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Least-Squares Fitting of Two 3-D Point Sets

K. S. ARUN, T. S. HUANG, AND S. D. BLOSTEIN

Abstract-Two point sets { pi } and { p' }; i = 1, 2,9 , N are re-
lated by p' = Rpi + T + Ni, where R is a rotation matrix, T a trans-
lation vector, and Ni a noise vector. Given { pi } and { p' }, we present
an algorithm for finding the least-squares solution of R and T, which
is based on the singular value decomposition (SVD) of a 3 x 3 matrix.
This new algorithm is compared to two earlier algorithms with respect
to computer time requirements.

Index Terms-Computer vision, least-squares, motion estimation,
quaternion, singular value decomposition.

I. INTRODUCTION
In many computer vision applications, notably the estimation of

motion parameters of a rigid object using 3-D point correspon-
dences [1] and the determination of the relative attitude of a rigid
object with respect to a reference [2], we encounter the following
mathematical problem. We are given two 3-D point sets { pi }; i
- 1, 2, ,N (here, pi and p' are considered as 3 x 1 column
matrices)

p>= Rpi + T + N, (1)
where R is a 3 x 3 rotation matrix, T is a translation vector (3 x
1 column matrix), and Ni a noise vector. (We assume that the ro-
tation is around an axis passing through the origin). We want to
find R and T to minimize

N

E2 = il p1i (Rpi + T) 2. (2)
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An iterative algorithm for finding the solution was described in
Huang, Blostein, and Margerum [3]; a noniterative algorithm based
on quaternions in Faugeras and Hebert [4]. In this correspondence,
we describe a new noniterative algorithm which involves the sin-
gular value decomposition (SVD) of a 3 x 3 matrix. The computer
time requirements of the three algorithms are compared.

After the submission of our correspondence, it was brought to
our attention that an algorithm similar to ours had been developed
independently by Professor B. K. P. Horn, M.I.T., but not pub-
lished.

II. DECOUPLING TRANSLATION AND ROTATION
It was shown in [3] that: If the least-squares solution to (1) is R

and T, then { p' ) and { pi - Rp, - T } have the same centroid,
i.e.,

(3)p I= p ,,

where

Al
N

1= - z P;
--- Z P;'-i~
N i=1N

" t E " R
Ni- =R

lNi=
A I N

P = -L1 Pi.

(4)

(5)

(6)

Let

A

qi =-pi - pP
(7)

(8)
We have

2 = q - Rqi 112.
= li

Therefore,
parts:

(9)

the original least-squares problems is reduced to two

(i) Find R to minimize E2 in (9).
(ii) Then, the translation is found by

t= p' -Rp. (10)
In the next section, we describe an algorithm for (i) which in-

volves the SVD of a 3 x 3 matrix.

III. AN SVD ALGORITHM FOR FINDING R

A. Algorithm
Step 1: From {pi }, { p! } calculate p, p'; and then {qi },

{ q }.
Step 2: Calculate the 3 x 3 matrix

N

H- E qiq'
i=1

where the superscript t denotes matrix transposition.
Step 3: Find the SVD of H,

H1= UAV'.
Step 4: Calculate

X = vut.

( 11)

(12)

(13)
Step 5: Calculate, det (x), the determinant of X.
If det (x) = +1, thenR = X.
If det (x) = -1, the algorithm fails. (This case usually does

not occur. See Sections IV and V.)
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B. Derivation
Expanding the right-hand side of (9),

N

2= Z (q -Rqi)t (q; - Rqi)
N

= Z (q'ttq' + q$RtRqj - qtRqj -qR'q'R )
i=

N

= ZLl (qitqi + qqi - 2qtRqj).

Therefore, minimizing E2 is equivalent to maximizing
N

F = qi Rqi

= Trace ( Rqiq!t) - Trace (RH) (14)

where
N

H Z q.qit (11)
i =I

Lemma: For any positive definite matrix AA', and any ortho-
normal matrix B,

Trace (A4At) 2 Trace (BAAt).

Proof ofLemma: Let ai be the ith column of A. Then

Trace (BAAt) = Trace (A'BA)

=Za'(Bai).

But, by the Schwarz inequality,

at (Bai) s V(ata )(atBtBa ) = atai.
Hence, Trace (BAAt) . Ei aai = Trace (AAt).
Let the SVD of H be:

H = UAVt

Q.E.D.

(12)

where U and V are 3 x 3 orthonormal matrices, and A is a 3 x 3
diagonal matrix with nonnegative elements. Now let

X = VU' (which is orthonormal). (13)

We have

XH = VUtUAV'

= VAV1 (15)

which is symmetrical and positive definite. Therefore, from
Lemma, for any 3 x 3 orthonormal matrix B,

Trace (XH) 2 Trace (BXH) (16)

Thus, among all 3 x 3 orthonormal matrices, X maximizes F of
(14). And if det (X) = + 1, X is a rotation, which is what we want.

However, if det (X) = - 1, X is a reflection, which is not what
we want. Fortunately, this degenerate case usually does not occur.

We shall discuss the situation in some detail in the next two sec-

tions.

IV. DEGENERACY: NOISELESS CASE

Assume Ni = 0 in (1) for all i. Then, obviously there is a solu-
tion R (which is a rotation, i.e., det (R) = +1) for which {q' }

and { Rqi } are congruent and hence E2 = 0. From geometrical
considerations, it is easy to see that there are three possibilities.

1) {qi } are not coplanar-Then, the rotation solution is unique.
Furthermore, there is no reflection X which can make E2 = 0.

Therefore, the SVD algorithm will give the desired solution.
2) [qi ) are coplanar but not colinear-There is a unique ro-

tation as well as a unique reflection which will make E2 = 0.

Therefore, the SVD algorithm may give either. We shall see pres-
ently that this situation can be easily resolved.

3) {qi ) are colinear-There are infinitely many rotations and
reflections which will make E2 = 0.
Now we come back to the coplanar case. From examining the

elements of the 3 x 3 matrix H, it can readily be shown that the
points { qi } are coplanar, if and only if one of the three singular
values of H is zero. Let the three singular values be XI > X2 > X3
= 0. Then

H = X1u1v'j + X2U2V2 + 0 * U3V (17)

where ui and vi are columns of U and V, respectively. Note that
changing the sign of U3 or V3 will not change H. Therefore, if X =
VU' minimizes E2, so does X ' = V 'U' where

V = [V1, V2, -V3]. (18)

If X is a reflection, then X' is a rotation, and vice versa. Thus, if
the SVD algorithm gives a solution X with det (X) =-1, we form
X' = V U' which is the desired rotation.
We mention, in passing, that the points { qi } are colinear, if and

only if, two of the three singular values ofH are equal.

V. DEGENERACY: NOISY CASE
If either { qi } or { q!' } are coplanar, then it can readily be shown

that the discussion on the coplanar case in Section IV is still valid,
except of course now the minimum of E2 is no longer zero. Hence,
if the SVD algorithm gives a reflection X = VU', we can form the
desired rotation X' = V 'U'. A special case of interest is when N
- 3. Then both { qi } and { q! } are coplanar point sets.
The situation we cannot handle is when the SVD algorithm gives

a solution X with det (X) = -1, and none of the singular values
of H is zero. This means that neither { qi } nor { q' } are coplanar;
yet there is no rotation which yields a smaller E2 then the reflection
x. This can happen only when the noise Ni are very large. In that
case, the least-squares solution is probably useless anyway. A bet-
ter approach would be to use a RANSAC-like technique (using 3
points at a time) to combat against outliers [5].

VI. SUMMARY OF ALGORITHM

Using the procedure of Section III-A, we obtain

X = VU'.
1) If det (X) = + 1, then X is a rotation which is the desired

solution.
2) If det (X) = -1, then X is a reflection.
a) one of the singular values ( X3, say) ofH is zero. Then, the

desired rotation is found by forming
xi = V'Ut

where V' is obtained from V by changing the sign of the 3rd col-
umn.

b) None of the singular values of H is zero. Then, conven-
tional least-squares solution is probably not appropriate. We go to
a RANSAC-like technique.

VII. COMPUTER TIME REQUIREMENTS
Computer simulations have been carried out on a VAX 11/780

to compare the three algorithms (SVD, quaternion, iterative) with
respect to time requirements. In each simulation, a set of 3-D points
{ pi } were generated. They are randomly distributed in a cube of
size 6 x 6 x 6 with center at (0, 0, 0). Then { p! } were calculated
by rotating { pi } by an angle of 750 around an axis through the
origin with direction cosines (0.6, 0.7, 0.39) followed by a trans-
lation of (80, 60, 70), and finally by adding to each coordinate of
the resulting points Gaussian random noise with mean zero and
standard deviation 0.5. Then the algorithms were used to estimate
R and T. The CPU times used are listed in Table I. For the iterative
algorithm, the numbers of iterations are given in parentheses. The
programs were written in C. The IMSL subroutine package was
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Number of Point
Correspondences

TABLE I
VAX 11/780 CPU TIME PER RUN IN ms

Method Used

SVD Quaternion Iterative

cusses an extension of the method to cover both translational and ro-
tational movements.

Index Terms-Digital image processing, fast Fourier transform, im-
age registration, image sequence analysis, motion estimation.

3 54.6 26.6 126.8 (25)
7 41.6 32.4 108.2 (12)

11 37.0 41.0 105.2 (8)
16 39.4 45.6 94.2 (5)
20 40.4 45.2 135.0 (6)
30 44.2 48.3 111.0 (6)

used in finding the SVD (subroutine LSVDF) and in doing the ei-
gen analysis (subroutine EIGRS) for the quaternion method. For
the iterative method, the initial guess solution was zero in all cases.
We observe that the computer time requirements of the SVD and

the quatemion algorithms are comparable, while the time for the
iterative method is much longer. However, in the iterative method,
the solutions were calculated to 7-digit accuracy. If we can accept
10 percent accuracy, then the number of iterations are reduced by
a factor of 2 to 3. Furthermore, the rate of convergence can be
increased by overrelaxation.
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Registration of Translated and Rotated Images Using
Finite Fourier Transforms

E. DE CASTRO AND C. MORANDI

Abstract-A well-known method for image registration is based on
a conventional correlation between phase-only, or whitened, versions
of the two images to be realigned. The method, covering rigid trans-
lational movements, is characterized by an outstanding robustness
against correlated noise and disturbances, such as those encountered
with nonuniform, time varying illumination. This correspondence dis-
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I. INTRODUCTION
Let us consider a plane image performing rigid movements of

translation and rotation within a rectangular domain C representing
the observed field. Let the image be defined by a density function
vanishing outside a region A, whose position varies with time t, but
is always fully contained inside C. The limitations which arise when
parts of the image leave the observed field will be mentioned later
on.

Let so(x, y) represent the image at a reference time, t = 0, and
st (x, y) be the present image, which is but a replica of so(x, y)
translated by (xo, yo) and rotated by 00:

st(x, y) = SO(u, v),
where

x - xo = u cos 00 - v sin 00

y - yo = u sin 0O + v cos 00.

(1)

(2)

In order to realign images so and st, it is first necessary to deter-
mine the translation vector (xo, yo) and the rotation 00 from the
information provided by so(x, y) and st (x, y). Several image reg-
istration algorithms are known: for excellent review papers see [1]
[6].

The present correspondence is meant as a contribution in the
context of the phase correlation technique [7], [8], which was de-
veloped with reference to purely translatory displacements. Ac-
cording to [7], [8], let SO ( i, q ) and S, ( (, 1 ) be the Fourier trans-
forms of so (x, y) and s, (x, y). Since in the case of pure translations
St (x, y) = s0(x - xo, y - yo), it follows that

St (17) = e-j2r(xo+Axo) S O) (3)
Therefore, by inverse transforming the ratio of the cross-power
spectrum of s, and so to its magnitude, StSOI/IS,So = exp
( -j27r( xo + r1yo)), a Dirac a-distribution centered on (x0, yo)
is obtained. In practice continuous transforms are replaced by finite
ones, and by inverse transformation a unity pulse centered on (x0,
vo) is obtained, so that the translation is immediately determined.

In this correspondence the principles of a generalization of the
phase correlation method for the registration of rotated and trans-
lated images [9] are briefly recalled and the corresponding numer-
ical algorithm is presented. The effectiveness of the procedure is
then illustrated by means of simple experiments. Finally, the edge
effects which arise when the image completely fills the observed
field C are pointed out.

This correspondence is a part of research aiming at the imple-
mentation of an image stabilization system [10] for the observation
of the human retina, in which the image viewed by the TV camera
may be observed on a monitor free of the unavoidable spontaneous
movements, which do not allow any automatic analysis of dynamic
effects, such as the pulsations frequently observed in blood vessels.
The program is carried out in cooperation with the Ophthalmolog-
ical Clinic of the University of Bologna and the IBM Research
Center in Rome.

II. THEORY

If s, (x, y) is a translated and rotated replica of s0(x, y), [see
(1)], according to the Fourier Shift Theorem and the Fourier Ro-
tation Theorem [11] their transforms are related by

St(t, 17) = e-j2ir"xto+,o0) So( t cos 00 + -7 sin 00,
- sin 0o + -7 cos 00) (4)
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