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1. Introduction

Let BG be the classifying space of a finite group G. Given a multiplicative
cohomology theory E∗, the assignment

G 7−→ E∗(BG)

is a functor from groups to rings, endowed with induction (transfer) maps. In this
paper we investigate these functors for complex oriented cohomology theories E∗,
particularly p–complete theories with an associated formal group of height n.

We briefly remind our readers of the terms in this last sentence. A multiplicative
cohomology theory E∗ is complex oriented if there exists a class x ∈ E2(CP∞) that
restricts to a generator of the free rank one E∗ = E∗(pt)–module Ẽ2(CP 1). Such
a class x is called a complex orientation of E. An orientation allows for the con-
struction in E∗–theory of Chern classes for complex vector bundles. Furthermore,
the behavior of these Chern classes under the tensor product of bundles is deter-
mined by an associated formal group law over the ring E∗. When localized at a
prime p, such formal group laws are classified by ‘height’. Under the completeness
hypotheses we will be assuming, a height n formal group law will force an element
vn ∈ E2−2pn to be invertible, and thus we may informally refer to such theories as
vn–periodic.
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Our work was inspired by complex K–theory, which, when localized at a prime
p, is v1–periodic. In this case, Atiyah [Atiyah] showed that K∗(BG) is isomorphic
to the completion of the complex representation ring R(G), in the topology induced
by the ideal of virtual representations of degree 0. The ring R(G) can, of course,
be studied via group characters, leading to many well–known results: the cyclic
subgroups form a detecting family, the rank of R(G) is the number of conjugacy
classes, etc.

It often turns out that the ring E∗(BG) can also be studied with characters.
For suitable vn–periodic theories E∗, these characters assign to each conjugacy
class of commuting n–tuples of p–elements of G an element of a ring we associate
to E∗. Furthermore, one can extend these constructions to detect elements in
E∗(EG ×G X) for finite G–CW complexes X , where now the ‘character ring’ also
depends on the abelian fixed point data of X . As a result, almost anything that
can be said about representation rings and equivariant K–theory has an analogue
for E∗(BG) and E∗(EG×G X).

Versions of our basic theorems date from 1986 and 1987, and many readers will
be aware of earlier drafts of this paper dating from 1989 and 1992. We thank
such readers for their patience, and hope they will appreciate our more accurate
arguments, improved organization, and slightly strengthened theorems.

A standing convention in this paper is that we are working in categories of graded
objects. Thus rings are graded, tensor products of graded objects are graded in
the standard way, ideals in a ring are assumed to be generated by homogeneous
elements, homomorphisms preserve grading, etc.

1.1. A generalized Artin’s theorem. Our first theorem is valid for all complex
oriented theories, and highlights the privileged role played by the abelian groups.

Let A(G) be the category having objects the abelian subgroups of G, and with
morphisms from B to A being the G–maps from G/B to G/A. (Thus this is a
full subcategory of the standard orbit category.) Given a G–space X , a morphism
G/B −→ G/A in A(G) induces maps G ×B X −→ G ×A X and XA −→ XB in the
usual way.

If E∗ is a generalized cohomology theory, the G–maps G ×A X −→ X induce a
map from E∗(EG ×G X) to the limit limA∈A(G)E

∗(EG×A X). Furthermore, the
G–maps G/A×XA −→ G×AX induce a map from limA∈A(G)E

∗(EG×AX) to the
end

∫
A∈A(G)

E∗(BA ×XA).1

Theorem A. Let E be a complex oriented cohomology theory. For any finite group
G and finite G–CW complex X, each of the natural maps

E∗(EG×G X) −→ lim
A∈A(G)

E∗(EG ×A X) −→
∫
A∈A(G)

E∗(BA×XA)

becomes an isomorphism after inverting the order of G. In particular,
1
|G|E

∗(BG) −→ lim
A∈A(G)

1
|G|E

∗(BA)

is an isomorphism.

1A G–map α : G/A1 −→ G/A2 induces α∗ : E∗(BA1 × XA1 ) −→ E∗(BA1 × XA2 ) and
α∗ : E∗(BA2 × XA2) −→ E∗(BA1 ×XA2 ). The end

R
A∈A(G)

E∗(BA ×XA) is then defined to

be the subring of
Q
A∈A(G) E

∗(BA×XA) consisting of those elements (xA) in this product such

that α∗(xA1 ) = α∗(xA2 ) for all α : G/A1 −→ G/A2.
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This is an analogue of Artin’s theorem [Serre, Chapter 9]: For any finite group
G, the natural map

1
|G|R(G) −→ lim

C∈C(G)

1
|G|R(C)

is an isomorphism, where C(G) is the full subcategory of A(G) having the cyclic
subgroups as objects.

In the case of ordinary cohomology, Theorem A offers no information since
H̃∗(BG) is all |G|–torsion. However K∗(BG) is known to be torsion free, and
MU∗(BG) is presumed to often be.

In proving this theorem, we use the most fundamental idea from the theory of
complex oriented cohomology: the notion of complex oriented descent (a.k.a. the
splitting principle). The other ingredient is a modest amount of equivariant stable
homotopy, together with related ideas from the theory of Mackey functors.

Section 2 contains what we need about complex oriented descent. Theorem A
is proved in section 3 as a special case of a more general theorem, Theorem 3.3.
This theorem has other interesting corollaries. For example, it implies that the map
between equivariant bordism rings

MU∗G −→ lim
A∈A(G)

MU∗A

also becomes an isomorphism after inverting the order of G.

1.2. Morava K–theory Euler characteristics. Now we describe the computa-
tion that led to this project. Fixing a prime p, let K(n)∗ denote the nth Morava K–
theory at p [Rav86]. This is a complex oriented theory with coefficients K(n)∗ equal
to the graded field Fp[vn, v−1

n ]. The third author noted in [Rav82] that K(n)∗(BG)
is a finite dimensional vector space over K(n)∗, and asked for its dimension. The
second author [Kuhn1] computed this in the special case when G has abelian p–
Sylow subgroups, with the answer involving certain orbits of n–tuples of elements
in a fixed Sylow subgroup.2

Our partial answer to the general question is the following. Let Gn,p denote
the set of n-tuples of commuting elements each of which has order a power of
p. The group G acts on Gn,p by conjugation: if α = (g1, . . . , gn), define g · α =
(gg1g

−1, . . . , ggng
−1).

Theorem B (Part 1). The Morava K-theory Euler characteristic

χGn,p = dimK(n)even(BG)− dimK(n)odd(BG)

is equal to the number of G–orbits in Gn,p.

The proof of Theorem B involves counting these orbits by means of Möbius
functions on the partially ordered set of abelian subgroups of G. We also generalize
our computation to a computation of

χGn,p(X) = dimK(n)even(EG×G X)− dimK(n)odd(EG×G X),

for any finite G–CW complex X .

2Let WG(A) = NG(A)/A, where the abelian group A is a p–Sylow subgroup. Then the
dimension of K(n)∗(BG) is the number of WG(A)–orbits in An. It is an exercise with the Sylow
theorems to check that this agrees with Theorem B.
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556 M. J. HOPKINS, N. J. KUHN, AND D. C. RAVENEL

Our Möbius functions are defined using the usual Euler characteristic as follows.
For all abelian subgroups A ≤ G and finite G–CW complexes X , an integer µCA(X)
is defined by downward induction on A by the equation∑

A≤B
B abelian

µCB(X) = χ(XA).

Our formula for χGn,p(X) is then

Theorem B (Part 2).

χGn,p(X) =
∑
A≤G

|A|
|G| |A(p)|nµCA(X).

Here the sum is over the abelian subgroups of G, and A(p) denotes the p-Sylow
subgroup of A.

The function χGn,p on finite G–CW complexes is an example of an ‘additive
invariant’ in the sense of tom Dieck [TtD:87, p.227]. Our function satisfies an
extra condition due to complex oriented descent. In §4 we develop the general
theory of such complex oriented additive functions. Theorem B then follows from
this, together with one bit of special information about K∗(n): if A is an abelian
group, K(n)∗(BA) is an |A(p)|n dimensional K(n)∗–vector space concentrated in
even degrees.

1.3. Generalized characters. Theorem A can be interpreted in terms of charac-
ters – at the cost of adhering more structure to E∗.

To motivate our result, recall that classical characters for finite groups are defined
in the following situation. Let L be the smallest characteristic 0 field containing
all roots of unity, and, if G is a finite group, let Cl(G;L) be the ring of class
functions on G with values in L. The units in the profinite integers Ẑ act on L as
the Galois group over Q. Observing that G = Hom(Ẑ, G), the set of continuous
homomorphisms, one sees that Ẑ× also acts naturally on G, and thus on Cl(G;L):
given φ ∈ Ẑ, g ∈ G, and χ ∈ Cl(G;L), one lets (φ · χ)(g) = φ(χ(φ−1(g))). The
character map is a ring homomorphism3

χ : R(G) −→ Cl(G;L)Ẑ,

and this induces isomorphisms

χ : L⊗R(G) ' Cl(G;L)

and

χ : Q⊗R(G) ' Cl(G;L)Ẑ.

(See [Serre, Theorem 25] for this last statement.)
Let E∗ be a complex oriented theory, with associated formal group law F as-

sociated to a fixed orientation x ∈ E2(CP∞). Suppose the graded ring E∗ and F
satisfy
• E∗ is local with maximal ideal m, and complete in the m–adic topology.
• The graded residue field E∗/m has characteristic p > 0.

3We apologize for our excessive use of the symbol χ. We use it to denote both group characters
and Euler characteristics, as dictated by traditions in representation theory and topology. In
context, we hope there is no confusion.
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• p−1E∗ is not zero.
• The mod m reduction of F has height n <∞ over E∗/m. (See §5.1.)
We define L(E∗), the analogue of L, in the following way. The inverse system

· · · −→ (Z/pr+1)n −→ (Z/pr)n −→ · · ·
induces a direct system of E∗–algebras

· · · −→ E∗(B(Z/pr)n) −→ E∗(B(Z/pr+1)n) −→ . . . ,

and we let E∗cont(BZnp ) denote the colimit. A continuous homomorphism from the
n–fold product of the p–adic integers to the circle α : Znp −→ S1 will induce a map
α∗ : E∗(CP∞) −→ E∗cont(BZnp ) and we let c1(α) = α∗(x) ∈ E2

cont(BZnp ). Now let
L(E∗) = S−1E∗cont(BZnp ) where S is the set of c1(α) corresponding to nonzero
homomorphisms α. Note that the continuous automorphism group Aut(Znp ) acts
on L(E∗) as a ring of E∗–algebra maps.

The analogue of Cl(G;L) will be Cln,p(G;L(E∗)), defined to be the ring of
functions χ : Gn,p −→ L(E∗) stable under G–orbits. Noting that

Gn,p = Hom(Znp , G),

one sees that Aut(Znp ) acts on Gn,p, and thus on Cln,p(G;L(E∗)) as a ring of E∗–
algebra maps: given φ ∈ Aut(Znp ), α ∈ Gn,p, and χ ∈ Cln,p(G;L(E∗)), one lets
(φ · χ)(α) = φ(χ(φ−1(α))).

More generally, if X is a finite G–CW complex, let

Fixn,p(G,X) =
∐

α∈Hom(Znp ,G)

XIm(α).

This is a space with commuting actions of G and Aut(Znp ). Let

Cln,p(G,X ;L(E∗)) = L(E∗)⊗E∗ E∗(Fixn,p(G,X))G.

This is again an E∗–algebra acted on by Aut(Znp ).
We define our character map

χGn,p : E∗(EG×G X) −→ Cln,p(G,X ;L(E∗))Aut(Znp )

as follows. Using a Künneth isomorphism

E∗(B(Z/pm)n ×XIm(α)) ' E∗(B(Z/pm)n)⊗E∗ E∗(XIm(α))

available in our situation (see Corollary 5.11), a homomorphism α ∈ Hom(Znp , G)
induces

E∗(EG×G X) −→ E∗cont(BZnp )⊗E∗ E∗(XIm(α)) −→ L(E∗)⊗E∗ E∗(XIm(α)).

This will be χGn,p(α), the component of χGn,p indexed by α.
Our main theorem is then

Theorem C. The invariant ring L(E∗)Aut(Znp ) = p−1E∗, and L(E∗) is faithfully
flat over p−1E∗. The character map χGn,p induces isomorphisms

χGn,p : L(E∗)⊗E∗ E∗(EG×G X) ' Cln,p(G,X ;L(E∗))

and

χGn,p : p−1E∗(EG×G X) ' Cln,p(G,X ;L(E))Aut(Znp ).
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In particular, there are isomorphisms

χGn,p : L(E∗)⊗E∗ E∗(BG) ' Cln,p(G;L(E∗))

and

χGn,p : p−1E∗(BG) ' Cln,p(G;L(E∗))Aut(Znp ).

Theorem C applies to many cohomology theories:

• The ‘completions of complex cobordism’ introduced by Morava in [Mor78].
• The ‘In-adically completed’ version of E(n) studied by A. Baker and Würgler

[BW89]. They consider Ê(n), the Bousfield localization of E(n) with re-
spect to K(n), where E∗(n) = Z(p)[v1, . . . , vn, v

−1
n ], as a module over BP ∗ =

Z(p)[v1, v2, . . . ]. They show that Ê(n)∗ is the completion of E∗(n) with re-
spect to the ideal In = (p, v1, . . . , vn−1).
• The ‘integral lifts’ of the Morava K-theories studied by Morava in [Mor88].

The coefficients are W (Fpn)[u, u−1] where W (Fpn) denotes the Witt vectors
for the finite field, and u has degree −2.
• The completion of elliptic cohomology [LRS] at any maximal ideal (see [Bak98]

and [Hop89]).
• The theories En studied by Hopkins and Miller with coefficients

W (Fpn)[[w1, . . . , wn−1]][u, u−1]

(wi has degree 0). These spectra have been shown to admit E∞–ring struc-
tures, thus one has a good theory of power operations which our characters
can be used to explore.

Section 5 contains the prerequisites we need about formal group laws andE∗(BA)
for A abelian. Properties of L(E∗) are then developed in section 6, along with a
proof of Theorem C.

1.4. A formula for induction. It is useful to have a formula for the character
of an ‘induced’ cohomology class. Recall that, for H ≤ G, X a G–space, and any
cohomology theory E∗, there is a transfer map [Ada78, Chapter 4]

Tr : E∗(EH ×H X) −→ E∗(EG×G X).

Theorem D. Let x be an element of E∗(EH ×H X). Then

χGn,p(α)(Tr∗(x)) =
∑

gH∈(G/H)Im(α)

χHn,p(g · α)(x).

In this formula, α : Znp −→ G is a homomorphism, and g · α means to follow this
with conjugation by g.

This formula generalizes the classic situation [Serre, p.30], and is proved at the
end of section 6.

As a simple application, Theorem D can be used to compute the kernel of the
stable Hurewicz map

π0
S(BG) −→MU0(BG),

up to finite index. This example appears as Example 6.16, and is related to work
of Stretch [Stre81] and Laitinen [Lai79] on the Segal Conjecture.
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1.5. When is K(n)∗(BG) concentrated in even degrees? In contemplating
Theorems A and C, it is natural to wonder if there is any |G|–torsion in E∗(BG)
for the theories E∗ of interest. Suppose, in particular, E∗ is a p–complete integral
lift ofK(n)∗, that is, E∗(X ;Z/p) = K(n)∗(X).4 Then an argument with Bocksteins
shows that E∗(BG) will be p–torsion free if and only if K(n)∗(BG) is concentrated
in even degrees. Similarly, a more elaborate argument with Bockstein–like spectral
sequences shows that if K(n)∗(BG) is concentrated in even degrees, then E∗n(BG)
is torsion free, where En is the important theory mentioned above. (See e.g. [Stri98]
for this type of argument.)

In the classic case of K–theory, along with proving that K0(BG) is the comple-
tion of the representation ring, Atiyah showed that K1(BG) = 0. Many readers of
this paper will know that, inspired by this, the authors originally conjectured that
K(n)odd(BG) = 0 for all n and G. This conjecture was disproved by I. Kriz [Kri97]
in the case p = 3, n = 2, and with G the 3–Sylow subgroup of GL4(Z/3), a group
of order 36. (Kriz and K. Lee now have examples for all odd p [KL98].)

From the beginnings of this project, the authors knew that a critical part of
Atiyah’s inductive argument failed to generalize to the n ≥ 2 case: if G is a p–
group, K0(BG) is a permutation Aut(G)–module. This is also the point that Kriz
exploits as his example arises from an extension

1 −→ H −→ G −→ Z/p −→ 1

in which E∗(BH) is not a permutation Z/p–module, where E∗ is (roughly) an
integral lift of K(2).

This permutation module problem suggested that perhaps K(n)∗(BG) could be
proven to be concentrated in even degrees if G is built up out of extensions related
to permutations. We have a result along these lines.

We define a finite group G to be good if K(n)∗(BG) is generated as a K(n)∗–
module by transfers of Euler classes of complex representations of subgroups. In
particular, if G is good, then K(n)∗(BG) is concentrated in even degrees.

Theorem E. i) Every finite abelian group is good.
ii) If G1 and G2 are good, then so is their product G1 ×G2.
iii) G is good if its p–Sylow subgroup is good.
iv) If G is good, then so is Z/p oG, the wreath product arising as the extension

1 −→ Gp −→ Z/p oG −→ Z/p −→ 1.

This will be proved in section 7. The first of these statements is well known, and
the second and third are easy to verify. It is the last statement that makes our notion
interesting. In particular, since the p–Sylow subgroup of any symmetric group is a
product of iterated wreath products of Z/p, we have proved that symmetric groups
Σk are all good.

In Proposition 7.10, we will show that calculations by Tezuka–Yagita [TY] imply
that all groups of order p3 are good. In recent years, the list of known good groups
has been expanded by various people; see e.g. [Kri97, Tan95].

J. Hunton [Hun90] independently has shown that the symmetric groups have no
odd dimensional Morava K–theory by defining a variant of our notion good and
then proving an analogue of the last statement of our theorem.

4It would also suffice to have the spectrum E/p be a K(n)–module, necessarily free, on even
dimensional classes.
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1.6. Historical remarks. Since this paper has taken so long to be put in final
form, it is perhaps appropriate to comment on its history.

The idea that the correct domain for our characters should be Gn,p was inspired
by the 1985 work [Kuhn1]. At the January 1986 A.M.S. meeting in New Orleans,
the third author conjectured that the rank of K(n)∗(BG) was equal to the number
of G–orbits in Gn,p. Soon after, the first and third authors realized that Lubin–
Tate theory together with a Vandermonde determinant argument (appearing here
in the proof of Proposition 6.2) led to some sort of version of Theorem C. We soon
derived the formula for the transfer, and a first proof of Theorem B was discovered
by the first author. Our work, as of mid 1986, was publicly presented in an informal
evening talk by Hopkins on July 31, 1986 at the algebraic topology conference in
Arcata, CA.

It is fair to say that, at that time, the necessary hypotheses regarding completion
had not been accurately sorted out, nor had adequate attention been payed to the
flatness of the extension of scalars to L(E∗).

In 1986, it seemed a big presumption to assume the coefficient ring E∗ was
complete. Today this seems much less a problem, as numerous interesting results
exploiting this hypothesis have been proven, and interesting examples developed,
starting with [BW89, Mor88]. Thus, during the first year of the project, E∗ was
just assumed to be local, but not necessarily complete, and we attempted to prove
theorems about E∗(BG)∧, where ∧ is algebraic completion at the maximal ideal.
This seems to lead into a thicket of questions about the exactness of completion
in non–Noetherian settings, and during 1986–87, we became convinced that the
hypothesis of completeness was hard to avoid.

The formalities of our character rings from the Mackey functor point of view were
investigated by the second author during a 1986-87 visit to Cambridge University.
Theorem A was discovered as a consequence, and the first formal presentation
of this theorem was at the Oxford Topology Seminar of June 8, 1987.5 Related
observations made at this time are more fully discussed in [Kuh89].6

Armed with Theorem A, it was initially unclear if one really needed to prove
the flatness of L(E∗) as an E∗–module – and one doesn’t, if one is content with
describing E∗(BG) and not E∗(EG ×G X). (See Remark 6.11.) However the
demands of subsequent work by Hopkins and his younger colleagues at M.I.T.
made it clear that a good understanding of this ring was important. By 1992,
the algebro-geometric point of view had become more conceptually important, and
has been crucial in subsequent work by Ando, Hopkins, Strickland, and others.

5This was a talk by Kuhn joint with J.F. Adams (!).
6This includes an analogue of Theorem C for equivariant K–theory: there is a character map

χ : C⊗KG(X) −→ (
Y

g∈G
C⊗K(Xg))G

that is an isomorphism for all finite G–CW complexes X. Though this formula also appeared in
a letter from Kuhn to G. Segal dated December 4, 1986, it was widely advertised by Hirzebruch
as a ‘recent formula of Atiyah and Segal’ after the publication of [AS89]. But precedence for such
formulae seems to be due to tom Dieck: in his 1979 book, he gave the closely related formula
[Die79, p.198]

1

|G|
KG(X) ' (

Y

C

S−1
C R(C) ⊗K(XC))G,

where the product runs over the cyclic subgroups of G, and SC is the set of Euler classes of
nontrivial ireducible C–modules.
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Our natural description of the spectrum of E∗(BA) (Proposition 5.12) reflects this
changing point of view.

In recent years, the proofs of Theorems A and B have been significantly altered,
leading to the current nearly axiomatic presentations. The refinement of Theorem
C using Aut(Znp ) dates from the early 1990’s.

The formulation and proof of Theorem E is due to the third author around 1988.
Expository articles about aspects of this work have been written by all of us:

[Hop89, Kuh89, HKR92].
From the beginning of this project, it has been noticed that, if Y = EG×GX , E∗

is ‘vn–periodic’ andD∗ is ‘vn−1–periodic’, then there seems to be a close relationship
between

E∗(Y ) and D∗(Y S
1
).

Similarly, if G is a p–group and T n is the n–torus, there is a natural isomorphism
of L∗(E∗) algebras

L(E∗)⊗E∗ E∗(BG) ' H∗(BGT
n

;L(E∗)).

When n = 2, this fits well with work of Taubes [Tau] and Bott–Taubes [BT] on
the elliptic genus. However, it has yet to be explained in a satisfactory manner,
and, to get to the heart of the matter, there is not yet a good explanation of what
basic geometric structures, analogous to vector bundles, our characters are giving
us information about. Perhaps in the next millennium we will learn more.

2. Complex oriented descent and equivariant bundles

2.1. A useful way to construct equalizers. At various times in this paper, we
describe objects as equalizers. Without exception, they all arise using a general
categorical procedure we describe in this subsection.

The situation is the following. One has

• Two categories C and A.
• Two functors F : C −→ C and H : Cop −→ A.
• Two natural transformations p(X) : F(X) −→ X and r(X) : H(F(X)) −→
H(X).

These are required to satisfy the following two properties:

For all X ∈ C, p(X) ◦ p(F(X)) = p(X) ◦ F(p(X)) : F(F(X)) −→ X.(2.1)

For all X ∈ C, r(X) ◦ H(p(X)) = 1 : H(X) −→ H(X).(2.2)

Proposition 2.3. In this situation, there is an equalizer diagram

H(X) −→ H(F(X))⇒ H(F(F(X))).

Proof. Applying H to (2.1) shows that the two composites are equal. To finish the
proof, we show that if α : A −→ H(F(X)) is any morphism in A satisfying

H(p(F(X))) ◦ α = H(F(p(X))) ◦ α : H(F(X)) −→ H(F(F(X))),

then α factors uniquely through H(p(X)); more precisely,

α = H(p(X)) ◦ β, where β = r(X) ◦ α : A −→ H(X).
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To check this, we compute:

H(p(X)) ◦ r(X) ◦ α = r(F(X)) ◦ H(F(p(X))) ◦ α
= r(F(X)) ◦ H(p(F(X))) ◦ α
= α.

Here the first equality is a consequence of the naturality of r, the second is true by
the hypothesis on α, and the third follows from (2.2).

2.2. Cohomology of flag bundles. Let ξ be an m–dimensional complex vec-
tor bundle over a space B, and let F (ξ) → B be the bundle of complete flags.
Corresponding to the m canonical line bundles over F (ξ) are m classifying maps
αi : F (ξ) −→ CP∞.

If E∗ is complex oriented, then a complex orientation x ∈ E∗(CP∞) determines
m classes xi = α∗i (x) ∈ E∗(F (ξ)).

Proposition 2.4. (1) There is an identification

E∗(F (ξ)) = E∗(B)[x1, . . . , xm] /(σi({xj})− ci(ξ))

where σi is the ith elementary symmetric function.
(2) The E∗(B)–module E∗(F (ξ)) is free of rank m!.
(3) If ξ′ is the bundle over B′ induced by a map B′ → B, then the map

E∗(B′)⊗E∗(B) E
∗(F (ξ))→ E∗(F (ξ′))

is an isomorphism.
(4) There are natural isomorphisms

E∗(F (ξ)) ⊗E∗(B) E
∗(F (ξ)) ' E∗(F (ξ)×B F (ξ)).

Proof. Statement (1) is classical (e.g. compare with [Ati67, Prop.2.7.13]), and (2)
follows as a matter of pure algebra. Then (3) follows from (2), and (4) is the special
case of (3) applied to the map F (ξ) −→ B itself.

Proposition 2.5. The following sequence is an equalizer:

E∗(B)→ E∗(F (ξ))⇒ E∗(F (ξ)×B F (ξ)).

Proof. We apply Proposition 2.3 to the following situation:
The category C is the category whose objects are pairs (B, ξ) where ξ is a complex

vector bundle over B. A morphism from (B′, ξ′) to (B, ξ) consists of a map f :
B′ −→ B, together with a bundle isomorphism ξ′ ' f∗(ξ). The category A will be
the category of E∗–modules.
F(B, ξ) will be the pair (F (ξ), p∗(ξ)), where p : F (ξ) −→ B is the projection.

H(B, ξ) = E∗(B).
The natural transformation ‘p’ of subsection 2.1 will be induced in the obvious

way by p : F (ξ) −→ B. To define ‘r’, first note that the composite

E∗(B)
p∗−→ E∗(F (ξ)) π−→ E∗(F (ξ))/(x1, . . . , xm)

is an isomorphism by the previous proposition. We then define r : E∗(F (ξ)) −→
E∗(B) to be the inverse of this natural isomorphism, precomposed with π.
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We end this subsection by noting that we can apply these results inductively to
F (ξ)×B X −−−−→ Xy y

F (ξ) −−−−→ B

to get similar assertions with F (ξ) replaced by an iterated fiber product of flag
bundles, or more generally, a disjoint union of iterated fiber products of flag bundles.

2.3. Equivariant flag bundles. Now let G be a finite group.7

Proposition 2.6. Let ξ be an m–dimensional equivariant complex vector bundle
over a G–space X. Let Y → B be either the map

i) EG×G F (ξ)→ EG×G X, or
ii) F (ξ)A → XA where A is an abelian subgroup of G.

Then, for any complex oriented theory E∗, we have
(1) The E∗(B)–module E∗(Y ) is free of rank m!.
(2) The following sequence is an equalizer:

E∗(B)→ E∗(Y )⇒ E∗(Y ×B Y ).

Proof. In case i), Y is the bundle of complete flags in EG ×G ξ, and the result
follows from the previous subsection.

The more delicate case is ii). Note that we can assume that G = A and X = XA.
Thus we need to analyze F (ξ)A, where ξ is an equivariant n–dimensional bundle
over a trivial A–space X . Let L1, . . . , Lk denote the distinct irreducible A–modules.
In [Seg68:2, Prop.2.2], G. Segal noted that ξ will admit a decomposition

ξ '
k⊕
i=1

Li ⊗ ξi

for uniquely defined nonequivariant bundles ξi over X .
Let ξi have dimension mi. Since A is abelian, each of the Li is one dimensional,

and thus m1 + · · ·+mk = m. By inspection, it then follows that, as spaces over X ,

F (ξ)A '
∐

F (ξ1)×X F (ξ2)×X · · · ×X F (ξk)

with the disjoint union running over all partitions of m into k subsets of cardinality
m1, . . . , mk. Noting that the number of such partitions is m!

m1!···mk! and that

(
m!

m1! · · ·mk!
)m1! · · ·mk! = m!,

the proposition now follows from the previous subsection.

The following consequence of our analysis is a generalization of the well–known
fact that the Euler characteristic of U(m)/Tm is m!. It will be used in our proof
of Theorem B.

Corollary 2.7. Let ξ be an m–dimensional equivariant complex vector bundle over
a finite G–CW complex X. If A is any abelian subgroup of G, then χ(F (ξ)A) =
m!χ(XA).

7More generally, the results and proofs of this subsection remain valid if G is any compact Lie
group.
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Finally, we will use without further comment:

Proposition 2.8. Let ξ be an equivariant complex vector bundle over a finite G–
CW complex X. Then F (ξ) also has the homotopy type of a finite G–CW complex.

Proof. By induction on the cells of X , we may assume that X = G/H for some
H ≤ G. In this case F (ξ) is a compact smooth G–manifold, and thus admits the
structure of a G–CW complex (necessarily finite) by [Ill74].

Remark 2.9. Results in this section easily generalize to ‘relative’ versions involving
pairs X0 ⊆ X of G–spaces. This leads to the obvious relative versions of our main
theorems.

3. Rational equivariant stable homotopy and Artin’s Theorem

If E is a generalized cohomology theory, one can regard the assignment

X 7−→ Ẽ∗(EG+ ∧G X)

as an equivariant cohomology theory, defined on CG, the stable category of based
finite G–CW complexes ([LMS86]). Although we make only elementary use of this
deep fact, it is conceptually very illuminating. Here we begin with some general
facts about rational equivariant cohomology theories,8 and then use the extra hy-
pothesis that E∗ is complex oriented. Although many of these general facts are in
the literature as parts of more general machines (see [LMS86, especially page 271],
[Die79], and [Ara82]), we develop what we need from minimal prerequisites. For
general background material on the stable category of finite G–CW complexes see
also [Ada82] and [TtD:87].

3.1. Rational equivariant stable homotopy theory. Recall that the Burnside
ring A(G) is the Grothendieck group associated to the monoid of finite G–sets,
with addition coming from disjoint union and multiplication from cartesian prod-
uct.9 Additively, A(G) is the free abelian group on the isomorphism classes of
transitive G–sets. Intuitively, A(G) is the object containing the algebra of double
coset formulae. There is an isomorphism of rings [TtD:87, §II.8]

A(G) ' {S0, S0}G,

where {X,Y }G denotes the stable equivariant homotopy group. Thus A(G) acts
on any equivariant cohomology theory, and, more generally, on any additive con-
travariant functor defined on CG.

There is a character theory for A(G). Given H < G, let χH : A(G) → Z be
defined by χH(S) = |SH |.

Lemma 3.1 ([Die79, page 3]). The map∏
(H)

χH : A(G) −→
∏
(H)

Z

is an inclusion, and becomes an isomorphism after inverting |G|.

8What matters here is that the order of G is inverted.
9The Burnside ring A(G), used mainly in this section, should not be confused with the category

A(G).
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Here, the product runs over the conjugacy classes (H) of subgroups of G.
It follows that 1 ∈ A(G) ⊗ Z[|G|−1] can be written as the sum of orthogonal

idempotents
1 =

∑
(H)

eH ,

where χK(eH) is 1 if K is conjugate to H , and 0 otherwise.
For an additive contravariant functor

h̃ : CG −→ Z[|G|−1]–modules,

this decomposition gives a natural splitting

h̃(X) '
∏
(H)

eH h̃(X).

The following is a key observation, for which we would like to thank J. F. Adams.

Proposition 3.2. The natural G–map

G/H+ ∧XH → X

induces an isomorphism

eH h̃(X) ' eH h̃(G/H+ ∧XH)WG(H).

Here Y+ denotes the union of Y with a disjoint basepoint, and the Weyl group
WG(H) is the quotient of the normalizer NG(H) of H in G by H , acting on the
right of G/H+ ∧XH via (gH, x) · (nH) = (gnH, n−1x).

We postpone the proof of Proposition 3.2 until the end of the section.

3.2. Complex oriented equivariant stable homotopy. Fix an embedding G ⊂
U(m), and let F be the flag manifold U(m)/Tm. The main result of this section is
the next theorem, which includes Theorem A as a special case.

Theorem 3.3. Let h be a contravariant functor from the category of (unbased)
G–CW complexes to Z[|G|−1]–modules. Suppose that h satisfies

(1) h(X) −→ h(X × F ) is a monomorphism for all X.
(2) There exists a contravariant additive functor

h̃ : CG −→ Z[|G|−1]–modules

extending h : h̃(X+) = h(X).
Then, for all G–CW complexes X, each of the maps

h(X) −→ lim
A∈A(G)

h(G×A X) −→
∫
A∈A(G)

h(G/A×XA)

is an isomorphism.

To see that Theorem A follows, let

h(X) = E∗(EG×G X)⊗ Z[|G|−1],

with E∗ a complex oriented cohomology theory. Then Proposition 2.6 shows that
condition (1) applies, and condition (2) holds by letting

h̃(X) = Ẽ∗(EG+ ∧G X)⊗ Z[|G|−1].
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Proof of Theorem 3.3. We begin by showing that, under the hypotheses on h, there
are natural isomorphisms

h(X) '
∏
(A)

eAh(G/A×XA)WG(A)(3.4)

with the product running only over the conjugacy classes of abelian subgroups of
G.

Since h extends to h̃, there are natural commutative diagrams

h(X) −−−−→
∏

(H) eHh(G/H ×XH)WG(H)y y
h(X × F ) −−−−→

∏
(H) eHh(G/H ×XH × FH)WG(H)

with both horizontal maps isomorphisms, and the products running over all con-
jugacy classes of subgroups. As the left vertical map is a monomorphism by as-
sumption, so are each of the components of the right one. But FH = ∅ unless H
is abelian, so we conclude that only the terms in these products corresponding to
abelian subgroups will be nonzero.

Now we apply the method of Proposition 2.3 to the following two situations. In
both cases, C will be the category of G–CW complexes, and H(X) = h(X). For X
a G–CW complex, let

F1(X) =
∐

A∈A(G)

G×A X,

and let

F2(X) =
∐

A∈A(G)

G/A×XA.

The apparent G–maps F2(X) −→ F1(X) −→ X define ‘p’ in each case. To see that
there exists a natural retraction r(X) : h(Fi(X)) −→ h(X) for i = 1, 2, we note that
the isomorphism (3.4) will factor through h(p(X)) in each case.

Applying Proposition 2.3, we conclude that for i = 1, 2, we have equalizer dia-
grams

h(X) −→ h(Fi(X))⇒ h(Fi(Fi(X))).

To complete the proof of the theorem, one checks that when i = 1 the equalizer of
the two maps on the right is

lim
A(G)

h(G×A X),

and when i = 2 the equalizer is∫
A(G)

h(G/A×XA).

Remarks 3.5. (1) The standard properties of the transfer lead to an argument like
the one above establishing (3.4) to show that for any cohomology theory E, eH ·
E∗(BH ×XH)WG(H) ⊗ Z[|G|−1] is zero unless H is a p–group. (This is the effect
of working with A(G)–modules whose action extends to Â(G).) Thus the inverse
limit in Theorem A need be taken only over abelian p–groups.
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(2) Note that our proof of Theorem A shows that the inverse limit is an E∗–
module direct summand of the product. Thus E∗(BG) ⊗ Z[|G|−1] is a flat (or
projective) E∗⊗Z[|G|−1]–module for all G if it is true for abelian G. For example,
MU∗(BG) ⊗ Z[|G|−1] is thus a flat MU∗–module by Landweber’s observation in
[Lan71].

3.3. Proof of Proposition 3.2. We couldn’t quite find this in the literature. It
seems likely that a combination of results in Chapter 5, Section 6 of [LMS86] would
yield the proposition. The following proof is based on an unpublished argument of
Adams.

Lemma 3.6. The fixed point map

fGX,Y : {X,Y }G ⊗ Z[|G|−1] −→
∏
(H)

{XH , Y H}WG(H) ⊗ Z[|G|−1]

is an isomorphism for all Y and all finite G–complexes X.

Here {X,Y }G denotes the equivariant stable maps, and {XH , Y H}WG(H) denotes
the WG(H)-invariants of the WG(H)-module {XH , Y H} of nonequivariant maps.

Proof. Suppose first that X = Sn and Y = Sm with trivial G–action. Segal
observed in [Seg71] that

{Sn, Sm}G =
∏
(H)

πSn−m(BWG(H)+).

Thus when m = n, the map fGSn,Sm reduces to the isomorphism of Lemma 3.1, and
when m 6= n, both the domain and range of fGSn,Sm are 0.

Next one observes that in each variable, both the domain and the range of
fGX,Y behave in the same way with respect to induction and G–cofibrations. For
induction, we have that [Ada82]

{G+ ∧H X,Y }G ' {X,Y }H ' {X,G+ ∧H Y }G,
and, perhaps less obviously, that as WG(K)-spaces

(G+ ∧H X)K =
∐
(K′)

WG(K ′)+ ∧WH (K′) X
K′,

where the union is over conjugacy classes in H of subgroups conjugate to K in G.
For cofibrations, note that if X → Y → Z is a G–cofibration, then XH → Y H →
ZH is a WG(H)–cofibration. The logic now goes as follows: fGSn,Sm is known to be
an isomorphism for all G,m, and n. Thus fGG/H+∧Sn,Sm is an isomorphism for all
G, H ≤ G, m, and n. Thus fGX,Sm is an isomorphism for all groups G, finite G−
complexes X , and m (a 5-lemma argument). Thus fGX,G/H+∧Sm is an isomorphism
for all G, H ≤ G and finite G complexes X , and m. Thus fGX,Y is an isomorphism
for all G and all finite G–complexes, X and Y . Finally, an arbitrary Y is the direct
limit of its finite subcomplexes, and homotopy groups of maps from a finite complex
commutes with direct limits, showing that fGX,Y is an isomorphism in general.

Letting X = Y in Lemma 3.6, we get a decomposition

1X =
∑
(H)

eH,X ∈ {X,X}G ⊗ Z[|G|−1].
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That this notation is redundant is shown by

Lemma 3.7. eH,X = eH ∧ 1X .

Proof. The point here is that if f and g areG–maps, then (f∧g)K = fK∧gK . Thus
(eK ∧ 1X)K = eKH ∧ 1XK , which is zero if K /∈ (H) and the identity if K = H .

As a corollary of this we have

Lemma 3.8. Let h̃ be a functor as in Proposition 3.2 and let f, g ∈ {Y, Z}G ⊗
Z[|G|−1]. If fH ' gH, then

eHf
∗ = eHg

∗ : eH h̃(Z)→ eH h̃(Y ).

Lemma 3.9. With h̃ as in Proposition 3.2, the map

π ∧ 1 : G/H+ ∧X → X

induces an isomorphism

eH h̃(X) ' eH h̃(G/H+ ∧X)WG(H).

Proof. Repressing ⊗Z[|G|−1] from the notation, let t ∈ {S0, G/H+}G be any map
such that tH ∈ {S0,WG(H)+} is the sum of the maps sending the nonbasepoint
of S0 to the points of (G/H)H = WG(H). Then (π ◦ t)H = |WG(H)| ∈ {S0, S0}
and (t ◦ π)H =

∑
w∈WG(H) w ∈ {WG(H)+,WG(H)+}. Hence the preceding lemma

implies that π ∧ 1 and t ∧ 1 induce natural maps

eH h̃(X)
π

−−−−−−−−−→←−−−−−−−−−
t

eH h̃(G/H+ ∧X)

satisfying the same formulae. The lemma follows.

Proof of Proposition 3.2. The mapG/H+∧XH → X , sending (gH, x) to gx, factors
as

G/H+ ∧XH j−→ G/H+ ∧X π∧1−→ X,

where j(gH, x) = (gH, gx). Note that j is a map of left G–spaces, and is a map of
right WG(H)–spaces if WG(H) acts on G/H+ ∧XH by

(gH, x) · (nH) = (gnH, n−1x).

On H–fixed point sets, jH : WG(H)+ ∧XH → WG(H)+ ∧XH is the homeomor-
phism (w, x) 7→ (w,wx). Thus we can apply the last two lemmas to conclude that
j and π ∧ 1 induce isomorphisms

eHh(X) '−→ eHh(G/H+ ∧X)WG(H) '−→ eHh(G/H+ ∧XH)WG(H),

as needed.

4. Complex oriented Euler characteristics

Let X be a finite G-complex. In this section we prove Theorem B: the Morava
K–theory Euler characteristic

χGn,p(X) = dimK(n)even(EG×G X)− dimK(n)odd(EG×G X)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



GENERALIZED CHARACTERS 569

will be expressed in terms of the ordinary Euler characteristics of the fixed point
spaces XA, with A ≤ G abelian. When X is a point, our computation specializes
to show that χGn,p, the Euler characteristic of K(n)∗(BG), equals∑

A≤G

|A|
|G| |A(p)|nµA(G)(A),

where, for all abelian subgroups A ≤ G, the integer µA(G)(A) is defined by down-
ward induction on A ∈ A(G) by the equation∑

A≤B
B abelian

µA(G)(B) = 1.

We then use elementary group theory to show that this sum equals the number
of G–orbits in Gn,p.

4.1. Additive functions. Let M be an abelian group.

Definition 4.1 (Compare with [TtD:87, p. 227]). A function

X 7→ χ(X) ∈M
associating to each finite G–CW complex X , an element of M is additive if it
satisfies the following conditions:
(1) If X and Y are G-homotopy equivalent, then χ(X) = χ(Y ).
(2) If Z = X ∪ Y and W = X ∩ Y , then

χ(W ) + χ(Z) = χ(X) + χ(Y ).

(3) χ(φ) = 0.

Since any finite G–CW complex can be built using cells of the form G/H×Dn,
we have

Lemma 4.2. An additive function χ is determined by the values it takes on the
G–sets G/H for all subgroups H ≤ G.

A slightly more refined statement is

Lemma 4.3. The function which associates to each finite G–set X, the class of
X in the Burnside ring A(G), extends to a unique additive function χuniv. This
additive function is universal in the sense that

Hom(A(G),M) →
{

additive functions with
values in M

}
f 7→ f ◦ χuniv

is a bijection.

From now on, unless otherwise stated, additive functions will take values in the
abelian group Z[|G|−1].

Example/Definition 4.4. i) For a subgroup K ≤ G, let χK(X) be the Euler
characteristic of the fixed point space XK . If K ′ is conjugate to K, then χK = χK′ .
ii) Let µH be the additive function defined by downward induction on H by∑

K≤H
µH = χK .

This also depends only on the conjugacy class of H .
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We remark that in the proof of Theorem 4.8 below, we will use that the additive
functions χK are also multiplicative:

χK(X × Y ) = χK(X)χK(Y ).

Lemma 4.5. Let K run through a set of representatives for the conjugacy classes
of subgroups of G. Then each of the sets

{χK} and {µK}

is a basis of the Z[|G|−1]–module of additive functions.

Proof. To show that the set {χK} is a basis amounts, by Lemma 4.3, to showing
that the homomorphisms

A(G) → Z[|G|−1]

X 7→ |XK |

form a basis of

Hom(A(G),Z[|G|−1]).

This is precisely the content of Lemma 3.1. The assertion that {µK} is a basis now
follows easily from the definition.

Any additive function χ can thus be written as a linear combination of the µH ,
with coefficients which depend only on the values χ(G/H). The next proposition
makes this more precise.

Proposition 4.6. If χ is an additive function, then

χ =
∑
(H)

1
|WG(H)|χ(G/H)µH

=
1
|G|

∑
H

|H |χ(G/H)µH .

Proof. By linearity we need only check the first equality when χ = χK , which is
easy to do. First note that

χK(G/H) = |(G/H)K | =
∑
H′≥K
H′∼H

|WG(H)|,

thus ∑
(H)

1
|WG(H)| |(G/H)K |µH =

∑
(H)

∑
K≤H′
H′∈(H)

µH

=
∑
K≤H

µH

= χK

as needed. For the second equality, recall that |G|/|NG(H)| is the number of H ′

conjugate to H .
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4.2. Complex oriented additive functions. Recall that, if ξ is a complex vector
bundle over X , F (ξ) denotes the associated bundle of complete flags. The following
definition is motivated by complex oriented descent.

Definition 4.7. An additive function χ is complex oriented if for every n–dimen-
sional equivariant complex vector bundle ξ over X ,

χ(F (ξ)) = n! · χ(X).

Our complex oriented version of Lemma 4.5 is

Theorem 4.8. An additive function χ is complex oriented if and only if it is a
linear combination of the functions χA with A abelian.

Proof. We first note that Corollary 2.7 precisely says that if A ≤ G is abelian, then
χA is complex oriented.

For the converse, suppose that χ =
∑

H aHχH is complex oriented. Choose
an n–dimensional faithful representation V . Since the representation is faithful,
each isotropy subgroup in the G–space F (V ) will be abelian. Thus if H ≤ G is
nonabelian, then F (V )H = φ and so χH(F (V )) = 0. We then compute, for all X ,

n!
∑
H

aHχH(X) = n!χ(X)

= χ(X × F (V ))

=
∑
H

aHχH(X × F (V ))

=
∑
H

aHχH(X)χH(F (V ))

= n!
∑
A

aAχA(X),

where the last sum is only over abelian subgroups. It follows from the linear inde-
pendence of the χH that aH = 0 if H is not abelian.

Now we will prove an analogue of Proposition 4.6.

Definition 4.9. For an abelian subgroup A ≤ G, the additive function µCA is de-
fined by downward induction on A by∑

A≤B
B abelian

µCB = χA.

In particular µCA(pt.) = µA(G)(A), the Moebius function of the beginning of this
section.

Proposition 4.10. If χ is a complex oriented additive function, then

χ =
1
|G|

∑
A

|A|χ(G/A)µCA.

Proof. Observe that if Y is a G–space with all isotropy groups abelian, then

µH(Y ) =
{
µCH(Y ) if H is abelian,
0 otherwise.
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We apply this to the case Y = X × F (V ), where V is a faithful n–dimensional
representation. Using 4.6, we have, for all X ,

n!χ(X) = χ(X × F (V ))

=
1
|G|

∑
H

|H |χ(G/H)µH(X × F (V ))

=
1
|G|

∑
A

|A|χ(G/A)µCA(X × F (V ))

=
n!
|G|

∑
A

|A|χ(G/A)µCA(X).

4.3. Morava K–theory Euler characteristics.

Proposition 4.11 (see also [Rav82]). If X is a finite G–CW complex , then

K(n)∗(EG×G X)

is a finite dimensional vector space over K(n)∗. Thus χGn,p (X) is a complex oriented
additive function. Moreover, for an abelian subgroup A ≤ G, with p-Sylow subgroup
A(p),

χGn,p(G/A) = |A(p)|n.

Proof. By replacing X with X × F (V ) and using complex oriented descent, it can
be assumed that the cells of X are of the form G/A × Dk with A abelian. An
induction over the skeleta reduces to the case X = G/A. But

K(n)∗(EG×G G/A) = K(n)∗(BA),

so the result follows from the well–known calculation of K(n)∗(BA). (See Corol-
lary 5.10 below.)

Proposition 4.10 immediately implies the next theorem, which was also stated
as Theorem B (Part 2) in the introduction.

Theorem 4.12. For any finite G–CW complex X,

χGn,p(X) =
1
|G|

∑
A

|A||A(p)|nµCA(X),

the sum being over the set of abelian subgroups A ≤ G. In particular (taking X to
be a point),

χGn,p =
1
|G|

∑
A

|A||A(p)|nµA(G)(A).

Now we count the G–orbits in Gn,p = Hom(Znp , G). For convenience, let Λ = Znp .

Lemma 4.13. |Hom(Λ, G)/G| = 1
|G| |Hom(Z× Λ, G)|.

Proof. After choosing a generator of Z, the fiber of the restriction mapping

Hom(Z× Λ, G)→ Hom(Λ, G)
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over a map α can be identified with the centralizer, CG(α), of the image of α. Thus

|Hom(Z× Λ, G)| =
∑

α:Λ→G
|CG(α)|

= |G|
∑

α:Λ→G
(
|CG(α)|
|G| )

= |G| · |Hom(Λ, G)/G|.
The last equality comes from the isomorphism of G-sets:

Hom(Λ, G) '
∐

α∈Hom(Λ,G)/G

G/CG(α).

Lemma 4.14. There is an equality

|Hom(Z× Λ, G)| =
∑
A

|Hom(Z× Λ, A)|µA(G)(A).

Proof. Note that the image of α ∈ Hom(Z × Λ, G) is abelian. Thus

|Hom(Z× Λ, G)| =
∑
α

1

=
∑
α

∑
Image(α)≤A

µA(G)(A)

=
∑
A

∑
α

Image(α)≤A

µA(G)(A)

=
∑
A

|Hom(Z× Λ, A)|µA(G)(A).

Now note that if A is abelian,

|Hom(Z× Znp , A)| = |A| · |A(p)|n.
Thus the last two lemmas combine to yield

Corollary 4.15. |Hom(Znp , G)/G| =
∑

A
|A|
|G| |A(p)|nµA(G)(A).

This formula, together with Theorem 4.12, yields Theorem B (Part 1).

5. Formal groups and E∗(BA)

5.1. Formal groups and their height. The complex orientation of E determines
a formal group law F over E∗: the orientation

x ∈ E2(CP∞)

gives rise to isomorphisms

E∗(CP∞) = E∗[[x]],
E∗(CP∞ × CP∞) = E∗[[x1, x2]],
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and the formal sum is the image of x under the map classifying the tensor product
of line bundles:

x1 +
F
x2 = F (x1, x2) = µ∗(x) ∈ E∗[[x1, x2]],

µ : CP∞ × CP∞ → CP∞.

In algebro-geometric terms, the orientation x is a coordinate on F . In ordinary
geometric terms, the orientation is the first Chern class of a line bundle, and the
formal group law is the formula for the first Chern class of a tensor product of line
bundles.

We recall some standard notation [Rav86]. Given an integer m, the m–series of
F is the formal power series

[m](x) =
m︷ ︸︸ ︷

x+
F
. . .+

F
x ∈ E∗[[x]].

The m–series is an endomorphism of F :

[m](x+
F
y) = [m](x) +

F
[m](y).

More generally, if E∗ is a complete, local ring with maximal ideal m, and a prime
p is in m, then, by continuity, one can define [m](x) ∈ E∗[[x]] for any m ∈ Zp, and
thus Zp acts on F as a ring of endomorphisms.

Suppose we are in this last situation, so that the mod m reduction, F0, of F is
a formal group over a (graded) field of characteristic p > 0. Then F0 is more or
less determined by a single invariant, its height (see e.g. [Rav86, Thm.A.2.2.11]).
The height of F0 is the degree of the isogeny “multiplication by p”, and can be
defined as follows. If the p-series of F0 is identically 0, we say that the height is∞.
Otherwise, [p](x) can be written uniquely in the form

[p]F0(x) = f(xp
n

),
f ′(0) 6= 0 ∈ E∗/m,

for some n <∞, and we define the height of F0 to be n.
From now on it will be assumed that the height of F0 is an integer n <∞.

5.2. The structure of E∗[[x]]/([pr](x)). Fundamental to our work is an under-
standing of the E∗–algebra E∗[[x]]/([pr](x)). We begin with a very general lemma,
a form of the Weierstrass Preparation Theorem.

Lemma 5.1. Let R be a graded commutative ring, complete in the topology de-
fined by the powers of an ideal I. Suppose α(x) ∈ R[[x]] satisfies α(x) ≡ uxd mod
(I, xd+1) with u ∈ R a unit. Then

i) (Euclidean algorithm) Given f(x) ∈ R[[x]], there exist unique

p(x) ∈ R[x] and q(x) ∈ R[[x]]

such that
f(x) = p(x) + α(x)q(x)

with deg p(x) ≤ d− 1.
ii) The ring R[[x]]/(α(x)) is a free R–module with basis

{1, x, . . . , xd−1}.
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iii) (Factorization) There is a unique factorization

α(x) = ε(x)g(x)

with ε(x) a unit and g(x) a monic polynomial of degree d.

The number d is called the Weierstrass degree of g(x).

Proof. Statement iii) follows easily from ii). This in turn follows from i), which
is well known; see e.g. [Lan78, pages 129–131]. (The assumption made there that
R is local is not used in the proof.)

We apply this to [pr](x) ∈ E∗[[x]]. Our assumption on the height is that

[p](x) ≡ uxp
n

mod (m, xp
n+1)

with u ∈ E∗ a unit,10 which implies that, for all r,

[pr](x) ≡ urxp
rn

mod (m, xp
rn+1)

where ur is a power of u (depending on r), and thus a unit in E∗.

Proposition 5.2. E∗[[x]]/([pr](x)) is a free E∗–algebra, with basis

{1, x, . . . , xprn−1}.

The formal group law induces a cocommutative coproduct on E∗[[x]]/([pr](x)), mak-
ing E∗[[x]]/([pr](x)) into a Hopf algebra over E∗.

Proof. The first statement follows immediately from the previous lemma. The
second then follows: note that

E∗[[x1]]/([pr](x1))⊗E∗ E∗[[x2]]/([pr](x2)) −→ E∗[[x1, x2]]/([pr](x1), [pr](x2))

is an isomorphism. Thus we can define the coproduct

E∗[[x]]/([pr](x)) −→ E∗[[x]]/([pr](x)) ⊗E∗ E∗[[x]]/([pr](x))

to be the map corresponding to the formal sum.

There is a inverse system of Hopf algebras over E∗

· · · −→ E∗[[x]]/([pr+1](x)) −→ E∗[[x]]/([pr ](x)) −→ · · ·(5.3)

induced by sending x ∈ E∗[[x]]/([pr+1](x)) to x ∈ E∗[[x]]/([pr+1](x)), and a direct
system of Hopf algebras over E∗

· · · −→ E∗[[x]]/([pr](x)) −→ E∗[[x]]/([pr+1](x)) −→ · · ·(5.4)

induced by sending x ∈ E∗[[x]]/([pr](x)) to [p](x) ∈ E∗[[x]]/([pr+1](x)).

10In our graded setting, this unit u will have degree 2−2pn. If E∗ came equipped with a BP ∗

orientation, then u will be the image of vn ∈ BP ∗, thus one refers to E∗ as ‘vn–periodic’.
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5.3. The group of torsion points.

Definition 5.5. Given a graded E∗–algebra R and integer r ≥ 0, let

prF (R)

be the group of E∗–algebra homomorphisms

E∗[[x]]/([pr](x))→ R,

where the group structure is induced by the coalgebra structure on E∗[[x]]/([pr](x)).
The inverse system (5.3) induces a direct system of inclusions

· · · → prF (R)→ pr+1F (R)→ · · · ,

and we let p∞F (R) denote the colimit. We will regard p∞F (R) as a subset of R
via evaluation on x.

Classically, the group p∞F (R) arises in the following way. Given a local homo-
morphism

E∗ → R

of complete, graded, local rings, let F (R) be the group whose underlying set is the
set of homogeneous elements of degree 2 in the maximal ideal of R, and whose
sum is the formal sum x+F y. In this case, the group prF (R) will just be the
subgroup of F (R) consisting of elements killed by pr, and p∞F (R) will be the
torsion subgroup.11 The point of our definition is that one can define p∞F (R) for
an arbitrary E∗–algebra R.

The following theorem is a variation of a theorem of Lubin and Tate [LT65].

Theorem 5.6. Let L be an E∗–algebra that is also an algebraically closed graded
field of characteristic 0. Then

i) For each r > 0, the group prF (L) is isomorphic to (Z/pr)n.
ii) The group p∞F (L) is isomorphic to (Qp/Zp)n.

Proof. By the definition of height,

[pr](x) ≡ εxprn mod (m, xp
rn+1), ε a unit.

The elements of prF (L) are the roots of [pr](x) in L. By 5.1 there are prn of these
roots, counted with multiplicity. The proof will be finished if we show that all these
multiplicities are 1, for then prF (L) will be an abelian p–group with exactly prn

distinct elements of order dividing pr.
To show the multiplicities are 1, we will show that [pr]′(x) has no zeros in L.

We need to introduce the logarithm of F [Haz78, Rav86]. This is the unique power
series

logF (x) ∈ L[[x]]

satisfying

logF (x) = x+ · · · ,
logF (x+F y) = logF (x) + logF (y).

11As Zp acts as a ring of endomorphisms on F (R), the torsion in F (R) will all be p–torsion.
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If x is given degree 2, the logarithm of F is homogeneous of degree 2. Note that
the derivative of the logarithm has the form

log′F (x) = 1 + · · ·

and hence is a unit in L[[x]].
Taking the derivative of

logF ([pr](x)) = pr logF (x)

gives

log′F ([pr](x)) · [pr]′(x) = pr log′F (x),

from which it follows that

[pr]′(x) = pr · (a unit in L[[x]])

has no zeros, since L has characteristic 0. This completes the proof.

5.4. Cohomology of abelian groups. Much of the material in this section can
be found in [RW80].

For a finite (or profinite) abelian group A, let

A∗ = Hom(A,S1)

be the character group.

Lemma 5.7. Suppose that A is cyclic of order m, and let

x ∈ E2(BA)

be the first Chern class of a generator of the character group A∗. The ring

E∗(BA)

is isomorphic to
E∗[[x]]/([m](x)).

Proof. The Gysin sequence of the fibration

S1 → BA→ CP∞

is a long exact sequence

· · · → E∗[[x]]
·[m](x)−−−−→ E∗[[x]]→ E∗BA→ · · · .

Lemma 5.1 and our standing assumption that E∗ is complete imply that [m](x) is
not a zero divisor.

Corollary 5.8. Write m = spr, with (s, p) = 1. The E∗–module E∗(BZ/m) is
free of rank prn.

Proof. This follows from Proposition 5.2.

Lemma 5.9. Let Y be a space with the property that E∗(Y ) is a finitely generated
free module over E∗. Then for any space X, the map

E∗(Y )⊗E∗ E∗(X)→ E∗(Y ×X)

is an isomorphism.
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Proof. Think of the map in question as a transformation of functors of X . Both
sides convert pushout squares into Mayer–Vietoris sequences, and both sides convert
infinite wedges into products. Since both functors agree when X is a point, the
transformation is an isomorphism.

Corollary 5.10. Suppose that A is a finite abelian group with p–Sylow subgroup
A(p). Then the E∗–module E∗(BA) is free of rank |A(p)|n.

Proof. Write A as a product of cyclic groups, and apply Corollary 5.8 and Lemma
5.9.

Corollary 5.11. If A is a finite abelian group, and X is any space, then the map

E∗(BA)⊗E∗ E∗(X)→ E∗(BA×X)

is an isomorphism.

We end this section with a natural description of the spectrum of E∗(BA).

Proposition 5.12. Let A be a finite abelian group and R an E∗–algebra. The
natural transformation (of functors of pairs (A,R))

HomE∗-alg(E∗(BA), R) −→ Hom(A∗, p∞F (R))(5.13)

defined by

f 7−→ {χ 7→ f(c1(χ))}

is an isomorphism.

Proof. First suppose that A is cyclic of order m. If m is prime to p, both the
domain and range have one element. If m = pr, choose a generator χ of A∗, and
let x ∈ E∗(BA) be the first Chern class of χ. By Lemma 5.7, E∗(BA) can then be
identified with E∗[[x]]/([pr](x)). Define a map

Hom(A∗, prF (R))→ HomE∗-alg(E∗(BA), R)

by
g 7−→ g(χ).

This is easily checked to be an inverse to (5.13). The result for arbitrary finite A
now follows since both sides of (5.13) convert finite sums of abelian groups into
finite products.

Note that, under the correspondence of the proposition, the identity map on
E∗(BA) corresponds to a group homomorphism

φuniv : A∗ −→ p∞F (E∗(BA)).

6. Generalized characters

In this section, we begin to relate group cohomology to certain rings of functions,
ultimately proving the basic properties of L(E∗) and related rings Lr(E∗), where
L(E∗) is the E∗–algebra defined in the introduction. The proof of Theorem C then
quite easily follows.

Let Λ = Znp , with quotient groups Λr = (Z/pr)n. Then Λ∗ ' (Qp/Zp)n, and
Λ∗r ' (Z/pr)n is the subgroup of Λ∗ of elements of order pr.
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6.1. Hopf algebra isomorphisms and a discriminant calculation. If A is
a finite abelian group and R is an E∗–algebra, then RA, the ring of R–valued
functions on A, will be a Hopf algebra (over E∗). The next lemma will be used to
construct maps to Hopf algebras of this elementary form, in particular to RΛ∗r .

Lemma 6.1. Let A be a finite abelian group, and R a graded E∗–algebra. The set
of homomorphisms

φ : A→ prF (R)

are naturally in one–to–one correspondence with the set of Hopf algebra maps (over
R)

R[[x]]/([pr](x))→ RA.

Proof. Unraveling the definitions, a map φ : A→ pnF (R) corresponds to the Hopf-
algebra homomorphism

R[[x]]/([pm](x))→ RA

whose a–component is the R–algebra extension of the E∗–algebra homomorphism
corresponding to φ(a).

Proposition 6.2. The following conditions on a homomorphism

φ : Λ∗r → prF (R)

are equivalent:
i) For all α 6= 0 ∈ Λ∗r, φ(α) is a unit.12

ii) The Hopf algebra homomorphism

R[[x]]/([pr](x))→ RΛ∗r

is an isomorphism.
The following two conditions are also equivalent:

i′) For all α 6= 0 ∈ Λ∗r, the element φ(α) is not a zero–divisor.
ii′) The Hopf algebra homomorphism

R[[x]]/([pr](x))→ RΛ∗r

is a monomorphism.

Proof. With respect to the basis of powers of x of the domain, and the obvious
basis of the range, the matrix of the Hopf algebra homomorphism

R[[x]]/([pr](x))→ RΛ∗r

is the Vandermonde matrix of the set φ(Λ∗r). The result therefore follows from the
first assertion of the next lemma.

In the following lemma, if a and b are elements of R, we will write a ∼ b if a = ε·b
where ε is a unit in R. We also let ∆ denote the discriminant of the set φ(Λ∗r), i.e.

∆ =
∏

αi 6=αj∈Λ∗r

(φ(αi)− φ(αj)).

12Thus φ is an isomorphism.
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Lemma 6.3. Let φ : Λ∗r → prF (R) be a homomorphism, as in the last lemma.

i)

∆ ∼
∏

α6=0∈Λ∗r

φ(α)
|Λ∗r |

.

ii) If the Hopf algebra map

R[[x]]/([pr](x))→ RΛ∗r(6.4)

is a monomorphism, then ∏
α6=0∈Λ∗r

φ(α) ∼ pr,

so

∆ ∼ prprn .

Proof. The formula

x−
F
y = (x − y) · ε(x, y), ε(x, y) ∈ E[[x, y]]×,

gives ∏
(φ(αi)− φ(αj)) ∼

∏
φ(αi − αj)

=
∏

αi−αj=α

∏
α6=0

φ(α)

=
∏
α6=0

φ(α)
|Λ∗r |

.

Now write
[pr](x) = g(x)ε(x)

with g a monic polynomial of degree prn and ε(x) ∈ E[[x]]×. If the map (6.4) is a
monomorphism, then, over R, there is a factorization

g(x) =
∏
α∈Λ∗r

(x− φ(α)).

Comparing coefficients of x gives∏
α6=0∈Λ∗r

φ(α) = ε(0) · pr.

6.2. The rings Lr(E∗) and L(E∗). If R is an E∗–algebra, let Lr(R) be the set
of all group homomorphisms

φ : Λ∗r → prF (R)

satisfying either of the conditions i) or ii) of Proposition 6.2.

Proposition 6.5. The functor Lr is representable by a ring Lr(E∗) that is finite
and faithfully flat over p−1E∗.
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Proof. Let φuniv : Λ∗r → prF (E∗(BΛr)) be the homomorphism corresponding to
the identity map of E∗(BΛr), and let S ⊂ E∗(BΛr) be the multiplicatively closed
subset generated by the φ(α) with α 6= 0. The functor Lr is represented by the
ring

Lr(E∗) = S−1E∗(BΛr),

which is clearly flat over E∗. Let Dr(E∗) be the image of E∗(BΛr) in Lr(E∗). The
ring Dr(E∗) is finite over E∗, being a quotient of E∗(BΛr). By Proposition 6.2,
the Hopf algebra homomorphism

Dr(E∗)[[x]]/([pr](x))→ Dr(E∗)Λ∗r

is a monomorphism. It follows from Lemma 6.3 that

Lr(E∗) = p−1Dr(E∗),

so Lr(E∗) is finite and flat over p−1E∗. To check that Lr(E∗) is faithfully flat, we
need to find, for each homogeneous prime ideal p of p−1E∗, a homogeneous prime
q ⊂ Lr(E∗) extending p. Choose a homomorphism f , with kernel p, from p−1E∗

to an algebraically closed, graded field L. By Theorem 5.6, the group prF (L) is
isomorphic to Λ∗r . A choice of an isomorphism determines a map

f̂ : Lr(E∗)→ L

extending f . The prime ideal ker f̂ is the desired q.

The group Aut(Λr) acts naturally on Lr(E∗), since it acts on the functor Lr.

Proposition 6.6. The ring of invariants is just p−1E∗.

Proof. To prove this, it suffices to find a faithfully flat p−1E∗–algebra R, and show
that the ring of Aut(Λr) invariants in R⊗E∗ Lr(E∗) is R.

For any p−1E∗–algebra R, the ring R ⊗E∗ Lr(E∗) represents the functor that
assigns to each R–algebra S the set of Hopf algebra isomorphisms (over S)

S[[x]]/([pr](x)) −→ SΛ∗r .

Now choose a faithfully flat R with the property that there is a Hopf algebra
isomorphism

R[[x]]/([pr](x)) ≈ RΛ∗r

(for example, R = Lr(E∗)). Then R ⊗E∗ Lr(E∗) will represent the functor that
assigns to each R–algebra S the set of Hopf algebra automorphisms (over S)

SΛ∗r −→ SΛ∗r .

By the last part of the next lemma, we conclude that R ⊗E∗ Lr(E∗) and RAut(Λr)

are isomorphic, as they represent the same functor. But it is obvious that the ring
of Aut(Λr)–invariants in RAut(Λr) is just R.

Lemma 6.7. Let R be a ring.
i) Let A and B be finite sets. The functor (on the category of R–algebras)

S 7→
{
S–algebra homomorphisms : SA → SB

}
is represented by RHomSet(B,A).
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ii) Let A and B be finite abelian groups. The functor

S 7→
{

Hopf algebra homomorphisms (over S) : SA → SB
}

is represented by RHomAb(B,A).
iii) Let A be a finite abelian group. The functor

S 7→
{

Hopf algebra automorphisms (over S) : SA → SA
}

is represented by RAutAb(A).

Proof. Let’s first construct a natural transformation. Associate to

RHomSet(B,A) → S

the map

RA
Reval.

−−−→ RB×Hom(B,A) ≈ RHom(B,A)B → SB.

The map SA → SB is then extended by linearity. Note that this transformation
is natural in A and B. It is an isomorphism if A is the one element set. It is
therefore an isomorphism in general since both functors carry disjoint unions in A
to cartesian products, and we have proved the first part of the lemma.

The other two parts now follow from part i) by naturality in A and B.

A homomorphism

φ : Λ∗r −→ prF (R)

satisfying one of the conditions of Proposition 6.2 restricts to a homomorphism

φ : Λ∗r−1 −→ pr−1F (R)

satisfying the same condition. It follows that there are natural maps of E∗–algebras

Lr−1(E∗) −→ Lr(E∗).

Furthermore, this map will be Aut(Λr) equivariant, where the action on the domain
is via the projection Aut(Λr) −→ Aut(Λr−1).

We let L(E∗) be the colimit colimr Lr(E∗). L(E∗) will be acted on by the group
Aut(Λ), and comes equipped with a canonical isomorphism of groups

φuniv : Λ∗ −→ p∞F (L(E∗)).

Corollary 6.8. i) L(E∗) represents the functor that assigns to each E∗–algebra
R, the set of isomorphisms of groups

φ : Λ∗ −→ p∞F (R)

such that φ(α) is a unit for all α 6= 0 ∈ Λ∗r.
ii) L(E∗) is faithfully flat over p−1E∗.
iii) The ring of Aut(Λ) invariants is just p−1E∗.
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6.3. Defining the generalized characters. In this subsection, we elaborate on
the character ring constructions given in the introduction.

Choose r large enough so that all p–torsion in G has order dividing pr. Then
Hom(Λr, G) = Gn,p, so that

Fixn,p(G,X) =
∐

α∈Hom(Λr,G)

XIm(α),

where X is a finite G–CW complex, and Fixn,p(G,X) is as in the introduction.
This fixed point space is a space with commuting actions of G and Aut(Λr).

A homomorphism

α : Λr −→ G

induces a map

α : BΛr ×XIm(α) −→ EG×G X

and thus a map

α∗ : E∗(EG ×G X) −→ E∗(BΛr ×XIm(α)) −→ Lr(E∗)⊗E∗ E∗(XIm(α)).

Taking the product over α yields a map

χGn,p : E∗(EG×G X) −→ Lr(E∗)⊗E∗ E∗(Fixn,p(G,X)).

The codomain of χGn,p admits an action of G × Aut(Λr): G acts via its action on
Fixn,p(G,X), and Aut(Λr) acts diagonally on each of the factors in this tensor
product.

Lemma 6.9. This map lands in the G×Aut(Λr) invariants.

Proof. This compatibility is a consequence of geometric facts which have nothing
to do with the cohomology theory E∗.

The invariance under the Aut(Λr) action follows from the commutative diagrams,
for all α ∈ Hom(Λr, G) and φ ∈ Aut(Λr),

BΛr ×XIm(α◦φ) φ×1−−−−→ BΛr ×XIm(α)

α◦φ
y α

y
EG×G X EG×G X.

To see the invariance under the action of G, suppose that f : H → G is a map
of finite groups, X a G–space, and consider the commutative diagram

BH ×XH 1×g·−−−−→ BH ×XgHg−1

f

y gfg−1

y
EG×G X −−−−→ EG×G X,

in which the bottom row comes from the map

(G,X) → (G,X)
(t, x) 7→ (gtg−1, gx).

It is well known that the bottom map is homotopic to the identity [Seg68:1].
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Because of the lemma, we conclude that χGn,p induces

χGn,p : E∗(EG×G X) −→ Cln,p(G,X ;Lr(E∗))Aut(Λr),

where

Cln,p(G,X ;Lr(E∗)) = Lr(E∗)⊗E∗ E∗(Fixn,p(G,X))G.

Also note that it is clear that these maps are compatible as r varies, and, indeed,
the codomain is independent of r for all r large enough.

6.4. Proof of Theorem C. Consider the following properties of a functor C = C∗

from the category C of pairs (G,X) to the category of graded abelian groups:

Mayer–Vietoris. On the category of pushout squares

W → X
↓ ↓
Y → Z,

in C, there is a natural connecting homomorphism

δ : Cn(W )→ Cn+1(Z), n ∈ Z,
giving rise to a long exact Mayer–Vietoris sequence

· · · → C∗(Z)→ C∗(Y )⊕ C∗(X)→ C∗(W ) δ→ C∗+1(Z)→ · · · .

Induction. For any H ⊂ G and H–space Y , the natural map

(H,Y ) −→ (G,G×H Y )

induces an isomorphism

C∗(G,G×H Y ) ≈ C∗(H,Y ).

Descent. Let F be the bundle of flags in an equivariant complex vector bundle over
X . The sequence

X ← F ⇔ F×XF
gives rise to an equalizer diagram

C∗(G,X)→ C∗(G,F )⇒ C∗(G,F×XF ).

Lemma 6.10. Let τ : C → D be a natural transformation between homotopy func-
tors satisfying the above three properties. Suppose that τ also commutes with the
connecting homomorphisms of the Mayer–Vietoris sequences. If τ(A, pt) is an iso-
morphism for all abelian groups A, then τ(G,X) is an isomorphism for all finite
groups G, and all finite G–CW complexes X.

Proof. First use descent to conclude that τ(G,X) is an isomorphism if
τ(G,X × F (V )) is an isomorphism, where F (V ) is the manifold of complete flags
in a faithful complex representation of G. We may therefore assume that the only
subgroups of G which fix a point of X are abelian. Next run an induction on
the dimension of X , applying the Mayer–Vietoris sequences to an equivariant cell
decomposition, to show that τ(G,X) is an isomorphism if τ(G,G/H ×Dn) is an
isomorphism for all n ≥ 0 and all H ⊆ G which fix a point of X . We have reduced
to showing that τ(G,G/A ×Dn) is an isomorphism for all abelian A ⊆ G and all
n ≥ 0. By homotopy invariance, this is the same as showing that τ(G,G/A) is
an isomorphism, and by the induction property, this is equivalent to showing that
τ(A, pt) is an isomorphism for all abelian A. This completes the proof.
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Proof of Theorem C. The proof will be complete once it is established that the
functors

L(E∗)⊗E∗ E∗(EG ×G X) and L(E∗)⊗E∗ E∗(Fixn,p(G,X))G

have the above three properties, the transformation χGn,p commutes with the con-
necting homomorphisms of the Mayer–Vietoris sequences, and finally that χAn,p is
an isomorphism when X is a point.

Mayer–Vietoris. The Mayer–Vietoris sequences come from the usual Mayer–
Vietoris sequences of the pushout squares

EG×GW −−−−→ EG×G Xy y
EG×G Y −−−−→ EG×G Z

and

W Im(α) −−−−→ XIm(α)y y
Y Im(α) −−−−→ ZIm(α)

.

The connecting homomorphisms clearly commute with χGn,p. The sequences are
exact because

(1) L(E∗) is flat over E∗

(2) The order of G is a unit in L(E∗), so passage to G–invariants is exact.

Induction. Since the map

(H,Y )→ (G,G×H Y )

gives rise to a homotopy equivalence

EH ×H Y ' EG×G G×H Y,

the functor L(E∗)⊗E∗ E∗(EG×G X) has the induction property.
The induction property for L(E∗) ⊗E∗ E∗(Fixn,p(G,X))G follows from the ob-

servation that there is a natural homeomorphism of G–spaces

G×H Fixn,p(H,Y ) ' Fixn,p(G,G×H Y ).

See [Kuh89] for more about the properties of such fixed point functors.

Descent. The descent property follows from Proposition 2.6, the flatness of L(E∗),
and the fact that passage to G–invariants is exact.

Finally, we need to verify that

χAn,p : L(E∗)⊗E∗ E∗(BA) −→ L(E∗)Hom(Λ,A)

is an isomorphism for every finite abelian group A.
Since both domain and range of the character map convert products of abelian

groups into tensor products, it suffices to consider the case when A is cyclic. In
particular, it is convenient to letA = (Z/pr)∗. In this case, Hom(Λ, A) is canonically
isomorphic to Λ∗r, E

∗(BA) is canonically isomorphic to E∗[[x]]/([pr](x)), and χAn,p
identifies with the canonical isomorphism

L(E∗)[[x]]/([pr](x)) ' L(E∗)Λ∗r .

This completes the proof of Theorem C.
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Remark 6.11. Here is a second proof of the isomorphism

χGn,p : L(E∗)⊗E∗ E∗(BG) ' Cln,p(G;L(E∗))

that doesn’t use the flatness of L(E∗): Theorem 3.3 applies to the functor

h(X) = L(E∗)⊗E∗ E∗(EG×G X),

thus

L(E∗)⊗E∗ E∗(BG) ' lim
A∈A(G)

L(E∗)⊗E∗ E∗(BA).

But since it is clear that Gn,p = colimA∈A(G)An,p, we have

Cln,p(G;L(E∗)) ' lim
A∈A(G)

Cln,p(A;L(E∗)).

One is reduced to checking that the character map is an isomorphism in the abelian
group case, and one proceeds as before.

6.5. Induction. In this subsection we establish Theorem D, the induction formula
for characters.

We will use four properties of the transfer associated to a finite covering W → Z
[Ada78, Chapter 4]:
(1) the transfer associated to the identity map is the identity map;
(2) if W1

∐
W2 → Z is a disjoint union of finite coverings, then the transfer map

E∗(W1)⊕ E∗(W2)→ E∗(Z)

is the sum of the transfer maps associated to the coverings W1 → Z and W2 → Z;
(3) the transfer E∗(Z)→ E∗(W ) is a map of E∗(Z)–modules;
(4) if

W1 −−−−→ Wy y
Z1 −−−−→ Z

is a fiber square, then the diagram
E∗(W1) ←−−−− E∗(W )

Tr

y yTr

E∗(Z1) ←−−−− E∗(Z)
commutes.

Lemma 6.12 (Compare with [Die72], Satz 4). If A ⊂ Λr is a proper subgroup, the
composite

E∗(BA) Tr−→ E∗(BΛr)→ Lr(E∗)
is zero.

Proof. Recall that Lr(E∗) = S−1E∗(BΛr), where S is the image of the nonzero
elements of Λ∗r under the canonical map

φuniv : Λ∗r −→ E∗(BΛr).

Choose a nontrivial α in the kernel of Λ∗r → A∗, and let x = φuniv(α) ∈ E∗(BΛr).
By construction, x restricts to 0 in E∗(BA), thus multiplication by x annihilates
the image of the transfer by property (3). But x becomes a unit in Lr(E∗).
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Corollary 6.13. Suppose that Y is a trivial Λr–space, and that J is a finite Λr–set
with

JΛr = ∅.
Then the composite

E∗ (EΛr ×Λr (J × Y )) Tr−→ E∗ (BΛr × Y )→ Lr(E∗)⊗E∗ E∗(Y )(6.14)

is zero.

Proof. By property (2) we reduce to the case

J = Λr/A, A 6= Λr.

Properties (3) and (4) and Corollary 5.11 show in this case that (6.14) is just the
tensor product (over E∗) of the identity map of E∗(Y ) with

E∗(BA) Tr−→ E∗(BΛr)→ Lr(E∗).

But this map is zero by the lemma.

Proof of Theorem D. Let H be a subgroup of G, X a G–space, and x an element
of E∗(EH ×H X) = E∗(EG ×G (G ×H X)). If α ∈ Hom(Λ, G) factors through
Λ −→ Λr, we can calculate the χGn,p(α)(Tr∗(x)) ∈ L(E∗)⊗E∗E∗(XIm(α)) by applying
property (4) to the pullback diagram

EΛr ×Λr (G/H ×XIm(α)) −−−−→ EG×G (G×H X)y y
BΛr ×XIm(α) −−−−→ EG×G X,

which is the composite of the pullback diagrams

EΛr ×Λr (G×H X) −−−−→ EG×G (G×H X)y y
BΛr ×Λr X −−−−→ EG×G X

and
EΛr ×Λr (G/H ×XIm(α)) −−−−→ EΛr ×Λr (G×H X)y y

BΛr ×XIm(α) −−−−→ EΛr ×Λr X.

Let J be the complement of (G/H)Im(α) in G/H , so that

JΛr = ∅.
The space EΛr ×Λr (G/H ×XIm(α)) decomposes into the disjoint union of∐

gH∈(G/H)Im(α)

BΛr × {gH} ×XIm(α) and EΛr ×Λr J ×XIm(α).

The image of x under the composite

E∗(EG×G (G×H X))→ E∗(BΛr × {gH} ×XIm(α))
Tr→ E∗(BΛr ×XIm(α))

→ Lr(E∗)⊗E∗ E∗(XIm(α))
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is χHn,p(g · α)(x). The composite

E∗
(
EΛr ×Λr

(
J ×Xf

)) Tr−→ E∗
(
BΛr ×Xf

)
→ Lr(E∗)⊗E∗ E∗(XIm(α))

is zero by Corollary 6.13. Theorem D now follows from property (2) of the transfer.

Remark 6.15. The key idea in this proof is our use of property (3) in the proof of
Lemma 6.12. This can be similarly used to get a quick derivation of a formula of
tom Dieck [Die72]. Let Cm = Z/m. Then, for any k, m, and complex oriented
theory E∗ with orientation x, one has

Tr(1) = [mk](x)/[m](x) ∈ E∗(BC∗mk)

where

Tr : E∗(BC∗m) −→ E∗(BC∗mk)

is the transfer associated to C∗m ⊂ C∗mk. The proof goes as follows. First, one can
assume E∗ = MU∗, so that E∗(BCmk) = E∗[[x]]/([mk](x)). Arguing as in Lemma
6.12, one deduces that Tr(1) will satisfy: Tr(1) is annihilated by multiplication by
[m](x), and Tr(1) ≡ k mod x. But the only element in E∗[[x]]/([mk](x)) satisfying
these two properties is [mk](x)/[m](x).

Example 6.16. As an illustration of our induction formula, we compute the map

A(G) −→ π0(BG) −→MU∗(BG) −→ E∗(BG) −→ Cln,p(G;L(E∗)),

i.e. the Hurewitz map from the Burnside ring of G to our ring of characters. Given
a virtual finite G–set S, and α ∈ Gn,p, the formula is

χGn,p(α)(S) = |SIm(α)|.

To verify this, it suffices to assume that S = G/H . In this case, the image of S in
E∗(BG) will be Tr(1), and Theorem D shows that

χGn,p(α)(Tr(1)) = |(G/H)Im(α)|.
In particular, we deduce that

Ker{A(G) −→MU∗(BG)} ⊆ {S | |SA| = 0 for all abelian A ⊂ G}.
But Theorem A implies that the other inclusion is true up to finite index.

7. Good groups

In this section, we fix a prime p and n > 0, and study the question of whether
K(n)∗(BG) is concentrated in even degrees via the notion of good groups.

7.1. Good groups and the wreath product theorem.

Definition 7.1. (1) For a finite group G, an element

x ∈ K(n)∗(BG)

is good if it is a transferred Euler class of a complex subrepresentation of G, i.e.
a class of the form TrGH(e(ρ)) where ρ is a complex representation of a subgroup
H < G, and e(ρ) ∈ K(n)∗(BH) is its Euler class (i.e. its top Chern class).
(2) G is good if K(n)∗(BG) is spanned by good elements as a K(n)∗–module.
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Note that, in general, TrGH(e(ρ)) 6= e(IndGH(ρ)). For good G, K(n)∗(BG) can-
not be described only in terms of representations of G itself. If G is good, then
K(n)∗(BG) is of course concentrated in even dimensions.

Elementary properties of good elements and good groups are summarized in the
next proposition.

Proposition 7.2. i) Every finite abelian group is good.
ii) If x1 ∈ K(n)∗(BG1) and x2 ∈ K(n)∗(BG2) are both good, then so is x1×x2 ∈
K(n)∗(B(G1×G2)). Thus if G1 and G2 are good, then so is their product G1×G2.
iii) G is good if its p–Sylow subgroup is good.
iv) If f : H → G is a homomorphism and x ∈ K(n)∗(BG) is good, then f∗(x) is

a linear combination of good elements in K(n)∗(BH).
v) If x and y are good elements of K(n)∗(BG), then their cup product xy is a

sum of good elements.

Proof. For statement i), we note that if G is abelian, then the results in subsection
5.4 make it clear that K(n)∗(BG) is generated by Euler classes of representations
of G itself.

Statement ii) is a consequence of the behavior of the transfer and Euler classes
with respect to products: if x1 = TrG1

H1
(e(ρ1)) and x2 = TrG2

H2
(e(ρ2)), then x1×x2 =

TrG1×G2
H1×H2

(e(ρ1 ⊕ ρ2)).
Statement iii) follows from the fact that Tr : K(n)∗(BG(p)) −→ K(n)∗(BG) is

onto.
To prove statement iv), suppose x = Tr(e(ρ)) where ρ is a representation of

K < G. Then there is a pullback diagram of the form∏
BHα

Q
fα−−−−−−−−−→ BK

↓ ↓
BH

f−−−−−−−−−→ BG

where each Hα is a subgroup of H . By naturality of the transfer,

f∗(x) =
∑
α

Tr(e(f∗α(ρ))).

Finally, statement v) is a consequence of ii) and iv): x × y ∈ K(n)∗(B(G×G))
is good and xy = ∆∗(x× y) where ∆ : G→ G×G is the diagonal map.

The next theorem is the main result of this section.

Theorem 7.3. If a finite group G is good, then so is the wreath product W =
Z/p oG.

To prove Theorem 7.3, we study the extension

1 −→ Gp −→W
π−→ Z/p −→ 1

and the associated spectral sequence {E∗,∗r (BW )} with

E∗,∗2 (BW ) = H∗(Z/p;K(n)∗(BGp))⇒ K(n)∗(BW ).(7.4)

Z/p acts on Gp by permuting the factors. Our first observation is that the in-
duced action of Z/p onK(n)∗(BGp) makesK(n)∗(BGp) into a permutation module.
This follows from the fact that the Künneth isomorphism

K(n)∗(BG)⊗p ' K(n)∗(BGp)(7.5)
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is a Z/p–module map. This is formal if p is odd, as then K(n) is a commutative ring
spectrum. If p = 2, K(n) is no longer commutative; however a formula of Würgler
[Wur86, Prop.2.4] measures the deviation, and we conclude that (7.5) will still be
a map of Z/p–modules because of our hypothesis that K(n)∗(BG) is concentrated
in even degrees.

Thus, as a module over Z/p, we have a decomposition

K(n)∗(BGp) = F ⊕ T
where F is a free Z/p–module and T has trivial Z/p–action. Moreover

Hi(Z/p;F ) =
{
FZ/p for i = 0,
0 for i > 0,

and
H∗(Z/p;T ) = H∗(BZ/p)⊗ T.

We recall that E0,∗
2 (BW ) is isomorphic to K(n)∗(BGp)Z/p via the restriction

ResWGp : K(n)∗(BW ) −→ K(n)∗(BGp). Via π∗, the spectral sequence {E∗,∗r (BW )}
is a module over the Atiyah–Hirzebruch spectral sequence {E∗,∗r (BZ/p)} that con-
verges to K(n)∗(BZ/p).

Lemma 7.6. Every element in E0,∗
2 (BW ) is a permanent cycle represented by a

linear combination of good elements.

Assuming this lemma, it follows that for all r ≥ 2, there are isomorphisms of
differential graded K(n)∗–vector spaces

(E∗,∗r (Z/p)⊗ T )⊕ FZ/p −→ E∗,∗r (BW ).

Thus we conclude that K(n)∗(BW ) is spanned by products of the good elements
of Lemma 7.6 and the image of π∗ : K(n)∗(BZ/p) −→ K(n)∗(BW ). By parts i),
iv), and v) of Proposition 7.2, W is good, and we have proved Theorem 7.3.

It remains to prove the lemma.
We begin by being more explicit about a decomposition of Z/p–modules

K(n)∗(BGp) = F ⊕ T.
Choose a basis {xi} for K(n)∗(BG). Let F have basis {xi1 × · · · × xip} where

the subscripts i1, . . . , ip are not all the same. Note that FZ/p will then be spanned
by elements of the form N(y), where, if y ∈ K(n)∗(BGp), N(y) =

∑
σ∈Z/p σ ·y. Let

T have basis {P (xi)}, where P (x) = x× · · · × x ∈ K(n)∗(BGp) for x ∈ K(n)∗(G).
Lemma 7.6 then follows from the next two lemmas.

Lemma 7.7. If y ∈ K(n)∗(BGp) is good, there is a good element z ∈ K(n)∗(BW )
so that ResWGp(z) = N(y).

Lemma 7.8. If x ∈ K(n)∗(BG) is good, there is a good element z ∈ K(n)∗(BW )
so that ResWGp(z) = P (x).

Proof of Lemma 7.7. As Gp is normal in W , we have ResWGp(TrWGp(y)) = N(y).
Thus one can let z = TrWGp(y).

Proof of Lemma 7.8. Suppose x is the transferred Euler class Tr(e(ρ)) for a complex
representation ρ of some subgroup H < G. The representation ρ ⊕ · · · ⊕ ρ of Hp

extends to a representation ρ̂ of W = Z/p oH and e(ρ̂) restricts to P (e(ρ)).
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There is a commutative diagram

K(n)∗(BHp) Res←− K(n)∗(B(Z/p oH))
↓Tr ↓Tr

K(n)∗(BGp) Res←− K(n)∗(BW ).

Hence we have

Res(Tr(e(ρ̂))) = Tr(Res(e(ρ̂)))
= Tr(P (e(ρ)))
= P (Tr(e(ρ)))
= P (x).

So we can take z = Tr(e(ρ̂)).

7.2. The nonabelian groups of order p3. Next we recall the results of Tezuka–
Yagita [TY] and explain how their work shows that G is good for each nonabelian
group of order p3. For each prime there are two such groups, and in each case there
is an extension

1 −→ Z/p −→ G −→ (Z/p)2 −→ 1.

Let c ∈ G be a generator of the subgroup of order p, which is the center C of G,
and let a, b ∈ G be elements which map to generators of the quotient group, which
is the abelianization of G. In each case we have relations c = [a, b] and cp = 1.
For p odd we can take bp = 1 and ap = 1 or c; these two groups are denoted by E
and M , respectively. For p = 2 we can take a2 = c and b2 = 1 or c; these are the
dihedral group D8 and the quaternion group Q8, respectively.

Consider the abelian subgroup A < G generated by b and c. In the quaternion
case it is cyclic of order four generated by b, and in the other three cases it is
elementary abelian of rank 2. Define a one–dimensional representation φ of A by
φ(b) = i in the quaternion case and φ(c) = e2πi/p, φ(b) = 1 in the other cases. Let
ρ be the representation of G induced by φ and let c1, . . . , cp ∈ K(n)∗(BG) be its
Chern classes.

Let λ1 and λ2 be two multiplicative generators of the representation ring of the
quotient and let y1, y2 ∈ K(n)∗(BG) denote the images of their Euler classes.

Then we have

Theorem 7.9 ([TY]). Let G be a nonabelian group of order p3. Then K(n)∗(BG)
is multiplicatively generated by the classes

y1, y2, c1, . . . , cp

defined above. A similar statement holds for BP ∗(BG) and there is an isomorphism

K(n)∗(BG) ' K(n)∗ ⊗BP∗ BP ∗(BG).

Moreover, the generators c1, . . . , cp can be replaced by any other elements x1, . . . , xp
such that xi and ci have the same restriction in BP ∗(BC).

We assume this calculation and note that y1, y2, and cp are Euler classes of
representations of G. By Proposition 7.2, if we can find elements x1, . . . , xp−1 as
in the theorem that are also transferred Euler classes, it will follow that G is good.

Let v ∈ BP ∗(BA) be the Euler class of φ and u ∈ BP ∗(BC) its restriction.
The total Chern class of ρ restricts to (1 + u)p, i.e. ci restricts to a unit multiple
of pui for 1 ≤ i ≤ p − 1. Similarly, by the double coset formula we see that
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xi = Tr(vi) ∈ BP ∗(BG) restricts to pui ∈ BP ∗(BC). Since vi is an Euler class,
y1, y2, x1, . . . , xp−1, cp are good elements that generate BP ∗(BG). We have proved

Proposition 7.10. Every group of order p3 is good in the sense of 7.1.
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