
INFINITE LOOP SPACE THEORY REVISITED 

by J. P. May 

Just over two years ago I wrote a summary of infinite loop 

space theory [37]. At the time, there seemed to be a lull in activity, 

with little immediately promising work in progress. As it turns out, 

there has been so much done in the interim that an update of the sum- 

mary may be useful. 

The initial survey was divided into four chapters, dealing 

with additive infinite loop space theory, multiplicative infinite loop 

space theory, descriptive analysis of infinite loop spaces, and homol- 

ogical analysis of infinite loop spaces. We shall devote a section to 

developments in each of these general areas and shall also devote a 

section to the newly evolving equivariant infinite loop space theory. 

Two of the biggest developments will hardly be touched on here 

however. I ended the old survey with the hope that "much new infor- 

mation will come when we learn how the rich space level structures 

described here can effectively be exploited for calculations in stable 

homotopy theory." This hope is being realized by work in two quite 

different directions. 

As discussed in [37, §4], the approximation theorem to the 

effect that ~nznx is a group completion of the simple combinatorial 

space CnX plays a central role in the general theory. I stated there 

that "homotopical exploitation of the approximation theorem has barely 

begun." This is no longer the case. Such exploitation is now one of 

the more active areas of homotopy theory, recent contributions having 

been made by Mahowald, Brown and Peterson, R. Cohen, Sanderson and 

Koschorke, Caruso and Waner, and F. Cohen, Taylor, and myself. I plan 

to summarize the present state of the art in [42], and will content my- 

self here with a remark in section two and a brief discussion of the 

equivariant approximation theorem in section five. 

Second, the notion of E ring spectrum discussed in [37, §ii] 

led to a simpler homotopical notion of H ring spectrum. This concept 

is really part of stable homotopy theory as understood classically, 

rather than part of infinite loop space theory, and seems to be basic 

to that subject. An introduction and partial summary of results based 

on this concept are given in [39]. A complete treatment will appear in 

the not too distant future [5]; meanwhile, the main results are avail- 

able in the theses of Bruner [4], Steinberger [60], Lewis [28], and 

McClure [44]. 
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I must end the introduction on a less sanguine note. Even in 

this short report, I shall have to mention a disconcertingly large 

number of published errors, both theoretical and calculational, both 

mine and those of many others. I do not know whether to ascribe this 

to carelessness, the complexity of the subject, or simple human blind- 

ness. Certainly the lesson is that an attitude of extreme skepticism 

is warranted towards any really difficult piece of work not supported 

by total detail. This pertains particularly to some of the embryonic 

theories discussed in sections two and five. 

§i. Addi t i ve  i n f i n i t e  loop space theory  

The first change to be celebrated is in the state of the art 

of exposition. In an attempt to make the subject accessible to begin- 

ners, Frank Adams has written a truly delightful tract [i]. Anyone 

wishing a painless introduction, in particular to the various approaches 

to the recognition principle, is urged to read it. 

In Adams' survey, there is a little of the flavor of competi- 

tion between these approaches, and I was perhaps the worst offender in 

spreading this atmosphere. The point is that the black boxes for con- 

structing spectra out of space level data looked so drastically dif- 

ferent that it was far from obvious to me that they would produce 

equivalent spectra from the same data. 

A major advance in the last two years is that we now have such 

a uniqueness theorem. There is only one infinite loop space machine, 

but there are various ways to construct it. 

The first uniqueness theorem of this sort is due to Fiedorowicz 

[12], who axiomatized the passage from rings to the spectra of algebraic 

K-theory. (Actually, there are lim I problems associated with getting 

the pairing he needs on the Gersten-Wagoner spectra; the argument in 

[13] is wrong, for the silly but substantive reason that n on page 165 

fails to be a natural transformation.) Fiedorowicz' idea is based on 

the following simple, but extremely fruitful, observation which is at 

the heart of all the spectrum level uniqueness theorems discussed be- 

low. Let X be a bispectrum, namely a sequence of spectra X i = {Xi, j} 

and equivalences of spectra X i + ~Xi+ I. Then the 0th spectrum X 0 = 

{X0, j} is equivalent to the spectrum {Xi,0}. Here spectra are at 

least ~-spectra; one has variants depending on what category one is 

working in [43, App. A]. 

Thomason and I used this idea to axiomatize infinite loop space 
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machines [43], and I want to say just enough about our work to explain 

precisely what such a gadget is. 

Consider topological categories with objects the based sets 

n = {0,1,...,n}. Let F be the category of finite based sets; its ob- 

jects are the n and its morphisms are all functions which take 0 to 0. 

Inside F, we have the subcategory K consisting of the injections and 

projections, namely those morphisms f:m + n such that f-l(j) has at 

most one element for 1 < j < n. We say that G is a category of oper- 

ators if it contains K and maps to F; we say that G is an E category 

if the map to F is an equivalence. Let T be the category of based 

spaces. A G-space is a functor G ÷ T, written n ÷ X on objects, such 
-- n 

n for n > 0 that the n projections ~ + ! induce an equivalence X n ÷ X 1 

(and a technical cofibration condition is satisfied). 

An infinite loop space machine E is an E category G and a 

functor E from G-spaces to spectra together with a natural group com- 

pletion t:X 1 ÷ E0X. Thus ~0E0 x is the universal group associated to 

the monoid ~0Xl and, for any commutative coefficient ring, H,E0X is 

obtained from the Pontryagin ring H,X 1 by localizing at ~0Xl ~H0x I. 

With just this one axiom, we prove that any two infinite loop 

space machines defined on G-spaces are naturally equivalent. Actually, 

we prove the uniqueness theorem for F-spaces and deduce it for G-spaces 

by use of a functor from G-spaces to F-spaces suitably inverse to the 

pullback functor the other way. The proof for F-spaces proceeds by 

comparing any given machine to Segal's original machine [50]. An E 

operad (as in [37, §2]) gives rise to an E~ category G. May's original 

machine [35,36] was only defined on those G-spaces with X n actually 

n We generalize its domain of definition to all G-spaces equal to X I. 

and so conclude that the May and Segal machines are equivalent. Any 

other machine which really is a machine must be equivalent to these. 

I have also given an addendum [40] asserting the uniqueness 

of infinite loop space machines defined on permutative categories, the 

point being that there are several quite different ways of passing from 

such categories to the domain data (G-spaces) of infinite loop space 

theory. 

Due to work of Thomason [64], we now have a much better under- 

standing of this passage, together with a more general class of morph- 

isms to which it can be applied. (On objects, restriction to permuta- 

rive categories is harmless; see [37, §8].) Some discussion may be 

worthwhile, since I for one find the ideas illuminating. Given a per- 

mutative category (A,D,*,c), so that D:AxA ~ A is an associative pro- 

duct with unit * and natural commutativity isomorphism c, one's first 

attempt to get into the domain of an infinite loop space machine is to 
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th . In try to write down a functor F + Cat with n-- category precisely A n 

detail, for a morphism f:m ÷ n in F, one defines a functor f,:A m ÷ A n by 

f,(A 1 ..... Am) = (B 1 ..... Bn) , B k = [] Aj, 
f(j)=k 

on objects and morphisms. Due to permutations, these functors fail to 

define a functor F ÷ Cat, but it is a simple matter to use c to write 

down natural transformations c(f,g) : (fg), ÷ f,g,. Upon writing out the 

formal properties satisfied by these data, one sees that one has a sort 

of system category theorists have known about for years, and have called 

a lax functor (up to opposite conventions on the c(f,g), hence the term 

op-lax in [64]). Ross Street [63] provides not just one but two ways 
th 

of constructing an associated functor F ÷ Cat. Either way, the n-- 

n and we obtain an F-space upon application category is equivalent to A 1 

of the classifying space functor B. A third way of getting such a 

functor is due to Segal [50] and explained in detail in [40]. Street 

[63] developed a notion of lax natural transformation between lax 

functors and showed that such things induce actual natural transforma- 

tions under either of his constructions. Upon application of B, we 

deduce that lax natural transformations induce maps of F-spaces. This 

allows morphisms F:A + B with coherent natural transformations 

FA~FB ÷ F(A~B) which need not be isomorphisms; neither Segal's con- 

struction nor my passage from permutative categories to E spaces is 

functorial with respect to such lax morphisms. 

I should add that these observations are not the main thrust 

of Thomason's work in [64], his primary purpose being to show that B 

converts homotopy colimits of categories, suitably defined, to homotopy 

colimits of spaces. (A detailed categorical study of this comparison 

has since been given by Gray [18].) Thomason [65] later used this re- 

sult, or rather its spectrum level version, to deduce some very inter- 

esting spectral sequences involving the algebraic K-theory of permuta- 

tive categories. 

Before leaving the additive theory, I want to say a bit about 

two more uniqueness theorems. The first reconciles two natural ways 

of looking at the stable classifying spaces of geometric topology. 

Consider Top for definiteness; needless to say, the argument is general. 

One can form BTop = lim BTop(n). This is an L-space, where L is the 

linear isometries operad; see [37, §7]. On the other hand, one can 

regard KTop(n) as a permutative category. There result two spectra, 

and I proved in [41] that the first is in fact the connected cover of 

the second. While this may seem plausible enough, the lack of obvious 

technical relationship between the linear isometries data and the 
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permutative data makes the proof one of the more difficult in the sub- 

ject. With this result, the foundations seem to be complete; any two 

machine-built spectra which ought to be equivalent are equivalent. 

The last uniqueness theorem I want to mention concerns A 

spaces (see [35, §3]) rather than E spaces and is due to Thomason [66]. 

In [35, p. 134], I gave two machines for constructing a classifying 

space, or delooping, functor on C-spaces X, where C is an A operad. 

One can either form a bar construction B(SI,cxCI,X) directly or replace 

X by an equivalent monoid B(M,C,X) and take the classical classifying 

space of the latter. The second approach is more or less obviously 

equivalent to the delooping machines for A spaces of Boardman and Vogt 

[3] and Segal [50]. When X is an E space regarded as an A space by 

neglect of structure, one is looking at first deloopings in the May and 

Segal machines respectively, hence the two are equivalent by the spectrum 

level uniqueness theorem. In general, the total lack of commutativity 

in the situation, with the concomitant lack of the simple group comple- 

tion notion, makes the consistency much harder. Thomason has given a 

quite ingenious proof that these two deloopings are always equivalent. 

The result gains interest from work to be mentioned in the next section. 

§2. Mul t ip l ica t ive  i n f i n i t e  loop space theory 

Here the most significant development has been that mentioned 

in the introduction, the invention and exploitation of H ring spectra. 

As discussed in [37, §ii], E ring spectra are defined in terms of ac- 

tions by an E operad G on spectra. H ring spectra are defined in the 

stable category, without reference to operads, but are really given in 

terms of actions up to homotopy by E operads. While H ring spectra 

are much more amenable to homotopical analysis, E ring spectra are of 

course still essential to the infinite loop space level applications for 

which they were designed (see [37, §10-14]). In particular, there is 

no H analog of the recognition principle which allows one to construct 

E ring spectra from E ring spaces. (I must report that the passage 

from bipermutative categories to E ring spaces in [36, VI §4], despite 

being intuitively obvious, is blatantly wrong; a correct treatment will 

be given in [5].) 

Another significant development has been the appearance of in- 

teresting examples of E n and H n ring spectra and of E n ring spaces for 

1 ~ n < ~. The definitional framework is exactly the same as when 

n = ~, except that now G is not an E operad but an E n operad, so that 
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th 
its 3-- space has the Z.-equivariant homotopy type of the configuration 

3 
space of j-tuples of distinct points of R n. 

Lewis [5, 28] has shown that if X is an n-fold loop space and 

f:X + BO is an n-fold loop map, then the resulting Thom spectrum Mf is 

an E n ring spectrum; if BO is replaced by BF, one at least gets an H n 

ring spectrum. 

E n ring spaces have appeared, totally unexpectedly, in connec- 

tion with the analysis of the multiplicative properties of the general- 

ized James maps 

+ (q) 
j q : C n X  ~ Q ( C n , q  ^Z X ) 

q 

used by Cohen, Taylor and myself [9] to stably split CnX. The product 

over q ~ 0 of the targets is an E n ring space, and the map j with com- 

ponents jq is "exponential" in the sense that it carries the additive 

E n action on CnX to the new multiplicative E n action on the product. 

In principle, this completely determines the homological behavior of 

the James maps. I shall say more about this in [42], but it will be 

some time before details appear. 

Another recent development concerns A ring spaces, or E 1 ring 

spaces in the language above. These are rings up to all higher coher- 

ence homotopies. I have constructed the algebraic K-theory of an A 

ring space R as follows [38] (modulo some annoying corrections neces- 

sary in the combinatories, which will be supplied in [5]). We form 

the space MnR of (n×n)-matrices with coefficients in R. Writing down 

the ordinary matrix product, but with the additions and multiplications 

involved parametrized by the given operad actions, we construct an A 

operad H n which acts on MnR. We then construct morphisms of operads 

Hn+ 1 ÷ H n such that the usual inclusion MnR + Mn+IR is an Hn+l-ma p, 

where MnR is an Hn+l-space by pullback. We next form pullback diagrams 

of H -spaces 
n 

FM R ~M R 
n n 

1 t 
GL ( n ,  7r oR)---*M n (~0 R) . 

Thus FMnR is the space of invertible components in MnR. We have a 

classifying space functor B n on Hn-Spaces for each n (indeed, as dis- 

cussed in the previous section, a choice of equivalent functors). We 

let KR be the plus construction on the telescope of the spaces BnFMnR 

and define K,R = ~,KR. Various basic properties of KR are proven in 

[38]; for example, if FR = FMIR is the unit space of R, then the 
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inclusion of monomial matrices in FMnR yields a natural map 

Q0(BIFR~{0}) + KR. 

If R is a discrete ring, this is Ouillen's K,R. If R is a 

topological ring, it is Waldhausen's [67]. In these cases, KR is an 

infinite loop space [38, 10.12]. I have several more or less rigorous 

unpublished proofs that KR is always a first loop space, but I could 

easily write a disquisition on how not to prove that KR is an infinite 

loop space in general. The latter failures are joint work with 

Steiner and Thomason, but Steiner still has one promising idea that has 

yet to be shot down. Certainly the infinite deloopability of KR is a 

deep theorem if it is true. 

While various other A ring spaces are known, the motivation 

comes from Waldhausen's work [67] connecting the Whitehead groups for 

stable PL concordance to algebraic K-theory. For a based space X, 

Q(~X~{0}) is an A ring space and we define AX = KQ(~X~{0}), this be- 

ing one of Waldhausen's proposed definitions of the algebraic K-theory 

of a space. We also define A(X;Z) = KN(~X~{0}), where N(~X~{0}) is 

the free topological Abelian group generated by ~X or, equivalently, 

the realization IZ[GSX] I of the integral group ring of the Kan loop 

group on the total singular complex of X. In [38], I constructed a 

rational equivalence AX + A(X;Z). 

Waldhausen [68] constructed another functor, call it WX, and 

established a natural fibration sequence with total space WXXZ, fibre 

a homology theory (as a functor of X) , and base space whPL(x). (As 

far as I know, proofs are not yet available. However, Steinberger and 

others have checked out the indications of proof in [68] and in Wald- 

hausen's lectures. The connection with concordance groups depends on 

a stability claim of Hatcher [19], the published proof of which is 

definitely incorrect; Hatcher and Igusa (and I am told Burghelea) as- 

sure us that there is an adequate correct claim, but no proof has yet 

been given.) Waldhausen also claims a rational equivalence WX ÷ A(X;Z) , 

and it is on the basis of this claim that all calculational applications 

proceed. I have not yet seen or heard any convincing indications of 

proof. Clearly it suffices to show that WX and AX are equivalent, and 

this would be a deep and satisfying theorem even if an alternative 

argument were available. Steinberger is working towards this result 

and seems to be reasonably close to a proof. 

There has been one other recent development of considerable 

interest. Woolfson has given a Segal style treatment of parts of mul- 

tiplicative infinite loop space theory. His paper [72] is devoted to 

a theory analogous to the E ring theory summarized in [37, §12]. His 
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paper [73] is devoted to a reformulation in his context of the orienta- 

tion theory discussed in [37, §14] and to a proof of Nishida's nil- 

potency theorem along lines proposed by Segal [52]. (I have not read 

[72] or the first half of [73] for details, but the passage from par- 

ticular bipermutative categories to hyper F-spaces sketched in [72] 

is unfortunately just as blatantly wrong as my passage from bipermuta- 

tive categories to E ring spaces in [36]; as stated before, a correct 

treatment of this point will appear in [5]. The second half of [73] 

cannot be recommended; the proof of Theorem 2.2 is incorrect, and the 

argument as a whole is much harder than that based on the simpler 

homotopical notion of an H ring spectrum [5, 39].) 

This theory raises further uniqueness questions of the sort 

discussed in the first section, and these have been considered by 

Thomason. The conclusion seems to be that there probably exists an 

appropriate theory but that the details would be so horrendous that it 

would not be worth developing unless a commanding need arose. 

Incidentally, a Segal type approach to the construction and 

infinite delooping of KR was one of the failures mentioned above. 

§3. Descript ive analysis of i n f i n i t e  loop spaces 

The deepest new result under this heading is the proof of the 

infinite loop version of the complex Adams conjecture. When localized 

r 
away from r, the composite BU ~ -I~Bu J ~BSF is not just null homotopic 

as a map of spaces but as a map of infinite loop spaces. That is, the 

associated composite map of spectra is null homotopic. This was 

originally announced by Friedlander and Seymour [17]. Their proposed 

proofs proceeded along wholly different lines. That of Seymour was 

based on Snaith's assertion [56, 4.1] that Seymour's bundle theoretical 

model [54] for the fibre JU(r) of ~r-i could be constructed in a more 

economical way. Snaith's assertion is now known to be false~ and this 

line of proof is moribund. (The error also makes [56, §4-7] and [57] 

much less interesting.) I have been carefully checking Friedlander's 

proof. It is an enormously impressive piece of mathematics, and I am 

convinced that it is correct. It will appear in [16], in due course. 

The infinite loop Adams conjecture, when combined with earlier 

results and the uniqueness theorem for the stable classifying spaces 

of geometric topology discussed in section one, largely completes the 

program of analyzing these infinite loop spaces at odd primes. The 

grand conclusion is stated in the introduction of [41]. One essential 

* See Seymour and Snaith, these Proceedings. 
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ingredient was the work of Madsen, Snaith, and Tornehave [32], and 

complete new proofs of their results have been given by Adams [i, §6]. 

here remain interesting problems at p = 2. Here no lifting 

~:BSO ÷ F/O of ~r-I:BSO ÷ BSO, r ~ ±3 mod 8, can even be an H-map. An 

analysis of the homological behavior of one choice of ~ has been given 

by Brumfiel and Madsen [6] and the deviation from additivity of another 

choice has been studied in detail by Tornehave [67]. A provocative 

formulation of a possible 2-primary infinite loop version of the real 

Adams conjecture has been given by Miller and Priddy [46], although we 

have not the slightest idea of how their conjectures might be proven. 

Similarly, Madsen [31, 2.9] has made some very interesting conjectures 

about the infinite loop structure of F/Top at p = 2, but again there 

are no proofs in sight. 

One very satisfying result along these lines has been given by 

Priddy [47]. Using the transfer and homology calculations, he has 

shown that, at the prime 2, SF is a direct factor (up to homotopy) in 

QB(Z2/Z 2) and F/O is a direct factor in QBO(2). The first assertion 

is a deeper multiplicative analog of the Kahn-Priddy theorem, their 

proof of which has just recently appeared [24,25]. That result gave 

that, at any prime p, Q0 S0 is a direct factor in QBZp. It is natural 

to conjecture that SF is also a direct factor in QB(Zp/Zp) for p > 2. 

However, because of the problems explained in [8, II §6], a proof along 

Priddy's lines would be much more difficult. There are three other 

splittings of this general nature that should be mentioned. Segal [49] 

proved that BU is a direct factor in QBU(1) and Becker [2] proved that 

BSp is a direct factor in QBSp(1) and BO is a direct factor in QBO(2). 

Snaith [59] rederived these last splittings and used them to deduce 

stable decompositions of the classifying spaces BG for G = U(n) , Sp(n) , 

or O(2n). 

In my original survey, I neglected to mention Segal's paper 

[51]. Let A = {Aql q ~ 0} be a graded commutative ring. Then 

X K(Aq,q) is a ring space with unit space A0x( x K(A,q)) and special 
q!0 q~l 

unit space × K(A,q). Segal proved that these unit spaces are infinite 
q~l 

loop spaces. Steiner [61,62] later gave an improved argument which 

showed that these infinite loop structures are functorial in A and used 

the functoriality to prove certain splittings of these infinite loop 

spaces in case A is p-local, such splittings having been conjectured 

by Segal. (I find the earlier of Steiner's proofs the more convincing.) 

Snaith [58] showed that the total Stiefel-Whitney and Chern classes 

w :BO ÷ x K(Z2,q) and Z c :BU ~ x K(Z,2q) fail to commute with 
q~l q q~l q~l q q~l 
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transfer. However, this does not disprove Segal's conjecture [51, p. 

293] about these classes. Segal was quite careful to avoid such trans- 

fer pathologies by asking if the map ~ BO(n) ÷ ( x K(Z2,q))xZ speci- 
n!0 q!l 

fied by ( Z w )x{n} on BO(n) extends to an infinite loop map BOxZ ÷ 
qhl q 

(q~l K(z2'q))xzl for a suitable infinite loop structure on the target, 

and similarly for the Chern classes. (I am told that this has now been 

proven by a student of Segal's. See [36, Remarks VIII.I.4], interpreting 

the remarks additively rather than multiplicatively, for a discussion 

of the relationship of the transfer for BOxZ to that for BO = BOx{0}.) 

The last, but by no means least, piece of progress to be re- 

ported in this area is the complete analysis by Fiedorowicz and Priddy 

[15] of the infinite loop spaces associated to the classical groups of 

finite fields and their relationship to the image of J spaces obtained 

as fibres of maps ~r-I:BG + BG' for stable classical groups G and G' 

While this is an extraordinarily rich area of mathematics, the grand 

conclusion is that there is a one-to-one correspondence, realized by 

infinite loop equivalences coming from Brauer lifting of modular rep- 

resentations, between these two kinds of infinite loop spaces. In a 

sequel, Fiedorowicz [14] considers the uniqueness of the localizations 

at p prime to r of the infinite loop spaces JG(r) obtained with G = G' 

above being O, U, or Sp. In particular cases of geometric interest, 

the problem is not hard [56, §3], but the general answer is most satis- 

factory: JG(r)p and JH(S)p are equivalent as infinite loop spaces if 

and only if they have abstractly isomorphic homotopy groups. 

§4. Homological analysis of i n f i n i t e  loop spaces 

Probably the biggest development under this heading is again 

the work of Fiedorowicz and Priddy [15] just cited. They give an ex- 

haustive analysis of the homologies, with their homology operations, 

of the various image of J. spaces. Amusingly, some of the most useful 

formulae, in particular for the real image of J spaces at the prime 2, 

are wholly inaccessible without the connection with finite groups. 

Their work also includes complete information on the homology and co- 

homology of all of the various classical groups of finite fields (away 

from the characteristic). 

In [8, II §13], I used these calculations to study the Bock- 

stein spectral sequences in the fibration sequence B Coker J ÷ BSF + BJ8 
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at p = 2. I would like to record one inconsequential error; [8, II.13.7] 

should read ~2i+2 x(i,i) ~ x(2i+l,2i+l ) mod #-decomposables, the line 

of proof being as indicated but with due regard to the middle term of 

the mixed Cartan formula. In [8, II.13.8], the error term 

Q4i~,~(2i,2i_l ) should therefore be d,Y(4i_l,4i_l ) rather than zero. 

No further changes are needed. (Another inconsequential error occurs 

in [8, III App] ; Cohen has published the required corrections in [7, 

App].) 

Incidentally, Madsen's assertion [31, 3.5], which is stated 

without proof, can be read off immediately from the calculations of 

[8, II §13]. This result plays a key role in Madsen's very interesting 

theorem that a k0-orientable spherical fibration ~ over X admits a 

topological reduction if and only if certain characteristic classes 

Ti(~) e H21-1(X;Z2 ) are zero. In other words, the obstruction to k0- 

orientability is not only the sole obstruction to reducibility away 

from 2 (as discussed in [37,§§14 and 18]), it is also a large part of 

the obstruction at p = 2. 

In my original survey, I did not do justice to the work of 

Hodgkin and Snaith [22,55] on the mod p K-theory of infinite loop 

spaces in general and of those infinite loop spaces of greatest geo- 

metric interest in particular. In [37, §17], I did sketch their proof 

of the key fact that K,(Coker J) = 0, and they have since published a 

very readable account [23] of this and related calculations. 

I should mention one subterranean set of calculations. A 

reasonably good understanding of the Adams spectral sequence converging 

to z,MSTop at p > 2 now exists. Two preprints, by Mann and Milgram [33] 

and Ligaard and myself [30], gave partial and complete information re- 

spectively on H (MSTop;Zp) as an A-module. This material is also in 

Ligaard's thesis [29], and he did much further work with me on the 

calculation of E 2. In my archives, I have nearly complete information 

on E 2, with descriptions as matric Massey products of all generators of 

E~ 't- for s > 0. I also have a thorough analysis of the differentials 

coming from ~,MSO + ~,MSTop and from the Bockstein spectral sequence 

of BCoker J [8, II.10.7], this being an elaboration of exploratory 

calculations in an undistributed preprint by Mann and Milgram. Mann 

has in his archives a calculation of a key piece of the spectral se- 

quence from these differentials. However, a complete calculation of 
, 

all of E s' for s > 0 is out of reach algebraically, and we have very 

r 0,* Milgram has in little control over the huge amount of noise in E 2 

his archives a very nice geometrical argument to show that some of this 

noise does in fact survive to E . Altogether though, we are very far 
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from a complete determination of ~,MSTop, and the interest of all four 

parties seems to have flagged. 

The work reported so far was already well under way when my 

earlier survey was written. There are two major later homological 

developments to report. The first is both negative and positive. In 

[i0] , Curtis claimed to prove that the mod 2 Hurewicz homomorphism for 

QS 0 annihilated all elements of ~ except the Hopf maps and, where 

present, the Arf invariant maps. The assertion may or may not be true, 

but Wellington's careful analysis [71] makes clear that we are very far 

from a proof by any known techniques. On the positive side, Wellington's 

work gives a good hold on the global structure of the cohomology of 

iterated loop spaces. In principal, this is a dualization problem from 

the homology calculations of Cohen [8, III]. The latter give 

H,(~znX;Zp) explicitly as an algebra and with precise recursive formu- 

lae for the coproduct and action by the Steenrod algebra A (see [37, 

§24]). Wellington proves that H*(~nX;Zp)_ is isomorphic as an algebra 

to the universal enveloping algebra of a certain Abelian restricted Lie 

algebra MnX. While MnX admits an A-action with respect to which its 

enveloping algebra is a free A-algebra, the isomorphism does not pre- 

serve the A-module structures. With this as his starting point, Wel- 

lington gives a detailed analysis of the problem of determining the A- 
nzn 

annihilated primitive elements in H,(~ 0 X;Zp) , the main technique 

being a method for computing Steenrod operations in MnX by use of the 

differential structure of the A-algebra. 

The last homological development I wish to report concerns the 

relationship between the homology of infinite loop spaces and the homol- 
th 

ogy of spectra. Let X = E 0 be the zero-- space of a spectrum E = {Ei}. 

In [35, p. 155-156], I pointed out that my two-sided bar construction 

gave spectral sequences {iErx} such that iE2X is a well-defined com- 

putable functor of the R-algebra H,X, where R is the Dyer-Lashof algebra, 

and {iErx} converges to H,E i. I specifically asked for a precise 

description of iE2X as some homological functor of X, but I never pur- 

sued the point. 

Much later, but independently, Miller [45] used resolution 

techniques to construct a spectral sequence {ErX} converging from a 

suitable functor of the R-algebra H,X to H,E. More importantly he 

developed techniques allowing explicit computation of E2X in favorable 

cases and studied the behavior of the Steenrod operations in the spec- 

tral sequence. In particular, he showed that the spectral sequence 

collapses for E = K(Z,0). 

A little later, Kraines independently rediscovered this spec- 



637 

tral sequence. I shall only say a little about his joint work with Lada 

on this subject, since their paper also appears in this volume [26]. 

They give a very pretty spectrum-level version of my two-sided bar 

construction, thus obtaining a most satisfactory geometric construction 

of Miller's algebraic spectral sequence. Among other things, the close 

connection with the geometry allows them to use the spectral sequence 

to disprove the long discredited conjecture that a representable functor 

with a transfer extends to a cohomology theory. More applications will 

surely appear, and further study of this spectral sequence is bound to 

be profitable. 

§5. Equivariant i n f i n i t e  loop space theory 

One of the most fashionable activities in modern topology is to 

take one's favorite theory, put an action of a compact Lie group G on 

all spaces in sight, and ask how much of the theory remains valid. 

Much less ambitiously, one might restrict G to be finite. 

For the homotopy theorist, the first thing one wants is a 

thorough study of G-CW complexes. This we now have in the full gener- 

ality of compact Lie groups, the relevant theory having been initiated 

by Matumota [34] and completed by Waner [69]. Any G-space is weakly 

G-equivalent to a G-CW complex and a weak G-equivalence between G-CW 

complexes is a G-equivalence. Actually, once ordinary CW-theory is 

developed properly, these and other standard results present little 

difficulty. Much more deeply, all of Milnor's basic theorems about 

spaces of the homotopy type of CW-complexes generalize to G-CW com- 

plexes; see Waner [69]. 

The next thing one wants is a good theory of G-bundles and G- 

fibrations (with some other structural group, A say, in the bundle 

case), including classification theorems for bundles or fibrations 

over G-CW complexes. This too we now have in the full generality of 

compact Lie groups, the bundle theory having been supplied by Segal 

[48], Tom Dieck [ii], and Lashof and Rothenberg [27] and the fibration 

theory having been supplied by Waner [69], with addenda by Hauschild 

[21]. 

One is then led to ask if the resulting stable K-theories ex- 

tend to cohomology theories. In the bundle case, as Segal has explained 

[48], one can generalize Bott periodicity. In the fibration case, and 

in the case of topological rather than linear bundles, one is inexorably 

led to develop G-infinite loop space theory. 
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I am quite confident that the eventual state of the art will 

precisely parallel the situation sketched in the first section. There 

will be two main approaches to the recognition principle, namely a 

G-Segal machine and a G-May machine, and there will be a uniqueness 

theorem on G-infinite loop space machines which ensures an equivalence 

between them. However, work in this direction is still in its infancy, 

and full details are not yet in place. It may well be necessary to 

restrict to finite groups, and we do so in the following discussion. 

The present situation is this. I am in possession of three 

unpublished manuscripts, by Segal [53], Hauschild [21], and Waner [70], 

all of which I received within a month of the present writing [October 

1978). In the first, Segal sketches a G-Segal machine, and I have 

little doubt that any missing details can be filled in. The other two 

give a G-May machine. In the latter approach, as I long ago explained 

to both authors, modulo a few technical points which turn out to be a 

bit tricky but not particularly difficult, it is formal to reduce the 

G-recognition principle to the stable G-approximation theorem. 

Unstably, the G-approximation theorem asserts the existence 

of a natural "G-group completion" C(V,X) ÷ ~V~Vx for based G-spaces X, 

where V is a G-representation, ~V and zV are the loops and suspension 

associated to the one-point compactification of V, and C(V,X) is the 

G-space of finite unordered subsets of V with labels in X. More pre- 

cisely, C(V,X) = ~ F(V,j)xz xJ/(=) , where F(V,j) is the configuration 
j~0 3 

space of j-tuples of distinct points of V and the equivalence relation 

encodes basepoint identifications. In the stable version, one takes 

colimits over G-representations V contained in a G-space R ~ which con- 

tains each irreducible representation infinitely often. Hauschild [20] 

has published an argument for the stable theorem in the special case 
0 

X = S , and Segal's manuscript [53] sketches an argument for the sharper 

unstable result, also for X = S 0. The bulk of Waner's manuscript [70] 

is devoted to a proof of the stable theorem for general X and the main 

part of Hauschild's manuscript [21] is devoted to a proof of the un- 

stable result for general X. The various arguments are quite complica- 

ted and, at this writing, I cannot claim to fully understand any of 

them. However, I am reasonably sure that the union of Hauschild [20] 

and Waner [70] does include a complete proof of the stable theorem. 

In any case, granting the stable G-approximation theorem, we 

have the G-recognition principle in a form applicable to G-E spaces 

and can apply it to the classifying spaces for stable spherical G- 

fibrations and topological G-bundles. Thus the relevant K-theories 

extend to G-cohomology theories. It is to be expected that this will 
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be a powerful tool for the study of the equivariant Adams conjecture, 

this application being work in progress by Waner. 

In connection with the G-approximation theorem, it is worth 

remarking that the paper by Cohen, Taylor, and myself [9] on the split- 

ting of spaces of the same general form as C(V,X) above applies virtu- 

ally verbatim with G-actions put in ever~4here. There are evident 

notions of G-coefficient systems C, G-~ spaces X, and a resulting 

general construction of CX as in [9, §1-2]. The maps for the approxi- 

mation theorem, but not the approximation theorem itself, can be used 

precisely as in [9] to obtain stable splittings of such G-spaces CX, 

provided only that each C. is Z -free. That is, the suspension G- 
3 3 

spectrum of CX is weakly G-equivalent to the wedge of the suspension 

G-spectra of the successive filtration quotients C +~ (J) j z .  x 

In fact, as we intend to make precise elsewhere, the whole 

argument of [9] is so formal that it can be carried out in an axiomatic 

setting of general topological categories with suitable extra structure. 

Indeed, the whole framework of definitions exploited in the study of 

iterated loop spaces can be set up in such a setting, and it can be 

expected that the resulting theory will find many future applications. 
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