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Abstract. We introduce and study a new class of projection methods—namely, the velocity-
correction methods in standard form and in rotational form—for solving the unsteady incompressible
Navier–Stokes equations. We show that the rotational form provides improved error estimates in
terms of the H1-norm for the velocity and of the L2-norm for the pressure. We also show that
the class of fractional-step methods introduced in [S. A. Orsag, M. Israeli, and M. Deville, J. Sci.
Comput., 1 (1986), pp. 75–111] and [K. E. Karniadakis, M. Israeli, and S. A. Orsag, J. Comput.
Phys., 97 (1991), pp. 414–443] can be interpreted as the rotational form of our velocity-correction
methods. Thus, to the best of our knowledge, our results provide the first rigorous proof of stability
and convergence of the methods in those papers. We also emphasize that, contrary to those of the
above groups, our formulations are set in the standard L2 setting, and consequently they can be
easily implemented by means of any variational approximation techniques, in particular the finite
element methods.
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1. Introduction. We consider in this paper the time discretization of the un-
steady incompressible Navier–Stokes equations in primitive variables. For a given
body force f(t) and an initial solenoidal vector field v0, we look for u and p such that




∂tu − ν∇2u + u·∇u +∇p = f in Ω× [0, T ],

∇·u = 0 in Ω× [0, T ],

u|Γ = 0,

u|t=0 = v0 in Ω.

(1.1)

The boundary condition on the velocity is set to zero for the sake of simplicity. The
fluid domain Ω is open and bounded in R

d (d = 2 or 3 in practical situations). The
domain boundary Γ is assumed to be smooth; e.g., Γ is Lipschitzian and Ω is locally
on one side of its boundary.

The goal of this paper is to present a new class of fractional-step projection meth-
ods. The original projection method was introduced by Chorin [3] and Temam [15]
in the late 60s. An important class of projection methods is the so-called pressure-
correction methods introduced in [5, 8]. These schemes consist of two substeps per
time step: the pressure is treated explicitly in the first substep and corrected in the sec-
ond substep by projecting the intermediate velocity onto the space of divergence-free
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fields. These schemes are widely used in practice and have been rigorously analyzed
in [4, 14, 7].

The new class of projection methods that we introduce in this paper also consist
of two substeps per time step: here the viscous (velocity) term is treated explicitly
in the first substep and corrected in the second one. Two versions of the method are
presented: a standard form and a rotational form. We prove stability and O(δt2)
convergence in the L2-norm of the velocity for both versions. We also prove improved
error estimates for the rotational form, namely, O(δt3/2) convergence in the H1-norm
of the velocity and the L2-norm of the pressure. Such estimates are new and, as
indicated by our numerical results, appear to be the best possible under the general
context considered in this paper. Since this class of projection methods can be viewed
as the dual class of pressure-correction methods, we shall hereafter refer to them as
velocity-correction methods.

An interesting aspect of the new class of projection methods is its relation to a
set of schemes introduced in [10] and [9]. These schemes have never been analyzed
rigorously, partly because they do not fit into any standard weak setting. As originally
presented in [10] and [9], these schemes use normal traces of second derivatives of the
velocity at the boundary, introducing formidable difficulties in analysis as well as
in implementation. In contrast, the new schemes are set in the standard L2 weak
setting and consequently can be naturally implemented and analyzed by means of
finite elements or spectral methods. In fact, the schemes in [10] and [9] are formally
equivalent, in the spatial continuous case, to the rotational forms of our velocity-
correction methods. Thus, to the best of our knowledge, this paper provides the first
rigorous proof of stability and convergence of the methods introduced in [10] and [9].

The paper is organized as follows. In the next section, we introduce the velocity-
correction method in standard form and prove error estimates for both the time
continuous and the time discrete versions of the method. Then, in section 3, we
introduce the rotational form of the velocity-correction method and show that this
version yields better convergence rates than its standard counterpart. In section 4,
we present numerical results, using a finite element method and a Legendre spectral
method, which are consistent with our theoretical analysis. In section 5, we examine
the relation between the splitting schemes introduced in [10] and [9] and our velocity-
correction methods in rotational form. In section 6, we indicate how nonlinear terms
can be treated in the velocity-correction schemes. We present concluding remarks in
section 7.

We now introduce some notation. We shall use the standard Sobolev spaces
L2(Ω)d, H1(Ω)d, H−1(Ω)d, etc., whose norm will be denoted by ‖ · ‖0,Ω, ‖ · ‖1,Ω,
‖ · ‖−1,Ω, etc. The L2 scalar product for scalar and vector valued functions is denoted
by (·, ·). We equip H1

0 (Ω)d with the following norm:

∀β ∈ H1
0 (Ω)d, ‖β‖1,Ω := (‖∇·β‖2

0,Ω + ‖∇×β‖2
0,Ω)1/2.(1.2)

We introduce two spaces of solenoidal vector fields

H = {v ∈ L2(Ω)d; ∇·v = 0; v · n|Γ = 0},(1.3)

V = {v ∈ H1(Ω)d; ∇·v = 0; v|Γ = 0},(1.4)

and we define PH to be the L2 projection onto H.
We denote by dt and ∂t the time derivative and the partial derivative with respect

to time, respectively. Let δt > 0 be a time step and set tk = kδt for 0 ≤ k ≤ K =
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[T/δt]. Let φ0, φ1, . . . , φK be some sequence of functions in some Banach space E.
We shall use the following discrete norms:

‖φ‖l2(E) :=

(
δt

K∑
k=0

‖φk‖2
E

)1/2

, ‖φ‖l∞(E) := max
0≤k≤K

(‖φk‖2
E

)
.(1.5)

We denote by c a generic constant which is independent of ε and δt but possibly
depends on the data and the solution, and the value of which may vary at each
occurrence.

Since the nonlinear term does not contribute in any essential way to the error
analysis of projection methods, we shall carry out our analysis for the linearized
equations only, so as to avoid technicalities which may obscure the essential ideas in
the proof. Our proofs can be adapted to account for the nonlinearity using standard
techniques (cf. [16, 14, 7]).

2. Velocity-correction methods: Standard form.

2.1. Introduction of the scheme. Before introducing velocity-correction
methods, let us recall the second-order pressure-correction scheme. Hereafter, we
take ν = 1 for simplicity and drop the nonlinear term. A second-order pressure-
correction scheme is written in the following form: set u0 = u(0), p0 = p(0), and
choose u1 and p1 to be reasonable approximations of u(δt) and p(δt); then for k ≥ 1
we look for (ũk+1;uk+1, pk+1) such that

{
1

2δt (3ũ
k+1 − 4uk + uk−1)−∇2ũk+1 +∇pk = f(tk+1),

ũk+1|Γ = 0
(2.1)

and 


3
2δt (u

k+1 − ũk+1) +∇(pk+1 − pk) = 0,

∇·uk+1 = 0,

uk+1 · n|Γ = 0,

(2.2)

where n is the outward normal of Ω. For a rigorous analysis of this scheme and its
variants, we refer to [4, 14, 7].

Now we propose to adopt a new point of view by switching the role of pressure
and velocity. We first treat the viscous (velocity) term explicitly in the first substep
and then correct it in the second substep. The corresponding scheme is as follows:
set ũ0 = v0 and choose ũ1 to be a good approximation of u(δt); then for k ≥ 1 we
look for (uk+1, pk+1; ũk+1) such that


1

2δt (3u
k+1 − 4ũk + ũk−1)−∇2ũk +∇pk+1 = f(tk+1),

∇·uk+1 = 0,

uk+1 · n|Γ = 0

(2.3)

and {
3

2δt (ũ
k+1 − uk+1)−∇2(ũk+1 − ũk) = 0,

ũk+1|Γ = 0.
(2.4)
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We shall hereafter refer to this scheme as the standard form of the velocity-correction
method. Note that there is a strong similarity between the velocity-correction method
and the pressure-correction method. In fact, our velocity-correction scheme can be
regarded as the dual of the pressure-correction scheme.

Note also that (2.3) can be written as

uk+1 = PH

(
4

3
ũk − 1

3
ũk−1 +

2δt

3
(∇2ũk + f(tk+1))

)
,

where PH is the L2 projection onto H. Hence, the method defined by (2.3)–(2.4) falls
into the class of the projection methods as introduced by Chorin and Temam. Since
the projection step precedes the viscous step, one could also refer to these methods
as “projection–diffusion” methods as in [1].

We observe from (2.4) that ∇2(ũk+1 − ũk) · n|Γ = 0, which implies that

∇2ũk+1 · n∣∣
Γ

= ∇2ũk · n|Γ = · · · = ∇2ũ0 · n|Γ.(2.5)

We then derive from the above and (2.3) that

∂pk+1

∂n

∣∣∣∣
Γ

= (f(tk+1) +∇2ũ0) · n|Γ.(2.6)

This is obviously an artificial Neumann boundary condition for the pressure, which
will introduce a numerical boundary layer on the pressure and limit the accuracy of
the scheme, just as in the case of pressure-correction schemes.

2.2. Implementation of the standard form. When working with H1-
conformal finite elements, it is difficult to solve (2.3) as a weak Poisson problem
for the pressure, for there is a second derivative in the right-hand side which cannot
be tested against gradients. To avoid this difficulty, we rewrite the algorithm in an
equivalent form by making algebraic substitutions.

By subtracting step (2.3) at time tk from step (2.3) at time tk+1 and by substi-
tuting step (2.4) at time tk into the resulting equation, one obtains a new equivalent
form of the projection step:


1

2δt (3u
k+1 − 7ũk + 5ũk−1 − ũk−2) +∇(pk+1 − pk) = f(tk+1)− f(tk),

∇·uk+1 = 0,

uk+1 · n|Γ = 0.

(2.7)

Note that in this form the projection step can be solved easily as a weak Poisson
problem as follows:{

Find pk+1 in H1(Ω)/R such that ∀q in H1(Ω)/R

(∇(pk+1 − pk),∇q) = (f(tk+1)− f(tk) + 1
2δt (7ũ

k − 5ũk−1 + ũk−2),∇q).
(2.8)

Once the pressure is known, the new viscous velocity ũk+1 is evaluated by solving{
1

2δt (3ũ
k+1 − 4ũk + ũk−1)−∇2ũk+1 +∇pk+1 = f(tk+1),

ũk+1|Γ = 0.
(2.9)

Note that the projected velocity uk+1 has been completely eliminated from the
algorithm (2.8)–(2.9); hence, it is not necessary to evaluate this quantity, i.e., ũk+1 is
the approximate velocity to be considered in practice.
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2.3. The time continuous version: A singularly perturbed PDE. Just
as in the pressure-correction case (cf., e.g., [11, 14]), the behavior of the error for the
velocity-correction scheme (2.7)–(2.9) is determined by the corresponding singularly
perturbed system:

∂tu
ε −∇2uε +∇pε = f, uε|Γ = 0,(2.10)

∇·(uε − ε(∇pεt − ft)) = 0,

(
∂pεt
∂n

− ft · n
) ∣∣∣

Γ
= 0,(2.11)

uε|t=0 = u(0), pε|t=0 = p(0).(2.12)

Note that (2.11) is obtained by taking the divergence of (2.7) and letting δt → 0. Its

singular nature comes from the nonphysical boundary condition (
∂pε

t

∂n − ft · n)|Γ = 0,
which introduces a numerical boundary layer for the pressure.

The following theorem characterizes the errors u − uε and p − pε.
Theorem 2.1. If the solution of (1.1) is sufficiently smooth, we have

‖u − uε‖L2(L2) + ε
1
4 ‖u − uε‖L∞(L2) + ε

1
2 (‖u − uε‖L∞(H1) + ‖p − pε‖L∞(L2)) ≤ cε.

Proof. We shall first derive some a priori estimates.
We denote e = u − uε and q = p − pε. Subtracting (2.10) from (1.1), we find

{
et −∇2e +∇q = 0, e|Γ = 0,

∇·e = −ε∇·(∇pεt − ft) = ε∇·∇qt − ε∇·(∇∂tp − ft), (
∂pε

t

∂n − ft · n)|Γ = 0,

(2.13)

with e(0) = 0 and q(0) = 0. Taking the inner product of (2.13) with (e, q), we find

1

2
dt‖e‖2

0,Ω + ‖∇e‖2
0,Ω +

ε

2
dt‖∇q‖2

0,Ω = ε(∇∂tp − ft,∇q)

≤ ε

2
‖∇∂tp − ft‖2

0,Ω +
ε

2
‖∇q‖2

0,Ω.

Thus, an application of the Gronwall lemma leads to

‖e(t)‖2
0,Ω + ε‖∇q(t)‖2

0,Ω +

∫ t

0

‖∇e‖2
0,Ωds ≤ cε.(2.14)

Now, noticing that e(0) = 0 and q(0) = 0 imply that et(0) = 0, we can repeat the
computation above to obtain

‖et(t)‖2
0,Ω + ε‖∇qt(t)‖2

0,Ω +

∫ t

0

‖∇et‖2
0,Ωds ≤ cε,(2.15)

which implies, in particular, that

‖uε
t‖L∞(L2) + ‖∇pεt‖L∞(L2) ≤ c.(2.16)

We are now in position to derive the desired error estimates. Consider the fol-
lowing parabolic dual problem:


wt +∇2w +∇r = e(s), s ∈ (0, t),

∇·w = 0,

w|Γ = 0, w(t) = 0.

(2.17)
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It is well known (and an easy matter to show) that∫ t

0

(‖w‖2
2,Ω + ‖∇r‖2

0,Ω)ds ≤ c

∫ t

0

‖e(s)‖2
0,Ωds.(2.18)

Taking the inner product of (2.17) with e(s) and using the error equation (2.13) and
the fact that ∇·w = 0, we infer

‖e‖2
0,Ω = (e, wt) + (e,∇2w) + (∇r, e)

= dt(e, w)− (et, w) + (∇2e, w)− (r,∇·e)
= dt(e, w)− ε(∇r,∇(pεt − ft)).

(2.19)

Integrating the equation above on the interval [0, t], we find∫ t

0

‖e‖2
0,Ωds ≤ ε

(∫ t

0

‖∇r‖2
0,Ωds

) 1
2
(∫ t

0

‖∇(pεt − ft)‖2
0,Ωds

) 1
2

.

Using this bound together with (2.16) and (2.18), we finally obtain

‖e‖L2(L2) ≤ cε.

Next, we consider a second parabolic dual problem:


wt +∇2w +∇r = et(s), s ∈ (0, t),

∇·w = 0,

w|Γ = 0, w(t) = 0.

(2.20)

Owing to (2.15), we have∫ t

0

(‖w‖2
2,Ω + ‖∇r‖2

0,Ω)ds ≤ c

∫ t

0

‖et(s)‖2
0,Ωds ≤ cε.(2.21)

Taking the inner product of (2.20) with e(s), and proceeding in the same fashion as
above, we find

1

2
dt‖e‖2

0,Ω = dt(e, w)− (r,∇·e) = dt(e, w)− ε(∇r,∇(pεt − ft)).(2.22)

Integrating this equation in time and using (2.21), we deduce

‖e(t)‖2
0,Ω ≤ 2ε

(∫ t

0

‖∇r‖2
0,Ωds

) 1
2
(∫ t

0

‖∇(pεt − ft)‖2
0,Ωds

) 1
2

≤ cε
3
2 .

To estimate ‖e‖L∞(H1), we take the inner product of the first equation in (2.13)
with et as follows:

‖et‖2
0,Ω +

1

2
dt‖∇e‖2

0,Ω = (q,∇·et) = ε(∇q, ∂t∇(pεt − ft))

= εdt(∇q,∇(pεt − ft))− ε(∇qt,∇(pεt − ft)).
(2.23)

Integrating this equation in time and using the a priori estimates in (2.16), we obtain

‖et‖2
L2(L2) + ‖∇e‖2

L∞(L2) ≤ Cε(‖∇q‖L∞(L2) + ‖∇qt‖L2(L2))‖∇(pεt − ft)‖L∞(L2) ≤ cε.

Finally, using the estimate above and (2.15), we derive

‖q‖L∞(L2) ≤ cε
1
2 .

The proof is now complete.
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2.4. Error estimates for the standard velocity-correction scheme. In
this section we derive error estimates for the standard velocity-correction scheme
(2.3)–(2.4). Hereafter we assume that the following nonessential initialization hy-
pothesis holds:

(H)




‖u(δt)− ũ1‖0,Ω ≤ cδt2,

‖u(δt)− ũ1‖1,Ω ≤ cδt3/2,

‖u(δt)− ũ1‖2,Ω ≤ cδt.

Remark 2.1. We point out that this hypothesis would hold, in particular, if
(ũ1, u1, p1) were obtained by using a first-order velocity-correction projection scheme.
This would amount to replacing the second-order BDF (backward difference formula)
time stepping in (2.3) with the backward Euler time stepping at the very first time
step.

Theorem 2.2. Under the initialization hypothesis (H) and provided that the
solution to (1.1) is smooth enough in time and space, the solution (uk, ũk, pk) to
(2.3)–(2.4) is such that

‖u − u‖l2(L2(Ω)d) + ‖u − ũ‖l2(L2(Ω)d) ≤ c(u, p, T ) δt2,

‖u − u‖l∞(L2(Ω)d) + ‖u − ũ‖l∞(L2(Ω)d) ≤ c(u, p, T ) δt
3
2 ,

‖u − ũ‖l∞(H1(Ω)d) + ‖p − p‖l∞(L2(Ω)) ≤ c(u, p, T ) δt.

Note that the discrete norms in the theorem above, and subsequently in later sections,
are defined in (1.5). By comparing the time discrete version (2.3)–(2.4) and the time
continuous version (2.10)–(2.12), one observes that ε in (2.10)–(2.12) corresponds to
δt2 in (2.3)–(2.4). Thus, the results of Theorem 2.2 are fully consistent with those of
Theorem 2.1.

The proof of Theorem 2.2 follows exactly the same procedure as the proof of
Theorem 2.1 but for the time discretization. The main technical difficulty comes from
the treatment of the second-order BDF term, which will be treated in detail in the
proof of Theorem 3.1. Thus, we omit the proof here to avoid unnecessary repetition.

3. Velocity-correction method: Rotational form.

3.1. Introduction of the scheme. The main obstacle in proving error esti-
mates better than first-order on the velocity in the H1-norm and the pressure in the
L2-norm comes from the fact that the algorithm enforces the nonphysical pressure
Neumann boundary condition (2.6). This phenomenon is reminiscent of the numeri-
cal boundary layer induced by the nonphysical boundary condition ∂np

k+1|Γ = · · · =
∂np

0|Γ enforced by the pressure-correction method in its standard form; cf. [14, 7].
Thus, in order to obtain better approximation for the pressure, we need to correct this
nonphysical boundary condition. Considering the identity ∇2ũk = ∇∇·ũk−∇×∇×ũk

and the fact that we are searching for divergence-free solutions, we are led to replace
−∇2ũk in (2.3)–(2.4) with ∇×∇×ũk. The new scheme is as follows:


1

2δt (3u
k+1 − 4ũk + ũk−1) +∇×∇×ũk +∇pk+1 = f(tk+1),

∇·uk+1 = 0,

uk+1 · n|Γ = 0

(3.1)
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and {
3

2δt (ũ
k+1 − uk+1)−∇2ũk+1 −∇×∇×ũk = 0,

ũk+1|Γ = 0.
(3.2)

This scheme is hereafter referred to as the rotational form of the velocity-correction
algorithm.

Observing from (3.2) that (∇2ũk+1 + ∇×∇×ũk) · n|Γ = 0, we derive from (3.1)
that

∂pk+1

∂n

∣∣∣∣
Γ

= (f(tk+1) +∇2ũk+1) · n|Γ,(3.3)

which, unlike (2.6), is a consistent Neumann boundary condition for the pressure.
This is the main reason why the rotational form yields a much better pressure ap-
proximation than the standard form.

3.2. Implementation of the rotational form. As in the standard form of
the method, the projection step (3.1) cannot be solved as a weak Poisson problem
when working with H1-conformal finite elements, for there is a second derivative in
the right-hand side. This difficulty can be solved once more by making algebraic
substitutions.

By subtracting step (3.1) at time tk from step (3.1) at time tk+1 and by substi-
tuting step (3.2) at time tk into the resulting equation, a more adequate form of the
projection step is obtained:



1
2δt (3u

k+1 − 7ũk + 5ũk−1 − ũk−2) +∇(pk+1 − pk +∇·ũk)

= f(tk+1)− f(tk),

∇·uk+1 = 0,

uk+1 · n|Γ = 0.

(3.4)

The new viscous velocity ũk+1 is evaluated by solving{
1

2δt (3ũ
k+1 − 4ũk + ũk−1)−∇2ũk+1 +∇pk+1 = f(tk+1),

ũk+1|Γ = 0.
(3.5)

Note that the new form of the projection step is still not satisfactory since a second
derivative remains in the form of the term ∇∇·ũk. To remove this final difficulty, we
introduce an auxiliary pressure φk+1 = pk+1 − pk + ∇·ũk. The final algorithm is as
follows: 


1

2δt (3u
k+1 − 7ũk + 5ũk−1 − ũk−2) +∇φk+1 = f(tk+1)− f(tk),

∇·uk+1 = 0,

uk+1 · n|Γ = 0,

(3.6)

pk+1 = φk+1 + pk −∇·ũk,(3.7)

{
1

2δt (3ũ
k+1 − 4ũk + ũk−1)−∇2ũk+1 = f(tk+1)−∇pk+1,

ũk+1|Γ = 0.
(3.8)
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In practice, the projection step is processed as follows:{
Find φk+1 in H1(Ω)/R such that ∀q in H1(Ω)/R,

(∇φk+1,∇q) = (f(tk+1)− f(tk) + 1
2δt (7ũ

k − 5ũk−1 + ũk−2),∇q).
(3.9)

Note once again that the projected velocity uk+1 has been eliminated from the
algorithm.

3.3. A time continuous version. We emphasize that it is informative to study
the time continuous version of the scheme, since it both reveals the behavior of the
splitting error and indicates the procedure to follow for obtaining stability and con-
vergence results on the discrete system.

By neglecting some small terms, the following can be considered an “approximate”
time continuous version of the scheme (3.6)–(3.8):

∂tu
ε −∇2uε +∇pε = f, uε|Γ = 0,(3.10)

∇·uε − ε∇·(∇φ− εft) = 0, (∇φ− εft) · n|Γ = 0,(3.11)

φ = εpεt +∇·uε,(3.12)

with uε(0) = u(0) and pε(0) = p(0). Note that (3.10) and (3.12) correspond, re-
spectively, to (3.8) and (3.7), while (3.11) corresponds to the divergence of (3.6), and
ε ∼ ∆t.

Without going into the full details of proving the well-posedness of (3.10)–(3.12)
and providing a detailed error analysis as we did for (2.10)–(2.12), we just indicate
how to derive the first a priori estimate. This will guide us to prove the stability of
the discrete scheme and will show that this scheme provides a better control on the
divergence of the approximate velocity.

Taking the inner product of εuε
t with the time derivative of (3.10), we find

ε

2
dt‖uε

t‖2
0,Ω + ε‖∇uε

t‖2
0,Ω = ε(uε

t , ft) + ε(pεt ,∇·uε
t )

= ε(uε
t , ft)− (∇·uε − φ,∇·uε

t )

= ε(uε
t , ft)−

1

2
dt‖∇·uε‖2

0,Ω + (φ,∇·uε
t ).

Noting that

(φ,∇·uε
t ) = (φ, ε∇2φt − ε2∇·ft) = −ε

2
dt‖∇φ‖2

0,Ω + ε2(∇φ, ft),

we obtain

ε

2
dt‖uε

t‖2
0,Ω + ε‖∇uε

t‖2
0,Ω +

1

2
dt‖∇·uε‖2

0,Ω +
ε

2
dt‖∇φ‖2

0,Ω = ε(uε
t , ft) + ε2(∇φ, ft).

Using the fact that the initial data are such that uε
t (0) = f(0) +∇2uε(0)−∇pε(0) =

f(0) +∇2u(0)−∇p(0), the Gronwall lemma yields

‖uε
t (t)‖2

0,Ω + ‖∇φ(t)‖2
0,Ω +

1

ε
‖∇·uε(t)‖2

0,Ω +

∫ t

0

‖∇uε
t‖2

0,Ωds ≤ c, t ∈ [0, T ].

Let us define e = u − uε and ψ = ε∂t(p − pε) +∇·uε. By working with the error
equation, the above results become

‖et(t)‖2
0,Ω + ‖∇ψ(t)‖2

0,Ω +
1

ε
‖∇·uε(t)‖2

0,Ω +

∫ t

0

‖∇et‖2
0,Ωds ≤ cε2, t ∈ [0, T ].
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A remarkable consequence, which is essential for obtaining improved error estimates,
is that we have

‖∇·uε‖L∞(L2) ≤ cε
3
2 .(3.13)

3.4. Error analysis. We now turn our attention to the error analysis of the
discrete scheme (3.1)–(3.2). The main result in this section is the following.

Theorem 3.1. Under the initialization hypothesis (H), if (u, p), the solution
to (1.1), is smooth enough in time and space, the solution (uk, ũk, pk) to (3.1)–(3.2)
satisfies the estimates

‖u − u‖l2(L2(Ω)d) + ‖u − ũ‖l2(L2(Ω)d) ≤ c(u, p, T ) δt2,

‖u − ũ‖l2(H1(Ω)d) + ‖p − p‖l2(L2(Ω)) ≤ c(u, p, T ) δt3/2.

The remainder of this section is devoted to the proof of the above theorem. Let
us introduce some notation. For any sequence φ0, φ1, . . . , we set

δtφ
k = φk − φk−1, δttφ

k = δt(δtφ
k), δtttφ

k = δt(δttφ
k).

For any sequence of functions in H1
0 (Ω)d ∩H2(Ω)d, say φ0, φ1, . . . , we set

Dtφ
k = −∇2φk −∇×∇×φk−1.

We shall make use of the following identity:

∀β ∈ H1
0 (Ω)d, (Dtφ

k+1, β) = (∇·φk+1,∇·β) + (∇×δtφ
k+1,∇×β).(3.14)

Hereafter we shall make use of the following notation:




ek = u(tk)− uk,

ẽk = u(tk)− ũk,

ψ̃k = u(tk+1)− ũk,

εk = p(tk)− pk.

(3.15)

The proof of Theorem 3.1 will be carried out through a sequence of estimates presented
below.

3.4.1. Stability and the improved estimate on ‖∇·ũk‖0,Ω.
Lemma 3.1. Provided that the solution of (1.1) is smooth enough in space and

time and satisfies the initialization hypothesis (H), then we have the following error
estimates:

‖∇·ũ‖l∞(L2(Ω)d) ≤ c(u, p, T ) δt3/2,

‖ẽ− e‖l∞(L2(Ω)d) ≤ c(u, p, T ) δt2,

‖δtẽ− δte‖l2(L2(Ω)d) ≤ c(u, p, T ) δt5/2.

Proof. The proof of this lemma follows the procedure set out in section 3.3 for the
time continuous counterpart of the scheme. The critical step here consists of working
with the time increments δte

k+1 and δtẽ
k+1, which corresponds to taking the inner

product of ε∂tu
ε with the time derivative of (3.10).
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Step 1: Let us first write the equations that control the time increments of the
errors. By defining Rk = ∂tu(t

k) − (3u(tk) − 4u(tk−1) + u(tk−2))/2δt, we have for
k ≥ 2 


1

2δt (3δte
k+1 − 4δtẽ

k + δtẽ
k−1) + Dtψ̃

k +∇(δtε
k+1 +∇·ũk) = δtR

k+1,

∇·δtek+1 = 0,

δte
k+1 · n|Γ = 0,

(3.16)

{
3

2δtδtẽ
k+1 + Dtẽ

k+1 = 3
2δtδte

k+1 + Dtψ̃
k,

ẽk+1|Γ = 0.
(3.17)

Step 2: Let us multiply (3.16) by 4δtδte
k+1 and integrate over Ω. We obtain

2(δte
k+1, 3δte

k+1 − 4δtẽ
k+ δtẽ

k−1) + 4δt(δte
k+1, Dtψ̃

k) = 4δt(δte
k+1, δtR

k+1)

≤ 4δt(‖δtek+1 − δtẽ
k+1‖0,Ω + ‖δtẽk+1‖0,Ω)‖δtRk+1‖0,Ω

≤ δt‖δtẽk+1‖2
1,Ω + δt‖δtek+1 − δtẽ

k+1‖2
0,Ω + cδt7,

where we have used the Poincaré inequality and the fact that ‖δtRk+1‖0,Ω ≤ cδt3.
Note also that we have used the inequality 2ab ≤ γa2+b2/γ, which holds for all γ > 0.
We shall repeatedly use this standard trick hereafter without mentioning it anymore.

Since the treatment of the approximate time derivative is quite involved, we show
the details. Let us define

I = 2(δte
k+1, 3δte

k+1 − 4δtẽ
k + δtẽ

k−1)

= 6(δte
k+1, δte

k+1 − δtẽ
k+1) + 2(δte

k+1 − δtẽ
k+1, 3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1)

+ 2(δtẽ
k+1, 3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1)

and denote by I1, I2, and I3 the three terms in the right-hand side. Owing to the
standard identities

2(ak+1, ak+1 − ak) = |ak+1|2 + |ak+1 − ak|2 − |ak|2,
2(ak+1, 3ak+1 − 4ak + ak−1) = |ak+1|2 + |2ak+1 − ak|2 + |δttak+1|2

− |ak|2 − |2ak − ak−1|2,
(3.18)

we deduce

I1 = 3‖δtek+1‖2
0,Ω + 3‖δtek+1 − δtẽ

k+1‖2
0,Ω − 3‖δtẽk+1‖2

0,Ω,

I3 = ‖δtẽk+1‖2
0,Ω + ‖2δtẽk+1 − δtẽ

k‖2
0,Ω + ‖δtttẽk+1‖2

0,Ω

− ‖δtẽk‖2
0,Ω − ‖2δtẽk − δtẽ

k−1‖2
0,Ω.

For the remaining term I2, we make use of (3.17) as follows:

3

2δt
I2 = 2(Dtẽ

k+1 −Dtψ̃
k, 3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1).

Using the relation ψ̃k = δtu(t
k+1) + ẽk, we obtain

3

2δt
I2 = 2(Dtδtẽ

k+1, 3δtẽ
k+1 − 4δtẽ

k + δtẽ
k−1)

− 2(Dtδtu(t
k+1), 3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1).
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By denoting as I21 and I22 the two terms in the right-hand side, and by using the
identities (3.14) and (3.18), we infer

I21 = 2(∇·δtẽk+1,∇·(3δtẽk+1 − 4δtẽ
k + δtẽ

k−1))

+ 2(∇×δttẽ
k+1, 3∇×δttẽ

k+1 −∇×δttẽ
k)

= ‖∇·δtẽk+1‖2
0,Ω + ‖∇·(2δtẽk+1 − δtẽ

k)‖2
0,Ω + ‖∇·(δtttẽk+1)‖2

0,Ω

− ‖∇·δtẽk‖2
0,Ω − ‖∇·(2δtẽk − δtẽ

k−1)‖2
0,Ω + 3‖∇×δttẽ

k+1‖2
0,Ω

+
1

3
‖∇×(3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1)‖2
0,Ω − 1

3
‖∇×δttẽ

k‖2
0,Ω,

I22 =− 2(∇×δttu(t
k+1),∇×(3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1))

≥− cδt4 − 1

6
‖∇×(3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1)‖2
0,Ω.

By combining all the results above, we deduce the following bound:

3‖δtek+1‖2
0,Ω− 3‖δtẽk+1‖2

0,Ω + 3(1− δt)‖δtek+1 − δtẽ
k+1‖2

0,Ω

+ ‖δtẽk+1‖2
0,Ω + ‖2δtẽk+1 − δtẽ

k‖2
0,Ω + ‖δtttẽk+1‖2

0,Ω

+
2δt

3

(
‖∇·δtẽk+1‖2

0,Ω + ‖∇·(2δtẽk+1 − δtẽ
k)‖2

0,Ω + ‖∇·(δtttẽk+1)‖2
0,Ω

+ 3‖∇×δttẽ
k+1‖2

0,Ω +
1

6
‖∇×(3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1)‖2
0,Ω

)
+ 4δt(δte

k+1, Dtψ̃
k)

≤ δt‖δtẽk+1‖2
1,Ω + ‖δtẽk‖2

0,Ω + ‖2δtẽk − δtẽ
k−1‖2

0,Ω

+
2δt

3

(
‖∇·δtẽk‖2

0,Ω + ‖∇·(2δtẽk − δtẽ
k−1)‖2

0,Ω +
1

3
‖∇×δttẽ

k‖2
0,Ω

)
+ cδt5.

Step 3: By taking the square of (3.17), multiplying the result by 4
3δt

2, and inte-
grating over the domain, we have

3‖δtẽk+1‖2
0,Ω+ 4δt(δtẽ

k+1, Dtẽ
k+1) +

4δt2

3
‖Dtẽ

k+1‖2
0,Ω

= 3‖δtek+1‖2
0,Ω + 4δt(δte

k+1, Dtψ̃
k) +

4δt2

3
‖Dtψ̃

k‖2
0,Ω.

Owing to (3.14), we deduce

3‖δtẽk+1‖2
0,Ω − 3‖δtek+1‖2

0,Ω + 2δt‖∇·ẽk+1‖2
0,Ω

+ 2δt‖∇·δtẽk+1‖2
0,Ω + 4δt‖∇×δtẽ

k+1‖2
0,Ω +

4δt2

3
‖Dtẽ

k+1‖2
0,Ω

= 2δt‖∇·ẽk‖2
0,Ω + 4δt(δte

k+1, Dtψ̃
k) +

4δt2

3
‖Dtψ̃

k‖2
0,Ω.

A control on ‖Dtψ̃
k‖2

0,Ω is obtained as follows:

‖Dtψ̃
k‖2

0,Ω ≤ (‖Dtδtu(t
k+1)‖0,Ω + ‖Dtẽ

k‖0,Ω

)2
≤ (cδt2 + ‖Dtẽ

k‖0,Ω

)2
= c2δt4 + 2δtcδt‖Dtẽ

k‖0,Ω + ‖Dtẽ
k‖2

0,Ω

≤ c2δt4 + δt
(
c2δt2 + ‖Dtẽ

k‖2
0,Ω

)
+ ‖Dtẽ

k‖2
0,Ω

≤ cδt3 + (1 + δt)‖Dtẽ
k‖2

0,Ω.
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Note that it is at this very point that the splitting error spoils the optimality. Finally,
we have

3‖δtẽk+1‖2
0,Ω− 3‖δtek+1‖2

0,Ω + 2δt‖∇·ẽk+1‖2
0,Ω + 2δt‖δtẽk+1‖2

1,Ω +
4δt2

3
‖Dtẽ

k+1‖2
0,Ω

≤ 2δt‖∇·ẽk‖2
0,Ω + 4δt(δte

k+1, Dtψ̃
k) +

4δt2

3
(1 + δt)‖Dtẽ

k‖2
0,Ω + cδt5.

Step 4: By combining the bounds obtained at Steps 2 and 3, and by dropping
some nonessential positive terms on the left-hand side, we finally deduce

‖δtẽk+1‖2
0,Ω + ‖2δtẽk+1 − δtẽ

k‖2
0,Ω + 2δt‖∇·ẽk+1‖2

0,Ω +
4δt2

3
‖Dtẽ

k+1‖2
0,Ω

+
2δt

3

(
‖∇·δtẽk+1‖2

0,Ω + ‖∇·(2δtẽk+1 − δtẽ
k)‖2

0,Ω +
1

3
‖∇×δttẽ

k+1‖2
0,Ω

)
+ 3(1− δt)‖δtek+1 − δtẽ

k+1‖2
0,Ω + δt‖δtẽk+1‖2

1,Ω

≤ ‖δtẽk‖2
0,Ω + ‖2δtẽk − δtẽ

k−1‖2
0,Ω + 2δt‖∇·ẽk‖2

0,Ω + (1 + δt)
4δt2

3
‖Dtẽ

k‖2
0,Ω

+
2δt

3

(
∇·δtẽk2

+ ‖∇·(2δtẽk − δtẽ
k−1)‖2

0,Ω +
1

3
‖∇×δttẽ

k‖2
0,Ω

)
+ cδt5.

By applying the discrete Gronwall lemma and using the initialization hypothesis (H),
we infer

δt‖∇·ẽk+1‖2
0,Ω+ δt2‖Dtẽ

k+1‖2
0,Ω +

k∑
l=0

‖δtel − δtẽ
l‖2

0,Ω

≤ c(‖ẽ2‖2
0,Ω + δt‖ẽ2‖2

1,Ω + δt2‖ẽ2‖2
2,Ω + δt4).

Thanks to (H), it is an easy matter to show directly that

‖ẽ2‖2
0,Ω + δt‖ẽ2‖2

1,Ω + δt2‖ẽ2‖2
2,Ω + δt4 ≤ cδt4.

Finally, noticing that

3

2
‖ẽk+1 − ek+1‖0,Ω = δt‖Dtẽ

k+1 +∇×∇×δtu(t
k+1)‖0,Ω

≤ δt‖Dtẽ
k+1‖0,Ω + cδt2,

the desired result follows from the last three inequalities.
Remark 3.1. The first result in the above lemma, namely, ‖∇·ũ‖l∞(L2) ≤ cδt

3
2 , is

the key for obtaining error estimates that improve on those from the standard velocity-
correction scheme. A remarkable property of the rotational velocity-correction scheme
is that even if the time stepping in (3.1)–(3.2) is replaced by the first-order backward
Euler stepping, the estimate on ∇·ũ still holds.

3.4.2. The inverse of the Stokes operator. In this section we recall proper-
ties of the inverse of the Stokes operator that will be useful for proving estimates in
the L2-norm. This operator, which we shall denote by S : H−1(Ω)d −→ V , is defined
as follows. For all v in H−1(Ω)d, S(v) ∈ V is the solution to the following problem:{

(∇S(v),∇w)− (r,∇·w) = 〈v, w〉 ∀w ∈ H1
0 (Ω)d,

(q,∇·S(v)) = 0 ∀q ∈ L2
0(Ω),
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where 〈·, ·〉 denotes the duality pairing between H−1(Ω)d and H1
0 (Ω)d. Obviously, we

have

∀v ∈ H−1(Ω)d, ‖S(v)‖1,Ω + ‖r‖0,Ω ≤ c‖v‖−1,Ω.(3.19)

We shall assume hereafter that the domain Ω is such that the following regularity
property holds:

∀v ∈ L2(Ω)d, ‖S(v)‖2,Ω + ‖r‖1,Ω ≤ c‖v‖0,Ω.(3.20)

The operator S has interesting properties, as listed below.
Lemma 3.2. For all v in H1

0 (Ω)d and all 0 < γ < 1 we have

∀v� ∈ H, (∇S(v),∇v) ≥ (1− γ)‖v‖2
0,Ω − c(γ)‖v − v�‖2

0,Ω.

In particular,

∀v ∈ V, (∇S(v),∇v) = ‖v‖2
0,Ω.

Proof. Owing to the definition of S(v), we have

(∇S(v),∇v) = (r,∇·v) + ‖v‖2
0,Ω

= (r,∇·(v − v�)) + ‖v‖2
0,Ω ∀v� ∈ H

= − (∇r, v − v�) + ‖v‖2
0,Ω

≥ − ‖r‖1,Ω‖v − v�‖0,Ω + ‖v‖2
0,Ω

≥ − c(γ)‖v − v�‖2
0,Ω + (1− γ)‖v‖2

0,Ω, owing to (3.20).

This completes the proof.
Lemma 3.3. The bilinear form

H−1(Ω)d ×H−1(Ω)d � (v, w) �−→ 〈S(v), w〉 := (∇S(v),∇S(w)) ∈ R

induces a seminorm on H−1(Ω)d that we denote | · |�, and
∀v ∈ H−1(Ω)d, |v|� = ‖∇S(v)‖0,Ω ≤ c‖v‖−1,Ω.

Proof. It is clear that it is symmetric 〈S(v), w〉 = (∇S(v),∇S(w)) = 〈S(w), v〉 and
positive 〈S(v), v〉 = ‖∇S(v)‖2

0,Ω; hence, 〈S(v), w〉 induces a seminorm on H−1(Ω)d.
Furthermore,

|v|2� = 〈S(v), v〉 = (∇S(v),∇S(v)) = ‖∇S(v)‖2
0,Ω ≤ c‖v‖2

−1,Ω.

The proof is complete.

3.4.3. Proof of the L2-estimate on the velocity. In this subsection we prove

‖u − u‖l2(L2(Ω)d) ≤ cδt2.

Proof. We begin by reconstructing the momentum equation at time tk+1 by
adding the projection step to the viscous step. In terms of the errors, we obtain

3ẽk+1 − 4ẽk + ẽk−1

2δt
−∇2ẽk+1 +∇εk+1 = Rk+1.(3.21)
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By taking the L2 scalar product with 4δtS(ẽk+1), we obtain

|ẽk+1|2� + |2ẽk+1 − ẽk|2� + |δttẽk+1|2� + 4δt(∇S(ẽk+1),∇ẽk+1)

= 4δt(Rk+1, S(ẽk+1)) + |ẽk|2� + |2ẽk − ẽk−1|2�.

Owing to Lemma 3.2 and the fact that ek+1 is in H, we infer

4δt(∇S(ẽk+1),∇ẽk+1) ≥ 2δt‖ẽk+1‖2
0,Ω − cδt‖ẽk+1 − ek+1‖2

0,Ω.

Thanks to (3.20), we have

4δt(Rk+1, S(ẽk+1)) ≤ cδt‖Rk+1‖2
0,Ω + δt‖ẽk+1‖0,Ω.

As a result, we obtain

|ẽk+1|2� + |2ẽk+1 − ẽk|2� + |δttẽk+1|2� + δt‖ẽk+1‖2
0,Ω ≤ cδt5 + c′δt‖ẽk+1 − ek+1‖2

0,Ω

+ |ẽk|2� + |2ẽk − ẽk−1|2�.

By applying the discrete Gronwall lemma and using the initialization hypothesis, we
infer

‖e‖2
l2(L2(Ω)d) ≤ c‖ẽ− e‖2

l2(L2(Ω)d) + δt4.

The desired result is now an easy consequence of Lemma 3.1.

3.4.4. Proof of the H1-estimate on the velocity. First we need to prove an
estimate on the approximate time derivative. For any sequence of functions φ0, φ1, . . . ,
we set

Dtφ
k+1 =

1

2
(3φk+1 − 4φk + φk−1).

Lemma 3.4. Under the hypotheses of Theorem 3.1 we have the following error
estimates:

‖Dtẽ‖l2(L2(Ω)d) ≤ cδt5/2.

Proof. We use the same argument as for the proof of the L2-estimate, but we use
it on the time increment δtẽ

k+1. For k ≥ 2 we have

1

2δt
(3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1)−∇2δtẽ
k+1 +∇δtε

k+1 = δtR
k+1.

By taking the L2 scalar product with 4δtS(δtẽ
k+1) and repeating the same arguments

as above, we obtain

|δtẽk+1|2� + |2δtẽk+1 − δtẽ
k|2� + |δtttẽk+1|2� + δt‖δtẽk+1‖2

0,Ω

≤ cδt7 + c′δt‖δtẽk+1 − δte
k+1‖2

0,Ω + |δtẽk|2� + |2δtẽk − δtẽ
k−1|2�.

Owing to this inequality, the discrete Gronwall lemma, and the initialization hypothe-
ses, we infer

‖δtẽ‖2
l2(L2(Ω)d) ≤ c‖δtẽ− δte‖2

l2(L2(Ω)d) + cδt7.
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The conclusion is an easy consequence of Lemma 3.1 together with the bound

‖Dtẽ‖l2(L2(Ω)d) ≤ 2‖δtẽ‖2
l2(L2(Ω)d).

Now we are in position to prove the H1-estimate for the velocity approximation
and the L2-estimate for the pressure approximation.

Consider the error equation corresponding to (3.8):{
1

2δt (3ẽ
k+1 − 4ẽk + ẽk−1)−∇2ẽk+1 = Rk+1 −∇εk+1,

ẽk+1|Γ = 0.
(3.22)

We rewrite the above equation and (3.2) as a nonhomogeneous Stokes system for
(ẽk+1, εk+1): {

−∇2ẽk+1 +∇εk+1 = hk+1, ẽk+1|Γ = 0,

∇·ẽk+1 = gk+1,
(3.23)

where we have defined

hk+1 = Rk+1 − 3ek+1 − 4ek + ek−1

2δt
,

gk+1 = −∇·ũk+1.

(3.24)

Owing to Lemma 3.1, we have

‖gk+1‖0,Ω = ‖∇·ũk+1‖0,Ω ≤ cδt
3
2 ∀k.(3.25)

We also have

‖hk+1‖−1,Ω ≤ ‖Rk+1‖−1,Ω +

∥∥∥∥3ẽk+1 − 4ẽk + ẽk−1

2δt

∥∥∥∥
−1,Ω

= ‖Rk+1‖−1,Ω +
1

δt
‖Dtẽ

k+1‖−1,Ω.

(3.26)

Now, the standard result for the nonhomogeneous Stokes system (3.23) leads to

‖ẽk+1‖1,Ω + ‖εk+1‖0,Ω ≤ c‖hk+1‖−1,Ω + ‖gk+1‖0,Ω.(3.27)

Thanks to (3.25), (3.26), and Lemma 3.4, we derive

‖ẽ‖l2(H1(Ω)d) + ‖ε‖l2(L2(Ω)) ≤ cδt
3
2 .

Thus, all the results in Theorem 3.1 have been proved.

4. Numerical results. To test the two versions of the velocity-correction meth-
ods described above, we make convergence tests with respect to δt with finite elements
and a Legendre spectral approximation.

4.1. Convergence tests with finite elements. We test the finite element
approximation on the Stokes problem (1.1) in Ω = ]0, 1[2. We set the source term so
that the exact solution is

p(x, y, t) = cos(πx) sin(πy) sin t,

u(x, y, t) = π sin(2πy) sin2(πx) sin t,

u(x, y, t) = −π sin(2πx) sin2(πy) sin t.
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Fig. 1. Convergence tests for the velocity-correction methods with BDF2 and finite elements.
Left: velocity; right: pressure.

We use mixed P2/P1 finite elements. The mesh used in the tests is composed of 3694
triangles so that the mesh size is h ≈ 1/40. There are 1928 P1-nodes and 7549 P2-
nodes. We make the tests on the range 5.10−4 ≤ δt ≤ 10−1 so that the approximation
error in space is far smaller than the time splitting error.

We have tested the algorithms (2.3)–(2.4) and (3.1)–(3.2); the results are reported
in the Figure 1. In the left panel we show the errors on the velocity in the L∞-
and L2-norms as functions of δt. The + and × symbols are for the results from
the velocity-correction method in rotational form, whereas the black symbols are for
the results from the standard form of the method. It is clear that for the velocity,
the improvement brought by the rotational form is marginal and both schemes are
second-order accurate in the L2-norm. Note, however, that for any given δt the results
from the rotational form of the algorithm are systematically more accurate than their
standard counterparts. The situation is somewhat different for the pressure. The
convergence results for this quantity in the L∞- and L2-norms are reported in the
right panel of Figure 1, the + and × symbols being for the rotational form of the
method and the black symbols for the standard form. The behavior of the errors
in the L2-norm seems to be identical for both variants of the method with a slope
slightly less than 2; however, the rotational form results are systematically better
than the standard ones. For the L∞-norm the picture is different. The results from
the rotational form seem to behave like δt3/2, whereas those from the standard form
of the algorithm behave more or less like δt.

The difference between the standard form and the rotational form of the velocity-
correction algorithm is more spectacular when looking directly at the error fields. We
show in Figure 2 the error on the pressure obtained by both algorithms at time T = 1
with δt = 0.01, using the same scale on both graphs to emphasize the differences. It
is clear from this picture that the pressure field from the standard method is polluted
by a numerical boundary layer, whereas that from the rotational form is smooth.

4.2. Legendre spectral approximation. We have also implemented the
second-order standard and rotational velocity-correction schemes with a Legendre–
Galerkin approximation [13] using 32 × 32 modes. We tested the same analytical
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Fig. 2. Pressure error fields at T = 1 with finite elements. Left: standard form; right: rotational
form.
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Fig. 3. Convergence tests for the velocity-correction methods with BDF2 and the Legendre–
Galerkin method. Left: velocity; right: pressure.

solution as above but with Ω = ]−1,+1[2. The convergence rates and the pressure
error fields are presented in Figures 3 and 4. We observe that the results are similar
to those obtained with the finite element approximation and are consistent with our
theoretical analysis.

5. Connection with the schemes in [10, 9]. In this section we show how
the schemes proposed by Orszag, Israeli, and Deville [10] and Karniadakis, Israeli,
and Orszag [9] can be interpreted as the rotational form of our velocity-correction
methods.

Let us denote by 1
δt (βqu

k+1 −∑q−1
j=0 βju

k−j) the qth-order BDF approximation

for ∂tu(t
k+1). Then, the scheme originally proposed in [10] and [9] (with an Adams–

Moulton-type scheme replacing our BDF scheme—note that this replacement is made
for the convenience of our presentation only; it does not change the essential error
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Fig. 4. Pressure error fields at T = 1 with a Legendre–Galerkin approximation. Left: standard
form; right: rotational form.

behaviors) can be written as follows:


1
δt (βqû

k+1 −∑q−1
j=0 βj ũ

k−j) +∇pk+1 = f(tk+1),

∇·ûk+1 = 0,

ûk+1 · n|Γ = −δt(∇2u)�,k · n|Γ.
(5.1)

We then correct the velocity ûk+1 by computing ũk+1 as follows:{ βq

δt (ũ
k+1 − ûk+1)−∇2ũk+1 = 0,

ũk+1|Γ = 0,
(5.2)

where (∇2u)�,k is some approximate value of ∇2u(tk+1). The authors in [10, 9] pro-
posed the followings choices:

(∇2u)�,k =




0 for O(δt) accuracy,

−∇×∇×ũk for O(δt2) accuracy,

−∇×∇×(2ũk − ũk−1) for O(δt3) accuracy.

(5.3)

In practice, problem (5.1) is solved as a Poisson equation with the Neumann
boundary condition

∂np
k+1|Γ = (f(tk+1) + (∇2u)�,k) · n.

These methods differ from the standard pressure-correction projection methods in
the sense that a consistent pressure boundary condition is enforced. Hence, in princi-
ple, these methods should achieve better convergence properties. To the best of our
knowledge, no proof of stability or convergence is available in the literature for this
class of methods. Furthermore, since second derivatives of the velocity are used in
the Neumann boundary condition for the pressure, this class of methods cannot be
applied directly with a finite element method where these derivatives are usually not
available. This is the main reason why successful implementations of these methods
are reported only with spectral or spectral-element approximations where the trace
of the second-order derivatives of the velocity are available. On the other hand, the
explicit treatment of second derivatives of the velocity leads one to suspect that this
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type of algorithm can be only conditionally stable, with a stability condition of type
δt ≤ ch2 for finite element approximations and δt ≤ cN−4 for spectral or spectral
element approximations.

We shall see in what follows that the boundary condition ambiguity can be re-
moved by rewriting the algorithm in the L2 weak framework, and that the resulting
algorithm is indeed unconditionally stable, for it is a velocity-correction algorithm.

5.1. The weak setting. Let us now rewrite (5.1), (5.2) in L2. Let us assume
for the time being that ∇·(∇2ũ)�,k = 0. By setting uk+1 = ûk+1 + δt(∇2ũ)�,k and
observing that ∇·uk+1 = 0 and uk+1 · n|Γ = 0, the system (5.1) can be rewritten


1
δt (βqu

k+1 −∑q−1
j=0 βj ũ

k−j)− (∇2ũ)�,k +∇pk+1 = f(tk+1),

∇·uk+1 = 0,

uk+1 · n|Γ = 0.

(5.4)

Now, inserting the definition of uk+1 back into (5.2), we obtain


βq(ũ
k+1 − uk+1)

δt
−∇2ũk+1 + (∇2ũ)�,k = 0,

ũk+1|Γ = 0.
(5.5)

Note that for q = 2 and (∇2ũ)�,k = −∇×∇×ũk, the scheme (5.4)–(5.5) is exactly the
velocity-correction algorithm in rotational form (3.1)–(3.2), while the case q = 2 and
(∇2ũ)�,k = ∇2ũk corresponds to the velocity-correction algorithm in standard form
(2.3)–(2.4).

5.2. First-order schemes. It is interesting to consider the case q = 1 and
(∇2ũ)�,k = 0, the resulting scheme being


uk+1 − ũk

δt
+∇pk+1 = f(tk+1),

∇·uk+1 = 0,

uk+1 · n|Γ = 0,

(5.6)




ũk+1 − uk+1

δt
−∇2ũk+1 = 0,

ũk+1|Γ = 0.
(5.7)

In this case, the standard version and the rotational version coincide, and this method
can be viewed as the dual of the original Chorin–Temam method. Of course, it suffers
from the dual ailments of the Chorin–Temam algorithm, i.e., it enforces ∂np

k+1|Γ =
f(tk+1)·n and∇2ũk+1|Γ = 0, whereas the Chorin–Temam scheme enforces ∇2ũk+1|Γ =
f(tk+1) and ∂np

k+1|Γ = 0.
From the point of view of accuracy, the two algorithms are equivalent.
Theorem 5.1. If (u, p), the solution to (1.1), is smooth enough in space and

time, the solution to (5.6)–(5.7) satisfies the following error estimates:

‖u − u‖l∞(L2(Ω)d) + ‖u − ũ‖l∞(L2(Ω)d) ≤ c(u, p, T ) δt,

‖p − p‖l∞(L2(Ω)) + ‖u − ũk‖l∞(H1(Ω)d) ≤ c(u, p, T ) δt1/2.

Proof. Since the proof is very similar to that of the Chorin–Temam algorithm,
we refer the reader to Shen [12], Rannacher [11], Guermond [6], or to the proof of
second-order accuracy in section 3.4.
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6. Treatment of nonlinear terms.

6.1. Semi-implicit treatment. We now describe briefly how the nonlinear
terms can be properly treated. Taking the second-order rotational velocity-correction
scheme as an example, one way to treat the nonlinear term semi-implicitly is as fol-
lows: 



3uk+1 − 4ũk + ũk−1

2δt
+ ν∇×∇×ũk

+ d(2ũk−1 − ũk−2, ũk) +∇pk+1 = f(tk+1),

∇·uk+1 = 0,

uk+1 · n|Γ = 0

(6.1)

and 


3ũk+1 − 3uk+1

2δt
− ν∇2ũk+1 + d(2ũk − ũk−1, ũk+1)

− ν∇×∇×ũk − d(2ũk−1 − ũk−2, ũk) = 0,

ũk+1
|Γ = 0,

(6.2)

where the bilinear form d accounts for the advection and can take various forms to
ensure unconditional stability. For instance, we can use

d(v, w) =

{
v ·∇w + 1

2 (∇·v)w or

(∇×v)× w,
(6.3)

where in the second case, pk+1 is the total pressure, i.e., the kinetic energy has to be
subtracted from pk+1 to get the real pressure. One can show, just as in the linear case,
that the scheme (6.1)–(6.2) is unconditionally stable and that Theorem 3.1 holds.

Note that with the presence of the nonlinear term, the projection step is once
again given by (3.4) in strong form or (3.9) in weak form. By adding (6.2) to (6.1),
one obtains

3ũk+1 − 4ũk + ũk−1

2δt
− ν∇2ũk+1 + d(2ũk − ũk−1, ũk+1) +∇pk+1 = f(tk+1),(6.4)

with ũk+1
|Γ = 0, which is a linear elliptic equation for ũk+1 that can be solved by

standard procedures. As a result, a simple way to code the semi-implicit velocity-
correction algorithm in rotational form with the projected velocity eliminated is (3.9),
(3.7), (6.4).

6.2. Explicit treatment. One can also treat the nonlinear term totally explic-
itly as is done usually with spectral approximations [2]:



3uk+1 − 4ũk + ũk−1

2δt
+ ν∇×∇×ũk

+ (2d(ũk, ũk)− d(ũk−1, ũk−1)) +∇pk+1 = f(tk+1),

∇·uk+1 = 0,

uk+1 · n|Γ = 0

(6.5)

and {
3ũk+1 − 3uk+1

2δt
− ν∇2ũk+1 − ν∇×∇×ũk = 0,

ũk+1
|Γ = 0.

(6.6)
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In this case, the scheme is only conditionally stable with a usual CFL condition.
In practice the projected velocity can be completely eliminated from the algo-

rithm as follows. Upon substituting f(tk+1) into (3.9) by f(tk+1) − (2d(ũk, ũk) −
d(ũk−1, ũk−1)), the projection step is still (3.9). After updating the pressure accord-
ing to (3.7), the new velocity ũk+1 is obtained by solving

3ũk+1 − 4ũk + ũk−1

2δt
− ν∇2ũk+1 + (2d(ũk, ũk)− d(ũk−1, ũk−1)) +∇pk+1

= f(tk+1)(6.7)

with ũk+1
|Γ = 0.

7. Concluding remarks. We have introduced a class of velocity-correction
schemes in standard and rotational form. We proved stability and O(δt2) conver-
gence in the L2-norm of the velocity for both versions. We also proved improved
error estimates for the rotational form, i.e., O(δt3/2) convergence in the H1-norm of
the velocity and the L2-norm of the pressure. Our numerical results indicate that
these estimates appear to be the best possible under the general assumptions on Ω
considered in this paper.

We have also shown that the schemes introduced in [10] and [9] are formally
equivalent, in the spatial continuous case, to the velocity-correction projection meth-
ods in rotational form. Thus, our results provide the first rigorous proof of stability
and convergence for these schemes. In addition, contrary to the original form of
these methods which involve the normal trace of second-order derivatives of the ve-
locity at the boundary, the new velocity-correction projection methods, being set in
the standard L2 weak setting, can be easily implemented by using any variational
approximation techniques, including finite element methods.
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