, hence there are no non-zero maps of A-modules M →
N . ¤
Remark 4.5. Theorem 1.1 would be false without the restriction to cohomologically
bounded below A-modules. An unbounded A-module M can have non-zero coho-
mology and yet satisfy H∗Q(M) = 0. For example, if α ∈ Hn(A) is represented by
a cycle a and M is the telescope of the sequence of A-maps

a : A[−qn] → A[−(q + 1)n],

then H∗(M) is the localization H∗(A)[α−1] and H∗(QM) = 0. Clearly Lemma 4.4
will usually fail in this situation since Hq(M)(r) ∼= D(F,M), where F is free on
one generator of bidegree (−q,−r).

The following lemma implies that FH is a rigid Abelian tensor category.

Lemma 4.6. The subcategory FH is closed under passage to tensor products and
duals in D .

Proof. By III.5.1, if M and N are (finite) cell A-modules, then the derived tensor
product M ⊗A N is given by the ordinary tensor product and is a (finite) cell
A-module such that

(∗) Q(M ⊗A N) ∼= QM ⊗QN.

If M and N are minimal, then, by Proposition 3.3(ii), so is M ⊗A N . If the inde-
composable elements of minimal A-modules M and N are concentrated in degree
zero, then so are the indecomposable elements of M ⊗A N , and this proves closure
under tensor products. For duals, it is easy to check that the k-modules Q(M∨)
and (QM)∨ are isomorphic when M is a finite cell A-module. ¤

The following lemma completes the proof of the last statement of Theorem 1.1.

Lemma 4.7. ω = H0Q : FH → QM is a faithful exact tensor functor.
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Proof. An easy formal elaboration of (∗) shows that ω is a tensor functor. The
functor Q is exact since we have restricted to cell A-modules. Therefore H0Q
is exact on H by virtue of the long exact sequences associated to short exact
sequences obtained by applying Q to short exact sequences

0 → M ′ → M → M ′′ → 0

of cell A-modules. Alternatively, we can check that it suffices to restrict attention to
short exact sequences of minimal A-modules. Finally, ω is faithful since two A-maps
between minimal A-modules in H are equal if they are equal on indecomposable
elements. Note that there is no room for homotopies since there are no elements of
degree -1: a map in H between minimal A-modules is just a map of A-modules. ¤

5. Twisting matrices and representations of co-Lie algebras

We here prove Theorem 1.2. We begin by describing HA in terms of matrices.
We then show that representations of co-Lie algebras admit a precisely similar
description. We tie in comodules at the end. In view of Theorem 2.4, Proposition
3.1, and the quasi-isomorphism invariance of the homology of the bar construction,
we may as well assume that A is generalized nilpotent.

Let M be a minimal A-module in HA. Then M is A-free on basis elements 〈j〉
of degree zero and Adams degree r(j). Here the nilpotent filtration of Definition
3.4 is given by FtM = M〈0, t〉. Each 〈j〉 lies in FtM − Ft−1M for some positive
integer t, which we denote by t(j) and think of as the order of nilpotency. The
differential is given by

d〈j〉 =
∑

ai,j〈i〉,
where ai,j has degree one and Adams degree r(j) − r(i); in particular, ai,j = 0 if
r(j) ≤ r(i). For each 〈j〉, only finitely many of the ai,j are non-zero, and ai,j = 0
if t(i) ≥ t(j). Order the basis and write a = (ai,j) and da = (d(ai,j)). Then the
condition dd = 0 is easily seen to take the form of the matrix equation da = −aa,
and this makes sense even when M is infinite dimensional. Note in particular that
each d(ai,j) must be a decomposable element of the algebra A.

Now consider a map f : M → N of minimal A-modules, where the differentials
on M and N are given by the matrices a and b in A1. Let f〈i〉 =

∑
kj,i〈j〉, where

〈j〉 runs through the canonical basis of N0 and the kj,i are elements of the ground
field. Here kj,i = 0 unless 〈i〉 and 〈j〉 have the same Adams degree. Moreover, since
f preserves the nilpotent filtration, kj,i = 0 if t(j) > t(i). Write k = (kj,i). Then
the condition df = fd is easily seen to take the form of the matrix equation bk = ka.
These observations lead to the following definition (compare Sullivan [58, §1]) and
proposition. By an “initial segment of the positive integers”, we understand either
the set of all positive integers or the set {1, 2, . . . , n} for some finite n.

Definition 5.1. A “twisting matrix” in A is an ordered set I, a function r : I → Z,
and a row finite (I×I)-matrix a = (ai,j) with entries in A1 such that ai,j has Adams
degree r(j)− r(i) and da = −aa. We say that a is indexed on r. A twisting matrix
a is generalized nilpotent if there is a surjection t from I to an initial segment of
the positive integers such that ai,j = 0 if t(i) ≥ t(j). A morphism from a twisting
matrix a indexed on r : I → Z to a twisting matrix b indexed on s : J → Z is
a row finite (J × I)-matrix k = (kj,i) with entries in the ground field such that
kj,i = 0 if r(i) 6= s(j) and bk = ka. If a and b are generalized nilpotent (with
nilpotency functions both denoted t), then we require morphisms to satisfy kj,i = 0
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if t(i) > t(j). With composition specified by the usual product of matrices, there
results a category TA of generalized nilpotent twisting matrices in A.

Proposition 5.2. The category HA is equivalent to the category TA.

Proof. The category HA is equivalent to its full subcategory of minimal A-modules,
maps in HA between minimal A-modules are just maps of modules, and the dis-
cussion above gives the conclusion. ¤

We next recall the notion of a representation of a co-Lie algebra γ. Recall
Definition 2.6 and Lemma 2.7.

Definition 5.3. A representation of a co-Lie algebra γ is a k-module V together
with a coaction map ν : V → γ ⊗ V such that the dual V ∨ is a module over the
Lie algebra γ∨ via the dual homomorphism. Here V is concentrated in ordinary
grading zero; its Adams grading (if it has one) is unrestricted.

Dualizing and reinterpreting, we see that a representation on V can equally well
be viewed as a k-linear map ν : V → γ[−1] ⊗ V such that (d ⊗ 1)ν coincides with
the map obtained by passage to coinvariants from the composite (1⊗ ν)ν; that is

(5.4) (1⊗ ν)ν = (d⊗ 1)ν : V → ∧2γ[−1]⊗ V.

However, we do not want to allow all such representations.

Definition 5.5. Let V be a representation of a co-Lie algebra γ. Define the
nilpotent filtration {FtV } by letting F0V = 0 and letting FtV be the subspace
generated by the union of Ft−1V and {v|ν(v) ∈ γ[−1] ⊗ Ft−1V }. Say that V
is generalized nilpotent if it is the union of the FtV . Say that V is nilpotent if
V = FtV for some finite t.

Remark 5.6. A generalized nilpotent representation V need not have bounded below
Adams grading. If a representation V has bounded below Adams grading, then it
is generalized nilpotent and has the Adams filtration {FAd

t V } specified by letting
FAd

0 V = 0 and letting FAd
t V be the subspace of elements with Adams grading at

most rt, where {rt|t ≥ 1} is the ordered set of integers for which V has an element
of Adams grading rt. As in Remark 3.6, FAd

t V ⊂ FtV , and the inclusion can be
proper.

Let V be a generalized nilpotent representation of γ. Fix a basis {vi} for V
indexed on an ordered set I. Define r : I → Z by letting r(i) be the Adams degree
of vi and define a surjection from I to an initial segment of the positive integers by
letting t(i) be minimal such that vi ∈ Ft(i)V . Let ν(vj) =

∑
ai,j ⊗ vi. Then ai,j

has Adams degree r(j)− r(i) and ai,j = 0 if t(i) ≥ t(j). We again write a = (ai,j)
and da = (d(ai,j)). Then (5.4) takes the form of the matrix identity da = −aa.

Similarly, let f : V → W be a map of generalized nilpotent representations of γ
and write f(vi) =

∑
kj,i(wj), where wj is the chosen basis of W . Then kj,i = 0 if

r(i) 6= r(j) or if t(j) > t(i). Write k = (kj,i). Then the identity (1⊗f)ν = ωf takes
the form of the matrix identity bk = ka, where ω : W → γ[−1]⊗W is specified by
the matrix b. These observations imply the following result.

Proposition 5.7. The category of generalized nilpotent representations of a co-Lie
algebra γ is equivalent to the category TA, where A = ∧(γ[−1]).

Corollary 5.8. The categories (i), (ii), and (iv) of Theorem 1.2 are equivalent.
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Proof. This is immediate from Proposition 5.2 and Proposition 5.7, applied to the
co-Lie algebra γA of Theorem 2.10. Note that TA is equivalent to TA〈1〉 since γA

is isomorphic to γA〈1〉. ¤

To complete the proof of Theorem 1.2, we must connect up the category of
comodules over χA. First recall exactly how a module V over a Lie algebra L
determines a module over its universal enveloping algebra U(L): the given action
map L⊗ V → V induces an action T (L)⊗ V → V of the tensor algebra T (L), by
iteration, and this map factors through the quotient map T (L) ⊗ V → U(L) ⊗ V
to induce the required action U(L)⊗ V → V . We shall dualize this description.

Definition 5.9. Define the universal enveloping Hopf algebra χ(γ) of a co-Lie
algebra γ to be χA, where A = ∧(γ[−1]).

Let T (γ) be the tensor coalgebra of γ. Additively, it is the same as the tensor
algebra, and it has the coproduct ψ given by

ψ(c1 ⊗ · · · ⊗ cn) =
∑

i+j=n

(c1 ⊗ · · · ⊗ ci)⊗ (ci+1 ⊗ · · · ⊗ cn).

We shall prove the following result in the next section. Recall that γ is said to be
generalized nilpotent if ∧(γ[−1]) is generalized nilpotent and that this always holds
when ∧(γ[−1]) is Adams graded.

Proposition 5.10. Let γ be a generalized nilpotent co-Lie algebra. Then there is
a canonical commutative diagram of algebras

T (γ∨) //

²²

T (γ)∨

²²
U(γ∨) // χ(γ)∨.

Here T (γ∨) → U(γ∨) is the obvious quotient map, U(γ∨) → χ(γ)∨ is the map of
algebras induced by the inclusion of Lie algebras dual to the quotient map of co-Lie
algebras χ(γ) → γ, T (γ∨) → T (γ)∨ is the map of algebras induced by the dual of
the evident quotient map of k-modules T (γ) → γ, and T (γ)∨ → χ(γ)∨ is dual to
a canonical embedding of χ(γ) as a subcoalgebra of T (γ) that will be explained in
the next section.

The dual of a χ(γ)-comodule V is a χ(γ)∨-module and therefore a U(γ∨)-module.
Equivalently, it is a γ∨-module, and of course the action of γ∨ is the restriction of
the action of U(γ∨). If the coaction of χ(γ) is given by µ : V → χ(γ)⊗ V , then we
obtain an induced coaction of γ by composing with the projection χ(γ)⊗V → γ⊗V .
Conversely, let V be a representation of γ with coaction ν : V → γ ⊗ V . Then the
dual V ∨ is a γ∨-module under the dual of ν. Equivalently, V ∨ is a U(γ∨)-module.

We ask when this action results from dualization of a coaction by χ(γ). By
iteration, ν induces a map νn : V → γn ⊗ V for each n ≥ 0, where γn denotes the
n-fold tensor power of γ and ν0 is understood to be the identity map of V . Under
the proviso that, for each v ∈ V , νn(v) = 0 for all sufficiently large n, the sum
µ : V → T (γ)⊗V of the maps νn makes sense. It must take values in χ(γ)⊗V and
specify a structure of χ(γ)-comodule on V , by consideration of the dual situation.
A moment’s reflection on Definition 5.5 will convince the reader that the proviso
holds if and only if V is generalized nilpotent. Again, reflection on the dual situation
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shows that if we start with a coaction µ of χ(γ) on V , project to obtain a coaction
ν of γ on V , and then take the sum of the iterates νn, we must get back ν. Since
µ is defined by finite sums, this means that V is generalized nilpotent. These
arguments, which can be carried out less intuitively and more precisely without
use of dualization, lead to the following conclusion, which completes the proof of
Theorem 1.2.

Proposition 5.11. The category of generalized nilpotent representations of a gen-
eralized nilpotent co-Lie algebra γ is equivalent to the category of comodules over
χ(γ).

Remark 5.12. When γ is not generalized nilpotent, the co-Lie algebra of inde-
composable elements of χ(γ) specifies the “generalized nilpotent completion” of
γ. Equivalently, for a minimal DGA A with degree one indecomposable elements,
the DGA ∧(γA[−1]) specifies the “generalized nilpotent completion” of A. This
corresponds topologically to generalized nilpotent completion of rational K(π, 1)’s.

6. The bar construction and the Hopf algebra χA

We prove Theorem 2.10 and Proposition 5.10 here, and we also develop prelim-
inaries that will be needed in the proof of Theorem 1.3.

We first recall the basic facts about the bar construction (e.g. from [30, Ap-
pendix], or [6]). We shall use the sign conventions of [30]. The two-sided bar
construction B(M, A,N) is defined for A-modules M and N . Even though A is
commutative, we think of M as a right and N as a left A-module to keep track of
signs. As a chain complex, B(M, A, N) is obtained by totalization (as in II§5) of
the usual simplicial chain complex B∗(M, A, N) with

Bp(M,A, N) = M ⊗Ap ⊗N.

Since our totalization includes normalization, B(M, A, N) is additively the direct
sum of the vector spaces M⊗ (IA)p⊗N . (Logically, the cokernel of the unit k → A
should appear in place of the isomorphic k-module IA.) We grade B(M, A,N) so
that the homological degree is negative. Thus elements of M ⊗ (IA)p ⊗ N have
degree their internal degree minus p; the (total) differential on such elements is
given by the map

(−1)pd +
∑

(−1)idi,

where d is the internal differential on the tensor product M ⊗ (IA)p ⊗N .
With the evident right action by A, B(M,A, N) is a differential A-module and

B(M, A, N) = B(M, A,A)⊗A N.

We may think of B(M, A, N) as an explicit model for the derived tensor product
of M and N , and, as in III§4, we have an Eilenberg-Moore spectral sequence

TorH∗(A)(H∗(M),H∗(N)) =⇒ H∗(B(M,A, N)).

Therefore quasi-isomorphisms of its variables induce quasi-isomorphisms of the bar
construction. The following minor technical point will become relevant in the next
section.

Remark 6.1. While B(M,A, A) is a right differential A-module with the evident
right action, there is no choice of signs in B(M, A,N) for which both this and its
analog for B(A,A, N) are true. To make B(A,A, N) a left differential A-module,
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one must modify the obvious action by a sign, defining a new action of A by
a · x = (−1)pdeg(a)ax, where x has homological degree p. The required formula
d(a · x) = d(a) · x + (−1)deg(a)a · d(x) is easily checked.

As usual we abbreviate B̄(A) = B(k, A, k). The product φ on B̄A is the shuffle
product

φ([a1| . . . |ar]⊗ [ar+1| . . . |as]) =
∑

(−1)σ(µ)[aµ(1)| . . . |aµ(r+s)],

where the sum runs over the (r, s)-shuffles µ in the symmetric group Σr+s; σ(µ)
is the sum over (i, j) such that 1 ≤ i ≤ r, r < j ≤ r + s, and µ(j) < µ(i) of
deg(aµ(i))deg(aµ(j)). The coproduct ψ on B̄(A) is

ψ([a1| . . . |ap]) =
∑

(−1)τ(i)[a1| . . . |ai]⊗ [ai+1| . . . |ap],

where the sum runs over 0 ≤ i ≤ p and τ(i) = (p− i)(deg(a1) + · · ·+ deg(ai)).

Remark 6.2. This coalgebra structure on the tensor algebra T (IA) is isomorphic
to the usual one. In fact, the isomorphism specified by

[a1| . . . |ap] → (−1)ν(p)[a1| . . . |ap],

where ν(p) = pdeg(a1)+(p−1)deg(a2)+ · · ·+deg(ap) throws the coproduct defined
with signs onto the coproduct defined without signs.

To prove Theorem 2.10, we may assume without loss of generality that A is
generalized nilpotent. Since A is connected, there are no non-zero elements of
negative degree in B̄(A). Thus there are no degree zero boundaries and χA =
H0B̄(A) embeds in B̄(A) as its k-module of cycles of degree zero. Since χA inherits
its Hopf algebra structure from the Hopf algebra structure on B̄(A), this embedding
must be a map of Hopf algebras. Note however that, even in simple cases, it is not
obvious how to identify cycles explicitly. The elements of degree zero in B̄(A) are
the elements of the (A1)p, so that χA depends only on the elements of A1 and their
differentials. When A is generalized nilpotent, this means that χA = χA〈1〉, and
this already implies Theorem 2.10(ii). The last part of the following calculational
description of χA is Theorem 2.10(i).

Theorem 6.3. Let A = A〈1〉. Then the following conclusions hold.
(i) The embedding χA → B̄(A) is a quasi-isomorphism.
(ii) χA is isomorphic to the polynomial algebra generated by a copy of A1, translated
to lie in degree zero.
(iii) There is a degree 1 k-map q : χA → A1 which is the composite of the quo-
tient homomorphism χA → γA and an isomorphism γA → A1 and which makes
the following diagram commute, where φ is the multiplication of A and ψ is the
comultiplication of χA:

χA
ψ //

q

²²

χA ⊗ χA

q⊗q

²²
A1

d
// A1 A1 ⊗A1

φ
oo

(iv) A can be identified with the DGA ∧(γA[−1]).



OPERADS, ALGEBRAS, MODULES, AND MOTIVES 73

Proof. Let A# be the underlying algebra of A, with differential zero. Filtering
B̄(A) by homological degree, we obtain a spectral sequence that converges from
the homology of B̄(A#), which is TorA#(k, k), to the homology of B̄(A). Here the
convergence of the spectral sequence follows by induction and passage to colimits
from the generalized nilpotency of A. Since A# is the exterior algebra generated
by A1, TorA#(k, k) is the divided polynomial algebra generated by a copy of A1

concentrated in bidegree (−1, 1). Since char(k) = 0, a divided polynomial algebra
is isomorphic to a polynomial algebra. The generators are permanent cycles, by
obvious degree considerations, hence E2 = E∞ . Thus the homology of B̄(A) is a
polynomial algebra concentrated in degree zero since its associated graded algebra
is a polynomial algebra with generators of bidegree (−1, 1). This proves (i) and (ii).
We see from this argument that the elements of A1, thought of as elements [a] in
B̄A, extend to cycles by addition of summands of lower homological degree. The
map q sends a generating cycle “[a]+ lower terms” to a. That is, q is induced from
the homomorphism B̄A → A1 that is the identity on A1 and is zero on all elements
other than those of degree 1 and homological degree -1. To compute the coproduct
on generators of χA, we must compute the coproduct on generating cycles. Observe
that q ⊗ q annihilates all summands not of the form [a′] ⊗ [a′′] with a′, a′′ ∈ A1.
With the notation of (2.8), the definition of the differential on B̄(A) forces our basic
cycles to have the form

[ar]−
∑
p<q

kr
p,q[ap|aq] + terms of lower homological degree.

With a cancelling of signs, the form of the coproduct on B̄(A) implies the commu-
tativity of the diagram in (iii), and part (iv) is now immediate by comparison with
Lemma 2.7 and the details in the paragraph following it. ¤

Proof of Proposition 5.10. We have that χ(γ) is a sub Hopf algebra of B̄(∧(γ[−1])),
and it lies in the subspace of elements of total degree zero. Using Remark 6.2, we see
that this subspace may be identified with the tensor coalgebra T (γ). Now all maps
in the diagram of Proposition 5.9 are defined. By the universal property of tensor
algebras, to show that the diagram commutes we need only show that it commutes
when restricted to γ∨, and this is an easy verification from the definitions. ¤

7. The derived category of the heart and the 1-minimal model

We now turn to the proof of Theorem 1.3. Abbreviate H = HA and D = DA.
We must prove that DH is equivalent to D when A = A〈1〉. Let us first observe
that Corollary 1.4 is an immediate consequence.

Proof of Corollary 1.4. By III.3.1, Hq(A)(r) ∼= D(A, F q(r)), where F q(r) is the
free A-module on one generator of bidegree (q, r). By Theorem 1.3, this is iso-
morphic to DH (k, k(r)[−q]), where k and k(r) are regarded as chain complexes
concentrated in degree zero, and this is Extq

H (k, k(r)). ¤

To begin the proof of Theorem 1.3, we construct a functor S : DH → D . For
this, we need only assume that A is connected. Consider a bounded below chain
complex

M∗ = {Mn, δ : Mn → Mn+1}
in H . Since H ⊂ D , each Mn is an A-module (with differential d) and each δ is
a map of A-modules. Any such chain complex M∗ is quasi-isomorphic to a chain
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complex of minimal A-modules in H , by Theorem 3.7 and the Whitehead theorem
(III.2.3), hence we may assume without loss of generality that each Mn is minimal.
Then the differential on Mn is specified by a generalized nilpotent twisting matrix
an and δ is specified by matrices kn such that an+1kn = knan. We define a cell
A-module SM∗, called the summation of M∗, with one n-cell for each 0-cell of Mn.
We specify the differential on the canonical basis element 〈j〉 of an open n-cell by

(7.1) d〈j〉 =
∑

|i|=n+1

kn
i,j〈i〉+

∑

|i|=n

an
i,j〈i〉

where |i| denotes the degree of a canonical basis element 〈i〉. If N∗ is a chain
complex specified by matrices bn and ln and f∗ : M∗ → N∗ is a chain map, then
f∗ is given by matrices φn with entries in k such that φn+1kn = lnφn. We define
Sf∗ : SM∗ → SN∗ by letting Sf∗ be prescribed by the matrix φn on the canonical
basis for the open n-cells. If f∗ is a quasi-isomorphism of chain complexes, then
Sf∗ is a quasi-isomorphism of A-modules by a little spectral sequence argument.

Now consider a general cell A-module M . If |j| = n, we can write

(7.2) d〈j〉 =
∑

|i|=n+1

kn
i,j〈i〉+

∑

|i|=n

an
i,j〈i〉+

∑

|i|<n

bn
i,j〈i〉.

Note that M is minimal if and only if all kn
i,j = 0. On the other hand, the functor

S takes values in the subcategory of D consisting of those M such that all bn
i,j = 0.

The following result is just an observation.

Lemma 7.3. Let M be an A-module with differential given by (6.2). If bn
i,j = 0

for all 〈i〉 and 〈j〉, then M is isomorphic to SM∗, where Mn is the A-module in
H specified by the twisting matrix an and where the differential δn : Mn → Mn+1

is specified by the matrix kn.

A map of A-modules g : SM∗ → SN∗ is given on a canonical basis element 〈i〉
of M of degree n by

(7.4) g〈i〉 =
∑

|j|=n

κn
j,i〈j〉+

∑

|j|<n

αn
j,i〈j〉.

Such a map is of the form Sf∗ if and only if all αn
j,i = 0.

To prove Theorem 1.3, we must show that, when A = A〈1〉, any cell A-module,
with differential of the form (7.2), is quasi-isomorphic to some cell A-module with
differential of the form (7.1). We shall exploit the following conceptual procedure
for constructing A-modules of the form SM∗ out of general A-modules.

Construction 7.5. Let χ be a coalgebra (Adams graded, but concentrated in
degree zero with respect to the ordinary grading) and suppose given a map q : χ →
A1 ⊂ A of Adams graded k-modules such that the following diagram commutes,
where φ is the multiplication of A and ψ is the comultiplication of χ:

χ

q

²²

ψ // χ⊗ χ

q⊗q

²²
A

d
// A A⊗A

φ
oo
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Let M be an A-module. Define a new A-module β(A, χ,M) by letting β(A,χ,M)
be A⊗ χ⊗M as an A-module, with differential

d⊗ 1⊗ 1 + (φ(1⊗ q)⊗ 1⊗ 1)(1⊗ψ⊗ 1)− (1⊗ 1⊗ µ(q⊗ 1))(1⊗ψ⊗ 1) + 1⊗ 1⊗ d,

where µ : A⊗M → M is the action of A on M .

A lengthy but purely formal diagram chase shows that d2 = 0. The standard
sign convention on tensor products of morphisms,

(f ⊗ g)(x⊗ y) = (−1)deg(g)deg(x)f(x)⊗ g(y),

is used; observe that this implies, for example, that (1⊗ d)(d⊗ 1) = −d⊗ d.
The following special case will lead to the proof of Theorem 1.3. We assume that

A = A〈1〉 in the rest of this section.

Definition 7.6. As in Theorem 6.2(iii), let q : χA → A be the composite of the
quotient map from χA to γA and the evident identification of γA with γA[−1].
Define a functor R from A-modules to A-modules by

R(M) = β(A,χA,M).

Another little spectral sequence argument shows that the functor R preserves
quasi-isomorphisms, and this will also follow from Proposition 7.8 below.

Proposition 7.7. Let A = A〈1〉 and let M be a cell A-module. Then R(M) is
a cell A-module whose differential is given by formula (7.1). If f : M → N is a
map of cell A-modules, then g = R(f) is a map of cell A-modules such that the
coefficients αn

j,i in (7.4) are zero. Therefore R induces a functor R′ : D → DH

such that R = SR′.

Proof. We must specify a sequential filtration {Ftβ(A, χA,M)}. We are given a
sequential filtration {FtM} of M . Let J be the subspace of M spanned by the
basis elements of its open cells, so that M = A ⊗ J as an A-module. We have an
induced filtration {FtJ} such that FtM = A ⊗ FtJ . We also have the nilpotent
filtration {FtA} of A, namely FtA = A〈1, t〉 in the notation of Definition 2.2. Via
the tensor product filtration of the summands (IA)p, there results a filtration of the
bar construction B̄(A) and thus a filtration of its subspace χA; here F0χA = k. The
filtration of A has the property that, for any element a, d(a) =

∑
a′a′′ with each

a′ and a′′ of strictly lower filtration than a. The filtration of χA has the property
that, for any element x, ψ(x) = x⊗ 1 + 1⊗ x +

∑
x′ ⊗ x′′ with each x′ and x′′ of

strictly lower filtration than x. We define

Ftβ(A,χA,M) = A⊗ Ft(χA ⊗A⊗ J),

where the filtration {Ft(χA ⊗ A ⊗ J)} must still be specified. Note first that the
tensor product of the three filtrations just specified does not work because, in the
differential (7.2) on M , we have no control on the filtrations of the an

i,j and bn
i,j .

Rather, thinking of the filtration as given by a partial ordering of basis elements,
we define a lexicographic filtration by first taking the filtration on J , next the
filtration on χA, and last the filtration on A. Formally, this involves an arbitrary
choice of total ordering of the lexicographically ordered set of triples (q, r, s) of non-
negative integers. The elements of filtration t are linear combinations of elements
x ⊗ a ⊗ 〈j〉 such that if t corresponds to (q, r, s), then 〈j〉 ∈ FqJ , x ∈ FrχA, and
a ∈ FsA. We obtain a basis for the open cells of filtration t by extending a basis
of Ft−1(χA ⊗A⊗ J) to a basis of Ft(χA ⊗A⊗ J). In Construction 7.5, of the four
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summands of the differential, the first is just the differential on A in the free A-
module structure, the second gives the decomposable summands an

i,j〈i〉 in (7.1), and
the third and fourth both give indecomposable summands kn

i,j〈i〉. The statement
about maps is clear and the last statement follows from Lemma 7.3. ¤

The following two results complete the proof of Theorem 1.3 by showing that
the functors R : D → DH and S : DH → D are inverse equivalences of categories.

Proposition 7.8. Let M be a cell A-module. Then there is a natural quasi-
isomorphism RM = SR′M → M .

Proof. With the signs given in Remark 6.1, we have an A-module B(A, A,M). As
noted in II.4.2, there is a natural map of A-modules ε : B(A,A,M) → M that is a
chain homotopy equivalence and thus a quasi-isomorphism. It suffices to construct
a quasi-isomorphism

ι : R(M) = β(A,χA, M) → B(A,A, M).

Additively, B(A,A, M) = A⊗ B̄(A)⊗M , and χA is contained in B̄(A) as its sub
Hopf algebra of cycles of total degree zero. The resulting inclusion

χA ⊗M → B̄(A)⊗M

extends to the desired map ι of A-modules (but the extension involves insertion of
the sign dictated by Remark 6.1).

We must show that ι commutes with the differentials. In homological degree p,
the differential on the subspace B̄(A)⊗M of B(A, A,M) can be written as the sum
of the following four terms:
(i) The zeroth face operator d0.
(ii) The last face operator (−1)pdp.
(iii) (−1)p(1⊗ d), where d is the differential on M .
(iv) d⊗ 1, where d is the differential on the chain complex B̄(A).
Observe that, in B̄(A) itself, the zeroth and last face operators are zero. When
we restrict to χ(A) ⊗M , the term (iv) is zero. An inspection of definitions shows
that the remaining three terms sum to the differential on the subspace χA ⊗ M
of β(A,χA,M), the essential point being that the zeroth and last faces in the
bar construction can be written in terms of its coproduct in the fashion given in
Construction 7.5. The rest of the verification that ι commutes with differentials is
just a check of signs.

Finally, we must prove that ι is a quasi-isomorphism. Filter the source and target
of ι by the sum of the degrees of the first coordinate A and last coordinate M ; that
is, a⊗ x⊗m is in F t if deg(a) + deg(m) ≥ t. Then the differential on the E1-term
of the resulting spectral sequence for β(A, χA,M) is zero, while the differential on
the E1-term for B(A,A,M) is induced by term (iv) above. Therefore the induced
map of E2-terms is an isomorphism by Theorem 6.3(i). ¤

Proposition 7.9. Let M∗ be a chain complex of minimal A-modules in H . Then
there is a natural quasi-isomorphism M∗ → R′SM∗ of chain complexes in H .

Proof. We change our point of view. Let V ∗ be the chain complex of χA-modules
that corresponds to M∗ under the equivalence of categories given in Theorem 1.2
and let ν : V n → χA ⊗ V n be the coaction. Observe that, as an A-module,
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Mn = A⊗ V n. Let ω∗ be the composite

ω∗ : V ∗ ν // χA ⊗ V ∗ = χA ⊗ k ⊗ V ∗ 1⊗η⊗1 // χA ⊗A⊗ V ∗,

where η is the unit of A. We claim that ω∗ is a quasi-isomorphism from V ∗ to the
chain complex of χA-comodules that corresponds to R′SM∗. On translation back
to H , this will imply the result.

We must first show that ω∗ is a map of χA-comodules. Clearly χA ⊗ A ⊗ V n

may be identified with the k-module of indecomposable elements of R′SMn. The
coaction of χA arises in the manner described above Proposition 5.11 from the
coaction of γA, and this arises from the decomposable portion of the differential
(7.1). This portion comes from the second term of the differential in Construction
7.5, which reduces on χA⊗M to (q⊗ 1⊗ 1)(ψ⊗ 1). This implies that the coaction
on χA ⊗A⊗ V n is the obvious one induced by the diagonal map on χA. It is now
clear from the relation (ψ ⊗ 1)ν = (1⊗ ν)ν that ω∗ is a map of χA-comodules.

We must next show that ω∗ is a map of chain complexes. The differential on
the chain complex of χA-comodules that corresponds to R′SM∗ is given by the
indecomposable portion of the differential (7.1), applied to RSM∗. This portion
comes from the last two terms of the differential in Construction 7.5, which reduce
on χA ⊗M to the sum of
(i) −(1⊗ µ(q ⊗ 1))(ψ ⊗ 1)
and 1 ⊗ d. With M replaced by A ⊗ V n, regarded as part of SM∗, the factor
d : A⊗ V n → A⊗ V n in the summand 1⊗ d is itself the sum of the following three
terms:
(ii) d⊗ 1, where d is the differential on A.
(iii) The decomposable part of the differential (7.1) on V n ⊂ Mn, which is given
by the coaction of γA on V n.
(iv) The indecomposable part of the differential (7.1) on Mn, which is given by the
differential V n → V n+1.
On the image of ω∗, the term (ii) obviously vanishes, the term (i) reduces to −(1⊗
q⊗1)(ψ⊗1), and the sum of the terms (i) and (iii) is zero by a little diagram chase
based on the identity (ψ⊗ 1)ν = (1⊗ ν)ν. Thus the differential on the image of ω∗

is given by (iv), and it follows that ω∗ is a map of chain complexes.
It remains to prove that ω∗ is a quasi-isomorphism. To see this, assume first that

the coaction of γA on each V n is zero, so that term (iii) vanishes. The inclusion of
χA in B̄(A) induces an inclusion

ιn : χA ⊗A⊗ V n → B̄(A)⊗A⊗ V n = B(k, A,A⊗ V n).

The differential on the target is the sum of three terms: the differential on B̄(A), the
part of the differential coming from the last face operator, and the differential on the
factor A of A⊗V n. The first of these is zero on χA, and the second and third agree
under the inclusion with the terms (i) and (ii). Thus ι is a map of chain complexes.
Filtering by degrees in A⊗ V n, we see by a little spectral sequence argument that
ι is a quasi-isomorphism because χA → B̄(A) is a quasi-isomorphism. Since V n is
just a k-module, we have the standard quasi-isomorphism

εn : B(k,A, A⊗ V n) → V n.

The composite εnιnωn : V n → V n is the identity map. So far we have ignored the
differential V n → V n+1, but if we filter χA⊗A⊗V ∗ and B̄(A)⊗A⊗V ∗ by degrees
in V ∗, then the differential on the resulting E1-terms is that obtained by ignoring
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the differential in V ∗ and, on E2-terms, we obtain copies of the chain complex V ∗.
Thus ε∗, ι∗, and ω∗ are quasi-isomorphisms when the V n are trivial representations
of γA.

Finally, we must take account of the coaction of γA. The V n are generalized
nilpotent representations of γA. Since the nilpotent filtration of Definition 5.5 is
natural, V ∗ is the union of its subcomplexes FtV

∗, and the quotients FtV
∗/Ft−1V

∗

are complexes of trivial representations. Therefore ω∗ is a quasi-isomorphism in
general. ¤

Part V. Derived categories of modules over E∞ algebras

Let k be a commutative ring and let C be an E∞ operad of differential graded
k-modules. We defined C -algebras and modules over C -algebras in Part I, and
we showed how to convert partial C -algebras and modules into genuine C -algebras
and modules in Part II. Interesting examples arise in both topology and algebraic
geometry.

In this part, we will demonstrate that the derived category of modules over a
C -algebra has the same kind of structure as the derived category of modules over a
commutative DGA. The essential point is that there is a derived tensor product that
satisfies all of the usual properties, but even the rigorous construction of the derived
category will require a little work. The standard tools of projective resolutions and
derived functors are not present here, and our theory is based on the non-standard
approach to the classical derived categories of DGA’s that we presented in Part III.

As discussed in Part IV, our original motivation came from Deligne’s suggestion
[20] that the derived category of modules over the E∞ algebra N (Spec(F )) that
we associated to Bloch’s higher Chow complex Z(Spec(F )) in II§5 is an appropri-
ate derived category of integral mixed Tate motives of F . We shall say nothing
more about that here. We are confident that the present theory will have other
applications. It has been developed in parallel with a precisely analogous, but more
difficult, theory of derived categories of modules over E∞ ring spectra in algebraic
topology [25], and that theory has already had very substantial applications.

As in Part I, k-modules will mean differential Z-graded k-modules, except that,
as in Parts III and IV, our k-modules will have a second “Adams” grading (which
will never introduce signs) and will be graded cohomologically. We let Mk denote
the category of such k-modules. In contrast with Part II, it is essential not to restrict
attention to flat k-modules in this part. Each of the k-modules C (j) of an operad
C is concentrated in Adams grading zero. In view of our cohomological grading,
the ordinary grading of the C (j) is concentrated in negative degrees. When C is
an E∞ operad, C (j) is a free k[Σj ]-resolution of k.

Although our interest is in modules over general E∞ algebras, we shall first
concentrate on the study of “E∞ modules” over the ground ring k. In fact, the
theory of this part is based on the idea of changing underlying ground categories
from the category of ordinary k-modules to that of E∞ k-modules.

For a given operad C , we agree to write C = C (1) for brevity. Clearly C is a
differential graded k-algebra via γ : C⊗C→ C; it is usually not commutative, but
it is homotopy commutative when C is an E∞ operad. For a unital operad C , it is
easy to see that the category of C-modules can be identified with the category of
operadic k-modules of I.4.1, where we regard k as a C -algebra via the augmentation
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C → N of I.2.2(iii). In fact, what is equivalent, C coincides with the universal
enveloping algebra of k as defined in I.4.9.

Recall that the derived category Dk of (differential graded) k-modules is obtained
from the homotopy category of k-modules by adjoining formal inverses to the quasi-
isomorphisms. Similarly, we have the derived category DC of C-modules. If C→ k
is a quasi-isomorphism, then, by III.4.2, the categories Dk and DC are equivalent.
When C is an E∞ operad, we think of C-modules as E∞ k-modules.

As we explain in Section 1, there is a particularly convenient choice of an
E∞ operad C , and there is no loss of generality if we restrict attention to that
choice. The proofs of these claims are deferred until Section 9. We agree to work
with this particular E∞ operad C throughout the rest of the part. With this
choice, we find that the category of C-modules admits an associative and commu-
tative “tensor product”, which we denote by £ to distinguish it from ⊗ = ⊗k. Since
C is not commutative, the existence of the operation £ is a remarkable phenome-
non. Under the equivalence between DC and Dk, the new derived tensor product
£ agrees with the derived tensor product ⊗. Similarly, there is an internal Hom
functor on the category of C-modules that agrees with the usual Hom under the
equivalence between DC and Dk.

In Section 2, we study phenomena connected with the fact that k is not a unit
for £, although there is a natural unit map λ : k £ M → M . We define certain
variants of the new tensor product of C-modules that apply when one or both of
the given C-modules M is unital, in the sense that it comes with a prescribed map
k → M . We write M C N and N B M for the new tensor products of a unital C-
module M and a non-unital C-module N , and we write M ¡ N for the new tensor
product defined when both M and N are unital. The product ¡ is associative,
commutative, and unital up to coherent natural isomorphism. Thus we have a
symmetric monoidal category of unital C-modules, which we denote by M u

C .
In Section 3, we prove that A∞ and E∞ algebras, defined with respect to the

particular E∞ operad C , are exactly the monoids and commutative monoids in the
symmetric monoidal category M u

C . This drastically simplifies the study of these
algebraic structures. We also give an appropriate analog for modules over such
algebras.

With these preliminaries, we can proceed in precise analogy with the theory
of Part III. In fact, we find in Section 4 that the theory of cell modules over a
DGA generalizes verbatim to give a theory of cell modules over an A∞ algebra
A. The only change is that the free functor from k-modules to A-modules has
a different description. We define and study the tensor product of modules over
A in Section 5. We define and study the concomitant Hom functor in Section
6. We also describe the variants of the tensor product for unital A-modules and
prove that quasi-isomorphic A∞ algebras have equivalent derived categories there.
In Section 7, we define generalized Tor and Ext groups as the homology groups
of derived tensor product and Hom modules, and we construct Eilenberg-Moore
spectral sequences for their calculation in terms of ordinary Tor and Ext groups.
The conclusions are precisely the same as if A were a DGA. In Section 8, we
specialize to E∞ algebras. Here our tensor product of A-modules is again an A-
module, and similarly for Hom. The discussion of duality in Part III carries over
directly to the E∞ context.
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1. The category of C-modules and the product £
For the moment, let C be any operad. Since C = C (1) is a DGA, the theory

of Part III applies to it. The free functor F from k-modules to C-modules is given
by FM = C ⊗M , and the free C-modules generated by suspensions of k play the
role of sphere C-modules. The derived category DC is equivalent to the homotopy
category of cell C-modules. When C is unital and the augmentation ε : C→ k is a
quasi-isomorphism, the derived categories Dk and DC are equivalent. A key point
is that the action C⊗M → M is then a quasi-isomorphism for any C-module M .

Via instances of the structural maps γ, we have a left action of C and a right
action of C⊗C on C (2), and these actions commute with each other. Thus we have
a bimodule structure on C (2). Let M and N be left C-modules. Clearly M ⊗ N
is a left C ⊗ C-module via the given actions. This makes sense of the following
definition.

Definition 1.1. For C-modules M and N , define M £ N to be the C-module

M £ N = C (2)⊗C⊗C M ⊗N.

We have a Hom functor on C-modules that is related to the tensor product £
by an adjunction of the usual form. In fact, the desired adjunction dictates the
definition.

Definition 1.2. Let M and N be (left) C-modules. Define

Hom�(M,N) = HomC(C (2)⊗C M,N).

Here, when forming C (2)⊗CM , C acts on C (2) through η⊗Id : C = k⊗C→ C⊗C;
when forming HomC, C acts on C (2) ⊗C M via its left action on C (2). The right
action of C on C (2) through Id⊗ η : C = C⊗ k → C⊗C induces a left action of C
on Hom�(M,N).

Lemma 1.3. There is a natural adjunction isomorphism

MC(L £ M, N) ∼= MC(L, Hom�(M, N)).

We must consider the commutativity, associativity, and unity properties of the
product £.

Lemma 1.4. There is a canonical commutativity isomorphism of C-modules

τ : M £ N −→ N £ M.

Proof. Use the action of the transposition σ ∈ Σ2 on C (2) together with the trans-
position isomorphisms C⊗ C→ C⊗ C and M ⊗N → N ⊗M . ¤

The following result is fundamental to our work. It comes from our parallel
topological work with Elmendorf [25]. We defer the proof to Section 9. Note that
k is a C-module via the augmentation C→ k.

Theorem 1.5. There is an E∞ operad C , called the “linear isometries operad”,
for which there is a canonical associativity isomorphism of C-modules

(L £ M) £ N ∼= L £ (M £ N).

In fact, for any j-tuple M1, . . . ,Mj of C-modules, there is a canonical isomorphism

M1 £ · · ·£ Mj
∼= C (j)⊗Cj (M1 ⊗ · · ·Mj),
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where the iterated product on the left is associated in any fashion. Moreover, for
j ≥ 2, the j-fold £-power C�j is isomorphic to C (j) as a (C,Cj)-bimodule, and
C (j) is isomorphic to C as a left C-module.

Lemma 1.6. There is a natural map of C-modules λ : k £ N → N . The symmet-
rically defined map M £ k → M coincides with the composite λτ . Moreover, under
the associativity isomorphism,

λτ £ Id = Id £λ : M £ k £ N −→ M £ N.

Proof. The degeneracy map σ1 : C (2) → C of I.3.5, ε ⊗ Id : C ⊗ C → k ⊗ C ∼= C,
and the isomorphism k ⊗ N ∼= N together give the required map λ : k £ N →
C ⊗C N ∼= N . The symmetry is clear. Under the isomorphisms of their domains
with C (3)⊗M ⊗k⊗N , both λτ £ Id and Id £λ agree with the tensor product over
Id⊗ε⊗ Id of σ2 : C (3) −→ C (2) and the isomorphism M ⊗ k ⊗N ∼= M ⊗N . ¤

In our motivating examples from algebraic geometry, we started with partial
algebras and converted them to C -algebras, where C was an arbitrarily chosen
E∞ operad. Clearly, we may as well choose C to be the linear isometries operad.
However, we have the following result. Its proof is a bar construction argument
similar to those used in Part II; we defer it to Section 9.

Theorem 1.7. Let C and C ′ be any two E∞ operads. There is a functor V that
assigns a quasi-isomorphic C ′-algebra V A to a C -algebra A. There is also a functor
V that assigns a quasi-isomorphic V A-module V M to an A-module M .

We construct the derived category of A-modules from the homotopy category of
A-modules by adjoining formal inverses to the quasi-isomorphisms, where a map of
A-modules is a quasi-isomorophism if it induces an isomorphism on homology, that
is, if it is a quasi-isomorphism when regarded as a map of k-modules. The theorem
can be elaborated to give an equivalence of the derived category of A-modules with
the derived category of V A-modules.

Thus there is no loss of generality if we restrict attention to the linear isometries
E∞ operad C , and we do so throughout the rest of the part. We repeat that C is
an abbreviated notation for C (1). By use of cell approximations of C-modules, the
product £ induces a derived tensor product, again denoted £, on DC. We have the
following important consistency statement.

Proposition 1.8. Let N be a cell C-module.
(i) If 0 −→ M ′ −→ M −→ M ′′ −→ 0 is an exact sequence of C-modules,

where M ′′ is a cell C-module, then

0 −→ M ′ £ N −→ M £ N −→ M ′′ £ N −→ 0

is an exact sequence of C-modules.
(ii) If f : M → M ′ is a quasi-isomorphism of C-modules, then

f £ Id : M £ N −→ M ′ £ N

is a quasi-isomorphism of C-modules.
(iii) M £ N is quasi-isomorphic as a k-module to M ⊗N .
Therefore the equivalence of derived categories DC → Dk that is induced by the

forgetful functor from C-modules to k-modules carries £ to ⊗.



82 IGOR KRIZ AND J. P. MAY

Proof. The proof is a bit devious, and steps must be taken in the right order. For
(i), observe that, with differential ignored, M ′′ is a free C-module and the given
sequence is therefore split exact. Upon tensoring with N we obtain an algebraically
split exact sequence of C2-modules and the conclusion follows. We next start on
(iii). Choose a degree zero cycle x ∈ C (2) that augments to 1 ∈ C and note that
x cannot be a boundary. Clearly x determines a homotopy equivalence k → C (2)
with homotopy inverse given by the augmentation C (2) → k. This equivalence and
the definition of £ give us the two maps of k-modules

M ⊗N −→ C (2)⊗M ⊗N −→ M £ N,

the first of which is a homotopy equivalence. Assume to begin with that M as well
as N is a cell C-module. The displayed functors commute with colimits, and we
see by induction up the product of the sequential filtrations and passage to colimits
that the second arrow will be a quasi-isomorphism in this case if it is a quasi-
isomorphism for all sphere C-modules M and N . However, if M = FK = C ⊗K
and N = C⊗ L for k-modules K and L, then

M £ N ∼= C (2)⊗K ⊗ L

and the second arrow reduces to the homotopy equivalence

C (2)⊗ C (1)⊗K ⊗ C (1)⊗ L −→ C (2)⊗K ⊗ L

induced by the homotopy equivalence γ : C (2)⊗C (1)⊗C (1) −→ C (2). In Section
7, part (i) and the special case of (iii) just proven will be used to construct a spectral
sequence that converges from Tor∗,∗k (H∗(M),H∗(N)) to H∗(M £N), where N but
not necessarily M is a cell C-module. The spectral sequence directly implies (ii),
and the special case of (iii) already proven now implies the general case of (iii)
by cellular approximation of M . The naturality of the isomorphism obtained on
passage to derived categories is clear from the proof. ¤

Although the unit map λ : k £ N → N is not an isomorphism in general, it
induces a natural isomorphism on the level of derived categories.

Corollary 1.9. If N is a cell C-module, then the unit map λ : k £ N → N is
a quasi-isomorphism. Therefore λ induces a natural isomorphism k £ N → N of
functors on the derived category DC.

Proof. Consider the following commutative diagram:

k ⊗ C⊗N

Id⊗ε⊗Id

²²

C (2)⊗ C⊗N
ε⊗Idoo

Id⊗ε⊗Id

²²

// C£ N

ε�Id

²²
k ⊗N

∼=
²²

C (2)⊗ k ⊗N
ε⊗Idoo //

σ1⊗Id

²²

k £ N

λ

²²
N C (1)⊗N

ε⊗Id
oo

ν
// N.

Here ν is the action of C (1) on N . By Proposition 1.8 and its proof, all arrows
except λ are quasi-isomorphisms, hence so is λ. ¤

We need a lemma to obtain the analog of Proposition 1.8 for Hom�.
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Lemma 1.10. For K-modules K and L, there are isomorphisms of C-modules

FK £ FL ∼= F (K ⊗ L) and Hom(K, L) ∼= Hom�(FK, L).

For cell C-modules M and N , M £ N is a cell C-module.

Proof. The first isomorphism is immediate from the isomorphism C (2) ∼= C (1)
given by the last statement of Theorem 1.5. The second follows in view of the
chain of natural isomorphisms

Mk(K ′,Hom�(FK, L)) ∼= MC(FK ′,Hom�(FK, L))
∼= MC(FK ′ £ FK, L) ∼= MC((F (K ′ ⊗K), L)
∼= Mk(K ′ ⊗K, L) ∼= Mk(K ′, Hom(K, L)).

As in III.1.5(iii) or III.5.1, the last statement follows from the first isomorphism. ¤

Proposition 1.11. Let N be an arbitrary C-module.
(i) If 0 −→ M ′ −→ M −→ M ′′ −→ 0 is an exact sequence of C-modules,

where M ′′ is a cell C-module, then

0 −→ Hom�(M ′′, N) −→ Hom�(M, N) −→ Hom�(M ′, N) −→ 0

is an exact sequence of C-modules.
(ii) If M is a cell C-module and f : N → N ′ is a quasi-isomorphism of C-

modules, then

Hom�(Id, f) : Hom�(M,N) −→ Hom�(M,N ′)

is a quasi-isomorphism of C-modules.
(iii) There is an induced adjunction isomorphism

DC(L £ M, N) ∼= DC(L,Hom�(M,N)).

(iv) If M is a cell C-module, then Hom�(M, N) is quasi-isomorphic as a k-
module to Hom(M, N).

Therefore the equivalence of derived categories DC → Dk that is induced by the
forgetful functor from C-modules to k-modules carries Hom� to Hom.

Proof. Part (i) is clear since the given sequence splits as a sequence of C-modules
with differential ignored. Parts (ii) and (iii) follow formally from the lemma; see
III.4.5. The functor Hom�(M,N) does not preserve quasi-isomorphisms in M ,
and, in the derived category DC, Hom�(M, N) means Hom�(ΓM,N) where ΓM
is a cell approximation to M . If M is a cell C-module and K is a k-module,
the quasi-isomorphism FK ⊗M −→ FK £ M of Proposition 1.8 and the natural
quasi-isomorphism K −→ FK give rise to the composite

Mk(K, Hom�(M,N)) ∼= MC(FK, Hom�(M,N))
∼= MC(FK £ M, N) → Mk(FK £ M,N)
∼= Mk(FK ⊗M, N) ∼= Mk(FK, Hom(M, N))
→ Mk(K, Hom(M, N)).

Since the two arrows are induced by quasi-isomorphisms, the composite induces a
natural isomorphism on passage to derived categories, and the image of the identity
map is a natural quasi-isomorphism of k-modules

Hom�(M,N) −→ Hom(M, N). ¤
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Corollary 1.12. There is a natural isomorphism N −→ Hom�(k, N) in the derived
category DC.

Proof. This is immediate from the natural isomorphisms

DC(M, N) ∼= DC(M £ k, N) ∼= DC(M, Hom�(k,N)). ¤

Remark 1.13. It would be of interest to construct an E∞ operad with the properties
of Theorem 1.5 by purely algebraic methods. There are defects to the present con-
struction. For example, we do not know that λ : k £ k → k is a quasi-isomorphism.
It would be desirable to have an operad with the additional property that C (2)
is chain homotopy equivalent to C2 as a right C2-module (of course, not Σ2-
equivariantly). This property would ensure that M £ N is quasi-isomorphic to
M ⊗N for all C-modules M and N .

2. Unital C-modules and the products C, B, and ¡
The fact that λ is not an isomorphism before passage to the derived category

leads us to introduce some further products. By a unital C-module M , we under-
stand a C-module M together with a map of C-modules η : k → M . We regard
k itself as a unital C-module via the identity map k → k. An augmentation of a
unital C-module M is a map ε : M → k of unital k-modules, so that εη = Id. For
a non-unital k-module M , we let M+ denote the unital C-module M ⊕ k. Clearly
an augmented C-module M is isomorphic to (Ker ε)+ as a unital C-module. Our
formal arguments will apply to arbitrary unital C-modules, but some of our argu-
ments about quasi-isomorphisms will apply only to augmented C-modules. It is
possible to generalize these arguments, but the extra verbiage does not seem to
be warranted since the applications we envisage are to augmented C -algebras and
since Theorem 2.9 will give a way around such difficulties. A cell theory adapted
to unital C-modules is given in III§6 and is used to construct a derived category of
unital C-modules. Given this, our results on quasi-isomorphisms lead to conclusions
about derived categories. We shall leave the formulation of these interpretations to
the reader.

Definition 2.1. Let M be a unital C-module and let N be any C-module. Define
M C N to be the pushout displayed in the following diagram of C-modules:

k £ N

λ

²²

η�Id // M £ N

²²
N // M C N.

Define N B M by symmetry.

Proposition 2.2. Let M and N be C-modules. Then

M+ C N ∼= N ⊕ (M £ N).

If N is a cell C-module, then the canonical map

M+ £ N −→ M C N

is a quasi-isomorphism.
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Proof. The first statement is clear, and the cited canonical map reduces to

Id⊕λ : (M £ N)⊕ (k £ N) −→ (M £ N)⊕N.

Thus Corollary 1.9 gives the second statement. ¤
The commutativity and associativity of £ imply the following commutativity

and associativity isomorphisms relating £ and C; these isomorphisms imply various
others.

Lemma 2.3. Let L and M be unital C-modules and let N and P be any C-modules.
Then there are natural isomorphisms

M C N ∼= N B M,

M C (N £ P ) ∼= (M C N) £ P,

and
L C (N B M) ∼= (L C N) B M.

We have a Hom functor and a suitable adjunction.

Definition 2.4. Let M be a unital C-module and let N be any C-module. Define
HomC(M, N) to be the C-module displayed in the following pullback diagram:

HomC(M, N)

²²

// Hom�(M, N)

η∗

²²
N // Hom�(k,N);

here the bottom arrow is adjoint to the unit map λτ : N £ k ∼= k £ N → N .

Lemma 2.5. For a unital C-module M and any C-modules L and N , there is a
natural adjunction isomorphism

MC(L B M,N) ∼= MC(L, HomC(M,N)).

Definition 2.6. Let M and N be unital C-modules. The coproduct of M and N
in the category of unital C-modules is the pushout M ∪k N . There is an analogous
pushout (M £ k) ∪k�k (k £ N), and the unit maps λ determine a natural map of
C-modules

λ : (M £ k) ∪k�k (k £ N) → M ∪k N.

The restrictions to k £ k of the maps

Id £ η : M £ k → M £ N and η £ Id : k £ N → M £ N

coincide, hence these maps determine a map

θ : (M £ k) ∪k�k (k £ N) −→ M £ N.

Define M ¡ N to be the pushout displayed in the following diagram of C-modules:

(M £ k) ∪k�k (k £ N)

θ

²²

λ // M ∪k N

²²
M £ N // M ¡ N.

Then M ¡N is a unital C-module with unit the composite of the unit k → M ∪k N
and the displayed canonical map M ∪k N → M ¡ N .
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Lemma 2.7. Let M and N be C-modules. Then

(M+) ¡ (N+) ∼= (M £ N)⊕M ⊕N ⊕ k.

Remark 2.8. We have a compatible decomposition

(M+) £ (N+) ∼= (M £ N)⊕ (M £ k)⊕ (k £ N)⊕ (k £ k).

If we knew that λ : k £ k → k were a quasi-isomorphism, it would follow from
Corollary 1.9 that the canonical map

M £ N −→ M ¡ N

is a quasi-isomorphism when M and N are cell C-modules. However, such a result
would be of limited utility since the “augmentation ideals” of augmented A∞ or
E∞ algebras are unlikely to be of the homotopy types of cell C-modules.

In the applications of the analogous topological theory, it is vital to overcome the
problem pointed out in the previous remark. The way to do this is to to approximate
a given A∞ or E∞ algebra A by its monadic bar construction BA of II.4.2, which
is quasi-isomorphic to A and therefore has an equivalent derived category. We shall
be more explicit about the definitions and shall prove the following result in Section
9.

Theorem 2.9. For an A∞ or E∞ algebra A, there is an A∞ or E∞ algebra BA
and a natural quasi-isomorphism ε : BA → A. For an A-module M , there is a BA-
module BM and a natural quasi-isomorphism of BA-modules ε : BM → M . If A
and A′ are augmented A∞ or E∞ algebras, there are natural quasi-isomorphisms
of k-modules

BA⊗BA′ −→ BA ¡ BA′ and BA⊗BM −→ BA C BM.

The purpose of introducing the products C and ¡ is to obtain good alge-
braic properties on the domains of definition of the multiplications on A∞ and
E∞ algebras and of their actions on modules. The theorem shows that, by use
of bar construction approximations, we can obtain such algebraic control without
changing the underlying quasi-isomorphism type. The following algebraic proper-
ties of ¡ are easily derived from the associativity and commutativity of £ together
with formal arguments from the definition.

Lemma 2.10. The following associativity relation holds, where M and N are unital
C-modules and P is any C-module:

(M ¡ N) C P ∼= M C (N C P ).

Proposition 2.11. The category of unital C-modules is symmetric monoidal under
the product ¡; that is, ¡ is associative, commutative, and unital up to coherent
natural isomorphism.

3. A new description of A∞ and E∞ algebras and modules

Let C be the linear isometries operad. Recall from I.2.1 that a C -algebra A is
a k-module together with an associative, unital, and equivariant system of action
maps

θ : C (j)⊗Aj → A.
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Recall from I.4.1 that an A-module M is a k-module together with an associative,
unital, and equivariant system of action maps

λ : C (j)⊗Aj−1 ⊗M → M.

By Theorem 1.7, up to quasi-isomorphism, all E∞ algebras and modules are C -
algebras and modules. Similarly, if we drop the equivariance conditions, then, up
to quasi-isomorphism, all A∞ algebras and modules are of this form. We agree
to refer to C -algebras and modules, with and without equivariance, as E∞ and
A∞ algebras and modules in the rest of this part.

Restricting the action to j = 0 and j = 1, we see that an A∞ algebra is a
unital C-module with additional structure. The category M u

C of unital C-modules
is symmetric monoidal under the product ¡. As with any symmetric monoidal
category, we define a monoid in M u

C to be an object A with an associative and
unital product φ : A ¡ A → A; A is commutative if φτ = φ. The following result
is the precise analog of a theorem first discovered in the deeper topological context
of [25].

Theorem 3.1. An A∞ algebra A determines and is determined by a monoid struc-
ture on its underlying unital C-module; A is an E∞ algebra if and only if it is a
commutative monoid in M u

C .

While this is the most elegant form of the theorem, it is more convenient to prove
it in an equivalent form expressed in terms of the £ product. In fact, the following
result is immediate from the description of ¡ in terms of £ and λ.

Lemma 3.2. A monoid structure on a unital C-module A determines and is de-
termined by a product φ : A £ A → A such that the following diagrams commute:

k £ A
η�Id //

λ
$$IIIIIIIIII A £ A

φ

²²

A £ k
Id�ηoo

λ
zzuuuuuuuuuu

and A £ A £ A

φ�Id

²²

Id�φ // A £ A

φ

²²
A A £ A

φ // A;

A is commutative if the following diagram commutes:

A £ A

φ ##GG
GG

GG
GG

G
τ // A £ A

φ{{www
ww

ww
ww

A.

The analog of Theorem 3.1 for modules reads as follows; we incorporate the
analog of Lemma 3.2 in the statement.

Theorem 3.3. Let A be an A∞ or E∞ algebra with product φ : A ¡ A → A. An
A-module is a C-module M together with a map µ : A C M → M such that the
following diagrams commute, where the second diagram implicitly uses the isomor-
phism (A ¡ A) C M ∼= A C (A C M):

k C M
ηCId //

∼=
%%KKKKKKKKKK A C M

µ

²²

and A ¡ A C M

φCId

²²

IdCµ // A C M

µ

²²
M A C M

µ // M.
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Equivalently, an A-module is a C-module M together with a map µ : A £ M → M
such that the following diagrams commute:

k £ M
η�Id //

λ %%KKKKKKKKKK A £ M

µ

²²

and A £ A £ M

φ�Id

²²

Id�µ // A £ M

µ

²²
M A £ M

µ // M.

We illustrate the force of these results by giving some formal consequences.
Recall that the tensor product of commutative DGA’s is their coproduct in the
category of commutative DGA’s. The proof consists of categorical diagram chases
that now carry over to our more general context.

Corollary 3.4. Let A and B be A∞ algebras. Then A ¡ B is an A∞ algebra. If
M is an A-module and N is a B-module, then M £ N is an A ¡ B-module. If A
and B are E∞ algebras, then A ¡ B is an E∞ algebra and is the coproduct of A
and B in the category of E∞ algebras.

The following corollary will become important in Section 5. We first recall a
standard categorical definition [43, VI.6].

Definition 3.5. Working in an arbitrary category, suppose given a diagram

A
e //
f

// B
g // C

in which ge = gf . The diagram is called a split coequalizer if there are maps

h : C → B and k : B → A

such that gh = IdC , fk = IdB , and ek = hg. It follows that g is the coequalizer of
e and f .

Observe that, while covariant functors need not preserve coequalizers in general,
they clearly do preserve split coequalizers.

Corollary 3.6. Let A be an A∞ algebra. Then the following diagram of unital
k-modules is a split coequalizer:

A ¡ A ¡ A
φ�Id //
Id�φ

// A ¡ A
φ // A.

If M is a left A-module, then the following diagram of k-modules is also a split
coequalizer:

(A ¡ A) C M ∼= A C (A C M)
φ�Id //
IdCµ

// A C M
µ // M.

Proof. The first statement is true for monoids in any symmetric monoidal category.
The required maps h and k are η ¡ Id and η ¡ Id ¡ Id. The second statement is
equally trivial. ¤

Remark 3.7. In M u
C , as in any symmetric monoidal category, we have operads M

and N such that an M -algebra is a monoid and an N -algebra is a commutative
monoid; compare I.2.2. Thus these operads define A∞ and E∞ algebras. There
result monads M and N in M u

C which define the free A∞ and E∞ algebras. We can
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start with a k-module K and form the free unital C-module (C⊗K)+ = (C⊗K)⊕k.
The free A∞ algebra it generates must be the free A∞ algebra generated by K.
That is,

M((C⊗K)+) ∼= C(K) =
∑

C (j)⊗Kj .

Similarly, reinterpreting C in the E∞ sense,

N((C⊗K)+) ∼= C(K) =
∑

C (j)⊗Σj
Kj .

The following two lemmas give the proof of Theorem 3.1; the proof of Theorem
3.3 is precisely analogous and will be left to the reader.

Lemma 3.8. Let A be an A∞ algebra. Then θ : C (2) ⊗ A ⊗ A −→ A induces a
product

φ : A £ A ≡ C (2)⊗C⊗C A⊗A −→ A

such that the first two diagrams of Lemma 3.2 commute. If A is an E∞ algebra,
then the third diagram also commutes.

Proof. That θ factors through the tensor product £ is immediate from the associa-
tivity diagram in the definition, I.1.1, of an operad action. Since η : k → A is taken
to be θ : C (0) → A, it is easy to check the commutativity of the unit diagrams from
Lemma 1.6 and I.1.1. The associativity diagram is more interesting and depends
on the proof of Theorem 1.5. In fact, the two squares in the following diagram
commute by I.1.1:

C (2)⊗ C (1)⊗ C (2)⊗A⊗A2 Id⊗θ⊗θ//

γ⊗Id

²²

C (2)⊗A2

θ

²²
C (3)⊗A3 θ // A

C (2)⊗ C (2)⊗ C (1)⊗A2 ⊗A
Id⊗θ⊗θ//

γ⊗Id

OO

C (2)⊗A2.

θ

OO

The horizontal arrows factor through tensor products over C3 in the terms in the
left column and through tensor products over C2 in the terms at the top and bottom
right corners, and the diagram then becomes

A £ (A £ A)
Id�φ //

∼=
²²

A £ A

φ

²²
C (3)⊗C3 A3 θ // A

(A £ A) £ A
φ�Id //

∼=
OO

A £ A.

φ

OO

The two arrows labelled ∼= are isomorphisms by the proof of Theorem 1.5 in Section
9, and they give the associativity isomorphism that is implicit in the claim that
the associativity diagram of Lemma 3.2 commutes. If A is an E∞ algebra, then
θ : C (2)⊗A⊗A → A is Σ2-equivariant, and the commutativity of the last diagram
of Lemma 3.2 follows. ¤
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Lemma 3.9. Let A be a monoid in the category of unital C-modules. Its monoid
structure is uniquely determined by an A∞ algebra structure, and A is commutative
if and only if the A∞ structure is an E∞ structure.

Proof. The unit and C-action of A give θ : C (0) → A and θ : C (1) ⊗ A → A.
The product φ : A £ A → A induces θ : C (2) ⊗ A2 → A. The associativity of φ
shows that it defines an unambigous map A�j → A, where A�j denotes the j-fold
£-power of A. Since

A�j ∼= C (j)⊗Cj Aj ,

φ induces a map θ : C (j) ⊗ Aj → A for each j ≥ 2. The verification that the
associativity and unity diagrams of I.1.1 commute are laborious diagram chases
from the definition and the arguments of Section 9. It is not hard to see that the
equivariance diagrams commute if A is commutative. It is clear that the resulting
A∞ algebra structure determines the given monoid structure. Conversely, by the
associativity diagrams, the higher maps θ of an A∞ algebra structure are deter-
mined by the second map, so that the A∞ structure is uniquely determined by the
monoid structure. ¤

4. Cell A-modules and the derived category of A-modules

Fix an A∞ algebra A. We first observe that the category of A-modules is
closed under various constructions in the underlying categories of k-modules and
C-modules. Modules mean left modules unless otherwise specified; right modules
are defined by symmetry in terms of action maps M £ A → M , or M B A → M .

Proposition 4.1. Let M and N be A-modules, let L be a C-module, and let K be
a k-module.

(i) Any categorical colimit or limit (in the category of k-modules) of a diagram
of A-modules is an A-module.

(ii) M ⊗K and Hom(K, M) are A-modules and

MA(M ⊗K, N) ∼= MA(M, Hom(K, N)).

(iii) M £ L and Hom�(L,M) are A-modules and

MA(M £ L,N) ∼= MA(M, Hom�(L,N)).

(iv) Hom�(M, L) is a right A-module.
(v) The cofiber of a map of A-modules is an A-module.

Proof. (i) Note first that colimits and limits of C-modules are calculated as colimits
and limits of underlying k-modules. The functor £ commutes with colimits in each
of its variables. Thus, for a direct system Mi of C-modules,

A £ (ColimMi) ∼= Colim(A £ Mi).

If the Mi are A-modules, their structure maps induce a structure map for ColimMi.
For an inverse system Mi, canonical projections give a map

A £ (LimMi) −→ Lim(A £ Mi).

This implies the analogous conclusion for limits, and this conclusion also follows
from the fact, recalled below, that the forgetful functor from A-modules to k-
modules is a right adjoint.
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(ii) Certainly M ⊗K is a C-module, and

A £ (M ⊗K) ∼= (A £ M)⊗K.

By applying A £ (?) to the evaluation map Hom(K,M)⊗K → M and taking the
adjoint of the resulting map, we obtain a map of C-modules

A £ Hom(K, M) −→ Hom(K, A £ M).

Therefore, by composition, the structure map for M induces structure maps for
M ⊗K and Hom(K, M). The adjunction is a formal verification.
(iii) The argument is just like the proof of (ii).
(iv) The action of A on Hom�(M, L) is the adjoint of the composite

Hom�(M,L) £ A £ M
Id�µ // Hom�(M, L) £ M

ε // L,

where µ is the action of A on M and ε is the evaluation map. The last statement
of Lemma 1.6 is needed for the verification of the unit property.
(v) This follows easily from (i) and (ii). ¤

To develop the cell theory of A-modules, we need a free functor from k-modules
to A-modules, and we already have a free functor from k-modules to C-modules,
namely K → C⊗K. The following observation shows that A C L is the free functor
from C-modules to A-modules.

Lemma 4.2. For C-modules L and A-modules M ,

MA(A C L,M) ∼= MC(L,M).

Proof. The unit k → A induces a C-map η : L ∼= k C L → A C L, the product
on A induces a structure of A-module on A C L, and an A-module structure on
M is given by an A-map µ : A C M → M . Therefore an A-map g : A C L → M
induces the C-map g ◦ η : L → M and a C-map f : L → M induces the A-map
µ ◦ (Id C f) : A C L → M . These are inverse correspondences. ¤

Definition 4.3. For a k-module K, define an A-module FK by

FK = A C (C⊗K).

Lemma 4.4. For k-modules K and A-modules M ,

MA(FK, M) ∼= Mk(K,M).

At this point, we recall that we have already constructed the free A-module
functor in I.4.9 and I.4.10: since the category of A-modules is isomorphic to the
category of U(A)-modules, the free A-module generated by a k-module K must be
U(A) ⊗ K. We are entitled to the following consequence, which is special to the
linear isometries operad. Note that the unit of U(A) determines a natural k-map
K → U(A)⊗K.

Proposition 4.5. For k-modules K, the natural map FK → U(A) ⊗ K is an
isomorphism of A-modules.

In particular, Fk is isomorphic to U(A); we can read off the resulting product
on Fk by comparison with I.4.9. The following basic result is intuitively obvious,
but we assume that A is augmented in order to obtain a quick proof.



92 IGOR KRIZ AND J. P. MAY

Proposition 4.6. Assume that A is augmented. If K is a cell k-module, then
the A-map α : FK → A ⊗ K induced by the canonical k-map K → A ⊗ K is a
quasi-isomorphism. If K is a free k-module with zero differential, then H∗(FK) is
the free H∗(A)-module generated by K.

Proof. By inspection of definitions, FK ∼= Fk ⊗ K. Thus the result will hold in
general if it holds when K = k. We have the following commutative diagram of
maps of k-modules:

A⊗ C χ // C (2)⊗A⊗ C
β

²²

// A £ C

²²
A

ι

OO

Id
// A A C C.α

oo

Here ι is the canonical inclusion, χ is determined by a chosen degree zero cycle
x ∈ C (2) that augments to 1 ∈ k, and β is given by

β(d⊗ a⊗ c) = θ(d⊗ a⊗ θ(c⊗ 1))

for d ∈ C (2), a ∈ A, and c ∈ C. The composite βχι is multiplication by the unit
1 ∈ A under the product determined by x, and the very definition of an E∞ operad
action implies that βχι ' Id. Clearly ι and χ are quasi-isomorphisms, hence so is β.
The unlabelled arrows in the right-hand square are quasi-isomorphisms by the proof
of Proposition 1.8 and by Proposition 2.2, hence α is also a quasi-isomorphism. The
second statement follows. ¤

At this point, we can simply parrot the theory of Part III in our more general
context, replacing the free functor A⊗ (?) used there with the free functor F (?) =
A C (C⊗ (?)). To begin with, we define “sphere A-modules” F s(t) by

F s(t) = F (Ss(t)),

and we observe that the cones on spheres satisfy

CF s(t) ∼= F (CSs(t)).

Part III has been written with this generalization in mind, and we reach the fol-
lowing conclusion.

Theorem 4.7. Without exception, every statement and proof in Sections 1, 2, 3,
and 6 of Part III applies verbatim to modules over A∞ algebras.

Of course, for an actual DGA A, we now have two categories of A-modules
in sight, namely ordinary ones and A∞ ones. The latter are the same as U(A)-
modules, and we have the following expected consistency statement.

Proposition 4.8. If A is a DGA, then the map α : U(A) ∼= Fk → A is a map
of DGA’s. It induces an equivalence of categories between the ordinary derived
category DA and the E∞ derived category DU(A).

Proof. The first statement is an immediate verification since C acts on A through
the augmentation C → N . Since α is a quasi-isomorphism, the second statement
follows from III.4.2. ¤
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5. The tensor product of A-modules

We have not yet defined tensor products of modules over A∞ algebras. We can
mimic classical algebra.

Definition 5.1. Let A be an A∞ algebra and let M be a right and N be a left
A-module. Define M £A N to be the coequalizer (or difference cokernel) displayed
in the following diagram of C-modules:

(M B A) £ N ∼= M £ (A C N)
µ�Id //
Id�ν

// M £ N // M £A N,

where µ and ν are the given actions of A on M and N ; the canonical isomorphism
of the terms on the left is implied by Lemma 2.3.

Remark 5.2. We have given the definition in the form most convenient for our
later proofs. However, it is equivalent to define M £A N more intuitively as the
coequalizer in the following diagram:

M £ A £ N
µ�Id //
Id�ν

// M £ N // M £A N.

In fact, by the definitions of our products, there is a natural epimorphism

π : (M £ A £ N)⊕ (M £ N) −→ (M B A) £ N ∼= M £ (A C N).

The composites (µ£Id)◦π and (Id £ν)◦π restrict to µ£Id and Id £ν on M£A£N ,
and both composites restrict to the identity on M £ N .

We have used the notation £A to avoid confusion with ⊗A in the case of a DGA
A regarded as an A∞ algbra. We have the following consistency statement.

Remarks 5.3. When A = k, M B k = M , k C N = N , and we are coequalizing two
identity maps. Therefore our new M£kN coincides with M£N . When A is a DGA
and M and N are A-modules regarded as E∞ A-algebras, the quasi-isomorphisms
constructed in Proposition 1.8 can be elaborated to obtain comparisons of coequal-
izer diagrams that show that the new derived tensor product of M and N regarded
as E∞ modules is isomorphic in the derived category Dk to the classical derived
tensor product M ⊗A N .

An A∞ algebra A with product φ : A £ A → A has an opposite algebra Aop

with product φ ◦ τ , and a left A-module with action µ is a right Aop-algebra with
action µ ◦ τ . A simple comparison of coequalizer diagrams gives the following
commutativity isomorphism.

Lemma 5.4. For a right A-module M and left A-module N ,

M £A N ∼= N £Aop M.

Lemma 5.5. For a C-module L,

L £ (M £A N) ∼= (L £ M) £A N and (M £A N) £ L ∼= M £A (N £ L).

For A∞ algebras A and B, we define an (A, B)-bimodule to be a left A and right
B-module M such that the following diagram commutes:

A £ M £ B //

²²

M £ B

²²
A £ M // M.
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The previous lemma and comparisons of coequalizer diagrams give the following
associativity isomorphism and unit map.

Lemma 5.6. Let L be an (A,B)-bimodule, M be a (B, C)-bimodule, and N be a
(C,D)-bimodule. Then L £B M is an (A,C)-bimodule and

(L £B M) £C N ∼= L £B (M £C N)

as (A,D)-bimodules.

Lemma 5.7. The action ν : A £ N −→ N of a left A-module N factors through a
map of A-modules λ : A £A N −→ N.

Observe that, for a C-module L, L B A ∼= A C L is an (A,A)-bimodule. In
particular, this applies to the free left A-module FK = A C (C⊗K) generated by
a k-module K, which may be identified with the free right A-module generated by
K. The following result and its corollary will be used in conjunction with the quasi-
isomorphism of Proposition 1.8 relating the £-product of C-modules with their
ordinary tensor product as k-modules. Recall from Theorem 1.5 that C £ C ∼= C
as a left C-module.

Proposition 5.8. Let L and L′ be C-modules and let N be an A-module. There is
a natural isomorphism of A-modules

(L B A) £A N ∼= L £ N.

There is also a natural isomorphism of (A,A)-bimodules

(L B A) £A (A C L′) ∼= A C (L £ L′).

Proof. Applying the functor L£(?) to the representation of N as a split coequalizer
in Lemma 3.6 and using isomorphisms from Lemmas 2.3 and 2.10, we find that
the resulting split coequalizer diagram is isomorphic to the diagram that defines
FL £A N . Similarly, we obtain the second isomorphism by applying the functor
(?) C (L £ L′) to the representation of A as a split coequalizer in Lemma 3.6. ¤

Corollary 5.9. Let K and K ′ be k-modules and let N be an A-module. There is
a natural isomorphism of A-modules

FK £A N ∼= (C⊗K) £ N.

There is also a natural isomorphism of (A,A)-bimodules

FK £A FK ′ ∼= F (K ⊗K ′).

To go further, we must consider the behavior of £A on cell A-modules N . The
sequential filtration of N gives short exact sequences

0 −→ Nn −→ Nn+1 −→ Nn+1/Nn −→ 0,

where the quotient is a direct sum of sphere A-modules FSq(r). Just as for DGA’s,
the sequence is algebraically split when we ignore the differentials, and this implies
that the sequence is still exact when we apply the functor M £A (?) for any M . This
allows us to reduce proofs for general N to the case N = Fk, using commutation
with suspension to handle sphere modules, commutation with direct sums to handle
filtration subquotients, induction and five lemma arguments to handle the Nn, and
passage to colimits to complete the proof. For example, we have the following
result, which is just III.4.1 restated in our new context.
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Lemma 5.10. Let N be a cell A-module. Then the functor M £A N preserves
exact sequences and quasi-isomorphisms in the variable M .

Proof. Both statements are clear from Corollary 5.9 and Proposition 1.8 if N is a
sphere A-module. The general case follows by passage to direct sums, induction up
the filtration, and passage to colimits. For the exactness, one uses a 3 × 3 lemma
to prove the inductive step. ¤

We construct £A as a functor

rDA × `DA → Dk

by approximating one of the variables by a cell A-module; here “r” and “`” indicate
right and left A-modules. That is, the derived tensor product of M and N is
M £A (ΓN). It is unital by the following result.

Corollary 5.11. If A is augmented and N is a cell A-module, then the unit map
λ : A £A N → N is a quasi-isomorphism.

Proof. It suffices to prove this for the sphere N = Fk = A C C, and we have
A £A Fk ∼= A £ C. Comparing the coequalizer diagram that defines A £A N with
the coequalizer representation of N in Corollary 3.6 and using Definition 2.1, we
see that λ coincides with the canonical map A £ C −→ A C C. This is a quasi-
isomorphism by Proposition 2.2. ¤

The following result will be the starting point for the construction of a spectral
sequence for the computation of H∗(M £A N).

Corollary 5.12. Let K be a free k-module with zero differential and let N be a
cell A-module. Then there is an isomorphism

H∗(FK £A N) ∼= (H∗(A)⊗K)⊗H∗(A) H∗(N)

that is natural in the A-modules FK and N .

Proof. The subtle point is that naturality in FK and not just K will be essential
in Section 7. Recall that ⊗A is defined by a coequalizer diagram like that used to
define £A. Recall too that Proposition 4.6 gives a quasi-isomorphism of A-modules
FK → A ⊗ K and that the functor (?) £A N preserves quasi-isomorphisms. We
obtain a commutative diagram

H∗(FK)⊗H∗(A) H∗(N) //

²²

H∗(FK £A N)

²²
H∗(A⊗K)⊗H∗(A) H∗(N) // H∗((A⊗K) £A N)

in which the vertical arrows are isomorphisms. We see by Corollary 5.9 that the
top arrow is an isomorphism when N is a sphere A-module, and it follows by our
usual induction and passage to limits that it is an isomorphism for any N . ¤

6. The Hom functor on A-modules; unital A-modules

We have a Hom functor to go with our new tensor product. Its definition is
dictated by the desired adjunction. Let A be an A∞ algebra.
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Definition 6.1. Let M and N be left A-modules. Define Hom�A(M, N) to be the
equalizer displayed in the following diagram of C-modules:

Hom�A(M, N) // Hom�(M, N)
µ∗ //
ω

// Hom�(A C M, N).

Here µ∗ = Hom�(µ, Id) and ω is the adjoint of the composite

A C (M £ Hom�A(M, N))
IdCε // A C N

ν // N,

where ε is the evaluation map of the adjunction in Lemma 1.3.

Remark 6.2. If A = k, and M and N are E∞ k-modules, then our new Hom�k (M,N)
is identical to Hom�(M,N).

Lemma 6.3. For C-modules L and left A-modules M and N , there is a natural
adjunction isomorphism

MA(L £ M, N) ∼= MC(L,Hom�A(M, N)).

Just as in ordinary module theory, we have the following complementary adjunc-
tion.

Lemma 6.4. For C-modules L, right A-modules M , and left A-modules N , there
is a natural adjunction isomorphism

MC(M £A N, L) ∼= MA(M, Hom�(N, L)).

Proposition 5.8 and Corollary 5.9 imply the following results.

Proposition 6.5. Let L be a C-module and N be an A-module. There is a natural
isomorphism of A-modules

Hom�A(A C L,N) ∼= Hom�(L,N).

Proof. This is immediate from the following composite of isomorphisms of repre-
sented functors, in which L′ is a C-module:

MC(L′,Hom�A(A C L,N)) ∼= MA(L′ £ (A C L), N)
∼= MA((L′ B A) £A (A C L), N) ∼= MA(A C (L′ £ L), N)
∼= MC(L′ £ L,N) ∼= MC(L′,Hom�(L,N)). ¤

Corollary 6.6. Let K be a k-module and N be an A-module. There is a natural
isomorphism of A-modules

Hom�A(FK, N) ∼= Hom�(C⊗K, N).

Arguing as in III§5, we obtain the following analog of Lemma 5.10.

Lemma 6.7. Let M be a cell A-module. Then the functor Hom�A(M, N) preserves
exact sequences and quasi-isomorphisms in the variable N . It also preserves exact
sequences of cell A-modules in the variable M .

In the derived category DA, Hom�A(M, N) means Hom�A(ΓM, N), where ΓM is
a cell approximation of A. As in III§5, we are entitled to conclude that

(6.8) DA(L £ M, N) ∼= DC(L, Hom�A(M, N)).

Now Corollary 5.11 has the following formal consequence; compare Corollary 1.11.
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Corollary 6.9. The adjoint N → Hom�A(A, N) of λτ : N £A A ∼= A £A N → N
induces a natural isomorphism of functors on the derived category DA.

Again, as in Corollary 5.12, we can use Proposition 4.6 to deduce the following
calculational consequence of Corollary 6.6. It will be needed in the next section.

Corollary 6.10. Let K be a free k-module with zero differential and let N be a
cell A-module. Then there is an isomorphism

H∗(Hom�A(FK,N)) ∼= HomH∗(A)(H∗(A)⊗K, H∗(N))

that is natural in the A-modules FK and N .

We briefly indicate some further developments of the theory, including the im-
portant invariance result parallel to III.4.2. By a unital A-module, we understand
an A-module M together with a map η : A −→ M of A-modules.

Definition 6.11. Define the mixed tensor product M CA N of a unital right A-
module M and a left A-module N by replacing k by A and £ by £A in Definition
2.1. Define BA by symmetry. Define the unital tensor product M ¡A N of a unital
right A-module M and a unital left A-module N by replacing k by A and £ by £A

in Definition 2.6.

When A is an E∞ algebra, it will follow from the discussion in Section 8 that
these products all take values in A-modules. The properties of C, B, and ¡ listed
in Section 2 generalize in the expected fashion. Moreover, the new products admit
alternative descriptions in terms of coequalizer diagrams like that which defines
£A.

Lemma 6.12. For a unital right A-module M and a left A-module N , M CA N
can be identified with the coequalizer displayed in the diagram

(M C A) C N ∼= M C (A C N)
µCId //
IdCν

// M C N // M CA N.

For a unital right A-module M and a unital left A-module N , M ¡A N can be
identified with the coequalizer displayed in the diagram

(M ¡ A) ¡ N ∼= M ¡ (A ¡ N)
µ�Id //
Id�ν

// M ¡ N // M ¡A N.

Proof. It is easy to check this on augmented A-modules M = M ′ ⊕ A, and the
general case follows by a formal argument; compare [25, III§3]. ¤

Proposition 6.13. Let φ : A → A′ be a quasi-isomorphism of augmented DGA’s.
Then the pullback functor φ∗ : DA′ → DA is an equivalence of categories with
inverse given by the extension of scalars functor A′ CA (?).

Proof. We regard φ as a map of A-modules in forming A′ CA M . With this
modification of A′ £A (?), we have an adjunction isomorphism

MA′(A′ CA M, M ′) ∼= MA(M, φ∗M ′)

for M ∈ MA and M ′ ∈ MA′ . For a C-module L, a formal argument (compare [25,
III§3]) gives a natural isomorphism

A′ CA (A C L) ∼= A′ C L.
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Thus the functor A′ CA (?) preserves sphere modules and therefore cell modules.
This implies that the adjuction passes to derived categories. The essential point is
that

φ CA Id : M ∼= A CA M −→ A′ CA M

is a quasi-isomorphism when M is a cell A-module. This will hold in general if it
holds when M is a sphere A-module. However, when M = A C L for a C-module
L, φ CA Id reduces to

φ C Id : A C L −→ A′ C L.

For a cell C-module L, φ C Id is a quasi-isomorphism by Propositions 1.8 and 2.2;
the latter result applies in view of our assumption that A and A′ are augmented.
The rest of the argument is the same as in III.4.2. ¤

Definition 6.14. Let A be an E∞ algebra. Define an A-algebra B and a B-
module M by replacing £, C and ¡ by the corresponding products over A in the
diagrammatic descriptions of A∞ k-algebras and their modules given in Theorem
3.1, Lemma 3.2, and Theorem 3.3.

We can carry out homological algebra in this more general context, as suggested
by the results of the next section. For example, we can construct the Hochschild
homology of A∞ algebras by mimicking the definition of the standard complex for
its computation. We refer the interested reader to our topological paper [25]. It car-
ries the parallel theory considerably further, and its arguments can be transcribed
directly into the present algebraic context.

7. Generalized Eilenberg-Moore spectral sequences

Fix an A∞ algebra A. Since our derived tensor product and Hom functors
generalize those of DGA’s, the following definition generalizes III.4.4.

Definition 7.1. Working in derived categories, define

Tor∗A(M,N) = H∗(M £A N) and Ext∗A(M,N) = H∗(Hom�A(M,N)).

These functors enjoy the same general properties as in the case of DGA’s: exact
triangles in either variable induce long exact sequences on passage to Tor or Ext,
Tor preserves direct sums in either variable, and Ext converts direct sums in M to
direct products and preserves direct products in N . The behavior on free modules
is

(7.2) Tor∗A(M, FK) ∼= H∗(M ⊗K) and Ext∗A(FK, N) ∼= H∗(Hom(K, N)).

The crucial point of our general definition of Tor and Ext is that we still have
Eilenberg-Moore spectral sequences for their calculation. Write M∗ = H∗(M) for
brevity of notation.

Theorem 7.3. There are natural spectral sequences of the form

(7.4) Ep,q
2 = Torp,q

A∗ (M
∗, N∗) =⇒ Torp+q

A (M, N)

and

(7.5) Ep,q
2 = Extp,q

A∗ (M
∗, N∗) =⇒ Extp+q

A (M,N).
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These are both spectral sequences of cohomological type, with

(7.6) dr : Ep,q
r → Ep+r,q−r+1

r .

In (7.4), p is the negative of the usual homological degree, the spectral sequence is
non-zero only in the left half-plane, and it converges strongly. In (7.5), the spectral
sequence is non-zero only in the right half plane, and it converges strongly if, for
each fixed (p, q), only finitely many of the differentials (7.6) are non-zero. (See [10]
for a general discussion of convergence.) The rest of this section will be devoted to
the proof of Theorem 7.3. The starting point is the following construction.

Construction 7.7. Let M be an A-module and let Q be a submodule of M∗ with
generating set {yi}. If yi ∈ (qi, ri), we may think of yi as a map of k-modules
Sqi(ri) → M . Let K = ⊕Sqi(ri), let f : K → M be the sum of the yi, and let
f̃ : FK → M be the induced map of A-modules. Then (FK)∗ is the free A∗-module
on generators yi ∈ (qi, ri), and the induced homomorphism f∗ : (FK)∗ → M∗ is a
map of A∗-modules that sends xi to yi. Clearly Imf̃∗ = Q.

For a right A-module M , we choose an A∗-free resolution

(7.8) · · · //Fp

dp //Fp−1
// · · ·F0

//ε //M∗ //0

and regrade it cohomologically, setting F p = F−p. Each F p is bigraded, via degree
and Adams degree. We shall pay little attention to the Adams degree since the
only complications that it introduces are notational.

Let Q0 = Ker ε and Qp = Ker dp for p ≤ − 1, so that dp defines an epimorphism
F p → Qp+1. For p ≤ 0, let Kp be the sum of a copy of the sphere k-module
Σ−pks(t) = ks−p(t) for each basis element of F p of bidegree (s, t) and let M0 = M .
Using Construction 7.7 inductively, we can construct cofiber sequences of right
A-modules

(7.9) FKp kp
//Mp ip

//Mp−1
jp−1

// //ΣFKp

for p ≤ 0 that satisfy the following properties:
(i) k0 realizes ε on H∗.
(ii) H∗(Mp) = Σ−pQp+1 for p ≤ −1.
(iii) kp realizes Σ−pdp : Σ−pF p −→ Σ−pQp+1 on H∗ for p ≤ − 1.
(iv) ip induces the zero homomorphism on H∗ for p ≤ 0.
(v) jp−1 realizes the inclusion Σ1−pQp −→ Σ1−pF p on H∗ for p ≤ 0.

Observe that (iii) implies the case p − 1 of (ii) together with (iv) and (v). We
are actually constructing a cell A-module relative to M , in the sense of III§6.

To obtain the spectral sequence (7.4), we assume that N is a cell A-module and
we define

(7.10) Dp,q
1 = Hp+q−1(Mp−1 £A N) and Ep,q

1 = Hp+q(FKp £A N),

where we have ignored the Adams grading. The maps displayed in (6.9) give maps

i ≡ (ip−1)∗ : Dp,q
1 −→ Dp−1,q+1

1

j ≡ (jp−1)∗ : Dp,q
1 −→ Ep,q

1

k ≡ (kp)∗ : Ep,q
1 −→ Dp+1,q

1 .
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By Lemma 5.10, these display an exact couple in standard cohomological form. We
see from Corollary 5.12 that Ep,q

1
∼= (F p ⊗A∗ N∗)q and that d1 agrees under the

isomorphism with d⊗ 1. This proves that

Ep,q
2 = Torp,q

A∗ (M
∗, N∗).

Observe that k : E0,q
1 −→ D1,q

1 can and must be interpreted as

Hq(FK0 £A N) −→ Hq(M £A N).

On passage to E2, it induces the edge homomorphism

(7.11) E0,q
2 = M∗ ⊗A∗ N∗ −→ H∗(M £A N).

The convergence is standard, although it appears a bit differently than in most
spectral sequences in current use. Write i0,p for the evident composite M → Mp and
also for its tensor product with N . Filter H∗(M £A N) by letting F pH∗(M £A N)
be the kernel of

(i0,p−1)∗ : H∗(M £A N) −→ H∗(Mp−1 £A N).

By (iv) above, we see that the telescope (= homotopy colimit) TelMp has zero
homology. Since the functor (?) £A N commutes with telescopes, Tel(Mp £A N)
also has zero homology, as we see by a standard inductive argument using the cell
structure on N . This implies that the filtration is exhaustive. Consider the (p, q)th
term of the associated bigraded group of the filtration. It is defined as usual by

Ep,q
0 H∗(M £A N) = F pHp+q(M £A N)/F p+1Hp+q(M £A N),

and the definition of the filtration immediately implies that this group is isomorphic
to the image of

(i0,p)∗ : Hp+q(M £A N) −→ Hp+q(Mp £A N).

The target of (i0,p)∗ is Dp+1,q
1 , and of course Ep,q

1 = Hp+q(FKp £A N) also maps
into Dp+1,q

1 , via k. It is a routine exercise in the definition of a spectral sequence
to check that k induces an isomorphism

Ep,q
∞ −→ Im(i0,p)∗.

(We know of no published source, but this verification is given in [10, §6].)
To see the functoriality of the spectral sequence, suppose given a map f : M →

M ′ of A-modules and apply the constructions above to M ′ (writing F ′p, etc).
Construct a sequence of maps of A∗-modules fp : F p → F ′p that give a map of
resolutions. We can realize the maps fp on homology groups by A-module maps
f̃p : FKp → FK ′p. Starting with f = f0 and proceeding inductively, a standard
exact triangle argument allows us to construct a map fp : Mp−1 → M ′p−1 such
that the following diagram of A-modules commutes up to homotopy:

FKp //

²²

Mp //

²²

Mp−1 //

²²

ΣFKp

²²
FK ′p // Mp // M ′p−1 // ΣFK ′p.

There results a map of spectral sequences that realizes the induced map

Tor∗,∗A∗ (M
∗, N∗) −→ Tor∗,∗A∗ (M

′∗, N ′∗)

on E2 and converges to (f £A Id)∗. Functoriality in N is obvious.
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To obtain the analogous Ext spectral sequence, we switch from right to left
modules in our resolution (7.8) of M∗ and its realization by A-modules. It is
convenient to work with the homological grading displayed in (7.8) and to regrade
(7.9) correspondingly. We obtain a cofiber sequence

(7.12) FKp

kp //Mp

ip //Mp+1

jp+1 //ΣFKp.

With this grading, we define

(7.13) Dp,q
1 = Hp+q(Hom�A(Mp, N)) and Ep,q

1 = Hp+q(Hom�A(FKp, N)).

The maps displayed in (6.12) give maps

i ≡ (ip−1)∗ : Dp,q
1 −→ Dp−1,q+1

1

j ≡ (kp)∗ : Dp,q
1 −→ Ep,q

1

k ≡ (jp+1)∗ : Ep,q
1 −→ Dp+1,q

1 .

These display an exact couple in standard cohomological form. We see by Corollary
6.10 that Ep,q

1
∼= Homq

A∗(Fp, N
∗) and that d1 agrees with Hom(d, 1) under this

isomorphism. This proves that

Ep,q
2 = Extp,q

A∗ (M
∗, N∗).

Observe that j : D0,q
1 → E0,q

1 can and must be interpreted as

Hq(Hom�A(M, N)) −→ Hq(Hom�A(FK0, N)).

On passage to E2, it induces the edge homomorphism

(7.14) Hq(Hom�A(M, N)) −→ Homq
A∗(M

∗, N∗) = E0,q
2 .

To see the convergence, let

ι0,p : Hom�A(Mp, N) −→ Hom�A(M, N)

be the map induced by the evident interate M → Mp and filter H∗(Hom�A(M,N))
by letting F pH∗(Hom�A(M, N)) be the image of

(ι0,p)∗ : H∗(Hom�A(Mp, N)) −→ H∗(Hom�A(M,N)).

The (p, q)th term of the associated bigraded group of the filtration is

Ep,q
0 H∗(Hom�A(M,N)) = F pHp+q(Hom�A(M, N))/F p+1Hp+q(Hom�A(M, N)).

The group Ep,q
∞ is defined as the subquotient Zp,q

∞ /Bp,q
∞ of Ep,q

1 , where

Bp,q
∞ = j(Ker(ι0,p)∗),

and a routine exercise in the definition of a spectral sequence shows that the additive
relation (ι0,p)∗ ◦ j−1 induces an isomorphism

Ep,q
∞ ∼= Ep,q

0 H∗(Hom�A(M, N)).

Since TelMp has zero homology, so does the homotopy limit, or “Microscope”,

MicHom�A(Mp, N) ∼= Hom�A(TelMp, N).

As usual for a countable inverse system, there is a Lim1 exact sequence for the
computation of H∗(MicHom�A(Mp, N)), and we conclude that

Lim H∗(Hom�A(Mp, N)) = 0 and Lim1 H∗(Hom�A(Mp, N)) = 0.
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In the language of [10], this means that the spectral sequence {Ep,q
r } is conditionally

convergent, and [10] shows that strong convergence follows if, for each pair (p, q),
only finitely many of the differentials with source Ep,q

r are non-zero. The functori-
ality of the spectral sequence is clear from the argument for torsion products given
above.

8. E∞ algebras and duality

We assume that A is an E∞ algebra in this section, and we show that the
study of E∞ modules works exactly the same way as the study of modules over
commutative DGA’s. In particular, we discuss composition and Yoneda products
and duality. Observe that, although it is not at all obvious from the original
definitions of I§4, their reinterpretation in Section 3 implies that we obtain the
same A-modules whether we regard A as an E∞ algebra or, by neglect of structure,
as an A∞ module.

If µ : A £ M → M gives M a left A-module structure, then µ ◦ τ : M £ A → M
gives M a right A-module structure such that M is an (A, A)-bimodule. Just
as in the study of modules over commutative DGA’s (where the argument is too
trivial to need such a pedantic formalization), this leads to the following important
conclusion.

Theorem 8.1. If M and N are A-modules, then M £A N and Hom�A(M, N)
have canonical A-module structures deduced from the A-module structure of M or,
equivalently, N . The tensor product over A is associative and commutative, and
the unit maps A£A M → M and A → Hom�A(A,N) are maps of A-modules. There
is a natural adjunction isomorphism

(8.2) MA(L £A M, N) ∼= MA(L, Hom�A(M,N)).

The derived category DA is symmetric monoidal under the product derived from
£A, and the adjunction passes to the derived category.

The analog of III.5.1 is immediate from Corollary 5.9.

Proposition 8.3. If M and M ′ are cell A-modules, then M ⊗A M ′ is a cell A-
module with sequential filtration {∑p(Mp ⊗A Nn−p)}.

As in the previous section, write A∗ = H∗(A); it is an associative and (graded)
commutative algebra.

Corollary 8.4. Tor∗A(M, N) and Ext∗A(M,N) are A∗-modules, and there are nat-
ural commutativity and associativity isomorphisms of A∗-modules

(8.5) Tor∗A(M, N) ∼= Tor∗A(N, M)

and

(8.6) Tor∗A(L £A M, N) ∼= Tor∗A(L,M £A N).

The spectral sequences of the previous section are spectral sequences of differential
A∗-modules.

The formal properties of Theorem 8.1 imply many others. For example,

(8.7) Hom�A(M £A L,N) ∼= Hom�A(M, Hom�A(L,N))
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because the two sides represent isomorphic functors on modules. Using this, we see
that the evaluation map

ε : Hom�A(L, M) £A L −→ M

induces a map

MA(Hom�A(M, N), Hom�A(M, N))

→ MA(Hom�A(M,N), Hom�A(Hom�A(L,M) £A L,N))
∼= MA(Hom�A(M,N), Hom�A(Hom�A(L,M),Hom�A(L,N)))
∼= MA(Hom�A(M,N) £A Hom�A(L,M), Hom�A(L,N)).

The image of the identity map of Hom�A(M,N) gives a composition pairing

(8.8) π : Hom�A(M,N) £A Hom�A(L,M) −→ Hom�A(L,N).

This pairing is associative and commutative in the sense that the following diagrams
commute; note that the unit of the adjunction (8.2) specializes to give a map
η : A → Hom�A(M, M):

Hom�A(M, N) £A A

Id�η

²²

λτ

**UUUUUUUUUUUUUUUU

Hom�A(M, N) £A Hom�A(M, M) π
// Hom�A(M, N),

A £A Hom�A(L,M)

η�Id

²²

λ

**UUUUUUUUUUUUUUUU

Hom�A(M, M) £A Hom�A(L,M) π
// Hom�A(L,M),

and

Hom�A(N, P ) £A Hom�A(M, N) £A Hom�A(L,M)
Id�π //

π�Id

²²

Hom�A(N, P ) £A Hom�A(L,N)

π

²²
Hom�A(M,P ) £A Hom�A(L,M) π

// Hom�A(L, P ).

On passage to homology, the pairing (8.8) induces a Yoneda product on Ext.

Proposition 8.9. There is a natural, associative, and unital system of pairings

π∗ : Ext∗A(M,N)⊗A∗ Ext∗A(L,M) −→ Ext∗A(L,N).

Proof. We have an associative and unital system of isomorphisms in DA

FSq(r) £A FSs(t) ∼= FSq+s(r + t).

Since Hq(M) ∼= DA(FS−q(−r),M) for an A-module M , the result follows directly
from the pairings. ¤

These pairings also imply pairings of spectral sequences. We content ourselves
with a brief indication of the proof.
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Proposition 8.10. The pairing Hom�A(M,N) £A Hom�A(L,M) → Hom�A(L,N)
induces a pairing of spectral sequences that coincides with the algebraic Yoneda
pairing on the E2-level and converges to the induced pairing of Ext groups.

Proof. Construct a sequence {Lp} as in (7.12). Then the maps M → Mp induce a
compatible system of pairings

Hom�A(Mp, N) £A Hom�A(Lp′ ,M)

²²
Hom�A(M, N) £A Hom�A(Lp′ ,M)

²²
Hom�A(Lp′ , N).

These induce the required pairing of spectral sequences. The convergence is clear,
and the behavior on E2 terms is correct by comparison with the axioms or by
comparison with the usual construction of Yoneda products. ¤

Modulo the obvious changes of notation, the formal duality theory that we ex-
plained in III§5 applies verbatim to the present more general context. Working in
DA, we define M∨ = Hom�A(M,A), and we say that M is “finite” if it has a coeval-
uation map η : A −→ M £ M∨ such that the analog of diagram III.5.6 commutes.
When M is a finite A-module, various natural maps such as

ρ : M −→ M∨∨

and
ν : M∨ £A N −→ Hom�A(M, N)

are isomorphisms in DA, exactly as if A were a classical k-algebra, without differ-
ential, and M were a finitely generated projective A-module. The last isomorphism
has the following implication.

Proposition 8.11. For a finite A-module M and any A-module N ,

Torn
A(M∨, N) ∼= Extn

A(M,N).

Although the relation may be obscured by the grading, this is an algebraic coun-
terpart of Spanier-Whitehead duality in algebraic topology. We call particular
attention to III.5.7, which we repeat for emphasis.

Theorem 8.12. A cell A-module is finite in the sense just defined if and only if it
is a direct summand up to homotopy of a finite cell A-module.

9. The linear isometries operad; change of operads

We prove Theorems 1.5, 1.7, and 2.9 here. We first define an E∞ operad L
of topological spaces. The algebraic E∞ operad C of Theorem 1.5 is obtained by
applying the normalized singular chain complex functor C# to L , as discussed at
the start of I§5.

Let U ∼= R∞ be a countably infinite dimensional real inner product space, topol-
ogized as the union of its finite dimensional subspaces. Let U j be the direct sum of
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j copies of U . Define L (j) to be the set of linear isometries U j → U with the func-
tion space topology, that is, the compact-open topology made compactly generated.
Note that a linear isometry is an injection but not necessarily an isomorphism. The
space L (0) is the point i, i : 0 → U , and L (1) contains the identity 1 : U → U .
The left action of Σj on U j by permutations induces a free right action of Σj on
L (j). The structure maps

γ : L (k)×L (j1)× · · · ×L (jk) −→ L (j1 + · · ·+ jk)

are defined by
γ(g; f1, . . . , fk) = g ◦ (f1 ⊕ · · · ⊕ fk).

The associativity property of Theorem 1.5 stems from a special associativity
property of L that was first observed by Hopkins. Observe that L (1) acts from
the left on any L (i), via γ, hence L (1)×L (1) acts from the left on L (i)×L (j).
Note too that L (1) × L (1) acts from the right on L (2). Let us denote these
actions by ν and µ, respectively.

Lemma 9.1 (Hopkins). For i ≥ 1 and j ≥ 1, the diagram

L (2)×L (1)×L (1)×L (i)×L (j)
µ×Id //
Id×ν

// L (2)×L (i)×L (j)
γ // L (i + j)

is a split coequalizer of spaces.

Proof. Choose isomorphisms s : U i → U and t : U j → U and define

h(f) = (f ◦ (s⊕ t)−1, s, t)

and
k(f ; g, g′) = (f ; g ◦ s−1, g′ ◦ t−1; s, t).

It is trivial to check the identities of Definition 3.5. ¤

Proposition 9.2. Let i ≥ 1 and j ≥ 1. Then the structural map γ of the operad
C = C#(L ) induces an isomorphism

C (2)⊗C⊗C C (i)⊗ C (j) −→ C (i + j).

Proof. As in I§5, let g denote the shuffle map

C#(X)⊗ C#(Y ) −→ C#(X × Y )

and recall that it is a monomorphism naturally split by the Alexander-Whitney
map f ; g is associative and we continue to write g for maps obtained from it by
iteration. The covariant functor C# preserves split coequalizers, and the map of
the statement factors as the composite

C (2)⊗C⊗C C (i)⊗ C (j)
g //C#(L (2)×L (1)×L (1) L (i)×L (j)

γ# //C (i + j),

where γ# is an isomorphism. We see that g is a split monomorphism by a compar-
ison of coequalizer diagrams, and we must check that g is an epimorphism. Think
of isomorphisms s : U i → U and t : U j → U as singular zero simplices of the spaces
L (i) and L (j). A singular n-simplex x : ∆n → L (i + j) determines a singular
n-simplex y of L (2) by precomposition with s−1 ⊕ t−1. When all but one variable
is a zero simplex, the shuffle map takes an obvious form from which it is trivial to
check that (γ# ◦ g)(y ⊗ s⊗ t) = x. ¤
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Proof of Theorem 1.5. We must construct a natural isomorphism

(L £ M) £ N ∼= L £ (M £ N),

and we claim that both sides are naturally isomorphic to

C (3)⊗C3 L⊗M ⊗N.

Note that N ∼= C⊗C N . We have the isomorphisms

(L £ M) £ N ∼= C (2)⊗C2 (C (2)⊗C2 L⊗M)⊗ (C⊗C N)
∼= (C (2)⊗C2 C (2)⊗ C (1))⊗C3 (L⊗M ⊗N)
∼= C (3)⊗C3 (L⊗M ⊗N).

The symmetric argument shows that this is also isomorphic to L £ (M £ N). In
view of the generality of Proposition 8.3, the argument iterates to prove that all
j-fold iterated £ products are canonically isomorphic to

C (j)⊗Cj M1 ⊗ · · · ⊗Mj .

When all Mi = C, this gives an isomorphism C�j ∼= C (j) of (C,Cj)-bimodules.
Finally, if t : U j → U is an isomorphism, then composition with t and t−1 give
inverse homeomorphisms of left L (1)-spaces between L (j) and L (1). On passage
to chains, these give rise to an isomorphism of left C-modules between C (j) and
C. ¤

Proof of Theorem 1.7. The argument is the exact algebraic analog of one first used
in topology in [46]. It is similar to, but simpler than, the arguments of II§§4,5. We
assume given any two E∞ operads C and C ′, and we must construct a C ′-algebra
from a C -algebra. The argument works equally well for A∞ and E∞ algebras.
There is an evident notion of the tensor product of operads, with

(C ⊗ C ′)(j) = C (j)⊗ C (j′).

We abbreviate C ′′ = C ⊗ C ′. The augmentations of C and C ′ induce maps of
operads C ′′ → C and C ′′ → C ′, and these in turn induce maps of monads C ′′ → C
and C ′′ → C ′. The maps C ′′K → CK and C ′′K → C ′K are homotopy equiva-
lences for all k-modules K since all three operads are E∞ operads. Moreover, the
composite of CC ′′ → CC and the product of C is a right action of the monad C ′′

on the functor C, and C is a (C, C ′′)-bifunctor in the sense of II.4.1. Similarly, if
A is a C-algebra, then A is a C ′′-algebra by pullback along C ′′ → C. Now recall
the two-sided bar construction

B(F, C, A) = C#B∗(F, C, A)

from II.4.1. Here C# is the totalization functor from simplicial k-modules to k-
modules discussed in II§5. By II.4.2 and the naturality properties of this construc-
tion, for a C-algebra A we have evident natural maps of C ′′-algebras

A ←− B(C, C,A) ←− B(C ′′, C ′′, A) −→ B(C ′, C ′′, A),

all of which are quasi-isomorphisms. We let V A be the C ′-algebra B(C ′, C ′′, A)
and have the conclusion of Theorem 1.7 on the algebra level. The argument on the
module level is the same, using the monads of I§4. ¤

Finally, we return to the linear isometries operad and prove Theorem 2.9.
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Proof of Theorem 2.9. For definiteness, we work with E∞ algebras. The proof for
A∞ algebras is similar but simpler. We abbreviate BA = B(C, C,A), and we have
a natural map of E∞ algebras ε : BA → A that is a homotopy equivalence of
k-algebras. We also have the monad C[1] of I.4.3 such that a C[1]-algebra is a
C-algebra A together with an A-module M . We write

(BA; BM) = B(C[1], C[1], (A;M)).

More explicitly, we apply the totalization functor C# to both coordinates of the
pair of simplicial k-modules B∗(C[1], C[1], (A;M)); the first coordinate is BA and
we call the second coordinate BM . Then BM is a BA-module, and we have a map
of BA-modules ε : BM → M that is a homotopy equivalence of k-modules. We
must construct quasi-isomorphisms of k-modules

BA⊗BA′ −→ BA ¡ BA′ and BA⊗BM −→ BA C BM.

We give the argument for the first of these; the argument for the second is precisely
similar. Clearly BA⊗BA′ is constructed from constituent k-modules

(C (i)⊗ (CpA)i)⊗ (C (j)⊗ (CqA′)j) ∼= (C (i)⊗ C (j))⊗ ((CpA)i)⊗ (CqA′)j)

by passing to orbits over the action of Σi × Σj , passing to direct sums over i ≥ 0
and j ≥ 0, and then totalizing over p, q, and the internal degree; BA ¡ BA′ is
constructed similarly from constituent k-modules

(C (2)⊗C2 (C (i)⊗ (CpA)i)⊗ (C (j)⊗ (CqA′)j) ∼= C (i + j)⊗ ((CpA)i)⊗ (CqA′)j).

Here we have used Proposition 8.2 when i ≥ 1 and j ≥ 1; Lemma 2.7 and the
convention C (0)⊗X0 = k give the summands with i = 0 or j = 0. By choosing a
degree cycle x ∈ C (2) such that ε(x) = 1 and using the operad structural maps γ,
we obtain a composite (Σi × Σj)-map

C (i)⊗ C (j) −→ C (2)⊗ C (i)⊗ C (j) −→ C (i + j)

for each i and j. Since C is an E∞ operad, this is a map between free (Σi × Σj)-
resolutions of k and is thus a (Σi × Σj)-equivariant homotopy equivalence. Upon
tensoring over Σi × Σj with (CpA)i ⊗ (CqA′)j and totalizing, these maps induce
a well-defined map κ : BA ⊗ BA′ −→ BA ¡ BA′. We may filter both sides so
that the resulting differential on E1 comes from the differentials on our resolutions.
The resulting map of E2-terms is an isomorphism, and κ is therefore a quasi-
isomorphism. ¤
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