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1. Introduction

This paper is part of a series ([HMM98, HM98] and other work in progress) getting at some
new aspects of the topological approach to elliptic genera. Most of these results were announced
in [Hop95].

In [Och87] Ochanine introduced the elliptic genus—a cobordism invariant of oriented mani-
folds taking its values in the ring of (level 2) modular forms. He conjectured and proved half of
the rigidity theorem—that the elliptic genus is multiplicative in bundles of spin manifolds with
connected structure group.

Ochanine defined his invariant strictly in terms of characteristic classes, and the question of
describing the elliptic genus in more geometric terms naturally arose—especially in connection
with the rigidity theorem.

In [Wit87, Wit88] Witten interpreted Ochanine’s invariant in terms of index theory on loop
spaces and offered a proof of the rigidity theorem. Witten’s proof was made mathematically
rigorous by Bott and Taubes [BT89], and since then there have been several new proofs of the
rigidity theorem [Liu95, Ros98].

In the same papers Witten described a variant of the elliptic genus now known as the Witten
genus. There is a characteristic class λ of Spin manifolds, twice which is the first Pontrjagin class,
p1. The Witten genus is a cobordism invariant of Spin-manifolds for which λ = 0, and it takes
its values in modular forms (of level 1). It has exhibited a remarkably fecund relationship with
geometry (see [Seg88], and [HBJ92]).

Rich as it is, the theory of the Witten genus is not as developed as are the invariants described by
the index theorem. One thing that is missing is an understanding of the Witten genus of a family.
Let S be a space, and Ms a family of n-dimensional Spin-manifolds (with λ = 0) parameterized
by the points of S. The family Ms defines an element in the cobordism group

MO〈8〉−nS,

where MO〈8〉 denotes the cobordism theory of “Spin-manifolds with λ = 0.” The Witten genus
of this family should be some kind of “family of modular forms” parameterized by the points of
S. Motivated by the index theorem, we should regard this family of modular forms as an element
in

E−nS

for some (generalized) cohomology theory E. From the topological point of view, the Witten genus
of a family is thus a multiplicative map of generalized cohomology theories

MO〈8〉 −→ E,
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and the question arises as to which E to choose, and how, in this language, to express the modular
invariance of the Witten genus. One candidate for E, elliptic cohomology, was introduced by
Landweber, Ravenel, and Stong in [LRS95].

To keep the technicalities to a minimum, we focus in this paper on the restriction of the Witten
genus to stably almost complex manifolds with a trivialization of the Chern classes c1 and c2 of
the tangent bundle. The bordism theory of such manifolds is denoted MU〈6〉. We will consider
generalized cohomology theories (or, more precisely, homotopy commutative ring spectra) E which
are even and periodic. In the language of generalized cohomology, this means that the cohomology
groups

Ẽ0(Sn)

are zero for n odd, and that for each pointed space X, the map

Ẽ0(S2) ⊗
E0(pt)

Ẽ0(X) −→ Ẽ0(S2 ∧X)

is an isomorphism. In the language of spectra the conditions are that

πoddE = 0

and that π2E contains a unit. Our main result is a convenient description of all multiplicative
maps

MU〈6〉 −→ E.

In another paper in preparation we will give, under more restrictive hypotheses on E, an analogous
description of the multiplicative maps

MO〈8〉 −→ E.

These results lead to a useful homotopy theoretic explanation of the Witten genus, and to an
expression of the modular invariance of the Witten genus of a family. To describe them it is
necessary to make use of the language of formal groups.

The assumption that E is even and periodic implies that the cohomology ring

E0CP∞.

is the ring of functions on a formal group PE over π0E = E0(pt) [Qui69, Ada74]. From the point
of view of the formal group, the result [Ada74, Part II, Lemma 4.6] can be interpreted as saying
that the set of multiplicative maps

MU −→ E

is naturally in one to one correspondence with the set of rigid sections of a certain rigid line bundle
Θ1(L) over PE . Here a line bundle is said to be rigid if it has a specified trivialization at the zero
element, and a section is said to be rigid if it takes the specified value at zero. Our line bundle
L is the one whose sections are functions that vanish at zero, or in other words L = O(−{0}).
The fiber of Θ1(L) at a point a ∈ PE is defined to be L0 ⊗ L∗a; it is immediate that Θ1(L) has a
canonical rigidification.

Similarly, given a line bundle L over a commutative group A, let Θ3(L) be the line bundle over
A3 whose fiber at (a, b, c) is

Θ3(L)(a,b,c) =
La+bLb+cLa+cL0

La+b+cLaLbLc
.

In this expression the symbol “+” refers to the group law of A, and multiplication and division
indicate the tensor product of lines and their duals. A cubical structure on L is a nowhere vanishing
section s of Θ3(L) satisfying (after making the appropriate canonical identifications of line bundles)

(rigid) s(0, 0, 0) = 1
(symmetry) s(aσ(1), aσ(2), aσ(3)) = s(a1, a2, a3)
(cocycle) s(b, c, d)s(a, b + c, d) = s(a + b, c, d)s(a, b, d).
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(See [Bre83], and Remark 2.42 for comparison of conventions.) Our main result (2.50) asserts that
the set of multiplicative maps

MU〈6〉 −→ E

is naturally in one to one correspondence with the set of cubical structures on L = O(−{0}).
We have chosen a computational approach to the proof of this theorem partly because it is

elementary, and partly because it leads to a general result. In [AS98], the first and third authors
give a less computational proof of this result (for formal groups of finite height in positive charac-
teristic), using ideas from [Mum65, Gro72, Bre83] on the algebraic geometry of biextensions and
cubical structures.

On an elliptic curve the line bundle O(−{0}) has a unique cubical structure. Indeed, for fixed x
and y, there is by Abel’s theorem a rational function f(x, y, z) with divisor {−x−y}+{0}−{−x}−
{−y}. Any two such functions have a constant ratio, so the quotient s(x, y, z) = f(x, y, 0)/f(x, y, z)
is well-defined and is easily seen to determine a trivialization of Θ3(O(−{0})). Since the only
global functions on an elliptic curve are constants, the requirement s(0, 0, 0) = 1 determines the
section uniquely, and shows that it satisfies the “symmetry” and “cocycle” conditions. In fact the
“theorem of the cube” (see for example [Mum70]) shows more generally that any line bundle over
any abelian variety has a unique cubical structure.

Over the complex numbers, a transcendental formula for f(x, y, z) is

σ(x + y + z)σ(z)
σ(x + y)σ(x + z)

,

where σ is the Weierstrass σ function. It follows that the unique cubical structure is given by

σ(x + y)σ(x + z)σ(y + z)σ(0)
σ(x + y + z)σ(x)σ(y)σ(z)

. (1.1)

Putting all of this together, if the formal group PE can be identified with the formal completion
of an elliptic curve, then there is a canonical multiplicative map

MU〈6〉 −→ E

corresponding to the unique cubical structure which extends to the elliptic curve.

Definition 1.2. An elliptic spectrum consists of

i. an even, periodic, homotopy commutative ring spectrum E with formal group PE over π0E;
ii. a generalized elliptic curve C over E0(pt);
iii. an isomorphism t : PE −→ Ĉ of PE with the formal completion of C.

For an elliptic spectrum E = (E,C, t), the σ-orientation

σE : MU〈6〉 −→ E

is the map corresponding to the unique cubical structure extending to C.

Note that this definition involves generalized elliptic curves over arbitrary rings. The relevant
theory is developed in [KM85, DR73]; we give a summary in Appendix B.

A map of elliptic spectra E1 = (E1, C1, t1) −→ E2 = (E2, C2, t2) consists of a map f : E1 −→ E2

of multiplicative cohomology theories, together with an isomorphism of elliptic curves

(π0f)∗C2 −→ C1,
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extending the induced map of formal groups. Given such a map, the uniqueness of cubical struc-
tures over elliptic curves shows that

MU〈6〉
σE1

{{ww
ww

ww
ww

w σE2

##GG
GG

GG
GG

G

E1
f

// E2

(1.3)

commutes. We will refer to the commutativity of this diagram as the modular invariance of the
σ-orientation.

By way of illustration, let’s consider examples derived from elliptic curves over C, and ordinary
cohomology (for which the formal group is the additive group).

An elliptic curve over C is of the form C/Λ for some lattice Λ ⊂ C. The map of formal groups
derived from

C −→ C/Λ

gives an isomorphism tΛ, from the additive formal group to the formal completion of the elliptic
curve. Let RΛ be the graded ring C[uΛ, u−1

Λ ] with |uΛ| = 2, and define an elliptic spectrum
HΛ = (EΛ, CΛ, tΛ) by taking EΛ to be the spectrum representing

H∗(− ;RΛ),

CΛ the elliptic curve C/Λ, and tΛ the isomorphism described above.

The abelian group of cobordism classes of 2n-dimensional stably almost complex manifolds with
a trivialization of c1 and c2 is

MU〈6〉2n(pt).

The σ-orientation for HΛ thus associates to each such M , an element of (EΛ)2n(pt) which can be
written

Φ(M ; Λ) · un
Λ,

with

Φ(M ; Λ) ∈ C.

Suppose that Λ′ ⊂ C is another lattice, and that λ is a non-zero complex number for which
λ · Λ = Λ′. Then multiplication by λ gives an isomorphism C/Λ −→ C/Λ′. This extends to a map
HΛ′ −→ HΛ, of elliptic spectra, which, in order to induce the correct map of formal groups, must
send uΛ′ to λuΛ (this is explained in example 2.3). The modular invariance of the σ-orientation
then leads to the equation

Φ(M ;λ · Λ) = λ−nΦ(M ; Λ).

This can be put in a more familiar form by choosing a basis for the lattice Λ. Given a complex
number τ with positive imaginary part, let Λ(τ) be the lattice generated by 1 and τ , and set

f(M, τ) = Φ(M, Λ(τ)).

Given (
a b
c d

)
∈ SL2(Z)

set

Λ = Λ(τ)

Λ′ = Λ ((a τ + b)/(c τ + d))

λ = (c τ + d)−1.
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The above equation then becomes

f(M ; (a τ + b)/(c τ + d)) = (c τ + d)nf(M ; τ),

which is the functional equation satisfied by a modular form of weight n. It can be shown that
f(M, τ) is a holomorphic function of τ by considering the elliptic spectrum derived from the family
of elliptic curves

H× C/〈1, τ〉 −→ H

parameterized by the points of the upper half plane H, and with underlying homology theory

H∗
(− ;O[u, u−1]

)
,

where O is the ring of holomorphic functions on H. Thus the σ-orientation associates a modular
form of weight n to each 2n-dimensional MU〈6〉-manifold. Using an elliptic spectrum constructed
out of K-theory and the Tate curve, one can also show that the modular forms that arise in this
manner have integral q-expansions (see §2.8).

In fact, it follows from formula (1.1) (for details see §2.7) that the q-expansion of this modular
form is the Witten genus of M . The σ-orientation can therefore be viewed as a topological
refinement of the Witten genus, and its modular invariance (1.3), an expression of the modular
invariance of the Witten genus of a family.

All of this makes it clear that one can deduce special properties of the Witten genus by taking
special choices of E. But it also suggests that the really natural thing to do is to consider all
elliptic curves at once. This leads to some new torsion companions to the Witten genus, some new
congruences on the values of the Witten genus, and to the ring of topological modular forms. It
is the subject of the papers [HMM98, HM98].

1.1. Outline of the paper. In §2, we state our results and the supporting definitions in more
detail. In §2.3 we give a detailed account of our algebraic model for E0BU〈2k〉. In §2.4 we describe
our algebraic model for E0MU〈2k〉. We deduce our results about MU〈2k〉 from the results about
BU〈2k〉 and careful interpretation of the Thom isomorphism; the proof of the main result about
E0BU〈2k〉 (Theorem 2.29) is the subject of §4.

In §2.5 we give in more detail the argument sketched in the introduction that there is a unique
cubical structure on any elliptic curve. We give an argument with explicit formulae which works
when the elliptic curves in question are allowed to degenerate to singular cubics (“generalized
elliptic curves”), and also gives some extra insight even in the non-degenerate case. The proof of
the main formula (Proposition 2.55) is given in appendix B.

In §2.6, we give a formula for the cubical structure on the Tate curve, inspired by the tran-
scendental formula involving the σ-function that was mentioned in the introduction. In §2.7, we
interpret this formula as describing the σ-orientation for the elliptic spectrum KTate, and we show
that its effect on homotopy rings is the Witten genus. In §2.8, we deduce the modularity of the
Witten genus from the modular invariance of the σ-orientation.

The rest of the main body of the paper assembles a proof of Theorem 2.29. In §3 we study a
set Ck(Ĝa,Gm)(R) of formal power series in k variables over a ring R with certain symmetry and
cocycle properties. This is a representable functor of R, in other words Ck(Ĝa,Gm) is an affine
group scheme. For 0 ≤ k ≤ 3 we will eventually identify Ck(Ĝa,Gm) with spec(H∗BU〈2k〉). For
k = 3 we use a small fragment of the theory of Weil pairings associated to cubical structures; this
forms the heart of an alternative proof of our results [AS98] which works for p-divisible formal
groups but not for the formal group of an arbitrary generalized elliptic curve.

In §4 we first check that our algebraic model coincides with the usual description of spec(E0BU).
We then compare our algebraic calculations to the homology of the fibration

BSU −→ BU −→ CP∞

to show that spec(H∗BSU) ∼= C2(Ĝa,Gm).
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We then recall Singer’s analysis of the Serre spectral sequence of the fibration

K(Z, 3) −→ BU〈6〉 −→ BSU.

By identifying the even homology of K(Z, 3) with the scheme of Weil pairings described in §3.7,
we show that spec(H∗BU〈6〉) ∼= C3(Ĝa,Gm). Finally we deduce Theorem 2.29 for all E from the
case of ordinary homology.

The paper has two appendices. The first proves some results about the group of additive
cocycles Ck(Ĝa, Ĝa)(A), which are used in §3. The second gives an exposition of the theory of
generalized elliptic curves, culminating in a proof of Proposition 2.55. We have tried to make
things as explicit as possible rather than relying on the machinery of algebraic geometry, and we
have given a number of examples.

2. More detailed results

2.1. The algebraic geometry of even periodic ring spectra. Let BU〈2k〉 → Z×BU be the
(2k−1)–connected cover, and let MU〈2k〉 be the associated bordism theory. For an even periodic
ring spectrum E and for k ≤ 3, the map

RingSpectra(MU〈2k〉, E) −→ Algπ0E(E0MU〈2k〉, π0E)

is an isomorphism. In other words, the multiplicative maps MU〈2k〉 → E are in one-to-one
correspondence with π0E-valued points of spec(π0E∧MU〈2k〉). If E is an elliptic spectrum, then
the Theorem of the Cube endows this scheme with a canonical point. In order to connect the
topology to the algebraic geometry, we shall express some facts about even periodic ring spectra
in the language of algebraic geometry.

2.1.1. Formal schemes and formal groups. Following [DG70], we will think of an affine scheme as
a representable covariant functor from rings to sets. The functor (co-)represented by a ring A is
denoted spec A. The ring (co-)representing a functor X will be denoted OX .

A formal scheme is a filtered colimit of affine schemes. For example, the functor Â1 associating
to a ring R its set of nilpotent elements is the colimit of the schemes spec(Z[x]/xk) and thus is a
formal scheme.

The category of formal schemes has finite products: if X = colim Xα and Y = colimYβ then
X × Y = colim Xα × Yβ . The formal schemes in this paper will all be of the form Ân × Z =
Â1 × . . .× Â1 × Z for some affine scheme Z. If X = colimα Xα is a formal scheme, then we shall
write OX for limαOXα ; in particular we have ObA1 = Z[[x]]. We write ⊗̂ for the completed tensor
product, so that for example

OX×Y = OX⊗̂OY .

If X → S is a morphism of schemes with a section j : S → X, then X̂ will denote the completion
of X along the section. Explicitly, the section j defines an augmentation

OX
j∗−→ OS .

If J denotes the kernel of j∗, then

X̂ = colim
N

spec(OX/JN ).

For example, the zero element defines a section spec(Z) → A1, and the completion of A1 along
this section is the formal scheme Â1.

A commutative one-dimensional formal group over S is a commutative group G in the category
of formal schemes over S which, locally on S, is isomorphic to S × Â1 as a pointed formal scheme
over S. We shall often omit “commutative” and “one-dimensional”, and simply refer to G as a
formal group.
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We shall use the notation Ga for the additive group, and Gm for the multiplicative group. As
functors we have Ga(R) = R and Gm(R) = R×. Thus Ĝa is the additive formal group, and Ĝa(R)
is the additive group of nilpotent elements of R.

If the group scheme Gm acts on a scheme X, we have a map α : Gm ×X → X, corresponding
to a map α∗ : OX −→ OGm×X = OX [u, u−1]. We put (OX)n = {f | α(f) = unf}. This makes OX

into a graded ring.

A graded ring R∗ is said to be of finite type over Z if each Rn is a finitely generated abelian
group.

2.1.2. Even ring spectra and schemes. If E is an even periodic ring spectrum, then we write

SE
def= spec(π0E).

If X is a space, we write E0X and E0X for the unreduced E-(co)homology of X. If A is a
spectrum, we write E0A and E0A for its spectrum (co)homology. These are related by the formula
E0X = E0Σ∞X+.

Let X be a CW-complex. If {Xα} is the set of finite subcomplexes of X then we write XE

for the formal scheme colimα spec(E0Xα). This gives a covariant functor from spaces to formal
schemes over SE .

We say that X is even if H∗X is a free abelian group, concentrated in even degrees. If X is even
and E is an even periodic ring spectrum, then E0X is a free module over E0, and E0X is its dual.
The restriction to even spaces of the functor X 7→ XE preserves finite products. For example the
space P

def= CP∞ is even, and PE is (non-canonically) isomorphic to the formal affine line. The
multiplication P × P → P classifying the tensor product of line bundles makes the scheme PE

into a (one-dimensional commutative) formal group over SE .

The formal group PE is not quite the same as the one introduced by Quillen [Qui69]. The ring
of functions on Quillen’s formal group is E∗(P ), while the ring of functions on PE is E0(P ). The
homogeneous parts of E∗(P ) can interpreted as sections of line bundles over PE . For example, let
I be the ideal of functions on PE which vanish along the identity section. The natural map

I/I2 → Ẽ0(S2) = π2E (2.1)

is an isomorphism. Now I/I2 is, by definition, the Zariski cotangent space to the group PE at the
identity, and defines a line bundle over specπ0E. This line bundle is customarily denoted ω, and
can be regarded as the sheaf of invariant 1-forms on PE . In this way we will identify π2E with
invariant 1-forms on PE . More generally, π2nE can be identified with the module of sections of
ωn (i.e., invariant differentials of degree n on PE).

Note that for any space X, the map

Ẽ0(X)⊗π0E π−2n(E) −→ Ẽ2n(X)

is an isomorphism, and so E2n(X) can be identified with the module of sections of the pull-back
of the line bundle ω−n to XE .

Let E be an even ring spectrum, which need not be periodic. Let EP =
∨

n∈ZΣ2nE. There is
an evident way to make this into a commutative ring spectrum with the property that π∗EP =
E∗[u, u−1] with u ∈ π2EP . With this structure, EP becomes an even periodic ring spectrum.
Note that when X is finite we just have EP 0X =

⊕
n E2nX, so the ring EP 0X has a natural

even grading. If X is an infinite, even CW-complex then EP 0X is the completed direct sum (with
respect to the topology defined by kernels of restrictions to finite subcomplexes) of the groups
E2nX and so again has a natural even grading.

We write HP for the 2-periodic integer Eilenberg-MacLane spectrum HZP , and MP for
MUP = MU〈0〉. The formal group of HP is the additive group Ĝa; and we may choose an
additive coordinate z on Ĝa for which u = dz. By Quillen’s theorem [Qui69], the formal group of
MP is Lazard’s universal formal group law.
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If X is an even, homotopy commutative H-space, then XE is a (commutative but in general
not one-dimensional) formal group. In that case E0X is a Hopf algebra over E0 and we write
XE = spec(E0X) for the corresponding group scheme. It is the Cartier dual of the formal group
XE . We recall (from [Dem72, §II.4], for example; see also [Str99a, Section 6.4] for a treatment
adapted to the present situation) that the Cartier dual of a formal group G is the functor from
rings to groups

Hom(G,Gm)(A) = {(u, f) | u : spec(A) −→ S , f ∈ (Formal groups)(u∗G, u∗Gm)}.
Let b ∈ E0X⊗̂E0X be the adjoint of the identity map E0X → E0X. Given a ring homomorphism
g : E0X → A we get a map u : spec(A) → SE and an element g(b) ∈ (A⊗̂E0X)× = (A⊗̂OXE

)×,
which corresponds to a map of schemes

f : u∗XE −→ u∗Gm.

One shows that it is a group homomorphism, and so gives a map of group schemes

XE −→ Hom(XE ,Gm), (2.2)

which turns out to be an isomorphism.

2.2. Constructions of elliptic spectra. Recall that an elliptic spectrum is a triple (E, C, t)
consisting of an even, periodic, homotopy commutative ring spectrum E, a generalized elliptic
curve C over E0(pt), and an isomorphism formal groups

t : PE −→ Ĉ.

Here are some examples.

Example 2.3. As discussed in the introduction, if Λ ⊂ C is a lattice, then the quotient C/Λ is
an elliptic curve CΛ over C. The covering map C → C/Λ gives an isomorphism tΛ : ĈΛ

∼= Ĝa.
Let EΛ be the spectrum representing the cohomology theory H∗(− ;C[uΛ, u−1

Λ ]). Define HΛ to
be the elliptic spectrum (EΛ, CΛ, tΛ). Note that uΛ can be taken to correspond to the invariant
differential dz on C under the isomorphism (2.1).

Given a non-zero complex number λ, consider the map

f : EλΛ −→ EΛ

uλΛ 7→ λuΛ

(i.e. π2f scales the invariant differential by λ). The induced map of formal groups is simply
multiplication by λ, and so extends to the isomorphism

CΛ
λ·−→ CλΛ

of elliptic curves. Thus f defines a map of elliptic spectra

f : HλΛ −→ HΛ.

Example 2.4. Let CHP be the cuspidal cubic curve y2z = x3 over spec(Z). In §B.1.4, we give
an isomorphism s : (CHP )reg ∼= Ga and so ŝ : ĈHP

∼= Ĝa = PHP . Thus the triple (HP,CHP , ŝ) is
an elliptic spectrum.

Example 2.5. Let C = CK be the nodal cubic curve y2z + xyz = x3 over spec(Z). In §B.1.4,
we give an isomorphism t : (CK)reg ∼= Gm so ĈK

∼= Ĝm = PK . The triple (K, CK , t̂) is an elliptic
spectrum.

Example 2.6. Let C/S be an untwisted generalized elliptic curve (see Definition B.2) with the
property that the formal group Ĉ is Landweber exact (For example, this is automatic if OS is a Q-
algebra). Landweber’s exact functor theorem gives an even periodic cohomology theory E∗(− ),
together with an isomorphism of formal groups t : PE −→ Ĉ. This is the classical construction
of elliptic cohomology; and gives rise to many examples. In fact, the construction identifies a
representing spectrum E up to canonical isomorphism, since Franke [Fra92] and Strickland [Str99a,
Proposition 8.43] show that there are no phantom maps between Landweber exact elliptic spectra.
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Example 2.7. In §2.6, we describe an elliptic spectrum based on the Tate elliptic curve, with
underlying spectrum K[[q]].

2.3. The complex-orientable homology of BU〈2k〉 for k ≤ 3. Let E be an even periodic
ring spectrum with a coordinate x ∈ Ẽ0P , giving rise to a formal group law F over E0. Let
ρ : P 3 → BU〈6〉 be the map (see (2.24)) such that the composition

P 3 ρ−→ BU〈6〉 → BU

classifies the virtual bundle
∏

i(1 − Li). Let f = f(x1, x2, x3) be the power series which is the
adjoint of E0ρ in the ring E0P 3⊗̂E0BU〈6〉 ∼= E0BU〈6〉[[x1, x2, x3]]. It is easy to check that f
satisfies the following three conditions.

f(x1, x2, 0) = 1 (2.8a)

f(x1, x2, x3) is symmetric in the xi (2.8b)

f(x1, x2, x3)f(x0, x1 +F x2, x3) = f(x0 +F x1, x2, x3)f(x0, x1, x3). (2.8c)

We will eventually prove the following result.

Theorem 2.9. E0BU〈6〉 is the universal example of an E0-algebra R equipped with a formal
power series f ∈ R[[x1, x2, x3]] satisfying the conditions (2.8).

In this section we will reformulate this statement (as the case k = 3 of Theorem 2.29) in a way
which avoids the choice of a coordinate.

2.3.1. The functor Ck.

Definition 2.10. If A and T are abelian groups, we let C0(A, T ) be the group

C0(A, T ) def= (Sets)(A, T ),

and for k ≥ 1 we let Ck(A, T ) be the subgroup of f ∈ (Sets)(Ak, T ) such that

f(a1, . . . , ak−1, 0) = 0; (2.11a)

f(a1, . . . , ak) is symmetric in the ai; (2.11b)

f(a1, a2, a3, . . . , ak) + f(a0, a1 + a2, a3, . . . , ak) = f(a0 + a1, a2, a3, . . . , ak) + f(a0, a1, a3, . . . , ak).
(2.11c)

We refer to (2.11c) as the cocycle condition for f . It really only involves the first two arguments
of f , with the remaining arguments playing a dummy rôle. Of course, because f is symmetric, we
have a similar equation for any pair of arguments of f .

Remark 2.12. We leave it to the reader to verify that the condition (2.11a) can be replaced with
the weaker condition

f(0, . . . , 0) = 0 (2.11a’)

Remark 2.13. Let Z[A] denote the group ring of A, and let I[A] be its augmentation ideal. For
k ≥ 0 let

Ck(A) def= Symk
Z[A] I[A]

be the kth symmetric tensor power of I[A], considered as a module over the group ring. One has
C0(A) = Z[A] and C1(A) = I[A]. For k ≥ 1, the abelian group Ck(A) is the quotient of Symk

Z I[A]
by the relation

([c]− [c + a1])⊗ ([0]− [a2])⊗ . . .⊗ ([0]− [ak]) = ([0]− [a1])⊗ ([c]− [c + a2])⊗ . . .⊗ ([0]− [ak])

for c ∈ A. After some rearrangement and reindexing, this relation may be expressed in terms of
generators of the form 〈a1, . . . , ak〉 def= ([0]− [a1])⊗ . . .⊗ ([0]− [ak]) by the formula

〈a1, a2, a3, . . . , ak〉 − 〈a0 + a1, a2, a3, . . . , ak〉+ 〈a0, a1 + a2, a3, . . . , ak〉 − 〈a0, a1, a3, . . . , ak〉 = 0.
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It follows that the map of sets

Ak → Ck(A)

(a1, . . . , ak) 7→ 〈a1, . . . , ak〉

induces an isomorphism

(Abelian groups)(Ck(A), T ) ∼= Ck(A, T ).

Remark 2.14. Definition 2.10 generalizes to give a subgroup Ck(A, B) of the group of maps
f : Ak −→ B, if A and B are abelian groups in any category with finite products.

Definition 2.15. If G and T are formal groups over a scheme S, and we wish to emphasize the
rôle of S, we will write Ck

S(G,T ). For any ring R, we define

Ck(G,T )(R) = {(u, f) | u : spec(R) −→ S , f ∈ Ck
spec(R)(u

∗G, u∗T )}.

This gives a covariant functor from rings to groups. We shall abbreviate Ck(G,Gm × S) to
Ck(G,Gm).

Remark 2.16. It is clear from the definition that, for all maps of schemes S′ → S, the natural
map

Ck(G×S S′,Gm) → Ck(G,Gm)×S S′

is an isomorphism.

Proposition 2.17. Let G be a formal group over a scheme S. For all k, the functor Ck(G,Gm)
is an affine commutative group scheme.

Proof. We assume that k > 0, leaving the modifications for the case k = 0 to the reader. It
suffices to work locally on S, and so we may choose a coordinate x on G. Let F be the resulting
formal group law of G. We let A be the set of multi-indices α = (α1, . . . , αk), where each αi

is a nonnegative integer. We define R = OS [bα | α ∈ A][b−1
0 ], and f(x1, . . . , xk) =

∑
α bαxα ∈

R[[x1, . . . , xk]]. Thus, f defines a map spec(R)×S Gk −→ Gm, and in fact spec(R) is easily seen to
be the universal example of a scheme over S equipped with such a map. We define power series
g0, . . . , gk by

gi =





i = 0 f(0, . . . , 0)
i < k f(x1, . . . , xi−1, xi+1, xi, . . . , xk)f(x1, . . . , xk)−1

i = k f(x1, . . . , xk)f(x0 +F x1, x2, . . . )−1f(x0, x1 +F x2, . . . )f(x0, x1, x3, . . . )−1

We then let I be the ideal in R generated by all the coefficients of all the power series gi − 1. It
is not hard to check that spec(R/I) has the universal property that defines Ck(G,Gm).

Remark 2.18. A similar argument shows that Ck(G, T ) is a group scheme when T is a formal
group, or when T is the additive group Ga.

Remark 2.19. If G is a formal group and k > 0 then the inclusion Ck(G, Ĝm) −→ Ck(G,Gm) is
an isomorphism, so we shall not distinguish between these two schemes. Indeed, we can locally
identify Ck(G,Gm)(R) with a set of power series f as in the above proof. One of the conditions
on f is that f(0, . . . , 0) = 1, so when x1, . . . , xk are nilpotent we see that f(x1, . . . , xn) = 1 mod
nilpotents, so f(x1, . . . , xn) ∈ Ĝm ⊂ Gm. This does not work for k = 0, as then we have

C0(G,Gm) = Map(G,Gm) 6= Map(G, Ĝm) = C0(G, Ĝm).
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2.3.2. The maps δ : Ck(G,T ) → Ck+1(G,T ). We now define maps of schemes that will turn out
to correspond to the maps BU〈2k + 2〉 −→ BU〈2k〉 of spaces.

Definition 2.20. If G and T are abelian groups, and if f : Gk → T is a map of sets, then let
δ(f) : Gk+1 → T be the map given by the formula

δ(f)(a0, . . . , ak) = f(a0, a2, . . . , ak) + f(a1, a2, . . . , ak)− f(a0 + a1, a2, . . . , ak). (2.21)

It is clear that δ generalizes to abelian groups in any category with products. We leave it to
the reader to verify the following.

Lemma 2.22. For k ≥ 1, the map δ induces a homomorphism of groups

δ : Ck(G,T ) → Ck+1(G, T ).

Moreover, if G and T are formal groups over a scheme S, then δ induces a homomorphism of
group schemes δ : Ck(G,T ) −→ Ck+1(G,T ).

Remark 2.23. When A and T are discrete abelian groups, the group H2(A; T ) def= cok(δ : C1(A, T ) −→
C2(A, T )) classifies central extensions of A by T . The next map δ : C2(A, T ) −→ C3(A, T )) can
also be interpreted in terms of biextensions [Mum65, Gro72, Bre83].

2.3.3. Relation to BU〈2k〉. For any space X, we write K∗(X) for the periodic complex K-theory
groups of X; in the case of a point we have K∗ = Z[v, v−1] with v ∈ K−2. We have K2t(X) =
[X,Z×BU ] for all t. We also consider the connective K-theory groups bu∗(X), so bu∗ = Z[v] and
bu2t(X) = [X,BU〈2t〉]. To make this true when t = 0, we adopt the convention that BU〈0〉 = Z×
BU . Multiplication by vt : Σ2tbu → bu gives an identification of the 0-space of Σ2tbu with BU〈2t〉.
Under this identification, the projection BU〈2t + 2〉 −→ BU〈2t〉 is derived from multiplication by
v mapping Σ2t+2bu → Σ2tbu.

For t ≥ 0 we define a map

ρt : P t = (CP∞)t → BU〈2t〉 (2.24)

as follows. The map ρ0 : P → 1 × BU ⊂ BU〈0〉 is just the map classifying the tautological line
bundle L. For t > 0, let L1, . . . , L2 be the obvious line bundles over P t. Let xi ∈ bu2(P t) be the
bu-theory Euler class, given by the formula

vxi = 1− Li.

Then we have the isomorphisms

bu∗(P t) ∼= Z[v][[x1, . . . , xt]]

K∗(P t) ∼= Z[v, v−1][[x1, . . . , xt]].

The class
∏

i xi ∈ bu2t(P t) gives the map ρt. Note that the composition

P t ρt−→ BU〈2t〉 → BU

classifies the bundle
∏

i(1− Li).

Since P and BU〈2t〉 are abelian group objects in the homotopy category of topological spaces,
we can define

Ct(P,BU〈2t〉) ⊂ [P t, BU〈2t〉] = bu2t(P t).

Then we have the following.

Proposition 2.25. The map ρt is contained in the subgroup Ct(P,BU〈2t〉) of bu2t(P t) and sat-
isfies

v∗ρt+1 = δ(ρt) ∈ Ct+1(P, BU〈2t〉).
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Proof. It suffices to check that ft gives an element of Ct(P, BU〈0〉). As the group structure of P
corresponds to the tensor product of line bundles, while the group structure of BU〈0〉 corresponds
to the Whitney sum of vector bundles, the cocycle condition (2.11c) amounts to the equation

(1− L2)(1− L3) + (1− L1)(1− L2L3) = (1− L1L2)(1− L3) + (1− L1)(1− L2)

in K0(P 3). The other conditions for membership in Ct are easily verified. Similarly, the equation
v∗ρt+1 = δ(ρt) follows from the equation

(1− L1) + (1− L2)− (1− L1L2) = (1− L1)(1− L2).

Now let E be an even periodic ring spectrum. Applying E-homology to the map ρk gives a
homomorphism

E0ρk : E0P
k → E0BU〈2k〉.

For k ≤ 3, BU〈2k〉 is even ([Sin68] or see §4), and of course the same is true of P , and so we may
consider the adjoint ρ̂k of E0ρk in E0BU〈2k〉⊗̂E0P k. Proposition 2.25 then implies the following.

Corollary 2.26. The element ρ̂k ∈ E0BU〈2k〉⊗̂E0P k is an element of Ck(PE ,Gm)(E0BU〈2k〉).

Definition 2.27. For k ≤ 3, let fk : BU〈2k〉E → Ck(PE ,Gm) be the map classifying the cocycle
ρ̂k.

Corollary 2.28. The map fk is a map of group schemes. For k ≤ 2, the diagram

BU〈2k + 2〉E

fk+1

²²

vE
// BU〈2k〉E

fk

²²

Ck+1(PE ,Gm)
δ

// Ck(PE ,Gm)

commutes.

Proof. The commutativity of the diagram follows easily from the Proposition. To see that fk is
a map of group schemes, note that the group structure on BU〈2k〉E is induced by the diagonal
map ∆: BU〈2k〉 −→ BU〈2k〉 ×BU〈2k〉. The commutative diagram

P k ∆−−−−→ P k × P k

ρk

y
yρk×ρk

BU〈2k〉 ∆−−−−→ BU〈2k〉 ×BU〈2k〉
shows that

BU〈2k〉E ×BU〈2k〉E −→ BU〈2k〉E

pulls the function ρ̂k back to the multiplication of ρ̂k ⊗ 1 and 1 ⊗ ρ̂k as elements of the ring
E0(BU〈2k〉2)⊗̂E0P k of functions on P k

E × (BU〈2k〉E × BU〈2k〉E). The result follows, since the
group structure of Ck(PE ,Gm) is induced by the multiplication of functions in OP k

E
.

Our main calculation, and the promised coordinate-free version of Theorem 2.9, is the following.

Theorem 2.29. For k ≤ 3, the map of group schemes

BU〈2k〉E fk−→ Ck(PE ,Gm)

is an isomorphism.
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This is proved in §4. The cases k ≤ 1 are essentially well-known calculations. For k = 2
and k = 3 we can reduce to the case E = MP , using Quillen’s theorem that π0MP carries
the universal example of a formal group law. Using connectivity arguments and the Atiyah-
Hirzebruch spectral sequence, we can reduce to the case E = HP . After these reductions, we
need to compare H∗BU〈2k〉 with OCk(bGa,Gm). We analyze H∗(BU〈2k〉;Q) and H∗(BU〈2k〉;Fp)
using the Serre spectral sequence, and we analyze OCk(bGa,Gm) by direct calculation, one prime
at a time. For the case k = 3 we also give a model for the scheme associated to the polyno-
mial subalgebra of H∗(K(Z, 3);Fp), and by fitting everything together we show that the map
BU〈2k〉E −→ Ck(PE ,Gm) is an isomorphism.

Remark 2.30. As BU〈2k〉E = Hom(BU〈2k〉E ,Gm) = Ck(PE ,Gm), it is natural to hope that
one could

i. define a formal group scheme Ck(PE) which could be interpreted as the k’th symmetric tensor
power of the augmentation ideal in the group ring of the formal group PE ;

ii. show that Ck(PE ,Gm) = Hom(Ck(PE),Gm); and
iii. prove that BU〈2k〉E = Ck(PE).

This would have advantages over the above theorem, because the construction X 7→ XE is functo-
rial for all spaces and maps, whereas the construction X 7→ XE is only functorial for commutative
H-spaces and H-maps. It is in fact possible to carry out this program, at least for k ≤ 3. It
relies on the apparatus developed in [Str99a], and the full strength of the present paper is required
even to prove that C3(G) (as defined by a suitable universal property) exists. Details will appear
elsewhere.

2.4. The complex-orientable homology of MU〈2k〉 for k ≤ 3. We now turn our attention to
the Thom spectra MU〈2k〉. We first note that when k ≤ 3, the map BU〈2k〉 → BU〈0〉 = Z×BU
is a map of commutative, even H-spaces. The Thom isomorphism theorem as formulated by
[MR81] implies that E0MU〈2k〉 is an E0BU〈2k〉-comodule algebra; and a choice of orientation
MU〈0〉 → E gives an isomorphism

E0MU〈2k〉 ∼= E0BU〈2k〉
of comodule algebras. In geometric language, this means that the scheme MU〈2k〉E is a principal
homogeneous space or “torsor” for the group scheme BU〈2k〉E .

In this section, we work through the Thom isomorphism to describe the object which corre-
sponds to MU〈2k〉E under the isomorphism BU〈2k〉E ∼= Ck(PE ,Gm) of Theorem 2.29. Whereas
the schemes BU〈2k〉E are related to functions on the formal group PE of E, the schemes MU〈2k〉E
are related to the sections of the ideal sheaf I(0) on PE . In §2.4.4, we describe the analogue
Ck(G; I(0)) for the line bundle I(0) of the functor Ck(G,Gm). In §2.4.5, we give the map

gk : MU〈2k〉E → Ck(PE ; I(0))

which is our description of MU〈2k〉E .

2.4.1. Torsors. We begin with a brief review of torsors in general and the Thom isomorphism in
particular.

Definition 2.31. Let S be a scheme and G a group scheme over S. A (right) G-torsor over S is
an S-scheme X with a right action

X ×G
µ−→ X

of the group G, with the property that there exists a faithfully flat S-scheme T and an isomorphism

G× T −→ X × T

of T -schemes, compatible with the action of G×T . (All the products here are to be interpreted as
fiber products over S.) Any such isomorphism is a trivialization of X over T . A map of G-torsors
is just an equivariant map of schemes. Note that a map of torsors is automatically an isomorphism.
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When G = spec(H) is affine over S = spec(A), a G-torsor works out to consists of an affine
S-scheme T = spec(M) and a right coaction

M
µ∗−→ M ⊗A H

with the property that over some faithfully flat A-algebra B there is an isomorphism

H ⊗A B −→ M ⊗A B

of rings which is a map of right H ⊗A B-comodules.

For example, consider the relative diagonal

MU〈2k〉 ∆−→ MU〈2k〉 ∧BU〈2k〉+.

If E is an even periodic ring spectrum and k ≤ 3, then by the Künneth and universal coefficient
theorems, the map ∆ induces an action

MU〈2k〉E ×BU〈2k〉E µ−→ MU〈2k〉E .

of the group scheme BU〈2k〉E on MU〈2k〉E . The scheme MU〈2k〉E is in fact a torsor for BU〈2k〉E .
Indeed, a complex orientation MU〈0〉 −→ E restricts to an orientation Φ: MU〈2k〉 −→ E which
induces an isomorphism

E0MU〈2k〉 ∆−→ E0MU〈2k〉 ∧BU〈2k〉+ Φ∧BU〈2k〉+−−−−−−−−→ E0BU〈2k〉+ (2.32)

of E0BU〈2k〉-comodule algebras.

2.4.2. The line bundle I(0). Another source of torsors is line bundles. If L is a line bundle
(invertible sheaf of OX -modules) over X, let Γ×(L) be the functor of rings

Γ×(L)(R) = {(u, s) | u : spec(R) −→ X , s a trivialization of u∗L}.
Then Γ×(L) is a Gm-torsor over X, and Γ× is an equivalence between the category of line bundles
(and isomorphisms) and the category of Gm torsors. We will often not distinguish in notation
between L and the associated Gm-torsor Γ×(L).

Let G be a formal group over a scheme S. The ideal sheaf I(0) associated to the zero section
S ⊂ G defines a line bundle over G. Indeed, the set of global sections of I(0) is the set of
functions f ∈ OG such that f |S = 0. Locally on S, a choice of coordinate x gives an isomorphism
OG = OS [[x]], and the module of sections is the ideal (x), which is free of rank 1.

If C is a generalized elliptic curve over, then we again let I(0) denote the ideal sheaf of S ⊂ C.
Its restriction to the formal completion Ĉ is the same as the line bundle over Ĉ constructed above.

2.4.3. The Thom sheaf. Suppose that X is a finite complex and V is a complex vector bundle over
X. We write XV for its Thom spectrum, with bottom cell in degree equal to the real rank of V .
This is the suspension spectrum of the usual Thom space. Now let E be an even periodic ring
spectrum. The E0X-module E0XV is the sheaf of sections of a line bundle over XE . We shall
write L(V ) for this line bundle, and L defines a functor from vector bundles over X to line bundles
over XE . If V and W are two complex vector bundles over X then there is a natural isomorphism

L(V ⊕W ) ∼= L(V )⊗ L(W ), (2.33)

and so L extends to the category of virtual complex vector bundles by the formula L(V −W ) =
L(V )⊗ L(W )−1. Moreover, if f : Y → X is a map of spaces, then there is a natural isomorphism
(spec E0f)∗L(V ) ∼= L(f∗V ) of line bundles over YE . This construction extends naturally to infinite
complexes by taking suitable (co)limits.

Example 2.34. For example, if L is the tautological line bundle over P = CP∞ then the zero
section P −→ PL induces an isomorphism Ẽ0PL ∼= Ẽ0P = ker(E0P −→ E0), and thus gives an
isomorphism

L(L) ∼= I(0) (2.35)

of line bundles over PE .
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2.4.4. The functors Θk (after Breen [Bre83]). We recall that the category of line bundles or Gm-
torsors is a strict Picard category, or in other words a symmetric monoidal category in which every
object L has an inverse L−1, and the twist map of L ⊗ L is the identity. This means that the
procedures we use below to define line bundles give results that are well-defined up to coherent
canonical isomorphism.

Suppose that G is a formal group over a scheme S and L is a line bundle over G.

Definition 2.36. A rigid line bundle over G is a line bundle L equipped with a specified trivi-
alization of L|S at the identity S → G. A rigid section of such a line bundle is a section s which
extends the specified section at the identity. A rigid isomorphism between two rigid line bundles
is an isomorphism which preserves the specified trivializations.

Definition 2.37. Suppose that k ≥ 1. Given a subset I ⊆ {1, . . . , k}, we define σI : Gk
S −→ G by

σI(a1, . . . , ak) =
∑

i∈I ai, and we write LI = σ∗IL, which is a line bundle over Gk
S . We also define

the line bundle Θk(L) over Gk
S by the formula

Θk(L) def=
⊗

I⊂{1,...,k}
(LI)(−1)|I| . (2.38)

Finally, we define Θ0(L) = L.

For example we have

Θ0(L)a = La

Θ1(L)a =
L0

La

Θ2(L)a,b =
L0 ⊗ La+b

La ⊗ Lb

Θ3(L)a,b,c =
L0 ⊗ La+b ⊗ La+c ⊗ Lb+c

La ⊗ Lb ⊗ Lc ⊗ La+b+c
.

We observe three facts about these bundles.

i. Θk(L) has a natural rigid structure for k > 0.
ii. For each permutation σ ∈ Σk, there is a canonical isomorphism

ξσ : π∗σΘk(L) ∼= Θk(L),

where πσ : Gk
S −→ Gk

S permutes the factors. Moreover, these isomorphisms compose in the
obvious way.

iii. There is a canonical identification (of rigid line bundles over Gk+1
S )

Θk(L)a1,a2,... ⊗Θk(L)−1
a0+a1,a2,... ⊗Θk(L)a0,a1+a2,... ⊗Θk(L)−1

a0,a1,...
∼= 1. (2.39)

Definition 2.40. A Θk–structure on a line bundle L over a group G is a trivialization s of the
line bundle Θk(L) such that

i. for k > 0, s is a rigid section;
ii. s is symmetric in the sense that for each σ ∈ Σk, we have ξσπ∗σs = s;
iii. the section s(a1, a2, . . . )⊗s(a0+a1, a2, . . . )−1⊗s(a0, a1+a2, . . . )⊗s(a0, a1, . . . )−1 corresponds

to 1 under the isomorphism (2.39).

A Θ3–structure is known as a cubical structure [Bre83]. We write Ck(G;L) for the set of Θk-
structures on L over G. Note that C0(G;L) is just the set of trivializations of L, and C1(G;L) is
the set of rigid trivializations of Θ1(L). We also define a functor from rings to sets by

Ck(G;L)(R) = {(u, f) | u : spec(R) −→ S , f ∈ Ck
spec(R)(u

∗G; u∗L)}.
Remark 2.41. Note that for the trivial line bundle OG, the set Ck(G;OG) reduces to that of the
group Ck(G,Gm) of cocycles introduced in §2.3.1.
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Remark 2.42. There are some differences between our functors Θk and Breen’s functors Λ and
Θ [Bre83]. Let L′ = Θ1(L)−1 be the line bundle La/L0. Then there are natural isomorphisms

Λ(L′) ∼= Θ2(L)

Θ(L′) ∼= Θ3(L)−1.

Breen also uses the notation Θ1(M) for Θ(L′) [Bre83, Equation 2.8.1]. As the trivializations of
L biject with those of L−1 in an obvious way, our definition of cubical structures is equivalent to
Breen’s.

Proposition 2.43. If G is a formal group over S, and L is a trivializable line bundle over G,
then the functor Ck(G;L) is a scheme, whose formation commutes with change of base. Moreover,
Ck(G;L) is a trivializable torsor for Ck(G,Gm).

Proof. There is an evident action of Ck(G,Gm) on Ck(G;L), and a trivialization of L clearly gives
an equivariant isomorphism of Ck(G;L) with Ck(G;OG) = Ck(G,Gm). Given this, the Propo-
sition follows from the corresponding statements for Ck(G,Gm), which were proved in Proposi-
tion 2.17.

The following lemmas can easily be checked from Definitions 2.37 and 2.40.

Lemma 2.44. If L is a line bundle over a formal group G, then there is a canonical isomorphism

Θk(L)a0,a2,... ⊗Θk(L)a1,a2,... ⊗Θk(L)−1
a0+a1,a2,...

∼= Θk+1(L)a0,...,ak
.

Lemma 2.45. There is a natural map δ : Ck(G;L) −→ Ck+1(G;L), given by

δ(s)(a0, . . . , ak) = s(a0, a2, . . . )s(a1, a2, . . . )s(a0 + a1, a2, . . . )−1,

where the right hand side is regarded as a section of Θk+1(L) by the isomorphism of the previous
lemma.

2.4.5. Relation to MU〈2k〉. For 1 ≤ i ≤ k, let Li be the line bundle over the i factor of P k. Recall
from (2.24) that the map ρk : P k → BU〈2k〉 pulls the tautological virtual bundle over BU〈2k〉
back to the bundle

V =
⊗

i

(1− Li).

Passing to Thom spectra gives a map

(P k)V → MU〈2k〉
which determines an element sk of E0MU〈2k〉⊗̂E0((P k)V ).

We recall from (2.35) that there is an isomorphism of line bundles L(L) ∼= I(0) over PE , where
I(0) is the ideal sheaf of the zero section; and that the functor L (from virtual vector bundles to
line bundles over XE) sends direct sums to tensor products. Together these observations give an
isomorphism

L(V ) ∼= Θk(I(0)) (2.46)

of line bundles over P k
E . With this identification, sk is a section of the pull-back of Θk(I(0)) along

the projection MU〈2k〉E −→ SE .

Lemma 2.47. The section sk is a Θk-structure.

Proof. This is analogous to Corollary 2.26.

Let

MU〈2k〉E gk−→ Ck(PE ; I(0))

be the map classifying the Θk-structure sk. We note that the isomorphism BU〈2k〉E ∼= Ck(PE ,Gm)
gives Ck(PE ; I(0)) the structure of a torsor for the group scheme BU〈2k〉E .
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Theorem 2.48. For k ≤ 3, the map gk is a map of torsors for the group BU〈2k〉E (and so an
isomorphism). Moreover, the map MU〈2k + 2〉 −→ MU〈2k〉 induces the map δ : Ck(PE ; I(0)) −→
Ck+1(PE ; I(0)).

Proof. Let us write µ for the action

Ck(PE ; I(0))× Ck(PE ,Gm) −→ Ck(PE ; I(0)).

If funiv is the universal element of Ck(PE ,Gm) and suniv is the universal element of Ck(PE ; I(0)),
then µ is characterized by the equation

µ∗suniv = funivsuniv, (2.49)

as elements of Ck(PE ; I(0))(OCk(PE ;I(0))×Ck(PE ,Gm)).

Now consider the commutative diagram

(P k)V ∆ //

²²

(P k)V ∧ (P k)+

²²

MU〈2k〉
∆

// MU〈2k〉 ∧BU〈2k〉+.

Applying E-homology and then taking the adjoint in E0(BU〈2k〉+ ∧MU〈2k〉)⊗̂E0(P k)V gives a
section of Θk(I(0)) over BU〈2k〉E ×MU〈2k〉E . The counterclockwise composition identifies this
section as the pull-back of the section sk under the action

MU〈2k〉E ×BU〈2k〉E ∆E

−−→ MU〈2k〉E
as in §2.4.1. Via the isomorphism BU〈2k〉E ∼= Ck(PE ,Gm) of Theorem 2.29, the clockwise com-
position is funivsk. From the description of µ (2.49) it follows that gk is a map of torsors, as
required.

Another diagram chase shows that the map MU〈2k + 2〉 −→ MU〈2k〉 is compatible with the
map δ : Ck(GE ; I(0)) −→ Ck+1(GE ; I(0)).

Corollary 2.50. For 0 ≤ k ≤ 3, maps of ring spectra MU〈2k〉 −→ E are in bijective correspon-
dence with Θk-structures on I(0) over GE.

Proof. Since E∗MU〈2k〉 is torsion free and concentrated in even degrees, one has

[MU〈2k〉, E] = E0MU〈2k〉 = Homπ0E(E0MU〈2k〉, π0E).

One checks that maps of ring spectra correspond to ring homomorphisms, so

RingSpectra(MU〈2k〉, E) = Algπ0E(E0MU〈2k〉, π0E).

This is just the set of global sections of MU〈2k〉E over SE , which is the set of Θk-structures on
I(0) over GE by the theorem.

Example 2.51. Maps of ring spectra MP = MU〈0〉 −→ E are in bijective correspondence with
global trivializations of the sheaf I(0) ∼= L(L), that is, with generators x of the augmentation
ideal E0P → E0(pt).

Example 2.52. Maps of ring spectra MU = MU〈2〉 → E are in bijective correspondence with
rigid sections of ω ⊗ I(0)−1, or equivalently with rigid sections of ω−1 ⊗ I(0). The isomorphism
(2.46) identifies sections of ω−1⊗I(0) with elements of E0(PL−1), and the rigid sections are those
which restrict to the identity under the inclusion

S0 → PL−1

of the bottom cell. It is equivalent to give a class x ∈ Ẽ2(P ) whose restriction to Ẽ2(S2) is the
suspension of 1 ∈ Ẽ0S0; this is the description of maps MU → E in [Ada74].

2.5. The σ–orientation of an elliptic spectrum.
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2.5.1. Elliptic spectra and the Theorem of the Cube. Let C be a generalized elliptic curve over
an affine scheme S. To begin, note that the smooth locus Creg is a group scheme over S, so we
can define Θ3(I(0)) over Creg. We define a cubical structure on C to be a cubical structure on
I(0)|Creg ; and we write C3(C; I(0)) for C3(Creg; I(0)).

Theorem 2.53. For any (nonsingular) elliptic curve C over a normal scheme S, there is a unique
cubical structure s(C/S) ∈ C3(C; I(0)). It has the following properties:

i. If C ′/S′ is obtained from C/S by base change along f : S′ −→ S, then

s(C ′/S′) = f∗s(C/S)

ii. If t : C ′ −→ C is an isomorphism over S, then

s(C ′/S) = (t3)∗s(C/S).

Proof. The first claim follows from [Gro72, Exposé VIII, Cor. 7.5] (see also [Bre83, Proposition
2.4]); the argument was sketched in the introduction. The other claims are immediate by unique-
ness.

We would like to extend this to the case where S need not be normal and C is allowed to have
singularities. In this generality there may be many cubical structures (for example when C is
a cuspidal cubic over spec(Z), with Creg = Ga) but nonetheless there will be a canonical choice
of one. To prove this, we will exhibit a formula which gives the unique cubical structure on the
universal elliptic curve over Z[a1, a2, a3, a4, a6][∆−1] and give a density argument to show that this
formula works in general.

Definition 2.54. Let C = C(a1, a2, a3, a4, a6) be a Weierstrass curve (see Appendix B for defi-
nitions and conventions). A typical point of (Creg)3S will be written as (c0, c1, c2). We define s(a)
by the following expression:

s(a)(c0, c1, c2) =

∣∣∣∣∣∣

x0 y0 z0

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣

−1 ∣∣∣∣
x0 z0

x1 z1

∣∣∣∣
∣∣∣∣

x1 z1

x2 z2

∣∣∣∣
∣∣∣∣

x2 z2

x0 z0

∣∣∣∣ (z0z1z2)−1d(x/y)0.

(Compare [Bre83, Equation 3.13.4], bearing in mind the isomorphism x 7→ [℘(x) : ℘′(x) : 1] from
C/Λ to E ; Breen cites [FS80, Jac] as sources.)

Proposition 2.55. s(a) is a meromorphic section of the line bundle p∗ωC over (Creg)3S (where
p : C3

S −→ S is the projection). It defines a rigid trivialization of

(p∗ωC)⊗ I−D1+D2−D3 = Θ3(I(0))

(in the notation of §B.4.2).

The proof is given in §B.4 of the appendix.

Corollary 2.56. There is a unique way to assign to a generalized elliptic curve C over a scheme
S a cubical structure s(C/S) ∈ C3(C; I(0)), such that the following conditions are satisfied.

i. If C ′/S′ is obtained from C/S by base change along f : S′ −→ S, then

s(C ′/S′) = f∗s(C/S)

ii. If t : C ′ −→ C is an isomorphism over S, then

s(C ′/S) = (t3)∗s(C/S).

Proof. Over the locus WCell ⊂ WC where ∆ is invertible, there is only one rigid trivialization of
Θ3(I(0)), and it is a cubical structure (by Theorem 2.53). Thus s(a) satisfies the equations for
a cubical structure when restricted to the dense subscheme C3

reg ×WC WCell ⊂ C3
reg, so it must

satisfy them globally. Similarly, the uniqueness clause in the theorem implies that s(a)|WCell is
invariant under the action of the group WR, and thus s(a) itself is invariant.
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Now suppose we have a generalized elliptic curve C over a general base S. At least locally, we
can choose a Weierstrass parameterization of C and then use the formula s(a) to get a cubical
structure. Any other Weierstrass parameterization is related to the first one by the action of WR,
so it gives the same cubical structure by the previous paragraph. We can thus patch together
our local cubical structures to get a global one. The stated properties follow easily from the
construction.

Theorem 2.57. For any elliptic spectrum E = (E, C, t) there is a canonical map of ring spectra

σE : MU〈6〉 −→ E.

This map is natural in the sense that if f : E −→ E′ = (E′, C ′, t′) is a map of elliptic spectra, then
the diagram

MU〈6〉
σE

{{xx
xx

xx
xx

x σE′

##GG
GG

GG
GG

G

E
f

// E′

commutes (up to homotopy).

Proof. This is now very easy. Let s(C/SE) be the cubical structure constructed in Corollary 2.56,
and let s(Ĉ/SE) be the restriction of s(C/S) to ĈE . The orientation is the map σE : MU〈6〉 −→ E

corresponding to t∗s(Ĉ/S) via Corollary 2.50. The functoriality follows from the functoriality of
s in the corollary.

2.6. The Tate curve. In this section we describe the Tate curve CTate, and give an explicit
formula for the cubical structure s(ĈTate). For further information about the Tate curve, the
reader may wish to consult for example [Sil94, Chapter V] or [Kat73].

By way of motivation, let’s work over the complex numbers. Elliptic curves over C can be
written in the form

C×/(u ∼ qu)

for some q with 0 < |q| < 1. This is the Tate parameterization, and as is customary, we will work
with all q at once by considering the family of elliptic curves

C ′an/D′ = D′ × C×/(q, u) ∼ (q, qu),

parameterized by the punctured open unit disk

D′ = {q ∈ C | 0 < |q| < 1}.
In this presentation, meromorphic functions on C ′an are naturally identified with meromorphic
functions f(q, u) on D′ × C× satisfying the functional equation

f(q, qu) = f(q, u). (2.58)

Sections of line bundles on C ′an admit a similar description, but with (2.58) modified according to
the descent datum of the line bundle.

Let I(0) be the ideal sheaf of the origin on C ′an. The pullback of I(0) to D′ × C× is the line
bundle whose holomorphic sections are functions vanishing at the points (q, qn), with n ∈ Z. One
such function is

θ̃(q, u) = (1− u)
∏
n>0

(1− qnu)(1− qnu−1),

which has simple zeroes at the powers of q, and so gives a trivialization of the pullback of I(0) to
C×. The function θ̃(q, u) does not descend to a trivialization of I(0) on C ′an, but instead satisfies
the functional equation

θ̃(q, qu) = −u−1θ̃(q, u). (2.59)
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However, as one can easily check,

δ3θ̃(q, u)

does descend to a rigid trivialization of Θ3(I(0)), and hence gives the unique cubical structure.

The curve C ′an has the following presentation as a Weierstrass curve. Set

σk(n) =
∑

d|n
dk

αk =
∑
n>0

σk(n)qn

a4 = −5α3

a6 = −(5α3 + 7α5)/12

(The coefficients of a6 are in fact integers). Consider the Weierstrass cubic

y2 + xy = x3 + a4x + a6 (2.60)

over D′.

Proposition 2.61. The formulae

x =
u

(1− u)2
+

∑
n>0

qn
∑

d|n
d(ud − 2 + u−d)

y =
u2

(1− u)3
+

∑
n>0

qn
∑

d|n

d

2
((d− 1)ud + 2− (d + 1)u−d).

give an analytic isomorphism between the projective plane curve defined by (2.60) and C ′an.

Proof. See for example [Sil94, Chapter V §1].

Equation (2.60) makes sense for q = 0 and defines a family Can of generalized elliptic curves
over the open unit disk

D = {q ∈ C | |q| < 1}.
The fiber of Can over q = 0 is the twisted cubic curve

y2 = x3.

The invariant differential of Can is given by
dx

2y + x
=

du

u
.

By continuity and Corollary 2.56, the expression δ3θ̃(q, u) determines the cubical structure on Can.

Let A ⊂ Z[[q]] be the subring consisting of power series which converge absolutely on the open
unit disk

{q ∈ C | |q| < 1} .

The series a4 and a6 are in fact elements of A, and so (2.60) defines a generalized elliptic curve
C over spec A. The curve Can is obtained by change of base from A to the ring of holomorphic
functions on D. The Tate curve CTate is the generalized elliptic curve over

DTate = specZ[[q]]

obtained by change of base along the inclusion A ⊂ Z[[q]]. Since the map from the meromorphic
sections of Θ3(I(0)) on C3 to meromorphic sections on C3

an is a monomorphism, one can interpret
the expression

s(C3
an) = δ3θ̃(q, u)

as a formula for the cubical structure on the sheaf I(0) over C, and thus by base change, for CTate.
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Now the map

D′ × C× = D′ ×Gm → C ′an

is a local analytic isomorphism, and restricts to an isomorphism of formal groups

D′ × Ĝm → Ĉ ′an.

This, in turn, extends to an analytic isomorphism

D × Ĝm → Ĉan. (2.62)

Although θ̃(q, u) does not descend to a meromorphic function on Can, it does extend to a function
on the formal completion Ĉan. In fact it can be taken to be a coordinate on Ĉan. We have therefore
shown

Proposition 2.63. The pullback of the canonical cube structure s(Can) to Ĉ3
an, is given by

s(Ĉan) = δ3θ̃(q, u),

where θ̃(q, u) is interpreted as a coordinate on Ĉan via (2.62).

We now have three natural coordinates on Ĉ ′an:

t = x/y, θ̃(q, u), and 1− u.

Of these, only the function t gives an algebraic coordinate on C ′an (and in fact on Can). Let’s write
each of the above as formal power series in t:

θ̃(q, u) = θ̃(t) = t + O(t2)

1− u = 1− u(t) = t + O(t2).

By definition, the coefficients of the powers of t in the series θ̃(t) and u(t) are holomorphic functions
on the punctured disc D′. It is also easy to check that they in fact extend to holomorphic functions
on D (set q = 0) and have integer coefficients (work over the completion of Z[u±1][[q]] at (1− u)).
Thus θ̃(t) and u(t) actually lie in A[[t]], and in this way can be interpreted as functions on the
formal completion of Ĉ of C (and hence, after change of base, on the completion ĈTate of CTate).
The function 1− u(t) gives an isomorphism

sTate
def= 1− u(t) : Ĉ → Ĝm (2.64)

Moreover, the restriction of the cubical structure s(C) to Ĉ3 is given by

s(Ĉ) = δ3θ̃(t),

since the map from the ring of formal functions on Ĉ to the ring of formal functions on Ĉan is a
monomorphism. Thus we have proved

Proposition 2.65. The canonical cubical structure s(Ĉ/A) ∈ C3(Ĉ; I(0)) is given by the formula

s(Ĉ/A) = δ3θ̃(t),

where t = x/y, and θ̃(t) is the series defined above.
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2.7. The elliptic spectrum KTate and its σ-orientation. The multiplicative cohomology
theory underlying KTate is simply K[[q]], so π0KTate = Z[[q]]. The formal group comes from that
of K-theory via the inclusion

K ↪→ K[[q]],

and is just the multiplicative formal group. The elliptic curve is the Tate elliptic curve CTate. The
triple (K[[q]], CTate, sTate) is the Tate elliptic spectrum, which we shall denote simply KTate.

By Proposition 2.65 and Theorem 2.48, the σ-orientation is the composite

MU〈6〉 → MP
θ̃−→ K[[q]],

with the map labeled θ̃ corresponding to the coordinate θ̃(t) on ĈTate in the isomorphism of
Theorem 2.48. In this section, we express the map

π∗MU → π∗MP
π∗θ̃−−→ π∗K[[q]]

in terms of characteristic classes, and identify the corresponding bordism invariant with the Witten
genus.

According to Theorem 2.48, maps

MP → E

are in one-to-one correspondence with coordinates f on the formal group. The restriction

MU → MP → E

sends the coordinate f to the rigid section δf of Θ1(I(0)) = I(0)0 ⊗ I(0)−1. The most straight-
forward formula for δf is

δf =
f(0)
f

which can be misleading, because it is tempting to write f(0) = 0. (The point is that it is not so
when regarded as a section of I(0)0.) It seems clearer to express δf in terms of the isomorphism

I(0)0 ⊗ I(0)−1 ∼= ω ⊗ I(0)−1

as in §2.1.2. Sections of ω can be identified with invariant one-forms on PE . If x is a coordinate
on PE , and f(x) is a trivialization of I(0), then

δf =
f ′(0)Dx

f(x)
where Dx is the invariant differential with value dx at 0.

The K-theory orientation of complex vector bundles

MP → K (2.66)

constructed by Atiyah-Bott-Shapiro [ABS64] corresponds to the coordinate 1 − u on the formal
completion of Gm = specZ[u, u−1]. The invariant differential is

D(1− u) = −du

u
,

and the restriction of (2.66) to MU → K is classified by the Θ1-structure

δ(1− u) =
1

1− u

(
−du

u

)
.

The map

MU → MP
θ̃−→ KTate

factors as

MU → MU ∧BU+
δ(1−u)∧(θ′)−−−−−−−−→ KTate,
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where θ′ is the element of BUKTate ∼= C1(ĈTate,Gm) given by the formula

θ′ =
∏

n≥1

(1− qn)2

(1− qn u)(1− qn u−1)
.

In geometric terms, the homotopy groups

π∗MU ∧BU+

are the bordism groups of pairs (M,V ) consisting of a stably almost complex manifold M , and a
virtual complex vector bundle V over M of virtual dimension 0. The map

π∗MU → π∗MU ∧BU+

sends a manifold M to the pair (M,ν) consisting of M and its reduced stable normal bundle.

The map π∗δ(1− u) sends a manifold M of dimension 2n to

f!1 ∈ K−2n(pt) ≈ K̃0(S2n),

where

f : M → pt

is the unique map. One has

f!1 = Td(M)
(
−du

u

)n

,

where Td(M) is the Todd genus of M , and it is customary to suppress the grading and write
simply

f!1 = Td(M).

The map θ′ is the stable exponential characteristic class taking the value
∏

n≥1

(1− qn)2

(1− qnL)(1− qnL−1)

on the reduced class of a line bundle (1−L). This stable exponential characteristic class can easily
be identified with

V 7→
⊗

n≥1

Symqn(−V̄C),

where VC = V ⊗R C, V̄C = VC − Cdim V , and Symt(W ) is defined for (complex) vector bundles W
by

Symt(W ) =
⊕

n≥0

Symn(V ) tn ∈ K(M)[[t]],

and extended to virtual bundles using the exponential rule

Symt(W1 ⊕W2) = Symt(W1) Symt(W2).

The effect on homotopy groups of the the σ-orientation therefore sends an almost complex
manifold M of dimension 2n to

(π∗σKTate)(M) = f!


⊗

n≥1

Symqn(T̄C)


 ∈ K̃[[q]]0(S2n).

This is often written as

f!


⊗

n≥1

Symqn(T̄C)


 = Td


M ;

⊗

n≥1

Symqn(T̄C)




(
−du

u

)n
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or simply as

f!


⊗

n≥1

Symqn(T̄C)


 = Td


M ;

⊗

n≥1

Symqn(T̄C)


 .

The σ-orientation of KTate determines an invariant of Spin–manifolds, by insisting that the
diagram

MSU −−−−→ MUy
y

MSpin −−−−→ KTate

commute. To explain this invariant in classical terms, let M be a spin manifold of dimension 2n,
and, by the splitting principle, write

TM ∼= L1 + · · ·+ Ln

for complex line bundles Li. The Spin structure gives a square root of
∏

Li, but it is conventional
to regard each Li as having square root.

Since, for each i, the O(2) bundles underlying L
1/2
i and L

−1/2
i are isomorphic, we can write

TM ∼=
∑

Li + L
−1/2
i − L

1/2
i ,

which is a sum of SU -bundles.

Using this, one easily checks that the σ-orientation of M gives

Â


M ;

⊗

n≥1

Symqn(T̄C)




(
−du

u

)n

,

where the Â genus is the push-forward in KO-theory associated to the unique orientation MSpin →
KO making the diagram

MSU −−−−→ MU −−−−→ K
y

∥∥∥
MSpin −−−−→ KO −−−−→ K

commute. As above, it is customary to suppress the grading and write

Â


M ;

⊗

n≥0

Symqn(T̄C)


 ,

which is formula (27) in [Wit87].

We have proved

Proposition 2.67. The invariant

π∗MSpin → Z[[q]]

associated to the σ-orientation on KTate is the Witten genus.

2.8. Modularity.

Proposition 2.68. For any element [M ] ∈ π2nMU〈6〉, the series

(π2nσKTate)(M)
(
−du

u

)−n

∈ π0KTate = Z[[q]]

is the q-expansion of a modular form.
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Proof. Let us write

Φ(M) = (π2nσKTate)(M)
(
−du

u

)−n

.

The discussion in the preceding section shows that Φ(M) defines holomorphic function on D, with
integral q-expansion coefficients. It suffices to show that, if π : H → D is the map

π(τ) = e2πiτ ,

then π∗Φ(M) transforms correctly under the action of SL2Z. This follows from the discussion of
HΛ in the introduction.

3. Calculation of Ck(Ĝa,Gm)

In this section, we calculate the structure of the schemes Ck(Ĝa,Gm) for 1 ≤ k ≤ 3, so as to
be able to compare them to BU〈2k〉HP in §4.

3.1. The cases k = 0 and k = 1. The group C0(Ĝa,Gm)(R) is just the group of invertible
formal power series f ∈ R[[x]]; and C1(Ĝa,Gm) is the group of formal power series f ∈ R[[x]] with
f(0) = 1. Let R0 = Z[b0, b

−1
0 , b1, b2, . . . ], and let R1 = Z[b1, b2, b3, . . . ]. If Fk ∈ Ck(Ĝa,Gm)(Rk)

are the power series

F0 =
∑

i≥0

bix
i

F1 = 1 +
∑

i≥1

bix
i,

then the following is obvious.

Proposition 3.1. For k = 0 and k = 1, the ring Rk represents the functor Ck(Ĝa,Gm), with
universal element Fk. v

Note that F0 has a unique product expansion

F0 = a0

∏

n≥1

(1− anxn) (3.2)

The ai give a different polynomial basis for R0 and R1.

3.2. The strategy for k = 2 and k = 3. For k ≥ 2, the group Ck(Ĝa,Gm)(R) is the group of
symmetric formal power series f ∈ R[[x1, . . . , xk]] such that f(x1, . . . , xk−1, 0) = 1 and

f(x1, x2, . . . )f(x0 + x1, . . . )−1f(x0, x1 + x2, . . . )f(x0, x1, . . . )−1 = 1.

In the light of Remark 2.12, we can replace the normalization f(x1, . . . , xk−1, 0) = 1 by f(0, . . . , 0) =
1. Alternatively, by symmetry, we can replace it by the condition that f(x1, . . . , xk) = 1
(mod

∏
j xj).

Similarly, the group Ck(Ĝa, Ĝa)(R) is the group of symmetric formal power series f ∈ R[[x1, . . . , xk]]
such that f(x1, . . . , xk−1, 0) = 0 and

f(x1, x2, . . . )− f(x0 + x1, . . . ) + f(x0, x1 + x2, . . . )− f(x0, x1, . . . ) = 0.

We write Ck
d(Ĝa, Ĝa)(R) for the subgroup consisting of polynomials of homogeneous degree d.

Our strategy for constructing the universal 2 and 3-cocycles is based on the following simple
observation.

Lemma 3.3. Suppose that h ∈ Ck(Ĝa,Gm)(R), and that h = 1 mod (x1, . . . , xk)d. Then there
is a unique cocycle c ∈ Ck

d(Ĝa, Ĝa) such that h = 1 + c mod (x1, . . . , xk)d+1. If g and h are
two elements of Ck(Ĝa,Gm) of the form 1 + c mod (x1, . . . , xk)d+1, then g/h is an element of
Ck(Ĝa,Gm) of the form 1 mod (x1, . . . , xk)d+1.
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We call c the leading term of h. We first calculate a basis of homogeneous polynomials for the
group of additive cocycles. Then we attempt construct multiplicative cocycles with study with
our homogeneous additive cocycles as leading term. The universal multiplicative cocycle is the
product of these multiplicative cocycles. Much of the work in the case k = 3 is showing how
additive cocycles can occur as leading multiplicative cocycles.

In the cases k = 0 and k = 1, this procedure leads to the product description (3.2) of invertible
power series.

We shall use the notation

δ× : Ck−1(Ĝa,Gm) → Ck(Ĝa,Gm)

for the map given in Definition 2.20, and reserve δ for the map

δ : Ck−1(Ĝa, Ĝa) → Ck(Ĝa, Ĝa).

Definition 2.20 gives these maps for k ≥ 2; for f ∈ C0(Ĝa,Gm)(R) we define

δ×f(x1) = f(0)f(x1)−1

and similarly for C0(Ĝa, Ĝa).

3.3. The case k = 2. Although we shall see (Proposition 3.12) that the ring OC2(bGa,Gm) is
polynomial over Z, the universal 2-cocycle F2 does not have a product decomposition

F2 =
∏

d≥2

g2(d, bd),

with g2(d, bd) having leading term of degree d, until one localizes at a prime p. The analogous
result for H∗BSU is due to Adams [Ada76].

Fix a prime p. For d ≥ 2, let c(d) ∈ Z[x1, x2] be the polynomial

c(d) =

{
1
p (xd

1 + xd
2 − (x1 + x2)d) d = ps for some s ≥ 1

xd
1 + xd

2 − (x1 + x2) otherwise
(3.4)

The following calculation of C2(Ĝa, Ĝa) is due to Lazard; it is known as the “symmetric 2-
cocycle lemma”. A proof may be found in [Ada74].

Lemma 3.5. Let A be a Z(p)-algebra. For d ≥ 2, the group C2
d(Ĝa, Ĝa)(A) is the free A-module

on the single generator c(d).

Let

E(t) = exp


∑

k≥0

tp
k

pk


 (3.6)

be the Artin-Hasse exponential (see for example [Haz78]). It is of the form 1 mod (t), and it has
coefficients in Z(p).

For d ≥ 2, let g2(d, b) ∈ C2(Ĝa,Gm)(Q[b]) be the power series

g2(d, b) =

{
δ2
×(E(bxd)−p) if d is a power of p

δ2
×(E(bxd)) otherwise.

(3.7)

Using the formulae for the polynomials c(d) and the Artin-Hasse exponential, it is not hard to
check that g2(d, b) belongs to the ring Z(p)[b][[x1, x2]], and that it is of the form

g2(d, b) = 1 + bc(d) mod (x1, x2)d+1. (3.8)

We give the proof as Corollary 3.22.
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Now let R2 be the ring

R2 = Z(p)[a2, a3, . . . ],

and F2 ∈ C2(Ĝa,Gm)(R2) be the the cocycle

F2 =
∏

d≥2

g2(d, ad).

Proposition 3.9. The ring R2 represents C2(Ĝa,Gm)× spec(Z(p)), with universal element F2.

Proof. Let A be a Z(p)-algebra, and let h ∈ C2(Ĝa,Gm)(A) be a cocycle. By Lemma 3.5 and the
equation (3.8), there is a unique element a2 ∈ A such that

h

g2(2, a2)
= 1 mod (x1, x2)3

in C2(Ĝa,Gm)(A). Proceeding by induction yields a unique homomorphism from R2 to A, which
sends the cocycle F2 to h.

3.4. The case k = 3: statement of results. The analysis of C3(Ĝa,Gm) is more complicated
than that of of C2(Ĝa,Gm) for two reasons. First, the structure of C3(Ĝa, Ĝa) is more compli-
cated; in addition, it is a more delicate matter to prolong some of the additive cocycles c into
multiplicative ones of the form 1 + bc + . . . . This is reflected in the answer: although the ring
representing C2(Ĝa,Gm) is polynomial, the ring representing C3(Ĝa,Gm) × spec(Z(p)) contains
divided polynomial generators.

Definition 3.10. We write D[x] for the divided-power algebra on x over Z. It has a basis con-
sisting of the elements x[m] for m ≥ 0; the product is given by the formula

x[m]x[n] =
(m + n)!

m!n!
x[m+n].

If R is a ring then we write DR[x] for the ring R⊗D[x].

We summarize some well-known facts about divided-power algebras in §3.4.1.

Fix a prime p. Let R3 be the ring

R3 = Z(p)[ad|d ≥ 3 not of the form 1 + pt]⊗
⊗

t≥1

DZ(p) [a1+pt ].

In §3.6.1, we construct an element F3 ∈ C3(Ĝa,Gm). In Proposition 3.28, we show that the map
classifying F3 gives an isomorphism

Z3 = spec R3 −→∼= C3(Ĝa,Gm)× spec(Z(p)). (3.11)

The plan of the rest of this section is as follows. In §3.5, we describe the scheme Ck(Ĝa, Ĝa).
We calculate Ck(Ĝa, Ĝa)× specQ for all k, and we calculate C3(Ĝa, Ĝa)× specFp. The proofs of
the main results are given in Appendix A.

In §3.6, we construct multiplicative cocycles with our additive cocycles as leading terms. This
will allow us to write a cocycle Z3 over R3 in §3.6.1. For some of our additive cocycles in charac-
teristic p (precisely, those we call c′(d)), we are only able to write down a multiplicative cocycle
of the form 1 + ac′(d) by assuming that ap = 0 (mod p); these correspond to the divided-power
generators in R3.

In §3.7, we show that the condition ap = 0 (mod p) is universal, completing the proof of the
isomorphism (3.11).
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3.4.1. Divided powers. For convenience we recall some facts about divided-power rings.

i. A divided power sequence in a ring R is a sequence

(1 = a[0], a = a[1], a[2], a[3], . . . )

such that

a[m]a[n] =
(m + n)!

m!n!
a[m+n]

for all m,n ≥ 0. It follows that am = m!a[m]. We write D1(R) for the set of divided power
sequences in R. It is clear that D1 = spec D[x].

ii. An exponential series over R is a series α(x) ∈ R[[x]] such that α(0) = 1 and α(x + y) =
α(x)α(y). We write Exp(R) for the set of such series. It is a functor from rings to abelian
groups.

iii. Given a ∈ D1(R), we define exp(a)(x) =
∑

m≥0 a[m]xm ∈ R[[x]]. By a mild abuse, we allow
ourselves to write exp(ax) for this series. It is an exponential series, and the correspondence
a 7→ exp(a)(x) gives an isomorphism of functors D1 ∼= Exp. In particular both are group
schemes.

iv. The map Q[x] → DQ[x] sending x to x has inverse x[m] 7→ xm/m!, and this gives an isomor-
phism

D1 × spec(Q) ∼= A1 × spec(Q).

v. We write Tp[x] for the truncated polynomial ring Tp[x] = Fp[x]/xp, and we write αp =
spec Tp[x]. Thus αp(R) is empty unless R is an Fp-algebra, and in that case αp(R) = {a ∈
R | ap = 0}.

vi. Given a Z(p)-algebra R and an element a ∈ R, we define texp(ax) =
∑p−1

k=0 akxk/k!. Here we
can divide by k! because it is coprime to p.

vii. Over Fp the divided power ring decomposes as a tensor product of truncated polynomial rings

DFp [x] ∼=
⊗

r≥0

Tp[x[pr ]]

Moreover there is an equation

exp(ax) =
∏

r≥0

texp(a[pr ]xpr

) (mod p).

Each factor on the right is separately exponential: if a ∈ αp(R) then

texp(a(x + y)) = texp(ax) texp(ay).

In other words, the map

a 7→ (a[1], a[p], a[p2], . . . )

gives an isomorphism

D1 × spec(Fp) =
∏

m≥0

αp,

and the resulting isomorphism
∏

m≥0

αp
∼= Exp× spec(Fp)

is given by

b 7→
∏

m≥0

texp(bmxpm

).
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3.4.2. Grading. It will be important to know that the maps OCk(bGa,Gm) → Rk we construct may
be viewed as maps of connected graded rings of finite type: a graded ring R∗ is said to be of finite
type over Z if each Rn is a finitely generated abelian group.

We let Gm act on the scheme Ck(Ĝa,Gm) by

(u.h)(x1, . . . , xk) = h(ux1, . . . , uxk),

and give OCk(bGa,Gm) the grading associated to this action. One checks that the coefficient of
xα =

∏
i xαi

i in the universal cocycle has degree |α| =
∑

i αi. If k > 0 then the constant term is
1 and the other coefficients have strictly positive degrees tending to infinity, so the homogeneous
components of OCk(bGa,Gm) have finite type over Z.

The divided power ring D[x] can be made into a graded ring by setting |x[m]| = m|x|. We can
then grade our rings Rk by setting the degree of ad to be d. It is clear that R1 is a connected
graded ring of finite type over Z, and Rk is a connected graded ring of finite type over Z(p) for
k > 1.

This can be described in terms of an action of Gm on Zk = spec Rk. We have

Z0
∼= Gm ×

∏

d≥1

A1

Z1
∼=

∏

d≥1

A1

Z2
∼=

∏

d≥2

A1 × specZ(p)

Z3
∼=

∏

d≥3

Z3,d

where

Z3,d =

{
A1 × specZ(p) d 6= 1 + pt

D1 × specZ(p) d = 1 + pt.

We let Gm act on A1 or Gm by u.a = ua, and on D1 by (u.a)[k] = uka[k]. We then let Gm act on
Zk by

u.(ak, ak+1, . . . ) = (uk.ak, uk+1.ak+1, . . . ).

The resulting grading on Rk is as described. For k ≤ 2, it is easy to check that the map Zk →
Ck(Ĝa,Gm) classifying Fk is Gm-equivariant.

As an example of the utility of the gradings, we have the following.

Proposition 3.12. The ring OC2(bGa,Gm) is polynomial over Z on countably many homogeneous
generators.

Proof. As OC2(bGa,Gm) is a connected graded ring of finite type over Z, it suffices by well-known
arguments to check that Z(p)⊗OC2(bGa,Gm) is polynomial on homogeneous generators for all primes
p. By Proposition 3.9, we have an isomorphism of rings Z(p)⊗OC2(bGa,Gm)

∼= OZ2 = Z(p)[ad | d ≥ 2],
and it is easy to check that ad is homogeneous of degree d.

3.5. Additive cocycles. In this section we describe the group Ck(Ĝa, Ĝa)(A) for various k and
A. The results provide the list of candidates for leading terms of multiplicative cocycles. Proofs
are given in the appendix A.

Fix an integer k ≥ 1. We write Ck(A) for Ck(Ĝa, Ĝa)(A), and we write Ck
d (A) for the subgroup

Ck
d(Ĝa, Ĝa) of series which are homogeneous of degree d. Note that Ck

d (A) = 0 for d < k.
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Given a set I ⊆ {1, . . . , k} we write xI =
∑

i∈I xi. One can easily check that for g ∈ A[[x]] =
C0(A) we have

(δkg)(x1, . . . , xk) =
∑

I

(−1)|I|g(xI).

For example, if g(x) = xd then

(δ2g)(x, y) = (x + y)d − xd − yd

(δ3g)(x, y, z) = −(x + y + z)d + (x + y)d + (x + z)d + (y + z)d − xd − yd − zd.

3.5.1. The rational case. Rationally, the cocycles δkxd for d ≥ k are a basis for the additive
cocycles.

Proposition 3.13 (A.1). If A is a Q-algebra, then for d ≥ k the group Ck
d (A) is the free abelian

group on the single generator δkxd.

3.5.2. Divisibility. Now we fix an integer k ≥ 2 and a prime p.

Definition 3.14. For all n let νp(n) denote the p-adic valuation of n. For d ≥ k we let u(d) be
the greatest common divisor of the coefficients of the polynomial δk(xd). We write v(d) for the
p-adic valuation νp(u(d)). Let c(d) be the polynomial c(d) = ((−δ)k(xd))/pv(d) ∈ Z[x1, . . . , xk]
(We have put a sign in the definition to ensure that c(d) has positive coefficients). It is clear that

c(d) ∈ Ck
d (Z).

If we wish to emphasize the dependence on k, we write uk(d), ck(d), and vk(d).

We will need to understand the integers v(d) more explicitly.

Definition 3.15. For any nonnegative integer d and any prime p, we write σp(d) for the sum of
the digits in the base p expansion of d. In more detail, there is a unique sequence of integers di

with 0 ≤ di < p and
∑

i dip
i = d, and we write σp(d) =

∑
i di.

The necessary information is given by the following result, which will be proved in Appendix A.

Proposition 3.16 (A.10). For any d ≥ k we have

v(d) = max
(

0,

⌈
k − σp(d)

p− 1

⌉)
.

The important examples of Proposition 3.16 for the present paper are k = 2 and k = 3:

Corollary 3.17.

v2(d) =

{
1 σp(d) = 1
0 otherwise

v3(d) =





2 σ2(d) = 1 and p = 2
1 σp(d) = 1 and p > 2
1 σp(d) = 2
0 σp(d) > 2.

In other words, v2(d) = 1 if d is a power of p, and 0 otherwise. We have v3(d) = 2 if p = 2 and
d has the form 2t with t > 1, and v3(d) = 1 if p = 2 and d has the form 2s(1 + 2t). On the other
hand, when p > 2 we have v3(d) = 1 if d has the form pt or 2pt or ps(1 + pt) (with s ≥ 0 and
t > 0). In all other cases we have v3(d) = 0.

In particular, the calculation of v2(d) shows that the cocycle c2(d) in Definition 3.14 coincides
with the cocycle c(d) in the formula (3.4).
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3.5.3. The modular case. We continue to fix an integer k ≥ 2 and a prime p, and we analyze
Ck(A) when p = 0 in A.

For any ring A we define an endomorphism φ of A[[x1, . . . , xk]] by φ(xi) = xp
i . If p = 0 in A one

checks that this sends Ck(A) to Ck(A) and Ck
d (A) to Ck

dp(A). Moreover, if A = Fp then ap = a

for all a ∈ Fp and thus φ(h) = hp.

In particular, we can consider the element φjc(d) ∈ Z[x1, . . . , xk], whose reduction mod p lies
in Ck

pjd(Fp). The following proposition shows that this rarely gives anything new.

Proposition 3.18. If νp(d) ≥ v(d) then

c(pjd) = c(d)pj

= φjc(d) (mod pνp(d)−v(d)+1).

It is clear from Proposition 3.16 that v(pd) = v(d), so even if the above proposition does not
apply to d, it does apply to pid for large i.

Proof. We can reduce easily to the case j = 1. Write v = v(pd) = v(d), so that c(d) =
(−δ)k(xd)/pv and c(pd) = (−δ)k(xpd)/pv. Write w = vp(d), so the claim is equivalent to the
assertion that

φ(−δ)k(xd) = (−δ)k(xpd) (mod pw+1).

The left hand side is
∑

I ±φ(xd
I) =

∑
I ±φ(xI)d. It is well-known that φ(xI) = (xI)p (mod p), and

that whenever we have a = b (mod p) we also have api

= bpi

(mod pi+1). It follows easily that
φ(xI)d = (xI)pd (mod pw+1). As the right hand side of the displayed equation is just

∑
I ±(xI)pd,

the claim follows.

3.5.4. The case k = 3. In this section we set k = 3, and we give basis for the group of additive
three-cocycles over an Fp-algebra. In order to describe the combinatorics of the situation, it will
be convenient to use the following terminology.

Definition 3.19. We say that an integer d ≥ 3 has type

I if d is of the form 1 + pt with t > 0.
II if d is of the form ps(1 + pt) with s, t > 0.

III otherwise.

If d = ps(1 + pt) has type I or II we define c′(d) = φsc(1 + pt) ∈ C3
d(Fp). Note that d has type I

precisely when σp(d− 1) = 1, and in that case we have c′(d) = c(d).

Proposition 3.20 (A.12). If A is an Fp-algebra then C3(A) is a free module over A generated
by the elements c(d) for d ≥ 3 and the elements c′(d) for d of type II.

3.6. Multiplicative cocycles. We fix a prime p and an integer k ≥ 1. In this section we write
down the basic multiplicative cocycles. We need the following integrality lemma; many similar
results are known (such as [Haz78, Lemma 2.3.3]) and this one may well also be in the literature
but we have not found it.

Lemma 3.21. Let A be a torsion-free p-local ring, and φ : A −→ A a ring map such that φ(a) = ap

(mod p) for all a ∈ A. If (bk)k>0 is a sequence of elements such that φ(bk) = bk+1 (mod pk+1)
for all k, then the series exp(

∑
k bkxpk

/pk) ∈ (Q⊗A)[[x]] actually lies in A[[x]].

Proof. Write f(x) = exp(
∑

k bkxpk

/pk). Clearly f(0) = 1, so there are unique elements aj ∈ Q⊗A
such that f(x) =

∏
j>0 E(ajx

j), and it is enough to show that aj ∈ A for all j. By taking logs we
find that

∑

k

bkxpk

/pk =
∑

i,j

api

j xjpi

/pi.
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It follows that aj = 0 unless j is a power of p, and that bk =
∑

k=i+j piapj

pi . We may assume
inductively that a1, ap, . . . , apj−1 are integral. It follows that for i < j we have φ(api) = ap

pi

(mod p), and thus (by a well-known lemma) that

φ(apj−i−1

pi ) = φ(api)pj−i−1
= apj−i

pi (mod pj−i).

It follows that

pjapj = bj −
j−1∑

i=0

piapj−i

pi

= bj −
j−1∑

i=0

piφ(api)pj−i−1
(mod pj)

= bj − φ(bj−1)

= 0 (mod pj),

or in other words that apj is integral.

Recall from (3.6) that E(t) ∈ Z(p)[[t]] denotes the Artin-Hasse exponential.

Corollary 3.22. If d is such that νp(d) ≥ v(d), then δk
×E(bxd)p−v(d) ∈ Q[b][[x1, . . . , xk]] actually

lies in Ck(Ĝa,Gm)(Z(p)[b]) ⊆ Z(p)[b][[x1, . . . , xk]]. It has leading term bc(d).

Proof. The symmetric cocycle conditions are clear, so we need only check that the series is integral.
Using the exp in the Artin-Hasse exponential gives the formula

δk
×E(bxd)p−v(d)

= exp


∑

i≥0

bpi

δk(xdpi

)
pi+v(d)


 = exp


∑

i≥0

bpi

c(dpi)
pi


 .

In view of Lemma 3.21, it suffices to check that φ(c(dpi)) = c(dpi+1) (mod pi+1), where φ is the
endomorphism of Z(p)[[x1, . . . , xk]] given by φ(xi) = xp

i . This follows from Proposition 3.18.

Definition 3.23. If R is a Z(p)-algebra, b is an element of R, and if d is such that νp(d) ≥ v(d),
we define

E(k, d, b) def= δk
×E(bxd)p−v(d)

to be the element of Ck(Ĝa,Gm)(R) given by the corollary.

In order to analyze the map δ×, we need the following calculation.

Lemma 3.24. If νp(d) ≥ v(d) we have

E(k, d, b)p = E(k, pd, bp) (mod p).

Proof. We can work in the universal case, where A = Z(p)[b] is torsion-free, so it makes sense to
use exponentials. We have

E(k, d, b) = exp(
∑

k

bpk

c(pkd)/pk),

and it follows easily that E(k, d, b)p/E(k, pd, ap) = exp(pac(d)). One checks easily that the series
exp(pt)− 1 has coefficients in pZ(p), and the claim follows.

We need one other family of cocycles, given by the following result.

Proposition 3.25. Let B be the divided-power algebra on one generator b over Z(p). Then the
series δk

× exp(bxd/pv(d)) = exp((−1)kb c(d)) lies in Ck(Ĝa,Gm)(B) ⊆ B[[x1, . . . , xk]].
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3.6.1. The case k = 3. Suppose that d ≥ 3 is not of the form 1 + pt. Then Corollary 3.17 shows
that νp(d) ≥ v(d), and so Definition 3.23 gives cocycles

g3(d, ad)
def= E(3, d, ad) ∈ C3(Ĝa,Gm)(Z(p)[ad]). (3.26)

For d = 1 + pt and t ≥ 1, let

g3(d, ad)
def= exp(−ad c(d)) ∈ C3(Ĝa,Gm)(DZ(p) [ad])

be the cocycle given by Proposition 3.25.

Note that if d = 1 + pt then in Fp ⊗DZ(p) [ad] we have an equation

g3(d, ad) =
∏

s≥0

texp(−a
[ps]
d c′(dps)) (3.27)

as in §3.4.1, and each factor on the right is separately an element of C3(Ĝa,Gm)(Tp[a
[ps]
d ]).

Let F3 be the cocycle

F3 =
∏

d≥3

g3(d, ad)

over

Z3 = specZ(p)[ad | d 6= 1 + pt]⊗
⊗

t≥1

DZ(p) [a1+pt ].

Proposition 3.28. The map Z3 → C3(Ĝa,Gm)× spec(Z(p)) classifying F3 is an isomorphism.

Proof. Let h denote this map. It is easy to check that it is compatible with the Gm-actions
described in §3.4.2, so the induced map of rings preserves the gradings.

We will show that the map h(R) : Z3(R) −→ C3(Ĝa,Gm)(R) is an isomorphism when R is a
Q-algebra or an Fp-algebra. This means that the map h∗ : OC3(bGa,Gm) ⊗ Z(p) −→ OZ3 becomes an
isomorphism after tensoring with Q or Fp. As both sides are connected graded rings of finite type
over Z(p), it follows that h is itself an isomorphism.

Suppose that R is a Q-algebra. In this case we get divided powers for free, and an element
of Z3(R) is just a list of elements (a3, a4, . . . ). According to Proposition 3.13, the additive co-
cycle c(d) generates C3

d(Ĝa, Ĝa)(R). Since gd has leading term adc(d), the process of successive
approximation suggested by Lemma 3.3 shows that h(R) is an isomorphism.

We now suppose instead that R is an Fp-algebra. As DFp [x] = Tp[x[pi] | i ≥ 0], we see that a

point of Z3(R) is just a sequence of elements ad ∈ R for d ≥ 3, with additional elements ad,i = a
[pi]
d

when d has type I, such that ad,0 = ad and ap
d,i = 0. We write a′dpi = ad,i. With this reindexing,

an element of Z3(R) is a system of elements ad (where d has type II or III) together with a system
of elements a′d (where d has type I or II) subject only to the condition (a′d)

p = 0.

On the other hand, suppose that f ∈ C3(Ĝa,Gm)(R) is a cocycle with leading term c of degree
d. If d has type III, then Proposition 3.20 shows that c = adc(d) for a unique c in R. If d has type
I, then c = a′d,0c

′(d) for some unique a′d,0 in R. Finally, if d has type II, then c = adc(d) + a′dc
′(d)

for some unique ad and a′d in R. We shall show in Proposition 3.29 that in fact (a′d)
p = 0. The

process of successive approximation gives a point of Z3(R) which clearly maps to f under the map
h(R).

In the course of the proof, we used the following result, whose proof will be given in §3.7.

Proposition 3.29. Suppose that R is an Fp-algebra and that f ∈ C3(Ĝa,Gm)(R) has leading
term ac′(d) (so that d has type I or II). Then ap = 0.

Corollary 3.30. The ring OC3(bGa,Gm) is a graded free abelian group of finite type.
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Proof. Proposition 3.28 shows that this is true p-locally for every prime p, so it is true integrally.

3.7. The Weil pairing: cokernel of δ× : C2(Ĝa,Gm) → C3(Ĝa,Gm). The first result of this
section is a proof of Proposition 3.29, which completes the calculation in Proposition 3.28. The
analysis which leads to this result also gives a description of the cokernel of the map

C2(Ĝa,Gm)
δ×−→ C3(Ĝa,Gm),

which we shall use to compare C3(Ĝa,Gm) to BU〈6〉HP .

More precisely, the scheme Z3 decomposes as a product of schemes

Z3 = Z ′3 × Z′′3
where

Z ′3 = spec DZ(p) [a1+pt | t ≥ 1]

Z ′′3 = specZ(p)[ad | d not of the form 1 + pt].

We shall show that δ× maps C2(Ĝa,Gm) × specFp surjectively onto Z ′′3 × specFp, and that the
cokernel Z′3 × specFp has a natural description as the scheme Weil(Ĝa) of Weil pairings. In
§4.5.1, we shall see that this scheme is isomorphic to the scheme associated to the even homol-
ogy of K(Z, 3). In this paper we give a bare-bones account of Weil pairings. The reader can
consult [Bre83, Mum65, AS98] for a more complete treatment.

Definition 3.31. Let R be any ring, and h an element of C3(Ĝa,Gm)(R). We define a series
e(h) ∈ R[[x, y]] by the formula

e(h)(x, y) =
p−1∏

k=1

h(x, kx, y)
h(x, ky, y)

.

In §3.7.1, e will be interpreted as giving a map of group schemes

C3(Ĝa,Gm)× specFp −→ Weil(Ĝa).

Proposition 3.32. We have

e(h)(x, y) e(h)(x, z) = e(h)(x, y + z)
h(px, y, z)
h(x, py, pz)

= e(h)(x, y + z) (mod p),

and e(h)(x, y)p = 1 (mod p).

Proof. Recall the cocycle relation R(w, x, y, z) = 1, where

R(w, x, y, z) =
h(x, y, z)h(w, x + y, z)
h(w + x, y, z)h(w, x, z)

.

By brutally expanding the relation

R(y, z, k(y + z), x)R(ky, (k + 1)z, y, x)R((k + 1)z, y, ky, x)

R(ky, kz, z, x)R(kx, x, y, z)R(x, y, z, kx) = 1,

and using the symmetry of h, we find that
h(x, kx, y)
h(x, ky, y)

.
h(x, kx, z)
h(x, kz, z)

=
h(x, kx, y + z)

h(x, ky + kz, y + z)
.

h(x, ky, kz)
h(x, (k + 1)y, (k + 1)z)

.
h((k + 1)x, y, z)

h(kx, y, z)
We now take the product from k = 1 to p− 1. We note that the second term on the right has the
form f(k)/f(k + 1), so the product gives f(1)/f(p). After dealing with the last term in a similar
way and doing some cancellation, we find that

e(h)(x, y) e(h)(x, z) = e(h)(x, y + z) h(px, y, z)h(x, py, pz)−1,
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as claimed. For any cocycle h we have h = 1 (mod xyz), so our expression reduces to e(h)(x, y+z)
modulo p. This means that e(h) behaves exponentially in the second argument, so e(h)(x, y)p =
e(h)(x, py) = 1 (mod p).

We can also consider an additive analogue of the above construction. Given c ∈ C3(Ĝa, Ĝa)(R),
we write

e+(c)(x, y) =
p−1∑

k=1

(c(x, kx, y)− c(x, ky, y)).

By applying the definitions and canceling in a simple-minded manner we find that

e+(δ3f)(x, y) = f(x)− f(x + py)− f(y) + f(y + px)− f(px) + f(py).

Thus e+(δ3f) = 0 (mod p).

The following calculation is the key to the proof of Proposition 3.29, and it also permits the
identification of Z′3 with the scheme of Weil pairings.

Lemma 3.33. Let d = ps(1 + pt) with s ≥ 0 and t ≥ 1. Then

e+(c′(d)) = xps

yps+t − xps+t

yps

(mod p).

Proof. As c′(ps(1 + pt))p = c(1 + pt)ps+1
, it suffices to calculate e+(c(1 + pt)) (mod p). Let

n = 1 + pt. By Corollary 3.17, we have c(n) = δ3(xn)/p, so that

pe+(c(n)) = xn − (x + py)n − yn + (y + px)n − pnxn + pnyn

= −pnxn−1y + pnxyn−1 (mod p2)

= p(xypt − xpt

y) (mod p2).

Thus e+(c(1 + pt)) = xypt − yxpt

(mod p) as required.

We can now give the

Proof of Proposition 3.29. Suppose that R is an Fp-algebra and that h ∈ C3(Ĝa,Gm)(R) has
leading term ac′(d) (so that d has type I or II).

It is easy to see that e(h) = 1 + ae+(c′(d)) (mod (x, y, z)d+1), and thus that e(h)p = 1 +
ape+(c′(d))p (mod (x, y, z)pd+1). On the other hand, we know from Proposition 3.32 that e(h)p =
1. Lemma 3.33 shows that e+(c′(d))p is a nonzero polynomial over Fp which is homogeneous of
degree pd. It follows that ap = 0.

3.7.1. The scheme of Weil pairings. In this section we work implicitly over spec(Fp). We note
that a faithfully flat map of schemes is an epimorphism.

We also recall [DG70, III,§3,n. 7] that the category of affine commutative group schemes over
Fp is an abelian category, in which spec f : spec A → spec B is an epimorphism if and only if
f : B → A is injective.

Let R be an Fp-algebra. We write Weil(Ĝa)(R) for the group (under multiplication) of formal
power series f(x, y) ∈ R[[x, y]] such that

f(x, x) = 1

f(x, y)f(x, z) = f(x, y + z)

f(x, z)f(y, z) = f(x + y, z).
(3.34)

Note that this implies f(x, y)f(y, x) = 1 by a polarization argument. We write Weil(Ĝa)(R) = ∅
if R is not an Fp-algebra.
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Proposition 3.32 shows that, if R is an Fp-algebra and h ∈ C3(Ĝa,Gm) is a three-cocycle, then
e(h) is a Weil pairing. In other words, e may be viewed as a natural transformation

e : C3(Ĝa,Gm) −→ Weil(Ĝa).

In this section, we show that there is a commutative diagram

C2(Ĝa,Gm)
δ×

//

²²²²

C3(Ĝa,Gm)
e // // Weil(Ĝa)

Z ′′3 // // Z ′3 × Z ′′3

∼=
OO

// // Z ′3

∼=
OO

(3.35)

of group schemes over specFp, with exact rows and with epi, mono, and isomorphisms as indicated.
In §4.5, we compare the top row to a sequence arising from the fibration K(Z, 3) → BU〈6〉 → BSU .

To begin, we note that Weil(Ĝa) is an affine group scheme over Fp. The representing ring
OWeil(bGa) is the quotient of the ring Fp[akl | k, l ≥ 0] by the ideal generated by the coefficients of

the series f̃(x, x) − 1 and f̃(x + y, z) − f̃(x, z)f̃(y, z) and f̃(x, y + z) − f̃(x, y)f̃(x, z), where f̃ is
the power series

f̃(x, y) =
∑

aklx
kyl.

We let Gm act on Weil(Ĝa) by (u.f)(x, y) = f(ux, uy), and this gives a grading on OWeil(bGa)

making it into a graded connected Hopf algebra over Fp. If

f(x, y) =
∑

i,j

aijx
iyj

is the universal Weil pairing, then the degree of aij is i + j.

Lemma 3.36. The ring OWeil(bGa) is a tensor product of rings of the form Fp[a]/ap. If f =∑
aijx

iyj is the universal Weil pairing, then elements of the form apm,pn with m < n are a basis
for Ind(OWeil(bGa)).

Proof. Let us temporarily write A for OWeil(bGa). Note that if f(x, y) ∈ Weil(Ĝa)(R) we have
f(x, y)p = f(x, py) = f(x, 0) = 1, and it follows that the Frobenius map for A is trivial. It follows
from the structure theory of connected graded Hopf algebras over Fp that A is a tensor product
of rings of the form Fp[a]/ap.

The dual of the group of indecomposables in A is easily identified with the kernel of the map

Weil(Ĝa)(Fp[ε]/ε2) −→ Weil(Ĝa)(Fp)

that is induced by the augmentation map Fp[ε]/ε2 −→ Fp. This kernel is the set of power series of
the form 1+εg(x, y) (with g ∈ Fp[[x, y]]) such that 1+εg(x, x) = 0 and (1+εg(x, y))(1+εg(x, z)) =
1 + εg(x, y + z) and (1 + εg(x, z))(1 + εg(y, z)) = 1 + εg(x + y, z). This reduces to the requirement
that g(x, y) be additive in both arguments, with g(x, x) = 0. The additivity means that g(x, y)
must have the form

∑
m,n bmnxpm

ypn

. Because g(x, x) = 0 we must have bmm = 0 (even if p = 2)
and bmn = −bnm if m > n.

Let j denote the splitting map

Z ′3 → C3(Ĝa,Gm).

Note that Z ′3 is a group scheme, because

Z ′3 ∼=
∏
D1 × spec(Z(p)) ∼=

∏
Exp× spec(Z(p)).

It is easy to check that j is a map of group schemes (even over spec(Z(p))). The first step in the
analysis of the diagram 3.35 is the following.



38 M. ANDO, M. J. HOPKINS, AND N. P. STRICKLAND

Proposition 3.37. The map of group schemes

ej : Z ′3 −→ Weil(Ĝa)

is an isomorphism.

Proof. First, when R is an Fp-algebra we can identify Z ′3(R) with
∏

d{a ∈ R | ap = 0}, where d
runs over integers d ≥ 3 of type I or II, and according to (3.27), j(a) is the cocycle

j(a) =
∏

d

texp(−adc
′(d)).

Lemma 3.33 shows that if d = ps(1 + pt) then

e(texp(−adc
′(d)) = 1− ad(xps

yps+t − xps+t

yps

) (mod (x, y)d+1).

It follows that ej induces an isomorphism of indecomposables. Moreover, ej induces a map of
graded rings ifOZ′3 is given the grading with a′d in dimension d. We thus a map of connected graded
algebras, both of which are tensor products of polynomial algebras truncated at height p, and our
map gives an isomorphism on indecomposables. It follows that the map is an isomorphism.

To show that Z ′′3 is the kernel of e, we first observe that C2(Ĝa,Gm) maps to the kernel.

Lemma 3.38. If R is an Fp-algebra and g ∈ C2(Ĝa,Gm)(R) then e(δ×g) = 1.

Proof. By definition we have δ×g(x, kx, y) = g(x, y)g(kx, y)/g((k + 1)x, y). As δ×g is symmetric,
we have δ×g(x, ky, y) = g(x, y)g(x, ky)/g(x, (k + 1)y). By substituting these equations into the
definition of e(δ×g) and canceling, we obtain e(δ×g)(x, y) = g(x, py)/g(px, y), which is 1 because
p = 0 in R.

Next we show that δ× actually factors through the inclusion Z ′′3 → C3(Ĝa,Gm). Let w and θ
be given by the formulae

w(2) = 1

w(d) = v3(d)− v2(d) d ≥ 3

θ(d) = pw(d)d.

By Corollary 3.17, it is equivalent to set w(d) = 1 if d is of the form ps(1 + pr) with r ≥ 0,
and w(d) = 0 otherwise. It follows also that θ gives a bijection from {d | d ≥ 2} to {d | d ≥
3 and d is not of the form 1 + pt}.

Let r : Z2 = spec R2 → Z ′′3 be given by the formula

r∗aθ(d) = apw(d)

d .

It is clear that r is faithfully flat.

Lemma 3.39. The diagram

C2(Ĝa,Gm)
δ×−−−−→ C3(Ĝa,Gm)

∼=
x

x
Z2

r−−−−→ Z ′′3
commutes over spec(Fp). In particular, over spec(Fp), δ× factors through a faithfully flat map
C2(Ĝa,Gm) → Z ′′3 .

Proof. This follows from the equations

δ×g2(d, a) = δ3
×E(axd)p−v2(()d)

= E(3, d, a)pw(d)
= E(3, θ(d), apw(d)

) = g3(θ(d), apw(d)
).



ELLIPTIC SPECTRA 39

The only equation which is not a tautology is the third, which is Lemma 3.24. Actually the lemma
does not apply in the case d = 2, but the result is valid anyway. One can see this directly from
the definitions, using the fact that δ3(x2) = 0.

Proposition 3.40. The kernel of the map

e : C3(Ĝa,Gm) −→ Weil(Ĝa)

is Z ′′3 (which is thus a subgroup scheme). Moreover, we have C3(Ĝa,Gm) = Z ′3 × Z ′′3 as group
schemes.

Proof. We know from Lemma 3.38 that eδ× = 1, and faithfully flat maps are epimorphisms
of schemes, so Lemma 3.39 implies that Z ′′ ≤ ker(e). As the map (f ′, f ′′) 7→ f ′f ′′ gives an
isomorphism Z ′×Z ′′ −→ C3, and e : Z ′ −→ Weil(Ĝa) is an isomorphism, it follows that Z ′′ = ker(e).
This means that Z ′′ is a subgroup scheme, and we have already observed before Proposition 3.37
that the same is true of Z ′. It follows that C3 = Z ′ × Z ′′ as group schemes.

We summarize the discussion in this section as the following.

Corollary 3.41. If we work over spec(Fp) then the following sequence of group schemes is exact:

C2(Ĝa,Gm) δ−→ C3(Ĝa,Gm) e−→ Weil(Ĝa) → 0.

3.8. The map δ× : C1(Ĝa,Gm) → C2(Ĝa,Gm). In the course of comparing BSUHP to C2(Ĝa,Gm)
in §4, we shall use the following analogue of Corollary 3.41.

Proposition 3.42. For each prime p, the map

C1(Ĝa,Gm)× spec(Fp)
δ×−→ C2(Ĝa,Gm)× spec(Fp)

is faithfully flat.

Proof. In order to calculate δ×, it is useful to use the model for C1 which is analogous to our
model Z2 for C2. Let Z1 be the scheme

Z1 = specZ(p)[ad | d ≥ 1],

and let

F1
def=

∏

d≥1

E(1, d, ad)

=
∏

d≥1

E(adx
d)

be the resulting cocycle over OZ1 . It is clear that the map

Z1 → C1(Ĝa,Gm)× spec(Z(p))

classifying F1 is an isomorphism. Thus if k = 1 or 2, and if R is a Z(p)-algebra, then Zk(R) is the
set of sequences (ak, ak+1, . . . ) of elements of R.

For d ≥ 1 let θ(d) = pv2(d)d, with the convention that v2(1) = 1. The calculation of v2(d) in
Corollary 3.17 shows that θ induces a bijection from the set {d | d ≥ 1} to the set {d | d ≥ 2}. Let
r : Z1 → Z2 be the map which sends a sequence a = (a1, a2, . . . ) ∈ Z1(R) to the sequence

r(a)θ(d) = apv2(d)

d .

Thus r is a product of copies of the identity map A1 → A1 (indexed by {d | v(d) = 0}), together
with some copies of the Frobenius map A1 → A1 (indexed by {d | v(d) = 1}). These maps are
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faithfully flat, and so r is faithfully flat. The Proposition then follows once we know that the
diagram

C1(Ĝa,Gm)× spec(Fp)
δ×−−−−→ C2(Ĝa,Gm)× spec(Fp)

∼=
x

x∼=
Z1 × spec(Fp)

r−−−−→ Z2 × spec(Fp)

commutes. The commutativity of the diagram follows from the equations (modulo p)

δ×E(axd) = E(2, d, a)pv2(d)

= E(2, θ(d), apv2(d)
)

= g2(θ(d), apv2(d)
).

The first and last equations are tautologies; the middle equation follows from Lemma 3.24.

3.9. Rational multiplicative cocycles. Given k > 0, let Yk(R) be the set of formal power
series f(x) ∈ R[[x]] such that f(x) = 1 (mod xk). This clearly defines a closed subscheme Yk ⊂
C0(Ĝa,Gm)

Proposition 3.43. Over spec(Q), the map δk
× : Yk −→ Ck(Ĝa,Gm) is an isomorphism.

Proof. Let R be a Q-algebra, and let g ∈ R[[x1, . . . , xk]] be an element of Ck(Ĝa,Gm)(R). We
need to show that g = δk

×(f) for a unique element f ∈ Yk(R). If I = (x1, . . . , xk) then g = 1
(mod I) so the series log(g) = −∑

m>0(1 − g)m/m is I-adically convergent. One checks that it
defines an element of Ck(Ĝa,Ga)(R), so Proposition 3.13 tells us that there is a unique h ∈ R[[x]]
with h = 0 (mod xk) and δk(h) = log(g). The series exp(h) =

∑
m hm/m! is x-adically convergent

to an element of Yk(R), which is easily seen to be the required f .

4. Topological calculations

In this section we will compare our algebraic calculations with known topological calculations of
E∗BU , H∗BSU , and H∗BU〈6〉, and we deduce that BU〈k〉E = Ck(PE ,Gm) for k ≤ 3. We start
with the cases k = 0 and k = 1, which are merely translations of very well-known results. We then
prove the result for all k when E = HPQ (the rational periodic Eilenberg-MacLane spectrum);
this is an easy calculation.

Next, we prove the case k = 2 with E = HP . It suffices to do this with coefficients in the
field Fp, and then it is easy to compare our analysis of the scheme C2(Ĝa,Gm) to the short exact
sequence

PHP −→ BUHP −→ BSUHP .

For BU〈6〉 we recall Singer’s calculation of H∗(BU〈6〉;Fp), which is based on the fibration

K(Z, 3) −→ BU〈6〉 −→ BSU.

Most of the work in this section is to produce the topological analogue of the exact sequence

C2(Ĝa,Gm)
δ×

// C3(Ĝa,Gm)
e // Weil(Ĝa) // 0

of Corollary 3.41; see (4.9). Having done so, we can easily prove the isomorphism BU〈6〉E ∼=
C3(PE ,Gm) for E = HPFp. The isomorphism for integral homology follows from the cases
E = HPQ and E = HPFp. Using a collapsing Atiyah-Hirzebruch spectral sequence and its
algebraic analogue, we deduce the case E = MP , and we find that MP0BU〈6〉 is free over MP0.
It is then easy to deduce the isomorphism for arbitrary E.
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4.1. Ordinary cohomology. We begin with a brief recollection of the ordinary cohomology of
BU , in order to fix notation.

It is well-known that H∗BU is a formal power series algebra generated by the Chern classes.
It follows easily that the corresponding thing is true for HP 0BU : we can define Chern classes
ck ∈ HP 0BU for k > 0 and we find that HP 0BU = Z[[ck | k > 0]]. We also put c0 = 1. We
define a series c(t) ∈ HP 0[[t]] by c(t) =

∑
k≥0 cktk. We then define elements qk by the equation

tc′(t)/c(t) =
∑

k qktk. The group of primitives is

Prim HP 0BU = {
∑

i

niqi | ni ∈ Z} ∼=
∏

i>0

Z.

There is an inclusion S1 = U(1)
j−→ U and a determinant map U

det−−→ S1 with det ◦j = 1. These

give maps P
Bj−−→ BU

B det−−−→ P with B det ◦Bj = 1, and the fiber of B det is BU〈4〉 = BSU . In
fact, if i : BSU −→ BU is the inclusion then one sees easily that i + j : BSU × P −→ BU induces
an isomorphism of homotopy groups, so it is an equivalence.

We have HP 0P = Z[[x]] with B det∗ x = c1 and Bj∗c1 = x and Bj∗ck = 0 for k > 1. It
follows (as is well-known) that the inclusion BSU −→ BU gives an isomorphism HP 0BSU =
HP 0BU/c1 = Z[[ck | k > 1]].

In particular, both BU and BSU are even spaces.

The Hopf algebra HP0BU is again a polynomial algebra, with generators bk for k > 0. We also
put b0 = 1. The pairing between this ring and HP 0BU satisfies

〈ck,
∏

i

bαi
i 〉 =

{
1 if

∏
i bαi

i = bk
1

0 otherwise.

The group of primitives in HP0BU is generated by elements rk, which are characterized by the
equation

t d log(b(t))/dt = t b′(t)/b(t) =
∑

k

rktk.

4.2. The isomorphism for BU〈0〉 and BU〈2〉.
Proposition 4.1. For k = 0 and k = 1 and for any even periodic ring spectrum E, the natural
map

BU〈2k〉E −→ Ck(PE ,Gm)

is an isomorphism.

Proof. We treat the case k = 1, leaving the case k = 0 for the reader. A coordinate x on PE gives
isomorphisms

OPE = E0P ∼= E0[[x]]

O∨PE
= Ẽ0P ∼= E0{β1, β2, . . . }

E0(BU) ∼= E0[b1, b2, . . . ]

OC1(PE ,Gm)
∼= E0[b′1, b

′
2, . . . ].

Here the βi ∈ Ẽ0P are defined so 〈xi, βj〉 = δij , and bi = (E0ρ1)(βi), where ρ1 : P −→ BU classifies
the virtual bundle 1 − L. The b′i are defined by writing the universal element of C1(PE ,Gm) as
1 +

∑
i≥1 b′ix

i.

By Definition 2.27, the map BUE → C1(PE ,Gm) classifies the element b ∈ E0BU⊗̂E0P ∼=
E0BU [[x]] which is the adjoint of the map E0ρ1. It is easy to see that b =

∑
i bix

i.
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Recall that Cartier duality (2.2) gives an isomorphism

PE ∼= Hom(PE ,Gm).

The construction f 7→ 1/f gives a map

Hom(PE ,Gm) i−→ C1(PE ,Gm).

Corollary 4.2. The diagram

PE
(B det)E

//

∼=
²²

BUE

∼=
²²

Hom(PE ,Gm) i // C1(PE ,Gm)

commutes.

Proof. It will be enough to show that the dual diagram of rings commutes. As E0BU is generated
over E0 by (E0ρ1)(Ẽ0P ), it suffices to check commutativity after composing with E0ρ1. It is then
clear, because B det ◦ρ1 classifies det(1− L) ∼= L−1, and so has degree −1.

4.3. The isomorphism for rational homology and all k.

Proposition 4.3. For any k > 0 we have

HP 0(BU〈2k〉;Q) = HP 0(BU ;Q)/(c1, . . . , ck−1) = Q[[cn | n ≥ k]].

We also have an isomorphism

BU〈2k〉HPQ ∼= Ck(Ĝa,Gm)× spec(Q).

Proof. We have fibrations BU〈2k + 2〉 −→ BU〈2k〉 −→ K(Z, 2k). It is well-known that

H∗(K(Z, 2k);Q) = Q[u2k]

with |u2k| = 2k. We know that the map BU〈2k〉 −→ K(Z, 2k) induces an isomorphism on π2k(−)
and we may assume inductively that H∗(BU〈2k〉;Q) = Q[[cn | n ≥ k]], so the Hurewicz theorem
tells us that u2k hits a nontrivial multiple of ck. It now follows from the Serre spectral sequence
that

H∗(BU〈2k + 2〉;Q) = Q[[cn | n ≥ k + 1]] = H∗(BU ;Q)/(c1, . . . , ck).

Dually, we know that H∗(BU ;Q) is generated by primitive elements ri such that ri is dual to ci,
and we find that H∗(BU〈2k〉;Q) = Q[ri | i ≥ k]. These are precisely the functions on C1(Ĝa,Gm)
that are unchanged when we replace f ∈ C1(Ĝa,Gm)(R) by f exp(g) for some polynomial g of
degree less than k, as we see from the definition of the ri. We see from the proof of Proposition 3.43
that these are the same as the functions that depend only on δk−1

× (f), and thus that BU〈2k〉HPQ

can be identified with Ck(Ĝa,Gm)× spec(Q), as claimed.

4.4. The ordinary homology of BSU .

Proposition 4.4. The natural map

BSUHP −→ C2(Ĝa,Gm)

is an isomorphism.
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Proof. It is enough to prove this modulo p for all primes p, so fix one. Consider the diagram of
affine commutative group schemes (in which everything is taken implicitly over Fp)

PHP //

∼=
²²

BUHP //

∼=
²²

BSUHP

²²

Hom(Ĝa,Gm) // C1(Ĝa,Gm)
δ×

// C2(Ĝa,Gm).

The diagram commutes by Corollaries 2.28 and 4.2. The splitting BU = BSU × P implies that
the top row is a short exact sequence. It is clear that Hom(Ĝa,Gm) is the kernel of δ×, so it
remains to show that δ× is an epimorphism. That is precisely the content of Proposition 3.42.

4.5. The ordinary homology of BU〈6〉. The mod p cohomology of BU〈2k〉 was computed (for
all k ≥ 0) by Singer [Sin68]. We next recall the calculation for k = 3. Note that BU〈6〉 is the
fiber of a map BSU −→ K(Z, 4) and ΩK(Z, 4) = K(Z, 3) so we have a fibration

K(Z, 3)
γ−→ BU〈6〉 v−→ BSU.

In this section we give an algebraic model for the ordinary homology of this fibration, in terms of
the theory of symmetric cocycles and Weil pairings.

Classical calculations show that for p > 2 we have

H∗(K(Z, 3);Fp) = E[u0, u1, . . . ]⊗ Fp[βu1, βu2, . . . ],

where |uk| = 2pk +1 and uk+1 = P pk

uk and βu0 = 0. We write A∗ for the polynomial subalgebra
generated by the elements βuk for k > 0. We also write A =

∏
k≥0 A2k, which is an ungraded

formal power series algebra over Fp. In the case p = 2 we have

H∗(K(Z, 3);F2) = F2[u0, u1, . . . ],

with |uk| = 2k+1 + 1 and uk+1 = Sq2k+1
uk, and we let A∗ be the subalgebra generated by the

elements u2
k. We write A∨∗ for the vector space dual Hom(A∗,Fp).

Lemma 4.5. In the Serre spectral sequence

H∗(BSU ; H∗(K(Z, 3);Fp)) =⇒ H∗(BU〈6〉;Fp)

the class ut survives to E2pt+2, and then there is a differential d2pt+2(ut) = q1+pt , up to a unit in
Fp.

Proof. We treat the case p > 2 and leave the (small) modifications for p = 2 to the reader. As
BU〈6〉 is 5-connected, we must have a transgressive differential d4(u0) = c2 (up to a unit in
Fp). We can think of H∗(BU ;Fp) as a ring of symmetric functions in the usual way, so we have
c2 =

∑
i<j xixj . One checks by induction that

P pt−1
. . . P pP 1(c2) =

∑

i 6=j

xix
pt

j = q1+pt

1 − q1+pt

for t > 0. We also have q1 = c1 (which vanishes on BSU) and thus P pt−1
. . . P pP 1(c2) = −q1+pt

in H∗(BSU ;Fp). It follows from the Kudo transgression theorem and our knowledge of the action
of the Steenrod algebra that ut survives to E2pt+2 and d2pt+2(ut) = q1+pt .

Proposition 4.6. We have a short exact sequence of Hopf algebras

H∗(BSU ;Fp)/(c2, q1+pt | t > 0) ½ H∗(BU〈6〉;Fp) ³ A∗.

Moreover, H∗(BU〈6〉;Fp) is a polynomial ring over Fp, concentrated in even degrees, with the
same Poincaré series as Fp[ck | k ≥ 3].
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Proof. Note that qk = kck modulo decomposables, so we can take q1+pt as a generator of
H2(1+pt)(BSU) p-locally when t > 0. Thus

H∗(BSU ;Fp) = Fp[q1+pt | t > 0]⊗ Fp[ck | k ≥ 2 is not of the form 1 + pt]

Using this, one can check that Lemma 4.5 gives all the differentials in the spectral sequence, and
that

E∞ = H∗(BU ;Fp)/(c2, q1+pt | t > 0)⊗A∗

= Fp[ck | k ≥ 2 is not of the form 1 + pt]⊗
Fp[βuk | k > 0].

By thinking about the edge homomorphisms of the spectral sequence, we obtain the claimed short
exact sequence of Hopf algebras. As the two outer terms are polynomial rings in even degrees,
the same is true of the middle term. As |βuk| = |q1+pk |, we have the claimed equality of Poincaré
series.

Corollary 4.7. BU〈6〉 is a even space, and H∗BU〈6〉 is a polynomial algebra of finite type over
Z.

Proof. It is easy to see that BU〈6〉 has finite type. The remaining statements are true p-locally for
all p by the Proposition, and the integral statement follows because everything has finite type.

Corollary 4.8. The sequence of group schemes over Fp

BSUHPFp −→ BU〈6〉HPFp −→ spec(A∨) −→ 0

is exact.

4.5.1. The Weil scheme and HP0K(Z, 3). In this section, we work over Fp unless otherwise spec-
ified. In particular, homology is taken with coefficients in Fp.

We now have the solid arrows of the diagram

BSUHP

f2 ∼=
²²

// BU〈6〉HP

f3

²²

// spec(A∨)

λ∼=
²²
Â
Â
Â

// 0

C2(Ĝa,Gm)
δ×

// C3(Ĝa,Gm)
e // Weil(Ĝa) // 0.

(4.9)

The diagram commutes by Corollary 2.28. Moreover the rows are exact (by Corollaries 3.41 and
4.8), and the map f2 is an isomorphism by Proposition 4.4. It follows that there is a map λ making
the diagram commute. Our next task is to show that this map is an isomorphism.

We can give an explicit formula for this map. Recall from §2.3.3 that f3 classifies the 3-cocycle
ρ̂3 ∈ HP 0P ⊗̂HP0BU〈6〉. Here ρ̂3 is the adjoint of HP0ρ3, where ρ3 is the map

P 3 ρ3−→ BU〈6〉
whose composite to BU classifies the bundle

∏
i(1−Li). Let W : P 2 → BU〈6〉 be the map whose

composite to BU classifies the virtual bundle
p−1∑

k=1

(
(1− L1)(1− Lk

1)(1− L2)− (1− L1)(1− Lk
2)(1− L2)

) ∼= (1− L1)(1− L2)
p−1∑

k=1

Lk
2 − Lk

1 .

(4.10)

Let Ŵ be the adjoint in HP 0P 2⊗̂HP0BU〈6〉 of the map HP0W . Let x = −c1L1 and y = −c1L2

be the indicated generators of HP 0P 2. Then Ŵ gives a power series

Ŵ (x, y) ∈ HP0(BU〈6〉)[[x, y]] ∼= HP 0P 2⊗̂HP0BU〈6〉.
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Lemma 4.11. The power series Ŵ (x, y) has coefficients in the subring A∨[[x, y]]. As such it is
an element of Weil(Ĝa)(A∨). The map λ : spec(A∨) → Weil(Ĝa) classifying Ŵ (x, y) makes the
diagram (4.9) commute.

Proof. Recall that the map e : C3(Ĝa,Gm) → Weil(Ĝa) takes the power series f(x, y, z) to the
power series

e(f)(x, y) =
p−1∏

k=1

f(x, kx, y)
f(x, ky, y)

.

Recall also that the H-space structure of BU〈6〉 corresponds on the algebraic side to the mul-
tiplication of power series and on the topological side to addition of line bundles. The H-space
structure of P corresponds on the algebraic side to addition in the group Ĝa and on the topological
side to the tensor product of line bundles.

Putting these observations together shows that

Ŵ = e(ρ̂3).

The lemma follows from this equation and the structure of the solid diagram (4.9).

Lemma 4.12. For s ≥ 1, we have an equation

W ∗q1+ps = p(xyps − xps

y) mod p2

in the integral cohomology HP 0P 2.

Proof. As x = −c1L1 and y = −c1L2, the total Chern class of the bundle (4.10) is given by the
formula

W ∗c(t) =
(1− yt)(1− pxt)(1− (x + py)t)
(1− xt)(1− pyt)(1− (px + y)t)

.

We have q(t) = td log c(t). Modulo p2 we have equations

td log(1− xt) =− tx(1 + xt + (xt)2 + . . . )

td log(1− pxt) =− pxt

td log(1− (x + py)t) =
(x + py)t

(1− (x + py)t)
=− pyt(1 + xt + (xt)2 + . . . )− xt(1 + xt + (xt)2 + . . . )

− pxyt2(1 + 2xt + 3(xt)2 + . . . ).

With these formulae it is easy to verify the assertion.

Note that Lemma 4.11 implies that the map (of Fp–modules)

HP0W : HP0P
2 −→ HP0BU〈6〉

factors through the inclusion of A∨ in HP0BU〈6〉.
Proposition 4.13. The map of group schemes λ : spec(A∨) → Weil(Ĝa) is an isomorphism.

Proof. First note that A is a formal power series algebra on primitive generators (because u0

is primitive and the Steenrod action preserves primitives). It follows that A∨ is a divided power
algebra over Fp and thus a tensor product of rings of the form Fp[y]/yp. We know from Lemma 3.36
that OWeil(bGa) also has this structure. It will thus suffice to show that the map Ind(OWeil(bGa)) −→
Ind(A∨) = Prim(A)∨ is an isomorphism, or equivalently that the resulting pairing of Ind(OWeil(bGa))
with Prim(A) is perfect.

Define elements bi ∈ H∗P by setting 〈bi, x
j〉 = δij , and define elements bij ∈ A∨ by setting

bij = H∗W (bi ⊗ bj).
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It is clear that the Weil pairing g(x, y) associated to HP0W is given by the formula

g(x, y) =
∑

ij

bijx
iyj .

Let f(x, y) =
∑

i,j aijx
iyj be the universal Weil pairing defined over OWeil(bGa), so our map

sends f to g and thus aij to bij . We know from Lemma 3.36 that the elements api,pj (with i < j)
form a basis for Ind(OWeil(bGa)). On the other hand, the elements (βuk)pm

(with k > 0 and m ≥ 0)
are easily seen to form a basis for Prim(A).

The calculation of the Serre spectral sequence in Lemma 4.5 and the characteristic class calcu-
lation in Lemma 4.12 together imply that

W ∗βuk = ε(xypk − xpk

y)

in H∗(P 2), where ε is a unit in Fp. It follows that the inner product 〈bpi,pj , (βuk)pm〉 in A is the
same (up to a unit) as the inner product 〈bpi,pj , xpm

ypk+m −xpk+m

ypm〉 in H∗(P 2), and this inner
product is just δimδjk. This proves that the pairing is perfect, as required.

Corollary 4.14. For periodic integral homology, the map BU〈6〉HP −→ C3(Ĝa,Gm) is an iso-
morphism.

Proof. It is enough to prove this mod p for all p. We can chase the diagram 4.9 to see that the map
BU〈6〉HPFp −→ C3(Ĝa,Gm)× spec(Fp) is an epimorphism. We see from Propositions 4.3 and 3.28
that the corresponding graded rings have the same Poincaré series, so the map must actually be
an isomorphism.

4.6. BSU and BU〈6〉 for general E. Let FGL be the scheme of formal group laws and let
G = Â1×FGL. There is a canonical group structure σ : G×FGLG = Â2×FGL → Â1×FGL = G
given by the formula σ(a, b, F ) = (a+F b, F ). We define an action of Gm on FGL by (u.F )(x, y) =
u−1F (ux, uy). This gives a grading on OFGL; explicitly, if F (x, y) =

∑
i,j aijx

iyj is the universal
formal group law, then aij is a homogeneous element of OFGL of degree i + j − 1. It is clear that
OFGL is generated (subject to many relations) by the elements aij . It is a theorem of Lazard
(see [Ada74] for example) that OFGL is a graded polynomial algebra with one generator in each
degree i > 0.

The scheme C = C3(G,Gm) is the functor that assigns to each ring R the set of pairs (F, f),
where F is a formal group law over R and f ∈ R[[x1, x2, x3]] is symmetric, congruent to 1 modulo
x1x2x3, and satisfies the cocycle condition

f(x1, x2, x3)f(x0 +F x1, x2, x3)−1f(x0, x1 +F x2, x3)f(x0, x1, x3)−1 = 1.

The action of Gm on FGL extends to an action on C by the formula u.(F, f) = (u.F, u.f), where

(u.f)(x1, x2, x3) = f(ux1, ux2, ux3)

and

(u.F )(x, y) = u−1F (ux, uy).

This gives OC the structure of a graded OFGL-algebra. If f(x1, x2, x3) =
∑

i,j,k≥0 bijkxi
1x

j
2x

k
3 then

bijk can be thought of as a homogeneous element of OC with degree i + j + k. Moreover, we have
b000 = 1.

It is clear that OC is generated over OFGL by the elements bijk, and thus that OC is a connected
graded ring of finite type over Z.

Lemma 4.15. The ring OC is a graded free module over OFGL. In particular, it is free of finite
type over Z.
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Proof. Let I be the ideal in OC generated by the elements of positive degree in OFGL, so the
associated closed subscheme V (I) ∼= spec(Z) ⊂ FGL just consists of the additive formal group
law. It follows that OC/I = OC3(bGa,Gm), which is a free abelian group by Corollary 3.30. We
choose a homogeneous basis for OC/I and lift the elements to get a system of homogeneous
elements in OC . Using these, we can construct a graded free module M over OFGL and a map
M

α−→ OC of OFGL-modules that induces an isomorphism M/IM ∼= OC/IOC . It is easy to check
by induction on the degrees that α is surjective. Also, M is free over OFGL, which is free over Z,
so M is free over Z. Now, if we have a surjective map f : A −→ B of finitely generated Abelian
groups such that A is free and A⊗Q ∼= B ⊗Q, it is easy to see that f is an isomorphism. Thus,
if we can show that M has the same rational Poincaré series as OC , we can deduce that α is an
isomorphism.

If (F, f) is a point of C over a rational ring R, then we can define a series expF in the usual
way and get a series g = f ◦ (exp3

F ) defined by g(x1, x2, x3) = f(expF (x1), expF (x2), expF (x3)).
Clearly we have g ∈ C3(Ĝa,Gm)(R), and this construction gives an isomorphism C × spec(Q) −→
FGL×C3(Ĝa,Gm) × spec(Q). It follows that the Poincaré series of OC is the same as that of
OFGL ⊗OC3(bGa,Gm), which is the same as that of M by construction.

Proposition 4.16. For any even periodic ring spectrum E, the natural maps

BSUE −→ C2(PE ,Gm)

and

BU〈6〉E −→ C3(PE ,Gm)

are isomorphisms.

Proof. Let k = 2 or 3. Because BU〈2k〉 is even, we know that the Atiyah-Hirzebruch spectral
sequence

H∗(BU〈2k〉; E∗) =⇒ E∗BU〈2k〉
collapses, and thus that E1BU〈2k〉 = 0 and E0BU〈2k〉 is a free module over E0. If we have a
ring map E′ −→ E between even periodic ring spectra then we get a map E0 ⊗E′0 E′

0BU〈2k〉 −→
E0BU〈2k〉, and a comparison of Atiyah-Hirzebruch spectral sequences shows that this is an iso-
morphism, so BU〈2k〉E = BU〈2k〉E′ ×SE′ SE . On the other hand, because the formation of Ck

commutes with base change, we have

Ck(PE ,Gm) = Ck(PE′ ×SE′ SE ,Gm) = Ck(PE′ ,Gm)×SE′ SE .

It follows that if the theorem holds for E′ then it holds for E. It holds for E = HP by Proposition
4.4 or Corollary 4.14, and we have ring maps

HP −→ HPQ −→ HPQ ∧MU = MPQ,

so the theorem holds for MPQ.

For any E, we can choose a coordinate on E and thus a map MP −→ E of even periodic ring
spectra, so it suffices to prove the theorem when E = MP , in which case SE = FGL. In this
case we have a map of graded rings OC −→ MP0BU〈2k〉 = MU∗BU〈2k〉, both of which are free
of finite type over Z. This map is a rational isomorphism by the previous paragraph, so it must
be injective, and the source and target must have the same Poincaré series. It will thus suffice
to prove that it is surjective. Recall that I denotes the kernel of the map MP0 −→ Z = HP0

that classifies the additive formal group law, or equivalently the ideal generated by elements of
strictly positive dimension in MU∗. By induction on degrees, it will suffice to prove that the map
OC/I −→ MP0BU〈2k〉/I is surjective. Base change and the Atiyah-Hirzebruch sequence identifies
this map with the map OC3(bGa,Gm) −→ HP0BU〈2k〉, in other words the case E = HP of the
proposition. This case was proved in Proposition 4.4 (k = 2) or Corollary 4.14 (k = 3).
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Appendix A. Additive cocycles

The main results of this section are proofs of Propositions 3.13, 3.16, and 3.20. We use the
notation of §3. In particular, we abbreviate Ck(A) for Ck(Ĝa, Ĝa), and for d ≥ 1 we write Ck

d (A)
for the subgroup of polynomials which are homogeneous of degree d.

For d ≥ 1 let xd be considered as an element of C0(Ĝa, Ĝa)(Z). Then we have polynomials
δk(xd) ∈ Z[x1, . . . , xk] giving elements of Ck(Z). For example

δ2(xd) = xd
1 + xd

2 − (x1 + x2)d

δ3(xd) = xd
1 + xd

2 + xd
3 − (x1 + x2)d − (x1 + x2)d − (x2 + x3)d + (x1 + x2 + x3)d.

A.1. Rational additive cocycles.

Proposition A.1 (3.13). If A is a Q-algebra, then for d ≥ k the group Ck
d (A) is the free abelian

group on the single generator δkxd.

Proof. If h ∈ Ck(A) then there is a unique series f(x) such that h(x, ε, . . . , ε) = εk−1f(x)
(mod εk), and moreover f(0) = 0. It follows that there is a unique series g ∈ C0

≥k(A) whose
(k − 1)’st derivative is f . We can thus define an A-linear map π : Ck(A) −→ C0

≥k(A) by π(h) =
(−1)kg. We claim that this is the inverse of δk.

To see this, suppose that g ∈ C0
≥k(A), so that g(k−1)(0) = 0. From the definitions, we have

(δkg)(x, ε, . . . , ε) =
∑

I

(−1)|I|(g(|I|ε)− g(x + |I|ε))

=
k−1∑

j=0

(−1)j

(
k − 1

j

)
(g(jε)− g(x + jε)),

where I runs over subsets of {2, . . . , k}. To understand this, we introduce the operators (Tf)(x) =
f(x + ε) and (Df)(x) = f ′(x). Taylor’s theorem tells us that T = exp(εD). It is clear that

k−1∑

j=0

(−1)j

(
k − 1

j

)
g(x + jε) = ((1− T )k−1g)(x)

= ((1− exp(εD))k−1g)(x)

= (−ε)k−1g(k−1)(x) (mod εk).

If we feed this twice into our earlier expression and use the fact that g(k−1)(0) = 0, we find that

(δkg)(x, ε, . . . , ε) = (−1)kεk−1g(k−1)(x) (mod εk).

This shows that πδk = 1.

To complete the proof, it suffices to show that π is injective. Suppose that h ∈ Ck(A) and that
π(h) = 0, so that h(x, ε, . . . , ε) = 0 (mod εk). If k = 2 we consider the cocycle condition

h(y, z)− h(x + y, z) + h(x, y + z)− h(x, y) = 0.

If we substitute z = ε and work modulo ε2 then the first two terms become zero and we have
h(x, y+ε) = h(x, y), or equivalently ∂h(x, y)/∂y = 0. By symmetry we also have ∂h(x, y)/∂x = 0,
and as A is rational we can integrate so h is constant. We also know that h(0, 0) = 0 so h = 0 as
required.

Now suppose that k > 2. We know that h has the form g(x1, . . . , xk)xk for some series g.
By assumption, εk divides h(x, ε, . . . , ε) = εg(x, ε, . . . , ε) so g(x, ε, . . . , ε) = 0 (mod εk−1). On the
other hand, x2, . . . , xk−1 also divide g so it is not hard to see that g(x, ε, . . . , ε, 0) = g(x, ε, . . . , ε) =
0 (mod εk−1). Moreover, the series g(x1, . . . , xk−1, 0) lies in Ck−1(A), so by induction on k we
find that g(x1, . . . , xk−1, 0) = 0. This shows that h(x1, . . . , xk−1, ε) = 0 (mod ε2). The argument
of the k = 2 case now shows that h = 0.
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A.2. Divisibility. Recall that ud is the greatest common divisor of the coefficients of the poly-
nomial δkxd. Let

c(k, d) =
δkxd

ud
.

It is clear that Ck(Z) = Ck(Q) ∩ Z[[x1, . . . , xk]], so Proposition A.1 has the following corollary.

Corollary A.2. For d ≥ k, the group Ck
d (Z) is a free abelian group on the single generator

c(k, d)

We fix a prime p and an integer k ≥ 1. In §3 it is convenient work p-locally, and then to use
the cocycles

c(d) =
(−δ)k(xd)

pv(d)
,

which locally at p are unit multiples of c(k, d) (see Definition 3.14). In this section we study
v(d) = νp(u(d)).

It is clear that u(d) is the greatest common divisor of the multinomial coefficients
d

a1! · · · · · ak!
,

where ai ≥ 1 and
∑

ai = d.

We start with some auxiliary definitions.

Definition A.3. For any nonnegative integer d, we write σp(d) for the sum of the digits in the
base p expansion of d. In more detail, there is a unique sequence of integers di with 0 ≤ di < p
and

∑
i dip

i = d, and we write σp(d) =
∑

i di. Given a sequence α = (α1, . . . , αk) of nonnegative
integers, we write

|α| =
∑

i

αi

xα =
∏

i

xαi
i

α! =
∏

i

αi!

supp(α) = {i | αi > 0}.
Lemma A.4. We have

v(d) = inf{νp(d!/α!) | |α| = d and αi > 0 for all i}.

To exploit this, we need some well-known formulae involving multinomial coefficients.

Lemma A.5. We have vp(n!) = (n− σp(n))/(p− 1).

Proof. The number of integers in {1, . . . , n} that are divisible by p is bn/pc. Of these, pre-
cisely bn/p2c are divisible by a further power of p, and so on. This leads easily to the formula
vp(n!) =

∑
kbn/pkc. If n has expansion

∑
i nip

i in base p, then bn/pkc =
∑

i≥k nip
i−k. A little

manipulation gives vp(n!) =
∑

i ni(pi − 1)/(p− 1) = (n− σp(n))/(p− 1) as claimed.

Corollary A.6. For any multi-index α we have

vp(|α|!/α!) =

(∑

i

σp(αi)− σp(|α|)
)

/(p− 1).

Thus

v(d) = inf
{ ∑

i σp(αi)− σp(d)
p− 1

∣∣∣∣ |α| = d and αi > 0 for all i

}
.
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It is not hard to check the following description of the minimum in Corollary A.6.

Lemma A.7. The minimum in Corollary A.6 is achieved by the multi-index α such that summing

d = α1 + · · ·+ αk

in base p involves “carrying” the fewest number of times; and v(d) is equal to the number of
carries.

The proof of Proposition 3.16 involves working out this number of carries. To make the argu-
ment precise, we introduce a few definitions.

Definition A.8. We let A(p, k, d) denote the set of doubly indexed sequences α = (αij), where i
runs from 1 to k, j runs over all nonnegative integers, and the following conditions are satisfied:

i. For each i, j we have 0 ≤ αij ≤ p− 1.
ii. We have

∑
i,j αijp

j = d.
iii. For each i there exists j such that αij > 0.

By writing multi-indices in base p, we see that v(d) is the minimum value of (
∑

ij αij −
σp(d))/(p− 1) as α runs over A(p, k, d).

Definition A.9. We let B = B(p, k, d) be the set of sequences β = (βj) (where j runs over
nonnegative integers) such that

i. For each j we have 0 ≤ βj ≤ k(p− 1).
ii. We have

∑
j βjp

j = d.
iii. We have

∑
j βj ≥ k.

We also write B̃ = B̃(p, k, d) for the larger set of sequences satisfying only conditions i and ii.
Given β ∈ B̃ we write τ(β) =

∑
j βj , so β ∈ B if and only if τ(β) ≥ k. If d has expansion

d =
∑

k β̃kpk in base p, then β̃ = (β̃0, β̃1, . . . ) is an element of B̃, with τ(β̃) = σp(d).

Proposition A.10 (3.16). For any d ≥ k we have

v(d) = max
(

0,

⌈
k − σp(d)

p− 1

⌉)
.

Alternatively, v(d) is equal to the minimum number of “carries” in base-p arithmetic, when d is
calculated as the sum of k integers a1, . . . , ak with ai ≥ 1.

Proof. Consider the map ρ : A(p, k, d) −→ B(p, k, d) defined by ρ(α)j =
∑

i αij . It is easily seen that
ρ is surjective and that τρ(α) =

∑
ij αij . It follows that v(p, k, d) = inf{(τ(β)−σp(d))/(p−1) | β ∈

B}. If k ≤ σp(d) = τ(β̃) then β̃ ∈ B and this makes it clear that v(d) = 0. From now on we
assume that k > σp(d).

We define a map θ : B̃ \B −→ B̃ as follows. If β ∈ B̃ \B then
∑

j βj < k and
∑

j βjp
j = d. As

d ≥ k this clearly cannot happen unless there exists some i > 0 with βi > 0. We let j denote the
largest such i. We then define

θ(β)i =





i = j βj − 1
i = j − 1 βj−1 + p

i 6= j − 1, j βi.

We claim that the resulting sequence lies in B̃. The only way this could fail would be if βj−1 +p >
k(p− 1), but as βj > 0 this would imply

τ(β) ≥ βj + βj−1 ≥ 1 + (k − 1)(p− 1) ≥ k,

contradicting the assumption that β 6∈ B.



ELLIPTIC SPECTRA 51

Note that τθ(β) = τ(β) + (p− 1). It follows that for some i, the sequence β = θi(β̃) is defined,
lies in B, and satisfies k ≤ τ(β) = σp(d) + i(p− 1) < k + p− 1. It follows that

i =
τ(β)− σp(d)

p− 1
=

⌈
k − σp(d)

p− 1

⌉
,

and thus that v(d) ≤ d(k−σp(d))/(p− 1)e. By definition we have τ(γ) ≥ k for all γ ∈ B, and this
implies the reverse inequality. Thus v(d) = d(k − σp(d))/(p− 1)e.

A.3. Additive cocycles: The modular case. In this section we give the description of C3(A)
when A is an Fp-algebra, as promised in Proposition 3.20. For convenience, we recall what we
need to prove.

Let φ be the endomorphism of A[[x1, . . . , xk]] defined by φ(xi) = xp
i , and we observed that if

p = 0 in A then this sends Ck(A) to Ck(A) and Ck
d (A) to Ck

dp(A). Moreover, if A = Fp then
ap = a for all a ∈ Fp and thus φ(h) = hp.

Definition A.11. We say that an integer d ≥ 3 has type

I if d is of the form 1 + pt with t > 0.
II if d is of the form ps(1 + pt) with s, t > 0.

III otherwise.

If d = ps(1 + pt) has type I or II we define c′(d) = φsc(1 + pt) ∈ C3
d(Fp). Note that d has type I

precisely when σp(d− 1) = 1, and in that case we have c′(d) = c(d).

Proposition A.12 (3.20). If A is an Fp-algebra then C3(A) is a free module over A generated
by the elements c(d) for d ≥ 3 and the elements c′(d) for d of type II.

The proof will be given at the end of this section. It is based on the observation that a cocycle
h = h(x, y, z) ∈ C3

d(A) can be written uniquely in the form
∑

i hi(x, y)zi. Each hi must be a
two-cocycle, and so a multiple of c2(d− i). The symmetry of h restricts how the hi can occur.

It is convenient to have the following description of the image of φ.

Lemma A.13. If p = 0 in A and h ∈ Ck(A) and h(x1, . . . , xk−1, ε) = 0 (mod ε2) then h = φ(g)
for some g ∈ Ck(A). Moreover, if h is homogeneous of degree d, then g is homogeneous of degree
d/p, which means that h = 0 if p does not divide d.

Proof. The cocycle condition gives

h(x1, . . . , xk)− h(x1, . . . , xk−1, xk + ε) + h(x1, . . . , xk−1 + xk, ε)− h(x1, . . . , xk−2, xk, ε) = 0.

Modulo ε2, the last two terms vanish and we conclude that ∂h/∂xk = 0. This shows that powers
xj

k can only occur in h if p divides j, or in other words that h is a function of xp
k. By symmetry it

is a function of xp
i for all i, or in other words it has the form φ(g) for some g. It is easy to check

that g lies again in Ck(A). The extra statements for when h is homogeneous are clear.

Definition A.14. Given an integer d ≥ 3 and a prime p, we let τ = τ(d) be the unique integer
such that pτ + 1 < d ≤ pτ+1 + 1.

Definition A.15. We define a map π : C3
d(A) −→ A as follows. Given a cocycle h ∈ C3

d(A), write

h(x, y, z) =
d∑

i=0

hi(x, y)zi.

Then we can write h(x, y, z) uniquely in the form
∑d

i=0 hi(x, y)zi. It is easy to check that hi is
a two-cocycle, and so Lemma 3.5 implies that hi = aic2(d − i) for a unique element ai ∈ A. Set
π(h) = apτ(d) .
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Lemma A.16. There is a unit λ ∈ Fp
× such that π(ac(d)) = λa, so π is always surjective. If d

is not divisible by p then π : C3
d(A) −→ A is an isomorphism. If d is divisible by p then the kernel

of π is contained in the image of the map φ : C3
d/p(A) −→ C3

d(A).

Proof. For the first claim we need only check that when A = Fp, the element λ = π(c(d)) is
nonzero. Equivalently, we claim that some term xiyjzpτ

(with i + j + pτ = d) occurs nontrivially
in c(d). Given Corollary A.6 and Proposition 3.16, it is enough to show that there exist integers
i, j > 0 with i + j + pτ = d and

σp(i) + σp(j) + 1− σp(d)
p− 1

= max
(⌈

3− σp(d)
p− 1

⌉
, 0

)
.

If σp(d) ≥ 3 then this reduces to the requirement that σp(i) + σp(j) = σp(d) − 1. We cannot
have d = pτ+1 or d = pτ+1 + 1 because in those cases σp(d) < 3, so we must have pτ + 1 <
d < pτ+1. It follows that in the base-p expansion d =

∑τ
i=0 dip

i we have dτ > 0, and thus that
σp(d−pτ ) = σp(d)−1 ≥ 2. It is now easy to find numbers i, j > 0 such that i+ j = d−pτ and the
sum can be computed in base p without carrying, which implies that σp(i) + σp(j) = σp(d − pτ )
as required.

We now suppose that σp(d) ≤ 2. In this case, we need to find i, j > 0 such that i + j + pτ = d
and

3− σp(d) ≤ σp(i) + σp(j) + 1− σp(d) < 3− σp(d) + p− 1,

or equivalently

2 ≤ σp(i) + σp(j) < p + 1.

Assuming that p > 2, the possible values of d, together with appropriate values of i and j, are as
follows.

d = pτ+1 i = j = 1
2 (p− 1)pτ

d = 1 + pτ+1 i = 1 , j = (p− 1)pτ

d = ps + pτ (0 < s ≤ τ) i = ps−1 , j = (p− 1)ps−1

In the case p = 2, the possibilities are as follows.

d = 2τ+1 (τ > 0) i = j = 2τ−1

d = 1 + 2τ+1 i = 1 , j = 2τ

d = 2s + 2τ (0 < s < τ) i = j = 2s−1

This completes the proof that λ = π(c(d)) is nonzero. For general A we have π(ac(d)) = λa, and
it follows immediately that π is surjective.

We next show that the kernel of π is contained in the image of φ (and thus is zero if p does
not divide d). Suppose that h ∈ C3

d(A) and π(h) = 0. Let ai be as in Definition A.15, so that
apτ = π(h) = 0. By Lemma A.13, it suffices to check that h is divisible by x2. We already know
that it is divisible by x, so we just need to know that a1 = 0. Let λi,j ∈ Fp be the coefficient of
xiyj in c2(()i + j), so we have

h =
∑

i+j+k=d

λi,jakxiyjzk.

As h is symmetric in x, y, and z, we conclude that λi,jak = λi,kaj . In particular, we have

a1λpτ ,d−pτ−1 = apτ λ1,d−pτ−1 = 0.

It is thus enough to check that λpτ ,d−pτ−1 is a unit in Fp. In the case d = pτ+1 + 1 we have

c(2, p, pτ+1) = ((x+ y)pτ+1 −xpτ+1 − ypτ+1
)/p and thus λpτ ,d−pτ−1 =

(
pτ+1

pτ

)
/p. Corollary A.6

tells us that this integer has p-adic valuation 0, so it becomes a unit in Fp. In the case when

d < pτ+1 +1, we have c(p, 2, d− 1) = (x+ y)d−1−xd−1− yd−1 and thus λpτ ,d−1−pτ =
(

d− 1
pτ

)
.
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It is not hard to see that we have a base-p expansion d − 1 =
∑τ

i=0 dip
i in which dτ > 0. Given

this, Corollary A.6 again tells us that λpτ ,d−1−pτ is a unit, as required.

Lemma A.17. If d has type II then π(c′(d)) = 0.

Proof. We have d = ps(1+pt) with s > 0 and 1+pt ≥ 3. As s > 0 we have 1+ps+t < ps +ps+t ≤
1 + ps+t+1, so τ(ps + ps+t) = s + t. We thus have to prove that there are no terms of the form
xiyjzps+t

in c(1 + pt)ps

, or equivalently that there are no terms of the form xiyjzpt

in c(1 + pt).
This is clear because c(1 + pt) has the form xyz f(x, y, z), where f is homogeneous of degree
pt − 2.

Proof of Proposition A.12. It is clear from Lemma A.16 that C3(A) is generated over A by the
elements φsc(d) for all s and d. However, Proposition 3.18 and Corollary 3.17 tell us that φsc(d) =
c(psd) unless νp(d) < v(d), where

v(d) =





2 σ2(d) = 1 and p = 2
1 σp(d) = 1 and p > 2
1 σp(d) = 2
0 σp(d) > 2.

Suppose that d is one of these exceptional cases. We clearly cannot have σp(d) > 2. If σp(d) = 1
then d = pt for some t. The inequality νp(d) < v(d) means that t < 2 if p = 2 and t < 1 if p > 2.
We also must have d ≥ 3, so t > 0, and t > 1 if p = 2. These requirements are inconsistent, so we
cannot have σp(d) = 1. This only leaves the possibility σp(d) = 2, so d = pr(1 + pt) with t ≥ 0,
and t > 0 if p = 2. The inequality νp(d) < v(d) now means that r = 0. The inequality d ≥ 3
means that the case t = 0 is excluded even when p > 2.

In other words, φsc(d) = c(dps) unless s > 0 and d has the form 1 + pt with t > 0, so psd has
type II. Thus C3(A) is spanned by the elements c(d) for d ≥ 3 and c′(d) for d of type II.

It is easy to see that C3
d(A) = C3

d(Fp)⊗A, and in the case A = Fp we know from Lemmas A.16
and A.17 that our spanning set is linearly independent. The proposition follows.

Appendix B. Generalized elliptic curves

In this appendix, we outline the theory of generalized elliptic curves. We have tried to give
an elementary account, with explicit formulae wherever possible. This has both advantages and
disadvantages over the other available approaches, which make more use of the apparatus of
schemes and sheaf cohomology. For more information, and proofs of results merely stated here,
see [Del75, KM85, Sil94, DR73]. Note, however, that our definition is not quite equivalent to
that of [DR73]: their generalized elliptic curves are more generalized than ours, so what we call a
generalized elliptic curve is what they would call a stable curve of genus 1 with a specified section
in the smooth locus.

We shall again think of non-affine schemes as functors from rings to sets. The basic example
is the projective scheme Pn, where Pn(R) is the set of submodules L ≤ Rn+1 such that L is a
summand and has rank one. If we have elements a0, . . . , an ∈ R such that

∑
i Rai = R then the

vector (a0, . . . , an) ∈ Rn+1 generates such a submodule, which we denote by [a0 : . . . : an]. This
is of course a free module. In general, L may be a non-free projective module, so it need not
have the form [a0 : . . . : an], but nonetheless it is usually sufficient to consider only points of that
form. For more details, and a proof of equivalence with more traditional approaches, see [Str99a,
Section 3].

Definition B.1. A Weierstrass curve over a scheme S is a (non-affine) scheme of the form

C = C(a1, a2, a3, a4, a6)

= {([x : y : z], s) ∈ P2 × S | y2z + a1(s)xyz + a3(s)yz2 = x3 + a2(s)x2z + a4(s)xz2 + a6(s)z3}
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for some system of functions a1, . . . , a6 ∈ OS . (Whenever we write (a1, . . . , a6), it is to be
understood that there is no a5.) For any such curve, there is an evident projection p : C −→ S
and a section 0: S −→ C given by s 7→ ([0 : 1 : 0], s). We write WC(R) for the set of 5-tuples
(a1, . . . , a6) ∈ R5, which can clearly be identified with the set of Weierstrass curves over spec(R).
Thus, WC = spec(Z[a1, . . . , a6]) is a scheme. We define various auxiliary functions as follows:

b2 = a2
1 + 4a2

b4 = a1a3 + 2a4

b6 = a2
3 + 4a6

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4

c4 = b2
2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

j = c3
4/∆

The function ∆ ∈ OS is called the discriminant. We say that a Weierstrass curve C is smooth if
its discriminant is a unit in OS .

Definition B.2. A generalized elliptic curve over S is a scheme C equipped with maps S
0−→

C
p−→ S such that S can be covered by open subschemes Si such that Ci = C ×S Si is isomorphic

to a Weierstrass curve, by an isomorphism preserving p and 0. An elliptic curve is a generalized
elliptic curve that is locally isomorphic to a smooth Weierstrass curve. We shall think of S as
being embedded in C as the zero-section. We write ωC/S for the cotangent space to C along S, or
equivalently ωC/S = IS/I2

S , where IS is the ideal sheaf of S. One checks that this is a line bundle
on S. We say that C/S is untwisted if ωC/S is trivializable.

It is possible to give an equivalent coordinate-free definition, but this requires rather a lot of
algebro-geometric machinery.

Let C be a Weierstrass curve. Note that if we put z = 0 then the defining equation becomes
x3 = 0, so the locus where z = 0 is an infinitesimal thickening of the locus x = z = 0, which is
our embedded copy of S. Thus, the complementary open subscheme C1 = C \ S is just the locus
where z is invertible. This can be identified with the curve in the affine plane with equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Weierstrass curves are often described by giving this sort of inhomogeneous equation.

A given generalized elliptic curve can be isomorphic to two different Weierstrass curves, and
it is important to understand the precise extent to which this can happen. For this, we define a
group scheme WR of “Weierstrass reparameterizations”: for any ring R, WR(R) is the group of
matrices of the form

M(u, r, s) =




u2 0 r
su2 u3 t
0 0 1




with u ∈ R×. Such a matrix acts by multiplication on P2 × spec(R) in the obvious way, and one
checks that it carries C(a1, . . . , a6) to C(a′1, . . . , a′6), where

a′1 = a1u− 2s

a′2 = a2u
2 + a1su− 3r − s2

a′3 = a3u
3 − a1ru + 2rs− 2t

a′4 = a4u
4 + a3su

3 − 2a2ru
2 + a1(t− 2rs)u + 3r2 + 2rs2 − 2st

a′6 = a6u
6 − a4ru

4 + a3(t− rs)u3 + a2r
2u2 + a1(r2s− rt)u + 2rst− t2 − r2s2 − r3
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(These equations are equivalent to [Del75, Equations 1.6] with ai and a′i exchanged.)

We therefore have an action of WR on WC, and a map from WR×WC to the scheme of triples
(C, C ′, f) where C and C ′ are Weierstrass curves and f is an isomorphism C −→ C ′ of pointed
curves. One can check that this map is an isomorphism.

If we define c′4, c′6, ∆′ and j′ in the obvious way then we have

c′4 = c4u
4

c′6 = c6u
6

∆′ = ∆u12

j′ = j.

Definition B.3. Let C be a generalized elliptic curve over S. We will define various things as
though C were a Weierstrass curve; one can check that the definitions are local on S and invariant
under reparameterization, so they are well-defined in general. We write

Sell = D(∆)

Ssing = V (∆)

Smult = D(c4) ∩ V (∆)

Sadd = V (c4) ∩ V (∆),

and call these the elliptic, singular, multiplicative and additive loci in S, respectively. Here as
usual, D(a) is the locus where a is invertible and V (a) is the locus where a = 0. Let f be a
standard Weierstrass equation for C, and write fx = ∂f/∂x and so on. Let Csing be the closed
subscheme of C where fx = fy = fz = 0, and let Creg be the complementary open subscheme.

It turns out that Creg has a unique structure as an abelian group scheme over S such that
the map 0: S −→ Creg is the zero section. If C is a Weierstrass curve, then any three sections
c0, c1, c2 of Creg with c0 + c1 + c2 = 0 are collinear in P2, or equivalently the matrix formed by the
coordinates of the ci has determinant zero. Any map of generalized elliptic curves (compatible
with the projections and the zero-sections) is automatically a homomorphism. One can check that
the negation map is given by

−[x : y : z] = [x : −a1x− y − a3z : z].

The formal completion of C along S is written Ĉ. If C is defined by a Weierstrass equation
f = 0 then we have

Ĉ(R) = {(x, z, s) ∈ Nil(R)2 × S(R) | f(x, 1, z) = 0},
where Nil(R) is the set of nilpotent elements in R. One checks using the formal implicit function
theorem that there is a unique power series ξ(x) =

∑
k>0 ξkxk ∈ OS [[x]] such that ξ(x) = x3

(mod x4), and (x, z, s) ∈ Ĉ(R) if and only if z = ξ(x). This proves that Ĉ ∼= S × Â1, so that Ĉ
is a formal curve over S. The rational function x/y gives a coordinate; we normally work in the
affine piece y = 1 so this just becomes x. The group structure on C thus makes Ĉ into a formal
group over S (i.e. a commutative, one-dimensional, smooth formal group). If we define

χ(x0, x1, x2) =
∑

i,j,k≥0

ξi+j+k+2x
i
0x

j
1x

k
2

then one can check that χ(x0, x1, x2) = x0 + x1 + x2 mod (x0, x1, x2)2 and
∣∣∣∣∣∣

x0 1 ξ(x0)
x1 1 ξ(x1)
x2 1 ξ(x2)

∣∣∣∣∣∣
= (x0 − x1)(x0 − x2)(x1 − x2)χ(x0, x1, x2).

One can deduce from this that χ(x0, x1, x2) is a unit multiple of x0+F x1+F x2, and that the series
G(x0, x1) = [−1]F (x0 +F x1) is uniquely characterized by the equation χ(x0, x1, G(x0, x1)) = 0.
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We also have

[−1]F (x) = −x/(1 + a1x + a3ξ(x)).

More generally, if C is an untwisted generalized elliptic curve then Ĉ is still a formal group,
although we do not have such explicit formulae in this case.

B.0.1. Modular forms.

Definition B.4. A modular form of weight k over Z is a rule g that assigns to each generalized
elliptic curve C/S a section g(C/S) of ω⊗k

C/S over S, in such a way that for each pull-back square

C
f̃

//

p

²²

C ′

p′

²²

S
f

// S′

of generalized elliptic curves, we have f∗g(C ′/S′) = g(C/S). (We will shortly compare this with
the classical, transcendental definition.) We write MFk for the group of modular forms of weight
k over Z. More generally, for any ring R, we define modular forms over R by the same procedure,
except that S is required to be a scheme over spec(R).

Let C = C(a1, . . . , a6) be the obvious universal Weierstrass curve over the scheme

WC = spec(Z[a1, . . . , a6]).

We have a projection map π : WR×WC −→ WC and also an action map α : WR×WC −→ WC
defined by

α(a1, . . . , a6, r, s, t, u) = (a′1, . . . , a′6),

where the elements a′i are as in the previous section.

We can regard WR× C as a generalized elliptic curve over WR×WC, and we have maps

π̃, α̃ : WR× C −→ C (B.5)

covering π and α. The first of these is just the projection, and the second is given by the usual
action of WR < GL3 on P2. It is clear that the group of modular forms of weight k over Z is
precisely the set of sections g(C/WC) of ω⊗k

C/WC such that

α∗g(C/WC) = π∗g(C/WC). (B.6)

More explicitly, there is the following.

Proposition B.7. The space MFk can be identified with the set of functions h ∈ OWC =
Z[a1, . . . , a6] such that α∗h = ukh. Moreover, we have an isomorphism of graded rings

MF∗ = Z[c4, c6, ∆]/(1728∆− c3
4 + c2

6),

where c4 ∈ MF4, c6 ∈ MF6 and ∆ ∈ MF12. (The prime factorization of 1728 is 26 33.)

Proof. To understand the condition (B.6) more explicitly, we notice that x/y defines a function on
a neighborhood of the zero-section in C, so we have a section d(x/y)0 of ωC/WC , which is easily
seen to be a basis. Moreover, we have π∗d(x/y)0 = d(x/y)0 and α∗d(x/y)0 = u−1d(x/y)0. Thus,
a section g(C/WC) of ω⊗k

C/WC is of the form g(C/WC) = h d(x/y)k
0 for a unique h ∈ OWC =

Z[a1, . . . , a6]; and equation (B.6) is equivalent to the equation α∗h = ukπ∗h (and we implicitly
identify π∗h with h). It follows that c4, c6 and ∆ correspond to modular forms of the indicated
weights, and one checks directly from the definitions that c3

4 − c2
6 = 1728∆. The proof that MF∗

is precisely Z[c4, c6,∆]/(1728∆ − c3
4 + c2

6) can be found in [Del75] and will not be reproduced
here.
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Definition B.8. The q-expansion of a modular form g is the series h(q) ∈ Z[[q]] = ODTate such
that g(CTate/DTate) = h(q)d(x/y)k

0 .

Note that if τ lies in the upper half plane then the analytic variety Cτ = C/Z{1, τ} has a
canonical structure as a scheme over spec(C), which makes it an elliptic curve. Moreover, if z is
the obvious coordinate on C, then the form dz on C gives an invariant differential on Cτ . Thus,
for any modular form g of weight k we have a complex number f(τ) such that g(Cτ/ spec(C)) =
f(τ)(dz)k. If

(
a b
c d

) ∈ SL2(Z) and τ ′ = (aτ + b)/(cτ + d) then multiplication by (cτ + d)−1 gives
an isomorphism Cτ −→ Cτ ′ . The pull-back of dz along this is (dz)/(cτ + d), so we conclude that
f(τ ′) = (cτ +d)kf(τ). One can check that this construction gives an isomorphism of C⊗MF∗ with
the more classical ring of holomorphic functions on the upper half plane, satisfying the functional
equation f(τ ′) = (cτ + d)kf(τ) and a growth condition at infinity. Moreover, if g has q-expansion
h(q) then the power series h(e2πiτ ) converges to f(τ).

B.0.2. Invariant differentials. As Creg is a group scheme, the sections of ωC/S over S biject with
the sections of Ω1

C/S over Creg that are invariant under translation. This is proved by the same
argument as the corresponding fact for Lie groups. Another way to say this is as follows. A
section of Ω1

C/S is the same as a section of I∆/I2
∆, where ∆ is the diagonal in Creg ×S Creg, and

I∆ is the associated ideal sheaf. In other words, it is a function α(c0, c1) that is defined when
c0 is infinitesimally close to c1, such that α(c, c) = 0. In these terms, a section of the form g dh
becomes the function (c0, c1) 7→ g(c0)(h(c0)− h(c1)). A section of Ω1

C/S is invariant if and only if
α(c+ c0, c+ c1) = α(c0, c1). On the other hand, a section of ωC/S is a function β(c) that is defined
when c is infinitesimally close to 0, such that β(0) = 0. These biject with invariant sections of
Ω1

C/S by β(c) = α(c, 0) and α(c0, c1) = β(c0 − c1).

We refer to invariant sections of Ω1
C/S as invariant differentials on C. We next exhibit such a

section when C is a Weierstrass curve. Suppose that C is given by an equation f = 0, where

f(x, y, z) = y2z + a1xyz + a3yz2 − x3 − a2x
2z − a4xz2 − a6z

3.

We write fx = ∂f/∂x and so on. Next, observe that a point that is infinitesimally close to
0 = [0 : 1 : 0] has the form [ε : 1 : 0] with ε2 = 0. We need to calculate [x : 1 : z] + [ε : 1 : 0]. We
know that −[x : 1 : z] = [−x : 1 + a1x + a3z : −z] and −[ε : 1 : 0] = [−ε : 1 + a1ε : 0], and one
checks that ∣∣∣∣∣∣

−ε 1 + a1ε 0
−x 1 + a1x + a3z −z

x + εfz 1 z − εfx

∣∣∣∣∣∣
= 0 (mod ε2)

and

f(x + εfz, 1, z − εfx) = 0 (mod ε2).

This shows that

[x : 1 : z] + [ε : 1 : 0] = [x + εfz : 1 : z − εfx] (mod ε2).

Thus, if we define a section β0 of ωC/S by β0([ε : 1 : 0]) = ε, then the corresponding invariant
differential α0 satisfies

α0([x + εfz : 1 : z − εfx], [x : 1 : z]) = ε,

and thus α0 = dx/fz. It is convenient to rewrite this in terms of homogeneous coordinates: it
becomes α0 = y2 d(x/y)/fz. We rewrite this again, and also introduce two further forms α1 and
α2, as follows:

α0 = y2d(x/y)/fz = (y dx− x dy)/fz

α1 = z2d(y/z)/fx = (z dy − y dz)/fx

α2 = x2d(z/x)/fy = (x dz − z dx)/fy.



58 M. ANDO, M. J. HOPKINS, AND N. P. STRICKLAND

We claim that any two of these forms agree wherever they are both defined. Indeed, one can check
directly that

α0 − α1 = (y df − 3f dy)/(fxfz)

α1 − α2 = (z df − 3f dz)/(fyfx)

α2 − α0 = (x df − 3f dx)/(fzfy),

and the right hand sides are zero because f = 0 on C and thus df = 0 on C. Thus, we get a
well-defined differential form α on the complement of the closed subscheme Csing where fx = fy =
fz = 0. We have seen that α0 is invariant wherever it is defined, and it follows by an evident
density argument that α is invariant on all of Creg.

B.1. Examples of Weierstrass curves. In this section, we give a list of examples of Weierstrass
curves with various universal properties or other special features. We devote the whole of the next
section to the Tate curve.

B.1.1. The standard form where six is invertible. Consider the curve C = C(0, 0, 0, a4, a6) over
the base scheme S = spec(Z[ 16 , a4, a6]) given by the equation

y2z = x3 + a4xz2 + a6z
3,

equipped with the invariant differential

α =
−z dx + x dz

2yz
=

y dz − z dy

3x2 + a4z2
=

y dx− x dy

y2 − 2a4xz − 3a6z2
.

We have

c4 = −243a4

c6 = −2533a6

∆ = −24(4a3
4 + 27a2

6)

j = 2833a3
4/(4a3

4 + 27a2
6)

This is the universal example of a generalized elliptic curve over a base where six is invertible,
equipped with a generator α of ωE/S . More precisely, suppose we have a scheme S′ where six is
invertible in OS′ , and a generalized elliptic curve C ′ −→ S′. Suppose that the line bundle ωC′/S′

over S′ is trivial, and that α′ is a generator. Then there is a map f : S′ −→ S, and an isomorphism
g : C ′ ∼= f∗C, such that the image of α under the evident map induced by f and g, is α′. Moreover,
the pair (f, g) is unique.

Here is an equivalent statement: there is a unique quadruple (x′, y′, a′4, a
′
6) with the following

properties:

i. x′ and y′ are functions on C ′1 = C ′ \ S′.
ii. a4 and a6 are functions on S′.
iii. The functions x′ and y′ induce an isomorphism of C ′1 with the curve (y′)2 = (x′)3 + a4x

′+ a6

in A2 × S.
iv. The form α′|C′1 is equal to −dx′/(2y′).

B.1.2. The Jacobi quartic. The Jacobi quartic is given by the equation

Y 2 = 1− 2δX2 + εX4

over Z[ 16 , δ, ε]. The projective closure of this curve is singular, so instead we consider the closure
in P3 of its image under the map [1, X, Y, X2]. This closure (which we will call C) is defined by
the equations

Y 2 = W 2 − 2δWZ + εZ2

WZ = X2.
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For generic δ and ε, the curve C is smooth and is the normalization of the projective closure of
the Jacobi quartic. In all cases, C is isomorphic to the Weierstrass curve

y2z = (x− 12δz)((x + 6δz)2 − 324ε)

via

x =
6((3ε− δ2)X2 + 2δ(Y − 1))

Y + δX2 − 1

y =
2233(δ2 − ε)X
Y + δX2 − 1

X = 6(12δ − x)/y

Y = (2534δ(δ2 − 3ε) + 2333(δ2 + 3ε)x− 36δx2 + y2)/y2.

The standard invariant differential is as follows

α = −dX/(6Y ) = −dx/(2y) = dy/(2233(δ2 + 3ε)− 3x2).

The zero section corresponds to the point

[W : X : Y : Z] = [1 : 0 : 1 : 0].

There is also a distinguished point P of order two, given by

[W : X : Y : Z] = [1 : 0 : −1 : 0] or [x : y : z] = [12δ : 0 : 1].

The curve C is the universal example of an elliptic curve with a given generator of ωE and a given
point of order two, over a base scheme where six is invertible. Indeed, given such a curve, the last
example tells us that there is a unique quadruple (x, y, a4, a6) giving an isomorphism of C with the
curve y2 = x3 +a4x+a6, such that the given differential is d(x/y)0. The points of exact order two
correspond to the points where the tangent line is vertical. It follows that we must have y(P ) = 0
and x(P ) = 12δ for some δ, so that 123δ3 + 12a4δ + a6 = 0, so x− 12δ divides x3 + a4x + a6. As
the coefficient of x in this polynomial is zero, one checks that the remaining term has the form
x2 + 12δ + η for some η, or equivalently the form (x + 6δ)2 + 324ε for some ε. The claim follows
easily from this.

The modular forms for the Jacobi curve are

c4 = 2634(δ2 + 3ε)

c6 = 2936δ(δ2 − 9ε)

∆ = 212312(ε− δ2)2ε

j = 26 (δ2 + 3ε)3

ε(ε− δ2)2
.

B.1.3. The Legendre curve. Consider the Weierstrass curve over Z[ 12 , λ] given by

y2z = x(x− z)(x− λz).

The modular forms are

c4 = 24(1− λ + λ2)

c6 = 25(λ− 2)(λ + 1)(2λ− 1)

∆ = 24λ2(λ− 1)2

j = 28(1− λ + λ2)3/((λ− 1)2λ2)

If we restrict to the open subscheme where λ and (1− λ) are invertible, then the kernel of multi-
plication by 2 is a constant group scheme, with points

0 = [0 : 1 : 0] P = [0 : 0 : 1] Q = [1 : 0 : 1] P + Q = [λ : 0 : 1].
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B.1.4. Singular fibers. The curve y2z + xyz = x3 is a nodal cubic, with multiplicative formal
group. There is a birational map f from P1 to the curve, with inverse g:

f [s : t] = [st(s− t) : t2s : (s− t)3]

g[x : y : z] = [x + y : y].

The map f sends 1 to [0 : 1 : 0], and sends both 0 and infinity to the singular point [0 : 0 : 1].
If s0s1s2 = 1 then the points f [s0 : 1], f [s1 : 1] and f [s2 : 1] are collinear, which shows that the
restriction to Gm = P1 \ {0,∞} is a homomorphism. The discriminant is zero and the j invariant
is infinite.

The curve y2z = x3 is a cuspidal cubic, with additive formal group. There is a birational map
f from P1 to the curve, with inverse g:

f [s : t] = [t2s : t3 : s3]

g[x : y : z] = [x : y].

This sends infinity to the singular point [0 : 0 : 1] with multiplicity two, and sends 0 to [0 : 1 : 0].
If s0 + s1 + s2 = 0 then the points f [s0 : 1], f [s1 : 1] and f [s2 : 1] are collinear, which shows that
the restriction to Ga = P1 \{∞} is a homomorphism. The discriminant is zero and the j invariant
is undefined.

B.1.5. Curves with prescribed j invariant. If a and b = a− 1728 are invertible in R then we have
a smooth Weierstrass curve C over spec(R) with equation

y2z + xyz = x3 − 36xz2/b− z3/b.

The associated modular forms are

c4 = −c6 = a/b

∆ = a2/b3

j = a.

If 6 is invertible in R we can put a = 0 and get the singular curve (y +x/2)2 = (x+1/12)3, which
has c4 = ∆ = 0 so that j is undefined.

B.2. Elliptic curves over C. Let C be an elliptic curve over C. It is well-known that there
exists a complex number τ in the upper half plane and a complex-analytic group isomorphism
C ∼= Cτ = C/Λ, where Λ is the lattice generated by 1 and τ . We collect here a number of
formulae, which are mostly proved in [Sil94, Chapter V] (for example). We write q = e2πiτ , so
the map z 7→ u = e2πiz gives an analytic isomorphism Cτ

∼= C×/qZ. We also have an analytic
isomorphism of Cτ with the curve

Y 2Z = 4X3 − g2XZ − g3Z
3,

where gk =
∑

ω∈Λ\0 ω−2k. The isomorphism is given by (z mod Λ) 7→ [℘(z) : ℘′(z) : 1], where

℘(z) = z−2 +
∑

ω∈Λ\0
((z − ω)−2 − ω−2).

This is to be interpreted as [0 : 1 : 0] if z lies in Λ. We also have an analytic isomorphism of Cτ

with the Weierstrass curve

y2z + xyz = x3 + a4xz2 + a6z
3,

where a4 and a6 are given by the same formulae as for the Tate curve in §2.6. This isomorphism
sends u = e2πiz to [x : y : 1], where x and y are again given by the same formulae as for the Tate
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curve. We have the following identities.

X = (2πi)2(x + 1/12)

Y = (2πi)3(2y + x)

a4 = −(2πi)−4g2/4 + 1/48

a6 = −(2πi)−6g3/4− (2πi)−4g2/48 + 1/1728.

B.3. Singularities.

Proposition B.9. Let C be a generalized elliptic curve over S. Then C is flat over S.

Proof. We can work locally on S and thus assume that S is affine and that C is a Weierstrass
curve. Let C0 be the locus where z is invertible, which is isomorphic to the affine curve where
z = 1, which has equation y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6. Thus, the ring of functions
on C0 is a free module of rank 2 over OS [x], or of rank 3 over OS [y]. Either description makes
it clear that OC0 is free as a module over OS , so C0 is flat over S. Similar arguments show that
the locus C1 (where y is invertible) is also flat. The union of C0 and C1 is the complement of the
closed subscheme where y = z = 0. On this locus the defining equation gives x3 = 0, which is
impossible as x, y and z are assumed to generate the unit ideal. It follows that C0 ∪C1 = C, and
thus that C is flat over S.

Proposition B.10. The singular locus Csing is contained in the open subscheme C0 = C \S. The
projection p : C −→ S sends Csing into Ssing.

Proof. Our claims are local on S so we may assume that C is a Weierstrass cubic, defined by an
equation f = 0 in the usual way. On S ⊂ C we have x = z = 0 and y is invertible, so we can take
y = 1. We then have fz = y2 = 1, so clearly S ⊆ Creg and Csing ⊆ C0.

Now consider a point P = [x : y : z] of C. If z = 0 then the defining equation gives x3 = 0, so P
lies in an infinitesimal thickening of S ⊂ C. It follows that C0 is the same as the complementary
open locus where z is invertible.

Now consider a point P = [x : y : z] of Csing. By the above, z is invertible so we may assume
z = 1. We can then shift our coordinates so that x = y = 0. This changes f but does not change
∆, as we see from the standard transformation formulae. Let the new f be

f(x, y, 1) = (y2 + a1xy + a3y)− (x3 + a2x
2 + a4x + a6).

We must have f(0, 0, 1) = fx(0, 0, 1) = fy(0, 0, 1) = 0, so a3 = a4 = a6 = 0. It follows that the
parameters bk are given by b2 = a2

1 + 4a2 and b4 = b6 = b8 = 0, and thus that ∆ = 0. In other
words, P lies over Ssing as claimed.

B.4. The cubical structure for the line bundle I(0) on a generalized elliptic curve. In
this section we give a proof of Proposition 2.55.

B.4.1. Divisors and line bundles. We will need to understand the relationship between divisors and
line bundles in a form which is valid for non-Noetherian schemes. An account of divisors on curves
is given in [KM85], but we need to genera-Lise this slightly to deal with divisors on C ×S C ×S C
over S, for example. The issues involved are surely well-known to algebraic geometers, but it
seems worthwhile to have a self-contained and elementary account.

Definition B.11. Let X be a scheme over a scheme S. An effective divisor on X over S is a
closed subscheme Y ⊆ X such that the ideal sheaf IY is invertible and the map Y −→ S is flat.

Suppose that S = spec(A) and X = spec(B) for some A-algebra B, and that Y = spec(B/b)
for some element b that is not a zero-divisor. Then IY corresponds to the principal ideal Bb ∼= B
in B, and it is easy to see that Y is a divisor if and only if B/b is a flat A-module.
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Conversely, if Y is a divisor then one can cover S by open sets of the form S′ = spec(A) and
the preimage X ′ of S′ by sets of the form spec(B) in such a way that Y ∩ spec(B) has the form
spec(B/b) as above.

Proposition B.12. Let Y and Z be effective divisors on X over S. Then there is a unique
effective divisor Y + Z with IY +Z = IY IZ = IY ⊗OX

IZ . The effective divisors form an abelian
monoid Div+(X/S) under this operation. Moreover, this monoid has cancellation.

Proof. We define Y + Z to be the closed subscheme defined by the ideal sheaf IY IZ < OX . We
claim that the product map IY ⊗OX

IZ −→ IY +Z = IY IZ is an isomorphism. Indeed, the question
is local, and locally it translates to the claim that Bb⊗B Bc maps isomorphically to Bbc when b
and c are not zero-divisors, and this claim is obvious. All that is left is to check that Y + Z is flat
over S. Locally, we have a short exact sequence

B/b // c // B/bc // // B/c

with B/b and B/c flat over A, so B/bc is also flat over A. The rest is clear.

Definition B.13. We write Div(X/S) for the group completion of the monoid Div+(X/S), and
refer to its elements as divisors. The proposition implies that the natural map Div+(X/S) −→
Div(X/S) is injective. It also implies that given a divisor Y = Y+ − Y−, we can define a line
bundle IY = IY+I−1

Y− and this is well-defined up to canonical isomorphism.

Proposition B.14. Let f : X ′ −→ X be a flat map. Then the pull-back along f gives a homomor-
phism Div+(X/S) −→ Div+(X ′/S), with If∗Y = f∗IY as line bundles over X ′. This extends to
give an induced homomorphism f∗ : Div(X/S) −→ Div(X ′/S).

Proof. Let Y ⊂ X be a divisor, and write Y ′ = f∗Y = Y ×X X ′. It is clear that this is a closed
subscheme of X ′. The induced map f ′ : Y ′ −→ Y is a pull-back of a flat map so it is again flat.
The map Y −→ S is flat because Y is a divisor, so the composite Y ′ −→ S is flat. Let j : Y −→ X
and j′ : Y ′ −→ X ′ be the inclusion maps. Essentially by definition we have f∗OX = OX′ and
f∗j∗OY = j′∗(f ′)∗OY = j′∗OY ′ . We have a short exact sequence of sheaves IY −→ OX −→ j∗OY ,
where j : Y −→ X is the inclusion. As f is flat, the functor f∗ is exact, so we have a short exact
sequence f∗IY −→ OX′ −→ j′∗OY ′ . It follows that IY ′ = f∗IY , and f∗IY is clearly a line bundle.
Thus, Y ′ is a divisor, as required. It is easy to see that f∗ is a homomorphism, and it follows by
general nonsense that it induces a map of group completions.

Proposition B.15. Let g : S′ −→ S be an arbitrary map, and write X ′ = g∗X. Then pull-back
along g gives a homomorphism Div+(X/S) −→ Div+(X ′/S′), with Ig∗Y = g∗IY as line bundles
over X ′. This extends to give an induced homomorphism f∗ : Div(X/S) −→ Div(X ′/S).

Proof. The proof is similar to that of the previous result.

Definition B.16. Let L be a line bundle over X, and u a section of L. Then there is a largest
closed subscheme Y of X such that u|Y = 0. If this is a divisor, we say that u is divisorial and
write div(u) = Y . If so, then u is a trivialization of the line bundle L ⊗ IY , so L ∼= I−1

Y .

If v is a divisorial section of another line bundle M then one can check that u⊗ v is a divisorial
section of L ⊗M with div(u ⊗ v) = div(u) + div(v). One can also check that the formation of
div(u) is compatible with the two kinds of base change discussed in Propositions B.14 and B.15.

Definition B.17. A meromorphic divisorial section u of a line bundle L is an expression of the
form u+/u−, where u+ and u− are divisorial sections of line bundles L+ and L− with a given
isomorphism L = L+/L−. These expressions are subject to the obvious sort of equivalence relation.
We define div(u) = div(u+)−div(u−), which is well-defined by the above remarks. We again have
L ∼= I−1

div(u).
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Lemma B.18. Let C be a subscheme of P2 × S defined by a single homogeneous equation f = 0
of degree m, such that the coefficients of f generate the unit ideal in OS. Let Creg be the open
subscheme D(fx) ∪D(fy) ∪D(fz) of C, where fx, fy and fz are the partial derivatives of f . Let
σ be a section of Creg over S. Then σS ⊂ C is a divisor.

Proof. Let U , V and W be the open subschemes of S where fx ◦σ, fy ◦σ and fz ◦σ are invertible.
Because σ is a section of Creg we know that S = U ∪ V ∪ W . We restrict attention to U ; a
similar argument can be given for V and W . After replacing S by U , we may assume that fx ◦ σ
is invertible. Let C1 and C2 be the open subschemes where y and z are invertible. Because f is
homogeneous of degree m we have xfx + yfy + zfz = mf and f ◦ σ = 0 so x = −yfy/fx − zfz/fx

on the image of σ. Thus, on the closed subscheme where y = z = 0 we also have x = 0, so this
subscheme is empty, which implies that C = C1 ∪ C2. Write Ui = σ−1Ci, so that U = U1 ∪ U2.
We restrict attention to U2; a similar argument can be given for U1. In this context we can work
with the affine plane where z = 1, and x, y and f can be considered as genuine functions. Write
x0 = x◦σ and y0 = y ◦σ. As f ◦σ = 0 we have f = (x−x0)g +(y−y0)h for some functions g and
h. Clearly, g(x0, y0) = fx(x0, y0) and this is assumed invertible, so D(g) is an open subscheme of
C2 containing σU2. On this scheme we have f = 0 and thus x = x0 − (y − y0)h/g. Thus

D(g) ∩ V (y − y0) = D(g) ∩ V (x− x0, y − y0) = D(g) ∩ σS.

Thus, in the open set D(g), our subscheme σS is defined by a single equation y = y0, so the
corresponding ideal sheaf is generated by y − y0.

We still need to verify that y − y0 is not a zero-divisor on D(g) ∩ C2. It is harmless to shift
coordinates so that y0 = x0 = 0. Suppose that r ∈ OS [x, y] is such that ry = 0 on D(g) ∩ C2; we
need to show that r = 0 on D(g)∩C2. We have gkry = sf in OS [x, y] for some k and s. It follows
that gk+1rx = gkr(f − hy) = (gkr − hs)f and thus (gkr − hs)yf = gk+1rxy = gsxf . As the
coefficients of f generate OS we know that f is not a zero-divisor in OS [x, y] so (gkr−hs)y = gsx.
It follows easily that y divides gs, say gs = ty, and then gk+1ry = gsf = tfy so gk+1r = tf . On
C2 we have f = 0 and thus gk+1r = 0, so on D(g) ∩ C2 we have r = 0 as required.

This shows that the intersection of σS with D(g)∩C2 is a divisor. Similar arguments cover the
rest of σS with open subschemes of C in which σS is a divisor. Trivially, the (empty) intersection
of σS with the open subscheme C \ σS is a divisor. This covers the whole of C, as required.

Corollary B.19. If C is a generalized elliptic curve over S then the zero section of C is a divisor.

B.4.2. The line bundle I(0). Let C be a generalized elliptic curve over S, and let I(0) denote the
ideal sheaf of S ⊂ C. The smooth locus Creg is a group scheme over S, so we can define Θ3(I(0))
over Creg and thus the notion of a cubical structure. In this section we give a divisorial formula
for Θ3(I(0)).

Consider the scheme C3
S = C×S C×S C. A typical point of C3

S will be written as (c0, c1, c2). We
write [c0 = c1] for the largest closed subscheme of (Creg)3S on which c0 = c1, and so on. This is the
pull-back of the divisor S ⊂ Creg under the map g : (c0, c1, c2) 7→ c0−c1. This map is the composite
of the isomorphism (c0, c1, c2) −→ (c0 − c1, c1, c2) with the projection map (Creg)3S −→ Creg, and
the projection is flat because C is flat over S (Proposition B.9). Thus, g is flat. It follows from
Proposition B.14 that [c0 = c1] is a divisor, and the associated ideal sheaf is g∗I(0). Similar
arguments show that the subschemes [ci = 0], [ci = cj ], [ci + cj = 0] and [c0 + c1 + c2 = 0] are all
divisors (assuming that i 6= j). We can thus define divisors

D1 = [c0 = 0] + [c1 = 0] + [c2 = 0]

D2 = [c0 + c1 = 0] + [c1 + c2 = 0] + [c2 + c0 = 0]

D3 = [c0 + c1 + c2 = 0]

D4 = [c0 = c1] + [c1 = c2] + [c2 = c0].
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There is (almost by definition) a canonical isomorphism of line bundles

Θ3(I(0)) = I(0)0I−D1+D2−D3 = ωCID2I−1
D1+D3

.

B.4.3. A formula for the cubical structure.

Definition B.20. Let C = C(a1, a2, a3, a4, a6) be a Weierstrass curve. A typical point of (Creg)3S
will be written as (c0, c1, c2), with ci = [xi : yi : zi]. We define s(a) by the following expression:

s(a)(c0, c1, c2) =

∣∣∣∣∣∣

x0 y0 z0

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣

−1 ∣∣∣∣
x0 z0

x1 z1

∣∣∣∣
∣∣∣∣

x1 z1

x2 z2

∣∣∣∣
∣∣∣∣

x2 z2

x0 z0

∣∣∣∣ (z0z1z2)−1d(x/y)0.

Proposition B.21 (2.55). s(a) is a meromorphic divisorial section of the line bundle p∗ωC over
(Creg)3S (where p : C3

S −→ S is the projection). Its divisor is −D1 + D2 − D3 (in the notation of
§B.4.2), so it defines a trivialization of

(p∗ωC)⊗ I−D1+D2−D3 = Θ3(I(0)),

which is equal to s(C/S).

Proof. By an evident base-change, we may assume that C is the universal Weierstrass curve over
S = spec(Z[a1, a2, a3, a4, a6]), and thus that S is a Noetherian, integral scheme.

We have a bundle O(1) over C, whose global sections are homogeneous linear forms in x, y
and z. We can take the external tensor product of three copies of O(1) to get a bundle L over
C ×S C ×S C. We define a section u of L by

u(c0, c1, c2) =

∣∣∣∣∣∣

x0 y0 z0

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣
.

We claim that this is divisorial, and that div(u) = D4 + D3. This is plausible, because one can
easily check that u = 0 on the divisors [ci = cj ] (whose sum is D3) and also on the divisor
[c0 + c1 + c2 = 0] (because any three points that sum to zero are collinear). Let U0 be the open
subscheme of (Creg)3S where c1 6= c2, and define U1 and U2 similarly. Then the complement of
U = U0 ∪ U1 ∪ U2 is the locus where c0 = c1 = c2, which has codimension 2. Given this, it
is enough to check that u|Ui is divisorial and that div(u|Ui) = (D4 + D3) ∩ Ui for 0 ≤ i ≤ 2
(see [Har77, Proposition II.6.5]). By symmetry, we need only consider the case i = 0. Let V0 be
the complement of the diagonal in (Creg)2S , so that U0 = Creg ×S V0, which we can think of as the
regular part of a generalized elliptic curve over V0. The diagonal is defined by the vanishing of
the quantities x1y2 − x2y1, y1z2 − y2z1, and z1x2 − z2x1, so on V0 these quantities generate the
unit ideal. It follows from this that the map

h : [s1 : s2] 7→ [s1x1 + s2x2 : s1y1 + s2y2 : s1z1 + s2z2]

gives an isomorphism of P1 with the locus in P2 where the determinant vanishes. The addition law
on C is defined by the requirement that the intersection of h(P1) with C ×S V0 is [c0 = c1] + [c0 =
c2] + [c0 = −c1 − c2]. Moreover, we have [c1 = c2] ∩ U0 = ∅. Thus, div(u) ∩ U0 = (D4 + D3) ∩ U0

as required.

We now define sections v and w of L and L2 by

v(c0, c1, c2) = z0z1z2

w(c0, c2, c2) =
∣∣∣∣

x0 z0

x1 z1

∣∣∣∣
∣∣∣∣

x1 z1

x2 z2

∣∣∣∣
∣∣∣∣

x2 z2

x0 z0

∣∣∣∣ .

By methods similar to the above, we find that

div(z0) = 3[c0 = 0]

div(x0z1 − x1z0) = [c0 = 0] + [c1 = 0] + [c0 = c1] + [c0 + c1 = 0]
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and thus

div(v) = 3D1

div(w) = 2D1 + D2 + D4.

We also have s(a) = u−1wv−1d(x/y)0 so as claimed this is a meromorphic divisorial section of
p∗ωC , with divisor −D1 + D2 −D3. As explained earlier, it therefore gives rise to a trivialization
of Θ3(I(0)).

Recall that Θ3(I(0)) is canonically trivialized on the locus where c2 = 0. In terms of our
picture of Θ3(I(0)) involving rational one-forms, this isomorphism sends a one-form to its residue
at c2 = 0. To calculate this for s(a), we may as well restrict attention to the affine piece where
y0 = y1 = y2 = 1, and let x2 tend to zero. The 3 × 3 determinant in the definition of s(a)
approaches − | x0 z0

x1 z1 |. The defining cubic gives the relation

z2(1 + a1x2 − a2x
2
2 + a3z2 − a4x2z2 − a6z

2
2) = x3

2,

which shows that z2 is asymptotic to x3
2 and thus that | x1 z1

x2 z2 | is asymptotic to −x2z1 and | x2 z2
x0 z0 | is

asymptotic to x2z0. (Here we say that two functions f and g are asymptotic if there is a function
h on a neighborhood of the locus c2 = 0 such that f = gh and h = 1 when c2 = 0). It follows that
s(a)(c0, c1, c2) is asymptotic to x−1

2 d(x)0, and this means that s(a) has residue 1, as required.

We now see that s(a) is a rigid section of Θ3(I(0)), so that f = s(a)/s(C/S) is an invertible
function on (Creg)3S , whose restriction to S is 1. It follows that f = 1 on the open subscheme
p−1Sell, which is dense in (Creg)3S , so f = 1 everywhere. Thus s(a) = s(C/S).
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[Bre83] L. Breen. Fonctions Théta et Théorème du Cube, volume 980 of Lecture Notes in Mathematics.

Springer–Verlag, 1983.
[BT89] Raoul Bott and Clifford Taubes. On the rigidity theorems of Witten. J. Amer. Math. Soc., 2(1):137–186,

1989.
[Del75] Pierre Deligne. Courbes elliptiques: formulaire (d’après J. Tate). In Modular Functions of One Variable

III, volume 476 of Lecture Notes in Mathematics, pages 53–73. Springer–Verlag, 1975.
[Dem72] Michel Demazure. Lectures on p-divisible groups. Springer-Verlag, Berlin, 1972. Lecture Notes in Math-

ematics, Vol. 302.
[DG70] Michel Demazure and Pierre Gabriel. Groupes algébriques. Tome I: Géométrie algébrique, généralités,
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