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Introduction

The study of symmetries on spaces has always been a major part of algebraic

and geometric topology, but the systematic homotopical study of group actions is

relatively recent. The last decade has seen a great deal of activity in this area.

After giving a brief sketch of the basic concepts of space level equivariant homo-

topy theory, we shall give an introduction to the basic ideas and constructions of

spectrum level equivariant homotopy theory. We then illustrate ideas by explain-

ing the fundamental localization and completion theorems that relate equivariant

to nonequivariant homology and cohomology.

The first such result was the Atiyah-Segal completion theorem which, in its

simplest terms, states that the completion of the complex representation ring R(G)

at its augmentation ideal I is isomorphic to the K-theory of the classifying space

BG: R(G)∧I
∼= K(BG). A more recent homological analogue of this result describes
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the K-homology of BG. As we shall see, this can best be viewed as a localization

theorem. These are both consequences of equivariant Bott periodicity, although

full understanding depends on the localization away from I and the completion at

I of the spectrum KG that represents equivariant K-theory. We shall explain a still

more recent result which states that a similar analysis works to give the same kind

of localization and completion theorems for the spectrum MUG that represents a

stabilized version of equivariant complex cobordism and for all module spectra over

MUG. We shall also say a little about equivariant cohomotopy, a theory for which

the cohomological completion theorem is true, by Carlsson’s proof of the Segal

conjecture, but the homological localization theorem is false.

1. Equivariant homotopy

We shall not give a systematic exposition of equivariant homotopy theory. There

are several good books on the subject, such as [12] and [17], and a much more thor-

ough expository account will be given in [53]. Some other expository articles are

[49, 1]. We aim merely to introduce ideas, fix notations, and establish enough back-

ground in space level equivariant homotopy theory to make sense of the spectrum

level counterpart that we will focus on later.

The group.

We shall restrict our attention to compact Lie groups G, although the basic

unstable homotopy theory works equally well for general topological groups. To

retain the homeomorphism between orbits and homogenous spaces we shall always

restrict attention to closed subgroups.

The class of compact Lie groups has two big advantages: the subgroup struc-

ture is reasonably simple (‘nearby subgroups are conjugate’), and there are enough

representations (any sufficiently nice G-space embeds in one). We shall sometimes

restrict to finite groups to avoid technicalities, but most of what we say applies in

technically modified form to general compact Lie groups. The reader unused to

equivariant topology may find it helpful to concentrate on the case when G is a

group of order 2. Even this simple case well illustrates most of the basic ideas.

G-spaces and G-maps

All of our spaces are to be compactly generated and weak Hausdorff.

A G-space is a topological space X with a continuous left action by G; a based

G-space is a G-space together with a basepoint fixed by G. These will be our basic

objects. We frequently want to convert unbased G-spaces Y into based ones, and

we do so by taking the topological sum of Y and a G-fixed basepoint; we denote

the result by Y+.
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We give the product X × Y of G-spaces the diagonal action, and similarly for

the smash product X ∧ Y of based G-spaces. We use the notation map(X, Y ) for

the G-space of continuous maps from X to Y ; G acts via (γf)(x) = γf(γ−1x); we

let F (X, Y ) denote the subspace of based maps. The usual adjunctions apply.

A map of based G-spaces is a continuous basepoint preserving function which

commutes with the action of G. A homotopy of based G-maps f0 ≃ f1 is a G-map

X ∧ I+ −→ Y whose composites with the inclusions of X ∧ {0}+ and X ∧ {1}+ are

f0 and f1. We use the notation [X, Y ]G to denote the set of homotopy classes of

based G-maps X −→ Y .

Cells, spheres, and G-CW complexes

We shall be much concerned with cells and spheres. There are two important

sorts of these, arising from homogeneous spaces and from representations, and the

interplay between the two is fundamental to the subject.

Given any closed subgroup H of G we may form the homogeneous space G/H and

its based counterpart, G/H+. These are treated as 0-dimensional cells, and they

play a role in equivariant theory analogous to the role of a point in nonequivariant

theory. We form the n-dimensional cells from these homogeneous spaces. In the

unbased context, the cell-sphere pair is

(G/H ×Dn, G/H × Sn−1),

and in the based context

(G/H+ ∧Dn, G/H+ ∧ Sn−1).

We shall always use different notation for different actions, so that when we write

Dn and Sn we understand that G acts trivially.

Starting from these cell-sphere pairs, we form G-CW complexes exactly as non-

equivariant CW-complexes are formed from the cell-sphere pairs (Dn, Sn−1). The

usual theorems transcribe directly to the equivariant setting, and we shall say more

about them below. Smooth compact G-manifolds are triangulable as finite G-CW

complexes, but topological G-manifolds need not be.

We also have balls and spheres formed from orthogonal representations V of G.

We shall be concerned especially with the one-point compactification SV of V , with

∞ as the basepoint; note in particular that the usual convention that n denotes the

trivial n-dimensional real representation gives Sn the usual meaning. We may also

form the unit disc

D(V ) = {v ∈ V | ‖v‖ ≤ 1},

and the unit sphere

S(V ) = {v ∈ V | ‖v‖ = 1};
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we think of them as unbased G-spaces. There is a homeomorphism SV ∼= D(V )/S(V ).

The resulting cofibre sequence

S(V )+ −→ D(V )+ −→ SV

can be very useful in inductive arguments since there is an equivariant homotopy

equivalence D(V )+ ≃ S0.

Fixed points and quotients.

There are a number of ways to increase or decrease the size of the ambient group.

If f : G1 −→ G2 is a group homomorphism we may regard a G2-space Y as a G1-

space f∗Y by pullback along f , and we usually omit f∗ when the context makes it

clear. The most common cases of this are when G1 is a subgroup of G2 and when

G2 is a quotient of G1; in particular every space may be regarded as a G-fixed

G-space.

The most important construction on G-spaces is passage to fixed points:

XH = {x ∈ X | hx = x for all h ∈ H}.

For example, F (X, Y )G is the space of based G-maps X −→ Y . It is easy to check

that the fixed point spaces for the conjugates of H are all homeomorphic; indeed,

multiplication by g induces a homeomorphism g : Xg−1Hg −→ XH . In particular

XH is invariant under the action of the normalizer NG(H), and hence it has a

natural action of the Weyl group WG(H) = NG(H)/H . Passage to H-fixed point

spaces is a functor from G-spaces to WG(H)-spaces.

Dually, we have the quotient space X/H of X by H . This is actually a standard

abuse of notation, since H\X would be more consistent logically; for example,

we are using G/H to denote the quotient of G by its right action by H . Again,

multiplication by g gives a homeomorphism X/g−1Hg −→ X/H . Thus X/H also

has a natural action of the Weyl group, and passage to the quotient by H gives a

functor from G-spaces to WG(H)-spaces.

If N is a normal subgroup of G, then it is easy to verify that passage to N -

fixed points is right adjoint to pullback along G −→ G/N and that passage to the

quotient by N is left adjoint to this pullback.

Lemma 1.1. For G-spaces X and G/N -spaces Y , there are natural homeomor-

phisms

G-map(Y, X) ∼= G/N -map(Y, XN ) and G/N -map(X/N, Y ) ∼= G-map(X, Y ),

and similarly in the based context.

The particular case

G-map(G/H, X) ∼= XH

helps explains the importance of the fixed point functor.
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Isotropy groups and universal spaces.

An unbased G-space is said to be G-free if XH = ∅ whenever H 6= 1. A based

G-space is G-free if XH = ∗ whenever H 6= 1. More generally, for x ∈ X the

isotropy group at x is the stabilizer Gx; given any collection F of subgroups of G,

we say that X is an F -space if Gx ∈ F for every non-basepoint x ∈ X . Thus a

G-space is free if and only if it is a {1}-space. It is usual to think of a G-space as

built up from the G-fixed subspace XG by adding points with successively smaller

and smaller isotropy groups. This gives a stratification in which the pure strata

consist of points with isotropy group in a single conjugacy class.

A collection F of subgroups of G closed under passage to conjugates and sub-

groups is called a family of subgroups. For each family, there is an unbased F -space

EF , required to be of the homotopy type of a G-CW complex, which is universal

in the sense that there is a unique homotopy class of G-maps X −→ EF for any

F -space X of the homotopy type of a G-CW complex. It is characterized by the

fact that the fixed point set (EF)H is contractible for H ∈ F and empty for H 6∈ F .

For example, if F consists of only the trivial group, then E{1} is the universal free

G-space EG, and if F is the family of all subgroups, then EAll = ∗. Another

case of particular interest is the family P of all proper subgroups. If G is finite,

then EP =
⋃

‖≥′ S(‖V), where V is the reduced regular representation of G, and in

general EP = colimV S(V) where V runs over all finite dimensional representations

V of G such that V G = {0}; to be precise, we restrict V to lie in some complete

G-universe (as defined in the next section). Such universal spaces exist for any

family and may be constructed either by killing homotopy groups or by using a

suitable bar construction [20]. In the based case we consider EF+, and a very basic

tool is the isotropy separation cofibering

EF+ −→ S0 −→ ẼF ,

where the first map is obtained from EF −→ ∗ by adding a disjoint basepoint. Note

that the mapping cone ẼF may alternatively be described as the join S0 ∗ EF ; it

is F -contractible in the sense that it is H-contractible for every H ∈ F . We think

of this cofibering as separating a space X into the F -space EF+ ∧ X and the

F -contractible space ẼF ∧X .

Induced and coinduced spaces.

We can use the fact that G is both a left and a right G-space to define induced

and coinduced G-space functors. If H is a subgroup of G and Y is an H-space, we

define the induced G-space G×H Y to be the quotient of G×Y by the equivalence

relation (gh, y) ∼ (g, hy) for g ∈ G, y ∈ Y , and h ∈ H ; the G-action is defined by

γ[g, y] = [γg, y].
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Similarly the coinduced G-space mapH(G, Y ) is the subspace of map(G, Y ) con-

sisting of those maps f : G −→ Y such that f(gh−1) = hf(g) for h ∈ H and

g ∈ G; the G-action is defined by (γf)(g) = f(γ−1g). When these constructions

are applied to a G-space, the actions may be untwisted, and it is well worth writing

down the particular homeomorphisms.

Lemma 1.2. If X is a G-space then there are homeomorphisms

G×H X ∼= G/H ×X and mapH(G, X) ∼= map(G/H, X),

natural for G-maps of X.

Proof. In the first case, the maps are [g, x] 7−→ (gH, gx) and [g, g−1x]←− (gH, x).

In the second case, f 7−→ a(f), where a(f)(gH) = gf(g), and b(f ′) ←− f ′, where

b(f ′)(g) = g−1f ′(gH). We encourage the reader to make the necessary verifications.

�

The induced space functor is left adjoint to the forgetful functor and the coin-

duced space functor is right adjoint to it.

Proposition 1.3. For G-spaces X and H-spaces Y , there are natural homeomor-

phisms

G-map(G×HY, X) = H-map(Y, X) and H-map(X, Y ) = G-map(X,mapH(G, Y )).

Proof. The unit and counit for the first adjunction are the H-map η : Y −→ G×H Y

given by y 7−→ [e, y] and the G-map ε : G ×H X −→ X given by [g, x] 7−→ gx.

For the second, they are the G-map η : X −→ mapH(G, X) that sends x to the

constant function at x and the H-map ε : mapH(G, Y ) −→ Y given by f 7−→ f(e).

We encourage the reader to make the necessary verifications. �

Analogous constructions and homeomorphisms apply in the based case. If Y is

a based H-space, it is usual to write G+ ∧H Y or G ⋉H Y for the induced based

G-space, and FH(G+, Y ) or FH [G, Y ) for the coinduced based G-space.

Homotopy groups, weak equivalences, and the G-Whitehead theorem

One combination of the above adjunctions is particularly important. To define

H-equivariant homotopy groups, we might wish to define them G-equivariantly

as [G/H+ ∧ Sn, ·]G, or we might wish to define them H-equivariantly as [Sn, ·]H ;

fortunately these agree, and we define

πH
n (X) = [G/H+ ∧ Sn, X ]G ∼= [Sn, X ]H ∼= [Sn, XH ].

Using the second isomorphism, we may apply finiteness results from non-equivariant

homotopy theory. For example, if X and Y are finite G-CW complexes and double

suspensions, then [X, Y ]G is a finitely generated abelian group.
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A G-map f : X −→ Y is a weak G-equivalence if fH : XH −→ Y H is a weak

equivalence for all closed subgroups H . As in the non-equivariant case one proves

that any G-CW pair has the homotopy extension and lifting property and deduces

that a weak equivalence induces a bijection of [T, ·]G for every G-CW complex T .

The G-Whitehead theorem follows: a weak G-equivalence of G-CW complexes is

a G-homotopy equivalence. Similarly, the cellular approximation theorem holds:

any map between G-CW complexes is homotopic to a cellular map, and any two

homotopic cellular maps are cellularly homotopic. Also, by the usual construction,

any G-space is weakly equivalent to a G-CW complex.

The generalization to families F is often useful. We say that a G-map f is a

weak F -equivalence if fH is a weak equivalence for H ∈ F ; the principal example

of an F -equivalence is the map EF+ ∧ X −→ X . A based F -CW complex is a

G-CW complex whose cells are all of the form G/H+ ∧Sn for H ∈ F ; note that an

F -CW complex is an F -space. The usual proofs show that a weak F -equivalence

induces a bijection of [T, ·]G for every F -CW complex T and that any G-space is

F -equivalent to an F -CW complex.

To state a quantitative version of the G-Whitehead theorem, we consider func-

tions n on the set of subgroups of G with values in the set {−1, 0, 1, 2, 3, . . . ,∞}

that are constant on conjugacy classes. For example if X is a G-space, we can view

dimension and connectivity as giving such functions by defining dim(X)(H) =

dim(XH) and conn(X)(H) to be the connectivity of XH . The value −1 allows

the possibility of empty or of non-connected fixed point spaces. Now the standard

proof gives the following result.

Theorem 1.4. If T is a G-CW complex and f : X −→ Y is n-connected, then the

induced map

f∗ : [T, X ]G −→ [T, Y ]G

is surjective if dim(T H) ≤ n(H) for all H ⊆ G, and bijective if dim(T H) ≤

n(H)− 1.

The G-Freudenthal suspension theorem

In the stable world, we shall want to desuspend by spheres of representations.

Accordingly, for any orthogonal representation V , we define the V th suspension

functor by ΣV X = X ∧ SV . This gives a map

ΣV : [X, Y ]G −→ [ΣV X, ΣV Y ]G.

We shall be content to give the version of the Freudenthal Theorem, due to Hauschild

[36], that gives conditions under which this map is an isomorphism. However, we

note in passing that the presence of SV gives the codomain a richer algebraic struc-

ture than the domain, and it is natural to seek a theorem stating that ΣV may
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be identified with an algebraic enrichment of the domain even when it is not an

isomorphism. L.G.Lewis [38] has proved versions of the Freudenthal Theorem along

these lines when X is a sphere.

Just as nonequivariantly, we approach the Freudenthal Theorem by studying the

adjoint map η : Y −→ ΩV ΣV Y .

Theorem 1.5. The map η : Y −→ ΩV ΣV Y is an n-equivalence if n satisfies the

following two conditions:

(1) n(H) ≤ 2conn(Y H) + 1 for all subgroups H with V H 6= 0, and

(2) n(H) ≤ conn(Y K) for all pairs of subgroups K ⊆ H with V K 6= V H .

Therefore the suspension map

ΣV : [X, Y ]G −→ [ΣV X, ΣV Y ]G

is surjective if dim(XH) ≤ n(H) for all H, and bijective if dim(XH) ≤ n(H)− 1.

This is proven by reduction to the non-equivariant case and obstruction theory.

When G is finite and X is finite dimensional, it follows that if we suspend by a suffi-

ciently large representation, then all subsequent suspensions will be isomorphisms.

Corollary 1.6. If G is finite and X is finite dimensional, there is a representation

V0 = V0(X) such that, for any representation V ,

ΣV : [ΣV0X, ΣV0Y ]G
∼=−→ [ΣV0⊕V X, ΣV0⊕V Y ]G

is an isomorphism.

If X and Y are finite G-CW complexes, this stable value [ΣV0X, ΣV0Y ]G is a

finitely generated abelian group. If G is a compact Lie group and X has infinite

isotropy groups, there is usually no representation V0 for which all suspensions

ΣV are isomorphisms, and the colimit of the [ΣV X, ΣV Y ]G is usually not finitely

generated.

The direct limit colimV [SV , SV ]G is a ring under composition, and it turns out

to be isomorphic to the Burnside ring A(G). When G is finite, A(G) is defined to

be the Grothendieck ring associated to the semi-ring of finite G-sets, and it is the

free Abelian group with one generator [G/H ] for each conjugacy class of subgroups

of G. When G is a general compact Lie group, A(G) is more complicated to define,

but it turns out to be a free Abelian group, usually of infinite rank, with one basis

element [G/H ] for each conjugacy class of subgroups H such that WGH is finite.

Eilenberg-MacLane G-spaces and Postnikov towers

The homotopy groups πH
n (X) of a G-space X are related as H varies, and we

must take all of them into account to develop obstruction theory. Let O denote

the orbit category of G-spaces G/H and G-maps between them, and let hO be its
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homotopy category. By our first description of homotopy groups, we see that the

definition πn(X)(G/H) = πH
n (X) gives a set-valued contravariant functor on hO; it

is group-valued if n = 1 and Abelian group-valued if n ≥ 2. An Eilenberg-MacLane

G-space K(π, n) associated to such a contravariant functor π on hO is a G-space

such that πn(K(π, n)) = π and all other homotopy groups of K(π, n) are zero.

Either by killing homotopy groups or by use of a bar construction [20], one sees

that Eilenberg-MacLane G-spaces exist for all π and n.

Recall that a space X is simple if it is path connected and if π1(X) is Abelian

and acts trivially on πn(X) for n ≥ 2. More generally, X is nilpotent if it is path

connected and if π1(X) is nilpotent and acts nilpotently on πn(X) for n ≥ 2. A

G-space X is is said to be simple or nilpotent if each XH is simple or nilpotent.

Exactly as in the nonequivariant situation, simple G-spaces are weakly equivalent

to inverse limits of simple Postnikov towers and nilpotent G-spaces are weakly

equivalent to inverse limits of nilpotent Postnikov towers.

Ordinary cohomology theory; localization and completion

We define a “coefficient system” M to be a contravariant Abelian group-valued

functor on hO. There are associated cohomology theories on pairs of G-spaces, de-

noted H∗
G(X, A; M). They satisfy and are characterized by the equivariant versions

of the usual axioms: homotopy, excision, exactness, wedge, weak equivalence, and

dimension; the last states that

H∗
G(G/H ; M) ∼= M(G/H),

functorially on hO. This is a manifestation of the philosophy that orbits play the

role of points. There are also homology theories, denoted HG
∗ (X, A; N), but these

must be defined using covariant functors N : hO −→ A⌊.

By the weak equivalence axiom, it suffices to define these theories on G-CW

pairs. The cohomology of such a pair (X, A) is the reduced cohomology of X/A, so

it suffices to deal with G-CW complexes X . These have cellular chain coefficient

systems that are specified by

Cn(X)(G/H) = Hn((Xn)H , (Xn−1)H ; Z);

the differential dn is the connecting homomorphism of the triple

((Xn)H , (Xn−1)H , (Xn−2)H).

The homology and cohomology groups of X are then calculated from chain and

cochain complexes of Abelian groups given by

C∗(X)⊗hO N and HomhO(C∗(X), M).

Here HomhO(Cn(X), M) is the group of natural transformations Cn(X) −→ M ,

and the tensor product over hO is described categorically as a coend of functors.
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Alternatively, for based G-CW complexes X , one has the equivalent description

of reduced cohomology as

H̃n(X ; M) = [X, K(M, n)]G.

¿From here, it is an exercise to transcribe classical obstruction theory to the equi-

variant context. This was first done by Bredon [11], who introduced these coho-

mology theories.

One can localize or complete nilpotent G-spaces at a set of primes. One first

works out the construction on K(π, n)’s, and then proceeds by induction up the

Postnikov tower. See [55, 57]. When G is finite, one can algebraicize equivariant

rational homotopy theory, by analogy with the nonequivariant theory. See [63].

Bredon cohomology is the basic tool in these papers.

While the theory we have described looks just like nonequivariant theory, we

emphasize that it behaves very differently calculationally. For example, a central

calculational theorem in nonequivariant homotopy theory states that the rational-

ization of a connected Hopf space splits, up to homotopy, as a product of Eilenberg-

MacLane spaces. The equivariant analogue is false [64].

2. The equivariant stable homotopy category

The entire foundational framework described in [22] works equally well in the

presence of a compact Lie group G acting on all objects in sight. We here run

through the equivariant version of [22], with emphasis on the new equivariant phe-

nomena that appear. From both the theoretical and calculational standpoint, the

main new feature is that the equivariant analogs of spheres are the spheres associ-

ated to representations of G, so that there is a rich interplay between the homotopy

theory and representation theory of G. The original sources for most of this mate-

rial are the rather encyclopedic [42] and the nonequivariantly written [22]; a more

leisurely and readable exposition will appear in [53].

By a G-universe U , we understand a countably infinite dimensional real inner

product space with an action of G through linear isometries. We require that U

be the sum of countably many copies of each of a set of representations of G and

that it contain a trivial representation and thus a copy of R∞. We say that U

is complete if it contains a copy of every irreducible representation of G. At the

opposite extreme, we say that U is G-fixed if UG = U . When G is finite, the sum of

countably many copies of the regular representation RG gives a canonical complete

universe. We refer to a finite dimensional sub G-inner product space of U as an

indexing space.
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A G-spectrum indexed on U consists of a based G-space EV for each indexing

space V in U together with a transitive system of based G-homeomorphisms

σ̃ : EV
∼=
−→ΩW−V EW

for V ⊂ W . Here ΩV X = F (SV , X) and W − V is the orthogonal complement of

V in W . A map of G-spectra f : E → E′ is a collection of maps of based G-spaces

fV : EV → E′V which commute with the respective structure maps.

We obtain the category GS = GSU of G-spectra indexed on U . Dropping the

requirement that the maps σ̃V,W be homeomorphisms, we obtain the notion of a

G-prespectrum and the category GP = GPU of G-prespectra indexed on U . The

forgetful functor ℓ : GS −→ GP has a left adjoint L. When the structure maps σ̃

are inclusions, (LE)(V ) is just the union of the G-spaces ΩW−V EW for V ⊂ W .

We write σ : ΣW−V EV −→ EW for the adjoint structure maps.

Examples 2.1. Let X be a based G-space. The suspension G-prespectrum Π∞X

has V th space ΣV X , and the suspension G-spectrum of X is Σ∞X = LΠ∞X . Let

QX = ∪ΩV ΣV X , where the union is taken over the indexing spaces V ⊂ U ; a more

accurate notation would be QUX . Then (Σ∞X)(V ) = Q(ΣV X). The functor Σ∞

is left adjoint to the zeroth space functor. More generally, for an indexing space

Z ⊂ U , let Π∞
Z X have V th space ΣV −ZX if Z ⊂ V and a point otherwise and

define Σ∞
Z X = LΠ∞

Z X . The “shift desuspension” functor Σ∞
Z is left adjoint to the

Zth space functor from G-spectra to G-spaces.

For a G-space X and G-spectrum E, we define G-spectra E ∧ X and F (X, E)

exactly as in the non-equivariant situation. There result homeomorphisms

GS(E ∧ X , E ′) ∼= GT (X ,S(E , E ′)) ∼= GS(E ,F(X , E ′)),

where GT is the category of based G-spaces.

Proposition 2.2. The category GS is complete and cocomplete.

A homotopy between maps E −→ F of G-spectra is a map E ∧ I+ −→ F . Let

[E, F ]G denote the set of homotopy classes of maps E −→ F . For example, if X

and Y are based G-spaces and X is compact,then

[Σ∞X, Σ∞Y ]G ∼= colimV [ΣV X, ΣV Y ]G.

Fix a copy of R∞ in U and write Σ∞
n = Σ∞

R⋉ . For n ≥ 0, the sphere G-spectrum

Sn is Σ∞Sn. For n > 0, the sphere G-spectrum S−n is Σ∞
n S0. We shall often

write SG rather than S0 for the zero sphere G-spectrum. Remembering that orbits

are the analogues of points, we think of the G-spectra G/H+ ∧ Sn as generalized

spheres. Define the homotopy groups of a G-spectrum E by

πH
n (E) = [G/H+ ∧ Sn, E]G.
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A map f : E −→ F of G-spectra is said to be a weak equivalence if f∗ : πH
∗ (E) −→

πH
∗ (F ) is an isomorphism for all H . Here serious equivariant considerations enter

for the first time.

Theorem 2.3. A map f : E −→ F of G-spectra is a weak equivalence if and only if

fV : EV −→ FV is a weak equivalence of G-spaces for all indexing spaces V ⊂ U .

This is obvious when the universe U is trivial, but it is far from obvious in general.

To see that a weak equivalence of G-spectra is a spacewise weak equivalence, one

sets up an inductive scheme and uses the fact that spheres SV are triangulable as

G-CW complexes [42, I.7.12]

The equivariant stable homotopy category h̄GS is constructed from the homo-

topy category hGS of G-spectra by adjoining formal inverses to the weak equiv-

alences, a process that is made rigorous by G-CW approximation. The theory of

G-CW spectra is developed by taking the sphere G-spectra as the domains of at-

taching maps of cells G/H+ ∧ CSn, where CE = E ∧ I [42, I§5]. This works just

as well equivariantly as nonequivariantly, and we arrive at the following theorems.

Theorem 2.4 (Whitehead). If E is a G-CW spectrum and f : F −→ F ′ is a

weak equivalence of G-spectra, then f∗ : [E, F ]G −→ [E, F ′]G is an isomorphism.

Therefore a weak equivalence between G-CW spectra is a homotopy equivalence.

Theorem 2.5 (Cellular approximation). Let A be a subcomplex of a G-CW spec-

trum E, let F be a G-CW spectrum, and let f : E −→ F be a map whose restriction

to A is cellular. Then f is homotopic relative to A to a cellular map. Therefore

any map E −→ F is homotopic to a cellular map, and any two homotopic cellular

maps are cellularly homotopic.

Theorem 2.6 (Approximation by G-CW spectra). For a G-spectrum E, there is

a G-CW spectrum ΓE and a weak equivalence γ : ΓE −→ E. On the homotopy

category hGS, Γ is a functor such that γ is natural.

Thus the stable category h̄GS is equivalent to the homotopy category of G-CW

spectra. As in the nonequivariant context, we have special kinds of G-prespectra

that lead to a category of G-spectra on which the smash product has good homo-

topical properties. Of course, we define cofibrations of G-spaces via the homotopy

extension property in the category of G-spaces. For example, X is G-LEC if its

diagonal map is a G-cofibration.

Definition 2.7. A G-prespectrum D is said to be

(i) Σ-cofibrant if each σ : ΣW−V DV → DW is a based G-cofibration.

(iii) G-CW if it is Σ-cofibrant and each DV is G-LEC and has the homotopy

type of a G-CW complex.
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A G-spectrum E is said to be Σ-cofibrant if it is isomorphic to LD for some Σ-

cofibrant G-prespectrum D; E is said to be tame if it is of the homotopy type of a

Σ-cofibrant G-spectrum.

There is no sensible counterpart to the nonequivariant notion of a strict CW

prespectrum for general compact Lie groups, and any such notion is clumsy at best

even for finite groups. The next few results are restated from [22]. Their proofs are

the same equivariantly as non-equivariantly.

Theorem 2.8. If D is a G-CW prespectrum, then LD has the homotopy type of a

G-CW spectrum. If E is a G-CW spectrum, then each space EV has the homotopy

type of a G-CW complex and E is homotopy equivalent to LD for some G-CW

prespectrum D. Thus a G-spectrum has the homotopy type of a G-CW spectrum if

and only if it has the homotopy type of LD for some G-CW prespectrum D.

In particular, G-spectra of the homotopy types of G-CW spectra are tame.

Proposition 2.9. If E = LD, where D is a Σ-cofibrant G-prespectrum, then

E ∼= colimV Σ∞
V DV,

where the colimit is computed as the prespectrum level colimit of the maps

Σ∞
W σ : Σ∞

V DV ∼= Σ∞
W ΣW−V DV −→ Σ∞

W DW.

That is, the prespectrum level colimit is a G-spectrum that is isomorphic to E. The

maps of the colimit system are shift desuspensions of based G-cofibrations.

Proposition 2.10. There is a functor K : GPU −→ GPU such that KD is Σ-

cofibrant for any G-prespectrum D, and there is a natural spacewise weak equiva-

lence of G-prespectra KD −→ D. On G-spectra E, define KE = LKℓE. Then

there is a natural weak equivalence of G-spectra KE −→ E.

For G-universes U and U ′, there is an associative and commutative smash prod-

uct

GSU × GSU ′ → GS(U ⊕ U ′).

It is obtained by applying the spectrification functor L to the prespectrum level

definition

(E ∧ E′)(V ⊕ V ′) = EV ∧E′V ′.

We internalize by use of twisted half-smash products. For G-universes U and

U ′, we have a G-space I(U ,U ′) of linear isometries U −→ U ′, with G acting by

conjugation. For a G-map α : A→ I(U ,U ′), the twisted half-smash product assigns

a G-spectrum A ⋉ E indexed on U ′ to a G-spectrum E indexed on U . While the

following result is proven the same way equivariantly as nonequivariantly, it has
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different content: for a given V ⊂ U , there may well be no V ′ ⊂ U ′ that is

isomorphic to V .

Proposition 2.11. For a G-map A −→ I(U ,U ′) and an isomorphism V ∼= V ′,

where V ⊂ U and V ′ ⊂ U ′, there is an isomorphism of G-spectra

A ⋉ Σ∞
V X ∼= A+ ∧ Σ∞

V ′X

that is natural in G-spaces A over I(U ,U ′) and based G-spaces X.

Propositions 2.9 and 2.11 easily imply the following fundamental technical result.

Theorem 2.12. Let E ∈ GSU be tame and let A be a G-space over I(U ,U ′), where

the universe U ′ contains a copy of every indexing space V ⊂ U . If φ : A′ −→ A is

a homotopy equivalence, then φ⋉ id : A′ ⋉ E −→ A⋉ E is a homotopy equivalence.

If A is a G-CW complex and E is a G-CW spectrum, then A ⋉ E is a G-CW

spectrum when G is finite and has the homotopy type of a G-CW spectrum in

general, hence this has the following consequence.

Corollary 2.13. Let E ∈ GSU have the homotopy type of a G-CW spectrum and

let A be a G-space over I(U ,U ′) that has the homotopy type of a G-CW complex.

Then A ⋉ E has the homotopy type of a G-CW spectrum.

We define the equivariant linear isometries operad L by letting L(|) be the G-

space I(U |,U), exactly as in [22, 2.4]. A G-linear isometry f : U j → U defines a

G-map {∗} −→ L(|) and thus a functor f∗ that sends G-spectra indexed on U j to

G-spectra indexed on U . Applied to a j-fold external smash product E1 ∧ · · · ∧Ej ,

there results an internal smash product f∗(E1 ∧ · · · ∧ Ej).

Theorem 2.14. Let GS⊔ ⊂ GS be the full subcategory of tame G-spectra and let

hGS⊔ be its homotopy category. On GS⊔, the internal smash products f∗(E ∧ E′)

determined by varying f : U2 → U are canonically homotopy equivalent, and hGS⊔

is symmetric monoidal under the internal smash product. For based G-spaces X and

tame G-spectra E, there is a natural homotopy equivalence E ∧X ≃ f∗(E ∧Σ∞X).

We can define ΣV E = E ∧ SV for any representation V . This functor is left

adjoint to the loop functor ΩV given by ΩV E = F (SV , E). For V ⊂ U , and only

for such V , we also have the shift desuspension functor Σ∞
V and therefore a (−V )-

sphere S−V = Σ∞
V S0. Now the proof of [22, 2.6] applies to show that we have

arrived at a stable situation relative to U .

Theorem 2.15. For V ⊂ U , the suspension functor ΣV : hGS⊔ −→ 〈GS⊔ is

an equivalence of categories with inverse given by smashing with S−V. A cofibre
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sequence E
f
−→E′ −→ Cf in GS⊔ gives rise to a long exact sequence of homotopy

groups

· · · −→ πH
q (E) −→ πH

q (E′) −→ πH
q (Cf) −→ πH

q−1(E) −→ · · · .

¿From here, the theory of L-spectra, S-modules, S-algebras, and modules over

S-algebras that was summarized in [22, §§3-7] applies verbatim equivariantly, with

one striking exception: duality theory only works when one restricts to cell R-

modules that are built up out of sphere R-modules G/H+ ∧ Sn
R such that G/H

embeds as a sub G-space of U . We shall focus on commutative SG-algebras later,

but we must first explain the exception just noted, along with various other matters

where considerations of equivariance are central to the theory.

3. Homology and cohomology theories and fixed point spectra

In the previous section, the G-universe U was arbitrary, and we saw that the

formal development of the stable category h̄GSU worked quite generally. However,

there is very different content to the theory depending on the choice of universe.

We focus attention on a complete G-universe U and its fixed point universe UG.

We call G-spectra indexed on UG “naive G-spectra” since these are just spectra

with G-action in the most naive sense. Examples include nonequivariant spectra

regarded as G-spectra with trivial action. Genuine G-spectra are those indexed

on U , and we refer to them simply as G-spectra. Their structure encodes the

relationship between homotopy theory and representation theory that is essential

for duality theory and most other aspects of equivariant stable homotopy theory.

RO(G)-graded homology and cohomology

Some of this relationship is encoded in the notion of an RO(G)-graded coho-

mology theory, which will play a significant role in our discussion of completion

theorems. To be precise about this, one must remember that virtual representa-

tions are formal differences of isomorphism classes of orthogonal G-modules; we

refer the interested reader to [53] for details and just give the idea here. For a vir-

tual representation ν = W −V , we can form the sphere G-spectrum Sν = ΣW S−V .

We then define the homology and cohomology groups represented by a G-spectrum

E by

EG
ν (X) = [Sν , E ∧X ]G(3.1)

and

Eν
G(X) = [S−ν ∧X, E]G = [S−ν , F (X, E)]G.(3.2)
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If we think just about the Z-graded part of a cohomology theory on G-spaces, then

RO(G)-gradability amounts to the same thing as naturality with respect to stable

G-maps.

Underlying nonequivariant spectra

To relate such theories to nonequivariant theories, let i : UG −→ U be the in-

clusion. We have the forgetful functor i∗ : GSU −→ GSUG specified by i∗E(V ) =

E(i(V )) for V ⊂ UG; that is, we forget about the indexing spaces with non-trivial

G-action. The “underlying nonequivariant spectrum” of E is i∗E with its action

by G ignored. Recall that i∗ has a left adjoint i∗ : GSUG −→ GSU that builds

in non-trivial representations. Using an obvious notation to distinguish suspension

spectrum functors, we have i∗Σ
∞
UGX ∼= Σ∞

U X . These change of universe functors

play a critical role in relating equivariant and nonequivariant phenomena. Since,

with G-actions ignored, the universes are isomorphic, the following result is intu-

itively obvious.

Lemma 3.3. For D ∈ GSUG , the unit G-map η : D −→ i∗i∗D of the (i∗, i
∗)

adjunction is a nonequivariant equivalence. For E ∈ GSU , the counit G-map ε :

i∗i
∗E −→ E is a nonequivariant equivalence.

Fixed point spectra and homology and cohomology

We define the fixed point spectrum DG of a naive G-spectrum D by passing

to fixed points spacewise, DG(V ) = (DV )G. This functor is right adjoint to the

forgetful functor from naive G-spectra to spectra (compare Lemma 1.1):

GSUG(C,D) ∼= SUG(C,DG) for C ∈ SUG and D ∈ GSUG .(3.4)

It is essential that G act trivially on the universe to obtain well-defined structural

homeomorphisms on DG. For E ∈ GSU , we define EG = (i∗E)G. Composing the

(i∗, i
∗)-adjunction with (3.4), we obtain

GSU(〉∗C, E) ∼= SU
G(C, EG) for C ∈ SUG and E ∈ GSU .(3.5)

The sphere G-spectra G/H+ ∧ Sn in GSU are obtained by applying i∗ to the

corresponding sphere G-spectra in GSUG . When we restrict (3.1) and (3.2) to

integer gradings and take H = G, we see that (3.5) implies

EG
n (X) ∼= πn((E ∧X)G)(3.6)

and

En
G(X) ∼= π−n(F (X, E)G).(3.7)

Exactly as in (3.7), naive G-spectra D represent Z-graded cohomology theories on

naive G-spectra, or on G-spaces. In sharp contrast, we cannot represent interesting

homology theories on G-spaces X in the form π∗((D∧X)G) for a naive G-spectrum
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D: smash products of naive G-spectra commute with fixed points, hence such

theories vanish on X/XG. For genuine G-spectra, there is a well-behaved natural

map

EG ∧ (E′)G −→ (E ∧ E′)G,(3.8)

but, even when E′ is replaced by a G-space, it is not an equivalence. Similarly,

there is a natural map

Σ∞(XG) −→ (Σ∞X)G,(3.9)

which, by Theorem 3.10 below, is the inclusion of a wedge summand but not an

equivalence. Again, the fixed point spectra of free G-spectra are non-trivial. We

shall shortly define a different G-fixed point functor that commutes with smash

products and the suspension spectrum functor and which is trivial on free G-spectra.

Fixed point spectra of suspension G-spectra

Because the suspension functor from G-spaces to genuine G-spectra builds in

homotopical information from representations, the fixed point spectra of suspension

G-spectra are richer structures than one might guess. The following important

result of tom Dieck [18] (see also [42, V§11]), gives a precise description.

Theorem 3.10. For based G-CW complexes X, there is a natural equivalence

(Σ∞X)G ≃
∨

(H)

Σ∞(EWH+ ∧WH ΣAd(WH)XH),

where WH = NH/H and Ad(WH) is its adjoint representation; the sum runs over

all conjugacy classes of subgroups H.

Quotient spectra and free G-spectra

Quotient spectra D/G of naive G-spectra are constructed by first passing to

orbits spacewise on the prespectrum level and then applying the functor L from

prespectra to spectra. This orbit spectrum functor is left adjoint to the forgetful

functor to spectra:

SUG(D/G, C) ∼= GSUG(D, C) for C ∈ SUG and D ∈ GSUG .

(3.11)

Commuting left adjoints, we see that (Σ∞X)/G ∼= Σ∞(X/G). There is no useful

quotient functor on genuine G-spectra in general, but there is a suitable substitute

for free G-spectra.

Recall that a based G-space is said to be free if it is free away from its G-fixed

basepoint. A G-spectrum, either naive or genuine, is said to be free if it is equivalent

to a G-CW spectrum built up out of free cells G+ ∧ CSn. The functors

Σ∞ : T −→ GSUG and 〉∗ : GSUG −→ GSU
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carry free G-spaces to free naive G-spectra and free naive G-spectra to free G-

spectra. In all three categories, X is homotopy equivalent to a free object if and

only if the canonical G-map EG+ ∧X −→ X is an equivalence. A free G-spectrum

E is equivalent to i∗D for a free naive G-spectrum D, unique up to equivalence;

the orbit spectrum D/G is the appropriate substitute for E/G. A useful mnemonic

slogan is that “free G-spectra live in the G-fixed universe”. For free naive G-spectra

D, it is clear that DG = ∗. However, this is false for free genuine G-spectra. For

example, Theorem 3.10 specializes to give that (Σ∞X)G ≃ (ΣAd(G)X)/G if X is a

free G-space. Thus the fixed point functor on free G-spectra has the character of a

quotient.

More generally, for a family F , we say that a G-spectrum E is F -free, or is an

F -spectrum, if E is equivalent to a G-CW spectrum all of whose cells are of orbit

type in F . Thus free G-spectra are {1}-free. We say that a map f : D −→ E is an

F -equivalence if fH : DH −→ EH is an equivalence for all H ∈ F or, equivalently

by the Whitehead theorem, if f is an H-equivalence for all H ∈ F .

Split G-spectra

It is fundamental to the passage back and forth between equivariant and nonequiv-

ariant phenomena to calculate the equivariant cohomology of free G-spectra in

terms of the nonequivariant cohomology of orbit spectra. To explain this, we re-

quire the subtle and important notion of a “split G-spectrum”.

Definition 3.12. A naive G-spectrum D is said to be split if there is a nonequiv-

ariant map of spectra ζ : D −→ DG whose composite with the inclusion of DG in

D is homotopic to the identity. A genuine G-spectrum E is said to be split if i∗E

is split.

The K-theory G-spectra KG and KOG are split. Intuitively, the splitting is

obtained by giving nonequivariant bundles trivial G-action. Similarly, equivariant

Thom spectra are split. The naive Eilenberg-MacLane G-spectrum HM that repre-

sents Bredon cohomology with coefficients in M is split if and only if the restriction

map M(G/G) −→M(G/1) is a split epimorphism; this implies that G acts trivially

on M(G/1), which is usually not the case. The suspension G-spectrum Σ∞X of

a G-space X is split if and only if X is stably a retract up to homotopy of XG,

which again is usually not the case. In particular, however, the sphere G-spectrum

S = Σ∞S0 is split. The following consequence of Lemma 3.3 gives more examples.

Lemma 3.13. If D ∈ GSUG is split, then i∗D ∈ GSU is also split. In particular,

i∗D is split if D is a nonequivariant spectrum regarded as a naive G-spectrum with

trivial action.
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The notion of a split G-spectrum is defined in nonequivariant terms, but it admits

the following equivariant interpretation.

Lemma 3.14. If E is a G-spectrum with underlying nonequivariant spectrum D,

then E is split if and only if there is a map of G-spectra i∗D −→ E that is a

nonequivariant equivalence.

Theorem 3.15. If E is a split G-spectrum and X is a free naive G-spectrum, then

there are natural isomorphisms

EG
n (i∗X) ∼= En((ΣAd(G)X)/G) and En

G(i∗X) ∼= En(X/G),

where Ad(G) is the adjoint representation of G and E∗ and E∗ denote the theories

represented by the underlying nonequivariant spectrum of E.

The cohomology isomorphism holds by inductive reduction to the case X = G+.

The homology isomorphism is deeper, and we shall say a bit more about it later.

Geometric fixed point spectra

There is a “geometric” fixed-point functor

ΦG : GSU −→ SUG

that enjoys the properties

Σ∞(XG) ≃ ΦG(Σ∞X)(3.16)

and

ΦG(E) ∧ ΦG(E′) ≃ ΦG(E ∧E′).(3.17)

It is trivial on free G-spectra and, more generally, on P-spectra, where P is the

family of proper subgroups of G. Recall that, for a family F , ẼF is the cofibre of

the natural map EG+ −→ S0. We define

ΦG(E) = (E ∧ ẼP)G ,(3.18)

where P is the family of proper subgroups of G. Here E ∧ ẼP is H-trivial for all

H ∈ P . The isomorphism (3.16) is clear from Theorem 3.10.

We call ΦG the “geometric” fixed point functor because its properties are like

those of the space level G-fixed point functor and because it corresponds to the

direct prespectrum level construction that one is likely to think of first. Restricting

to finite groups G for simplicity and indexing G-prespectra on multiples of the

regular representation, we can define a prespectrum level fixed point functor ΦG

by (ΦGD)(R⋉) = (D(⋉RG))G. If D is tame, then (ΦG)(LD) is equivalent to

LΦGD. Therefore, if we start with a G-spectrum E, then ΦG(E) is equivalent to
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LΦG(KℓE), where K is the cylinder functor. This alternative description leads to

the proof of (3.17). It also leads to a proof that

[E, F ∧ ẼP ]G ∼= [ΦG(E), ΦG(F)] for G-spectra E and F .(3.19)

Euler classes and a calculational example

As an illuminating example of the use of RO(G)-grading to allow descriptions

invisible to the Z-graded part of a theory, we record how to compute EG
∗ (X ∧ ẼP)

in terms of EG
∗ (X) for a ring G-spectrum E and any G-spectrum X . When X = S,

it specializes to a calculation of

EG
∗ (ẼP) = π∗(Φ

GE).

The example may look esoteric, but it is at the heart of the completion theorems

that we will discuss later. We use the Euler classes of representations, which appear

ubiquitously in equivariant theory. For a representation V , we define the Euler class

χV ∈ EG
−V = EV

G (S0) to be the image of 1 ∈ E0
G(S0) ∼= EV

G (SV ) under e(V )∗, where

e(V ) : S0 −→ SV sends the basepoint to the point at ∞ and the non-basepoint to

0.

Proposition 3.20. Let E be a ring G-spectrum and X be any G-spectrum. Then

EG
∗ (X ∧ ẼP) is isomorphic to the localization of the EG

∗ -module EG
∗ (X) obtained

by inverting the Euler classes of all representations V such that V G = {0}.

Proof. A check of fixed points, using the cofibrations S(V )+ −→ D(V )+ −→ SV ,

shows that we obtain a model for ẼP by taking the colimit Y of the spaces SV as

V ranges over the indexing spaces V ⊂ U such that V G = {0}. The point is that

if H is a proper subgroup of G, then V H 6= {0} for all sufficiently large V , so that

Y H ≃ ∗. Therefore

EG
ν (X ∧ ẼP) ∼= colimV E

G
−ν(X ∧ SV) ∼= colimV E

G
ν−V(X ).

Since the colimit is taken over iterated products with χV , it coincides algebraically

with the cited localization. �

4. Change of groups and duality theory

So far, we have discussed the relationship between G-spectra and 1-spectra,

where 1 is the trivial group. We must consider other subgroups and quotient groups

of G.

Induced and coinduced G-spectra

First, consider a subgroup H . Since any representation of NH is a summand

in a restriction of a representation of G and since a WH-representation is just
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an H-fixed NH-representation, the H-fixed point space UH of our given complete

G-universe U is a complete WH-universe. We define

EH = (i∗E)H , i : UH ⊂ U.(4.1)

This gives a functor GSU −→ (WH)SUH. For D ∈ (NH)SUH, the orbit spectrum

D/H is also a WH-spectrum.

Exactly as on the space level, we have induced and coinduced G-spectra gener-

ated by an H-spectrum D ∈ HSU . These are denoted by

G ⋉H D and FH [G, D).

The “twisted” notation ⋉ is used because there is a little twist in the definitions

to take account of the action of G on indexing spaces. As on the space level, these

functors are left and right adjoint to the forgetful functor GSU −→ HSU : for

D ∈ HSU and E ∈ GSU , we have

GSU(G ⋉H D, E) ∼= HSU(D, E)(4.2)

and

HSU(E ,D) ∼= GSU(E ,FH[G,D)).(4.3)

Again, as on the space level, for a G-spectrum E, we have

G ⋉H E ∼= (G/H)+ ∧E(4.4)

and

FH [G, E) ∼= F (G/H+, E).(4.5)

We can now deduce as on the space level that

πH
n (E) ≡ [G/H+ ∧ Sn, E]G ∼= [Sn, E]H ∼= πn(EH).(4.6)

We also have a geometric H-fixed point functor ΦH . It is obtained by regarding

G-spectra as NH-spectra and setting

ΦH(E) = (E ∧ ẼF [H])H,

where F [H] is the family of subgroups of NH that do not contain H . Again,

ΦHE is an NH-spectrum indexed on UH . While the Whitehead theorem appeared

originally as a statement about homotopy groups and thus about the genuine fixed

point functors, it implies a version in terms of the Φ-fixed point functors.

Theorem 4.7. Let f : E −→ F be a map between G-CW spectra. Then the

following statements are equivalent.

(i) f is a G-homotopy equivalence.

(ii) Each fH is a nonequivariant homotopy equivalence.

(iii) Each ΦHf is a nonequivariant homotopy equivalence.
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Subgroups and the Wirthmüller isomorphism

In cohomology, the isomorphism (4.2) gives

E∗
G(G ⋉H D) ∼= E∗

H(D).(4.8)

We shall not be precise, but we can interpret this in terms of RO(G) and RO(H)

graded cohomology theories. The isomorphism (4.3) does not have such a conve-

nient interpretation as it stands. However, there is an important change of groups

result, called the Wirthmüller isomorphism, which in its most conceptual form is

given by a calculation of the functor FH [G, D). It leads to the following homologi-

cal complement of (4.8). Let L(H) be the tangent H-representation at the identity

coset of G/H . Then

EG
∗ (G ⋉H D) ∼= EH

∗ (ΣL(H)D).(4.9)

Theorem 4.10 (Generalized Wirthmüller isomorphism). For H-spectra D,

there is a natural equivalence of G-spectra

FH [G, ΣL(H)D)
≃
−→G ⋉H D.

Therefore, for G-spectra E,

[E, ΣL(H)D]H ∼= [E, G ⋉H D]G.

The last isomorphism complements the isomorphism from (4.2):

[G ⋉H D, E]G ∼= [D, E]H .(4.11)

We deduce (4.8) by replacing E in (4.9) by a sphere, replacing D by E ∧ D, and

using the generalization

G ⋉H (D ∧ E) ∼= (G ⋉H D) ∧ E

of (4.4).

Quotient groups and the Adams isomorphism

Now let N be a normal subgroup of G with quotient group J . In practice, one

is often thinking of a quotient map NH −→ WH rather than G −→ J . There

is an analogue of the Wirthmüller isomorphism, called the Adams isomorphism,

that compares orbit and fixed-point spectra. It involves the change of universe

functors associated to the inclusion i : UN −→ U and requires restriction to N -

free G-spectra. We emphasize that UN is not a complete G-universe. We have

generalizations of the adjunctions (3.4) and (3.11): for D ∈ JSUN and E ∈ GSUN ,

GSUN (D, E) ∼= JSUN (D, EN )(4.12)

and

JSUN (E/N ,D) ∼= GSUN (E ,D).(4.13)
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Here we suppress notation for the pullback functor JSUN −→ GSUN . An N -free

G-spectrum E indexed on U is equivalent to i∗D for an N -free G-spectrum D

indexed on UN , and D is unique up to equivalence. Thus our slogan that “free

G-spectra live in the G-fixed universe” generalizes to the slogan that “N -free G-

spectra live in the N -fixed universe”. This gives force to the following version of

(4.12). It compares maps of J-spectra indexed on UN with maps of G-spectra

indexed on U .

Theorem 4.14. Let J = G/N . For N -free G-spectra E indexed on UN and J-

spectra D indexed on UN ,

[E/N, D]J ∼= [i∗E, i∗D]G.

The conjugation action of G on N gives rise to an action of G on the tangent

space of N at e; we call this representation Ad(N), or Ad(N ; G). The following

result complements the previous one, but is considerably deeper. When N = G, it

is the heart of the proof of the homology isomorphism of Theorem 3.15.

Theorem 4.15 (Generalized Adams isomorphism). Let J = G/N . For N -free

G-spectra E ∈ GSUN , there is a natural equivalence of J-spectra

E/N
≃
−→(Σ−Ad(N)i∗E)N .

Therefore, for D ∈ JSUN ,

[D, E/N ]J ∼= [i∗D, Σ−Ad(N)i∗E]G.

The last two results admit homological and cohomological interpretations, like

those of Theorem 3.15, that are based on a generalization of the notion of a split

G-spectrum. We shall not go into that here; see [42, Ch.II].

Spanier-Whitehead and Atiyah duality

Recall that the dual of a G-space or G-spectrum X is DX = F (X, S). This is

defined for any universe, but we observe the striking fact that if we work over UG,

then the sphere S has trivial G-action and F (X, S) = F (X/G, S); in particular, the

dual of every orbit G/H+ is S. We must therefore work in the complete universe U

to give useful content to the formal theory of duality, and the first thing we must

do is to identify the duals of orbits. In fact, this identification is the real content

of the Wirthmüller isomorphism, which implies that

D(G/H+) ≃ G ⋉H S−L(H).(4.16)

In particular, orbits are self-dual if G is finite.

It follows that finite G-CW spectra are strongly dualizable, and the Spanier-

Whitehead duality theorem is a formal consequence.
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Theorem 4.17 (Spanier-Whitehead duality). If X is a wedge summand of a finite

G-CW spectrum and E is any G-spectrum, then

ν : DX ∧ E
≃
−→F (X, E)

is an isomorphism in h̄GSU . Therefore, for any virtual representation ν,

EG
ν (DX) ∼= E−ν

G (X).

By developing a space level analysis of how to identify dual G-spectra, one can

generalize the identification of duals of orbits to an identification of the duals of

smooth G-manifolds. Working on the space level, one has a notion of V -duality

between spaces X and Y . It involves evaluation and coevaluation maps Y ∧X −→

SV and SV −→ X ∧ Y and implies that Σ−V Σ∞Y is dual to Σ∞X .

Theorem 4.18 (Atiyah duality). If M is a smooth closed G-manifold embedded in

a representation V with normal bundle ν, then M+ is V -dual to the Thom complex

Tν. If M is a smooth compact G-manifold with boundary ∂M , V = V ′ ⊕ R, and

(M, ∂M) is properly embedded in (V ′ × [0,∞), V ′ × {0}) with normal bundles ν′

of ∂M in V ′ and ν of M in V , then M/∂M is V -dual to Tν, M+ is V -dual to

Tν/Tν′, and the cofibration sequence

Tν′ −→ Tν −→ Tν/Tν′ −→ ΣTν′

is V -dual to the cofibration sequence

Σ(∂M)+ ←−M/∂M ←−M+ ←− (∂M)+.

We display the coevaluation map η : SV −→M+∧Tν explicitly in the closed case.

By the equivariant tubular neighborhood theorem, we may extend the embedding

of M in V to an embedding of the normal bundle ν and apply the Pontryagin-Thom

construction to obtain a map t : SV −→ Tν. The diagonal map of the total space

of ν induces the Thom diagonal ∆ : Tν −→M+ ∧ Tν, and η is just the composite

∆ ◦ t.

Specializing to M = G/H , we have

τ = G×H L(H) and Tτ = G+ ∧H SL(H).

If G/H is embedded in V with normal bundle ν and W is the orthogonal comple-

ment to L(H) in the fiber over the identity coset, then ν = G×H W and therefore

Σ∞
V Tν ≃ G ⋉H S−L(H). Observe that we have a composite map

SV t
−→Tν −→ T (ν ⊕ τ) ∼= G/H+ ∧ SV .(4.19)

This is called the “transfer map” associated to the projection G/H −→ ∗.

We can deduce equivariant versions of the Poincaré and Lefschetz duality the-

orems by combining Spanier-Whitehead duality, Atiyah duality, and the Thom

isomorphism. However, the results are more subtle and less algebraically tractable



EQUIVARIANT STABLE HOMOTOPY THEORY 25

than their nonequivariant analogs because G-manifolds are not homogeneous: they

look locally like G×H W for a subgroup H and H-representation W , which means

that there is generally no natural “dimension” in which the orientation class or

fundamental class of a manifold should lie. We refer the reader to [42, Ch.III] for

discussion.

5. Mackey functors, K(M, n)’s, and RO(G)-graded cohomology

We have considered the ordinary cohomology H∗
G(X ; M) of a G-space X with

coefficients in a coefficient system M . We can construct an additive category Z[hO]

from the homotopy category hO of orbits by applying the free Abelian group func-

tor. The resulting category is isomorphic to the full subcategory of naive orbit

spectra Σ∞G/H+ in the stable homotopy category h̄GSUG of naive G-spectra.

Clearly, a coefficient system is the same thing as an additive contravariant func-

tor Z[hO] −→ A⌊. Just as nonequivariantly, we can construct naive Eilenberg-

MacLane G-spectra HM = K(M, 0) associated to coefficient systems M and so

extend our cohomology theories on G-spaces to cohomology theories on naive G-

spectra.

It is natural to ask when these cohomology theories can be extended to RO(G)-

graded cohomology theories on genuine G-spectra. The answer is suggested by

the previous paragraph. Define hOS to be the full subcategory of orbit spectra

Σ∞G/H+ in the stable homotopy category h̄GSU of genuine G-spectra. Define

a Mackey functor to be an additive contravariant functor M : h̄OS −→ A⌊; we

abbreviate M(G/H) = M(Σ∞G/H+). This is the appropriate definition for general

compact Lie groups, but we shall describe an equivalent algebraic definition when

G is finite. It turns out that the cohomology theory H∗
G(·, M) can be extended

to an RO(G)-graded theory if and only if the coefficient system M extends to a

Mackey functor [40].

The idea can be made clear by use of the transfer map (4.18). If H∗
G(·; M) is

RO(G)-gradable, then, for based G-spaces X , the transfer map induces homomor-

phisms

H̃n
G(G/H+ ∧X ; M) ∼= H̃n+V

G (ΣV (G/H+ ∧X); M)

��

H̃n
G(X ; M) ∼= H̃n+V

G (ΣV X ; M).

(5.1)

Taking n = 0 and X = S0, we obtain a transfer homomorphism

M(G/H) −→M(G/G).

An elaboration of this argument shows that the coefficient system M must extend

to a Mackey functor.
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Algebraic description of Mackey functors

For finite groups G, calculational analysis of the category hOS leads to an alge-

braic translation of our topological definition. Let F denote the category of finite

G-sets and G-maps and let hFS be the full subcategory of the stable category whose

objects are the Σ∞X+ for finite G-sets X . Then hOS embeds as a full subcategory

of hFS, and every object of hFS is a finite wedge of objects of hOS. Since an

additive functor necessarily preserves any finite direct sums in its domain, it is clear

that an additive contravariant functor hOS −→ A⌊ determines and is determined

by an additive contravariant functor hFS −→ A⌊. In turn, an additive contravari-

ant functor hFS −→ A⌊ determines and is determined by a Mackey functor in the

algebraic sense defined by Dress [19]. Precisely, such a Mackey functor M consists

of a contravariant functor M∗ and a covariant functor M∗ from finite G-sets to

Abelian groups. These functors have the same object function, denoted M , and

M converts disjoint unions to direct sums. Write M∗α = α∗ and M∗α = α∗. For

pullback diagrams of finite G-sets

P
δ

//

γ

��

X

α

��

Y
β

// Z,

it is required that α∗ ◦ β∗ = δ∗ ◦ γ∗. For an additive contravariant functor M :

hFS −→ A⌊, the maps induced by the projections G/H −→ G/K for H ⊂ K and

the corresponding transfer maps specify the contravariant and covariant parts of

the corresponding algebraic Mackey functor, and conversely. The algebraic notion

has applications to many areas of mathematics in which finite group actions are

studied.

In the compact Lie case it is hard to prove that an algebraically defined coefficient

system extends to a Mackey functor, but there is one important example.

Proposition 5.2. Let G be any compact Lie group. There is a unique Mackey func-

tor Z : hOS −→ A⌊ such that the underlying coefficient system of Z is constant

at Z and the homomorphism Z −→ Z induced by the transfer map Σ∞G/K+ −→

Σ∞G/H+ associated to an inclusion H ⊂ K is multiplication by the Euler charac-

teristic χ(K/H).

Construction of RO(G)-graded cohomology theories and K(M, 0)’s

Returning to our original problem of constructing an RO(G)-graded ordinary

cohomology theory and thinking on the spectrum level, we see that we want to

construct a genuine Eilenberg-MacLane G-spectrum HM = K(M, 0). It is clear

that the coefficient system M = π0(HM) must be a Mackey functor since, by our

homotopical definition of Mackey functors, the homotopy group system πn(E) must
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be a Mackey functor for any G-spectrum E. The following result was first proven

in [40].

Theorem 5.3. For a Mackey functor M , there is an Eilenberg-MacLane G-spectrum

HM = K(M, 0), unique up to isomorphism in h̄GS. For Mackey functors M and

M ′, [HM, HM ′]G is the group of maps of Mackey functors M −→M ′.

We prove this by constructing a Z-graded cohomology theory on G-spectra. By

Brown’s representability theorem, its degree zero part can be represented. The

representing G-spectrum is our HM , and, since it is a genuine G-spectrum, it must

of course represent an RO(G)-graded theory. The details that we use to construct

the desired cohomology theories are virtually identical to those that we used to

construct ordinary theories in the first place.

We start with G-CW spectra X . They have skeletal filtrations, and we define a

Mackey-functor valued cellular chain complex by setting

Cn(X) = πn(Xn/Xn−1).(5.4)

Of course, Xn/Xn−1 is a wedge of n-sphere G-spectra G/H+ ∧ Sn, and the con-

necting homomorphism of the triple (Xn, Xn−1, Xn−2) specifies the required dif-

ferential. For a Mackey functor M , we define

Cn
G(X ; M) = HomM(Cn(X), M), with δ = HomM(d, Id).(5.5)

Then C∗
G(X ; M) is a cochain complex of Abelian groups. We denote its cohomology

by H∗
G(X ; M). The evident cellular versions of the homotopy, excision, exactness,

and wedge axioms admit exactly the same derivations as on the space level, and we

use G-CW approximation to extend from G-CW spectra to general G-spectra: we

have a Z-graded cohomology theory on GSU . It satisfies the dimension axiom

H∗
G(Σ∞G/H+; M) = H0

G(Σ∞G/H+; M) = M(G/H),(5.6)

and these isomorphisms give an isomorphism of Mackey functors. The zeroth term

is represented by a G-spectrum HM , and we read off its homotopy groups from

(5.5):

π0(HM) = M and πn(HM) = 0 if n 6= 0.

The uniqueness of HM is evident, and the calculation of [HM, HM ′]G follows easily

from the functoriality in M of the theories H∗
G(X ; M).

We should observe that spectrum level obstruction theory works exactly as on the

space level, modulo connectivity assumptions to ensure that one has a dimension

in which to start inductions.

For G-spaces X , we have now given two meanings to the notation H∗
G(X ; M):

we can regard our Mackey functor as a coefficient system and take the ordinary

cohomology of X as in §1, or we can take our newly constructed cohomology. We
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know by the axiomatic characterization of ordinary cohomology that these must

in fact be isomorphic, but it is instructive to check this directly. At least after a

single suspension, we can approximate any G-space by a weakly equivalent based

G-CW complex, with based attaching maps. The functor Σ∞ takes based G-CW

complexes to G-CW spectra, and we find that the space level and spectrum level

chain complexes are isomorphic. Alternatively, we can check on the represented

level:

[Σ∞X, ΣnHM ]G ∼= [X, Ω∞ΣnHM ]G ∼= [X, K(M, n)]G.

The Conner conjecture

Lest this all seem too abstract, let us us retrieve a direct and important space

level consequence of this machinery, namely the Conner conjecture.

Theorem 5.7 (The Conner conjecture). Let X be a finite dimensional G-space

with finitely many orbit types, where G is any compact Lie group, and let A be any

Abelian group. If H̃∗(X ; A) = 0, then H̃∗(X/G; A) = 0.

This was first proven by Oliver [60], using Čech cohomology and wholly different

techniques. It was known early on that the conjecture would hold if one could

construct a suitable transfer map. It is now easy to do so [40].

Theorem 5.8. Let X be a G-space and π : X/H −→ X/G be the projection,

where H ⊆ G. For any n ≥ 0 and any Abelian group A, there is a natural transfer

homomorphism

τ : Hn(X/H ; A) −→ Hn(X/G; A)

such that τ ◦ π∗ is multiplication by the Euler characteristic χ(G/H).

Proof. Tensoring the Mackey functor Z of Proposition 5.2 with A, we obtain a

Mackey functor A whose underlying coefficient system is constant at A. The map

A(G/H) −→ A(G/G) associated to the stable transfer map G/G+ −→ G/H+ is

multiplication by χ(G/H). By the axiomatization, the ordinary G-cohomology of

a G-space X with coefficients in a constant coefficient system is isomorphic to the

ordinary nonequivariant cohomology of its orbit space X/G:

Hn
G(X ; A) ∼= Hn(X/G; A) and Hn

G(G/H×X ; A) ∼= Hn
H(X ; A|H) ∼= Hn(X/H ; A).

Taking M = A, (5.1) displays the required transfer map. �

How does the Conner conjecture follow? Conner [15] proved it when G is a finite

extension of a torus, the methods being induction and use of Smith theory: one

proves that both XG and X/G are A-acyclic. For example, the result for a torus

reduces immediately to the result for a circle. Here the “finitely many orbit types”

hypothesis implies that XG = XC for C cyclic of large enough order, so that we

are in the realm where classical Smith theory can be applied. Assuming that the



EQUIVARIANT STABLE HOMOTOPY THEORY 29

result holds when G is a finite extension of a torus, let N be the normalizer of a

maximal torus in G. Then N is a finite extension of a torus and χ(G/N) = 1. The

composite

τ ◦ π∗ : H̃n(X/G; A) −→ H̃n(X/N ; A) −→ H̃n(X/G; A)

is the identity, and that’s all there is to it.

The rational equivariant stable category

Exactly as for simple spaces and for spectra, we can use our Eilenberg-MacLane

G-spectra to show that any G-spectrum can be approximated as the homotopy

inverse limit of a Postnikov tower constructed out of K(M, n)’s and k-invariants,

where K(M, n) = ΣnHM . For finite groups, the k-invariants vanish rationally.

Theorem 5.9. Let G be finite. Then, for rational G-spectra E, there is a natural

equivalence E
≃
−→

∏

K(πn(E), n).

Counterexamples of Triantafillou [64] show that, unless G is cyclic of prime power

order, the conclusion is false for naive G-spectra. A counterexample of Haeberly

[34] shows that the conclusion is also false for genuine G-spectra when G is the

circle group, the rationalization of KUG furnishing a counterexample.

The proof of Theorem 5.9 depends on two facts, one algebraic and one topolog-

ical. Assume that G is finite.

Proposition 5.10. All objects are projective and injective in the Abelian category

of rational Mackey functors.

The analogue for coefficient systems is false, and so is the analogue for general

compact Lie groups. One of us has recently studied what does happen for compact

Lie groups [27]. The following result is easy for finite groups and false for compact

Lie groups, as we see from Theorem 3.10.

Proposition 5.11. For H ⊆ G and n 6= 0, πn(G/H+)⊗Q = 0.

Let M = M[G] denote the Abelian category of Mackey functors over G. For

G-spectra E and F , there is an evident natural map

θ : [E, F ]G −→
∏

HomM(πn(E), πn(F )).

Let F be rational. By the previous result and the Yoneda lemma, θ is an iso-

morphism when E = Σ∞G/H+ for any H . Clearly, we can extend θ to a graded

map

θ : F q
G(E) = [E, F ]qG = [Σ−qE, F ]G −→

∏

HomM(πn(Σ−qE), πn(F )).

It is still an isomorphism when E is an orbit. We obtain the same groups if we

replace E and the Mackey functors πn(Σ−qE) by their rationalizations. Since the
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Mackey functors πn(F ) are injective, the right hand side is a cohomology theory on

G-spectra E. Clearly θ is a map of cohomology theories and this already implies the

following result. With F =
∏

K(πn(E), n), Theorem 5.9 is a direct consequence.

Theorem 5.12. Let G be finite. If F is rational, then θ is a natural isomorphism.

This classifies rational G-spectra and one can go on to classify maps between

them and so obtain a complete algebraization of the rational equivariant stable

category. We refer the reader to [30, App A].

6. Philosophy of localization and completion theorems

We shall work with reduced homology and cohomology theories in the rest of

this article.

It is natural to want to know about the homology and cohomology of classifying

spaces, as invariants of groups, as homes of characteristic classes, and as groups of

bordism classes of G-manifolds.

One reason that it is difficult to calculate k∗(BG+) or k∗(BG+) is that BG+ is an

infinite complex. The conventional approach to calculation is based on the skeletal

filtration of BG+, which gives rise to Atiyah-Hirzebruch spectral sequences. One

problem with this approach is that ordinary cohomology is not the most natural way

to look at BG, and much of its good behaviour when viewed by other cohomology

theories is invisible to ordinary cohomology.

An attractive alternative is to consider equivariant forms of k-theory. We shall

say that k∗
G(·) is an equivariant form of k∗(·) if it is represented by a split G-

spectrum kG whose underlying spectrum k represents k∗(·). This means in partic-

ular that there is a map k∗ −→ k∗
G and also that for any free G-spectrum X there

is a natural isomorphism k∗
G(X) = k∗(X/G).

Typically, there will be many equivariant versions of k∗(·), and some will serve

our purposes better than others. Perhaps the most obvious version is i∗k, but that

is usually not the most useful version. We suppose that one particular version

has been chosen in the following discussion. For example, the nicest equivariant

form of topological K-theory is the Atiyah-Segal equivariant K-theory defined using

equivariant bundles [62].

The point of thinking equivariantly is that

k∗
G(EG+) = k∗(BG+) and kG

∗ (EG+) = k∗(EG+ ∧G SAd(G)),

so that we have moved the problem into the equivariant world: we have to under-

stand the homology and cohomology of free G-spectra, and we may hope to do so

in general, allowing effective use of finite G-CW complexes to obtain information

about our infinite G-CW complex EG. To carry out this idea, we introduce a
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parameter G-space X . By introducing equivariance, we have made available the

comparison map

π∗ : k∗
G(X) −→ k∗

G(EG+ ∧X) = k∗(EG+ ∧G X),

induced by the projection π : EG+ −→ S0. It is appropriate to think of X as finite,

so that the domain is easily calculated, whilst the codomain is the cohomology of

an infinite complex. The motivating case X = S0 gives the map

π∗ : k∗
G −→ k∗

G(EG+) ∼= k∗(BG+).

It is only slightly over-optimistic to hope that this is an isomorphism, as we now

explain.

To obtain some algebraic control, we assume that k∗(·) and k∗
G(·) are ring the-

ories, and that the splitting map is a ring map. More generally, we assume given

module theories m∗(·) and m∗
G(·) over k∗(·) and k∗

G(·), with suitable splitting maps.

Then all groups m∗
G(X) are modules over the coefficient ring k∗

G. It turns out that

the ideal theoretic geometry of the k∗
G-module m∗

G(X) is the controlling structure.

We discussed the algebra that we have in mind in the previous article [31].

Consider the augmentation ideal

J = ker
(

resG1 : k∗
G = k∗

G(S0) −→ kG
∗ (G+) ∼= k∗

)

,

which by definition acts as zero on k∗
G(G+) and therefore on m∗

G(G+). Since any

free G-spectrum is constructed from cells Sn ∧ G+ it follows that a power of J

acts as zero on m∗
G(X) whenever X is finite and free. We emphasize that we are

thinking about Z-graded, but RO(G)-gradable, equivariant cohomology theories. If

we allowed RO(G)-grading in our definition of J , the discussion would still make

sense, but the results would often be trivial to prove and useless in practice.

Now observe that EG+ is a direct limit of finite free complexes and consider

its cohomology. If there are no lim1 problems, m∗
G(EG+) is an inverse limit of

J-nilpotent modules, and therefore the nicest answer we could hope to have is that

π∗ is completion, so that

m∗
G(EG+ ∧X) = (m∗

G(X))∧J .

However the algebra has already warned us against this: the topology guarantees

that the left hand side is an exact functor of X , whereas the right hand side is

only known to be exact when k∗
G is Noetherian and m∗

G(X) is finitely generated.

The solution is to replace J-completion by the associated functor on the derived

category: this will be exact in a suitable sense and its homology groups will be

calculated by left derived functors of completion. We gave the relevant descriptions

of derived functors in [31].
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Nicest Possible Answer 6.1. For any G-spectrum X, m∗
G(EG+ ∧ X) is the

‘homotopy J-completion’ of the k∗
G-module m∗

G(X) and hence there is a spectral

sequence

E∗,∗
2 = HJ

∗ (m∗
G(X)) =⇒ m∗

G(EG+ ∧X).

If this nicest possible answer is the correct answer we say that the completion

theorem holds for m∗
G(·).

Now consider the situation in homology. In any case, mG
∗ (EG+) is a direct limit

of J-nilpotent modules. The nicest functor of this form is the J-power torsion

functor, but we saw in the previous article that this is rarely exact, and so even in

the best cases we need to take derived functors into account.

Nicest Possible Answer 6.2. For any G-spectrum X, mG
∗ (EG+ ∧ X) is the

‘homotopy J-power torsion’ of the mG
∗ -module m∗

G(X) and hence there is a spectral

sequence

E2
∗,∗ = H∗

J(mG
∗ (X)) =⇒ mG

∗ (EG+ ∧X).

If this nicest possible answer is the correct answer we say that the localization

theorem holds for mG
∗ (·).

One of us used to call this a ‘local cohomology theorem’ [24]. We shall explain in

the next section why we now understand it to be a ‘localization theorem’. We shall

also recall what we mean by ‘homotopy J-completion’ and ‘homotopy J-power

torsion’ and describe how one can hope to prove that theories m∗
G(·) and mG

∗ (·)

enjoy such good behaviour. However, the statements about spectral sequences are

perfectly clear as they stand; the initial terms of the spectral sequences are local

homology and local cohomology groups, respectively, as defined in [31, §1].

The entire discussion just given applies equally well to the calculation of m∗
G(EF+)

and mG
∗ (EF+) for an arbitrary family F , provided that the ideal J is replaced by

JF =
⋂

H∈F

ker(k∗
G −→ k∗

H).

This case cannot usually be reduced to a non-equivariant statement, but it often has

its own applications. For example, it leads to calculations of the cohomology and

homology of equivariant classifying spaces and thus to determinations of equivariant

characteristic classes.

We consider the alternative methods of calculation available to us in the following

schematic diagram, restricting attention to our given ring theory k∗
G(·).
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k∗
G(·)

Equivariant k theory

�
�

�
�

�
�	

@
@

@
@

@
@R

k∗
G

Coefficient ring
k∗(·), G

k theory and a group

?

HHHHHHHHHHHHj

XXXXXXXXXXXXXXXXXXXXXXXXXXz

Commutative
algebra

?

�������������

��������������������������9

Homological

algebra

k∗(BG+)

k-homology of G

k∗(BG+)

k-cohomology of G

t(k)∗G
k-Tate theory of G

In this picture, the conventional (Atiyah-Hirzebruch) homological algebra route

takes as input the non-equivariant k-theory together with the group structure on G;

it results in a calculation of infinite homological dimension and with infinitely many

extension problems. Where it applies, the more favourable route through commu-

tative algebra takes as input the equivariant augmented coefficient ring k∗
G −→ k∗;

the calculation usually has finite homological dimension, and in favourable cases

the spectral sequences collapse and there are no extension problems.

There is an undefined term here, namely the Tate theory t(k)∗G [30]. It fits into a

long exact sequence whose other two terms are k∗(BG+) and k∗(BG+). Returning

to the context of module theories and remembering that every theory is a mod-

ule theory over stable cohomotopy, we have the following remarkable relationship

between our two Nicest Possible Answers.

Theorem 6.3. Let G be finite and let J be the augmentation ideal of the Burnside

ring A(G). Regard a G-spectrum mG as a module over the sphere G-spectrum

SG and recall that A(G) ∼= πG
0 (SG). The localization theorem for the calculation

of m∗(BG+) is true if and only if the completion theorem for the calculation of

m∗(BG+) is true and t(m)∗G is rational.
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The Tate theory is relatively easy to compute. It is a direct consequence of

Theorem 3.10 that the Tate theory t(S)∗G is not rational, so that one cannot hope

to prove the localization theorem in stable homotopy, although the completion

theorem is true in stable cohomotopy. We shall say no more about the Tate theory

here, referring the interested reader to [30].

7. How to prove localization and completion theorems

We now outline a strategy for proving that the Nicest Possible Answer applies

in both homology and cohomology [24]. One limitation of the method is obvious:

it cannot apply to theories like stable homotopy.

The calculational restriction that we will shortly place on our homology the-

ory and that will rule out stable homotopy is that the theory should have Thom

isomorphisms for complex representations V :

RG
∗ (SV ∧X) ∼= RG

∗ (S|V | ∧X)(7.1)

as RG
∗ -modules, where |V | denotes the real dimension of V . The point is that local-

ization theorems are often automatic, by arguments like the proof of Proposition

3.20, if one grades over the representation ring. Thom isomorphisms allow us to

reinterpret that result in terms of integer grading.

There are two further assumptions. The first is fundamental to the general

strategy: we assume that we are working in the category of modules over a com-

mutative SG-algebra RG with underlying nonequivariant commutative S-algebra

R. (Remember that commutative SG-algebras are essentially the same things as

E∞ ring G-spectra.) We have switched notation from k to R to emphasize this

assumption. Without it, we cannot make the constructions we need except under

very favourable circumstances.

The second is made solely to simplify the exposition: we assume that the ring

R∗
G is Noetherian. If this is not the case, the outline of the argument is the same but

its implementation is considerably more complicated since one must use topological

arguments to show that the relevant ideals can be replaced by finitely generated

ones; at present, these arguments only apply to the trivial family F = {∞}.

The idea of the proofs is to model the algebra in topology; the model is so cho-

sen that formal arguments imply that constructions on isotropy types are directly

related to constructions on ideals in commutative rings. The necessary topological

constructions are described in [31, §3].

We restrict attention to the augmentation ideal

J = ker(resG
1 : RG

∗ → R∗)



EQUIVARIANT STABLE HOMOTOPY THEORY 35

and consider the canonical map

κ′ : EG+ ∧K(J)→ S0 ∧K(J)

of RG-modules. The module K(J) = ΓJ(RG) encodes homotopical J-power torsion.

By our Noetherian assumption, we may take J = (β1, . . . , βn). Then K(J) is the

smash product over RG of the fibers K(βi) of the localizations RG −→ (RG)[1/βi].

Since the βi are trivial as nonequivariant maps, we have the following observation.

Lemma 7.2. The natural map K(J)→ RG is a non-equivariant equivalence.

Thus EG+ ∧K(J) ≃ EG+ ∧RG and κ′ induces a map of RG-modules

κ : EG+ ∧RG −→ K(J) .(7.3)

When G is finite, the homotopy groups of RG ∧ EG+ are RG
∗ (EG+). More

generally, we consider an RG-module MG with underlying nonequivariant R-module

M , and we have

(EG+∧RG)∧RG
MG ≃ EG+∧MG and FRG

(EG+∧RG, MG) ≃ F (EG+, MG).

Recall the definitions

ΓJ(MG) = K(J) ∧RG
MG and (MG)∧J = FRG

(K(J), MG).

The homotopy groups of these modules may be calculated by the spectral sequences

[31, 3.2 and 3.3]. Clearly the map κ induces maps

EG+ ∧MG −→ ΓJ (MG) and (MG)∧J −→ F (EG+, MG),

and these maps are equivalences if κ is an equivalence. Therefore, if we can prove

that κ is a homotopy equivalence, we can deduce the spectral sequences of the

Nicest Possible Answers for both MG
∗ (EG+) and M∗

G(EG+) for all RG-modules

MG. Given a G-spectrum X , we can replace MG by X ∧MG and F (X, MG) and

so arrive at the the Nicest Possible Answers as stated in (6.1) and (6.2).

We pause to describe the role of localization away from J . We have the cofibre

sequence

K(J) −→ RG −→ Č(J).

Smashing over RG with MG, recalling that MG[J−1] = Č(J)∧RG
MG, and using a

standard comparison of cofibre sequences argument in the category of RG-modules,

we obtain a map of cofibre sequences

EG+ ∧MG
//

��

MG
//

id

��

ẼG ∧MG

��

ΓJ(MG) // MG
// MG[J−1].

Clearly the left arrow is an equivalence if and only if the right arrow is an equiv-

alence. This should be interpreted as stating that the ‘topological’ localization of
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MG away from its free part is equivalent to the ‘algebraic’ localization of MG away

from J . This is why we call our Nicest Possible Answer in homology a localization

theorem. The parallel with the completion theorem, which states that the ‘alge-

braic’ completion M∧
J is equivalent to the ‘topological’ completion F (EG+, MG) of

MG at its free part, is now apparent.

The strategy for proving that the map κ of (7.3) is an equivalence is an inductive

scheme. To set it up, we need to know that if we restrict κ to a subgroup H , we

obtain an analogous map of H-spectra. We have

K(β, . . . , βn) |H = K(β1|H , . . . , βn|H);

the latter is defined with respect to RH = RG |H . That is, if we write JG instead

of J , as we shall often do to clarify inductive arguments,

ΓJG
(RG) |H ≃ Γres(JG)(RH),

where res : RG
∗ −→ RH

∗ is restriction. It is rarely the case (even for cohomotopy,

when one is looking at Burnside rings) that res(JG) = JH, but these ideals do have

the same radical.

Theorem 7.4. Assume that G is finite and each RH
∗ is Noetherian. Then

√

res(JG) =
√

JH

for all subgroups H ⊆ G.

We therefore have the equivalence of H-spectra

ΓJG
(RG)|H ≃ ΓJH

RH .

Sketch proof of Theorem 7.4. For theories such as cohomotopy and K-theory, where

we understand all primes of RG
∗ , this can be verified algebraically.

In general, if G acts freely on a product of spheres, one may check that JG is

the radical of the ideal generated by all Euler classes and deduce the result. This

covers the case when G is a p-group, and general finite groups can then be dealt

with by transfer. �

The argument just sketched requires considerable elaboration, and it can be the

main technical obstruction to the implementation of our strategy when we work

more generally with compact Lie groups and non-Noetherian coefficient rings.

Theorem 7.5 (Localization and completion theorem). Assume that G is finite

and each RH
∗ is Noetherian. If all of the theories RH

∗ (·) admit Thom isomorphisms

(7.1), then the map of RG-modules

κ : EG+ ∧RG
≃
−→K(J)
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is an equivalence. Therefore, for any RG-module MG and any G-spectrum X, there

are spectral sequences

E2
∗,∗ = H∗

J(RG
∗ ; MG

∗ (X))⇒MG
∗ (EG+ ∧X)

and

E∗,∗
2 = HJ

∗ (R∗
G; M∗

G(X))⇒M∗
G(EG+ ∧X).

Proof. [Sketch] Write JG instead of J , and observe from the original construction

of κ′ that the cofibre of κ is ẼG∧K(JG). We must prove that this is contractible.

We proceed by induction on the order of the group. By Theorem 7.4, we have

(ẼG ∧K(JG)) |H ≃ ẼH ∧K(JH),

and so our inductive assumption implies that

G/H+ ∧ ẼG ∧K(JG) ≃ ∗

for all proper subgroups H ⊂ G.

We now use the idea in Proposition 3.20 and its proof. We take ẼP = colimV S
V ,

where the colimit is taken over indexing G-spaces V ⊂ U such that V G = {0}. With

G finite, we may restrict attention to copies of the reduced regular representation

of G. Since (ẼP)G = S′, ẼP/S′ is triangulable as a G-CW complex whose cells

are of the form G/H+ ∧ Sn with H proper. Therefore

ẼP/S′ ∧ ẼG ∧ K(JG) ≃ ∗

by the inductive assumption, hence

ẼG ∧K(JG) ≃ ẼP ∧ ẼG ∧ K(JG).

Since ẼP ∧ S′ −→ ẼP ∧ ẼG is an equivalence, we have established the following

useful reduction.

Lemma 7.6. (Carlsson’s reduction) It suffices to show that ẼP ∧K(JG) ≃ ∗. �

Now recall that we have Euler classes χV ∈ RG
−V (S0) obtained by applying

e(V )∗, e(V ) : S0 −→ SV , to the unit 1 ∈ E0(S0) ∼= EV (SV ). At this point,

our Thom isomorphisms (7.1) come into play, allowing us to move these Euler

classes into integer gradings. Thus let χ(V ) ∈ RG
−|V | be the image of χV under

the Thom isomorphism. When V 6= {0}, e(V ) is non-equivariantly null homotopic

and therefore χ(V ) is in JG. Via the Thom isomorphism, Proposition 3.20 implies

that, for any G-spectrum X , πG
∗ (ẼP ∧X ) is the localization of πG

∗ (X) obtained by

inverting the Euler classes χ(V ). Here we may restrict everything to lie in integer

gradings. With X = K(JG), the localization is zero since the χ(V ) are in JG [31,

1.1]. From the spectral sequence [31, 3.2], we see that

πG
∗ (ẼP ∧ K(JG)) = ′.
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Since ẼP is H-equivariantly contractible for all proper subgroups H , this shows

that ẼP ∧K(JG) ≃ ∗, as required. �

8. Examples of localization and completion theorems

The discussion in the previous section was very general. In this section we

consider a number of important special cases in a little more detail. In each case,

we give some history, state precise theorems, discuss their import, and comment

on wrinkles in their proofs. We refer the reader to [53] for precise descriptions of

the representing G-spectra and more extended discussions of these results and their

proofs.

8.1. K-theory. Historically this was the beginning of the whole subject. Atiyah

[5] first proved the completion theorem for finite groups, by the conventional homo-

logical algebra route. Full use of equivariance appeared in the 1969 paper of Atiyah

and Segal [8], which gave the completion theorem for compact Lie groups in es-

sentially the following form. Let I be the augmentation ideal of the representation

ring R(G).

Theorem 8.1 (Atiyah-Segal). If G is a compact Lie group and X is a finite G-CW

complex, then

K∗
G(X)∧I

∼= K∗
G(EG+ ∧X). �

Their proof, like any other, depends fundamentally on the equivariant Bott pe-

riodicity theorem, which provides Thom isomorphisms via isomorphisms

KG(ΣV X) ∼= KG(X)

for complex representations V . The coefficient ring is K∗
G = K0

G[β, β−1], and

K0
G = R(G). Since nonequivariant K-theory is also periodic, the augmentation

ideal is J = I[β, β−1], and the completion theorem is therefore stated using I. The

ring R(G) is Noetherian [61], and Theorem 7.4 holds for all compact Lie groups G.

Atiyah and Segal used an inductive scheme in which they first proved the result

for a torus, then used holomorphic induction to deduce it for a unitary group, and

finally deduced the general case from the case of unitary groups. A geodesic route

from Bott periodicity to the conclusion, basically a cohomological precursor of the

homological argument sketched in the previous section, is given in [2]. That paper

also gives the generalization of the result to arbitrary families of subgroups in G.

A remarkable application of that generalization has been given by McClure [57]:

restriction to finite subgroups detects equivariant K-theory.

Theorem 8.2 (McClure). For a compact Lie group G and a finite G-CW complex

X, restriction to finite subgroups F specifies a monomorphism

K∗
G(X) −→

∏

K∗
F (X). �
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It is not known that KG is a commutative SG-algebra in general, although recent

work shows that this does hold when G is finite [23]. Therefore the techniques of

the previous section do not apply in general. The arguments in [8] and [2] prove the

isomorphism of Theorem 8.1 directly in cohomology. The trick that recovers enough

exactness to make this work is to study pro-group valued cohomology theories.

A pro-group is just an inverse system of (Abelian) groups. There is an Abelian

category of pro-groups, and the inverse limit functor is exact in that category.

For a cohomology theory k∗
G on G-CW complexes, one obtains a pro-group valued

theory k
∗
G by letting k

∗
G(X) be the system {k∗

G(Xα)}, where Xα runs through the

finite subcomplexes of X . Working with pro-groups has an important bonus: for

a finite G-CW complex X , the system {K∗
G(X)/In} clearly satisfies the Mittag-

Leffler condition. One proves that this system is pro-isomorphic to the system

k
∗
G(EG+ ∧X), and one is entitled to conclude that

K∗
G(EG+ ∧X) ∼= lim

n
K∗

G(EGn
+ ∧X).

That is, the relevant lim1 term vanishes.

Various people have deduced calculations of the K-homology of classifying spaces

for finite groups using suitable universal coefficient theorems, but the use of local

cohomology and the proof via the localization theorem were first given in [24].

Theorem 8.3. If G is finite, then the localization and completion theorems hold

for equivariant K-theory. Therefore, for any G-spectrum X, there are short exact

sequences

0 −→ H1
I (KG

∗ (ΣX)) −→ KG
∗ (EG+ ∧X) −→ H0

I (KG
∗ (X)) −→ 0

and

0 −→ LI
1K

∗
G(ΣX) −→ K∗

G(EG+ ∧X) −→ LI
0K

∗
G(X) −→ 0. �

In [24], the strategy of the previous section was applied to KG regarded as an

SG-module: we have the permutation representation homomorphism A(G) −→

R(G), and the completion of an R(G)-module at the augmentation ideal of R(G)

is isomorphic to its completion at the augmentation ideal of A(G) [28, 4.5]. Using

the new result that KG is a commutative SG-algebra when G is finite, the strategy

can now be applied directly: Theorem 8.3 is an application of Theorem 7.5. The

collapse of the relevant spectral sequnces to short exact sequences results from the

fact that A(G) and R(G) have Krull dimension 1 when G is finite.

There is an alternative strategy. In view of Theorems 6.3 and 8.1, one can prove

Theorem 8.2 by proving directly that the Tate theory t(K)∗G is rational. This

approach is carried out in [30]. It has the bonus that the topology carries out

the commutative algebra of calculating the local cohomology groups, leading to
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the following succinct conclusion. Let CG be the regular representation of G; the

ideal it generates in R(G) is a free abelian group of rank 1, and the composite

I −→ R(G) −→ R(G)/(CG) is an isomorphism.

Theorem 8.4. Let G be finite. Then K0(BG) ∼= Z, with generator the image of

CG, and

K1(BG) ∼= (R(G)/(CG))∧I ⊗ (Q/Z).

When G is a p-group, I-adic and p-adic completion agree on I ∼= R(G)/(CG), and

explicit calculations in both K-homology and K-cohomology are easily obtained.

For general compact Lie groups, these strategies all fail: we do not know that

KG is a commutative SG-algebra, and the alternative based on use of SG fails since

A(G) has Krull dimension 1 and is non-Noetherian in general, whereas R(G) is

Noetherian but has Krull dimension rank(G) + 1 [61]. The localization theorem is

not known to hold in general.

8.2. Bordism. The case of bordism is the greatest success of the method outlined

in Section 7. The correct equivariant form of bordism to use is tom Dieck’s ho-

motopical equivariant bordism [16]. A completion theorem for the calculation of

MU∗(BG) for Abelian compact Lie groups was proven by Löffler [46, 47] soon after

the Atiyah-Segal completion theorem appeared, but there was no further progress

until quite recently.

It is easy to describe the representing G-spectrum MUG. Consider the usual

model for the prespectrum with associated spectrum MU . The spaces comprising

it are the Thom complexes of the Grassmannian models for universal vector bundles.

Now carry out the construction using indexing spaces in a complete G-universe. The

V th space is defined using |V |-dimensional subspaces of the appropriate Grassman-

nian and therefore, up to G-homeomorphism, depends only on the dimension of V .

This fact leads to the Thom isomorphisms required by our general strategy. More-

over, the explicit construction leads to a quick proof that the Thom G-spectrum

MUG is in fact a commutative SG-algebra. Our general strategy applies [32].

Theorem 8.5 (Greenlees-May). Let G be finite. Then the localization and com-

pletion theorems hold for any module MG over MUG. Thus there are equivalences

MG ∧ EG+ ≃ ΓJ(MG) and F (EG+, MG) ≃ (MG)∧J

and, for any G-spectrum X, there are spectral sequences

E2
∗,∗ = H∗

J(MUG
∗ ; MG

∗ (X))⇒MG
∗ (EG+ ∧X)

and

E∗,∗
2 = HJ

∗ (MU∗
G; M∗

G(X))⇒M∗
G(EG+ ∧X). �
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We have several comments on this theorem, beginning with comments on its

proof. An immediate difficulty is that MU∗
G is certainly not Noetherian. Further-

more, we have no good reason to think that the augmentation ideal J ⊂ MU∗
G is

finitely generated unless G is abelian. We modify our strategy accordingly, proving

the theorem for any sufficiently large finitely generated subideal of J . By definition,

the stated constructions based on J mean the relevant constructions based on such

a sufficiently large subideal. When G is a p-group, the arguments of the previous

section apply to ideals generated by a finite number of Euler classes. Rather elabo-

rate multiplicative transfer and double coset formula arguments allow us to deduce

the result for general finite groups using ideals that are generated by the transfers

of the Euler classes from all p-Sylow subgroups and finitely many more elements.

We expect that the result for an arbitrary compact Lie group can be proved by

similar methods, but we do not yet see how to use these methods to give the result

for arbitrary families.

Next we comment on the meaning of the theorem. Its most striking feature is its

generality. The methods explained in [22, §12] apply to give equivariant forms of all

of the important modules over MU , such as ku, K, BP , BP 〈n〉, E(n), P (n), B(n),

k(n) and K(n). The equivariant and nonequivariant constructions are so closely

related that we can deduce MUG-ring spectrum structures on the equivariant spec-

tra from the MU -ring spectra structures on the nonequivariant spectra. There are

a variety of nonequivariant calculations of the homology and cohomology of clas-

sifying spaces with coefficients in one or another of these spectra in the literature,

and our theorem gives a common framework for all such calculations.

We should comment on the specific case of connective K-theory. Here it is

known that the completion theorem is false for connective equivariant K-theory:

ku∗(BG+) is not a completion of ku∗
G at its augmentation ideal. However the

theorem is consistent, since the equivariant form of ku constructed by the methods

of [22, §12] is not the connective cover of equivariant K-theory. Indeed connective

equivariant K-theory does not have Thom isomorphisms and is therefore not a

module over MUG.

We should also note that the coefficient ring MU∗
G is only known in the abelian

case, and even then only in a rather awkward algebraic form. On the other hand,

M∗(BG+) is known in a good many other cases, and in reasonably attractive form.

Thus the theorem does not at present give a useful way of calculating M∗(BG+).

However, there are several ways that it might be used for calculational purposes.

For example, in favourable cases, such as M = MU for Abelian groups G, one can

work backwards to deduce that M∗
G is tame, in the sense that its local homology

is its completion concentrated in degree zero. The local cohomology of M∗
G is then

the same as that of its completion [31, 2.7], hence one can hope to calculate its
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local cohomology as well and to use this information to study M∗(BG+). The

point is that, nonequivariantly, the calculation of homology is often substantially

more difficult than the calculation of cohomology. Again, if M is an MU -algebra,

then one can use invariance under change of base [31, 1.3] to calculate the local

cohomology and local homology over M∗
G; it sometimes turns out that M∗

G is a ring

of small Krull dimension, and this gives vanishing theorems that make calculation

more feasible.

These comments are speculative: the theorem is too recent to have been as-

similated calculationally. Certainly it renews interest in the connection through

cobordism between algebraic and geometric topology.

8.3. Cohomotopy. Soon after the Atiyah-Segal theorem was proved, Segal con-

jectured that the analogous result would hold for stable cohomotopy, at least in

degree 0. In simplest terms, the idea is that the Burnside ring A(G) plays a role

in equviariant cohomotopy analogous to the role that R(G) plays in equivariant

K-theory and should therefore play an analogous role in the calculation of the

nonequivariant cohomotopy groups of classifying spaces.

We restrict attention to finite groups G. Then the elements of positive degree

in the homotopy ring πG
∗ are nilpotent, so that it is natural to take its degree zero

part πG
0
∼= A(G) as our base ring; A(G) is Noetherian, and we let I denote its

augmentation ideal ker(A(G) −→ Z). Theorem 7.4 applies.

Segal’s original conjecture was simply that A(G)∧I
∼= π0(BG+). However, it

quickly became apparent that, to prove the conjecture, it would be essential to

extend it to a statement concerning the entire graded module π∗(BG+). In view of

Theorem 3.10, we have enough information to formulate the conjecture in entirely

nonequivariant terms [41], but it was the equivariant formulation that led to a

proof.

In accordance with our philosophy we make a spectrum level statement and take

the algebraic statement as a corollary, although the proofs proceed the opposite

way.

Theorem 8.6 (Carlsson). For any finite group G and any G-spectrum X there is

an equivalence of G-spectra

(DX)∧I
≃
−→D(EG+ ∧X).

If X is finite, then

π∗
G(X)∧I

∼= π∗
G(EG+ ∧X);

in general, there is a short exact sequence

0 −→ LI
1π

∗
G(ΣX) −→ π∗

G(EG+ ∧X) −→ LI
0π

∗
G(X) −→ 0. �
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We have already remarked that the localization theorem for stable homotopy fails

and that cohomotopy does not have Thom isomorphisms. Therefore the strategy of

proof must be quite different from that presented in Section 7. We first note that

the generality of our statement is misleading: it was observed in [28, 4.1] that the

statement for general X is a direct consequence of the statement for X = SG. One

reason for working on the G-spectrum level is to allow such deductions.

Taking X = SG, it suffices to prove that, after completion, the map ε : SG −→

D(EG+) induced by the projection EG+ −→ S0 induces an isomorphism on ho-

motopy groups. Proceeding by induction on the order of G and using Theorem

7.4, we may assume that the homotopy groups πH
∗ for proper subgroups H are

mapped isomorphically, so that we need only consider the groups πG
∗ . As with the

Atiyah-Segal theorem, we think cohomologically and control exactness by working

with pro-groups. We find that it suffices to show that ε induces an isomorphism of

pro-groups
{

π∗
G(S0)/In

} ∼=−→π
∗
G(EG+).

At this point, a useful piece of algebra comes into play. In the context of Mackey

functors, there is a general framework for proving induction theorems, due to Dress

[19]. An induction theorem for I-adically complete Mackey functors was proven

in [54], and it directly reduces the problem at hand to the study of p-groups and

p-adic completion. A more sophisticated reduction process, developed in [3], shows

that the generalization of the Segal conjecture to arbitrary families of subgroups of

G also reduces to this same special case.

This reduces the problem to what Carlsson actually proved [13]. Fix a p-group

G, assume the theorem for all proper subgroups of G, and write π∗
G(X) and [X, Y ]∗G

for the pro-group valued, p-adically completed, versions of these groups, where p-

adic completion is understood in the pro-group sense. We replace G-spaces by their

suspension G-spectra without change of notation. What Carlsson proved is that

π∗
G(S0)

∼=−→π∗
G(EG+)

is a pro-isomorphism.

A first reduction (see Lemma 7.6) shows that it suffices to prove that π∗
G(ẼP) =

[ẼP ,S′]∗G is pro-zero. The cofibre sequence EG+ −→ S0 −→ ẼG gives rise to a

long exact sequence

· · · −→ [ẼP , EG+]∐G −→ [ẼP ,S′]∐G −→ [ẼP , ẼG]∐G
δ
−→[ẼP , EG+]∐+∞

G −→ · · · .

The ẼG terms carry the singular part of the problem; the EG+ terms carry the

free part. It turns out that if G is not elementary Abelian, then both [ẼP , EG+]∗G
and [ẼP , ẼG]∗G are pro-zero. This is not true when G is elementary abelian, but

then the connecting homomorphism δ is a pro-isomorphism.
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The calculation of the groups [ẼP , ẼG]∗G involves a functorial filtered approxima-

tion with easily understood subquotients of the singular subspace SX of a G-space

X . Here SX consists of the elements of X with non-trivial isotropy groups; it is

relevant since, on the space level,

[X, ẼG ∧ Y ]G ∼= [SX, Y ]G.

A modification of Carlsson’s original approximation given in [14] shows that SX

depends only on the fixed point spaces XE for elementary Abelian subgroups E

of G, and this analysis reduces the vanishing of the [ẼP , ẼG]∗G when G is not

elementary Abelian to direct application of the induction hypothesis.

Recall the description of ẼP as the union ∪SnV , where V is the reduced regular

representation of G. One can describe [SnV , EG+]∗G as the homotopy groups of a

nonequivariant Thom spectrum BG−nV (see [52]) and so translate the calculation of

the free part to a nonequivariant problem that can be attacked by use of an inverse

limit of Adams spectral sequences. The vanishing of [ẼP , EG+]∗G when G is not

elementary abelian is an Euler class argument: a theorem of Quillen implies that

χ(V ) ∈ H∗(BG; Fp) is nilpotent if G is not elementary Abelian, and this implies

that the E2 term of the relevant inverse limit of Adams spectral sequences is zero.

When G is elementary Abelian, it turns out that all of the work in the calculation

of [ẼP , EG+]∗G lies in the calculation of the E2 term of the relevant inverse limit of

Adams spectral sequences. When G is Z2 or Zp, the calculation is due to Lin [44, 45]

and Gunawardena [33], respectively, and they were the first to prove the Segal

conjecture in these cases. For general elementary Abelian p-groups, the calculation

is due to Adams, Gunawardena, and Miller [4]. While these authors were the

first to prove the elementary Abelian case of the Segal conjecture, they didn’t

publish their argument, which started from the nonequivariant formulation of the

conjecture. A simpler proof within Carlsson’s context was given in [14], which

showed that the connecting homomorphism δ is an isomorphism by comparing it to

the corresponding connecting homomorphism for a theory, Borel cohomology, for

which the completion theorem holds tautologously.

The Segal conjecture has been given a number of substantial generalizations,

such as those of [40, 3, 56]. The situation for general compact Lie groups is still

only partially understood; Lee and Minami have given a good survey [43]. One

direction of application has been the calculation of stable maps between classifying

spaces. The Segal conjecture has the following implication [40, 51], which reduces

the calculation to pure algebra.

Let G and Π be finite groups and let A(G, Π) be the Grothendieck group of

Π-free finite (G×Π)-sets. Observe that A(G, Π) is an A(G)-module.
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Theorem 8.7. There is a canonical isomorphism

A(G, Π)∧I
∼= [Σ∞BG+, Σ∞BΠ+]. �

Many authors have studied the relevant algebra [59, 48, 35, 10, 65], which is now

well understood. One can obtain an analog with Π allowed to be compact Lie [56],

and even with G and Π both allowed to be compact Lie [58].

8.4. The cohomology of groups. We have emphasized the use of ideas and

methods from commutative algebra in equivariant stable homotopy theory. We

close with a remark on equivariant cohomology which shows that ideas and methods

from equivariant stable homotopy theory can have interesting things to say about

algebra.

The best known equivariant cohomology theory is simply the ordinary cohomol-

ogy of the Borel construction:

H∗
G(X) = H∗(EG+ ∧G X ; k),

where we take k to be a field. The coefficient ring is the cohomology ring H∗
G(S0) =

H∗(G) of the group G, and the augmentation ideal J consists of the elements of

positive degree. Of course, this theory can be defined algebraically in terms of chain

complexes. As far as completion theorems are concerned, this case has been ignored

since H∗
G(X) is obviously complete for the J-adic topology and the completion

theorem is true trivially, by virtue of the equivalence EG+ ∧ EG+ ≃ EG+.

However, once one has formulated the localization theorem, it is easy to give a

proof along the lines sketched above, using either topology or algebra. We give an

algebraic statement proven in [26].

Theorem 8.8. For any finite group G and any bounded below chain complex M of

kG modules there is a spectral sequence with cohomologically graded differentials

Ep,q
2 = Hp,q

J (H∗(G; M)) =⇒ H−(p+q)(G; M). �

It would be perverse to attempt to use the theorem to calculate H∗(G; M), but

if we consider the case when the coefficient ring is Cohen-Macaulay, so that the

only non-vanishing local cohomology group occurs for d = dimH∗(G), we see that

the theorem for M = k states that

Hn(G) = Hd,−n−d
J (H∗(G)).

In particular, using that H∗(G) is the k-dual of H∗(G), this duality theorem implies

that the ring H∗(G) is also Gorenstein, which is a theorem originally proven by

Benson and Carlson [9].
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