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in the case of the multivariate normal distribution (Gaussian) on Rn. It turns out that,
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difficult to obtain an exact formula for the distance function (although this can be achieved

for special families with fixed mean or fixed covariance). We propose to study a slightly

different metric on the space of multivariate normal distributions on Rn. Our metric is

based on the fundamental idea of parametrizing this space as the Riemannian symmetric

space SL(n+1)/SO(n+1). Symmetric spaces are well understood in Riemannian geometry,
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1. Introduction

The construction of a distance function between probability distributions is of importance

in mathematical statistics. Rao [14] first proposed a distance function based on the Fisher

information as a Riemannian metric. This metric has been studied by a number of statisti-

cians (see [2], [5], [6] and [15]) in the case of the multivariate normal distribution (Gaussian)

on Rn. It turns out that except in the case of n = 1, where the Fisher metric describes the

hyperbolic plane, it is difficult to obtain an exact formula for the distance function of the

Fisher metric, although this can be achieved for special families with fixed mean or fixed

covariance, as in [2], [15].

We propose to study a slightly different metric on the space of multivariate normal

distributions on Rn. Our metric is based on the fundamental idea of parametrizing this

space as the Riemannian symmetric space SL(n+1)/SO(n+1). Symmetric spaces are well

understood in Riemannian geometry, allowing us to compute distance functions and other

relevant geometric data. We refer to [10], which is a standard introductory textbook on

symmetric spaces.

The importance of a convenient metric for probabilistic models is well documented in

the literature; compare [6], [15]. The symmetric metric that we introduce does not differ

much from the Fisher metric (computed, for example, in [15]), although the extension of

the symmetry group to SL(n + 1) forces a crucial additional term in one direction. It is,

in effect, very close to the metric described in [6] which is based on the Siegel group. The

difference here is due to the fact that the embedding of normal distributions into the Siegel

space used in [6] is not totally geodesic.

We would like to thank Peter March for explaining the Fisher information metric to

us.

2. The SL(n + 1)–action

Let N = {γ|dx|} be the space of normal (Gaussian) distributions on Rn, where |dx|

is the Lebesgue measure on Rn.
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The affine group of Rn,

Aff (n) = {Φa,b : x 7−→ ax + b | a ∈ GL(n), b ∈Rn},

acts transitively on N by

γ|dx| 7−→
(
Φ−1

a,b

)∗
(γ|dx|).

This is a left action, with the projection

π : Aff (n) −→ N ,

Φa,b 7−→
(
Φ−1

a,b

)∗
(γ0|dx|), (2.1)

where γ0|dx| = (2π)−
n
2 e−

1
2 |x|

2 |dx| is the standard Gaussian distribution on Rn. Moreover,

π−1(γ0|dx|) = O(n).

The exact formula for the action is(
Φ−1

a,b

)∗
(γ0|dx|) = (2π)−

n
2 (det a)−1e−

1
2 |a

−1(x−b)|2 |dx|. (2.2)

We can restrict the action to the identity component Aff +(n) = {Φa,b | det a > 0}.

This action is still transitive on N , and so N = Aff +(n)/SO(n).

To extend this action to the larger group SL(n + 1), we use the following embedding

of Aff +(n) as a subgroup of SL(n + 1):

j : Aff +(n) ↪→ SL(n + 1),

(a, b) 7−→ (det a)−
1

n+1

[
a b
0 1

]
(2.3)

The simple Lie group SL(n+1) acts canonically on the space S̃+ of all positive definite

symmetric (n + 1)× (n + 1)–matrices with determinant 1 via

s̃ 7−→ ãs̃ãt, for s̃ ∈ S̃+ and ã ∈ SL(n + 1), (2.4)

where ãt denotes the transpose of ã. This is a left action which represents S̃+ as the Rie-

mannian symmetric space SL(n + 1)/SO(n + 1) with SO(n + 1)–principal bundle

π̃ : SL(n + 1) −→ S̃+, ã 7→ ããt.
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The restriction of π̃ to the subgroup Aff +(n) is given by

Aff +(n) −→ S̃+,

(a, b) 7−→ (det a)−
2

n+1

[
aat + bbt b

bt 1

]
, (2.5)

where bbt denotes the symmetric matrix [bibj ]1≤i,j≤n.

This is still a surjective mapping with π̃−1(Id) = SO(n). The standard embedding

SO(n) ↪→ SO(n + 1),

a 7−→
[

a 0
0 1

]
.

can then be extended by the following commutative diagram:

SO(n) ↪→ SO(n + 1)

↓ ↓

Aff +(n)
j−→ SL(n + 1)

π ↓ ↘ ↓ π̃

N ∼= S̃+

(2.6)

This gives a canonical identification of N , the space of normal Gaussians on Rn, with

the symmetric space S̃+ = SL(n + 1)/SO(n + 1), which is equivariant with respect to the

natural actions of Aff +(n) on N and SL(n + 1) on S̃+ via the embedding j. Both spaces,

of course, have the same dimension, equal to 1
2n(n + 3).

More explicitly, we identify

N −→ S̃+,(
Φ−1

a,b

)∗
(γ0|dx|) 7−→ (det a)−

2
n+1

[
aat + bbt b

bt 1

]
. (2.7)

The normal distribution,

1
(2π)n/2 detσ

e−
1
2 [(x−µ)tσ−2(x−µ)],
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is therefore identified with the positive definite symmetric (n + 1)× (n + 1)–matrix

(detσ)−
2

n+1

[
σ2 + µµt µ

µt 1

]
.

We now compute the differential of this identification at the standard normal distri-

bution γ0|dx|, which is mapped to Ĩ, the identity matrix in S̃+.

The tangent space of N at γ0|dx| is identified with

{(A,B) | A symmetric n× n–matrix, B ∈Rn},

given by the splitting of the Lie algebra aff (n) = {(A,B) | A ∈ gl(n), B ∈Rn} of the affine

group as aff (n) = o(n)⊕ Tγ0|dx|N .

On the other hand, the tangent space at Ĩ of the symmetric space S̃+ is identified with

s0(n+1) = {symmetric (n+1)×(n+1)–matrices of trace zero} via the Cartan decomposition

sl(n + 1) = o(n + 1)⊕ s0(n + 1).

The differential of the mapping N ∼→ S̃+ (given in (2.7)) at the identity is then computed

to be

TγO|dx|N
∼−→ TĨ S̃+ = s0(n + 1)

(A,B) 7−→ 2

[
A− 1

n+1 tr(A) · In
1
2B

1
2Bt − 1

n+1 tr(A)

]
. (2.8)

3. Symmetric Riemannian Metric on N

With the explicit identification of N with SL(n+1)/SO(n+1) given in the previous section,

we will now describe the natural symmetric Riemannian metric and the induced distance

function.

As is well known in the theory of symmetric spaces, the natural SL(n + 1)–invariant

metric on S̃+ is given (up to a positive constant) by restricting the Killing form of the

simple Lie algebra sl(n + 1) to the subspace s0(n + 1) under the Cartan decomposition

sl(n + 1) = o(n + 1)⊕ s0(n + 1); i.e.,

〈s̃1, s̃2〉 =
1
4
tr(s̃1s̃2), s̃1, s̃2 ∈ s0(n + 1) = TĨ(S̃+). (3.1)
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From the identification (2.8) of the tangent spaces Tγ0|dx|N ∼= s0(n +1) it follows that

the symmetric metric on

Tγ0|dx|N ∼= {(A,B) | A symmetric n× n–matrix and B ∈Rn}

is given by

〈(A1, B1), (A2, B2)〉 = tr(A1A2)−
1

n + 1
(trA1)(trA2) +

1
2
〈B1, B2〉. (3.2)

The Fisher information metric, computed at the standard normal distribution, in con-

trast, is given by (compare [15])

〈(A1, B1), (A2, B2)〉 = 2 tr(A1A2) + 〈B1, B2〉. (3.3)

Up to scaling, the two metrics (3.2) and (3.3) are the same in the direction of trace zero

matrices.

The metric in (3.2) also differs from the metric induced by the Siegel metric on the

space of all symmetric, positive (n + 1)× (n + 1)–matrices used in [6]. In terms of (2.7) and

(2.8), Siegel metric is given by

〈(A1, B1), (A2, B2)〉 =
1
4

(
tr(A1A2)−

1
(n + 1)

(trA1)(trA2)
)

+ 〈B1, B2〉. (3.4)

Since SL(n + 1)/SO(n + 1) is an irreducible symmetric space, the symmetric metric is

determined uniquely up to a positive constant factor.

Let (a, b) denote the point
(
Φ−1

a,b

)∗
(γ0|dx|) ∈ N . The metric g defined in (3.2) can be

written as

g((A1, 0), (A2, 0)) = tr(a−1A1a
−1A2)−

1
n + 1

tr(a−1A1)tr(a−1A2),

g((A, 0), (0, B)) = 0,

g((0, B1), (0, B2)) =
1
2
tr(Bt

1a
−1B2), (3.5)

where (A, 0), (A1, 0), (A2, 0), (0, B), (0, B1) and (0, B2) are in T(a,b)N .

Usually, one expresses the above metric in terms of multivariate normal parameters.

Replacing a by Σ, b by µ, and denoting by X1 and X2 vector fields in the Σ-direction and
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by η1 and η2 vector fields in the µ-direction, we write (3.5) as

g(X1, X2) = tr(Σ−1X1Σ−1X2)−
1

n + 1
tr(Σ−1X1)tr(Σ−1X2),

g(X, η) = 0,

g(η1, η2) =
1
2
tr(ηt

1Σ
−1η2). (3.6)

Equivalently, the quadratic fundamental form (3.5) or (3.6) can be expressed as

ds2 = tr(Σ−1dΣΣ−1dΣ)− 1
n + 1

(tr(Σ−1dΣ))2 +
1
2
dµtΣ−1dµ. (3.7)

The Levi-Civita connection of g is computed to be

∇ηX = ∇Xη = −1
2
XΣ−1η,

∇X1X2 = −1
2
(X1Σ−1X2 + X2Σ−1X1),

∇η1η2 =
1
8
(
η1η

t
2 + η2η

t
1 + tr(Σ−1(η1η

t
2 + η2η

t
1))Σ

)
. (3.8)

Finally, the non-zero components of the Riemann curvature tensor of g are

R(X1, X2, η1, η2) =
1
8
tr(ηt

1Σ
−1X1Σ−1X2Σ−1η2 − ηt

1Σ
−1X2Σ−1X1Σ−1η2),

R(X1, η1, X2, η2) =
1
8
tr(ηt

1Σ
−1X1Σ−1X2Σ−1η2),

R(X1, X2, X3, X4) =
1
2
tr(X2Σ−1X1Σ−1X3Σ−1X4 −X1Σ−1X2Σ−1X3Σ−1X4),

R(η1, η2, η3, η4) = − 1
32
(
tr(ηt

1Σ
−1η4)(ηt

2Σ
−1η3)− tr(ηt

1Σ
−1η3)(ηt

2Σ
−1η4)

)
, (3.9)

where Xi, i = 1, . . . , 4, are vector fields in the Σ-direction and ηi, i = 1, . . . , 4, are vector

fields in the µ-direction.

In the case n = 1 (the parameters are σ and b = µ), the only non-zero curvature term is

R(σ̇, µ̇, σ̇, µ̇) =
1
8

σ̇2µ̇2

σ3
,

where σ̇ is the tangent vector in the σ-direction and µ̇ is the tangent vector in the µ-direction.

Thus, the sectional curvature is

K = − R(σ̇, µ̇, σ̇, µ̇)
g(σ̇, σ̇)g(µ̇, µ̇)− g(σ̇, µ̇)2

= −1
2
.
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We now compute the induced distance function on the symmetric space S̃+ = SL(n +

1)/SO(n + 1). As is standard in the theory of symmetric spaces, we reduce the problem to

computing the distance function between the “identity” and an element in the “diagonal”

maximally flat totally geodesic subspace. We give here the details:

Step 1. Write s̃1 = ã1ã
t
1 = π̃(ã1), with ã1 ∈ SL(n + 1). The element ã1 is unique up to

right multiplication by an element of the isotropy group SO(n + 1). ã1 can be thought of

as a square root of s̃1.

Step 2. Let s̃ = ã−1
1 s̃2(ã−1

1 )t. Then d(s̃1, s̃2) = d(Ĩ , s̃), since the distance function is

invariant under the action of SL(n + 1). Notice that s̃ is well defined only up to the action

of the isotropy group SO(n + 1), and that it is not the same as s̃−1
1 s̃2. In fact, s̃−1

1 s̃2 is,

in general, not even symmetric (although one can speak about generalized eigenvalues by

solving the equation s̃2(v) = λs̃1(v)).

Step 3. Conjugate s̃ by an element ũ ∈ SO(n + 1) so that

ũ−1s̃(ũ−1)t = ũts̃ũ = δ̃

is a diagonal matrix. This is equivalent to δ̃ being in the maximally flat totally geodesic

subspace.

Step 4. Take the logarithm of the positive definite diagonal matrix δ̃; i.e., write

δ̃ =

 eµ1 0
. . .

0 eµn+1

 = exp

µ1 0
. . .

0 µn+1

 ,

where
n+1∑
i=1

µi = 0.

Step 5. Finally,

d(s̃1, s̃2) = d(Ĩ , s̃) = d(Ĩ , δ̃) =

(
n+1∑
i=1

µ2
i

)1/2

is the distance with respect to the symmetric metric on S̃+
∼= N .

Remark. Another way of expressing the above computation is as follows:
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Write s̃i = ãiã
t
i with ãi ∈ SL(n + 1), i = 1, 2, and let ã = ã−1

1 ã2. Then

d(s̃1, s̃2) =

(
n+1∑
i=1

µ2
i

)1/2

,

where {eµ1 , . . . , eµn+1} are the eigenvalues of the positive definite symmetric matrix ããt. As

mentioned above, these eigenvalues can be thought of as generalized eigenvalues of s̃1 and

s̃2.

We now compute the distance between two normal distributions γ1|dx| and γ2|dx| with

the same variance Σ = aat but with different means µi = bi, i = 1, 2. Consider

γi|dx| = (det a)−1

(2π)n/2
e−

1
2 |a

−1(x−bi)|2 |dx|,

i = 1, 2. Let

ãi = (det a)−
1

n+1

[
a bi

0 1

]
∈ SL(n + 1).

Then s̃ = (ã−1
1 ã2)(ã−1

1 ã2)t ∈ S+ is given by

s̃ =
[

In + bbt b
bt 1

]
,

where b = a−1(b2 − b1). The (n + 1) positive eigenvalues of s̃ are{
1, . . . , 1, 1 +

|b|2

2
+
|b|
√
|b|2 + 4
2

, 1 +
|b|2

2
−
|b|
√
|b|2 + 4
2

}
,

where the eigenvalue 1 occurs (n− 1) times. Hence,

d(γ1|dx|, γ2|dx|)2 = 2

(
log

(
1 +

|b|2

2
+
|b|
√
|b|2 + 4
2

))2

= 2
(
argcosh(1 + |b|2/2)

)2
.

This expression is different from the usual formulas found in the literature. One usually

has a Euclidean distance (see [2])

d2 = |b|2 = |a−1(b2 − b1)|2.

Our distance is hyperbolic.

Next, we compute the distance between two normal distributions with the same mean

µ = b, but with different variances Σi = aia
t
i, i = 1, 2.

In this case, s̃ is given by

s̃ = (det a)−
2

n+1

[
aat 0
0 1

]
,
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where a = a−1
1 a2.

We note that aat 6= σ−1
1 σ2, unless a1a2 = a2a1.

The distance is given by

d2 =
n∑

i=1

µ2
i −

1
(n + 1)2

(
n∑

i=1

µi

)2

,

where eµ1 , . . . , eµn are the eigenvalues of the positive definite symmetric n × n–matrix

(a−1
1 a2)(a−1

1 a2)t = aat. These eigenvalues are the same as the generalized eigenvalues

of the pair of symmetric matrices Σ1,Σ2.

Remark. We have computed the distance function of the ambient space S̃+, restricted to

families of distributions with the same mean or the same variance, which is of course not

the same as the distance function computed with respect to the induced Riemannian metric

on the corresponding submanifolds. In fact, for a fixed variance, the induced Riemannian

metric is flat. However, the corresponding submanifold is not totally geodesic.

4. Expectation and Center of Mass

The expected value of a random variable X with values in a vector space Rd,

X : (Ω, dµ) −→Rd, ω 7−→ X(ω),

where Ω is a probability space with a measure dµ and σ–algebra B of subsets of Ω, is defined

by the equation

X̂ = E(X) =
∫
Ω

X(ω)dµ ∈Rd. (4.1)

It is characterized by the property that the mean square deviation

V : Rd −→ R,

given by

y 7−→
∫
Ω

|y −X(ω)|2dµ, (4.2)

achieves its unique minimum at X̂. This implies, by differentiation,∫
Ω

(
X̂ −X(ω)

)
dµ = 0,
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which is the defining property of X̂ = E(X).

The generalization of this definition to the case of a random variable with values in a

Riemannian manifold is known as the center of mass construction (see [9], [11] and [13]). This

construction has analogous properties to the Euclidean center of mass and is well–defined

and unique provided that the random variable takes values in a convex region; in particular,

it can be defined for a random variable with values in a simply–connected manifold of non–

positive sectional curvature. This fact was exploited by E. Cartan in his work on fixed

points of isometries of such manifolds. All Riemannian symmetric spaces of non–compact

type, such as SL(n + 1)/SO(n + 1), are simply connected and have non–positive sectional

curvature, so the center of mass construction is defined globally on such spaces.

In this section we review the center of mass construction. It is basically characterized

by the same property as in Euclidean space except that the expression |y−X(ω)|2 is replaced

by d
(
y, X(ω)

)2
, where d is the distance function of the Riemannian metric. So, X̂ is still

defined to be the point in the Reimannian manifold where the function

y 7−→
∫
Ω

d
(
y, X(ω)

)2
dµ (4.3)

assumes its minimum value.

In order to interpret the defining equation (4.1) suitably on a Riemannian manifold,

we need the concept of the exponential map

expx : TxM −→ M,

where x is a point on a Riemannian manifold M and TxM is the tangent space at x. For

v ∈ TxM , expx(v) is defined to be the point γv(1), where γv is the unique geodesic starting

at γv(0) = x with initial velocity γ̇v(0) = v. For convenience, we are assuming that the

Riemannian manifold is complete, so that expx is defined for all v ∈ TxM and all x ∈ M.

The main technical tool that is now needed is an estimate for the differential of the

exponential map. At the origin in TxM , dexpx : TxM → TxM is easily seen to be the

identity map. Estimates for dexpx along geodesics are obtained by studying Jacobi fields and

Sturm–Liouville–type comparison theorems. One should consult textbooks on Riemannian
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geometry, compare [7], [3], under the headings: “Jacobi fields, second variation formula,

Rauch comparison theorem”.

In general, the uniqueness and existence of the center of mass requires injectivity and

convexity properties of the exponential map, but the required properties are satisfied for all

simply–connected Riemannian manifolds with non–positive sectional curvature (sometimes

called Hadamard manifolds in the literature). We refer to [3] for the geometry of such

manifolds. In particular, for symmetric spaces of non–compact type the exponential map is

a global diffeomorphism and can be expressed explicitly in terms of the Lie groups involved.

We will denote the inverse function of expx by

logx : M −→ TxM.

(For a construction in general case, see [13].) Let f : (Ω, dµ) → (M, g), ω 7→ f(ω), be

a manifold–valued random variable, i.e., a measurable map from a probability space to a

Hadamard manifold. The center of mass of f , or the expectation value of the random

variable f is the unique point f̂ ∈ M such that∫
Ω

log
f̂

(
f(ω)

)
dµ = 0. (4.4)

This is the appropriate Riemannian generalization of the Euclidean definition (4.1); f̂

can also be characterized as the unique point where the mean square deviation

V : M −→ R,

given by

y 7−→
∫
Ω

d
(
y, f(ω)

)2
dµ, (4.5)

achieves its minimum value.

In accordance with the notation in probability and statistics we will denote the center

of mass by f̂ = E(f). Since the definition is geometric, the center of mass satisfies the

following invariance property under isometries of the target manifold:

Proposition. If σ : M → M is an isometry of a Riemannian manifold M, then

E(σ ◦ f) = σ
(
E(f)

)
12



for any random variable f : (Ω, dµ) → (M, g).

We can also generalize the definition of the mean square deviation of a random variable

to the Riemannian case:

Definition. Let f : (Ω, dµ) → (M, g) be a random variable. Then

V (f) =
∫
Ω

d
(
f̂ , f(ω)

)2
dµ =

∫
Ω

∣∣∣log
f̂

(
f(ω)

)∣∣∣2 dµ.

5. Concluding Remarks

With the extension of the action of the affine group to the special linear group SL(n + 1)

on the space of multivariate normal distributions in Rn, this set of distributions inherits

the structure of a Riemannian space of non–compact type. This point of view plays a

useful role in statistics as well, compare [4]. Another important aspect of the geometry of

Riemannian symmetric spaces is the role of the ideal boundary, i.e., the points at infinity

of a symmetric space. The concept of the center of mass can be extended to measures on

the ideal boundary, compare [8]. Perhaps, the points at infinity could be interpreted as the

sample of a distribution. In that case, the center of mass, or expectation value, could serve

as an estimator. There are other interesting families of statistical distributions (see [12])

which can also be studied using similar geometric methods. We plan to investigate these

problems in the future.
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