
ASSOCIATIVITY DATA IN AN (∞, 1)-CATEGORY

EMILY RIEHL

A popular slogan is that (∞, 1)-categories (also called quasi-categories or ∞-
categories) sit somewhere between categories and spaces, combining some of the
features of both. The analogy with spaces is fairly clear, at least to someone who
is happy to regard spaces as Kan complexes, which are simplicial sets in which
every horn can be filled. The analogy with categories is somewhat more subtle. We
choose to model (∞, 1)-categories as quasi-categories, which are a particular type
of simplicial set. When we regard the 0-simplices of an quasi-category as its objects
and the 1-simplices as its morphisms, we can define a weak composition law that
is well-defined, unital, and associative only up to homotopy. This means exactly
that when we replace the 1-simplices by homotopy classes of 1-simplices we obtain
an ordinary category, called the homotopy category of our quasi-category.

However, a lot of data is lost when we replace an quasi-category by its homotopy
category. In particular, there exists a 3-simplex that witnesses the fact that a
particular composite (hg)f of 1-simplices f , g, and h (where some composite hg of
g and h has already been chosen) is also a composite of gf (a chosen composite of
f and g) and h. This is well-known by those who are familiar with the construction
of the homotopy category mentioned above, but a question remains: what sort of
associativity data is provided by the n-simplices, for n > 3?

Each n-simplex of an quasi-category exhibits some composite of the n morphisms
which make up its spine. We will argue that these simplices can be regarded as
“unbiased associahedra” in the sense that they witness the “commutativity” of their
boundaries, which are n − 1-simplices of the same form. In fact, one may choose
all but one of these n − 1-simplices to be any witnesses that you want, subject to
some obvious constraints. We will describe in detail the combinatorial analogies
between these constraints and Stasheff’s associahedra in what follows, at least in
low (n ≤ 6) dimensions.

Before turning to these concrete details, we should acknowledge a more concep-
tual explanation for the experts in this field, due to Jacob Lurie, for the phenomena
we’ll describe below. The theory of quasi-categories is equivalent to the theory of
simplicial (or topological) categories. One feature of this equivalence is that the
mapping spaces in any quasi-category (however one chooses to extract them) are
homotopy equivalent to mapping spaces in a simplicial category, where there is a
strictly associative multiplication. Transporting this structure along the homotopy
equivalences will give an A∞ structure on the mapping spaces in the original quasi-
category. By definition, A∞-spaces are algebras for the non-Σ operad {Kn} with
objects given by Stasheff’s associahedra, accounting for their appearance in what
follows.

We begin by explaining the construction of the homotopy category of an quasi-
category, emphasizing the role played by the 2- and 3-simplices. The reader who
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already knows this story can comfortably skip to the next section, after making
note of our convention for labeling 3-simplices. In the second section, we describe
the low-dimensional higher associativity data that is present in any quasi-category,
beginning with n = 4 and then moving on to n = 5 and n = 6.

1. Preliminaries, or how is an (∞, 1)-category “category-like”?

We’ll use standard notation for simplicial sets, which agrees with Lurie’s in
[Lur08] or [Lur09], although we prefer the name quasi-category for his ∞-category.
In particular, we write ∆n for the simplicial set ∆op → Set represented by the
object [n] = {0, 1, . . . , n} of ∆. If S : ∆op → Set is a generic simplicial set, Sn is
the set of its n-simplices. We have face maps di : Sn → Sn−1 and degeneracy maps
si : Sn → Sn+1 for 0 ≤ i ≤ n. A horn Λn

i is a simplicial subset of ∆n (or also of
its boundary ∂∆n). It is generated by n n− 1-simplices which satisfy the relations
typical of the collection of all faces but the ith of any n-simplex. We are more often
interested in relative horns, i.e., maps Λn

i → S. Concretely, these are specified
by elements σ0, . . . , σ̂i, . . . σn ∈ Sn−1 (the images of the generating n− 1-simplices
mentioned previously) satisfying the relations

(1.1) djσk = dk−1σj for all 0 ≤ j < k ≤ n, with j, k 6= i.

An quasi-category is a simplicial set S such that every inner horn can be filled,
which means that for every collection of n − 1-simplices as above with 0 < i < n,
there exists σi ∈ Sn−1 and σ ∈ Sn such that the faces of σ are precisely the σj .

Fix an quasi-category S. It is category-like in the following sense. We regard
the vertices aka points aka 0-simplices as objects and edges aka arrows aka maps
aka 1-simplices f ∈ S1 as morphisms from d1f to d0f ; we write d1f

f→ d0f . For
any x ∈ S0, s0x ∈ S1 is a morphism from x to x, which we regard as the identity
at x and depict with an equals sign.

We will depict 2-simplices like this

1

��>>>>>>>

0 //

@@�������
2

The vertices will always be in the same position, so we typically omit the numbers.
The ith edge is the edge opposite vertex i. We say morphisms f and f ′ with the
same endpoints are homotopic if there exists a 2-simplex with boundary

·

=======

=======

·

f
@@�������

f ′
// ·

or
·

f

��=======

·

�������

�������
f ′

// ·

or with f and f ′ switched. In an quasi-category, this defines an equivalence relation
and furthermore any one of these conditions implies all of the others.

Importantly, we have a weak composition law defined as follows. Morphisms f
and g are composable when the codomain d0f equals the domain d1g, i.e., exactly
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when
·

g

��=======

·

f
@@�������

·
determines a horn Λ2

1 → S (in words, a 2,1-horn in S). Any 2-simplex σ ∈ S2

that fills this horn exhibits the edge d1σ as a composite of f and g. As S is
an quasi-category, some such σ always exists. In an quasi-category, any two such
composites are homotopic, and furthermore if we replace f or g by homotopic maps,
the composites are still homotopic.

All of the unproven claims above follow easily by filling 3,1- or 3,2-horns in S to
obtain a 3-simplex. By constructing the horn appropriately, the “missing face” that
is given by its filler will be the desired 2-simplex (exhibiting, e.g., that some arrow
is a composite of two other arrows, or that some pair of arrows are homotopic).
Let’s agree to draw 3-simplices like this

1

��>>>>>>>

��

0

@@�������

��>>>>>>>
// 3

2

@@�������

The vertices will always be in the same position, so we typically omit the numbers.
Using the conventional numbering for simplices, the 3rd face is the left face, the
2nd face is the back face, the 1st face is the bottom face, and the 0th face is the
right face.

We can now prove that composition is associative up to homotopy. Suppose we
have three composable morphisms f , g, and h and let us choose composites gf
and hg, as well as 2-simplices exhibiting these chosen composites. We can either
choose a composite h(gf) and show that it is a composite of f and hg or choose a
composite (hg)f and show that it is a composite of gf and h. The former strategy
amounts to filling the 3,2-horn depicted by

(1.2) ·

g

��

hg

��=======

·

f
@@�������

gf ��======= // ·

·
h

@@�������

with the back arrow equal to the chosen morphism h(gf). Filling this horn fills
in the back face, which exhibits h(gf) as a composite of f and hg. The latter
strategy amounts to filling the 3,1-horn also depicted by (1.2) but with the back
arrow equal to (hg)f . It follows that h(gf) and (hg)f are homotopic, as they are
both composites of the same morphisms.

We have proven that the simplicial set S is category-like: given S we can obtain
an actual category with objects the 0-simplices and morphisms homotopy classes
of 1-simplices. The facts stated above define composition on homotopy classes and
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prove that it is associative and unital. This category is called the homotopy category
of S and is depicted in the literature by τ1S (in the unpublished work of André
Joyal) or hS (by Jacob Lurie). However, a lot of data is lost when we forget about
S and work instead with its homotopy category, which is why quasi-categories are
objects of interest in their own right.

2. Higher associativity data

With these preliminaries aside, we are now finally able to address the following
question: what sort of higher associativity data is present in any quasi-category?
First, a definition from the theory of simplicial sets: the spine of an n-simplex
σ ∈ Sn consists of the edges 0 → 1, 1 → 2, . . . , n − 1 → n between the successive
vertices of σ. In the language of the previous section, the spine of σ is the maximal
list of composable edges of σ. When n > 2, a n,i-horn in S has the same edges as
any of its fillers, so we may speak of the spine of a horn as well. For example, in
(1.2), the spine is f , g, h.

Given a sequence f , g, h of three composable morphisms, any 3-simplex with
spine f , g, h gives a piece of associativity data associated to that sequence. The
faces of any such simplex exhibit composites gf and hg as well an an arrow d1f →
d0h that is simultaneously exhibited as a composite of f with hg and gf with h.
The work of the previous section shows that such simplices exist in any quasi-
category. This sort of associativity data is more natural than that exhibited, e.g.,
by a 3-simplex

·
hg

��=======

hg

��

·

f
@@�������

(hg)f ��=======
h(gf) // ·

·

�������

�������

that fills the 3,1-horn with faces constructed from the faces of (1.2). This is because
the former is unbiased, whereas the latter emphasizes the chosen composite hg and
neglects to choose a composite of f and g.

With this in mind, the next level of associativity data should consist of 4-
simplices with spine f , g, h, k, where this is again a sequence of composable
morphisms. We will show firstly that such simplices can be constructed in any
quasi-category and secondly that the faces of any such simplex can be understood
as some sort of “unbiased associativity pentagon.” We will then explain how the
observations made for 4-simplices extend to 5- and 6-simplices, which we explicitly
relate to the (rather more complicated) associahedra K5 and K6, after which point
we become tired of computing associahedra and stop.

2.1. 4-dimensional associativity. First, we will construct a 4-simplex that should
be thought of as a piece of associativity data for the sequence of composable mor-
phisms f , g, h, k. We will construct this simplex by filling a 4,2-horn. The con-
struction feels a bit less natural if we instead choose to fill a 4,1- or 4,3-horn. We
will also describe such a construction below to illustrate the differences.

Any 4-simplex σ has five faces σ0, . . . , σ4, which are themselves 3-simplices. We
will construct our 4-simplex by filling the 4,2-horn given by the 3-simplices depicted
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below, which are themselves constructed by filling 3-dimensional horns:
σ0 ·

h

��

kh

��========

·

g

>>~~~~~~~~ (kh)g //

hg   AAAAAAAA ·

·
k

@@�������

σ1 ·

h

��

kh

��========

·

gf

>>~~~~~~~~(kh)(gf) //

h(gf)   AAAAAAAA ·

·
k

@@�������

σ3 ·

g

��

(kh)g

��========

·

f

>>~~~~~~~~(kh)(gf) //

gf   AAAAAAAA ·

·
kh

@@�������

σ4 ·

g

��

hg

��========

·

f

>>~~~~~~~~ h(gf) //

gf   AAAAAAAA ·

·
h

@@�������

The labels for the arrows are meant to indicate how these composites are chosen.
We begin by choosing 2-simplices exhibiting composites gf , hg, and kh of the 3
composable pairs contained in our list of morphisms. Next, we choose simplices
exhibiting the composites h(gf) and (kh)g that will form the 3rd face of σ1 and
0th face of σ3, respectively. With the data previously chosen, we can form a 3,1-
horn, which we fill to obtain σ0 and a 3,2-horn, which we fill to obtain σ4. Finally,
we choose a 2-simplex exhibiting a composite (kh)(gf) of kh and gf . This allows
us to construct a 3,1-horn, which we fill to obtain σ1 and a 3,2-horn, which we fill
to obtain σ3.

We must show that these 3-simplices fit together to form a 4,2-horn in S. The
conditions that we must check are

d3σ4 = d3σ3 ↔ gf d1σ4 = d3σ1 ↔ h(gf)
d0σ4 = d3σ0 ↔ hg d0σ3 = d2σ0 ↔ (kh)g
d0σ1 = d0σ0 ↔ kh d1σ3 = d2σ1 ↔ (kh)(gf).

Each of these six conditions asks that we have agreed on the 2-simplex that we
have chosen to exhibit the indicated composite. E.g., the first condition asks that
we have chosen a 2-simplex exhibiting a particular composite of f and g. Hence,
the above procedure gives rise to a 4,2-horn, which we can fill in S to obtain the
desired 4-simplex σ.

How can we understand this 4-simplex? First, note that its 5th face is

σ2 ·

hg

��

(kh)g

��========

·

f

>>~~~~~~~~(kh)(gf) //

h(gf)   AAAAAAAA ·

·
k

@@�������

The faces of σ2 are exactly the things we haven’t chosen already: 2-simplices ex-
hibiting k(hg) as a composite of hg and k, (hg)f as a composite of f and hg, and
(kh)(gf) as a composite of both f and (kh)g and h(gf) and k.

Importantly, the five faces of σ can be associated with the edges of the associa-
tivity pentagon. Using common notation for the latter (such as in the context of a
monoidal category), the associations are as follows:

(2.1) σ0 ↔ αg,h,k, σ1 ↔ αgf,h,k, σ2 ↔ αf,hg,k, σ3 ↔ αf,g,kh, σ4 ↔ αf,g,h.

These associations are easily recognized from the spines of each σi. These five
simplices form a simplicial sphere in S, i.e., a map ∂∆4 → S,1 and σ fills this

1An n-dimensional simplicial sphere in S is specified by n + 1 n − 1-simplices σ0, . . . , σn

satisfying the relations of (1.1), except dropping the requirement that j, k 6= i.
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sphere. In common parlance, a simplicial sphere commutes exactly when it can
be filled. So σ witnesses the fact that the sphere formed by the 3-dimensional
associativity data σ0, σ1, σ2, σ3, σ4 commutes. In contrast to the situation of the
associativity pentagon, this commutativity is unbiased; we don’t have a natural way
of composing 3 simplices so we don’t attempt to combine them in any particular
order.

For completeness sake, we will also say a few words describing an alternate
construction of associativity 4-simplices, where we instead construct and fill 4,1- or
4,3-horns. These situations are dual, in the sense that one transforms into the other
when we replace an quasi-category S by its opposite Sop, also an quasi-category.2

We will construct a 4,1-horn out of 3-simplices τ0, τ2, τ3, and τ4. In order for a
filler τ to have the spine f , g, h, k, the faces must have the spines indicated

τ0 ↔ g, h, k τ2 ↔ f, hg, k τ3 ↔ f, g, kh τ4 ↔ f, g, h.

The required relations are as follows

d3τ4 = d3τ3 ↔ gf d2τ4 = d3τ2 ↔ (hg)f
d0τ4 = d3τ0 ↔ hg d0τ3 = d2τ0 ↔ (kh)g
d0τ2 = d1τ0 ↔ (kh)g = k(hg) d2τ3 = d2τ2 ↔ ((kh)g)f.

The top four relations proscribe that we must first choose 2-simplices exhibiting
the composites gf , hg, and (implicit in the fourth relation) kh. We then choose
2-simplices exhibiting the composites (hg)f and (kh)g. These choices allow us to
construct and fill 3,1-horns to obtain τ0 and τ4. The 1st face of τ0 exhibits our
chosen (kh)g as a composite of hg and k. The fifth relation says that we must take
this 2-simplex to be the 0th face of τ2. Finally, the last relation says we must choose
a 2-simplex to fill the 2nd faces of τ2 and τ3; as our previously chosen edge (kh)g
is already exhibited as a composite of hg with k, this is no obstacle. We fill the
3,1-horns just constructed to obtain the 3-simplices τ2 and τ3, as depicted below.

τ0 ·

h

��

kh

��========

·

g

??~~~~~~~~ (kh)g //

hg   @@@@@@@@ ·

·
k

@@�������

τ2 ·

hg

��

(kh)g

��========

·

f

??~~~~~~~~((kh)g)f //

(hg)f   @@@@@@@@ ·

·
k

@@�������

τ3 ·

g

��

(kh)g

��========

·

f

??~~~~~~~~((kh)g)f //

gf   @@@@@@@@ ·

·
kh

@@�������

τ4 ·

g

��

hg

��========

·

f

??~~~~~~~~ (hg)f //

gf   @@@@@@@@ ·

·
h

@@�������

By the construction just given, these 3-simplices fit together to form a 4,1-horn
in S, which can be filled to obtain a 4-simplex τ . The missing face is

τ1 ·

h

��

kh

��========

·

gf

??~~~~~~~~((kh)g)f //

(hg)f   @@@@@@@@ ·

·
k

@@�������

2The opposite of a simplicial set S : ∆op → Set is obtained by precomposing with the
endofunctor of ∆ that reverses the order of each object [n]. This functor takes f : [n] → [m] to

the function fop : [n]→ [m] defined by fop(i) = m− f(n− i).
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As before, the faces of the 4-simplex τ can be associated to the edges of the as-
sociativity pentagon, and τ should be thought of as a witness to the unbiased
commutativity of these 3-simplices.

2.2. 5-dimensional associativity. Now we move up a level to consider 5-simplices
that can be thought of as a piece of associativity data for the sequence of compos-
able morphisms f , g, h, k, l. Any 5-simplex has six faces, which we identify by
their spines. Given a 5-simplex σ with spine f , g, h, k, l, its faces have the spines
indicated:

σ0 ↔ g, h, k, l σ1 ↔ gf, h, k, l σ2 ↔ f, hg, k, l
σ3 ↔ f, g, kh, l σ4 ↔ f, g, h, lk σ5 ↔ f, g, h, k.

As before it is possible to make a sequence of choices in such a way as to construct
a 5,1-, 5,2-, 5,3-, or 5,4-horn whose filler σ is such an associativity 5-simplex. Rather
than describe the details of such a construction, we switch perspectives somewhat
and consider together all of the relations satisfied by the six faces that form the
simplicial sphere filled by σ. They are listed in the following table:

d3σ5 = d4σ3 d2σ5 = d4σ2 d1σ5 = d4σ1

d0σ4 = d3σ0 d0σ3 = d2σ0 d0σ2 = d1σ0

d2σ4 = d3σ2 d1σ4 = d3σ1 d1σ3 = d2σ1

d4σ5 = d4σ4 d0σ5 = d4σ0 d0σ1 = d0σ0

d1σ2 = d1σ1 d2σ3 = d2σ2 d3σ4 = d3σ3

These relations ask that certain faces of the 4-simplices σi are equal, i.e., that we
choose certain 3-simplices consistently when constructing the σi. We’ll identify
these chosen 3-simplices with their spines for simplicity. The requirement that two
3-simplices are equal implies that their faces are the same, so we don’t care to
specify what these 2-simplices are anymore.

The top three rows of relations correspond, respectively, to the 3-simplices with
spines

f, g, kh f, hg, k gf, h, k
g, h, lk g, kh, l hg, k, l
f, hg, lk gf, h, lk gf, kh, l

These correspond to the nine edges of the associahedron K5 that are shared by two
pentagonal faces in the same manner of the correspondence given in the previous
section: namely, the 3-simplex with spine x, y, z is associated to αx,y,z. This should
be compared with (2.1).

The relations in the fourth row correspond, respectively, to the 3-simplices f, g, h;
g, h, k; and h, k, l. We will say more about these relations in a moment. The final
row of relations correspond, respectively, to the 3-simplices with spines hgf, k, l;
f, khg, l; f, g, lkh. The morphism hgf should be the back edge of the 3-simplex
f, g, h serving as a common composite for f with hg and gf with h, and similarly
of course for the other triples. These last two rows of relations correspond to the
edges of the associahedron K5 that surround the three “naturality squares” in the
following manner. For example, the relation d4σ5 = d4σ4 corresponds to the top
and bottom arrows of the “naturality square” below; note that these arrows arise
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from the same natural transformation αf,g,h.

l(k(h(gf))) //

��

l(k((hg)f))

��
(lk)(h(gf)) // (lk)((hg)f)

The relation d1σ2 = d1σ1 corresponds to the left and right arrows of this square,
which arise from the natural transformation αhgf,k,l.

The reason these faces of the associahedron are squares and not some other
shape has to do with the fact that the information they contain is somehow the
product of two K3, which are intervals geometrically. In the example above, one K3

(or, extending our analogy downward, one 3-simplex) contains the data associated
with the triple f, g, h while the other contains the data associated with the triple
hgf, k, l. The product of these two intervals is a square. When we describe the
associahedron K6 in the next section, we will see that it is productive to think of
some of its faces as (non-trivial) products in a similar manner.

In conclusion, the 5-simplex σ can be viewed as data witnessing the commuta-
tivity of an unbiased 5-dimensional associahedron whose faces correspond to the
lower-dimensional data described above.

2.3. 6-dimensional associativity and beyond. We extend this analogy one di-
mension further in part to clarify how the “naturality squares” of K5 generalize
to higher dimensions. The associahedron K6 is the 4-dimensional polytope whose
vertices correspond to each way of multiplying (non-associatively) an ordered list
of six elements. Alternatively, each vertex corresponds to a planar rooted binary
tree with six leaves. K6 has 14 faces, which are themselves polyhedra. Seven of
these take the form of the associahedron K5 while the other seven are pentagonal
prisms (geometrically equal to K4 ×K3).

As was the case for lower dimensions, one can construct a 6-simplex with spine
f, g, h, k, l,m by filling a 6,i-horn for some 0 < i < 6, where the faces of the horn are
also constructed by filling horns. As usual, these faces must satisfy the relations
(1.1). We again omit the details of this construction and instead describe the
combinatorics of such 6-simplices.

A 6-simplex σ with spine f, g, h, k, l,m will have seven faces corresponding to
the seven associahedral faces of K6. The faces σ0, . . . , σ6 satisfy 21 relations, which
describe how these 5-simplices are glued together to form the boundary of σ. Each
associahedral face of K6 is glued along its pentagonal faces to each other face either
directly or via a connecting prism, and these gluings correspond bijectively to the
21 relations mentioned above. Additionally, the three squares of an associahedral
face are glued to square faces of three separate pentagonal prisms, and some of
the pentagonal prisms are glued to each other directly along the remaining square
faces. We understand this “lower level gluing” to correspond to the choices that
had to be made prior to constructing the 4-simplices that will serve as faces of the
σi. This should be compared with the observation in the previous section that we
had to choose a morphism hgf , which should be the back edge of the 3-simplex
f, g, h before constructing the 3-simplex hgf, k, l.
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The conclusion is the same as we have asserted previously: a 6-simplex σ can be
viewed as data witnessing the commutativity of the unbiased 6-dimensional associ-
ahedron whose faces correspond to the lower-dimensional data described above.
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