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ABSTRACT. Let G be a compact Lie group. We describe the Picard group
Pic(HoG.¥) of invertible objects in the stable homotopy category of G-spectra
in terms of a suitable class of homotopy representations of G. Combining this
with results of tom Dieck and Petrie, which we reprove, we deduce an exact
sequence that gives an essentially algebraic description of Pic(HoG.¥) in terms
of the Picard group of the Burnside ring of G. The deduction is based on an
embedding of the Picard group of the endomorphism ring of the unit object
of any stable homotopy category % in the Picard group of %.

For a compact Lie group G, the isomorphism classes of invertible G-spectra
form a group, Pic(HoG.¥), under the smash product. Here HoG.% is the stable
homotopy category of G-spectra indexed on a complete G-universe, as defined in
[21]. We shall prove the following theorem.

Theorem 0.1. There is an exact sequence
0 — Pic(A(G)) — Pic(HoGY) — C(QG).

Here A(G) is the Burnside ring of G and C(G) is the additive group of continuous
functions from the space of subgroups of G to the integers, where subgroups are
understood to be closed. In fact, we shall see that this is implicit in results of
tom Dieck and Petrie. Moreover, they and others have also studied the image of
Pic(HoG.¥) in C(G).

In §1, we give some general results on Picard groups of categories, following up
[17] and [24]. In particular, we prove the following theorem, which shows that the
monomorphism of Picard groups displayed in Theorem 0.1 is formal. The notion of a
“stable homotopy category” is axiomatized in [17]. There are examples in algebraic
topology, algebraic geometry, representation theory, and homological algebra.

Theorem 0.2. Let € be a stable homotopy category, let S be the unit object, and
let R = R(%) be the ring of endomorphisms of S. There is a monomorphism of
groups ¢ : Pic(R) — Pic(€). The objects in the image of ¢ are the invertible
objects that are retracts of finite coproducts of copies of S.

In practice, stable homotopy categories are usually constructed by localizing
model categories so as to invert certain objects, thus forcing them to be elements
of Pic(¥). For example, the equivariant stable homotopy category HoG.% is con-
structed by inverting the suspension spectra of spheres SV associated to represen-
tations of G, thus giving a homomorphism from RO(G), regarded as an abelian
group under addition, to Pic(HoG.%); see Remark 3.6. Theorem 0.2 says that,
on formal grounds, certain other objects must also be inverted. For example, the
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following parenthetical corollary is immediate from work of Morel [26] on the Morel-
Voevodsky Al-stable homotopy category [27]; compare [24, 2.14, 4.11, 4.12].

Corollary 0.3. Let k be a field, char k # 2, let € be the A'-stable homotopy cate-
gory of k, and let GW (k) be the Grothendieck-Witt ring of k. There is a monomor-
phism ¢ : Pic(GW (k)) — Pic(¥).

Po Hu [18] has constructed various elements in Pic(%’). Her examples are gen-
uinely exotic, in the sense that they are not in the image of Pic(GW(k)), since
calculations in motivic cohomology show that they cannot be retracts of copies of
the unit object.

Returning to the equivariant stable homotopy category, in §2 we reduce the
calculation of Pic(HoG.¥) to the study of homotopy representations of G, starting
with the following slightly nonstandard definition. We shall relate this definition
to previous ones in §4.

Definition 0.4. A generalized homotopy representation A is a finitely dominated
based G-CW complex such that, for each subgroup H of G, A is homotopy equiv-
alent to a sphere ™) A stable homotopy representation is a G-spectrum of the
form X~V XA, where V is a representation of G and A is a generalized homotopy
representation.

Theorem 0.5. Up to equivalence, the invertible G-spectra are the stable homotopy
representations.

In §3, we prove Theorem 0.1 by combining these algebraic and topological reduc-
tions of the problem with some arguments from the work of tom Dieck and Petrie
[4, 11, 12, 13]. Theorem 0.1 gives an appropriate conceptual setting and quick new
proofs for some of the main results of [12, 13].

1. THE PICARD GROUP OF A STABLE HOMOTOPY CATEGORY

We assume familiarity with [24, §§1-3]. As there, let ¢ be a closed symmetric
monoidal category with unit object S, product A, and internal hom functor F.
Recall that the dual of an object X is DX = F(X,S). Dualizable objects are
discussed in [24, §2]. We are interested in invertible objects, and these are dualizable
by [24, 2.9]. We have the following observation.

Lemma 1.1. An object X is invertible if and only if the functor (=)AX : € — €
is an equivalence of categories. If X is invertible, the canonical maps ¢ : S —
F(X,X),n:S— XADX, ande: DXANX — S are isomorphisms. Conversely,
if € is an isomorphism or if X is dualizable and n or v is an isomorphism, then X
is wnvertible.

Proof. The first statement is clear. If X is invertible, the map
(g(—,S) - %(_aF(va)) = Cg(_ /\X7X)

induced by ¢ is the isomorphism (—) A X given by smashing maps with X, hence ¢
is an isomorphism by the Yoneda lemma. When X is dualizable, the definition of
7 in terms of ¢ given in [24, 2.3] shows that ¢ is an isomorphism if and only if 7 is
an isomorphism; in turn, by [24, 2.6(ii)], 7 is an isomorphism if and only if € is an
isomorphism. Trivially, if € is an isomorphism, then X is invertible. (]
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Now assume further that the category ¢ is additive. Then R = R(%) = €(S, S)
is a commutative ring and % is enriched over the category .#r of R-modules, so
that ¢'(X,Y) is naturally an R-module. Define functors mg, 7° : € — .#R by

(X)) =%(S,X) and 7°(X)=%(X,5).
The A-product of maps gives a natural transformation
o : 7T0(X) QR 7T()(Y) — 7T0(X AN Y)

The proof of Theorem 0.2 is based on application of 7wy to Kiinneth objects of ¥,
and we start with a characterization of the Kiinneth objects. Observe that, by [24,
2.7] and adjunction, we have canonical isomorphisms

T(F(X,Y)ANZ) 2 m(F( X, YANZ)2E(X, Y ANZ)
if X or Z is dualizable. In particular, if X is dualizable,
mo(DX) 2 7%X) and w(DXAY)=E(X,Y).

Recall that an R-module is finitely generated projective if and only if it is dual-
izable [24, 2.4].

Proposition 1.2. The following conditions on a dualizable object X are equivalent,
and these conditions imply that mo(X) is a finitely generated projective R-module.
A dualizable object satisfying these conditions is said to be a Kiinneth object.

(i) ¢:mo(DX) ®@p mo(X) — mo(DX A X) is an isomorphism.
(ii) ¢ : 7°(Y) ®g m0(X) 2 mo(DY) @g mo(X) — mo(DY A X) 2 €(Y,X) is
an isomorphism for all dualizable objects Y .
(iii) ¢ : m(Y) @r mo(X) — mo(Y A X) is an isomorphism for all objects Y.

(iv) X is a retract of \/_, S for some integer n.

Proof. Clearly (iii) = (ii) = (i) by specialization of the given isomorphisms. By
[21, TIT.1.9], (i) = (iii), so that (i)—(iii) are equivalent; [21, III.1.9] also shows
that my(X) is dualizable when these conditions hold. Write SV = \/I"_, S; it is
isomorphic to [];—, S. The implication (iv) = (iii) is clear since the conclusion of
(iii) holds when X = S¥™ and is inherited by retracts of S¥™. Thus it suffices to
prove that (ii) = (iv). Assuming (ii), mo(X) is a finitely generated projective R-
module. Therefore m(X) is a direct summand and thus a retract of R™ 2 7o (SV")
for some n. Moreover, (ii) gives natural isomorphisms

(V) @r 10(S¥") 2 € (Y,SV") and 7°(Y) ®g m(X) = E(Y, X).

Since X and SV" are dualizable, we see by the Yoneda lemma that a retraction
mo(X) — R™ — m(X) induces a retraction X — SV — X. O

Of course, (iv) implies that X is dualizable, but the other conditions do not.
The proposition shows that Kiinneth objects in % are closely related to dualizable
R-modules. In particular, when ¢ = .#R is the category of R-modules, (iv) says
that X is finitely generated projective.

Corollary 1.3. The Kiinneth objects, the dualizable objects, and the finitely gen-
erated projectives coincide in the category of modules over a commutative ring.
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Let d% be the full subcategory of dualizable objects in € and let k¢ C d€ be the
full subcategory of Kiinneth objects. These are closed symmetric monoidal additive
subcategories of €', and D restricts to equivalences of categories D : d€°P — d¥
and D : k¢°P — k%. Of course, k.#r = d#r. From now on, we assume that d¢
is skeletally small. Let Iso(d%¢’) and Iso(k%) denote the sets of isomorphism classes
of objects in d¥ and k%’; these are both semi-rings under V and A.

Corollary 1.4. 7g : Iso(k€) — Iso(d.#R) is a monomorphism of semi-rings.

Proof. Proposition 1.2 (ii) shows that if 7o(X) and my(Y") are isomorphic, then the
represented functors €(—, X) and €(—,Y) are isomorphic. O

We now impose extra structure on ¢ which ensures that 7 is an isomorphism
of semi-rings. The idea is to apply the Brown representability theorem [3]. While
this may not give maximal generality, we place ourselves in the context of [17]
and assume that % is a stable homotopy category in the sense of [17, 1.1.4]. This
amounts to the following conditions. Details may be found in [17], although the
notion of compatibility in (b) given there should be replaced by the more structured
notion given in the sequel [25].

(a) € is triangulated and has arbitrary coproducts.

(b) € is closed symmetric monoidal, compatibly with the triangulation.
(c) € has a generating set of small dualizable objects.

(d) Every cohomology functor on % is representable.

Here a “cohomology functor” is an exact additive contravariant functor from % to
Abelian groups that carries coproducts to products.

Proposition 1.5. If € is a stable homotopy category, my : Iso(k€) — Iso(dM#R)
is an isomorphism of semi-rings. In particular, my induces an isomorphism of
Abelian groups

Pic(k€) — Pic(d#r) = Pic(R).

Proof. As one can check directly, if P is a finitely presented R-module, then the
functor (—) ®g P commutes with arbitrary products. Of course, a projective R-
module P is flat, so that the functor (—) ®g P is exact. Thus, if P is a finitely
generated projective R-module, then (—) ®pg P is an exact additive functor that
carries products to products. The functor 7° is exact by standard properties of
triangulated categories and it carries coproducts to products. Therefore the com-
posite functor on ¢ that sends an object Y to 7°(Y)®g P is a cohomology functor.
It can be represented by an object X, so that 7°(Y) @r P = € (Y, X). Since the
action of R on 7%(Y’) is given by composition of maps in %, this is an isomorphism
of R-modules by naturality. In particular, taking Y = S, mo(X) = P. Arguing as
in the last step of the proof of Proposition 1.2, we see that X is a retract of some
SV™ and is therefore a Kiinneth object. This proves that 7y is an epimorphism. [J

Proof of Theorem 0.2. Let ¢ : Pic(R) = Pic(k%) — Pic(d¥) = Pic(¥€) be induced
by the inclusion k¢ — d% . Since the homomorphism of Picard groups associated
to any full embedding of symmetric monoidal categories is a monomorphism, c is a
monomorphism. Its image consists of the invertible Kiinneth objects. (]

Parenthetically, we relate these Picard groups to the evident groups of units in
Grothendieck rings. Let L(%) and K (%) be the Grothendieck rings associated to
Iso(k%) and Iso(d¥). Write K(R) = K(.#g) and note that K(R) = L(.#r). The
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inclusion k%4 — d% induces a homomorphism of rings L(%) — K (%) and thus a
homomorphism of rings ¢ : K(R) = L(¥) — K(%). Letting A* denote the units
of a ring A, we have the commutative diagram

(1.6) Pic(R) = Pic(k%) —— Pic(%)

ﬁl iﬁ
K(R)* = L(¥)* — K(%)*.

The maps § in (1.6) are considered in [24, §3]. The left arrow § is a monomor-
phism for any R, by [24, 3.8]. We do not know whether or not the bottom arrow ¢
is a monomorphism in general. However, we can prove that this is often the case.
Let G(R) denote the Grothendieck group of finitely generated R-modules.

Proposition 1.7. Let € be a unital algebraic stable homotopy category. If mo(X)
is a finitely generated R-module for all dualizable objects X and the natural map
v K(R) — G(R) is a monomorphism, then ¢ : K(R) 2 L(¥¢) — K(¥) is a
monomorphism.

Proof. Let X and Y be Kiinneth objects of ¢ such that X V Z 2 Y Vv Z for some
dualizable object Z. Then m(X) @ mo(Z) = mo(Y) @ mo(Z) as R-modules. Since ¢
is a monomorphism, there is a finitely generated projective R-module P such that
mo(X)® P 2 mo(Y) @ P. Let W be a Kiinneth object such that mq(W) = P. Then
(X VW) 2 7o(Y VW) and thus X VIV 2 Y VW by Corollary 1.4. O

2. DUALIZABLE AND INVERTIBLE (G-SPECTRA

To prove Theorem 0.5, we must characterize the invertible G-spectra in terms of
G-spaces, and we first characterize the dualizable G-spectra. Here we are comparing
the homotopy category HoG.Z of based G-spaces to the homotopy category HoG.%
of G-spectra, and we may restrict attention to based G-CW complexes and to G-CW
spectra. We write X for the suspension G-spectrum functor HoGY — HoG.%.

We write SV for the one-point compactification of a representation V', by which
we understand a finite dimensional real G-inner product space. We continue to
write SV for XSV, These linear sphere spectra are invertible elements of HoG.7,
this being the essential point of the construction of HoG.7. We write S~V for the
inverse of V. We have desuspension functors £~V given by smashing with S~V

Up to equivalence, the finite G-CW spectra are those of the form ¥~V L*B for a
finite G-CW complex B and a representation V of G [21, 1.8.16]. We have a similar
space level characterization of dualizable G-spectra.

Proposition 2.1. Up to equivalence, the dualizable G-spectra are the G-spectra of
the form X~VX®A, where A is a finitely dominated based G-CW complex and V
is a representation of G.

Proof. By an argument due to Greenlees [23, XVI1.7.4], the dualizable G-spectra
are the retracts up to homotopy of the finite G-CW spectra, that is, the finitely
dominated G-CW spectra. Since the functors £~V X% preserve retracts, it is clear
that the G-spectra of the statement are dualizable. We must prove conversely that
every retract of a finite G-CW spectrum is obtained by applying one of the functors
Y ~V¥* to a finitely dominated G-CW complex.
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Let X = X; be a retract of a finite G-CW spectrum Y~V X B, where B is a
finite G-CW complex and V is a representation of G. Since HoG.¥ is triangulated,
retracts split. Thus there is a G-spectrum X, such that X; V Xy ~ 7V E*B.
Projection and inclusion give idempotent maps e; : T~V E*°B — X~V 3B such
that ejes = 0 = ese; and e + e; = id. Explicitly, e; is the composite

YVVS®B~ XV Xy = X)X Xo =5 X, 25 XV Xy~ NTVE®B,

By the Freudenthal suspension theorem [23, 1X.1.4], we can suspend by V & W
for W sufficiently large that %°° gives a bijection from the homotopy classes of
self-maps of the G-space X" B to the homotopy classes of self-maps of the G-
spectrum Y°XW B = EWy*pB = yVOWy-VyopR  Moreover, we may as well
assume that W D R2, so that X B is simply G-connected. Now XV®We, = ¥ f;
for idempotent G-maps f; : YW B — YW B such that fifo = 0 = fof; and
f1+ fo =id. Taking the f; to be cellular maps, let A; be the telescope of countably
many iterates of f;. The composite of the pinch map ¥V B — LW B v LW B and
the wedge of the canonical maps YW B — A; gives a map & : YW B — A} V Aj.
On passage to fixed points and homology, £ realizes the evident isomorphism

H(EVB)") = fl. (Y B)") @ fo. H(2Y B)T).

Since these fixed point spaces are simply connected, each £ is a weak equivalence
and thus £ is a G-equivalence by the Whitehead theorem. The evident composites

YOWYX, — sWyxpxyneyWp 54,
are 0 if 7 # j, and the sum of the composites with ¢ = j is an equivalence. Thus the

composite with i = j = 1 is an equivalence. This displays X; as X~ (V&W)Ix© 4,
where A; is a wedge summand of the finite G-CW complex XV B. (]

We will prove Theorem 0.5 by using the geometric fixed point functors ®¥ :
HoGY — Ho. of [21, I1§9] to compare invertible G-spectra to invertible spectra.
By [21, I11.9.9 and 11.9.12], for based G-spaces A and for G-spectra X and Y, we
have natural equivalences @7 %A ~ ¥>® A7 and (X NY) ~ &H(X) A OH(Y).
By [21, III.1.9], this implies formally that if X is a dualizable G-spectrum, then
®H X is a dualizable spectrum and ®7 DX = D®H X. Moreover, by a variant of
the Whitehead theorem [23, XVI§6], a map f of G-spectra is an equivalence if and
only if each ®¥ f is an equivalence of spectra.

Recall our notion of a stable homotopy representation from Definition 0.4.

Proof of Theorem 0.5. We must characterize the invertible G-spectra X. Since
invertible G-spectra are dualizable, we may assume that X = X~VX>A, where
A is a finitely dominated based G-CW complex and V is a representation of G.
By suspending and desuspending by R?, we may as well assume that A is simply
G-connected. By Lemma 1.1, X is invertible if and only if the evaluation map
e: DX NX — Sg is an equivalence, where Sg is the sphere G-spectrum. This
holds if and only if each ®¥¢ is a nonequivariant equivalence. By the results cited
above, the map ®f¢ is isomorphic to the map ¢ : D®H(X) A ®H(X) — S.
This map is an equivalence if and only if ®#(X) is an invertible spectrum. By
an elementary argument using the Hurewicz and Whitehead theorems (or see [28]
or [16]), the only invertible spectra are the spheres ¥*°S™ for integers n. Since
PH(L-VE>®A) ~ E_VHZOOAH, X is invertible if and only if, for each H, X>®° AH ~
S™H) for some integer n(H). Since we have assumed that A is simply G-connected,
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n(H) > 2. Thus A" has the same homology as S™(*) and is therefore equivalent
to S") by the Hurewicz and Whitehead theorems. We conclude that the G-
spectrum X is invertible if and only if the G-space A is a generalized homotopy
representation, which means that X is a stable homotopy representation. O

By easy inspections, smash products and duals (= inverses) of stable homotopy
representations are stable homotopy representations. This also follows directly from
Theorem 0.5.

Corollary 2.2. Pic(HoG.Y) is the group of isomorphism classes in HoG of
stable homotopy representations.

3. THE EXACT SEQUENCE FOR PIC(H0oG.Y)

We prove Theorem 0.1 by combining the formal algebraic considerations of §1,
the topological reduction from G-spectra to G-spaces of §2, and a lemma from the
work of tom Dieck and Petrie [12, 13] on space level homotopy representations.

Theorem 0.2 applies since HoG.¥ is a stable homotopy category. Here R(HoG.%)
is the Burnside ring A(G), which is a well studied ring. In particular, its prime
ideals and its localizations at prime ideals are understood [4, 21].

For an invertible G-spectrum X = X~V %> A, where A is a generalized homotopy
representation, let dp (X) = n(H) — dim(V), where A is equivalent to S™1),
Thus ®7 X is a sphere spectrum S47); d(H) depends only on the conjugacy class
(H) of H, and dg(X AY) =dp(X) + dg(Y) for invertible G-spectra X and Y.

Let U(G) denote the space of conjugacy classes of (closed) subgroups of G. It is
a totally disconnected compact metric space [4, 21]. Let C(G) denote the additive
group of continuous functions ¥(G) — Z, where Z has the discrete topology. It is
more usual to restrict attention to subgroups H of finite index in their normalizers,
but that is not appropriate for the present purposes.

Definition 3.1. Define the dimension homomorphism d : Pic(HoG¥) — C(Q)
by letting d(X) : ¥(G) — Z send (H) to dy(X).

We must check that d(X) is continuous. Since our dimensions are defined ho-
motopically rather than geometrically, d(X) depends only on the homotopy type
of X and thus only on its isomorphism class in HoG.¥. By [19, 1.4], a finitely
dominated G-CW complex is homotopy equivalent to a G-CW complex that has
finitely many orbit types. Now the continuity of d(X) follows from [11, IV.3.4],
which describes the behavior of fixed point subspaces with respect to limits of sub-
groups. We emphasize that the continuity of d(X) is not formal; rather, it depends
upon basic facts about the differential topology of compact Lie groups [11, I§5].

As we will discuss in §4, much is known about the image of d, but it is not fully
understood. Consider the sequence

0 — Pic(A(G)) S Pic(HoG.7) % C(G).

We know that ¢ is a monomorphism, hence the following result completes the proof
of Theorem 0.1.

Theorem 3.2. An invertible G-spectrum X is a Kinneth object if and only if
d(X) = 0. Therefore the kernel of d is equal to the image of c.
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Proof. The last clause follows from the definition of the map ¢ in terms of Kiinneth
objects of HoG.%. Let X = ¥~V XA for a representation V of G and a generalized
homotopy representation A. As usual, we may as well assume that A is simply G-
connected.

Suppose first that X is a Kiinneth object. Then, by Proposition 1.2(v), X is a
retract of \/!__, Si for some n. Suspending by V @ W for a sufficiently large W
and arguing as in the proof of Proposition 2.1, we find that the G-space X A is a
retract of \/_, SV®W. Passing to H-fixed point spaces and observing that a sphere
that is a retract of a wedge of m-spheres must be an m-sphere, we see that A7 is
equivalent to S™) where n(H) = dim(V). Thus dy(X) = 0 and X, regarded
as an element of Pic(HoG.¥), is in the kernel of d.

Conversely, suppose that X is in the kernel of d. This means that A is equiva-
lent to S™1) | where n(H) = dim(V¥). Equivalently, d(2>®°A) = d(S"). We must
prove that X is a Kiinneth object. Write € = HoG.¥ and identify A(G) with
R(%). It suffices to prove that the canonical map

(Y) ®@a(q) m0(X) — C(Y, X)

displayed in Proposition 1.2(ii) is an isomorphism for all dualizable G-spectra Y.
This holds if, for all maximal ideals ¢ of A(G),

(3.3) WO(Y)L} ®a(q), m0(X)qg — €Y, X),

is an isomorphism. The maximal ideals of A(G) are of the form ¢(H,p) where p is
a prime number and H is a subgroup of G with finite Weyl group WH = NH/H
of order prime to p. The ideal q(H,p) consists of all maps ¢ : S¢ — Sg such
that degy(¢) = 0 mod p, where degy(¢) is the degree of the fixed point map
fH L (SVYH — (SYV)H of a space level representative f : SV — SV of ¢. We
have the following key lemma, which generalizes an observation of tom Dieck and
Petrie [12, §2]. We defer its proof to the end of the section.

Lemma 3.4. Let X € Ker(d) and let WH have finite order prime to p. Then
there are maps f : S¢ — X and k : X — Sg such that deg(f?) # 0 mod p and
deg(k™) # 0 mod p.

Here, since f and k are maps between different objects, the meaning of the
relevant “degrees” is not obvious; we will make sense of them below.

Returning to the proof of Theorem 3.2, fix a maximal ideal ¢ = ¢(H, p) of A(G),
and let f and k be as in the lemma. The composite f ok : Sg — Sg is a unit in
A(G), since deg((f o k)H) = deg(fH)deg(k™) # 0 mod p, so that f ok is not in
g. Smashing maps S¢ — Sg with X gives an isomorphism of rings € (Sg, Sa) =
€¢(X,X), and ko f is a unit in €(X, X),. Thus fi : €(Sq,5¢)q — €(Sa,X)q
is an isomorphism with inverse k.. Changing back to the notations in (3.3), the
vertical arrows in the following naturality diagram are isomorphisms.

71'O(Y)q ®AG), A(G)q EE——— 7"'O(Y)q

1®f*l J{f*

m(Y), ®A@), To(X)g —=F (Y, X),

Since the top arrow is clearly an isomorphism, so is the bottom arrow. Thus X is
a Kiinneth object and the proof is complete. ([l
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In view of Proposition 1.5 and [24, 2.11], Theorem 3.2 has the following imme-
diate consequence.

Theorem 3.5. If X is a stable homotopy representation such that d(X) =0, then
mo(X) is a finitely generated projective A(G)-module of rank 1.

Remark 3.6. For finite groups, Theorem 3.2 is a version of [13, 6.5] of tom Dieck
and Petrie; for compact Lie groups, it is a version of [10, 1.6] of tom Dieck. Related
information about Pic(A(G)) is given in tom Dieck’s papers [8, 9]. Theorem 3.5
generalizes [12, Thm.1] of tom Dieck and Petrie, which gives the result for sphere
G-spectra S ~V. We have a homomorphism Sph from the real representation
ring RO(G), regarded as an abelian group under addition, to Pic(HoG.¥). It
sends W —V to SW=V, and W — V is in the kernel of Sph if and only if SV is
stably G-homotopy equivalent to S". A necessary condition for this to hold is
that W — V be in the subgroup ROy (G) of RO(G) generated by those W — V
with dim V# = dim W# for all H. Define jO(G) to be the image of the restriction
Sph : ROy(G) — Pic(HoG.Y). Clearly jO(G) is contained in the kernel Pic(A(G))
of d. The group jO(G) is studied in [4, 12].

Proof of Lemma 3.4. We first observe that we need only construct f : S¢ — X.
Indeed, if we can do this, then we can construct f’ : S¢ — DX in the same fashion.
Taking the smash product of f’ with the identity map of X and composing with
the equivalence € : DX A X — S, we obtain the desired map k: X — Sg.

Suspending maps Sg — X by a sufficiently large representation V & W, we
reduce the problem to consideration of space level maps SV®W — ¥W A, Chang-
ing notations, it suffices to consider maps S — A, where V is a representa-
tion and A is a generalized homotopy representation such that A ~ SV for all
H C G. We may as well assume that A and SV are G-simply connected, so that
n(H) = dim(VH) > 2 for all H.

We must make sense of deg(f7) for a G-map f : SV — A. There is a standard
way of doing this, due to Laitinen [20, §2] and discussed in detail by tom Dieck [11,
pp 169-173]. Tom Dieck considers maps between generalized homotopy representa-
tions A and B with the same dimension functions {n(H)}, and he assumes that the
fixed point spaces A7 and B both have topological dimension n(H). However,
the use of this hypothesis is to obtain restrictions on the dimensions {n(H)}, and it
therefore suffices to assume that either A or B has this property. Since SV has this
property, the discussion applies in our situation. The conclusion is that S" and
A have the same orientation behavior and admit coherent choices of fundamental
classes in the homologies of their fixed point spaces. Use of these fundamental
classes fixes the degrees {deg(f)}.

An elementary obstruction theory argument shows that we can extend a non-
equivariant map SV AH of degree one to an H-map e : SV — A; see e.g.
[11, 11.4.11(ii)]. To obtain the required G-map f : SV — A, we apply a transfer
argument. Suspending further if necessary, we can assume that G/H embeds as
a sub G-space of V. Using a tubular neighborhood of the embedding and the
Pontryagin-Thom construction, we obtain a G-map SV — G, Ay SV, where W
is the complement in V' of the tangent space of G/H at eH (see e.g. [21, IL1.5.1]).
Using the inclusion W C V there results a G-map ¢ : SV — G Ag SY. We define
f to be the composite

SV LG Ag SV M oA AS A,
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where ¢ is given by the action of G on A. The W (H)-space (G4 Ay A)H is the
wedge of |W(H)| copies of A, with W(H) permuting the wedge summands, and
similarly with A replaced by SY. By virtue of our coherent choices of orientations,

we see that f is the sum of |W(H)| homeomorphisms, each of which has degree
1. Thus the degree of f¥ is |W(H)|, which is prime to p. |

4. REMARKS ON HOMOTOPY REPRESENTATIONS

Since our definition of a generalized homotopy representation differs slightly from
the usual one, we give a comparison. In the literature, homotopy representations
are defined as unbased spaces, and joins are used instead of smash products. We
shall reinterpret the classical definitions in the based context appropriate to stable
homotopy theory, and we require A¥ to have the homotopy type of a sphere S™(#)
for each (closed) subgroup H of G.

With this understanding, tom Dieck’s definition [11, II.10.1] of a generalized
homotopy representation A replaces our condition that the G-CW complex A be
finitely dominated by the conditions that A have finite dimension and finitely many
orbit types. We are interested in G-homotopy types, and our definition, unlike tom
Dieck’s, is homotopy invariant. We have the following comparison.

Proposition 4.1. Let A be a G-CW complex such that A™ has the homotopy type
of a sphere S for each H C G. If A is finitely dominated, then A is homotopy
equivalent to a finite dimensional G-CW complex B having finitely many orbit types.
Conwversely, if A is finite dimensional and has finitely many orbit types, then A is
finitely dominated.

Proof. By [19, Thm D] or [22, 14.9], if A is finitely dominated, then it is homotopy
equivalent to a finite dimensional G-CW complex A’. Then, by [19, 1.4], A’ is
homotopy equivalent to a G-CW complex B having finitely many orbit types. With
the proof of the cited result, B is still finite dimensional. The converse is proven
(although only stated for actual homotopy representations) by Liick [22, 20.2]. O

Thus our definition of a generalized homotopy representation is just a homotopy
invariant modification of the usual one.

Homotopy representations are restricted kinds of generalized homotopy represen-
tations. The crucial restriction is the requirement that A* be an n(H )-dimensional
space, and that is required in all definitions in the literature. This restriction gives
control on the possible values taken by the image of d, as we used implicitly in the
obstruction theory step of the proof of Lemma 3.4. In [11, I1.10.1], but not in [13]
and most other sources, two further restrictions are required on A for it to qualify
as a homotopy representation, namely

(i) The set Iso(A) of isotropy groups of A is closed under intersection.

(ii) If H € Iso(A) is a proper subgroup of K, then n(H) > n(K).
Observe that both conditions can be arranged by smashing A with SV for a well
chosen representation V. Thus, for stable purposes, we can assume these conditions
without loss of generality. We have the following comparison.

Proposition 4.2. Let G be finite or a torus. For any generalized homotopy repre-
sentation A, there is a representation V such that ANSY is equivalent to a homotopy
representation B. Therefore every element of Pic(HoG.Y) can be represented as
Y=WX>®B for some homotopy representation B and representation W.
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Proof. First assume that G is finite. Under conditions on A specified in [13, 6.1],
[13, 6.6] proves that A is equivalent to a homotopy representation. When each A#
is 2-connected, as can be arranged by smashing with S2, the conditions are versions
of (i) and (ii) above, and they can be arranged by smashing with a suitable SV.
When G is a torus, the result is proven in [7, p. 463], where it is shown that V'
and W can be found such that A A SV is equivalent to S". O

The following definition and results help to compare our work with the literature.

Definition 4.3. Define V(G) to be the Grothendieck group associated to the
monoid M(G) under smash product of equivalence classes of homotopy represen-
tations, with [S°] as unit. Note that [A] = [A/] in V(G) if and only if A A B is
equivalent to A’ A B for some B. An isomorphic group is obtained using unbased
homotopy representations and the join operation. Define V’(G) similarly, but using
generalized homotopy representations.

In these groups, inverses are adjoined formally, whereas actual inverse topological
objects are present in Pic(HoG.¥). Proposition 4.2 implies the following result.

Corollary 4.4. If G is finite or a torus, the canonical map V(G) — V'(G) is an
isomorphism.

As far as we know, there is no information in the literature about the relationship
between homotopy representations and generalized homotopy representations for
more general compact Lie groups. It is natural to hope for the following conjecture.

Conjecture 4.5. The canonical map V(G) — V'(G) is an isomorphism for any
compact Lie group G.

Proposition 4.6. There is a canonical isomorphism V' (G) — Pic(HoG.Y).

Proof. The functor ¥ gives a map of monoids M(G) — Pic(HoG.¥), which
extends uniquely to a map of groups V(G) — Pic(HoG.¥). This map is an epi-
morphism by Theorem 0.5. It is a monomorphism since if A and B are generalized
homotopy representations such that ¥°°A is equivalent to X°°B, then there is a
representation V such that A A SV is equivalent to B A SV. (]

The image of d : V(G) — C(G) has been studied extensively; see [6, 7, 11,
13, 14, 15] for finite groups and [1, 2] for general compact Lie groups. It is rarely
an epimorphism, although it is so trivially if G is cyclic of order 2. For finite
nilpotent groups G, in particular for p-groups, the image of d is realized by linear
representations. In more detail, there are necessary conditions, called the Borel-
Smith conditions, for an element f € C(G) to be the dimension function of a
homotopy representation, and when G is nilpotent every such f is d(S®) for some
virtual representation «; see [11, I1I§5]. In [2], Bauer defines a subgroup D(G) of
C(G) and displays a short exact sequence

0 — Pic(A(G)) — V(G) — D(G) — 0.

It refines the exact sequence of Theorem 0.1 to a short exact sequence when G
is finite or a torus, and this will remain true for general compact Lie groups G if
Conjecture 4.5 holds.
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