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1 Introduction
Let G be a finite group. We let ReppGq denote the complex representation ring of

G. That is, ReppGq is the abelian group generated by symbols rV s, where V ranges
over the collection of all finite-dimensional complex representations of G, subject to
the relation

rV s “ rV 1s ` rV 2s

for every isomorphism of complex representations V » V 1 ‘ V 2. It is a free abelian
group of finite rank, equipped with a canonical basis consisting of elements rW s, where
W is an irreducible representations of G. We regard ReppGq as a commutative ring,
whose multiplication is characterized by the formula rV s ¨ rW s “ rV bC W s.

If V is a finite-dimensional complex representation of G, we let χV : GÑ C denote
the character of V , given concretely by the formula

χV pgq “ TrpV g
ÝÑ V q.

The character χV is an example of a class function on G: that is, it is invariant under
conjugation (so χV pgq “ χV phgh

´1q for all g, h P G). Using the identities

χV‘W pgq “ χV pgq ` χW pgq χVbW pgq “ χV pgqχW pgq,

we see that the construction rV s ÞÑ χV determines a ring homomorphism

ReppGq Ñ tClass functions χ : GÑ Cu.

The starting point for the character theory of finite groups is the following result (see
Corollary 4.7.8):

Theorem 1.1.1. Let G be a finite group. Then the characters of the irreducible repre-
sentations of G form a basis for the vector space of class functions on G. Consequently,
the construction rV s ÞÑ χV induces an isomorphism of complex vector spaces

CbZ ReppGq » tClass functions χ : GÑ Cu.

Theorem 1.1.1 can be reformulated using the language of equivariant complex
K-theory (see [20]). Given a topological space X equipped with an action of G, we let
KU0

GpXq denote the (0th) G-equivariant complex K-group of X. If X is a finite G-CW
complex, then KU0

GpXq is a finitely generated abelian group, which can be realized
concretely as the Grothendieck group of G-equivariant complex vector bundles on X.
In particular, when X “ ˚ consists of a single point, we have a canonical isomorphism
KU0

Gp˚q » ReppGq. Theorem 1.1.1 can be generalized as follows (see Corollary 4.7.7):
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Theorem 1.1.2. Let G be a finite group and let X be a finite G-CW complex. For
each g P G, let Xg “ tx P X : xg “ xu denote the set of fixed points for the action of
g. We regard the disjoint union

ž

gPG

Xg
» tpg, xq P GˆX : xg “ xu Ď GˆX

as equipped with the right action of G given by the formula pg, xqh “ ph´1gh, xhq. Then
there is a canonical isomorphism

chG : CbZ KU0
GpXq Ñ Hev

pp
ž

gPG

Xg
q{G; Cq,

called the equivariant Chern character. Here

Hev
pp
ž

gPG

Xg
q{G; Cq “

ź

nPZ
H2n

p
ž

gPG

Xg
q{G; Cq

denotes the product of the even cohomology groups of p
š

gPGX
gq{G with coefficients

in the field C of complex numbers.

Example 1.1.3. In the special case where X “ ˚ consists of a single point, we
can identify the quotient p

š

gPGX
gq{G appearing in Theorem 1.1.2 with the set of

conjugacy classes of elements of G (regarded as a finite set with the discrete topology),
so that Hevpp

š

gPGX
gq{G; Cq » H0pp

š

gPGX
gq{G; Cq is isomorphic to the vector space

of class functions χ : GÑ C. Under this identification, the equivariant Chern character
chG : CbZ KU0

GpXq » Hevpp
š

gPGX
gq{G; Cq corresponds to the isomorphism

CbZ ReppGq » tClass functions χ : GÑ Cu V ÞÑ χV

of Theorem 1.1.1 (see Example 4.3.9).

Example 1.1.4. When the group G is trivial, the equivariant Chern character of
Theorem 1.1.2 specializes to the usual Chern character

ch : CbZ KU0
pXq Ñ Hev

pX; Cq,

which is an isomorphism whenever X is a finite CW complex. In this case, it is not
necessary to work over the complex numbers: there is already a canonical isomorphism
of rational vector spaces

QbZ KU0
pXq » Hev

pX; Qq,
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which induces the isomorphism ch after extending scalars along the inclusion Q ãÑ C.
Beware that this is not true in the equivariant case (even when X is a point): if V
is a finite-dimensional representation of G, then the character χV : GÑ C generally
does not take values in Q.

Let EG denote a contractible space equipped with a free action of the finite
group G. If X is any topological space equipped with a G-action, we let XhG denote
the homotopy orbit space of X by the action of G, defined as the quotient space
pX ˆ EGq{G. The projection map X ˆ EGÑ X induces a homomorphism

ζ : KU0
GpXq Ñ KU0

GpX ˆ EGq » KU0
pXhGq,

which we will refer to as the Atiyah-Segal comparison map. It is not far from being an
isomorphism, by virtue of the following classical result (see Corollary 4.9.3):

Theorem 1.1.5 (Atiyah [1]). Let G be a finite group and let IG Ď ReppGq be the
augmentation ideal, defined as the kernel of the ring homomorphism

ReppGq Ñ Z rV s ÞÑ dimCpV q.

For every finite G-CW complex X, the Atiyah-Segal comparison map

ζ : KU0
GpXq Ñ KU0

pXhGq

exhibits KU0
pXhGq as the IG-adic completion of KU0

GpXq; here we regard KU0
GpXq as

a module over the representation ring ReppGq » KU0
Gp˚q.

The conclusion of Theorem 1.1.5 can be simplified by applying a further completion.
Fix a prime number p. We say that an element g P G is p-singular if the order of g is
a power of p, and we let Gppq Ď G denote the subset consisting of p-singular elements.
Let yKU denote the p-adic completion of the complex K-theory spectrum KU. Then,
after p-adic completion, the Atiyah-Segal comparison map yields a homomorphism

ζp : ZpbZ KU0
GpXq Ñ

yKU
0
pXhGq

which is the projection onto a direct factor. After extending scalars to the complex
numbers, we can describe this direct factor concretely by the following variant of
Theorem 1.1.2:
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Theorem 1.1.6. Fix a prime number p and an embedding ι : Zp ãÑ C. Then there is
a canonical isomorphism of complex vector spaces

pchG : CbZp
yKU

0
pXhGq Ñ Hev

pp
ž

gPGppq

Xg
q{G; Cq.

Remark 1.1.7. In the situation of Theorem 1.1.6, the isomorphism pchG is related to
the equivariant Chern character chG of Theorem 1.1.2 by a commutative diagram

CbZ KU0
GpXq

chG
„

//

ζp
��

Hevpp
š

gPGX
gq{G; Cq

��
CbZp

yKU
0
pXhGq

xchG
„
// Hevpp

š

gPGppq X
gq{G; Cq.

Example 1.1.8. In the situation of Theorem 1.1.6, suppose that G is a p-group. Then
one can show that the augmentation ideal IG Ď ReppGq of Theorem 1.1.5 satisfies
InG Ď pReppGq for n " 0. It follows that the completed Atiyah-Segal comparison
map ζp : ZpbZ KU0

GpXq Ñ
yKU

0
pXhGq is an isomorphism. In this case, Theorem 1.1.6

reduces to Theorem 1.1.2 (note also that we have Gppq “ G when G is a p-group).

In [5], Hopkins, Kuhn, and Ravenel prove a generalization of Theorem 1.1.6
in the setting of chromatic homotopy theory. To state their result, we will need
a bit of notation. Let k be a perfect field of characteristic p and let pG0 be a 1-
dimensional formal group of height n ă 8 over k. The formal group pG0 admits a
universal deformation pG, which is defined over the Lubin-Tate ring R (noncanonically
isomorphic a power series ring W pκqrrv1, . . . , vn´1ss). Then pG can be realized as
the identity component of a connected p-divisible group G over R. Let C0 be the
R-algebra classifying isomorphisms of p-divisible groups pQp {Zpq

n » G. Then
SpecpC0q is a GLnpZpq-torsor over the affine scheme SpecpRQq, where RQ “ Rr1

p
s is

the rationalization of R. Let E denote the Lubin-Tate spectrum associated to pG0:
that is, E is an even periodic ring spectrum equipped with isomorphisms

R » π0pEq pG0 » SpfpE0
pCP8

qq.

Let EQ “ Er1
p
s denote the rationalization of E, so that we have an isomorphism

π0pEQq » RQ. We then have the following:

Theorem 1.1.9 (Hopkins-Kuhn-Ravenel). Let G be a finite group and let X be a
finite G-CW complex. For each homomorphism α : Zn

p Ñ G, let Xα Ď X denote
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the subspace of X consisting of points which are fixed by the action of the subgroup
impαq Ď G. Then there is a canonical isomorphism of graded C0-algebras

C0 bR E
˚
pXhGq Ñ C0 bRQ E

˚
Qpp

ž

α:ZnpÑG
Xα
q{Gq.

Example 1.1.10. Let X “ ˚ be a single point, so that the homotopy orbit space
XhG can be identified with the classifying space BG “ EG{G. Then the space

ž

α:ZnpÑG
Xα

appearing in the statement of Theorem 1.1.9 can be identified with the finite set S of
n-tuples pg1, . . . , gnq of p-singular elements of G satisfying gigj “ gjgi for 1 ď i ď j ď n.
It follows that we can identify C0bRE

0pBGq with the module of “higher class functions”
χ : S Ñ C0 satisfying the identity χpg1, . . . , gnq “ χph´1g1h, ¨ ¨ ¨ , h

´1gnhq for h P G.

Example 1.1.11. Let k “ Fp be the finite field with p-elements, and let pG0 “ pGm be
the formal multiplicative group over k. Then the Lubin-Tate ring R can be identified
with Zp, and C0 can be identified with the field Qppζp8q “

Ť

mě1 Qppζpmq obtained
from Qp by adjoining all p-power roots of unity. The Lubin-Tate spectrum E is then
given by the p-adically completed complex K-theory spectrum yKU, and the classical
Chern character supplies isomorphisms

ch : E0
QpY q » Hev

pY ; Qpq.

In this case, Theorem 1.1.9 supplies an isomorphism

Qppζp8q bZp
yKU

0
pXhGq » Qppζp8q bQp

yKU
0
Qpp

ž

α:ZpÑG
Xα
q{Gq

» Qppζp8q bQp
Hev
pp

ž

gPGppq

Xg
q{G; Qpq.

After extending scalars along an embedding ι : Qppζp8q ãÑ C, this recovers the
isomorphism of Theorem 1.1.6 provided that ι is chosen to satisfy the normalization
condition ιpζpmq “ expp2πi{pmq.

Remark 1.1.12. In the situation of Theorem 1.1.9, the isomorphism

C0 bR E
˚
pXhGq Ñ C0 bRQ E

˚
Qpp

ž

α:ZnpÑG
Xα
q{Gq
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is equivariant with respect to the action of the profinite group GLnpZpq. Passing to
fixed points, we obtain an isomorphism

E˚pXhGqr
1
p
s » pC0 bRQ E

˚
Qpp

ž

α:ZnpÑG
Xα
q{GqqGLnpZpq.

Here the fixed points on the right hand side are taken with respect to the simultaneous
action of GLnpZpq on the coefficient ring C0 and the space

š

α:ZnpÑGX
α.

Remark 1.1.13. In the statement of Theorem 1.1.9, we can replace the set-theoretic
quotient

p
ž

α:ZnpÑG
Xα
q{G

by the homotopy orbit space p
š

α:ZnpÑGX
αqhG; the canonical map

p
ž

α:ZnpÑG
Xα
qhG Ñ p

ž

α:ZnpÑG
Xα
q{G

induces an isomorphism on cohomology with coefficients in EQ, since G is a finite
group and the coefficient ring π˚pEQq is a rational vector space.

In the case where the group G is trivial, Theorem 1.1.9 follows from the observation
that the comparison map

ρ : RQ bR E
˚
pY q Ñ E˚QpY q

is an isomorphism. This is a much more elementary statement, which is immediate
from the flatness of RQ over R. However, it depends crucially on the assumption that
Y is finite. If we instead take Y “ XhG, where X is a finite G-CW complex, then,
after extending scalars from RQ to C0, the map ρ factors as a composition

C0 bR E
˚
pXhGq » C0 bRQ E

˚
Qpp

ž

α:ZnpÑG
Xα
qhGq

π
ÝÑ C0 bRQ E

˚
QpXhGq,

where the first map is the isomorphism of Theorem 1.1.9 (and Remark 1.1.13) and the
second is induced by the inclusion of X as a summand of the coproduct

š

α:ZnpÑGX
α

(namely, the summand corresponding to the trivial homomorphism Zn
p Ñ t1u ãÑ G).

From this perspective, we can view Theorem 1.1.9 as measuring the failure of
the comparison map ρ to be an isomorphism for spaces of the form Y “ XhG. Note
that the cohomology theories E and EQ have different chromatic heights. The
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spectrum EQ is Kp0q-local, and therefore captures the same information as ordinary
cohomology with coefficients in Q. In particular, cohomology with coefficients in
EQ cannot detect the difference between the homotopy orbit space XhG and the
set-theoretic quotient X{G when G is a finite group (Remark 1.1.13). By contrast,
the Lubin-Tate spectrum E is Kpnq-local, and therefore has the potential to capture
delicate p-torsion information. Theorem 1.1.9 describes the part of this information
that survives after inverting the prime number p: roughly speaking, the localization
E˚pXhGqr

1
p
s » RQ bR E

˚pXhGq knows not only about the EQ-cohomology of XhG,
but also about the EQ-cohomology of “twisted sectors” pXαqhZpαq (where Zpαq Ď G

denotes the centralizer of a homomorphism α : Zn
p Ñ G).

In [21], Stapleton proves a “transchromatic” generalization of Theorem 1.1.9, which
articulates the sort of information which is lost by passing from Kpnq-local to Kpmq-
local homotopy theory for 0 ď m ď n. Let LKpmqE denote the Kpmq-localization
of the Lubin-Tate spectrum E defined above, and set Rm “ π0pLKpmqEq. Let GRm

denote the p-divisible group over Rm obtained from G by extending scalars along
the canonical map R “ π0pEq Ñ π0pLKpmqEq “ Rm. Then the p-divisible group GRm

admits a connected-étale sequence

0 Ñ G1
Ñ GRm

q
ÝÑ G2

Ñ 0,

where G1 is a connected p-divisible group of height m and G2 is étale of height
n´m. Let Cm be universal among those Rm-algebras A which are equipped with a
morphism pQp {Zpq

n´m Ñ GA of p-divisible groups over A for which the composite
map pQp {Zpq

n´m Ñ GA
q
ÝÑ G2

A is an isomorphism (see §2.7). The main result of [21]
can be formulated as follows:

Theorem 1.1.14 (Stapleton). The commutative ring Cm is flat both as an R-algebra
and as an Rm-algebra. Moreover, if G is a finite group and X is a finite G-CW
complex, then there is a canonical isomorphism of graded Cm-algebras

Cm bR E
˚
pXhGq » Ct bRm pLKpmqEq

˚
pp

ž

α:Zn´mp ÑG

Xα
qhGq.

Remark 1.1.15. In the case m “ 0, the isomorphism of Theorem 1.1.14 reduces to
the isomorphism of Theorem 1.1.9.

Remark 1.1.16. As in Remark 1.1.12, one can use Theorem 1.1.14 (and faithfully
flat descent) to obtain a description of the groups Rm bR E

˚pXhGq in terms of the
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cohomology theory LKpmqE. However, the description is a bit more complicated in the
case m ą 0, because the map SpecpCmq Ñ SpecpRmq is not a torsor for a profinite
group. To specify an A-valued point of SpecpCmq (where A is some commutative
Rm-algebra), one must specify not only a trivialization of the étale p-divisible group
G2
A, but also a splitting of the sequence

0 Ñ G1
A Ñ GA

q
ÝÑ G2

A Ñ 0.

We refer the reader to [22] for a related discussion.

The goal of this paper is to place all of the results stated above into a more general
framework. Fix a prime number p. In [8], we introduced the notion of a p-divisible
group G over an E8-ring A. In the case where A is p-complete, we can associate
to each p-divisible group G a formal group G˝ over A, which we call the identity
component of G ([9]). If A is complex periodic and p-local, we say that a p-divisible
group G over A is oriented if, after extending scalars to the p-completion of A, the
identity component G˝ is identified with the Quillen formal group pGQ

A » SpfpACP8q.
Let G be an oriented p-divisible group over a p-local E8-ring A. To avoid confusion,

let us henceforth use the letter H to denote a finite group. In this paper, we will
introduce a functor

A˚Gp‚{{Hq : tH-spacesuop
Ñ tGraded ringsu.

This functor associates to each H-space X a graded ring A˚GpX{{Hq, which we will
refer to as the G-tempered cohomology ring of X{{H (Construction 4.0.5). Moreover,
there is a natural comparison map

ζG : A˚GpX{{Hq Ñ A˚pXhHq,

which we will refer to as the Atiyah-Segal comparison map. Let us briefly summarize
some of the essential properties of this construction (for a more complete overview,
we refer the reader to §4)):

Theorem 1.1.17 (Normalization). Let A be an E8-ring which Kpnq-local and let G
be an oriented p-divisible group of height n over A (which is then necessarily equivalent
to the Quillen p-divisible group GQ

A : see Proposition 2.5.6). Then, for any finite group
H and any H-space X, the Atiyah-Segal comparison map A˚GpX{{Hq Ñ A˚pXhHq is
an isomorphism.
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Theorem 1.1.18 (Character Isomorphisms). Let A be a p-local E8-ring, let G0 be an
oriented p-divisible group over A, and let G “ G0‘pQp {Zpq

n for some integer n. Let
H be a finite group and let X be an H-space. Then there is a canonical isomorphism
of graded rings

χ : A˚GpX{{Hq » A˚G0pp
ž

α:ZnpÑG
Xα
q{{Hq.

In particular, in the case n “ 1, we have an isomorphism

A˚GpX{{Hq » A˚G0pp
ž

hPHppq

Xh
q{{Hq.

Theorem 1.1.19 (Base Change). Let f : AÑ B be a flat morphism of p-local E8-
rings and let G be an oriented p-divisible group over A. Then extending scalars along
f determines an oriented p-divisible group over B, which we will also denote by G.
For any finite group H and any finite H-space X, we have a canonical isomorphisms

π0pBq bπ0pAq A
˚
GpX{{Hq » B˚GpX{{Hq.

Remark 1.1.20. Let us sketch how Theorems 1.1.17, 1.1.19, and 1.1.18 can be
combined to recover Theorem 1.1.14 (and therefore also Theorem 1.1.9). Let E be a
Lubin-Tate spectrum associated to a formal group of height n and let G “ GQ

E denote
the associated Quillen p-divisible group (which we now view as a p-divisible group over
the E8-ring E, rather than over the ordinary commutative ring R “ π0pEq). Choose
0 ď m ď n, let LKpmqpEq denote the Kpmq-localizaiton of E, and let GLKpmqpEq denote
the p-divisible group over LKpmqpEq obtained from G by extension of scalars. We then
have a connected-étale sequence

0 Ñ G1
Ñ GLKpmqpEq

q
ÝÑ G2

Ñ 0,

where G1 is an oriented p-divisible group of height m and G2 is an étale p-divisible
group of height n´m. Let B be universal among those E8-algebras over LKpmqpEq
which are equipped with a map u : pQp {Zpq

n´m Ñ GB for which the composition
pQp {Zpq

n´m u
ÝÑ GB

q
ÝÑ G2

B is an equivalence (for a more detailed construction of
B, we refer the reader to §2.7). Then B is flat over both E and LKpmqpEq, and
π0pBq can be identified with the commutative ring Cm appearing in the statement
of Theorem 1.1.14. By construction, the p-divisible group GB splits as a direct sum
G1
B ‘ pQp {Zpq

n´m. Consequently, if H is a finite group and X is a finite H-CW
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complex, we have isomorphisms

Cm bR E
˚
pXhHq » π0pBq bπ0pEq E

˚
GpX{{Hq

» B˚GpX{{Hq

» B˚G1pp
ž

α:Zn´mp ÑG

Xα
q{{Hq

» Cm bRm LKpmqpEq
˚
pp

ž

α:Zn´mp ÑG

Xα
qhHq

whose composition is the transchromatic character isomorphism of Theorem 1.1.14.

Theorems 1.1.17 and 1.1.18 are more or less formal: they will follow immediately
from our definition of G-tempered cohomology, as will the existence of a natural
comparison map

ρG : π0pBq bπ0pAq A
˚
GpX{{Hq Ñ B˚GpX{{Hq

in the situation of Theorem 1.1.19. Arguing as in Remark 1.1.20, these ingredients
are sufficient to construct the character map

Cm bR E
˚
pXhHq Ñ Cm bRm pLKpmqEq

˚
pp

ž

α:Zn´mp ÑG

Xα
qhHq

appearing in the statement of Theorem 1.1.14. However, to prove that the character
map is an isomorphism, we will need need to know that ρG is an isomorphism.
This is much less obvious. Recall that, if A is any E8-ring, then the A-cohomology
groups A˚pY q of a space Y can be realized as the homotopy groups of a spectrum
AY (parametrizing unpointed maps from Y to A), so that we have isomorphisms
A˚pY q » π´˚pA

Y q. Suppose that f : A Ñ B is a flat morphism of E8-rings. Then,
for any space Y , the canonical map of graded rings

π0pBq bπ0pAq A
˚
pY q Ñ B˚pY q

can be realized as the homotopy of a map of ring spectra ϕY : B bA AY Ñ ABY ;
here B bA AY denotes the smash product of B with AY over A. If Y is a finite
CW complex, then the map ϕY is a homotopy equivalence. However, the map ϕY is
generally not a homotopy equivalence when Y is not finite. In particular, it need not
be a homotopy equivalence in the case Y “ XhH , where H is a finite group and X

is a finite H-CW complex. Consequently, Theorem 1.1.19 articulates a property of
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G-tempered cohomology which is not shared by the “Borel-equivariant” cohomology
theory

tH-spacesuop
Ñ tGraded ringsu X ÞÑ A˚pXhHq.

Let us study the preceding situation in more detail. Let ModA denote the 8-
category of A-module spectra. For every space S, we let LocSysApSq “ FunpS,ModAq
denote the 8-category of ModA-valued local systems on S. We will be particularly
interested in the case S “ BH is the classifying space of a finite group H: objects
of the 8-category LocSysApBHq can be thought of as A-module spectra equipped
with an action of H. Pullback along the projection map BH Ñ ˚ induces a functor
ModA Ñ FunpBH,ModAq which carries an A-module spectrum to itself (equipped
with the trivial action of H). This functor has both left and right adjoints, which
carry an A-module spectrum M equipped with an action of H to the homotopy orbit
spectrum MhH and the homotopy fixed point spectrum MhH , respectively. These
constructions are related by a canonical map NmH : MhH ÑMhH , given informally
by “averaging” with respect to the action of H. If X is an H-space, then the function
spectrum AXhH can be realized the homotopy invariants for the tautological action of
H on the function spectrum AX . It follows that the map ϕXhH factors as a composition

B bA A
XhH » B bA pA

X
q
hH ψ
ÝÑ pB bA A

X
q
hH ϕX
ÝÝÑ pBX

q
hH
» BXhH .

If X is a finite H-CW complex, then the map ϕX is a homotopy equivalence. However,
the map ψ is generally not a homotopy equivalence: the extension of scalars functor
M ÞÑ B bA M usually does not preserve homotopy limits, and therefore need not
commute with the operation of taking homotopy invariants with respect to H. However,
extension of scalars does preserve homotopy colimits, such as the operation of taking
homotopy orbits with respect to H. Consequently, the map ψ fits into a commutative
diagram

B bA pA
XqhH

„ //

BbANmH

��

pBXqhH

NmH

��
B bA pA

XqhH // pBXqhH ,

where the upper horizontal map is a homotopy equivalence. We can informally
summarize the situation as follows: in the case Y “ XhH , the (potential) failure of the
map ϕY to be an equivalence is a result of the (potential) failure of the norm maps

NmH : pAXqhH Ñ pAXqhH NmH : pBX
qhH Ñ pBX

q
hH

13



to be equivalences.
Our proof that G-tempered equivariant cohomology satisfies Theorem 1.1.19 will

use a variant of the preceding ideas. Let A be a p-local E8-ring and let G be an
oriented p-divisible group over A. To every space S, we will associate an 8-category
LocSysGpSq whose objects we will refer to as G-tempered local systems on S (Definition
5.2.4). This 8-category is equipped with a forgetful functor

LocSysGpSq Ñ LocSysApSq “ FunpS,ModAq

which, in the case S “ BH, can be viewed as a categorification of the Atiyah-Segal
comparison map

ζ : A˚GpX{{Hq Ñ A˚pXhHq.

More precisely, if H is a finite group, X is a G-space, and f : BH Ñ ˚ denotes
the projection map, then the G-tempered H-equivariant cohomology of X can be
described by the formula

A˚GpX{{Hq » π´˚pf˚pF qq,

where F is a certain G-tempered local system on BH (which is a preimage of the
function spectrum AX under the forgetful functor LocSysGpBHq Ñ LocSysApBHq),
and f˚ : LocSysGpBHq Ñ LocSysGp˚q » ModA denotes the right adjoint to the
functor f˚ : LocSysGp˚q Ñ LocSysGpBHq given by pullback along f . To prove
Theorem 1.1.19, the essential point is to show that the functor f˚ preserves homotopy
colimits (and therefore commutes with extension of scalars along a morphism of
E8-rings A Ñ B). We will prove this by constructing a norm map NmH : f! Ñ f˚,
where f! denotes the left adjoint to the functor f˚, and showing that the map NmH is
an equivalence. This is a special case of a much more general assertion (see Theorem
7.2.10):

Theorem 1.1.21 (Tempered Ambidexterity). Let A be an E8-ring, let G be an
oriented p-divisible group over A, and let f : S Ñ S 1 be a map of π-finite spaces
(that is, spaces having only finitely many connected components and finitely many
nonvanishing homotopy groups, each of which is a finite group). Then the functors
f!, f˚ : LocSysGpSq Ñ LocSysGpS

1q are canonically equivalent to one another.

Remark 1.1.22. Let n be a nonnegative integer, and let SpKpnq denote the8-category
of Kpnq-local spectra. In [6], we proved that if f : S Ñ S 1 is a map of π-finite spaces,
then the functors

f!, f˚ : LocSysSpKpnqpSq Ñ LocSysSpKpnqpS
1
q
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are canonically equivalent to one another. Roughly speaking, Theorem 1.1.21 asserts
that this phenomenon persists outside of the Kpnq-local setting, provided that we
work with G-tempered local systems, rather than ordinary local systems.

Let us now outline the contents of this paper. We begin in §2 by reviewing the
notion of P-divisible group (Definition 2.6.1); here (and throughout this paper) we
will use the symbol P to denote the set t2, 3, 5, ¨ ¨ ¨ u of all prime numbers. If A is an
E8-ring, then a P-divisible group G over A can be identified with a system tGppqupPP

of p-divisible groups Gppq, where p ranges over all prime numbers. We will say that a
P-divisible group G is oriented if A if, after extending scalars to the p-completion of
A, each of the identity components G˝

ppq is equipped with an orientation (Definition
2.6.12). Such objects arise naturally in (at least) three ways:

paq Fix a prime number p, and let A be an E8-ring which is complex periodic and
Kpnq-local, for some n ě 1. Then the Quillen formal group SpfpACP8q is the
identity component of an oriented p-divisible group GQ

A , which we refer to as
the Quillen p-divisible group (see §2.4). We can also regard GQ

A as an oriented
P-divisible group over A, having trivial `-torsion for ` ‰ p.

pbq Over any E8-ring A, we can define a P-divisible group µP8 »
À

pPP µp8 , which
we refer to as the multiplicative P-divisible group (Construction 2.8.1). In the
special case where A “ KU is the complex K-theory spectrum, the P-divisible
group µP8 can be endowed with an orientation (Construction 2.8.6), which
arises from the orientation of the formal multiplicative group pGm over KU ([9]).

pcq Let E be a strict elliptic curve over an E8-ring A. Then E determines a P-
divisible group ErP8

s »
À

pPP Erp8s of torsion points of E. Any orientation of
X (in the sense of [9]) determines an orientation of the P-divisible group ErP8

s

(Construction 2.9.6).

The entirety of the preceding discussion can be generalized, using oriented P-divisible
groups (over general E8-rings) in place of oriented p-divisible groups (over p-local
E8-rings). Moreover, working in this generality yields real dividends: when A “ KU
and G “ µP8 is the multiplicative P-divisible group, there are canonical isomorphisms

A˚GpX{{Hq » KU˚HpXq

for any finite group H and any H-space X (Theorem 4.1.2). In other words, our
notion of G-tempered equivariant cohomology recovers equivariant complex K-theory
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(at least for finite groups). We will return to this point in [10] (where we prove a more
general result, which applies also to compact Lie groups). Similarly, if G “ ErP8

s

is the P-divisible group of torsion on an oriented elliptic curve E over A, then the
G-tempered cohomology A˚GpX{{Hq can be interpreted as the H-equivariant elliptic
cohomology of X (for the variant of elliptic cohomology associated to the oriented
elliptic curve E). We will develop this idea further in [10] (where we will essentially
take it as a definition of equivariant elliptic cohomology, at least for finite groups).

To organize our discussion of G-tempered cohomology, it will be convenient to use
the formalism of orbispaces, which we review in §3. For the purpose of this paper, we
define an orbispace to be a functor of 8-categories

T op
Ñ S,

where S denotes the 8-category of spaces and T Ď S is the full subcategory consisting
of spaces of the form BH, where H is a finite abelian group. The collection of orbispaces
can be organized into an 8-category which we will denote by OS (Definition 3.1.4),
which includes the 8-category S of spaces as a full subcategory (we will generally
abuse notation by identifying a space X with the orbispace Xp´q given by the functor
pT P T q ÞÑ XT ). We let SppOSq denote the 8-category of spectrum objects of OS;
the objects of SppOSq can be identified with functors

E : T op
Ñ Sp T ÞÑ ET .

Our starting point is that if A is an E8-ring, then there is a fully faithful embedding

tOriented P-divisible groups over Auop
Ñ FunpT op,CAlgAq,

which carries an oriented P-divisible group G to a functor AG : T op Ñ CAlgA, which
carries each object BH P T to an object ABHG which corepresents the functor Gr pHs of
maps from the Pontryagin dual group pH “ HompH,Q {Zq into G (see Theorem 3.5.5).
By neglect of structure, we can regard AG as a spectrum object of OS, representing a
cohomology theory

A˚G : OSop
Ñ tGraded ringsu

which we will refer to as G-tempered cohomology. If H is a finite group, then G-
tempered H-equivariant cohomology is defined as the composition

tH-spacesuop X ÞÑX{{H
ÝÝÝÝÝÝÑ OSop A˚G

ÝÝÑ tGraded ringsu;
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here X{{H denotes the formation of the orbispace quotient of an H-space X by
the action of H (see Construction 3.2.16). In §4, we provide a summary of the
formal properties enjoyed G-tempered cohomology in general, including suitable
generalizations of Theorems 1.1.17, 1.1.19, and 1.1.18.

In §5, we define the 8-category LocSysGpSq of G-tempered local systems on any
space S (or, more generally, any orbispace S). Roughly speaking, a G-tempered local
system F on S is a rule which assigns, to each object T P T and each map T Ñ S,
a module F pT q over the ring spectrum ATG. These modules are required to depend
functorially on T , in the sense that every commutative diagram

T 1

η1 ��

// T

η
��

S

induces a map
u : AGpT

1
q bATG

F pT q Ñ F pT 1q

which is not too far from being an equivalence (see Definition 5.2.4 for a precise
definition, and Theorem 5.5.1 for a convenient reformulation).

Our theory of tempered local systems is essentially controlled by three formal
properties, which we establish in §6:

p1q Suppose that the E8-ring A is p-local for some prime number p and that G is
an oriented p-divisible group over A (regarded as a P-divisible group for which
the summands Gp`q vanish for ` ‰ p). We say that a G-tempered local system
F P LocSysGpSq is Kpnq-local if, for every object T P T and every map T Ñ S,
the spectrum F pT q is Kpnq-local (Definition 6.1.13). Let LocSysKpnqG pSq denote
the full subcategory of LocSysGpSq spanned by the Kpnq-local G-tempered local
systems on S, and define LocSysKpnqA pSq Ď LocSysApSq similarly. In §6.3, we
show that the forgetful functor

LocSysKpnqG pSq Ñ LocSysKpnqA pSq

is an equivalence when n is equal to the height of the p-divisible group G
(Theorem 6.3.1).

p2q Let G be an oriented P-divisible group over an E8-ring A which splits as a
direct sum G0‘Λ, where Λ is a divisible torsion group whose p-torsion subgroup
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Λrps is finite for each prime number p. In §6.4, we construct a fully faithful
embedding of 8-categories

Φ : LocSysGpSq ãÑ LocSysG0pL
Λ
pSqq

(Theorem 6.4.9), and in §6.5 we characterize its essential image (Theorem 6.5.13).
Here pΛ “ HompΛ,Q {Zq denotes the Pontryagin dual of Λ, and LΛ

pSq denotes
the formal loop space parametrizing maps from the classifying space BpΛ to S
which are compatible with the profinite topology on pΛ (see Construction 3.4.3
for a precise definition).

p3q Let G be an oriented P-divisible group over an E8-ring A. For any space (or or-
bispace S), we can regard LocSysGpSq as an A-linear 8-category. Consequently,
if B is an E8-algebra over A, we can consider the 8-category

B bA LocSysGpSq » ModBpLocSysGpSqq

of B-module objects of LocSysGpSq. In §6.2, we show that this 8-category can
be identified with LocSysGB

pSq, where GB is the oriented P-divisible group
obtained from G by extending scalars along the map A Ñ B (Remark 6.2.4).
In particular, the construction B ÞÑ LocSysGB

pSq satisfies faithfully flat descent
(Proposition 6.2.6).

Properties p1q, p2q, and p3q can be regarded as categorified versions of Theorems
1.1.17, 1.1.18, and 1.1.19, respectively. In fact, Theorems 1.1.17 and 1.1.18 are
easy to deduce from p1q and p2q (though they even easier to establish directly, as
we will see in §4). Theorem 1.1.19 does not follow from p3q alone: it requires our
tempered ambidexterity theorem, which we prove in §7. Let us briefly outline our
approach to the problem, following the ideas introduced in [6]. Let f : S Ñ S 1 be
a map of π-finite spaces; we wish to construct an equivalence between the functors
f!, f˚ : LocSysGpSq Ñ LocSysGpS

1q. Working by induction on the number of homotopy
groups of the fibers of f , we can assume that we have already constructed an equivalence
δ! » δ˚, where δ : S Ñ S ˆS1 S is the relative diagonal. Using this equivalence, we
can associated to each tempered local system F P LocSysGpSq a comparison map
Nmf : f!pF q Ñ f˚pF q, which we call the norm map. The essence of the problem is
to show that this map is an equivalence. In §7.6, we establish tempered analogues
of Artin and Brauer induction (Theorems 7.6.3 and 7.6.5), which allow us to reduce
to the case where S and S 1 are p-finite spaces (for some fixed prime number p).
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Using formal arguments, we can further reduce to the case S 1 “ ˚ is a single point,
S “ KpFp,mq is an Eilenberg-MacLane space, and F “ AS is the unit object of the
8-category LocSysGpSq. In this case, the norm map Nmf determines bilinear form
on the (pre)dual of the tempered cohomology ring A˚GpSq, and we must show that
this bilinear form is nondegenerate. The proof then rests on a computation of the
tempered cohomology ring of Eilenberg-MacLane spaces, which we carry out in §4
(see Theorem 4.4.16).

Note that, to recover Theorem 1.1.14, we do not need the full strength of our
tempered ambidexterity theorem: it suffices to establish that G-tempered local systems
satisfy ambidexterity for maps of the form f : BH Ñ ˚, where H is a finite group.
However, our main result allows us to extend the reach of character theory to π-finite
spaces which have nontrivial higher homotopy groups. For example, we have the
following (see Corollary 4.8.5):

Corollary 1.1.23. Let E be the Lubin-Tate spectrum associated to a formal group of
height n, andlet C0 be as in the statement of Theorem 1.1.9. Then then tensor product
C0 bπ0pEq E

0pSq is a free C0-module of finite rank, with a canonical basis indexed by
the set of homotopy classes of maps B Zn

p Ñ S.

For some other concrete consequences of Theorem 1.1.21, see §4.8.

Remark 1.1.24. Many of the results of this paper can be interpreted in the language
of equivariant stable homotopy theory. Let A be an E8-ring and let G be an oriented
P-divisible group over A. For any finite group H, one can show that the G-tempered
H-equivariant cohomology functor

A˚Gp‚{{Hq : tH-Spacesu Ñ tGraded ringsu

is representable by a genuine H-spectrum: that is, it is functorial with respect to
stable maps of H-spaces (this is not obvious from the definition: it is a special case
of our ambidexterity results); we defer a detailed discussion of this point to [10].
However, this observation in some sense misses the point: it follows from Theorem
1.1.21 that our theory of G-tempered cohomology has much more functoriality than
is encoded by the framework of equivariant stable homotopy theory: for example, it
has “transfer” maps trX{Y : A˚GpXq Ñ A˚GpY q for every map of spaces X Ñ Y with
π-finite homotopy fibers (see Construction 7.4.1).
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Notation and Terminology
Throughout this paper, we will assume that the reader is familiar with the language

of 8-categories developed in [13] and [11], as well as the language of spectral algebraic
geometry as developed in [12]. Since we will need to refer to these texts frequently,
we adopt the following conventions:

pHTT q We will indicate references to [13] using the letters HTT.

pHAq We will indicate references to [11] using the letters HA.

pSAGq We will indicate references to [12] using the letters SAG.

For example, Theorem HTT.6.1.0.6 refers to Theorem 6.1.0.6 of [13].
We adopt a similar convention for references to the previous papers in this series:

pAV q We will indicate references to [8] using the letters AV.

pOrq We will indicate references to [9] using the letters Or.

pAmbiq We will indicate references to [6] using the letters Ambi.

Throughout this paper, we will adopt the following notational conventions (some
of which differ from the established mathematical literature):

differ from those of the texts listed above, or from the established mathematical
literature.

• We write S denote the 8-category of spaces, Sp for the 8-category of spectra,
and CAlg “ CAlgpSpq for the 8-category of E8-ring spectra (whose objects we
will refer to simply as E8-rings).

• If A is a spectrum and X is a space, we let AX denote the function spec-
trum parametrizing unpointed maps from X into A. This function spectrum
is characterized by the existence of homotopy equivalences MapSppB,A

Xq “

MapSpX,MapSppB,Aqq, depending functorially on B P Sp. We write A˚pXq
for the A-cohomology groups of the space X, given concretely by the formula
A˚pXq “ π´˚pA

Xq.

• We will generally not distinguish between a category C and its nerve NpCq. In
particular, we regard every category C as an 8-category.
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• We will generally abuse terminology by not distinguishing between an abelian
group M and the associated Eilenberg-MacLane spectrum: that is, we view the
ordinary category of abelian groups as a full subcategory of the 8-category Sp
of spectra. Similarly, we regard the ordinary category of commutative rings as a
full subcategory of the 8-category CAlg of E8-rings.

• Let A be an E8-ring. We will refer to A-module spectra simply as A-modules.
The collection of A-modules can be organized into a stable 8-category which
we will denote by ModA and refer to as the 8-category of A-modules. This
convention has an unfortunate feature: when A is an ordinary commutative ring,
it does not reduce to the usual notion of A-module. In this case, ModA is not the
abelian category of A-modules but is closely related to it: the homotopy category
hModA is equivalent to the derived category DpAq. Unless otherwise specified,
the term “A-module” will be used to refer to an object of ModA, even when A

is an ordinary commutative ring. When we wish to consider an A-module M
in the usual sense, we will say that M is a discrete A-module or an ordinary
A-module. If M and N are A-modules spectra, we write Ext˚ApM,Nq for the
graded abelian group given by ExtkApM,Nq “ π0 MapModApM,ΣkpNqq.

• Unless otherwise specified, all algebraic constructions we consider in this book
should be understood in the “derived” sense. For example, if we are given
discrete modules M and N over a commutative ring A, then the tensor product
MbAN denotes the derived tensor product MbLAN . This may not be a discrete
A-module: its homotopy groups are given by πnpMbANq » TorAn pM,Nq. When
we wish to consider the usual tensor product of M with N over A, we will denote
it by TorA0 pM,Nq or by π0pM bA Nq.

• If M and N are spectra, we will denote the smash product of M with N by
M bS N , rather than M ^ N (here S denotes the sphere spectrum). More
generally, if M and N are modules over an E8-ring A, then we will denote the
smash product of M with N over A by M bA N , rather than M ^A N . Note
that when A is an ordinary commutative ring and the modules M and N are
discrete, this agrees with the preceding convention.

Definition 1.1.25. Let X be a space. We say that X is π-finite if, for every base
point x P X, the homotopy groups πnpX, xq are finite and vanish for n " 0. Here
we include the case n “ 0 (that is, we require that the set of connected components
π0pXq is finite).
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Let S be a set of prime numbers. We will say that X is S-finite if it is π-finite
and S contains every prime number which divides the order of a homotopy group
πnpX, xq, for any point x P X and any n ą 0.

If p is a prime number, we say that X is p-finite if it is π-finite and each homotopy
group πnpX, xq is a finite p-group (in other words, if it is S-finite for S “ tpu).

Definition 1.1.26. Let A be an E8-ring and let I Ď π0pAq be a finitely generated
ideal. Then:

• An A-module M is I-nilpotent if, for each element t P I, the colimit

M rt´1
s “ lim

ÝÑ
pM

t
ÝÑM

t
ÝÑM

t
ÝÑ ¨ ¨ ¨ q

vanishes.

• An A-module M is I-complete if, for each element t P I, the limit

lim
ÐÝ
p¨ ¨ ¨ Ñ tM

t
ÝÑM

t
ÝÑM

t
ÝÑMq

vanishes.

• An A-module M is I-local if the groups Ext˚ApN,Mq vanish whenever N is I-
nilpotent (equivalently, M is I-local if the groups Ext˚ApM,Nq vanish whenever
N is I-complete). If I “ ptq is a principal ideal, this is equivalent to the
requirement that the map t : M ÑM is an equivalence.

We refer the reader to Chapter SAG.II.4 for a more detailed discussion of the
notions introduced in Definition 1.1.26 (see also [4]).

Warning 1.1.27. Let M be an A-module spectrum and let p be a prime number.
We say that M is p-complete if it is ppq-complete in the sense of Definition 1.1.26,
where ppq Ď π0pAq is the principal ideal generated by p. However, we will say that M
is p-local if it is a module over the localization Appq: in other words, if M is p`q-local
for every prime number ` ‰ p.

Warning 1.1.28. In this paper, we will use the notation xM for two essentially
unrelated purposes:

• If M is a module over an E8-ring A, we will sometimes write xM to denote the
completion of M with respect to a finitely generated ideal I Ď π0pAq. This will
occur most frequently in the special case where M “ A and where I “ ppq, for
some prime number p.
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• If M is a torsion abelian group, we will sometimes write xM to denote the
Pontryagin dual group HompM,Q {Zq. If M is finite, then the Pontryagin dual
xM is also a finite abelian group (of the same order as M); more generally, xM
can be regarded as a profinite group (by identifying it with the inverse limit
lim
ÐÝ

xM0, where M0 ranges over the collection of all finite subgroups of M .
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2 Orientations and P-Divisible Groups
Let A be an E8-ring and let pG be a formal group over A, which we view as a

functor
pG : CAlgτě0pAq Ñ Modcn

Z .

Recall that a preorientation of pG is a map of Z-module spectra e : Σ2pZq Ñ pGpAq
(Definition Or.4.3.19 ). Our goal in this section is to study a variant of this definition
in the setting of p-divisible groups. In §2.1, we associate to each p-divisible group G a
space PrepGq, which we will refer to as the space of preorientations of G (Definition
2.1.4). Our theory of preorientations is uniquely determined by the following two
assertions, which we will prove in §2.3 and §2.2 respectively:

paq If pA is the p-completion of A and G
pA is the p-divisible group over pA obtained

from G by extension of scalars, then we have a canonical homotopy equivalence:
PrepGq „

ÝÑ PrepG
pAq (Proposition 2.3.1). Consequently, for the purpose of

understanding preorientations of p-divisible groups, there is no harm in restricting
our attention to E8-rings which are p-complete.

pbq If A is a p-complete E8-ring, then there is a canonical homotopy equivalence
PrepGq » PrepG˝q (Proposition 2.2.1). Here G˝ denotes the identity component
of G and PrepG˝q the space of preorientations of G˝ introduced in Definition
Or.4.3.19 .

Let us now assume that A is not only p-complete, but Kpnq-local for some integer
n ą 0. In §Or.4.6 , we constructed a p-divisible group GQ

A over A, which we refer to
as the Quillen p-divisible group (Definition Or.4.6.4 ). In §2.4, we show that giving
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a preorientation of an arbitrary p-divisible group G over A is equivalent to giving a
morphism of p-divisible groups e : GQ

A Ñ G (Proposition 2.4.1). In other words, the
Quillen p-divisible group GQ

A is universal among preoriented p-divisible groups over A.
If G is a p-divisible group over an E8-ring which is p-complete and complex

periodic, then we can identify preorientations e of G with morphisms of formal
groups ι : pGQ

A Ñ G˝, where pGQ
A denotes the Quillen formal group of A (Construction

Or.4.1.13 ). We will be particularly interested in the case where ι is an equivalence (so
that e identifies pGQ

A with the identity component of G). In this case, we will say that
e is an orientation of G and that G is an oriented p-divisible group over A (Definition
2.5.1).

For some applications, it is inconvenient to restrict our attention to a single prime
number p. In §2.6, we remove this restriction by reviewing the notion of a P-divisible
group over an E8-ring A, where P “ t2, 3, 5, ¨ ¨ ¨ u denotes the set of all prime numbers
(Definition 2.6.1). This is essentially just notation: a P-divisible group G can be
identified with a family of p-divisible groups tGppqupPP, indexed by the set of all
prime numbers p (Remark 2.6.7). We define a preorientation e of G to be a family of
preorientations tep P PrepGppqqupPP (Definition 2.6.8 and Remark 2.6.9), and we say
that e is an orientation if A is complex periodic and each ep induces an orientation of
Gppq after extending scalars to the p-completion of A (Definition 2.6.12). We will be
primarily interested in the following pair of examples, which we discuss in §2.8 and
§2.9:

• To any E8-ring A, we can associate a P-divisible group µP8 which we refer to
as the multiplicative P-divisible group (Construction 2.8.1). This P-divisible
group is equipped with a canonical orientation in the case where A “ KU is the
periodic complex K-theory spectrum.

• To any strict elliptic curve X over an E8-ring A, we can associate a P-divisible
group XrP8

s of torsion of X (Construction 2.9.1). Moreover, any orientation of
the elliptic curve X (in the sense of Definition Or.7.2.7 ) determines an orientation
of the P-divisible group XrP8

s (Construction 2.9.6.

Remark 2.0.1. Let R0 be a commutative algebra over Fp and let G0 be a p-divisible
group over Rq. In [9], we proved that if R0 is Noetherian, F -finite, and G0 is
nonstationary, then G0 can be “lifted” to an oriented p-divisible group G over an
even complex periodic E8-ring Ror

G0 , which we call the oriented deformation ring of
G0 (Theorem Or.6.0.3 ). This result can be used to produce a large class of examples
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of oriented P-divisible groups (to which we can apply the formalism developed in this
paper).

2.1 Preorientations of p-Divisible Groups
Let p be a prime number, which we regard as fixed throughout this section. For

the reader’s convenience, we recall the definition of p-divisible group over an E8-ring
A (see Definition Or.2.0.2 ).

Definition 2.1.1. Let A be a connective E8-ring and let CAlgA denote the8-category
of E8-algebras over A. A p-divisible group over A is a functor

G : CAlgA Ñ Modcn
Z

which satisfies the following conditions:

p1q For each B P CAlgA, the Z-module spectrum GpBq is p-nilpotent: that is, it
satisfies GpBqr1{ps » 0

p2q For every finite abelian p-group M , the functor

pB P CAlgcn
A q ÞÑ pMapModZ

pM,GpAqq P Sq

is corepresentable by a finite flat A-algebra.

p3q The map p : G Ñ G is locally surjective with respect to the finite flat topology.
In other words, for every object B P CAlgcn

A and every element x P π0pGpBqq,
there exists a finite flat map B Ñ C for which | SpecpCq| Ñ | SpecpBq| is
surjective and the image of x in π0pGpCqq is divisible by p.

If A is a nonconnective E8-ring, we define a p-divisible group over A to be
a p-divisible group over the connective cover τě0pAq, which we view as a functor
G : CAlgτě0pAq Ñ Modcn

Z .

Remark 2.1.2. Let A be a connective E8-ring and let G be a p-divisible group over
A. It follows from p1q and p2q that, for any E8-algebra B over A, the canonical map
Gpτě0pBqq Ñ GpBq is an equivalence. In other words, G is a left Kan extension of
its restriction to the full subcategory CAlgcn

A Ď CAlgA (so no information is lost by
replacing G by its restriction G|CAlgcn

A
).
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Remark 2.1.3. Let A be an E8-ring which is not necessarily connective, and let G
be a p-divisible group over A. It is not difficult to see that G is determined by its
restriction to E8-algebras over A: that is, by the composite functor

CAlgA Ñ CAlgτě0pAq Ñ Modcn
Z .

However, it is sometimes technically convenient to be able to evaluate G on objects of
CAlgτě0pAq which do not admit A-algebra structures (like the ordinary commutative
ring π0pAq).

We now introduce an analogue of Definition Or.4.3.19 in the setting of p-divisible
groups.

Definition 2.1.4. Let A be an E8-ring and let G be a p-divisible group over A. A
preorientation of G is a morphism of Z-module spectra Σ1pQp {Zpq Ñ GpAq. The
collection of preorientations of G are parametrized by a space

PrepGq “ MapModZ
pΣpQp {Zpq,GpAqq,

which we will refer to as the space of preorientations of G.

Example 2.1.5. Let A be a commutative ring and let G be a p-divisible group
over A. Then the Z-module spectrum GpAq is discrete. It follows that the space of
preorientations PrepGq “ MapModZ

pΣ1pQp {Zpq,GpAqq is contractible. In other words,
G admits an essentially unique preorientation (given by the zero map Σ1pQp {Zpq Ñ

GpAq.

Example 2.1.6. Let A be an E8-ring and let G be an étale p-divisible group over
A (Definition Or.2.5.3 ). Then the Z-module spectrum GpBq is discrete for every
object B P CAlgτě0pAq (see Theorem HA.7.5.4.2 ). It follows that the space PrepGq is
contractible: that is, G admits an essentially unique preorientation.

Remark 2.1.7. Let A be an E8-ring and suppose we are given a short exact sequence
0 Ñ G1 Ñ G Ñ G2 Ñ 0 of p-divisible groups over A (Definition Or.2.4.9 ). We then
obtain a fiber sequence of spaces PrepG1q Ñ PrepGq Ñ PrepG2q. In particular, if G2

is étale, then the canonical map PrepG1q Ñ PrepGq is a homotopy equivalence: in
other words, we can identify preorientations of G with preorientations of G1.
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Remark 2.1.8. Let A be an E8-ring and let Qp {Zp denote the constant p-divisible
group over A (of height 1) associated to the p-divisible abelian group Qp {Zp. For any
p-divisible group G over A, we have a canonical homotopy equivalence

MapBTppAqpQp {Zp,Gq » MapModZ
pQp {Zp,GpAqq.

It follows that the PrepGq of preorientations of G can be identified with the loop
space Ω MapBTppAqpQp {Zp,Gq. In particular, homotopy classes of preorientations of
G are classified by the fundamental group π1 MapBTppAqpQp {Zp,Gq.
Notation 2.1.9. Let A be an E8-ring and let G be a p-divisible group over A. For
every E8-algebra B over A, we let GB denote the p-divisible group over B given by
the composite functor

CAlgτě0pBq Ñ CAlgτě0pAq
G
ÝÑ Modcn

Z .

Then we have a canonical homotopy equivalence

PrepGBq » MapModZ
pΣpQp {Zpq,GpBqq.

In particular, we can regard the construction B ÞÑ PrepGBq as a functor from
CAlgA to the 8-category S of spaces, given explicitly by the composition

CAlgA
G
ÝÑ Modcn

Z
MapModZ pΣpQp {Zpq,‚q
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ S .

We will need the following elementary observation:
Proposition 2.1.10. Let A be an E8-ring and let G be a p-divisible group over A.
Then the functor pB P CAlgBq ÞÑ PrepGBq is corepresentable by an object of the
8-category CAlgA. In particular, it commutes with small limits.
Proof. Replacing A by τě0pAq, we can reduce to the case where A is connective.
In this case, we will show that the functor B ÞÑ PrepGBq is corepresentable by a
connective E8-algebra over A. By virtue of Notation 2.1.9, we are reduced to showing
that the functor B ÞÑ MapModZ

pΣpQp {Zpq,GpBqq is corepresentable by a connective
E8-algebra over A. Writing Qp {Zp as a filtered colimit of finite subgroups of the
form Z {pk Z, we are reduced to showing that each of the functors

ρk : CAlgA Ñ S ρkpBq “ MapModZ
pΣpZ {pk Zq,GpBqq

is corepresentable by a connective E8-algebra over A. Our assumption that G is a
p-divisible group guarantees that each of the functors B ÞÑ MapModZ

pZ {pk Z,GpBqq
is corepresentable by a finite flat A-algebra Apkq. Then ρk is corepresentable by the
suspension of Apkq in the 8-category CAlgaug

A of augmented E8-algebras over A: that
is, by the relative tensor product AbApkq A.
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2.2 The p-Complete Case
Let G be a p-divisible group defined over an E8-ring A which is p-complete, and

let G˝ denote the formal group given by the identity component of G (Definition
Or.2.0.10 ). Our goal in this section is to relate preorientations of G (in the sense of
Definition 2.1.4) to preorientations of G˝ (in the sense of Definition Or.4.3.19 ):

Proposition 2.2.1. Let A be a p-complete E8-ring, let G be a p-divisible group over
A, and let G˝ be its identity component (Definition Or.2.0.10 ). Then there is a
canonical homotopy equivalence PrepGq » PrepG˝q.

To prove Proposition 2.2.1, we may assume without loss of generality that A is
connective. Recall that, if pG is a formal group over A, then the space PreppGq or
preorientations of pG can be identified with the mapping space MapModZ

pΣ2pZq, pGpAqq
(Remark Or.4.3.20 ). In the p-complete case, this can be reformulated:

Proposition 2.2.2. Let pG be a formal group over a connective p-complete E8-ring
A. Let α : ΣpQp {Zpq Ñ Σ2pZq denote the map of Z-module spectra determined by
the short exact sequence of abelian groups 0 Ñ Z Ñ Zr1{ps Ñ Qp {Zp Ñ 0. Then the
map

PreppGq » MapModZ
pΣ2
pZq, pGpAqq

˝α
ÝÑ MapModZ

pΣpQp {Zpq, pGpAqq

is a homotopy equivalence.

Proof. Without loss of generality, we may assume that A is connective. It will suffice
to show that the mapping space F pAq “ MapModZ

pΣpZr1{psq, pGpAqq is contractible.
Since the functor pG is nilcomplete (Proposition Or.1.6.8 ), we can identify F pAq with
the limit lim

ÐÝ
F pτďnpAqq. We are therefore reduced to showing that each F pτďnpAqq is

contractible. We proceed by induction on n. In the case n “ 0, the desired result is
obvious (since pGpτďnpAqq is discrete). To carry out the inductive step, assume that
n ą 0 and set M “ πnpAq, so that we can regard τďnpAq as a square-zero extension of
τďn´1pAq by ΣnpMq (Theorem HA.7.4.1.26 ). It follows that there exists a pullback
diagram

τďnpAq //

��

π0pAq

��
τďn´1pAq // π0pAq ‘ Σn`1pMq.
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Since the functor pG is cohesive (Proposition Or.1.6.8 ) and F pπ0pAqq is contractible,
we obtain a fiber sequence

F pτďnpAqq Ñ F pτďn´1pAqq Ñ F pπ0pAq ‘ Σn`1
pMqq.

It will therefore suffice to show that the space F pπpAq ‘Σn`1Mq is contractible. Note
that we can identify F pπ0pAq‘Σn`1Mq with the zeroth space of the limit of the tower

¨ ¨ ¨
p
ÝÑ ZpΣn`1Mq

p
ÝÑ ZpΣn`1Mq

p
ÝÑ ZpΣn`1Mq

p
ÝÑ ZpΣn`1Mq,

where we define ZpNq “ ΩpGpπ0pAq ‘ Nq P Modcn
Z . Note that the construction

N ÞÑ ZpNq determines an additive functor Modcn
π0pAq Ñ Modcn

Z , so that the map
p : ZpΣn`1Mq Ñ ZpΣn`1Mq is induced by the multiplication p : M Ñ M . We
therefore obtain a homotopy equivalence F ppπ0pAq ‘ Σn`1Mq » Ω8ZpM 1q, where M 1

denotes the limit of the tower

¨ ¨ ¨ Ñ Σn`1M
p
ÝÑ Σn`1M

p
ÝÑ Σn`1M,

formed in the 8-category Modcn
Z . We conclude the proof by observing that M 1 » 0,

by virtue of our assumption that A is p-complete.

Proof of Proposition 2.2.1. Without loss of generality, we may assume that A is a
connective p-complete E8-ring. Let G be a p-divisible group over A and let G˝ be its
identity component. Let C Ď CAlgcn

A denote the full subcategory spanned by those
connective A-algebras B such that B is truncated and p is nilpotent in π0pBq. Then,
for each B P C, we have a canonical fiber sequence

G˝
pBq Ñ GpBq Ñ GpBred

q.

We therefore obtain a natural map PrepG˝
Bq Ñ PrepGBq, given by the composition

PrepG˝
Bq » MapModZ

pΣ2
pZq,G˝

pBqq

Ñ MapModZ
pΣpQp {Zpq,G˝

pBqq

Ñ MapModZ
pΣpQp {Zpq,GpBqq

» PrepGBq,

where the first map is given by precomposition with the map α : ΣpQp {Zpq Ñ Z
appearing in Proposition 2.2.2 (and is therefore a homotopy equivalence), and the
second is a homotopy equivalence by virtue of the fact that GpBredq is discrete. The
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resulting homotopy equivalence depends functorially on B, and therefore supplies a
homotopy equivalence

lim
ÐÝ
BPC

PrepG˝
Bq » lim

ÐÝ
BPC

PrepGBq.

The desired result now follows from the fact that the tautological maps

PrepG˝
q Ñ lim

ÐÝ
BPC

PrepG˝
Bq PrepGq Ñ lim

ÐÝ
BPC

PrepGBq

are homotopy equivalences (Lemma Or.4.3.16 and Proposition 2.1.10).

Corollary 2.2.3. Let A be an E8-ring which is p-complete and complex periodic, and
let G be a p-divisible group over A. Then we have a canonical homotopy equivalence

PrepGq » MapFGrouppAqp
pGQ
A ,G˝

q,

where pGQ
A is the Quillen formal group over A (Construction Or.4.1.13 ).

Proof. Combine Propositions 2.2.1 and Or.4.3.21 .

Corollary 2.2.4. Let A be a connective E8-ring which is p-complete and 1-truncated.
Then, for every p-divisible group G over A, the space of preorientations PrepGq is
contractible.

Proof. Combine Proposition 2.2.1 with Example Or.4.3.5 .

2.3 Reduction to the p-Complete Case
Let A be an E8-ring and let G be a p-divisible group over A. Proposition 2.2.1

asserts that, if A is p-complete, then giving a preorientation of G (in the sense of
Definition 2.1.4) is equivalent to giving a preorientation of its identity component G˝

(in the sense of Definition Or.4.3.19 ). The general case can be always be reduced to
the p-complete case, by virtue of the following result:

Proposition 2.3.1. Let A be an E8-ring, let G be a p-divisible group over A, and
let pA be the p-completion of A. Then the map PrepGq Ñ PrepG

pAq of Notation 2.1.9
is a homotopy equivalence.

Our proof begins with a simple observation:

Lemma 2.3.2. Let f : AÑ B be a morphism of E8-rings which induces an isomor-
phism πnpAq Ñ πnpBq for n ą 0 and let G be a p-divisible group over A. Then the
canonical map PrepGq Ñ PrepGBq is a homotopy equivalence.
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Proof. Without loss of generality, we may assume that A and B are connective. We
then have a homotopy pullback diagram of connective E8-rings

A //

��

B

��
π0pAq // π0pBq.

Applying Proposition 2.1.10, we obtain a pullback diagram of spaces

PrepGq //

��

PrepGBq

��
PrepGπ0pAqq

// PrepGπ0pBqq.

The bottom horizontal map is a homotopy equivalence (since both spaces are con-
tractible by virtue of Example 2.1.5). Consequently, the upper horizontal map is a
homotopy equivalence as well.

Proof of Proposition 2.3.1. Let A1 “ τě0pAq be the connective cover of A, so that G
is obtained from a p-divisible group G1 over A1 by extension of scalars. Let pA1 be the
ppq-completion of A1. Then the map pA1 Ñ pA induces an isomorphism on π˚ for ˚ ą 0.
It follows from Lemma 2.3.2 that the vertical maps in the diagram

PrepG1q //

��

PrepG1
pA1
q

��
PrepGq // PrepG

pAq

are homotopy equivalences. Consequently, to show that the upper horizontal map
is a homotopy equivalence, it will suffice to show that the lower horizontal map is a
homotopy equivalence. Replacing A by A1 (and G by G1) we may reduce to the case
where A is connective.

For each integer k ě 0, let Fk : CAlgcn
A Ñ S denote the functor given by the

formula FkpBq “ MapModZ
pΣpZ {pk Zq,GpBqq. Writing Qp {Zp as a direct limit of

finite subgroups Z {pk Z, we obtain a canonical equivalence PrepGBq » lim
ÐÝk

FkpBq.
For each B P CAlgcn

A , let pB denote the p-completion of B. We will prove Proposition
2.3.1 by showing that the canonical map θB : lim

ÐÝk
FkpBq Ñ lim

ÐÝk
Fkp pBq is a homotopy

equivalence for each B P CAlgcn
A . Note that if B is discrete, then each FkpBq is

contractible.
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For k ě 0, define a functor Gk : CAlgcn
A Ñ S by the formula GkpBq “ fibpFkp pBq Ñ

Fkp{π0pBqq. Note that the p-completion {π0pBq is 1-truncated and p-complete (Corollary
SAG.II.4.3.2.4 ), so that PrepG

{π0pBq
q » lim

ÐÝk
Fkp{π0pBqq is contractible (Corollary 2.2.4).

It follows that the evident maps GkpBq Ñ Fkp pBq induce a homotopy equivalence
lim
ÐÝk

GkpBq Ñ lim
ÐÝk

Fkp pBq for each B P CAlgcn
A . We can therefore identify θB with the

limit of maps θBk : FkpBq Ñ GkpBq. We will complete the proof by showing that each
θBk is a homotopy equivalence.

Since G is a p-divisible group, the functor

pB P CAlgcn
A q ÞÑ MapModZ

pZ {pk Z,GpBqq

is corepresentable by some finite flat A-algebra C. It follows that the functors Fk and
Gk are given concretely by the formulae

FkpBq “ fibpΩ MapCAlgApC,Bq Ñ Ω MapCAlgRpC, π0pBqqq

GkpAq “ fibpΩ MapCAlgApC,
pBq Ñ Ω MapCAlgRpC,

{π0pBqqq.

It follows from these formulae that the functors Fk and Gk are nilcomplete; conse-
quently, it will suffice to show that θBk is a homotopy equivalence under the additional
assumption that B is n-truncated for some n ě 0. We proceed by induction on n. In
the case n “ 0, the spaces FkpBq and GkpBq are both contractible, so there is nothing
to prove. To carry out the inductive step, let us suppose that B is n-truncated for
some n ě 0. Using Theorem HA.7.4.1.26 , we see that B is a square-zero extension of
τďn´1pBq by the module M “ ΣnpπnpBqq: that is, there exists a pullback diagram

B //

��

π0pBq

��
τďn´1pBq // π0pBq ‘ ΣM.

This diagram remains a pullback square after applying the functors Fk and Gk, so we
have a pullback diagram

θBk //

��

θ
π0pBq
k

��

θ
τďn´1pBq
k

// θ
π0pBq‘ΣM
k

in the 8-category Funp∆1,Sq. Since θπ0pBq
k and θ

τďn´1pBq
k are homotopy equivalences

by our inductive hypothesis, we are reduced to proving that the map

ρ “ θ
π0pAq‘ΣM
k : Fkpπ0pBq ‘ ΣMq Ñ Gkpπ0pBq ‘ ΣMq
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is a homotopy equivalence. Using the formula for Gk given above and the fact that
the functor MapCAlgApC, ‚q commutes with limits, we obtain a homotopy equivalence
Gkpπ0pBq ‘ ΣMq » Fkpπ0pBq ‘ ΣxMq, where xM denotes the p-adic completion of M .
It follows that we have a fiber sequence

Fkpπ0pBq ‘ ΣMq ρ
ÝÑ Fkpπ0pBq ‘ ΣxMq Ñ Fkpπ0pBq ‘Nq,

where N denotes the cofiber of the map ΣM Ñ ΣxM .
Define a functor H : Modcn

π0pBq Ñ Modcn
Z {pk Z by the formula

HpKq “ fibpGrpksppπ0pAq ‘Kq Ñ Grpkspπ0pBqq.

Note that the functor H is additive. Consequently, applying H to the multiplication
map pk : K Ñ K induces multiplication by pk on H, which is nullhomotopic by
construction. It follows that if multiplication by p is an equivalence from K to itself,
then HpKq » 0. Applying this observation in the case K “ N , we deduce that
HpNq » 0 so that Fkpπ0pBq ‘Nq “ Ω8`1HpNq is contractible. It follows that ρ is a
homotopy equivalence, as desired.

2.4 The Kpnq-Local Case
Let A be an E8-ring which is complex periodic and Kpnq-local, for some n ě 1.

In §Or.4.6 , we introduced a p-divisible group GQ
A which we refer to as the Quillen p-

divisible group of A (see Definition Or.4.6.4 ). This p-divisible group is characterized (up
to equivalence) by the fact that it is formally connected (with respect to the topology
on π0pAq given by the nth Landweber ideal IAn ) and that its identity component is
the Quillen formal group pGQ

A (Theorem Or.4.6.16 ). For our purposes, this can be
reformulated as follows:

Proposition 2.4.1. Let A be an E8-ring which is complex periodic and Kpnq-local
for some n ą 0. Then, for any p-divisible group over A, there is a canonical homotopy
equivalence

MapBTppAqpGQ
A ,Gq » PrepGq.

Proof. Since GQ
A is formally connected, Theorem Or.2.3.12 implies that passage to

the identity component induces a homotopy equivalence

MapBTppAqpGQ
A ,Gq » MapFGrouppAqpGQ

A

˝
,G˝

q.
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Theorem Or.4.6.16 allows us to identify GQ
A

˝ with the Quillen formal group pGQ
A ,

so that the mapping space MapFGrouppAqpGQ
A

˝
,G˝q can be identified with the space

PrepG˝q classifying preorientations of G˝ (Proposition Or.4.3.21 ). The desired result
now follows from from the homotopy equivalence PrepGq » PrepG˝q of Corollary
2.2.3.

Remark 2.4.2. The homotopy equivalence of Proposition 2.4.1 depends functorially
on G. It follows that that the functor

pG P BTp
pAqq ÞÑ PrepAq “ MapModZ

pΣpQp {Zpq,GpAqq

is corepresented by the Quillen formal group GQ
A . In other words, there exists a

preorientation η P GQ
A which is universal in the sense that, for any p-divisible group

G, evaluation on η induces the homotopy equivalence

MapBTppAqpGQ
A ,Gq » PrepGq

of Proposition 2.4.1.
Let us describe the preorientation η more explicitly, without reference to the theory

of formal groups. For each finite abelian p-group H, let pH “ HompH,Q {Zq denote
the Pontryagin dual of H. The Quillen p-divisible group GQ

A is charactered by the
existence of homotopy equivalences

MapCAlgτě0pAq
pτě0pA

BH
q, Bq » MapModZ

p pH,GQ
ApBqq

depending functorially on H and B (which ranges over E8-algebras over the connective
cover of A); see Construction Or.4.6.2 . Setting B “ A and composing with the natural
map

BM Ñ MapCAlgApA
BH , Aq » MapCAlgτě0pAq

pτě0pA
BH
q, Aq,

we obtain maps ρ : BH Ñ MapModZ
p pH,GQ

ApAqq, depending functorially on H. Here
we can regard both sides as p-torsion objects of the 8-category of spaces, in the sense
of Definition AV.6.4.2 . The fully faithful embedding Torsp S ãÑ Modcn

Z of Example
AV.6.4.11 carries ρ to a morphism of Z-module spectra ΣpQp {Zpq Ñ GQ

ApAq, which
we can view as a preorientation of GQ

A . We leave it to the reader to verify that this
agrees with the preorientation constructed implicitly in the proof of Proposition 2.4.1.
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2.5 Orientations of p-Divisible Groups
Let A be an E8-ring and let pG be a formal group over A. Recall that a preorien-

tation e of pG is said to be an orientation if A is complex periodic and e is classified
by an equivalence of formal groups pGQ

A Ñ
pG (Proposition Or.4.3.23 ). We now adapt

this definition to the setting of p-divisible groups.

Definition 2.5.1. Let A be a p-complete E8-ring and let G be a p-divisible group
over A. We will say that a preorientation e of G is an orientation if its image under
the homotopy equivalence PrepGq » PrepG˝q of Proposition 2.2.1 is an orientation of
the identity component G˝, in the sense of Definition Or.4.3.9 . We let OrDatpGq Ď
PrepGq denote the summand consisting of all orientations of the p-divisible group G.

Remark 2.5.2 (Functoriality). Let f : AÑ A1 be a morphism of p-complete E8-rings
and let G be a p-divisible group over A. Then the natural map PrepGq Ñ PrepGA1q

carries orientations of G to orientations of GA1 .

Remark 2.5.3. Let A be a p-complete E8-ring and let G be a p-divisible group over
A. If A is complex periodic, then giving an orientation of G is equivalent to choosing
an equivalence of formal groups pGQ

A » G˝, where pGQ
A is the Quillen formal group of

A. If A is not complex periodic, then the space of orientations OrDatpGq is empty
(Proposition Or.4.3.23 ).

Remark 2.5.4. Let A be a p-complete E8-ring and let G be a p-divisible group of
height ď n over A. Suppose that G admits an orientation (so that A is necessarily
complex periodic, by Remark 2.5.3). Then:

• The p-divisible group G is 1-dimensional (since G˝ is equivalent to the 1-
dimensional formal group pGQ

A).

• The Quillen p-divisible group pGQ
A has height ď n (since it is equivalent to the

identity component of G).

Warning 2.5.5. Let A be a p-complete E8-ring and let G be a p-divisible group
over A. Then G can be identified with a p-divisible group G0 over the connective
cover τě0pAq, and we can identify preorientations e of G with preorientations e0 of
G0. Beware, however, that that e0 is never an orientation (even if e is an orientation),
except in the trivial case A » 0.
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We now prove an analogue of Proposition Or.4.3.23 , which allows us to reformulate
Definition 2.5.1 without reference to the theory of formal groups. We begin with the
Kpnq-local case.

Proposition 2.5.6. Let A be an E8-ring which is Kpnq-local for some n ě 1, let
G be a p-divisible group over A, and let e be a preorientation of G. Then e is an
orientation if and only if the following conditions are satisfied:

p0q The p-divisible group G is 1-dimensional.

p1q The E8-ring A is complex periodic, so that the Quillen p-divisible group GQ
A is

well-defined (Definition Or.4.6.4 ).

p2q The image of e under the homotopy equivalence PrepGq » MapBTppAqpGQ
A ,Gq

of Proposition 2.4.1 is a monomorphism of p-divisible groups GQ
A Ñ G (in the

sense of Definition Or.2.4.3 ).

Proof. Assume first that conditions p0q, p1q, and p2q are satisfied. Let us abuse
notation by identifying e with the map of p-divisible groups GQ

A Ñ G supplied by
Proposition 2.4.1. Using p2q, we obtain a short exact sequence of p-divisible groups

0 Ñ GQ
A

e
ÝÑ G Ñ H Ñ 0

(in the sense of Definition Or.2.4.9 ). Since GQ
A and G are both 1-dimensional, it

follows that H is an étale p-divisible group over A. Consequently, the map e induces an
equivalence of identity components pGQ

A » pGQ
Aq
˝ e
ÝÑ G˝ and is therefore an orientation

in the sense of Definition 2.5.1.
We now prove the converse. Suppose that e is an orientation of G. Then conditions

p0q and p1q are automatic (Remarks 2.5.3 and 2.5.4). Let IAn Ď π0pAq be the nth
Landweber ideal (Definition Or.4.4.11 ). We will regard A as an adic E8-ring by
equipping π0pAq with the IAn -adic topology. Our assumption that A is Kpnq-local
guarantees that it is complete (as an adic E8-ring); see Proposition Or.4.5.4 . The
Quillen formal group pGQ

A is the identity component of the Quillen p-divisible group
GQ
A (Theorem Or.4.6.16 ). The p-divisible group GQ

A is formally connected (essentially
by the definition of the ideal IAn ), so that pGQ

A is a p-divisible formal group over
A in the sense of Definition Or.2.3.14 . Since e is an orientation, it follows that
G˝ » pGQ

Aq
˝ » pGQ

A is also a p-divisible formal group over A. Applying Proposition
Or.2.5.17 , we deduce that G admits a connected-étale sequence

0 Ñ G1 i
ÝÑ G Ñ G2

Ñ 0.
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Then e factors as a composition GQ
A

f
ÝÑ G1 i

ÝÑ G. Since i is a monomorphism of
p-divisible groups, it will suffice to show that f is an equivalence. Since GQ

A and G1

are formally connected p-divisible groups over A, this is equivalent to the requirement
that f induces an equivalence of identity components (Corollary Or.2.3.13 ), which
follows from our assumption that e is an orientation.

Corollary 2.5.7. Let A be a p-complete E8-ring, let G be a p-divisible group over
A, and let e be a preorientation of G. Then e is an orientation if and only if the
following conditions are satisfied:

p0q The p-divisible group G is 1-dimensional.

p1q The E8-ring A is complex periodic and the classical Quillen formal group pGQ0
A

has finite height at every point of | SpecpAq|.

p2q For each integer m ě 1, the image of e under the composite map

PrepGq Ñ PrepGLKpmqAq » MapBTppAqpGQ
LKpmqpAq

,GLKpmqpAqq

is a monomorphism fm : GQ
LKpmqpAq

Ñ GLKpmqpAq of p-divisible groups over
LKpmqpAq (in the sense of Definition Or.2.4.3 ).

Warning 2.5.8. In the statement of Corollary 2.5.7, the assumption that pGQ0
A has

finite height at every point of | SpecpAq| cannot be omitted. Otherwise, we could
obtain a counterexample taking A to be any complex periodic E8-algebra over Fp

(and G to be any 1-dimensional preoriented p-divisible group over A).

Remark 2.5.9. In the statement of Corollary 2.5.7, conditions p0q and p1q do not
depend on the preorientation e: they are conditions on A and G which are necessary
for the existence of any orientation.

Proof of Corollary 2.5.7. If e is an orientation, then conditions p0q and p1q follow from
Remarks 2.5.3 and 2.5.4, while p2q follows from Proposition 2.5.6. Conversely, suppose
that p0q, p1q, and p2q are satisfied. Then the formal group G˝ is 1-dimensional. Let
ωG˝ denote its dualizing line (Definition Or.4.2.14 ) and let βe : ωG˝ Ñ Σ´2pAq be the
Bott map associated to e (Construction Or.4.3.7 ). We wish to show that βe is an
equivalence.

Let B be an E8-algebra over A. We will say that B is good if it is p-complete and
the map PrepGq Ñ PrepGBq carries e to an orientation of GB. Equivalently, B is

37



good if it is p-complete and the morphism βe becomes an equivalence after extending
scalars to B. From this description, we see that the collection of good A-algebras is
closed under fiber products.

For each n ě 0, let IAn denote the nth Landweber ideal of A (Definition Or.4.5.1 ),
so that the vanishing locus of IAn in | SpecpAq| consists of those points where the
classical Quillen formal group pGQ0

A has height ě n. It follows from condition p1q that
the union

Ť

n I
A
n is the unit ideal of π0pAq. In other words, there exists some integer

n " 0 such that IAn “ π0pAq. In particular, A is IAn -local as an A-module. We will
complete the proof by establishing the following assertion, for each positive integer m:

p˚mq Let B P CAlgA be an E8-algebra over A which is p-complete and IAm-local as
an A-module (this is equivalent to the requirement that B is Epm´ 1q-local as
a spectrum). Then B is good.

The proof of p˚mq will proceed by induction on m. In the case m “ 1, we have
IAm “ ppq, so any A-algebra which is p-complete and IAm-local must vanish. To carry
out the inductive step, assume that assertion p˚mq is satisfied and let B be a p-complete
E8-algebra over A which is IAm`1-local; we will show that B is good. Let I “ IAm
denote the mth Landweber ideal of π0pAq. Let

M ÞÑ LIpMq M ÞÑM^
I

denote the functors of localization and completion with respect to I. Then we have a
pullback diagram

B //

��

B^I

��
LIpBq // LIpB

^
I q

of E8-algebras over A (since the vertical maps become equivalences after I-localization,
and the horizontal maps become equivalences after I-completion). Passing to p-
completions (and invoking our assumption that B is p-complete), we obtain a pullback
diagram

B //

��

B^I

��
LIpBq

^
ppq

// LIpB
^
I q
^
ppq.

Here LIpBq^ppq and LIpB^I q^ppq are I-local and p-complete, and therefore good by virtue
of our inductive hypothesis. Consequently, to show that B is good, it will suffice to
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show that B^I is good. However, the ring spectrum B^I is Kpmq-local (see Theorem
Or.4.5.2 ), so the unit map AÑ B^I factors through the Kpmq-localization LKpmqpAq.
We are therefore reduced to showing that LKpmqpAq is good, which follows from
assumption p2q.

Remark 2.5.10. In the statement of Corollary 2.5.7, we can replace p1q with the
following alternate condition:

p11q The E8-ring A is complex periodic and Epmq-local for some m " 0.

If A is a complex periodic E8-ring, then conditions p1q and p11q can both be phrased
in terms of the Landweber ideals IAn : condition p1q asserts that we have IAn “ π0pAq

for n " 0, while condition p11q asserts that A is IAn -local for n " 0 (note that A is
Epmq-local as a spectrum if and only if it is IAm`1-local as an A-module). It follows
immediately that p1q ñ p11q. On the other hand, condition p11q is all that was needed
in the proof of Corollary 2.5.7.

Beware that it is generally not true that condition p11q implies condition p1q (in
the absence of the other assumptions of Corollary 2.5.7). For example, if MP is the
periodic complex bordism spectrum, then the canonical map

MPppq Ñ LEp1qpMPppqq

induces an isomorphism on π0. Consequently the classical Quillen formal group of
A “ LEp1qpMPppqq coincides with the classical Quillen formal group of MPppq, and
therefore has unbounded height (despite the fact that A is Ep1q-local). It follows that
there cannot exist an oriented p-divisible group over A.

Remark 2.5.11. In the statement of Corollary 2.5.7, we can also replace p1q with
the following:

p12q The E8-ring A is complex periodic and the smash product Fp bS A vanishes.

2.6 P-Divisible Groups
Throughout this paper, we will write P for the set t2, 3, 5, ¨ ¨ ¨ u of all prime numbers.

In §AV.6.5 , we introduced the notion of a P-divisible group over an E8-ring. Let us
recall the definition in a form which will be convenient for our applications here.
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Definition 2.6.1. Let A be a connective E8-ring and let CAlgA denote the8-category
of E8-algebras over A. A P-divisible group over A is a functor

G : CAlgA Ñ Modcn
Z

which satisfies the following conditions:

p1q For each B P CAlgA, the Z-module spectrum GpBq is torsion: that is, it satisfies
QbZGpBq » 0

p2q For every finite abelian group M , the functor

pB P CAlgcn
A q ÞÑ pMapModZ

pM,GpAqq P Sq

is corepresentable by a finite flat A-algebra.

p3q For every positive integer n, the map n : G Ñ G is locally surjective with
respect to the finite flat topology. In other words, for every object B P CAlgcn

A

and every element x P π0pGpBqq, there exists a finite flat map B Ñ C for which
| SpecpCq| Ñ | SpecpBq| is surjective and the image of x in π0pGpCqq is divisible
by n.

If A is a nonconnective E8-ring, we define a P-divisible group over A to be
a P-divisible group over the connective cover τě0pAq, which we view as a functor
G : CAlgτě0pAq Ñ Modcn

Z .

Remark 2.6.2. Let A be a connective E8-ring and let G be a P-divisible group over
A. It follows from p1q and p2q that, for any E8-algebra B over A, the canonical map
Gpτě0pBqq Ñ GpBq is an equivalence. In other words, G is a left Kan extension of
its restriction to the full subcategory CAlgcn

A Ď CAlgA (so no information is lost by
replacing G by its restriction G|CAlgcn

A
).

Remark 2.6.3. In the situation of Definition 2.6.1, it suffices to check condition p3q
in the special case where n “ p is a prime number.

Example 2.6.4. Let p be a prime number and let A be an E8-ring. Then every
p-divisible group over A (in the sense of Definition 2.1.1) is a P-divisible group over
A (in the sense of Definition 2.6.1).

Example 2.6.4 has a converse:
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Construction 2.6.5. For each object M P Modcn
Z and each prime number p, we

let Mppq denote the localization of M at the ideal ppq (given by the formula Mppq »

ZppqbZM).
Let A be an E8-ring and let G be a P-divisible group over A. For each prime

number p, we let Gppq : CAlgA Ñ Modcn
Z denote the functor given by the formula

GppqpBq “ GpBqppq. Then Gppq is a p-divisible group over A: it satisfies requirements
p1q, p2q, and p3q of Definition 2.1.1 by virtue of the fact that G satisfies the corre-
sponding requirement of Definition 2.6.1. We refer to Gppq as the p-local component
of G.

Notation 2.6.6. Let A be an E8-ring. We let BTpAq denote the full subcategory
of FunpCAlgA,Modcn

Z q spanned by the P-divisible groups over A. We will refer to
BTpAq as the 8-category of P-divisible groups over A.

Remark 2.6.7. Let A be an E8-ring. Then, for every prime number p, the construc-
tion G ÞÑ Gppq determines a forgetful functor BTpAq Ñ BTp

pAq. Moreover, these
functors amalgamate to an equivalence of 8-categories

BTpAq Ñ
ź

pPP
BTp

pAq,

with homotopy inverse given by the construction

tGppq P BTp
pAqupPP ÞÑ

à

pPP
Gppq P BTpAq.

In other words, we can identify a P-divisible group G over A as a family of p-divisible
groups tGppqupPP, where p ranges over the set P of all prime numbers.

We now introduce a “global” version of Definition 2.1.4:

Definition 2.6.8. Let A be an E8-ring and let G be a P-divisible group over A.
A preorientation of G is a morphism of Z-module spectra ΣpQ {Zq Ñ GpAq. The
collection of preorientations of G are parametrized by a space

PrepGq “ MapModZ
pΣpQ {Zq,GpAqq,

which we will refer to as the space of preorientations of G.
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Remark 2.6.9. The group Q {Z splits canonically as a direct sum of local summands
À

pPP Qp {Zp. Consequently, if G is a p-divisible group over an E8-ring A, we have a
canonical homotopy equivalence

PrepGq “ MapModZ
pΣpQ {Zq,GpAqq

»
ź

pPP
MapModZ

pΣpQp {Zpq,GppqpAqq

»
ź

pPP
PrepGppqq.

In other words, giving a preorientation e of G (in the sense of Definition 2.6.8) is
equivalent to giving a preorientation ep of the p-local summand Gppq, for each prime
number p (in the sense of Definition 2.1.4).

Example 2.6.10. Let A be an E8-ring and let G be a p-divisible group over A. Then
we can also regard G as a P-divisible group over A (Example 2.6.4). In this case,
we can identify preorientations of G as a p-divisible group (Definition 2.1.4) with
preorientations of G as a P-divisible group (Definition 2.6.8).

Example 2.6.11. Let G be a P-divisible group over an E8-ring A. Suppose that A
is p-local, for some prime number p. Then, for every prime number ` ‰ p, the `-local
component Gp`q is an étale `-divisible group. It follows that the space of preorientations
PrepGp`qq is contractible (Example 2.1.6). Consequently, the product decomposition
of Remark 2.6.9 simplifies to a homotopy equivalence PrepGq » PrepGppqq. That is,
when we are working over a p-local E8-ring A, then we can identify preorientations of
a P-divisible group G (in the sense of Definition 2.6.8) with preorientations of the
p-local summand Gppq (in the sense of Definition 2.1.4).

Definition 2.6.12. Let A be an E8-ring, let G be a P-divisible group over A, and
let e be a preorientation of G (Definition 2.6.8), so that e determines a preorientation
ep of the p-local component Gppq for every prime number p (Remark 2.6.9). We will
say that e is an orientation of G if, for every prime number p, the following condition
is satisfied:

p˚q Let pA denote the p-completion of A and let G
ppq, pA denote the p-divisible group

over pA obtained from Gppq by extending scalars along the canonical map AÑ pA.
Then the image of ep under the homotopy equivalence PrepGppqq

„
ÝÑ PrepG

ppq, pAq

of Proposition 2.2.1 is an orientation of G
ppq, pA, in the sense of Definition 2.5.1.
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We let OrDatpGq denote the summand of PrepGq consisting of orientations of G.

Example 2.6.13. Let A be a p-local E8-ring, let G be a P-divisible group over A, and
let e be a preorientation of G. Then, for every prime number ` ‰ p, the `-completion of
A vanishes. It follows that condition p˚q of Definition 2.6.12 is automatically satisfied
for prime numbers different from p. Consequently, e is an orientation of G (in the
sense of Definition 2.6.12) if and only if its image under the homotopy equivalence

PrepGq » PrepGppqq » PrepG
ppq, pAq

is an orientation of the p-divisible group pG
ppq, pA (in the sense of Definition 2.5.1). Here

pA denotes the p-completion of G.

Remark 2.6.14. Let A be an E8-ring, let G be a P-divisible group over A, and
suppose that G admits an orientation (in the sense of Definition 2.6.12). Then,
for every prime number p, the p-local component Gppq admits an orientation after
extending scalars to the p-completion pA of A. It follows that the p-divisible group
G
ppq, pA is 1-dimensional (Remark 2.5.4). In particular, if the p-local component Gppq

vanishes, then the p-completion pA must also vanish: that is, the prime number p must
be invertible in A.

Example 2.6.15. Let A be an E8-ring and let G be a p-divisible group over A. Then
we can regard G as a P-divisible group over A (Example 2.6.4), where the `-local
component Gp`q vanishes for ` ‰ p. It follows from Remark 2.6.14 that G can only
admit an orientation (in the sense of Definition 2.6.12) if the E8-ring A is p-local.

Example 2.6.16. Let A be an E8-algebra over Q. Then the p-adic completion of A
vanishes, for each prime number p. It follows that every P-divisible group G over A
admits an essentially unique preorientation, which is automatically an orientation.

Remark 2.6.17. Let A be an E8-ring and let G be an oriented P-divisible group
over A. If G is étale, then A is an E8-algebra over Q. To prove this, it suffices to
observe that for every prime number p, the p-divisible group Gppq becomes both étale
and 1-dimensional after extending scalars to the p-completion A^ppq of A, so we must
have A^ppq » 0.

Warning 2.6.18. Let A be an E8-ring. The existence of an oriented P-divisible
group G over A guarantees that the p-completion A^ppq is complex periodic for every
prime number p (Proposition Or.4.3.23 ). However, it does not guarantee that A itself
is complex periodic (Example 2.6.16).
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2.7 Splitting of P-Divisible Groups
Let G be a P-divisible group over an E8-ring A. We will say that G is étale if, for

every prime number p, the p-divisible group Gppq is étale (in the sense of Definition
Or.2.5.3 ). Equivalently, G is étale if, for every finite abelian group M , the functor

GrM s : CAlgA Ñ S B ÞÑ MapModZ
pM,GpBqq

is corepresentable by an E8-algebra which is finite and étale over A. If the p-divisible
groups Gppq have constant height, this condition guarantees that, after a faithfully
flat base change, we can arrange that G is actually constant (see Proposition 2.7.9
below). In this section, we sketch the proof of this (and related) facts and establish
some terminology which will be useful later in this paper.

Definition 2.7.1. A colattice is an abelian group Λ which satisfies the following
conditions:

• The abelian group Λ is torsion; that is, for every element x P Λ, there exists a
positive integer n such that nx “ 0.

• For every positive integer n, the map n : Λ Ñ Λ is a surjection with finite kernel.

Remark 2.7.2. Let Λ be an abelian group. For each prime number p, we let Λppq
denote the localization of Λ with respect to the prime ideal ppq Ď Z. Then Λ is a
colattice if and only each each localization Λppq is isomorphic to pQp {Zpq

n, for some
integer n (which might depend on p).

Example 2.7.3. The abelian group Q {Z is a colattice.

Example 2.7.4. For every prime number p, the quotient Qp {Zp is a colattice.

Construction 2.7.5 (Constant P-Divisible Groups). Let Λ be an abelian group.
We let Λ : CAlg Ñ Modcn

Z denote the functor given concretely by the formula
ΛpBq “ Homp| SpecpBq|,Λq, where the right hand side denotes the set of all locally
constant functions from the Zariski spectrum | SpecpAq| into Λ. If A is an E8-ring,
we will generally abuse notation by identifying Λ with the composition

CAlgτě0pAq Ñ CAlg Λ
ÝÑ Modcn

Z .

When Λ is a colattice, this functor is a P-divisible group over A, which we will refer
to as the constant P-divisible group associated to Λ.
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Remark 2.7.6. Let A be an E8-ring and let Λ be an abelian group. Then the functor
Λ : CAlgτě0pAq Ñ Modcn

Z of Construction 2.7.5 is the sheafification (with respect to
the Zariski topology) of the constant functor taking the value Λ. It follows that, if G
is any P-divisible group over A, we have a canonical homotopy equivalence

MapFunpCAlgτě0pAq,Modcn
Z q
pΛ,Gq » MapModZ

pΛ,GpAqq.

In particular, if Λ is a colattice, then we have an equivalence MapBTpAqpΛ,Gq »
MapModZ

pΛ,GpAqq.

Definition 2.7.7. Let A be an E8-ring, let G be a P-divisible group over A, and let
Λ a colattice. If B is an E8-algebra over A, we say that a map ρ : Λ Ñ GpBq is a
splitting of G over B if it induces an equivalence Λ Ñ GB of P-divisible groups over
B.

Let ρ : Λ Ñ GpBq be a splitting of G over B. We say that ρ exhibits B as a
splitting algebra of G if it satisfies the following universal property:

p˚q For every E8-algebra C P CAlgA, the induced map

MapCAlgApB,Cq Ñ MapModZ
pΛ,GpCqq

restricts to a homotopy equivalence from MapCAlgApB,Cq to the summand of
MapModZ

pΛ,GpCqq consisting fo those maps Λ Ñ GpCq which are splittings of
G over C.

Note that if there exists a map ρ : Λ Ñ GpBq which exhibits B as a splitting algebra
of G, then the E8-algebra B (and the map ρ) are unique up to a contractible space
of choices. In this case, we will denote B by SplitΛpGq.

Warning 2.7.8. Our terminology is slightly abusive: a splitting algebra of G (if it
exists) depends not only on G, but also on Λ.

For existence, we have the following:

Proposition 2.7.9. Let A be an E8-ring, let G be a P-divisible group over A, and
let Λ be a colattice. Then there exists a splitting algebra SplitΛpGq which is faithfully
flat over A if and only if the following conditions are satisfied:

paq The P-divisible group G is étale.
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pbq Let p be a prime number and let h be the unique integer for which Λppq is
isomorphic to pQp {Zpq

h. Then the p-divisible group Gppq has height h.

Moreover, if these conditions are satisfied, then SplitΛpGq can be realized as a filtered
colimit of finite étale A-algebras.

Proof. Suppose first that there exists a splitting algebra SplitΛpGq which is faithfully
flat over A. Since assertions paq and pbq can be tested after faithfully flat base change,
we can replace A by SplitΛpGq and thereby reduce to the case where there exists a
splitting ρ : Λ Ñ GpAq. In this case, G is isomorphic to the constant P-divisible
group Λ, so assertions paq and pbq are obvious.

Conversely, suppose that paq and pbq are satisfied. For each positive integer n, let
Λrns denote the kernel of the map n : Λ Ñ Λq, let Xn : CAlgA Ñ S denote the functor
given by the formula

XnpBq “ MapModZ
pΛrns,GpBqq,

and let X˝
n Ď Xn be the subfunctor whose value on an E8-algebra B is spanned by

those maps Λrns Ñ GB which induce an equivalence of finite flat group schemes
Λrns Ñ GBrns. It follows from paq that the functors Xn and X˝

n are representable by
finite étale A-algebras, and from pbq that these A-algebras are faithfully flat over A.
Passing to the inverse limit over n, we conclude that the functor

B ÞÑ tSplittings ρ : Λ Ñ GpBq u

is corepresentable by an E8-algebra SplitΛpBq which is a filtered colimit of finite étale
A-algebras of positive degree (and is therefore faithfully flat over A).

Remark 2.7.10. In the situation of Proposition 2.7.9, the splitting algebra SplitΛpGq
depends functorially on Λ, and therefore admits an action of the automorphism
group AutpΛq. In fact, we can be more precise: the spectrum SpecpSplitΛpGqq can be
regarded as a torsor over SpecpAq (locally trivial for the flat topology) with respect to
the profinite group group AutpΛq.

We will need to consider a more general notion of splitting algebra which applies
in a relative situation.

Notation 2.7.11. Let A be an E8-ring and let f : G0 Ñ G be a morphism of
P-divisible groups over A. We will say that f is a monomorphism if, for every prime
number p, the induced map fppq : G0ppq Ñ Gppq is a monomorphism of p-divisible
groups over A (in the sense of Definition Or.2.4.3 ). In this case, f admits a cofiber in
the 8-category BTpAq, which we will denote by G{G0 (see Proposition Or.2.4.8 ).
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Definition 2.7.12. Let A be an E8-ring, let f : G0 Ñ G be a monomorphism of
P-divisible groups over A, and let Λ be a colattice. If B is an E8-algebra over A,
we say that a map ρ : Λ Ñ GpBq is a splitting of f over B if the induced map
Λ Ñ pG{G0qpBq is a splitting of G{G0 over B, in the sense of Definition 2.7.7.

Let ρ : Λ Ñ GpBq be a splitting of f over B. We say that ρ exhibits B as a
splitting algebra of f if it satisfies the following universal property:

p˚q For every E8-algebra C P CAlgA, the induced map

MapCAlgApB,Cq Ñ MapModZ
pΛ,GpCqq

restricts to a homotopy equivalence from MapCAlgApB,Cq to the summand of
MapModZ

pΛ,GpCqq consisting fo those maps Λ Ñ GpCq which are splittings of
f over C.

Note that if there exists a map ρ : Λ Ñ GpBq which exhibits B as a splitting algebra
of f , then the E8-algebra B (and the map ρ) are unique up to a contractible space of
choices. In this case, we will denote B by SplitΛpfq.

Example 2.7.13. Let A be an E8-ring, let G be a P-divisible group over A, and
let Λ be a colattice. Then a morphism ρ : Λ Ñ GpBq is a splitting of G over B (in
the sense of Definition 2.7.7) if and only if it is a splitting of the monomorphism
f : 0 Ñ G over B (in the sense of Definition 2.7.12). In particular, we can identify the
splitting algebra SplitΛpGq of Definition 2.7.7 (if it exists) with the splitting algebra
SplitΛpf : 0 Ñ Gq of Definition 2.7.12 (if it exists).

Remark 2.7.14. Let A be an E8-ring, let f : G0 Ñ G be a monomorphism of
P-divisible groups over A, and let Λ be a colattice. Then a morphism ρ : Λ Ñ GpBq
is a splitting of f over B if and only if f and ρ together induce an equivalence
G0B ‘ Λ Ñ GB of P-divisible groups over B.

Proposition 2.7.15. Let A be an E8-ring, let f : G0 Ñ G be a monomorphism of
P-divisible groups over A, and let Λ be a colattice. Then there exists a splitting algebra
SplitΛpfq which is faithfully flat over A if and only if the following conditions are
satisfied:

paq The P-divisible group G{G0 is étale.

pbq Let p be a prime number and let h be the unique integer for which Λppq is
isomorphic to pQp {Zpq

h. Then the p-divisible group pG{G0qppq has height h.
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Proof. As in the proof of Proposition 2.7.9, the necessity of conditions paq and pbq
is clear. To prove that they are sufficient, suppose that paq and pbq are satisfied.
For each positive integer n, let Λrns denote the kernel of the map n : Λ Ñ Λq, let
Xn : CAlgA Ñ S denote the functor given by the formula

XnpBq “ MapModZ
pΛrns,GpBqq,

and let X˝
n Ď Xn be the subfunctor whose value on an E8-algebra B is spanned by

those maps Λrns Ñ GB which induce an equivalence of finite flat group schemes
Λrns Ñ pG{G0qBrns. Then Xn and X˝

n are representable by finite flat A-algebras,
and pbq guarantees these A-algebras are faithfully flat over A. Passing to the inverse
limit over n, we conclude that the functor

B ÞÑ tSplittings ρ : Λ Ñ GpBq of f u

is corepresentable by an E8-algebra SplitΛpBq which is a filtered colimit of finite flat
A-algebras of positive degree (and is therefore faithfully flat over A).

Remark 2.7.16. In the situation of Proposition 2.7.15, every splitting of the monomor-
phism f : G0 Ñ G determines a splitting of the quotient P-divisible group G{G0.
In particular, the universal splitting of f is classified by a map of splitting algebras
SplitΛpG{G0q Ñ SplitΛpfq. This map is an equivalence in the case G0 » 0 (Example
2.7.13). In general, it exhibits SplitΛpfq as the tensor product of SplitΛpG{G0q with
an auxiliary A-algebra B, where B classifies splittings of the exact sequence

0 Ñ G0
f
ÝÑ G Ñ G{G0 Ñ 0.

Remark 2.7.17. Let f : G0 Ñ G be a monomorphism of P-divisible groups over an
E8-ring A and let Λ be a colattice. Assume that f and Λ satisfy the the hypotheses of
Proposition 2.7.15, so that there exists a splitting algebra SplitΛpfq which is faithfully
flat over A. Then, for any morphism of E8-rings AÑ A1, the relative tensor product
A1 bA SplitΛpfq can be regarded as a splitting algebra for the induced monomorphism
fA1 : G0A1 Ñ GA1 of P-divisible groups over A1.

Applying this observation to the maps A Ð τě0pAq Ñ π0pAq, we deduce that
π0pSplitΛpfqq can be identified with a splitting algebra for pf0,Λq, where f0 : G0π0pAq Ñ

Gπ0pAq is the underlying map of P-divisible groups over the commutative ring π0pAq.
This algebra can be characterized in terms of ordinary algebra: it is determined by
the fact that it satisfies condition p˚q of Definition 2.7.12 whenever C P CAlg♥

π0pAq
is

an ordinary commutative algebra over the commutative ring π0pAq.
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We can summarize the situation as follows. Let f : G0 Ñ G is a monomorphism
of P-divisible groups over an ordinary commutative ring R. Assume that the quotient
G{G0 is étale and let Λ be a colattice satisfying the hypotheses of Proposition 2.7.15.
Then the splitting algebra SplitΛpfq is flat over R, and in particular an ordinary
commutative ring. If A is an E8-ring equipped with an isomorphism R » π0pAq, then
every lift rf of f to a monomorphism of P-divisible groups over A determines a lift of
SplitΛpfq to a flat E8-algebra over A, given by the splitting algebra SplitΛp

rfq.

2.8 Example: The Multiplicative P-Divisible Group
Recall that the strict multiplicative group Gm : CAlg Ñ Modcn

Z is the functor
characterized by the formula

MapModZ
pM,GmpAqq “ MapCAlgpΣ8`pMq, Aq,

where M is any abelian group.

Construction 2.8.1. Let A be an E8-ring. We let µP8pAq denote the fiber of the
canonical map

u : GmpAq Ñ QbZGmpAq,

formed in the 8-category Modcn
Z (that is, it is the connective cover of the usual fiber

of u). The construction A ÞÑ µP8pAq then defines a functor µP8 : CAlg Ñ Modcn
Z .

Proposition 2.8.2. The functor µP8 : CAlg “ CAlgS Ñ Modcn
Z is a P-divisible

group over the sphere spectrum S (in the sense of Definition 2.6.1).

Proof. We must show that µP8 satisfies conditions p1q, p2q, and p3q of Definition 2.6.1.
Condition p1q is immediate from the definitions. For condition p2q, we observe that
for any finite abelian group M , we have a canonical homotopy equivalences

MapModZ
pM,µP8pAqq » fibpMapModZ

pM,GmpAqq Ñ MapModZ
pM,QbZGmpAqq

» MapModZ
pM,GmpAqq

» MapCAlgpΣ8`pMq, Aq.

It follows that the functor A ÞÑ MapModZ
pM,µP8pAqq is corepresentable by the

suspension spectrum Σ8`pMq, which is a free module over the sphere spectrum S

(of rank equal to the order |M | of the group M). Requirement p3q follows from the
observation that for any monomorphism M ãÑ N of finite abelian groups, the induced
map of suspension spectra Σ8`pMq Ñ Σ8`pNq is finite flat.
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Definition 2.8.3. We will refer to the functor µP8 : CAlg Ñ Modcn
Z as the multi-

plicative P-divisible group over S. If A is any E8-ring, we will abuse notation by
writing µP8 for the P-divisible group pµP8qA given by the composition

CAlgA Ñ CAlg µP8
ÝÝÝÑ Modcn

Z ;

we refer to this composite functor as the multiplicative P-divisible group over A.

Remark 2.8.4. Let A be an E8-ring and let µP8 be the multiplicative P-divisible
group over A. Then, for every prime number p, the p-local component pµP8qppq can
be identified with the multiplicative p-divisible group µp8 over A (see Proposition
Or.2.2.11 ). We therefore have a direct sum decomposition

µP8pAq »
à

pPP
µp8pAq.

Remark 2.8.5. Let A be an E8-ring and let µP8 be the multiplicative P-divisible
group over A. Then we have canonical homotopy equivalences

PrepµP8q “ MapModZ
pΣpQ {Zq, µP8pAqq

» fibpMapModZ
pΣpQ {Zq,GmpAqq Ñ MapModZ

pΣpQ {Zq,QbZGmpAqq

» MapModZ
pΣpQ {Zq,GmpAqq

» MapCAlgpΣ8`KpQ {Z, 1q, Aq.

In other words, preorientations of the multiplicative P-divisible group µP8 are classified
by the E8-ring Σ8`pKpQ {Z, 1qq.

Construction 2.8.6 (The Orientation of µP8). Set R “ Σ8`pCP8
q “ Σ8`KpZ, 2q.

The fiber sequence of Z-module spectra

ΣpQ {Zq u
ÝÑ Σ2

pZq Ñ Σ2
pQq,

and u determines a map of E8-rings Σ8`KpQ {Z, 1q Ñ Σ8`KpZ, 2q “ R, which classifies
a preorientation e : ΣpQ {Zq Ñ µP8pRq of the multiplicative P-divisible group over
R. However, we get a bit more: there is also a tautological map e : Σ2pZq Ñ GmpRq

which fits into a commutative diagram of fiber sequences

ΣpQ {Zq //

e

��

Σ2pZq

e
��

// Σ2pQq

��
µP8pRq //GmpRq //QbZGmpRq
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in the 8-category Modcn
Z . Here we can think of e as a preorientation of the strict

multiplicative group Gm over R, or equivalently of its formal completion pGm. This
preorientation determines a map of R-modules

ω
pGm
» R

βe
ÝÑ Σ´2

pRq

whose homotopy class determines an element β P π2pRq, represented concretely by
the composite map

S2
“ CP1 ãÑ CP8

Ñ Ω8Σ8pCP8
q Ñ Ω8Σ8`pCP8

q “ Ω8pRq.

Let KU denote the periodic complex K-theory spectrum. Then there is a canonical
map of E8-rings

ρ : R “ Σ8`pCP8
q Ñ KU,

which carries β to an invertible element of π2pKUq (in fact, it induces a homotopy
equivalence Rrβ´1s » KU, by a classical theorem of Snaith; see Theorem Or.6.5.1 ). It
follows that, if we regard µP8 as a P-divisible group over KU, then the preorientation
classified by the composite map

Σ8`KpQ {Zq Ñ Σ8`KpZ, 2q “ R
ρ
ÝÑ KU

is an orientation (in the sense of Definition 2.6.12). We will refer to this orientation
as the tautological orientation of µP8 over KU.

Remark 2.8.7. Let A be an E8-ring and regard µP8 as a P-divisible group over
A. For each prime number p, let A^ppq denote the p-completion of A. Then supplying
an orientation e of the multiplicative P-divisible group µP8 over A is equivalent to
supplying a family of orientations

ep P OrDatppµp8qA^
ppq
q,

where p ranges over all prime numbers, or equivalently to providing an orientation of
the formal multiplicative group pGm over each A^ppq. We therefore obtain a homotopy
equivalence

OrDatpµP8q »
ź

pPP
MapCAlgpKU, A^ppqq » MapCAlgpKU, pAq,
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where pA “
ś

pPP A
^
ppq denotes the profinite completion of A. The pullback diagram of

E8-rings
A //

��

pA

��

AQ // pAQ,

then determines a pullback diagram of spaces

MapCAlgpKU, Aq //

��

OrDatpµP8q

χ
��

MapCAlgpKU, AQq //MapCAlgpKU, pAQq.

It follows that KU is very close to being universal among E8-rings over which there
exists an orientation of µP8 . In particular, every orientation e of µP8 determines
a map χpeq : KU Ñ pAQ, carrying the Bott element β P π2pKUq to some element
χpeqpβq P π2p pAQq; the orientation e can then be obtained from the tautological
orientation of Construction 2.8.6 if and only if χpeqpβq can be lifted to an element of
π2pAQq.

2.9 Example: Torsion of Elliptic Curves
We now consider another natural source of examples of P-divisible groups.

Construction 2.9.1. Let A be an E8-ring and let X be a strict abelian variety over
A (Definition AV.1.5.1 ), which we view as a functor

CAlgτě0pAq Ñ Modcn
Z .

For every object B P CAlgτě0pAq, we let XrP8
spBq denote the fiber of the canonical

map
u : XpBq Ñ QbZ XpBq,

formed in the 8-category Modcn
Z (that is, it is the connective cover of the usual fiber

of u). The construction B ÞÑ XrP8
spBq then defines a functor XrP8

s : CAlgτě0pAq Ñ

Modcn
Z .

Proposition 2.9.2. Let X be a strict abelian variety over an E8-ring A. Then the
functor XrP8

s of Construction 2.9.1 is a P-divisible group over A (in the sense of
Definition 2.6.1).
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Proof. We must show that XrP8
s satisfies conditions p1q, p2q, and p3q of Definition

2.6.1. Condition p1q is immediate from the definitions, while p2q and p3q follow from
the observation that for every positive integer n, the multiplication map X n

ÝÑ X is
finite flat (of nonzero degree); see Proposition AV.6.7.3 .

Remark 2.9.3. Let A be an E8-ring and let X be a strict abelian variety over A.
Then, for every prime number p, the p-local component of XrP8

s can be identified
with the p-divisible group Xrp8s associated to X. We therefore have a direct sum
decomposition XrP8

s »
À

pPP Xrp8s.

Remark 2.9.4. Let A be an E8-ring and let X be a strict abelian variety over A.
Then we have canonical homotopy equivalences

PrepXrP8
sq “ MapModZ

pΣpQ {Zq,XrP8
spAqq

» fibpMapModZ
pΣpQ {Zq,XpAqq Ñ MapModZ

pΣpQ {Zq,QbZ XpAqq
» MapModZ

pΣpQ {Zq,XpAqq.

In other words, giving a preorientation of XrP8
s is equivalent to giving a map

ΣpQp {Zpq Ñ XpAq.

Remark 2.9.5. Let A be an E8-ring and let X be a strict abelian variety over A.
We define a preorientation of X to be a map of pointed spaces S2 Ñ Ω8 XpAq, or
equivalently a map of Z-module spectra e : Σ2pZq Ñ XpAq. Note that giving a
preorientation of X is equivalent to giving a preorientation of its formal completion.
Moreover, every preorientation e of X determines a preorientation of the P-divisible
group XrP8

s, given by the composition ΣpQ {Zq Ñ Σ2pZq e
ÝÑ X.

The following observation provides a rich supply of oriented P-divisible groups
(giving non-trivial examples in which we can apply our formalism of tempered coho-
mology).

Construction 2.9.6. Let A be an E8-ring and let X be a strict elliptic curve over
A. Recall that a preorientation e of X is said to be an orientation if it determines an
orientation of the underlying formal group pX (Definition Or.7.2.7 ). If this condition is
satisfied, then the composite map ΣpQ {Zq Ñ Σ2pZq e

ÝÑ X determines an orientation
of the P-divisible group XrP8

s, in the sense of Definition 2.6.12.
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3 Orbispaces
Let G be a compact Lie group. For every G-space X, we let KU˚GpXq denote

the G-equivariant complex K-theory of X, in the sense of [20]. The construction
X ÞÑ KU˚GpXq determines a cohomology theory on the homotopy category of G-spaces,
which is representable by a (genuine) G-spectrum which we denote by KUG. Moreover,
these equivariant spectra are related as the group G varies: for example, if H is a
subgroup of G, then the underlying H-spectrum of KUG can be identified with KUH .
This observation can be summarized by saying that complex K-theory is an example
of a global spectrum: it has an underlying G-spectrum KUG for every compact Lie
group G, varying functorially with G (for various formalizations of this notion, we
refer the reader to [2], [4], and [19]).

The theory of tempered cohomology developed in this paper has a similar feature:
given an oriented P-divisible group G over an E8-ring A, it allows us to construct a
family of tAG,Hu of H-spectra (all having the same underlying spectrum A), where H
ranges over the collection of all finite groups. The construction of AG,H as a genuine
H-spectrum is somewhat subtle, and requires the assumption that G is oriented.
However, the underlying naive H-spectrum is much easier to define, and makes sense
more generally when G is a preoriented P-divisible group over A. This is already
enough information to construct a family of cohomology theories

A˚G,H : tH-Spacesuop
Ñ tGraded abelian groupsu,

where H ranges over the collection of finite groups. For our purposes, it will be
convenient to assemble this collection of cohomology theories into a single functor

A˚G : OSop
Ñ tGraded abelian groupsu.

Here OS denotes the 8-category of functors FunpT op,Sq, where S is the 8-category
of spaces and T Ĺ S is the full subcategory spanned by spaces of the form BH, where
H is a finite abelian group. We will refer to the objects of OS as orbispaces and to
OS as the 8-category of orbispaces.

Warning 3.0.1. Our use of the term orbispace is borrowed from the work of Gepner-
Henriques ([3]), who associate a homotopy theory of orbispaces to every family F of
topological groups. The 8-category OS that we consider here is a model for this
homotopy theory in the special case where F is the family of all finite abelian groups.
See also [18] and [7] for related discussions.

54



Our goal in this section is to give a brief overview of the theory of orbispaces,
emphasizing the constructions which will play an important role in this paper. The
8-category OS can be viewed as an enlargement of the 8-category S of spaces. In
§3.1, we show that every space X can be promoted to an orbispace in (at least) two
ways: we can associate to X the constant functor

X : T op
Ñ tXu ãÑ S

taking the value X (Example 3.1.8), or the functor

Xp´q : T op
Ñ S T ÞÑ XT

represented by X (Example 3.1.6). These constructions determine a fully faithful
embeddings of 8-categories S Ñ OS, which are left and right adjoint to the “forgetful”
functor OS Ñ S given by evaluation on the final object of T . In general, these
embeddings are different (though they coincide on finite spaces, by a nontrivial theorem
of Miller: see Remark 3.1.14).

In §3.2, we review the relationship between the homotopy theory of orbispaces
and equivariant unstable homotopy theory. To every finite group G, we associate a
functor of 8-categories

tG-Spacesu Ñ OS X ÞÑ X{{G,

which we refer to as the orbispace quotient functor. This construction does not
lose very much information: in §3.3, we show that it induces an equivalence from
a localization of G-spaces (relative to the family of abelian subgroups of G) to the
full subcategory of OS{BGp´q spanned by orbispaces X equipped with a representable
morphism X Ñ BGp´q (Proposition 3.3.13).

In §3.4, we associate to each torsion abelian group Λ a functor

LΛ : OS Ñ OS .

Roughly speaking, this functor carries an orbispace X to a new orbispace LΛ
pXq which

parametrizing maps from the classifying space BpΛ into X which are “continuous” with
respect to the profinite topology on the Pontryagin dual group pΛ “ HompΛ,Q {Zq
(Construction 3.4.3). We will be particularly interested in the case where Λ “

pQp {Zpq
n; in this case, we can think of LΛ

pXq as a p-adic version of an iterated free
loop space, parametrizing maps from a p-adic torus into X. This construction will
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play an essential role in our discussion of character theory for tempered cohomology
(see §4.3).

We conclude this section by establishing a connection of the theory of orbispaces
with the notion of P-divisible group introduced in §2.6. Let A be an E8-ring and let
G be a P-divisible group over A. For every finite abelian group H (with Pontryagin
dual group pH) the functor

pB P CAlgAq ÞÑ MapModZ
p pH,GpBqq

is representable by a finite flat A-algebra which we will denote by OGr pHs. The
construction H ÞÑ OGr pHs determines a functor Abop

fin Ñ CAlgA, where Abfin denotes
the category of finite abelian groups. In §3.5, we show that choosing a preorientation
of G (in the sense of Definition 2.6.8) is equivalent to factoring this functor as a
composition

Abop
fin

H ÞÑBH
ÝÝÝÝÑ T op

Ñ CAlgA;

see Theorem 3.5.5. In particular, every preorientation of G determines a functor
AG : T op Ñ CAlgA: this will be the representing object for our theory of G-tempered
cohomology.

Remark 3.0.2. The notion of orbispace we consider here is defined in terms of the
8-category T of classifying spaces BH, where H is a finite abelian group. Many
variants of this definition are possible: for example, we could allow all finite groups.
For our objectives in this paper, this extra generality serves no purpose. Our theory
of G-tempered cohomology already determines an H-equivariant cohomology theory
for every finite group H, whose values can be extrapolated (by the process of Kan
extension) from the case where H is abelian. Perhaps unexpectedly, this extrapolation
procedure gives rise to a theory with excellent properties, at least in the case G is an
oriented P-divisible group.

3.1 The 8-Category of Orbispaces
We begin by introducing some definitions.

Notation 3.1.1. Let S denote the 8-category of spaces. For every group H, we let
BH denote the classifying space of H, which we regard as an object of the 8-category
S. We let T denote the full subcategory of S spanned by those objects which are
homotopy equivalent to BH, where H is a finite abelian group.
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Remark 3.1.2. Let T be an object of the category T : that is, a space which is
homotopy equivalent to BH, for some finite abelian group H. Note that the group
H is canonically determined by T : it can be recovered as the fundamental group
π1pT q (which is canonically independent of the choice of base point, because G is
abelian). Moreover, the space T can be recovered up to homotopy equivalence as the
classifying space of H “ π1pT q. Beware, however, that the identification T » BH

is not functorial: it depends on a choice of base of T . In particular, the composite
functor

T
π1
ÝÑ Abfin

H ÞÑBH
ÝÝÝÝÑ T

is not equivalent to the identity functor idT .
To avoid confusion, we will generally use the notation BH to indicate objects of

T that are equipped with a specified base point (or in situations where it is harmless
to choose a base point), and the letter T to denote a generic object of the 8-category
T .

The 8-category T of Notation 3.1.1 can be described more concretely.

Remark 3.1.3. Let Group denote the category of groups (with morphisms given by
group homomorphisms). Then Group can be viewed as the underlying category of a
(strict) 2-category Group`, which can be described informally as follows:

• The objects of Group` are groups.

• If G and H are groups, then a 1-morphism from G to H in Group` is a group
homomorphism ϕ : GÑ H.

• If G and H are groups and ϕ, ψ : GÑ H are group homomorphisms, then a 2-
morphism from ϕ to ψ in Group` is an element h P H satisfying ψpgq “ hϕpgqh´1

for each g P G.

Let us abuse notation by identifying the 2-category Group` with the associated 8-
category (given by its Duskin nerve). Then the construction pG P Group`q ÞÑ pBG P

Sq induces an equivalence from the 8-category Group` to the full subcategory of S
spanned by objects of the form BG. It follows that the 8-category T of Notation
3.1.1 is equivalent to the full subcategory of Group` spanned by the finite abelian
groups.

Definition 3.1.4. An orbispace is a functor of 8-categories X : T op Ñ S. If X is
an orbispace, we will denote the value of X on an object T P T op by XT . We let
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OS denote the 8-category FunpT op,Sq. We will refer to OS as the 8-category of
orbispaces.

Notation 3.1.5. For any orbispace X, we let |X| denote the value of X on the final
object t˚u of the 8-category T . We will refer to |X| as the underlying space of X.
The construction X ÞÑ |X| determines a functor OS Ñ S, which we will refer to as the
forgetful functor.

The forgetful functor of Notation 3.1.5 has left and right adjoints.

Example 3.1.6. Let X be a space. For each object T P T , we let XT “ FunpT,Xq »
MapSpT,Xq denote the space parametrizing maps from T into X. Then the construc-
tion T ÞÑ XT determines a functor of 8-categories T op Ñ S, which we can regard as
an orbispace. We will denote this orbispace by Xp´q.

Remark 3.1.7. The functor

S Ñ OS X ÞÑ Xp´q

does not preserve colimits in general. However, it does preserve coproducts: this
follows from the observation that each of the spaces T P T is connected.

Example 3.1.8. Let X be a space. We let X denote the constant functor T op Ñ

tXu ãÑ S. We will refer to X as the constant orbispace associated to X.

Note that, if X is any space, then the functor pT P T opq ÞÑ pXT P Sq of Example
3.1.6 is a right Kan extension of its restriction to the full subcategory of T op spanned
by the contractible space t˚u » ∆0. Similarly, the constant functor X is a left Kan
extension of its restriction to the same subcategory. This immediately implies the
following:

Proposition 3.1.9. Let X be a space and let Y be any orbispace. Then evaluation
on the final object t˚u P T induces homotopy equivalences

MapOSpY, Xp´q
q
„
ÝÑ MapSp|Y|, Xq

MapOSpX,Yq
„
ÝÑ MapSpX, |Y|q.

Corollary 3.1.10. The forgetful functor

OS Ñ S Y ÞÑ |Y|

has both a left adjoint (given by X ÞÑ X) and a right adjoint (given by X ÞÑ Xp´q).
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Corollary 3.1.11. Let X and Y be spaces. Then evaluation on the contractible space
teu P T induces homotopy equivalences

MapOSpY
p´q, Xp´q

q
„
ÝÑ MapSpY,Xq

„
ÐÝ HomOSpY ,Xq.

Corollary 3.1.12. The construction X ÞÑ Xp´q of Example 3.1.6 determines a fully
faithful embedding of 8-categories S ãÑ OS.

Corollary 3.1.13. The construction X ÞÑ X of Example 3.1.8 induces a fully faithful
embedding of 8-categories S ãÑ OS.

Remark 3.1.14 (The Sullivan Conjecture). For any space X, there is a canonical map
X Ñ Xp´q comparing the orbispaces of Examples 3.1.6 and 3.1.8. When evaluated on
an object T P T , it induces the diagonal embedding X “ XT

Ñ XT . In general, this
map is not a homotopy equivalence. However, it is a homotopy equivalence when X is
finite, by deep theorem of Miller (see [16]).

Example 3.1.15 (The Yoneda Embedding). Let T be an object of of T . Then the
orbispace T p´q of Example 3.1.6 is the functor

T op
Ñ S T 1 ÞÑ MapSpT

1, T q “ MapT pT
1, T q;

represented by the object T P T . In other words, the composition

T ãÑ S X ÞÑXp´q
ÝÝÝÝÝÑ OS

is the Yoneda embedding for the 8-category T .

Remark 3.1.16. Let X be an orbispace. Our use of the notation XT to indicate the
value of X on an object T P T op is intended to suggest a point of view: one should
view XT as a parameter space for “maps from T into X.” Note that this is literally
correct if we identify T with the orbispace T p´q of Example 3.1.6: by Yoneda’s lemma,
we have a canonical homotopy equivalence XT » MapOSpT

p´q,Xq.

3.2 Equivariant Homotopy Theory
We now give a brief review of (unstable) equivariant homotopy theory, from the

perspective we will adopt in this paper.
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Definition 3.2.1. Let G be a group and let BG denote its classifying space. If C
is an 8-category, we will refer to a functor BG Ñ C as a G-equivariant object of
C. The collection of G-equivariant objects of C can be organized into an 8-category
FunpBG, Cq, which we will refer to as the 8-category of G-equivariant objects of C.

Remark 3.2.2. Let G be a group. For any 8-category C, evaluation at the base
point ˚ of BG determines a forgetful functor FunpBG, Cq Ñ C. We will generally
abuse notation by not distinguishing between an object X P FunpBG, Cq and its image
Xp˚q P C under this forgetful functor. One should think of the functor X : BGÑ C
as encoding an action of G on the underlying object Xp˚q P C.

Example 3.2.3. Let G be a group. For any 8-category C, composition with the
projection map BG Ñ ˚ determines a diagonal map C » Funp˚, Cq Ñ FunpBG, Cq.
More informally, this functor carries each object X P C to itself, equipped with the
trivial action of the group G.

Notation 3.2.4. Let G be a group and let C be an 8-category which admits small
colimits. Then the diagonal map C Ñ FunpBG, Cq of Example 3.2.3 admits a left
adjoint FunpBG, Cq Ñ C. If X is an object of FunpBG, Cq, we denote its image under
this functor by XhG. We refer to the construction X ÞÑ XhG as the homotopy orbits
functor.

Notation 3.2.5. Let G be a group and let C be an 8-category which admits small
limits. Then the diagonal map C Ñ FunpBG, Cq of Example 3.2.3 admits a right
adjoint FunpBG, Cq Ñ C. If X is an object of FunpBG, Cq, we denote its image under
this functor by XhG. We refer to the construction X ÞÑ XhG as the homotopy fixed
point functor.

Example 3.2.6. Let T op denote the ordinary category of topological spaces. Then
the construction X ÞÑ Sing‚pXq determines a functor Sing‚ from T op (regarded as
an ordinary category) to S (regarded as an 8-category). Passing to G-equivariant
objects, we obtain a functor

tTopological spaces with a G-actionu “ FunpBG, T opq Ñ FunpBG,Sq.

Let G be a group. Then the 8-category FunpBG,Sq is a setting of the “naive”
version of G-equivariant homotopy theory. If X and Y are topological spaces equipped
with actions of G and f : X Ñ Y is a continuous G-equivariant map, then f induces
an equivalence Sing‚pXq Ñ Sing‚pY q in the 8-category FunpBG,Sq if and only if it
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is a weak homotopy equivalence of the underlying topological spaces. If X and Y

are CW complexes, this implies that f admits a homotopy inverse g : Y Ñ X, but
does not guarantee that we can choose g to be a G-equivariant map. To model the
“genuine” version of G-equivariant homotopy theory, one needs a variant of Definition
3.2.1.

Notation 3.2.7. Let G be a group. We define a category OrbitpGq as follows:

• The objects of OrbitpGq are right G-sets of the form HzG, where H is a subgroup
of G.

• The morphisms in OrbitpGq are G-equivariant maps.

We will refer to OrbitpGq as the orbit category of the group G.

Remark 3.2.8. Let G be a group. Then we can identify the classifying space BG
with the full subcategory of OrbitpGq spanned by the orbit G “ teuzG.

Remark 3.2.9. Let G be a group and suppose we are given subgroups H,H 1 Ď G.
Then giving a map of right G-sets HzGÑ H 1zG is equivalent to giving an element of
H 1zG which is fixed by the right action of H. Using this observation, we can define a
category Orbit1pGq which is isomorphic to OrbitpGq as follows:

• The objects of Orbit1pGq are the subgroups H Ď G (corresponding to the right
G-set HzG P OrbitpGq).

• Given subgroups H,H 1 Ď G, a morphism from H to H 1 in Orbit1pGq is a coset
uH 1 P H 1zG satisfying u´1Hu Ď H 1.

• Given subgroups H,H 1, H2 Ď G, the composition of morphisms

uH 1
P HomOrbit1pGqpH,H

1
q vH2

P HomOrbit1pGqpH
1, H2

q

is given by uvH2 P HomOrbit1pGqpH,H
2q

Definition 3.2.10. Let G be a finite group. A G-space is a functor X : OrbitpGqop Ñ

S. We let SG denote the functor 8-category FunpOrbitpGqop,Sq; we will refer to SG
as the 8-category of G-spaces.
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Remark 3.2.11. Let G be a finite group. Then the inclusion BG ãÑ OrbitpGq of
Remark 3.2.8 determines a forgetful functor

SG “ FunpOrbitpGqop,Sq Ñ FunpBGop,Sq » FunpBG,Sq,

which carries a G-space (in the sense of Definition 3.2.10) to a G-equivariant object of
S (in the sense of Definition 3.2.1). Composing with the functor FunpBG,Sq Ñ S
of Remark 3.2.2, we obtain a forgetful functor SG Ñ S, given by evaluation on the
G-orbit G “ teuzG P OrbitpGq.

We will often abuse notation by not distinguishing between a G-space X P SG,
the underlying G-equivariant object X|BG, and the underlying space XpteuzGq. In
particular, if X is a G-space, then we write XhG and XhG for the homotopy orbit and
homotopy fixed points of the underlying G-equivariant object of S (Notation 3.2.4
and Notation 3.2.5).

Remark 3.2.12. Let G be a finite group. Then the 8-category SG is generated,
under small colimits, by the image of the Yoneda embedding OrbitpGq ãÑ SG. We
say that a G-space X is finite if it belongs to the subcategory generated by the image
of OrbitpGq under finite colimits.

Example 3.2.13. Let X be a topological space equipped with a continuous right
action of a finite group G. Then X determines a functor of ordinary categories

OrbitpGqop
Ñ tTopological spacesu,

HzG ÞÑ HomGpHzG,Xq “ XH
“ tx P X : p@h P Hqrxh “ xsu;

here HomGpHzG,Xq is the set of G-equivariant maps from HzG into X (equipped
with the obvious topology). Composing with the singular complex functor

Sing‚ : T op Ñ S,

we obtain a functor of 8-categories

SingG‚ pXq : OrbitpGqop
Ñ S HzG ÞÑ Sing‚pXH

q,

which we can regard as a G-space in the sense of Definition 3.2.10; note that the
restriction SingG‚ pXq|BG is the G-equivariant object of S given by Example 3.2.6.
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Remark 3.2.14. Let G be a finite group. The construction of Example 3.2.13 induces
a functor SingG‚ from the ordinary category of topological spaces with a right action of
G to the 8-category SG of G-spaces (Definition 3.2.10). If f : X Ñ Y is a continuous
G-equivariant map, then SingG‚ pfq is an equivalence in the8-category SG if and only if,
for each subgroup H Ď G, the induced map XH Ñ Y H is a weak homotopy equivalence
of topological spaces. In fact, one can say more: by a theorem of Elmendorff, the
functor SingG‚ exhibits SG as the 8-category underlying the classical homotopy theory
of G-spaces: for example, it induces an equivalence from the homotopy category of
G-CW complexes to the homotopy category of the 8-category SG. (this is essentially
a theorem of Elmendorff; see [15]).
Notation 3.2.15. Let G be a finite group and let Y be a G-space. For each subgroup
H Ď G, we let Y H denote the object of S given by evaluating Y on the G-orbit
HzG P OrbitpGqop. This notation motivated by Example 3.2.13: if Y “ SingG‚ pXq for
a topological space equipped with a free action of G, then Y H “ Sing‚pXHq is the
singular simplicial set of the subspace XH “ tx P X : p@h P Hqrxh “ xsu.

We now relate the equivariant homotopy theory of §3.2 to the theory of orbispaces
developed in §3.1.
Construction 3.2.16. Let G be a finite group. We let OrbitpGqab denote the full
subcategory of OrbitpGq spanned by those objects of the form HzG, where H Ď G

is an abelian subgroup of G. Let T be the 8-category of Notation 3.1.1. Note
that if S » HzG is an object of OrbitpGqab, then the homotopy orbit space ShG is
isomorphic to the classifying space BH, and therefore belongs to T . Consequently,
the construction S ÞÑ ShG determines a functor Q : OrbitpGqab Ñ T .

Let R : SG “ FunpOrbitpGqop,Sq Ñ FunpOrbitpGqop
ab,Sq be the restriction functor,

and let Q! : FunpOrbitpGqop
ab,Sq Ñ FunpT op,Sq “ OS be the functor given by left

Kan extension along (the opposite of) Q, Then the composition Q! ˝ R is a functor
from the 8-category SG of G-spaces to the 8-category OS of orbispaces. We will
denote the value of this functor on a G-space X by X{{G, and refer to it as the
orbispace quotient of X by G.
Remark 3.2.17. Let G be a finite group and let X be a G-space. The orbispace
quotient X{{G of Construction 3.2.16 can be described more concretely by the formula

pX{{GqBH “ p
ž

α:HÑG
X impαq

qhG.

Here H denotes a finite abelian group, and the coproduct is taken over all group
homomorphisms α : H Ñ G.
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Example 3.2.18. Let G be a finite group and let X be a G-space. Then the image
of X{{G under the forgetful functor

OS Ñ S Y ÞÑ |Y|

is the homotopy orbit space XhG. Consequently, for each Y P S, we have canonical
homotopy equivalences

MapOSpX{{G, Y
p´q
q » MapSpXhG, Y q » MapSpX, Y q

hG.

MapOSpY ,X{{Gq » MapSpY,XhGq.

In particular, we have canonical maps

XhG Ñ X{{GÑ pXhGq
p´q

in the 8-category of orbispaces (whose composition is the comparison map of Remark
3.1.14).

Remark 3.2.19. Let G be a finite group and let X be a G-space. Then the comparison
map X{{GÑ pXhGq

p´q, when evaluated on an object BH P T , yields a map of spaces

Φ : p
ž

α:HÑG
X impαq

qhG Ñ p
ž

α:HÑG
XhH

qhG;

here both coproducts are indexed by the collection of all group homomorphisms
α : H Ñ G, and Φ is comprised of individual comparison maps Φα : X impαq Ñ XhH .

Example 3.2.20. Let G be a finite group and let X “ ˚ be a final object of SG
(so that XH is contractible for each subgroup H Ď G). Then the comparison map
X{{G Ñ pXhGq

p´q “ BGp´q of Example 3.2.18 is an equivalence of orbispaces (this
follows easily from Remark 3.2.19).

Example 3.2.21. Let G “ teu be the trivial group. Then the 8-category SG can
be identified with the 8-category S of spaces (via the evaluation functor X ÞÑ XG).
Under this identification, the orbispace quotient construction X ÞÑ X{{G corresponds
to the functor X ÞÑ X of Example 3.1.8.

64



3.3 Representable Morphisms of Orbispaces
Let G be a finite group, and consider the orbispace quotient functor

SG Ñ OS X ÞÑ X{{G

of Construction 3.2.16. This functor fails to be an equivalence of categories for at
least two reasons:

paq For any G-space X P SG, our definition of orbispace quotient X{{G involves
only the restriction X|OrbitpGqop

ab
: that is, it depends only on the fixed-point spaces

XH where H is an abelian subgroup of G, and ignores the information provided
by fixed points for nonabelian groups.

pbq The orbispace quotient functor SG Ñ OS does not preserve final objects:
instead, it carries the final object of SG to the orbispace BGp´q associated to
the classifying space of G (Example 3.2.20). Consequently, for every G-space X,
the orbispace quotient X{{G comes equipped with an additional datum, given
by a structure morphism X{{GÑ ˚{{G “ BGp´q.

Our goal in this section is to show that these are essentially the only differences
between SG and OS. More precisely, we show that the functor X{{G induces an
equivalence of 8-categories

tG-Spaces X satisfying XH “ H for H is nonabelianu
„

��
tRepresentable orbispace morphisms f : Y Ñ BGp´qu;

see Proposition 3.3.13 below. First, we need to introduce some terminology.

Definition 3.3.1. Let T be the 8-category of Notation 3.1.1. We will say that a
morphism f : T0 Ñ T in T is a covering map if the induced map π1pT0q Ñ π1pT q is a
monomorphism (of finite abelian groups). We let CovpT q denote the full subcategory
of T{T spanned by the covering maps T0 Ñ T .

Definition 3.3.2. Let T be an object of T . Then we have a canonical equivalence
of 8-categories

Ψ : OS{T p´q » FunpT op
{T ,Sq,

65



given concretely by the formula ΨpXqpT0q “ MapOS
{T p´q

pT
p´q

0 ,Xq (see Corollary
HTT.5.1.6.12 ). We will say that a morphism of orbispaces X Ñ T p´q is repre-
sentable if the functor ΨpXq P FunpT op

{T ,Sq is a left Kan extension of its restriction to
the subcategory CovpT qop Ď T op

{T of Definition 3.3.1.

Example 3.3.3. Let T be the final object of T . Then every orbispace X admits an
essentially unique map X Ñ T p´q, which is representable if and only if the orbispace
X is a constant functor: that is, if and only if it is equivalent to the functor X of
Example 3.1.8, for some X P S.

Remark 3.3.4. Let T be an object of T . Then the collection of representable
morphisms X Ñ T p´q is closed under the formation of small colimits (in the 8-
category OS{T p´q .

Remark 3.3.5. Let T be an object of T . Then a map of orbispaces X Ñ T p´q is
representable if and only if X can be written as a colimit (in the 8-category OS{T p´q
of objects of the form T

p´q

0 , where T0 Ñ T is a covering map in T .

Remark 3.3.6. Let S Ñ T be a morphism in the 8-category T , and suppose we
are given a pullback square of orbispaces

X
f
��

// Y
g
��

Sp´q // T p´q.

If g is representable, then f is also representable. To prove this, we can use Remarks
3.3.4 and 3.3.5 to reduce to the case where Y has the form T

p´q

0 , for T0 Ñ T is
a covering map in T . In this case, Remark 3.1.7 implies that the fiber product
Sp´qˆT p´q T

p´q

0 » pS ˆT T
1qp´q decomposes as a disjoint union of finitely many objects

of the form S
p´q

0 , where S0 Ñ S is a covering map in T ; the desired result then follows
from Remark 3.3.4.

Definition 3.3.7. Let f : X Ñ Y be a map of orbispaces. We will say that f is
representable if, for every object T P T and every pullback square

XT //

f 1

��

X
f

��
T p´q // Y,

the morphism f 1 is representable (in the sense of Definition 3.3.2).
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Example 3.3.8. Let T be an object of T . Then a morphism of orbispaces X Ñ T p´q

is representable in the sense of Definition 3.3.7 if and only if it is representable in the
sense of Definition 3.3.2. The “only if” direction is obvious, and the converse follows
from Remark 3.3.6.

Remark 3.3.9. Let Y be an orbispace. Then the collection of representable morphisms
f : X Ñ Y is closed under small colimits in the 8-category OS{Y (this is an immediate
consequence of Remark 3.3.4, since the formation of pullbacks commutes with the
formation of colimits).

Remark 3.3.10. Suppose we are given a pullback diagram of orbispaces

X1

f 1

��

// X
f
��

Y1 // Y.

If f is representable, then f 1 is representable.

Remark 3.3.11. Suppose we are given morphisms of orbispaces X f
ÝÑ Y g

ÝÑ Z. If f
and g are representable, then the composition g ˝ f is representable. To prove this, we
can assume without loss of generality that Z “ T p´q, for some T P T . In this case, we
can write Y as a colimit of orbispaces of the form T 1p´q, where T 1 Ñ T is a covering
map (Remark 3.3.5). By virtue of Remark 3.3.4, it will suffice to show that each of
the composite maps

X ˆY T
1p´q

Ñ T 1p´q Ñ T p´q

are representable. Using our representability assumption f , we can write the fiber
product X ˆY T

1p´q as a colimit of orbispaces of the form T 2p´q, where T 2 Ñ T 1 is a
covering map in T . The desired result now follows from the observation that the
composite map T 2 Ñ T 1 Ñ T is a covering.

Lemma 3.3.12. Let G be a finite group, and let C Ď OS{BGp´q be the smallest full
subcategory which is closed under small colimits and contains BHp´q, for each abelian
subgroup H Ď G. Then a map of orbispaces f : X Ñ BGp´q belongs to C if and only if
f is representable.

Proof. We first prove the “only if” direction. By virtue of Remark 3.3.9, it will suffice
to show that for every subgroup H Ď G, the map BHp´q Ñ BGp´q is representable
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(in fact, it will suffice to prove this when H is abelian, but we will not need this).
Form a pullback diagram of orbispaces

X //

f
��

BHp´q

��
pBH 1qp´q // BGp´q,

where H 1 is a finite abelian group. Then X “ Xp´q, where X is the fiber product
BH 1 ˆBG BH. Note that X is a finite covering space of BH 1. It follows that each
connected component Xi of X belongs to T , and the map Xi Ñ BH 1 is a covering.
The representability of f now follows from Remark 3.3.4 (and Remark 3.1.7).

We now prove the converse. Assume that f : X Ñ BGp´q is representable; we
wish to show that X belongs to C. Let T{BG “ T ˆS S{BG denote the 8-category
whose objects are maps u : T Ñ BG, where T belongs to T . Then the orbispace
BGp´q can be realized tautologically as the colimit lim

ÝÑTPT{BG
T p´q. Let T cov

{BG Ď T{BG

be the full subcategory spanned by those maps u : T Ñ BG which are covering
maps: that is, which are injective on the level of fundamental groups. Then the
inclusion ι : T cov

{BG ãÑ T{BG has a left adjoint (carrying an object T P T{BG to its
Postnikov truncation τď0pT q, formed in the 8-topos S{BG). It follows that ι is left
cofinal, so that the orbispace BGp´q can also be realized as the colimit lim

ÝÑTPT cov
{BG

T p´q.
Consequently, to show that X belongs to C, it will suffice to show that the fiber
product XT “ T p´q ˆBGp´q X belongs to C for each T P T cov

{BG. Our assumption that
f is representable guarantees that the projection map XT Ñ T p´q is representable,
so that we can realize XT as a colimit of objects of the form T 1p´q, where T 1 Ñ T is
a covering map. We now observe that the composite map T 1 Ñ T Ñ BG is also a
covering, so that T 1 is equivalent to BH for some abelian subgroup H Ď G.

Proposition 3.3.13 ([3]). Let G be a finite group, and let Sab
G denote the full subcat-

egory of SG spanned by those G-spaces X such that XH “ H for every nonabelian
subgroup H Ď G. Then the construction X ÞÑ X{{G determines a fully faithful
embedding

Sab
G ãÑ OS{BGp´q ,

whose essential image is spanned by the representable maps Y Ñ BGp´q.

Remark 3.3.14. Let G be a finite group. Then an object of SG “ FunpOrbitpGqop,Sq
belongs to the subcategory Sab

G of Proposition 3.3.13 if and only if it is a left Kan exten-
sion of its extension to the full subcategory OrbitpGqop

ab Ď OrbitpGqop of Construction
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3.2.16. It follows that the restriction functor X ÞÑ X|OrbitpGqop
ab

induces an equivalene of
8-categories Sab

G » FunpOrbitpGqop
ab,Sq. More informally, the 8-category Sab

G models
“G-equivariant homotopy theory relative to the family of abelian subgroups of G.”

Proof of Proposition 3.3.13. By virtue of Remark 3.3.14, it will suffice to show that
the functor Q! of Construction 3.2.16 induces a fully faithful embedding

FunpOrbitpGqop
ab,Sq Ñ OS{BGp´q ,

whose essential image is the collection of representable maps X Ñ BGp´q. This follows
immediately from the observation that Q induces an equivalence of 8-categories
OrbitpGqab » T cov

{BG, together with the characterization of representable morphisms
supplied by Lemma 3.3.12.

Remark 3.3.15. The discussion of this section can be formulated in the language
of fractured 8-topoi, developed in Chapter SAG.VI.1 . By definition, an orbispace is
a S-valued presheaf on the 8-category T , so the 8-category OS “ FunpT op,Sq is
an 8-topos. The collection of representable morphisms of orbispaces determines a
geometric admissibility structure on the 8-category OS (Definition SAG.VI.1.3.4.1 ).
It follows from Theorem SAG.VI.1.3.4.4 that we can regard OS as a fractured 8-
topos; moreover, the fracture subcategory of corporeal objects OScorp

Ď OS can be
identified FunpT cov,op,Sq; here T cov denotes the non-full subcategory of T whose
morphisms are covering maps T0 Ñ T , and the presheaf 8-category FunpT cov,op,Sq
embeds as a non-full subcategory of the 8-topos OS “ FunpT op,Sq by means of left
Kan extension along the inclusion T cov,op ãÑ T op.

3.4 Formal Loop Spaces
Let X P S be a space. We let LpXq “ FunpS1, Xq denote the free loop space of X,

parametrizing maps from the circle S1 “ KpZ, 1q into X. More generally, for each
integer n ě 0 we can consider the iterated free loop space

LnpXq “

#

X if n “ 0
LpLn´1

pXqq if n ą 0,

parametrizing maps from the torus T n “ KpZn, 1q into X. Our goal in this section is
to introduce a related construction in the setting of orbispaces.
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Notation 3.4.1. The 8-category of orbispaces OS “ FunpT op,Sq is an 8-topos; in
particular, it is Cartesian closed. Consequently, to any pair of orbispaces X and Y,
we can associate an orbispace MapOSpY,Xq parametrizing maps from Y to X. More
precisely, the orbispace MapOSpY,Xq is equipped with an evaluation map

ev : Y ˆMapOSpY,Xq Ñ X

with the following universal property: for every orbispace Z, composition with ev
induces a homtopy equivalence

MapOSpZ,MapOSpY,Xqq » MapOSpY ˆ Z,Xq.

Remark 3.4.2. Let X and Y be orbispaces. For any object T P T , we have canonical
homotopy equivalences

MapOSpY,Xq
T
» MapOSpT

p´q,MapOSpY,Xqq
» MapOSpY ˆ T p´q,Xq.

Construction 3.4.3 (Formal Loop Spaces). Let X be an orbispace and let Λ be a
torsion abelian group. We define a new orbispace LΛ

pXq by the formula

LΛ
pXq “ lim

ÝÑ
Λ0ĎΛ

MapOSpB
pΛ0,Xq;

here the colimit is taken over the collection of all finite subgroups Λ0 Ď Λ, and
pΛ0 “ HompΛ0,Q {Zq denotes the Pontryagin dual of Λ0. We will refer to LΛ

pXq as
the formal loop space of X with respect to Λ. Concretely, it is characterized by the
formula

LΛ
pXqT » lim

ÝÑ
Λ0ĎΛ

XBpΛ0ˆT .

Example 3.4.4. Let X be an object of S and let X denote the constant orbispace
associated to X (Example 3.1.8). Then, for any torsion abelian group Λ, the formal
loop space LΛ

pXq can be identified with X.

Example 3.4.5. Let G be a finite group, let X P SG be a G-space. For any torsion
abelian group Λ, we can construct a new G-space

Y “
ž

α:pΛÑG

X impαq,
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which is essentially characterized by the formula

Y G0 “
ž

α

XG0 impαq;

here G0 denotes a subgroup of G, the coproduct is taken over all continuous group
homomorphisms α : pΛ Ñ G which are centralized by G0, and G0 impαq denotes the
subgroup of G generated by G0 together with the image of α. If X{{G denotes
the orbispace quotient of X by G (Construction 3.2.16), then we have a canonical
equivalence of orbispaces

LHpX{{Gq » p
ž

α:pΛÑG

X impαq
q{{G.

In the special case where G is trivial, this recovers the identification of Example 3.4.4

Remark 3.4.6. Let Λ be a torsion abelian group. Then the functor LΛ : OS Ñ OS
preserves small colimits. To prove this, we can assume without loss of generality that
Λ is finite, in which case it follows from the description of MapOSpB

pΛ, ‚q supplied by
Remark 3.4.2.

Let X be an object of S and let Xp´q be the orbispace represented by X. For any
torsion abelian group Λ, the underlying space of the orbispace LΛ

pXp´qq is given by
the direct limit lim

ÝÑΛ0ĎΛX
BpΛ0 , taken over the collection of all finite subgroups Λ0 Ď Λ.

In particular, we have a canonical map of spaces |LΛ
pXp´qq| Ñ XBpΛ, which (by virtue

of Proposition 3.1.9) can be identified with a map of orbispaces

LΛ
pXp´q

q Ñ pXBpΛ
q
p´q.

Here XBpΛ denotes the space FunpBpΛ, Xq of all maps from the classifying space BpΛ
into X (where we ignore the profinite topology on the group pΛ). In good cases, this
map is an equivalence.

Proposition 3.4.7. Let X be a π-finite space (Definition 1.1.25) and let Λ be a
colattice (Definition 2.7.1). Then the preceding construction induces an equivalence of
orbispaces LΛ

pXp´qq Ñ pXBpΛqp´q.

Proof. Let T be an object of T ; we wish to show that the canonical map LΛ
pXp´qqT Ñ

pXBpΛqT is a homotopy equivalence. Replacing X by XT , we can reduce to the case
where T is contractible. In this case, we wish to show that the canonical map

lim
ÐÝ

Λ0ĎΛ
XBpΛ0 Ñ XBpΛ

71



is a homotopy equivalence; here Λ0 ranges over the collection of all finite subgroups
of Λ. Decomposing X as a union of connected components, we may assume without
loss of generality that X is connected. Since X is π-finite, there exists an integer n
such that X is n-truncated. We proceed by induction on n. In the case n “ 1, we can
identify X with an Eilenberg-MacLane space BG “ KpG, 1q for some finite group G.
In this case, we are reduced to proving that every group homomorphism α : pΛ Ñ G

is continuous. This follows from our assumption that Λ is a colattice, since kerpαq
contains the subgroup mpΛ Ď pΛ for m “ |G| (so that α factors through the Pontryagin
dual of the finite subgroup Λrms Ď Λ). To carry out the inductive step, we note that
if n ě 2 then we have a pullback diagram of π-finite spaces

X //

��

X 1

��
τďn´1pXq // BG,

where G “ π1pX, xq is the fundamental group of X (with respect to some choice of
base point) and X 1 Ñ BG has homotopy fibers KpM,n` 1q, where M is some finite
abelian group with an action of G. Applying our inductive hypothesis to τďn´1pXq

and KpG, 1q, we are reduced to proving that for every homomorphism α : pΛ Ñ G

factoring through pΛ0 for some finite subgroup Λ0 Ď Λ, the canonical map

lim
ÐÝ
Λ1

X 1BpΛ1q ˆ
BGB

yΛ1 tαu Ñ X 1BpΛ
ˆ
BGB pΛ tαu

is a homotopy equivalence; here Λ1 ranges over the collection of all finite subgroups of
Λ which contain Λ0. For this, it suffices to show that the map of cohomology rings

θ : lim
ÝÑ
Λ1

H˚pBpΛ1;Mq Ñ H˚pBpΛ;Mq;

is bijective; here we abuse notation by identifying the finite abelian group M with the
corresponding local system on the classifying spaces BpΛ and BpΛ1. In other words, we
are reduced to proving that the cohomology of pΛ as a profinite group (with coefficients
in the continuous representation M) agrees with its cohomology as a discrete group.
Decomposing M as a direct sum, we may assume that it is a finite abelian p-group for
some prime number p. Write Λ “ Λ1 ‘ Λ1, where Λ1 is the p-local summand of Λ. In
this case, θ is induced by a map

θ1 : lim
ÝÑ

Λ0XΛ1ĎΛ11ĎΛ1
H˚pBpΛ11;Mq Ñ H˚pBpΛ1;Mq
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by taking fixed points for the action of BpΛ2. It will therefore suffice to prove that θ1 is
an isomorphism: that is, we can replace Λ by Λ1 and thereby reduce to the case where
Λ is p-nilpotent. In this case, M admits a finite composition series whose successive
quotients carry a trivial action of the group pΛ; this allows us to reduce further to the
case where M “ Fp. We can then identify θ with the canonical map

lim
ÝÑ

H˚pBpZr
{pk Zr

q; Fpq Ñ H˚pB Zr
p; Fpq.

To show that this map is an isomorphism, we make the stronger claim that the pro-
system of homology groups tH˚pBpZr

{pk Zr
q; Fpqurě0 is isomorphic to H˚pB Zr

p; Fpq

as a pro-system. Using the Künneth formula, we can reduce to the case r “ 1,
where the result follows from a simple calculation (see, for example, Proposition
SAG.E.7.5.1 ).

Variant 3.4.8. Let pZ “ lim
ÐÝN

Z {N Z denote the profinite completion of Z. Then
then inclusion Z ãÑ pZ induces a map of classifying spaces u : B Z Ñ BpZ. For any
space X, precomposition with u induces a map

XBpZ
Ñ XB Z

“ LpXq,

where LpXq is the free loop space of X. We therefore have canonical maps of orbispaces

LQ {Z
pXp´q

q Ñ pXBpZ
q
p´q
Ñ LpXqp´q.

If X is π-finite, then these maps are equivalences: the first by virtue of Proposition
3.4.7, and the second by virtue of the fact that u induces an equivalence of profinite
completions (which follows as in the proof of Proposition 3.4.7, using the fact that u
induces an isomorphism on cohomology with coefficients in any abelian group with an
action of pZ). More generally, we have comparison maps LpQ {Zqn

pXp´qq Ñ LnpXqp´q,
which are equivalences when X is π-finite.

Warning 3.4.9. In general, the comparison map v : LQ {Z
pXp´qq Ñ LpXqp´q of

Variant 3.4.8 is not an equivalence. For example, if X is a finite space, then v can be
identified with the map Xp´q Ñ LpXqp´q induced by the identification of X with the
subspace of LpXq given by the constant loops (this follows from Remark 3.1.14 and
Example 3.4.4).

In general, the orbispace LQ {Z
pXp´qq need not be of the form Y p´q for any space

Y . This is one of the principal motivations for allowing more general orbispaces in
our definition of tempered cohomology.
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3.5 Preorientations Revisited
Let A be an E8-ring. In §2.6, we introduced the notion of a preoriented P-divisible

group over A (Definition 2.6.8). In this section, we explain a reformulation of this
notion which will lead directly to our theories of tempered cohomology (§4) and
tempered local systems (§5).

We begin with some general observations. Assume for the moment that A is
connective, and let G be a P-divisible group over A (Definition 2.6.1), which we
regard as a functor

G : CAlgA Ñ Modcn
Z .

For every finite abelian group M , we define a functor GrM s : CAlgA Ñ S by the
formula

GrM spBq “ MapModZ
pM,GpBqq.

The P-divisibility of G guarantees that GrM s is corepresentable by a finite flat A-
algebra that we denote by OGrMs. The construction M ÞÑ OGrMs then determines a
functor from the category of finite abelian groups Abfin to the 8-category CAlgA of
E8-algebras over A. In [8], we gave a characterization of those functors which arise in
this way:

Definition 3.5.1. Let A be an E8-ring. We will say that a functor E : Abfin Ñ CAlgA
is P-divisible if it satisfies the following conditions:

piq The functor E preserves finite coproducts: that is, it carries direct sums of finite
abelian groups T to tensor products in CAlgA. In particular, the unit map
AÑ Ep0q is an equivalence.

piiq For every short exact sequence of finite abelian groups 0 ÑM 1 ÑM ÑM2 Ñ 0,
the diagram of E8-algebras

EpM 1q //

��

Ep0q

��
EpMq // EpM2q

is a pushout square. Moreover, the vertical maps are finite flat of positive degree.

We let FunP
pAbfin,CAlgAq denote the full subcategory of FunpAbfin,CAlgAq spanned

by P-divisible functors.
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Remark 3.5.2. Let A be an E8-ring. Then there is a canonical equivalence of
8-categories BTpAq » FunP

pAbfin,CAlgAqop, which carries a P-divisible group G to
a P-divisible functor E which is essentially characterized by the formula GrM s »
SpecpEpMqq. We will review this equivalence below; see also §AV.6.5 .

We now introduce a variant of Definition 3.5.1. Let T be the 8-category of
Notation 3.1.1 (so that the objects of T are spaces of the form BH, where H is a
finite abelian group).

Definition 3.5.3. Let A be an E8-ring. We will say that a functor of 8-categories
A : T op Ñ CAlgA is P-divisible if the composite functor

Abfin
M ÞÑBxM
ÝÝÝÝÝÑ T op A

ÝÑ CAlgA

is P-divisible, in the sense of Definition 3.5.1. We let FunP
pT op,CAlgAq denote the

full subcategory of FunpT op,CAlgAq spanned by the P-divisible functors.

Remark 3.5.4. Let A be an E8-ring and let A : T op Ñ CAlgA be a functor. Then
A is P-divisible (in the sense of Definition 3.5.3) if and only if the following conditions
are satisfied:

paq For each T P T , the spectrum ApT q is projective of finite rank as an A-module.

pbq The construction T ÞÑ π0pApT qq determines a P-divisible functor

π0pAq : T op
Ñ CAlgπ0pAq .

Every P-divisible functor A : T op Ñ CAlgA determines a P-divisible functor
Abfin Ñ CAlgA, which we can identify with a P-divisible group G over A (Remark
3.5.2). The P-divisible group G is essentially characterized by the formula

GrM s “ SpecpApBxMqq.

From the P-divisible group G, we can use this formula to determine the value of
the functor A on each object of the 8-category T . However, it does not allow us
to completely reconstruct A from G, because it only determines the value of A on
base-point preserving morphisms of T (see Remark 3.1.2). To promote a P-divisible
group G to a P-divisible functor A : T op Ñ CAlgA, we need to supply some additional
data. The main result of this section asserts that this additional data can be identified
with a choice of preorientation of G:
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Theorem 3.5.5. Let A be an E8-ring. Then the forgetful functor

FunP
pT op,CAlgAqop

Ñ FunP
pAbfin,CAlgAqop

» BTpAq

is equivalent to a left fibration, classified by the functor

BTpAq Ñ S G ÞÑ PrepGq.

Remark 3.5.6. More informally, Theorem 3.5.5 asserts that we can identify P-
divisible functors A : T op Ñ CAlgA with pairs pG, eq, where G is a P-divisible group
over A and e : ΣpQ {Zq Ñ GpAq is a preorientation of G.

Example 3.5.7 (The Kpnq-Local Case). Fix a prime number p, and let A be an
E8-ring which is Kpnq-local for some n ą 0. It follows from Theorem Or.4.6.3 that
the functor

pT P T op
q ÞÑ pAT P CAlgAq

is P-divisible (in the sense of Definition 3.5.3). Moreover, the P-divisible group
associated to this functor is the Quillen p-divisible group GQ

A of Construction Or.4.6.2
(essentially by definition). The equivalence of Theorem 3.5.5 supplies a preorientation
on the Quillen p-divisible group GQ

A , which can be identified with the universal
preorientation described in Remark 2.4.2 (this identification will be implicit in our
proof of Theorem 3.5.5).

Example 3.5.8 (The Trivial Case). Let G be a P-divisible group over an E8-ring A,
which we identify with a P-divisible functor E : Abfin Ñ CAlgA (Remark 3.5.2). We
can then define a P-divisible functor A : T op Ñ CAlgA by the composition

T op T ÞÑ{π1pT q
ÝÝÝÝÝÑ Abfin

E
ÝÑ CAlgA .

Note that the composition of A with the map Abfin
M ÞÑBxM
ÝÝÝÝÝÑ T op is equivalent to E

(Remark 3.1.2). By virtue of Theorem 3.5.5, the functor A supplies preorientation e of
the P-divisible group G. This preorientation is given by the zero map ΣpQ {Zq Ñ
GpAq (this will again be implicit in our proof of Theorem 3.5.5).

Variant 3.5.9. Let A0 : T op Ñ CAlg be any functor, and let ˚ denote the final
object of T . Then A “ A0p˚q is an E8-ring, and A0 can be promoted to a functor of
8-categories

A : T op
» pT op

q˚{
A0
ÝÑ CAlgA0p˚q{ » CAlgA .
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Let FunP
pT op,CAlgq denote the full subcategory of FunpT op,CAlgq spanned by those

functors A0 for which A is P-divisible, in the sense of Definition 3.5.3. Using Theorem
3.5.5, we can identify objects of FunP

pT op,CAlgq with triples pA,G, eq where A is
an E8-ring, G is a P-divisible group over A, and e is an orientation of G.

To prove Theorem 3.5.5, we will need to recall how the equivalence of Remark
3.5.2 is constructed. Let C be an 8-category which admits finite limits. A torsion
object of C (in the sense of Definition AV.6.4.2 ) is a functor X : Abop

fin Ñ C which
satisfies the following pair of conditions:

paq The functor X commutes with finite products; in particular, Xp0q is a final
object of C.

pbq For every short exact sequence of abelian groups 0 ÑM 1 ÑM ÑM2 Ñ 0, the
diagram

XpM2q //

��

XpMq

��
Xp0q // XpM 1q

is a pullback square in C. In other words, the functor X carries short exact
sequences of abelian groups to fiber sequences in C.

We let TorspCq denote the full subcategory of FunpAbop
fin, Cq spanned by the torsion

objects of C.

Example 3.5.10. Let N be a Z-module spectrum. Then the construction

pM P Abop
finq ÞÑ MapModZ

pM,Nq

determines a functor Abop
fin Ñ S satisfying conditions paq and pbq above, which we

will denote by N rP8
s. The construction N ÞÑ N rP8

s determines a functor ModZ Ñ

TorspSq. By virtue of Example AV.6.4.11 , this functor restricts to an equivalence of
8-categories Modcn,Tors

Z » TorspSq. Here Modcn,Tors
Z denotes the full subcategory of

ModZ spanned by those connective Z-module spectra N whose homotopy groups are
torsion (that is, N bZ Q » 0).

Definition 3.5.11. Let C be an 8-category which admits finite limits. A preoriented
torsion object of C is a functor X : T Ñ C with the property that the composition

Abop
fin

M ÞÑBxM
ÝÝÝÝÝÑ T X

ÝÑ C
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is a torsion object of C. We let PTorspCq denote the full subcategory of FunpT , Cq
spanned by the preoriented torsion objects of C. Note that precomposition with the
functor M ÞÑ BxM determines a functor PTorspCq Ñ TorspCq, which we will refer to
as the forgetful functor.

Example 3.5.12. Let A be a connective E8-ring and set C “ FunpCAlgA,Sq be the
8-category of all functors from CAlgA to S, and let Spec : CAlgop

A ãÑ C denote the
Yoneda embedding. Then composition with Spec induces a fully faithful embedding

FunP
pAbfin,CAlgAqop ãÑ TorspCq.

Unwinding the definitions, we obtain a pullback diagram of 8-categories

FunP
pT op,CAlgAqop //

��

FunP
pAbfin,CAlgAqop

Spec
��

„ // BTpAq

��

PTorspCq // TorspCq „ // FunpCAlgA,Modcn,Tors
Z q,

where the equivalence on the bottom right is provided by Example 3.5.10.

Example 3.5.13. Let ι : T ãÑ S be the inclusion functor. Then ι is a preoriented
torsion object of the 8-category S. Moreover, the image of ι under the forgetful
functor PTorspSq Ñ TorspSq » Modcn,Tors

Z can be identified with the Z-module
spectrum ΣpQ {Zq.

Remark 3.5.14. Let ι : T ãÑ S be the inclusion functor. Then ι is a left Kan
extension of its restriction to the full subcategory t˚u Ď T spanned by contractible
space ˚ » ∆0. Consequently, for any functor X : T Ñ S, the canonical map

MapFunpT ,Sqpι,Xq Ñ MapSpιp˚q, Xp˚qq » Xp˚q

is a homotopy equivalence.
If X is a preoriented torsion object of S (in the sense of Definition 3.5.11), then

Xp˚q is contractible. It follows that the mapping space MapPTorspSqpι,Xq is also
contractible: that is, ι is an initial object of the 8-category PTorspSq.

We will deduce Theorem 3.5.5 from the following categorical fact:

Proposition 3.5.15. Let ι : T ãÑ S be the inclusion functor, regarded as a preoriented
torsion object of S. Then the forgetful functor The forgetful functor F : PTorspSq Ñ
TorspSq induces an equivalence of 8-categories

PTorspSqι{ Ñ TorspSqF pιq{.

78



Proof of Theorem 3.5.5 from Proposition 3.5.15. Let A be an E8-ring, which we may
assume to be connective (without loss of generality). Set C “ FunpCAlgA,Sq, so that
Example 3.5.12 supplies a pullback diagram σ :

FunP
pT op,CAlgAqop //

U

��

BTpAq

��

PTorspCq // FunpCAlgA,Modcn,Tors
Z q.

Let ι P PTorspCq » FunpCAlgA,PTorspSqq be the constant functor taking the value ι P
PTorspSq. It follows from Remark 3.5.14 that the mapping space MapPTorspCqpι, UpAqq
is contractible for every P-divisible functor A : T op Ñ CAlgA. We can therefore
promote σ to a pullback diagram σ1:

FunP
pT op,CAlgAqop //

U
��

BTpAq

��

PTorspCqι{ // FunpCAlgA,Modcn,Tors
Z q.

Using Proposition 3.5.15 and Example 3.5.13, we can rewrite σ1 as a pullback diagram

FunP
pT op,CAlgAqop //

U
��

BTpAq

��

FunpCAlgA,Modcn,Tors
Z qΣpQ {Zq{ // FunpCAlgA,Modcn,Tors

Z q,

where ΣpQ {Zq denotes the constant functor CAlgA Ñ Modcn,Tors
Z taking the value

ΣpQ {Zq. It follows that the upper horizontal map is equivalent to the left fibration
classified by the functor

pG P BTpAqq ÞÑ MapFunpCAlgA,ModZq
pΣpQ {Zq,Gq » PrepGq.

Proof of Proposition 3.5.15. Let Φ : T Ñ Abop
fin be the functor given by

ΦpT q “ {π1pT q “ Hompπ1pT q,Q {Zq » H1
pT ; Q {Zq.

Then Φ is a left homotopy inverse of the functor

Abop
fin Ñ T M ÞÑ BxM.
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Moreover, Φ is a left fibration of 8-categories, classified by the functor

U : Abop
fin Ñ S UpMq “ KpxM, 2q.

Note that U is a torsion object of the8-category S, whose image under the equivalence
TorspSq » Modcn,Tors

Z of Example 3.5.10 is the Z-module spectrum Σ2pQ {Zq. Apply-
ing Corollary HTT.5.1.6.12 , we see that Φ induces an equivalence of 8-categories
FunpT ,Sq » FunpAbop

fin,Sq{U , which restricts to an equivalence of full subcategories
PTorspSq » TorspSq{U » pModcn,Tors

Z q{Σ2pQ {Zq. Under this equivalence, the forgetful
functor

PTorspSqι{ Ñ TorspSqι{ » pModcn,Tors
Z qΣpQ {Zq{

corresponds to the functor

pModcn,Tors
Z q{Σ2pQ {Zq Ñ pModcn,Tors

Z qΣpQ {Zq{

which carries a map of Z-module spectra u : M Ñ Σ2pQ {Zq to the fiber fibpuq. This
functor is an equivalence of 8-categories; the inverse equivalence carries a map of
Z-module spectra v : ΣpQ {Zq Ñ N to the cofiber cofibpvq.

3.6 Example: Complex K-Theory
Let KU denote the periodic complex K-theory spectrum. Then Construction 2.8.6

supplies an orientation of the multiplicative P-divisible group µP8 over KU. By virtue
of Theorem 3.5.5, the P-divisible group µP8 and its orientation can be encoded by a
functor

KU : T op
Ñ CAlgKU

which is P-divisible in the sense of Definition 3.5.3. Our goal in this section is to
give an explicit description of this functor and to explain its relationship to the
representation theory of finite groups.

Construction 3.6.1. Let Vect»C be the groupoid whose objects are finite-dimensional
complex vector spaces and whose morphisms are isomorphisms. For any space T ,
we let FunpT,Vect»Cq denote the groupoid of functors from T (or equivalently the
fundamental groupoid πď1pT q) into Vect»C. In other words, FunpT,Vect»Cq is the
ordinary category whose objects are local systems of finite-dimensional complex vector
spaces on T (and whose morphisms are isomorphisms).
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We will be exclusively interested in the situation T “ BG is the classifying space
of a finite group G, so that FunpT,Vect»Cq can be identified with the category of finite-
dimensional complex representations of G (with morphisms given by isomorphisms).
In this case, the standard topology on the field C determines a topological enrichment
of the category FunpT,Vect»Cq. Let Nhc

pFunpT,Vect»Cqq denote the homotopy coherent
nerve of FunpT,Vect»Cq (as a topologically enriched category).

The formation of direct sums of complex vector spaces determines a symmetric
monoidal structure on the categories Vect»C and FunpT,Vect»Cq, and which induces an
E8-structure on the space Nhc

pFunpT,Vect»Cqq. We let kupT q denote the connective
spectrum given by the group completion of Nhc

pFunpT,Vect»Cqq.
The formation of tensor products of complex vector spaces determines a second

symmetric monoidal structure on the categories Vect»C and FunpT,Vect»Cq, which
distributes over the first. This structure endows each Nhc

pFunpT,Vect»Cqq with the
structure of a commutative algebra object of the 8-category CMonpSq of E8-spaces,
where we regard CMonpSq as equipped with the symmetric monoidal structure given
by the smash product of E8-spaces (see Proposition AV.3.6.1 ). Put more informally,
Nhc
pFunpT,Vect»Cqq is an E8-semiring space, with addition given by direct sum of

local systems and multiplication given by the tensor product of local systems. It
follows that the group completion kupT q inherits the structure of an E8-ring.

Example 3.6.2. When the space T is contractible, the E8-ring kupT q can be identified
with the connnective complex K-theory spectrum ku » τě0pKUq (essentially by
construction).

Remark 3.6.3. Let G be a finite group. Then connected components of the space
Nhc
pFunpBG,Vect»Cqq can be identified with isomorphism classes of finite-dimensional

complex representations of G. Passing to group completions, we obtain an isomorphism
π0pkupBGqq » ReppGq, where ReppGq is the complex representation ring of G.

Remark 3.6.4 (Functoriality). Let T and T 1 be spaces which are homotopy equiv-
alent to the classifying spaces of finite groups G and G1, respectively. For any
map f : T Ñ T 1, composition with f determines a topologically enriched functor
f˚ : FunpT 1,Vect»Cq Ñ FunpT,Vect»Cq. This functor is compatible with the forma-
tion of direct sums and tensor products, and therefore induces a map of E8-rings
f˚ : kupT 1q Ñ kupT q.

In the special case where G1 is the trivial group, we obtain a map of E8-rings
ku Ñ kupT q, which exhibits kupT q as an E8-algebra over the connective K-theory
spectrum ku.
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Notation 3.6.5. Let T be a space which is homotopy equivalent to BG, for some
finite group G. We let KUpT q denote the tensor product KUbkukupT q. In other words,
KUpT q is the E8-algebra over KU which is obtained from kupT q by inverting the Bott
class β P π2pkuq.

Remark 3.6.6. Let G be a finite group, and let V1, . . . , Vn be a set of representatives
for the collection of all isomorphism classes of irreducible complex representations of
G. Then the construction

pW1, . . . ,Wnq ÞÑ
à

1ďiďn
Vi bC Wi

induces an equivalence of topologically enriched categories

pVect»Cqn » FunpBG,Vect»Cq.

It follows that the E8-rings kupBGq and KUpBGq are free of rank n when regarded
as a module over ku and KU, respectively.

Remark 3.6.7. Let H be a finite abelian group, and let pH “ HompH,Q {Zq denote
the Pontryagin dual group of H. For each λ P pH, we let Vλ denote the representation
of H whose underlying vector space is C, where H acts by the character

H Ñ Cˆ h ÞÑ expp2πiλq.

The construction λ ÞÑ rVλs then induces an isomorphism of commutative rings Zr pHs „ÝÑ
ReppHq.

For the rest of this section, we specialize Construction 3.6.1 further to the case
where T is the classifying space of a finite abelian group (we will return to considering
nonabelian groups in §4.1). Using Remark 3.6.4, we can regard the constructions
T ÞÑ kupT q and T ÞÑ KUpT q as providing functors

ku : T op
Ñ CAlgku KU : T op

Ñ CAlgKU

where T Ď S is the 8-category of Notation 3.1.1.

Proposition 3.6.8. The functor ku : T op Ñ CAlgku is P-divisible (in the sense of
Definition 3.5.3).
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Proof. It follows from Remark 3.6.6 that each kupT q is a free module of finite rank
over ku. It will therefore suffice to show that the functor

T op
Ñ CAlgπ0pkuq T ÞÑ π0pkupT qq

is P-divisible (Remark 3.5.4). Using Remarks 3.6.3 and Remark 3.6.7, we see that
this functor is given by BH ÞÑ ReppHq » Zr pHs, and therefore agrees with the P-
divisible functor T op Ñ CAlgZ associated to the multiplicative P-divisible group µP8

of Construction 2.8.1.

Remark 3.6.9 (Relationship with Construction 2.8.6). Applying Theorem 3.5.5, we
can identify the P-divisible functor ku : T op Ñ CAlgku with a pair pG, eq, where G is
a P-divisible group over ku and e is a preorientation of G. The proof of Proposition
3.6.8 shows that, after extending scalars along the map ku Ñ π0pkuq » Z, there is a
canonical isomorphism of P-divisible groups γ0 : GZ » µP8 . Since µP8 is Cartier dual
to the étale P-divisible group Q {Z, it has no nontrivial deformations: in particular,
γ0 admits an essentially unique lift to an equivalence G » µP8 of P-divisible groups
over ku. We can therefore identify the preorientation e with a map of E8-spaces
BpQ {Zq Ñ GL1pkuq, or equivalently with a map of E8-rings Σ8`BpQ {Zq Ñ ku.
Unwinding the constructions, we see that this map factors as a composition

Σ8`BpQ {Zq Ñ Σ8` CP8 ρ
ÝÑ ku

where ρ is induced by the map of E8-spaces

CP8
» BUp1q ãÑ Nhc

pVect»Cq Ñ Ω8pkuq,

carrying the canonical generator of π2pCP8
q to the Bott class β P π2pkuq.

Combining Proposition 3.6.8 with Remark 3.6.9, we obtain the following:

Corollary 3.6.10. The construction KU : T op Ñ CAlgKU is P-divisible (in the sense
of Definition 3.5.3). Under the equivalence of Theorem 3.5.5, it corresponds to the
multiplicative P-divisible group µP8 over KU, equipped with the orientation described
in Construction 2.8.6.

4 Tempered Cohomology
We now introduce the main object of study in this paper.
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Notation 4.0.1. Let A be an E8-ring and let G be a preoriented P-divisible group
over A. We let AG denote the P-divisible functor T op Ñ CAlgA corresponding to G
under the equivalence Theorem 3.5.5. We will denote the value of AG on an object
T P T by ATG. In particular, if H is a finite abelian group, we have a canonical
equivalence SpecpABHG q “ Gr pHs, where pH “ HompH,Q {Zq denotes the Pontryagin
dual of H.

Warning 4.0.2. Let A be an E8-ring and let G be a preoriented P-divisible group
over A. Then, for any object T P T , there exists an equivalence

SpecpATGq » Gr{π1pT qs.

Beware that this equivalence is not canonical: it depends on a choice of base point
of T (which allows us to identify T with the classifying space BH for H “ π1pT q).
Choosing an equivalence SpecpATGq » Gr{π1pT qs which depends functorially on T is
equivalent to choosing a nullhomotopy of the preorientation e : ΣpQ {Zq Ñ GpAq
(Example 3.5.8).

Construction 4.0.3 (Tempered Function Spectra). Let A be an E8-ring and let G
be a preoriented P-divisible group over A. Let us abuse notation by identifying the
8-category T of Notation 3.1.1 with its essential image under the Yoneda embedding

T ãÑ OS T ÞÑ T p´q.

By virtue of Theorem HTT.5.1.5.6 , the functor AG : T op Ñ CAlgA admits an
essentially unique extension to a functor OSop

Ñ CAlgA which preserves small limits
(that is, it carries colimits in the 8-category of orbispaces to limits in the 8-category
CAlgA). We will abuse notation by denoting this functor also by AG; it carries each
orbispace X to an E8-algebra over A which we will denote by AX

G. We will refer to
AX

G as the G-tempered function spectrum (parametrizing maps from X to AG).
In the special case where X “ Xp´q is the orbispace represented by a space X P S,

we will denote the E8-ring AX
G simply by AXG.

Remark 4.0.4. Let A be an E8-ring and let G be a preoriented P-divisible group
over A. Then, for each orbispace X, the spectrum AX

G is essentially determined (as a
spectrum) by the formula

Ω8´npAX
Gq » MapOSpX,Ω8´nAGq.

Here we identify AG with a spectrum object of the 8-category of orbispaces.
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Construction 4.0.5 (Tempered Cohomology). Let A be an E8-ring and let G be a
preoriented P-divisible group over A. For each orbispace X, we let A˚GpXq denote the
graded-commutative ring given by the formula

A˚GpXq “ π´˚pA
X
Gq.

We will refer to A˚GpXq as the G-tempered cohomology ring of X.
In the special case where X “ Xp´q is the orbispace represented by a space X P S,

we will denote the graded ring A˚GpXq by A˚GpXq, which we refer to as the G-tempered
cohomology ring of X.

Our goal in this section is to carry out a detailed study of Constructions 4.0.3
and 4.0.5. We begin in §4.1 with the case where A “ KU is the complex K-theory
spectrum and G “ µP8 is the multiplicative P-divisible group (endowed with the
orientation of Construction 2.8.6). In this case, we will see that Construction 4.0.5
reproduces equivariant complex K-theory (for finite groups). More precisely, for every
finite group G and every G-space X P SG, we construct a canonical isomorphism

KU˚HpXq
„
ÝÑ KU˚µP8

pX{{Gq,

whose domain is the G-equivariant complex K-theory of X and whose codomain
is the µP8-tempered cohomology of the orbispace quotient X{{G (Corollary 4.1.3).
When G is abelian, this is essentially a tautology (by virtue of our description of
the orientation of µP8 supplied by Corollary 3.6.10). The extension to nonabelian
groups articulates an important feature of G-equivariant complex K-theory: it can be
formally reconstructed (by a Kan extension procedure) from its behavior with respect
to abelian subgroups of G. This observation motivates all of the constructions which
appear in this paper: in essence, we are showing that an analogous procedure gives
sensible results in other contexts (like the setting of elliptic cohomology).

Remark 4.0.6 (Equivariant Stable Homotopy Theory). Let A be an E8-ring, let G
be a preoriented P-divisible group over A, and let H be a finite group. Then the
construction

pX P SHq ÞÑ A˚GpX{{Hq

can be viewed as a cohomology theory defined on the 8-category of H-spaces SH . It
follows formally that this cohomology theory is representable by a spectrum object
of the 8-category SH : that is, by a naive H-spectrum. In [10], we will show (using
ideas developed in this paper; see §7.4) that this naive H-spectrum can be promoted
to a genuine H-spectrum in the case when G is an oriented P-divisible group.
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Fix a preoriented P-divisible group G over an E8-ring A. The most essential
features of G-tempered cohomology can be summarized by the following variants of
Theorems 1.1.17, 1.1.18, and 1.1.19:

paq Let X be an orbispace with underlying space |X|. Then there is a canonical ring
homomorphism

ζ : A˚GpXq Ñ A˚p|X|q,

which we call the Atiyah-Segal comparison map (Construction 4.2.2). In the case
where A is Kpnq-local and G is the Quillen p-divisible over A, we show that ζ
is an isomorphism (Theorem 4.2.5; this reduces to Theorem 1.1.17 in the case
when X is an orbispace quotient Y {{H).

pbq Suppose that the P-divisible group G splits as a direct sum G0 ‘ Λ, where Λ is
a colattice. In §4.3, we associate to every orbispace X a canonical isomorphism

χ : A˚GpXq Ñ A˚G0pL
Λ
pXqq,

where LΛ
pXq denotes the formal loop space of Construction 3.4.3 (Theorem

4.3.2); this reduces to Theorem 1.1.18 in the case where X is an orbispace
quotient Y {{H).

pcq Let B be an E8-algebra over A, and let us abuse notation by identifying G with
the P-divisible group GB obtained from G by extension of scalars. For every
orbispace X, there is a tautological comparison map

θ : B bA AX
G Ñ BX

G.

This map is an equivalence when G is oriented and X is representable by a
π-finite space X (Theorem 4.7.1, which formally implies Theorem 1.1.19 by
arguments that we will outline in §4.7).

Properties paq and pbq are essentially formal, and we prove them in §4.2 and §4.3,
respectively. Assertion pcq is much more difficult. In this section, we prove pcq only
in the special case where X is a generalized Eilenberg-MacLane space (with abelian
homotopy groups). In this case, we will show that the tempered cohomology ring
A˚GpXq is a projective module of finite rank over the coefficient ring π´˚pAq, which
has an explicit description in terms of the arithmetic of the P-divisible group G. We
formulate this description precisely in §4.4 (Theorem 4.4.16) and carry out the proof in
§4.5 (making essential use of properties paq and pbq, together with the main results of
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[6]). We can then verify assertion pcq by explicitly comparing the tempered cohomology
rings A˚GpXq and B˚GpXq. For a more general π-finite space X, this approach breaks
down (it seems unrealistic to hope for an explicit calculation of A˚GpXq in general).
We prove pcq in general in §7 as a consequence of our tempered ambidexterity theorem
(Theorem 7.2.10), which ultimately rests on the calculations for Eilenberg-MacLane
spaces carried out in this section.

Properties paq, pbq, and pcq have many nontrivial consequences, some of which can
be formulated without reference to the theory of G-tempered cohomology. As noted
in §1, they can be used to recover the “generalized character theory” of Hopkins-Kuhn-
Ravenel and Stapleton (as well as the classical character theory of finite groups: see
Corollary 4.7.8). For these applications, we do not need the full strength of pcq: it
suffices to assume that pcq holds for orbispaces X of the form BGp´q, where G is a
finite group. However, the full strength of assertion pcq allows us to extend the scope
of character-theoretic methods. In §4.8, we make this explicit by using paq, pbq, and
pcq to compute the rationalized Lubin-Tate cohomology of an arbitrary π-finite space
X (Corollary 4.8.5). As an application, we show that the Euler characteristic of X
with respect to Morava K-theory Kpnq (at some prime number p) can be identified
with the number of homotopy classes of maps from the p-adic torus KpZn

p , 1q into X
(Corollary 4.8.6).

Throughout this section, we view the tempered cohomology theory X ÞÑ A˚GpXq

as a construct which depends on a choice of P-divisible group G together with a
preorientation e P PrepG. By virtue of Theorem 3.5.5, the datum of the pair pG, eq is
equivalent to the datum of the P-divisible functor

AG : T op
Ñ CAlgA

of Notation 4.0.1. Note that Constructions 4.0.3 and 4.0.5 are phrased directly in
terms of the functor AG (rather than the P-divisible group G itself). Consequently, it
is possible to adopt a more direct approach to our theory of tempered cohomology
(circumventing the formalism of §2) by adopting Definition 3.5.3 as the definition
of a preoriented P-divisible group. Beware, however, that many important formal
properties of tempered cohomology (like property pcq above) depend on the assumption
that G is an oriented P-divisible group. It is therefore desirable to have a criterion
for determining if e P PrepGq is an orientation directly in terms of the functor
AG : T op Ñ CAlgA. We establish three such criteria in this section, each based on
properties of the Atiyah-Segal comparison map ζ:

• Assume that A is p-complete. Then G is oriented if and only if A is complex
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periodic and the Atiyah-Segal comparison map

ζ : ABCpnG Ñ ABC
n
p

exhibits ABCpn as the completion of ABCpnG with respect to the augmentation
ideal ICpn Ď A0

GpBCpnq, for each n ě 0 (Proposition 4.2.12). Here Cpn denotes
the cyclic group with pn elements.

• Let A be any E8-ring. Then G is oriented if and only if, for every prime power
pn and every E8-algebra B over A, the Atiyah-Segal comparison map

ζ : BBCpn
G Ñ BBCpn

exhibits BBCpn as the completion of BBCpn
G with respect to its augmentation

ideal ICpn Ď A0
GpBCpnq (Proposition 4.2.15).

• Let A be any E8-ring. Then G is oriented if and only if, for every prime number
p, the Atiyah-Segal comparison map

ζ : ABCpG Ñ ABCp

exhibits the function spectrum ABCp as the completion of ABCpG with respect
to the augmentation ideal ICp Ď A0

GpBCpq, and the Tate construction AtCp is
ICp-local (Theorem 4.6.2).

We can roughly paraphrase these results as saying that a preoriented P-divisible
group G is oriented if and only if the theory of G-tempered cohomology satisfies an
analogue of the Atiyah-Segal completion theorem in a few special cases. In §4.9, we
prove a strong converse of this result: if A is Noetherian and G is oriented, then our
theory of G-tempered cohomology satisfies a version of the Atiyah-Segal completion
theorem in general (Theorem 4.9.2).

4.1 Equivariant K-Theory as Tempered Cohomology
Throughout this section, we let KU denote the complex K-theory spectrum and

µP8 the multiplicative P-divisible group over KU. We regard µP8 as equipped with
the orientation of Construction 2.8.6, so that Construction 4.0.3 supplies functors

X ÞÑ KUX
µP8

X ÞÑ KU˚µP8
pXq.
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It follows from Corollary 3.6.10 that we have equivalences (of E8-algebras over KU)
KUT

µP8 » KUpT q depending functorially on T P T ; here KUpT q is the KU-algebra
described in Notation 3.6.5. In particular, if G is a finite abelian group, then the
tempered cohomology ring KU0

µP8
pBGq can be identified with the representation ring

ReppGq. In this section, we will extend this identification to the case where G is not
assumed to be abelian. More generally, for any G-space X, we construct a canonical
isomorphism

uX : KU˚GpXq » KU˚µP8
pX{{Gq

from the G-equivariant K-theory of X to the µP8-tempered cohomology of the
orbispace quotient X{{G (Theorem 4.1.2). The existence of the isomorphism uX is
more or less tautological in the case where G is abelian; the extension to non-abelian
groups G will use the technique of complex-oriented descent appearing in the work of
Hopkins-Kuhn-Ravenel ([5]).

Let G be a finite group (not necessarily abelian), which we regard as fixed for the
remainder of this section. We begin with a brief review of G-equivariant complex
K-theory (see [20] for a more detailed exposition). For every G-space X, we let
KU˚GpXq denote the graded ring given by G-equivariant complex K-theory of X. We
then have an isomorphism KU˚GpXq » π´˚pKUX

G q, where KUX
G is an E8-algebra over

KU which we will refer to as the G-equivariant complex K-theory spectrum of X.
This construction has the following properties:

paq The construction X ÞÑ KUX
G determines a functor of 8-categories Sop

G Ñ

CAlgKU, where SG denotes the 8-category of G-spaces (Definition 3.2.10).
Moreover, this functor carries small colimits in SG to small limits in CAlgKU.

pbq Let OrbitpGq denote the category of G-orbits, which (by slight abuse of notation)
we identify with a full subcategory of SG. Then the composite functor

OrbitpGqop ãÑ Sop
G

X ÞÑKX
G

ÝÝÝÝÑ CAlgKU

is given by the construction X ÞÑ KUpXhGq; here XhG denotes the homotopy
orbit space of X by the action of G and KUpXhGq is the E8-algebra of Notation
3.6.5. In particular, when X “ HzG is the quotient of G by a subgroup H Ď G,
we have equivalences

KUX
G » KUpBHq KU0

GpXq » ReppHq.
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pcq Let X be a topological space equipped with a continuous action of G, and let us
abuse notation by identifying X with the G-space SingG‚ pXq P SG described in
Example 3.2.13. Then there is a canonical map of sets

tG-equivariant complex vector bundles on Xu{isomorphism Ñ KU0
GpXq.

E ÞÑ rE s

If X is a finite G-space, then this map exhibits KU0
GpXq as the Grothendieck

group of the commutative monoid of isomorphism classes of G-equivariant
complex vector bundles on X.

pdq Let X be a topological space equipped with a continuous action of G, let E be a
G-equivariant complex vector bundle of rank r over X, and let Y “ PpE q denote
the projectivization of E , so that we have a G-equivariant map π : Y Ñ X

which exhibits Y as a fiber bundle over X (whose fibers are homeomorphic to
the complex projective space CPr´1). We then have a tautological short exact
sequence

0 Ñ Op´1q Ñ π˚E Ñ Q Ñ 0

of complex vector bundles on Y , where Op´1q has rank 1. For each integer
d P Z, let Opdq denote the p´dqth tensor power of Op´1q. Let us abuse notation
by identifying X and Y with the G-spaces SingG‚ pXq, SingG‚ pY q P SG of Example
3.2.13. Then the elements trOpdqsu0ďdăr form a basis for KU˚GpY q as a graded
module over KU˚GpXq.

Remark 4.1.1. The functor X ÞÑ KUX
G is characterized by properties paq and pbq

above: it follows formally that the functor KUp´qG can be obtained as a right Kan
extension of the functor

OrbitpGqop
Ñ CAlgKU X ÞÑ KUpXhGq

along the Yoneda embedding OrbitpGqop ãÑ Sop
G . From this perspective, one can

obtain the comparison map

tG-equivariant complex vector bundles on Xu{isomorphism Ñ KU0
GpXq

of pcq by formulating a more refined statement at the level of classifying spaces, and
formally extending from the case where X is a G-orbit. The fact that, in good cases,
this map exhibits KU0

GpXq as the Grothendieck group of complex vector bundles on X
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requires additional effort: in essence, one must show that these Grothendieck groups
satisfy a form of excision ([20]). For our purposes here, this more refined statement
is unnecessary: the construction E ÞÑ rE s is needed only to formulate property pdq
(which follows from the fact that equivariant complex K-theory admits a good theory
of Chern classes).

We can now formulate the main result of this section.

Theorem 4.1.2. Let G be a finite group and let X be a G-space. Then there is a
canonical equivalence

KUX
G » KUX{{G

µP8
.

Here X{{G denotes the orbispace quotient of X by the action of G (Construction
3.2.16), and KUX{{G

µP8
is the tempered function spectrum of Construction 4.0.3.

Corollary 4.1.3. Let G be a finite group and let X be a G-space. Then there is a
canonical isomorphism of graded rings KU˚GpXq » KU˚µP8

pX{{Gq.

Example 4.1.4. Let G be a finite group. Applying Corollary 4.1.3 in the case where
X is a single point (and restricting to degree zero), we obtain a canonical isomorphism
ReppGq „ÝÑ KU0

µP8
pBGq.

Proof of Theorem 4.1.2. Let OrbitpGqab denote the full subcategory of OrbitpGq
spanned by G-orbits of the form HzG, where H Ď G is abelian. Let us abuse
notation by identifying OrbitpGqab with its image under the Yoneda embedding
OrbitpGq ãÑ SG. When X belongs to OrbitpGqab, the homotopy XhG is an object of
the 8-category T (which represents the orbispace quotient X{{G), so property pbq
and Corollary 3.6.10 provide a canonical equivalence

uX : KUX
G » KUpXhGq » KUX{{G

µP8
.

Note that the functor

Sop
G Ñ CAlgKU X ÞÑ KUX{{G

µP8

is a right Kan extension of its restriction to OrbitpGqop
ab. Consequently, the construction

X ÞÑ uX admits an essentially unique extension to a natural transformation uX :
KUX

G Ñ KUX{{G
µP8

defined on the entire 8-category SG. We will complete the proof by
showing that uX is an equivalence, for all X P SG.

The construction X ÞÑ uX carries colimits in SG to limits in the 8-category
Funp∆1,CAlgKUq. It will therefore suffice to show that uX is an equivalence in the
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special case where X is a G-orbit. Suppose otherwise: then there exists some subgroup
H Ď G for which the map uHzG is not an equivalence. Among such subgroups, choose
one for which the cardinality |H| is as small as possible. The group H cannot be
abelian, and therefore admits an irreducible representation V of dimension larger
than 1. Then we can identify V with a G-equivariant vector bundle E on the orbit
X “ HzG. Let Y0 “ PpE q denote the projectivization of the complex vector bundle
E (regarded as a topological space with an action of G), and let us abuse notation by
identifying Y0 with the object SingG‚ pY0q P SG given in Example 3.2.13. Let Y‚ denote
the Čech nerve of the projection map Y0 Ñ X. We then have a commutative diagram
of E8-algebras over KU

KUX
G

uX //

v

��

KUµP8 pX{{Gq

w

��

TotpKUY‚
G q

TotpuY‚ q // TotpKUY‚{{G
µP8

q.

We will obtain a contradiction by showing that the vertical maps and lower horizontal
map in this diagram are equivalences:

• It follows from property pdq above that KUY0
G is a faithfully flat KUX

G -algebra
and that KUY‚

G is the cosimplicial KUX
G -algebra given by the iterated tensor

powers of KUY0
G . Consequently, the map v is an equivalence virtue of faithfully

flat descent.

• Note that the simplicial orbispace Y‚{{G can be identified with the Čech nerve
(formed in the8-category of orbispaces) of the canonical map π : Y0{{GÑ X{{G.
Consequently, to show that w is an equivalence, it will suffice to show that π
is an effective epimorphism of orbispaces. Equivalently, we must show that for
every abelian subgroup A Ď G and every point x P X which is fixed by A, we can
choose a point y P Y0 lying over x which is fixed by A. Without loss of generality,
we may assume that x P HzG is the identity coset, so that A is an abelian
subgroup of H. In this case, the existence of the point y P Y A

0 is equivalent to
the existence of a 1-dimensional complex subspace L Ď V which is fixed by the
action of A. This is clear: our assumption that A is abelian guarantees that the
representation V decomposes as a direct sum of 1-dimensional representations
of A.
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• To show that the lower horizontal map is an equivalence, it will suffice to show
that the map uYk is an equivalence for each k ě 0. Writing Yk as a colimit of
G-orbits of the form H 1zG, we are reduced to the problem of showing that uH 1zG
is an equivalence whenever there exists a fixed point y P Y H 1

k . Let x denote
the image of y in the orbit X “ HzG. Replacing H 1 by a conjugate subgroup,
we may assume that x is the identity coset, so that H 1 is a subgroup of H. It
follows from our minimality assumption that H 1 “ H. In this case, the existence
of a fixed point y P Y H

k lying over the identity coset x P HzG implies that V
contains a 1-dimensional complex subspace L Ď V which is invariant under the
action of H. Since the representation V is irreducible, it follows that L “ V ,
contradicting our assumption that V has dimension ą 1.

Remark 4.1.5. It follows from Theorem 4.1.2 that, when specialized to the mul-
tiplicative P-divisible group over KU, our theory of tempered cohomology can be
used to reconstruct the equivariant complex K-theory as a naive G-spectrum: that is,
as a cohomology theory defined on the homotopy category of G-spaces. To recover
equivariant complex K-theory as a genuine G-spectrum, there is additional work to
be done: essentially, one must show that the equivalence KUX

G » KUX{{G
µP8

behaves
functorially not only with respect to pullback, but also with respect to transfers. We
will return to this point in [10] (see §7.4 for a discussion of transfer maps in the setting
of tempered cohomology).

4.2 Atiyah-Segal Comparison Maps
Let G be a finite group and let X be a finite G-space. Then every G-equivariant

vector bundle on X determines a vector bundle on the homotopy orbit space XhG.
This construction determines a map of K-groups

KU0
GpXq Ñ KU0

pXhGq,

which is the subject of Atiyah’s completion theorem (Theorem 1.1.5). In this section,
we describe a variant of this construction in the more general setting of tempered
cohomology, and prove a weak version of Atiyah’s theorem (Proposition 4.2.8); for a
stronger statement, we refer the reader to §4.9.

Let A be an E8-ring. For any space X, we let AX denote the function spectrum
of (unpointed) maps from X into A. The construction X ÞÑ AX determines a functor
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of 8-categories Sop
Ñ CAlgA, which is determined (up to a contractible space of

choices) by the requirement that it preserves small limits and carries the one-point
space ˚ to A (Theorem HTT.5.1.5.6 ). If G is a preoriented P-divisible group over A,
then the functor X ÞÑ A

X
G has the same properties. This proves the following:

Proposition 4.2.1. Let G be a preoriented P-divisible group over an E8-ring A.
Then, for any space X, we have a canonical equivalence AXG » AX of E8-algebras over
A; here X denotes the constant orbispace associated to X (Example 3.1.8). Passing to
homotopy groups, we obtain a canonical isomorphism of graded rings A˚GpXq » A˚pXq.

We now exploit Proposition 4.2.1 to compare our theory of G-tempered cohomology
with the usual cohomology theory represented by A.

Construction 4.2.2 (The Atiyah-Segal Comparison Map). Let A be an E8-ring and
let G be a preoriented P-divisible group over A. Let X be any orbispace, and let
X “ |X| denote its underlying space. Then the canonical map of orbispaces X Ñ X
induces a map of E8-algebras ζ : AX

G Ñ A|X|. Passing to homotopy groups, we obtain
a map of cohomology rings A˚GpXq Ñ A˚p|X|q, which we will also denote by ζ. We will
refer to both of the maps

ζ : AX
G Ñ A|X| ζ : A˚GpXq Ñ A˚p|X|q

as the Atiyah-Segal comparison map.
In particular, for every object X P S, the canonical map of orbispaces X Ñ Xp´q

induces Atiyah-Segal comparison maps

ζ : AXG Ñ AX ζ : A˚GpXq Ñ A˚pXq.

Example 4.2.3. Let X be a finite space. Then the canonical map X Ñ Xp´q is an
equivalence of orbispaces (by Miller’s theorem; see Remark 3.1.14). It follows that, for
any preoriented P-divisible group G over an E8-ring A, the Atiyah-Segal comparison
map ζ : A˚GpXq Ñ A˚pXq is an isomorphism.

Example 4.2.4. Let G be a preoriented P-divisible group over an E8-ring A. If H
is a finite group and X is an H-space, then we have canonical maps of orbispaces
XhH Ñ X{{H Ñ X

p´q

hH , which induce comparison maps

AXhHG Ñ A
X{{H
G Ñ AXhH A˚GpXhHq Ñ A˚GpX{{Hq

ζ
ÝÑ A˚pXhHq.

We have the following result (which contains Theorem 1.1.17 as a special case):
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Theorem 4.2.5. Fix a prime number p and a positive integer n. Let A be an E8-ring
which is Kpnq-local, and let G “ GQ

A be the Quillen p-divisible group of A (see §2.4).
Then, for every orbispace X, the Atiyah-Segal comparison map ζ : AX

G Ñ A|X| is an
equivalence of E8-algebras over A, and therefore induces an isomorphism of graded
rings ζ : A˚GpXq » A˚p|X|q.

Proof. Note that the functor

OSop
Ñ Funp∆1,CAlgAq X ÞÑ pζ : AX

G Ñ AXq

preserves small limits. Since the 8-category of orbispaces is generated (under small
colimits) by the image of the Yoneda embedding T ãÑ OS, it will suffice to prove
Theorem 4.2.5 in the special case where X “ BHp´q is the classifying space of a finite
abelian group H. In this case, the desired result is immediate from the construction
GQ
A as an oriented p-divisible group (see Example 3.5.7).

Theorem 4.2.5 has an analogue at height zero:

Variant 4.2.6. Let A be an E8-algebra over Q and let G “ 0 be the trivial P-
divisible group over A (so that G admits an essentially unique preorientation). Then,
for every orbispace X with underlying space |X|, the Atiyah-Segal comparison map
ζ : AX

G Ñ A|X| is an equivalence of E8-algebras over A, and therefore induces an
isomorphism of graded rings ζ : A˚GpXq » A˚p|X|q.

Proof. As in the proof of Theorem 4.2.5, we can reduce to the case where X “ T p´q is
representable by an object T P T . In this case, we are reduced to showing that the
unit map A˚pt˚uq Ñ A˚pT q is an isomorphism. This is clear, since A is an E8-algebra
over Q and the space T is rationally acyclic.

The terminology of Construction 4.2.2 is motivated by the special case where
A “ KU is the complex K-theory spectrum and G “ µP8 is the multiplicative
P-divisible group over A, endowed with the orientation of Construction 2.8.6. If
G is a finite group and X is an G-space, then the Atiyah-Segal comparison map
ζ : A˚GpX{{Gq Ñ A˚p|X{{G|q can be identified with the map KU˚GpXq Ñ KU˚pXhGq

appearing in Theorem 1.1.5. When X is a finite G-complex, this map exhibits
KU˚pXhGq as the completion of KU˚GpXq with respect to the augmentation ideal in
the representation ring ReppGq. We will show in §4.9 that an analogous phenomenon
occurs for any oriented P-divisible group, at least when A is Noetherian (Theorem
4.9.2). For the moment, we consider only the special case where G is abelian and X is
a single point, in which case the Noetherian assumption on A is unnecessary.
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Notation 4.2.7. Let A be an E8-ring, let G be a preoriented P-divisible group over
A, and let H be a finite group. Then the canonical map EH Ñ BH determines a
surjective ring homomorphism

A0
GpBHq Ñ A0

GpEHq » π0pAq.

We will denote the kernel of this homomorphism by IH and refer to it as the augmen-
tation ideal of the commutative ring A0

GpBHq.
Note that if the group H is abelian, then A0

GpBHq is a projective module of finite
rank as a module over π0pAq. In this case, the augmentation ideal IH is also projective
of finite rank as a module over π0pAq; in particular, it is finitely generated.

Proposition 4.2.8. Let A be an E8-ring, let G be an oriented P-divisible group
over A, and let H be a finite abelian group. Then the Atiyah-Segal comparison map
ABHG Ñ ABH exhibits the function spectrum ABH as the IH-completion of ABHG , where
IH is the augmentation ideal of Notation 4.2.7.

The proof of Proposition 4.2.8 will require some preliminaries.

Notation 4.2.9. Let G be a preoriented P-divisible group over A. Let f : AÑ B be
a morphism of E8-rings, and let GB denote the preoriented P-divisible group over B
obtained from G by extending scalars along f . For every orbispace X, we will denote
the E8-ring BX

GB
of Construction Construction 4.0.3 simply by BX

G, and we denote the
GB-tempered cohomology ring B˚GB

pXq simply by B˚GpXq. In the special case where
X “ Xp´q for some space X (Example 3.1.6), we denote BX

G and B˚GpXq by BX
G and

B˚GpXq, respectively.

Remark 4.2.10. Let G be a preoriented P-divisible group over an E8-ring A, and
let B be an E8-algebra over A. For any orbispace X, we have a canonical map of
A-modules AX

G Ñ BX
G, which extends to a B-linear map θX : B bA AX

G Ñ BX
G. Then:

paq If T is an object of T , then the map θT : B bA ATG Ñ BT
G is an equivalence.

pbq If B is perfect as an A-module, then the map θX : B bA AX
G Ñ BX

G is an
equivalence for every orbispace X.

Assertion paq is immediate from the definition of the P-divisible group GB. Assertion
pbq follows from paq by writing the orbispace X as a colimit of representable orbispaces.
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Lemma 4.2.11. Let G be an preoriented P-divisible group over an E8-ring A. Then,
for every orbispace X, the functor

CAlgA Ñ CAlgA B ÞÑ BX
G

preserves small limits.

Proof. Writing X as a colimit of representable functors, we may assume that X “ BHp´q

for some finite abelian group H. In this case, Remark 4.7.2 implies that for each
B P CAlgA, the comparison map

ρ : B bA AX
G Ñ BX

G

is an equivalence. The desired result now follows from the observation that ABHG is
a finite flat A-module (representing the functor MapModZ

p pH,Gp‚qq, where pH is the
Pontryagin dual of H).

Proof of Proposition 4.2.8. Let B be an E8-algebra over A. We will say that B is
good if the Atiyah-Segal comparison map ζB : BBH

G Ñ BBH exhibits BBH as the
IH-completion of BBH

G (in other words, B is good if Proposition 4.2.8 is true after
replacing A by B; note that the augmentation ideal of B0

GpBHq is generated by the
image of IH). Note that the construction B ÞÑ ζB preserves small limits (Lemma
4.2.11). It follows that the collection of good objects of CAlgA is closed under small
limits. We will prove that every object B P CAlgA is good.

The proof proceeds in several steps. Let m “ |H| denote the order of the finite
group H. We first treat the case where m is invertible in B. In this case, the classifying
space BH is acyclic with respect to the spectrum B: that is, evaluation at the base
point of BH induces an equivalence BBH » B. It follows that we can identify the
comparison map ζB with the augmentation map ε : BBH

G Ñ B. Since |H| is invertible
in π0pBq, BBH

G is an étale B-algebra, so that ε is the projection onto a direct factor
and the result is clear.

Now let B be an arbitrary E8-algebra over A. For each prime number p which
divides n “ |H|, let B^ppq denote the p-completion of B. We then have a pullback
square

B //

��

ś

p|mB
^
ppq

��
Br 1

m
s // p

ś

p|mB
^
ppqqr

1
m
s,

97



where the algebras on the bottom left and bottom right are good by virtue of the
previous step. Consequently, to show that B is good, it will suffice to show that each
completion B^ppq is good.

Replacing A by B^ppq, we are reduced to proving Proposition 4.2.8 in the special
case where A is p-complete for some prime number p. Our assumption that G is
oriented guarantees that A is complex periodic and that the identity component of
Gppq is the Quillen formal group. For each integer n, let IAn denote the nth Landweber
ideal of A (Definition Or.4.4.11 ). Note that there exists an integer n ě 0 such that
A is IAn`1-local (for example, if n is an upper bound for the height of the p-divisible
group Gppq, then we have IAn`1 “ π0pAq). We proceed by induction on n, the case
n “ 0 being trivial (since IAn`1 “ ppq). Let pA denote the IAn -completion of A, let B
denote the IAn -localization of A, and let pB denote the IAn -completion of B. Then we
have a pullback square

A //

��

pA

��

B // pB,

where B and pB are good by virtue of our inductive hypothesis. Consequently, to
show that A is good, it will suffice to show that pA is good. Replacing A by pA, we are
reduced to proving Proposition 4.2.8 in the special case where A is IAn`1-local and
IAn -complete: that is, when A is Kpnq-local as a spectrum (see Theorem Or.4.5.2 ).

If A is Kpnq-local, then the orientation of G supplies a short exact sequence of
p-divisible groups

0 Ñ GQ
A Ñ Gppq Ñ G2

Ñ 0,

where G2 is étale. In this case, the Atiyah-Segal comparison map ζ : ABHG Ñ ABH “

ABHGQ
A

is given by the projection onto a direct factor, where the complementary factor
is IH-local. We are therefore reduced to proving that the function spectrum ABH is
IH-complete as a module over ABHG .

Let C be the full subcategory of pOSq{BHp´q spanned by those maps f : X Ñ BHp´q

for which the induced map ABHG Ñ AX
G exhibits AX

G as an IH-complete module over
ABHG . We wish to show that C includes the tautological map BH Ñ BHp´q. In fact,
we claim that C contains every object of the form f : X Ñ BHp´q, where X is a
space. Writing X as a homotopy colimit of contractible spaces, we can reduce to
the case where X is contractible, in which case f is equivalent to the base point
inclusion t˚u Ñ BH. We are therefore reduced to proving that the augmentation map
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ε : ABHG Ñ A exhibits A as an IH-complete module over ABHG , which is immediate
from the definition.

In the statement of Proposition 4.2.8, the assumption that G is oriented cannot
be omitted. For example, if the preorientation ΣpQp {Zpq Ñ GpAq is nullhomotopic,
then the Atiyah-Segal comparison map factors as a composition ABHG

ε
ÝÑ AÑ ABH ,

which cannot exhibit ABH as the IH-completion of ABHG except in the trivial case
where the order of H is invertible in A. More generally, we will show that a preoriented
P-divisible group which satisfies Proposition 4.2.8 (in a sufficiently strong form) is
automatically oriented (see Proposition 4.2.15 below). We begin by analyzing the
p-complete case.

Proposition 4.2.12. Let p be a prime number, let A be a p-complete E8-ring, and
let G be a preoriented p-divisible group over A. Then G is oriented if and only if the
following conditions are satisfied:

p1q The E8-ring A is complex periodic.

p2q For every integer n ě 0, the Atiyah-Segal comparison map

ζ : ABCpnG Ñ ABCpn

exhibits ABCpn as the completion of ABCpnG with respect to the augmentation ideal
ICpn .

The proof of Proposition 4.2.12 will require some algebraic preliminaries.

Lemma 4.2.13. Let R be a connective E8-ring, let M be an R-module which is
n-truncated, and let M^

I denote the completion of M with respect to some finitely
generated ideal I Ď π0pRq. Suppose that, locally on | SpecpRq|, the ideal I can be
generated by ď d elements. Then M^

I is pn` dq-truncated.

Proof. Choose elements t1, . . . , tm P π0pRq which generate the unit ideal, having the
property that each Irt´1

i s Ď π0pRrt
´1
i sq is generated by ď k elements. For nonempty

subset S Ď t1, . . . ,mu, let RS be the R-algebra obtained by inverting the elements
ttiuiPS, and set MS “ RS bRM . Then M can be realized as the limit lim

ÐÝS
MS, so the

I-completion of M is given by lim
ÐÝS

pMSq
^
I . It will therefore suffice to show that each

pMSq
^
I is pn` kq-truncated. Since RS is flat over R, the module MS is n-truncated.

We can therefore replace R by RS and M by MS, and thereby reduce to the case
where I is globally generated by ď d elements. In this case, the desired result follows
from Proposition SAG.II.4.3.4.4 .
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Lemma 4.2.14. Let R be a p-complete commutative ring and let G be p-divisible
group over R for which the identity component G˝ has dimension d ě 0. Fix an
integer n ą 0, and write Grpns “ SpecpHq, where H is a Hopf algebra which is finite
flat over R. Then the augmentation ideal of H is locally generated by ď d elements.

Proof. Note that the augmentation ideal I Ď H is a projective R-module of finite
rank, and is therefore finitely generated as an H-module. It will therefore suffice to
show that, for any maximal ideal m Ď H, the ideal Im Ď Hm is generated by ď d

elements. Set n “ mXR, so that n is a maximal ideal of R. By Nakayama’s lemma, it
will suffice to show that the quotient Im{nIm is generated by ď d elements as a module
over Hm{nHm. We may therefore replace R by the residue field k “ R{n and thereby
reduce to the case where R “ k is a field. If I ‰ m, then Im is the unit ideal in Hm

and there is nothing to prove. Otherwise, we have I “ m. By Nakayama’s lemma,
it will suffice to show that the quotient I{mI “ I{I2 has dimension ď d as a vector
space over k. This is clear, since I{I2 can be identified with the Zariski cotangent
space of the formal group G˝.

Proof of Proposition 4.2.12. Let A be a p-complete E8-ring and let G be a preoriented
p-divisible group over A. If G is oriented, then conditions p1q and p2q are satisfied
by virtue of Propositions 2.5.6 and 4.2.8, respectively. For the converse, assume
that p1q and p2q are satisfied; we wish to show that G is oriented. Let pGQ

A denote
the Quillen formal group A (Construction Or.4.1.13 ) and let G˝ be the identity
component of G (Definition Or.2.0.10 ), so that the preorientation of G can be
identified with a map of formal groups e : pGQ

A Ñ G˝; we wish to show that e is an
equivalence (Proposition Or.4.3.23 ). Let us abuse notation by identifying pGQ

A and
G˝ with formal groups over the connective cover τě0pAq. Then the underlying formal
hyperplanes of pGQ

A and G˝ can be written as SpfpO
pGQ
A
q and SpfpOG˝q, respectively,

where O
pGQ
A

and OG˝ are connective adic E8-algebras over τě0pAq. Then e induces a
map e˚ : OG˝ Ñ O

pGQ
A

, and we wish to show that e˚ is an equivalence of E8-algebras
over τě0pAq (it is then automatically a map of adic E8-algebras, since the topologies
on π0pOG˝q and π0pO pGQ

A
q are determined by their augmentation ideals). For each

n ě 0, let Ipnq “ ICpn denote the augmentation ideal in the tempered cohomology ring
A0

GpBCpnq, and let pτě0pA
BCpn
G qq^Ipnq denote the Ipnq-completion of τě0pA

Cpn
G q. Then
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e˚ fits into a commutative diagram of E8-algebras

OG˝
e˚ //

��

τě0pA
CP8q

��
lim
ÐÝn

pτě0pA
BCpn
G qq^Ipnq

// lim
ÐÝn

τě0pA
BCpn q

where the inverse limits are formed in the 8-category CAlgcn
τě0pAq, the left vertical map

is an equivalence by the construction of G˝, the right vertical map is an equivalence
by virtue of our assumption that A is p-complete, and the bottom horizontal map can
be realized as a limit (indexed by nonnegative integers n) of the composite maps

pτě0pA
BCpn
G qq

^
Ipnq

ρpnq
ÝÝÑ τě0ppA

BCpn
G q

^
Ipnqq

ζpnq
ÝÝÑ τě0pA

BCpn q,

where each ζpnq is induced by the Atiyah-Segal comparison map determined by the
preorientation e and is therefore an equivalence by virtue of assumption p2q. Lemma
4.2.14 guarantees that there exists an integer d " 0 such that each of the ideals Ipnq
is locally generated by at most d elements, so that the completion pτď´1pA

BCpn
G qq^Ipnq

is pd´ 1q-truncated (Lemma 4.2.13). Using the fiber sequence

pτě0pA
BCpn
G qq

^
Ipnq Ñ pA

BCpn
G q

^
Ipnq Ñ pτď´1pA

BCpn
G qq

^
Ipnq,

we deduce that ρpnq induces an isomorphism on homotopy groups in degrees ě d.
Passing to the inverse limit over n, we conclude that the map

e˚ : OG˝ Ñ O
pGQ
A
“ τě0pA

CP8
q

induces an isomorphism on homotopy groups in degrees ě d, and therefore in all
degrees (since A is assumed to be complex periodic, and both OG˝ and OGQ

A
can be

realized as the duals of projective modules over τě0pAq).

We now prove a variant of Proposition 4.2.12, where we do not assume that the
E8-ring A is complex periodic or p-complete.

Proposition 4.2.15. Let G be an preoriented P-divisible group over an E8-ring A.
Then G is oriented if and only if it satisfies the following condition:

p˚q For every prime power pn and every E8-algebra B over A, the Atiyah-Segal
comparison map

ζ : BBCpn
G Ñ BBCpn

exhibits BBCpn as the completion of BBCpn
G with respect to the augmentation ideal

ICpn .
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Remark 4.2.16. The statement of Proposition 4.2.15 is potentially confusing, because
it does not specify whether we view the ideal ICpn as an ideal of the tempered
cohomology ring A0

GpBCpnq or the tempered cohomology ring B0
GpBCpnq. However,

this does not matter: the augmentation ideal of B0
GpBCpnq is generated by the image

of the augmentation ideal of A0
GpBCpnq.

Remark 4.2.17. We will prove another variant of Proposition 4.2.15 in §4.6 (see
Theorem 4.6.2).

Proof of Proposition 4.2.15. If G is oriented, then it remains oriented after extending
scalars along any map A Ñ B, and therefore satisfies condition p˚q by virtue of
Proposition 4.2.8. Conversely, assume that p˚q is satisfied; we wish to show that G is
oriented. Without loss of generality, we may assume that A is p-complete. Let G˝

denote the identity component of the p-divisible group Gppq. Factoring A as a direct
product, we may assume without loss of generality that the formal group G˝ has some
constant dimension d. Suppose first that d ‰ 1. In this case, we claim that the E8-ring
A vanishes. Let MP denote the periodic complex bordism spectrum, let B denote the
smash product MPbSA, and let pB denote the p-completion of B. Then pB is complex
periodic, so the preoriented p-divisible group G

ppq pB is oriented by virtue of Proposition
4.2.12. Consequently, after extending scalars from A to pB, the formal group G˝ is
equivalent to the Quillen formal group of pB, and therefore has dimension 1. It follows
that the ring spectrum pB vanishes. Set M “ cofibpp : AÑ Aq and let EndApMq denote
the algebra of endomorphisms of M . Then M bA B » cofibpp : B Ñ Bq vanishes,
so that EndBpM bA Bq » MPbS EndApMq vanishes. It follows from the nilpotence
theorem that EndApMq » 0, so that M » 0 and therefore the map p : AÑ A is an
equivalence of A-modules. Since A is assumed to be p-complete, we conclude that
A » 0 as desired.

We now treat the case where d “ 1. Let ω “ ωG˝ denote the dualizing line of the
formal group G˝ (Definition Or.4.2.14 ), and let β : ω˝G Ñ Σ´2pAq denote the Bott
map associated to the preorientation of G (Construction Or.4.3.7 ). We wish to show
that β is an equivalence. Let N denote the tensor product M bA cofibpβq, where M
is defined as above. Since G

ppq pB is oriented, the tensor product pB bA N » B b AN

vanishes. In particular, the endomorphism algebra EndBpBbANq » MPbS EndApNq
vanishes. Invoking the nilpotence theorem again, we conclude that EndApNq » 0, so
that N » 0. By construction, we have a cofiber sequence of A-modules

cofibpβq p
ÝÑ cofibpβq Ñ N,
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so multiplication by p induces an equivalence from cofibpβq to itself. However, the
cofiber cofibpβq is a perfect module over the p-complete E8-ring A, and is therefore
p-complete. It follows that cofibpβq vanishes, so that the Bott map β : ω˝G Ñ Σ´2pAq

is an equivalence.

4.3 Character Isomorphisms
Let A be an E8-ring and let G be a preoriented P-divisible group over A. Our

goal in this section is to describe the G-tempered cohomology functor X ÞÑ A˚GpXq in
the case where G splits as a direct sum G0 ‘ Λ, where Λ is the constant P-divisible
group over A associated to a colattice Λ (see Construction 2.7.5). As an application,
we give a construction of the equivariant Chern character appearing in the formulation
of Theorem 1.1.2. Our starting point is the following observation:

Proposition 4.3.1. Let G0 be a preoriented P-divisible group over an E8-ring A, let
Λ be a colattice (Definition 2.7.1), and set G “ G0 ‘ Λ. Then the functors

pT P T op
q ÞÑ pATG P CAlgAq pT P T op

q ÞÑ pAT
B pΛ

G0 P CAlgAq

are equivalent.

Proof. For each object T P T , evaluation at the base point of the classifying space
BpΛ determines a map of spaces ev : TBpΛ Ñ T . Since T is the classifying space of an
abelian group, the evaluation map ev restricts to a homotopy equivalence on each
connected component of the mapping space TBpΛ, and therefore induces a homotopy
equivalence

TB
pΛ
» T ˆ π0pT

BpΛ
q “ T ˆ HomppΛ, π1pT qq.

We therefore obtain equivalences

AB
pΛ

G0 » ATG0 bA A
HomppΛ,π1pT qq

» ATG0 bA A
T
Λ

» ATG,

depending functorially on T .

Theorem 4.3.2. Let G0 be a preoriented P-divisible group over an E8-ring A, let Λ
be a colattice, and set G “ G0 ‘ Λ. Then, for any orbispace X, there is a canonical
equivalence AX

G » A
LΛpXq
G0 .

103



Proof. By definition, the functor

F : OSop
Ñ CAlgA X ÞÑ AX

G

is characterized (up to equivalence) by the following properties:

paq The composition of F with the Yoneda embedding T op ãÑ OSop is equivalent
to the functor AG.

pbq The functor F carries small colimits of orbispaces to limits in the 8-category
CAlgA.

It will therefore suffice to show that the functor

OSop LΛ
ÝÑ OSop X ÞÑAX

G0
ÝÝÝÝÝÑ CAlgA

also has properties paq and pbq. Property paq follows from Proposition 4.3.1 (and
Proposition 3.4.7), while pbq follows from the fact that the formal loop functor LΛ :
OS Ñ OS preserves small colimits (Remark 3.4.6).

Notation 4.3.3 (Character Maps). Let G0 be a preoriented P-divisible group over
an E8-ring A, let Λ be a colattice (Definition 2.7.1), and set G “ G0 ‘ Λ. For any
orbispace X, we let

χ : AX
G Ñ A

LΛpXq
G0

denote the equivalence constructed in the proof of Theorem 4.3.2. We will refer to
χ as the character map. Passing to homotopy groups, we obtain an isomorphism of
tempered cohomology rings

χ : A˚GpXq Ñ A˚G0pL
Λ
pXqq

which we will also refer to as the character map (and denote by the same symbol χ).

From Theorem 4.3.2 we obtain the following stronger version of Theorem 1.1.18:

Corollary 4.3.4. Let A be an E8-ring and let G be a preoriented P-divisible group
over A which splits as a direct sum G0‘Λ. Let H be a finite group and let X P SH be
an H-space, and let Y “

š

α:pΛÑH X
impαq be the H-space appearing in Example 3.4.5.

Then there is a canonical equivalence χ : AX{{HG » A
Y {{H
G0 of E8-algebras over A. In

particular, there is a canonical isomorphism of tempered cohomology ringstempered
cohomology rings

χ : A˚GpX{{Hq » A˚G0pp
ž

α:pΛÑH

X impαq
q{{Hq.
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Proof. Combine Theorem 4.3.2 with Example 3.4.5.

We now specialize Theorem 4.3.2 to the setting of complex K-theory.

Notation 4.3.5. Let KU denote the complex K-theory spectrum. We let KUQ denote
the E8-ring given by the smash product QbS KU. The homotopy ring of this smash
product is given by

π˚pKUQq » QbZπ˚pKUq » Qrβ˘1
s,

where β denotes the Bott element of π2pKUq. It follows that, as an E8-algebra over
Q, KUQ is freely generated by an invertible element of homological degree 2. The
spectrum KUQ represents the 2-periodic version of rational cohomology, whose value
on a space X is given concretely by the formula

KU˚QpXq “ H˚pX; Qqppβ´1
qq

The canonical map KU Ñ QbS KU “ KUQ induces a map of cohomology theories,
which (when evaluated on a space X) is the classical Chern character map

ch : KU˚pXq Ñ H˚pX; Qqppβ´1
qq.

Replacing Q by the larger field C of complex numbers in the above discussion, we
obtain complexified K-theory spectrum KUC “ CbS KU, and complexified Chern
character ch : KU˚pXq Ñ H˚pX; Cqppβ´1qq.

Construction 4.3.6 (The Orbispace Chern Character). Let KU denote the complex
K-theory spectrum. Let µP8 denote the multiplicative P-divisible group, which we
regard as an oriented P-divisible group over KU (Construction 2.8.6). After extending
scalars to the complexification KUC “ CbS KU, we have an equivalence of P-divisible
groups

exp : Q {Z Ñ µP8 λ ÞÑ expp2πiλq.

For any orbispace X, Theorem 4.3.2 and Variant 4.2.6 supply equivalences

pKUCq
X
µP8

» pKUCq
X
Q {Z » KU|L

Q {ZpXq|
C

Composing with the tautological map KUX
µP8

Ñ pKUCq
X
µP8

and passing to homotopy
groups, we obtain a map

ch : KU˚µP8
pXq Ñ H˚p|LQ {Z

pXq|; Cqppβ´1
qq,

which we will refer to as the orbispace Chern character.
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Example 4.3.7. Let X be a space and let X “ X be the constant orbispace associated
to X. Then the orbispace Chern character map

ch : KU˚µP8
pXq Ñ H˚p|LQ {Z

pXq|; Cqppβ´1
qq

reduces to the classical (complexified) Chern character of Notation 4.3.5.

Example 4.3.8 (The Equivariant Chern Character). Let G be a finite group and let
X be a G-space. Combining the orbispace Chern character of Construction 4.3.6 to
the orbispace quotient X “ X{{G with Theorem 4.1.2 (and using the description of
LQ {Z

pXq supplied by Example 3.4.5), we obtain a map

chG : KU˚GpXq » KU˚µP8
pX{{Gq Ñ“ H˚pp

ž

gPG

Xg
qhG; Cqppβ´1

qq

which we will refer to as the equivariant Chern character.

Example 4.3.9. Let G be a finite group. Applying Example 4.3.8 in the case where
X is a point (and restricting to cohomological degree zero), we obtain a map

chG : ReppGq Ñ tClass functions f : GÑ Cu.

We claim that this map carries the class rV s of a representation V to the character

χV : GÑ C χpgq “ trpg|V q.

By functoriality, it suffices to prove this when G is abelian (or even when G is a cyclic
group, since a class function on G is determined by its restriction to cyclic subgroups
of G). In this case, we may assume without loss of generality that V is a 1-dimensional
representation of G, whose character is given by χV pgq “ expp2πiλpgqq for some
element λ of the Pontryagin dual group pG. The desired equality now follows from
fact that the isomorphism of P-divisible groups Q {Z » µP8 over KUC “ CbS KU
is also given by the exponential map λ ÞÑ expp2πiλq.

4.4 Tempered Cohomology of Eilenberg-MacLane Spaces
For every finite abelian group H, let pH “ HompH,Q {Zq denote the Pontryagin

dual group of H. If G is a P-divisible group over an E8-ring A, we let Gr pHs denote
the functor

CAlgA Ñ S B ÞÑ MapModZ
p pH,GpBqq.
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If G is preoriented, then the tempered cohomology theory AG is related to G by the
existence of equivalences

SpecpAKpH,1qG q » Gr pHs,

depending functorially on H. If G is oriented, then there is an analogous description of
the tempered cohomology of Eilenberg-MacLane spaces KpH, dq for every nonnegative
integer d:

Theorem 4.4.1. Let G be an oriented P-divisible group over an E8-ring A and let
d ě 0 be an integer. Then there exists a P-divisible group Gpdq over A equipped with
equivalences

SpecpAKpH,dqG q » Gpdq
r pHs,

depending functorially on H.

Remark 4.4.2. Let G be an oriented P-divisible group over an E8-ring A and let
d ě 0 be an integer. Theorem 4.4.1 is equivalent to the assertion that the functor

Abfin Ñ CAlgA M ÞÑ A
KpxM,dq
G

is P-divisible, in the sense of Definition 3.5.1. More concretely, this is equivalent to
the following three assertions;

paq For every finite abelian group H, the tempered function spectrum A
KpH,dq
G is a

projective A-module of finite rank.

pbq For every pair of finite abelian groups H and H 1, the canonical map

A
KpH,dq
G bA A

KpH 1,dq
G Ñ A

KpHˆH 1,dq
G

is an equivalence.

pcq For every short exact sequence of finite abelian groups

0 Ñ H 1
Ñ H Ñ H2

Ñ 0,

the associated diagram of tempered function spectra

A
KpH2,dq
G

//

��

A
KpH,dq
G

��

A // A
KpH 1,dq
G

is a pushout diagram, and the horizontal maps are finite flat of nonzero degree.
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Example 4.4.3. Theorem 4.4.1 holds for d “ 1, and the P-divisible group Gp1q can be
identified with G. This is essentially immediate from the construction of G-tempered
cohomology (and does not require the assumption that G is oriented).

Example 4.4.4. Theorem 4.4.1 holds for d “ 0, and Gp0q can be identified with the
constant P-divisible group Q {Z.

Remark 4.4.5. In the situation of Theorem 4.4.1, one can think of the P-divisible
group Gpdq as a kind of “dth exterior power” of G (see Remark 4.4.18 below).

Warning 4.4.6. In the situation of Theorem 4.4.1, the P-divisible groups Gpdq are
not generally not oriented for d ‰ 1 (for example, they are generally not 1-dimensional
after completing at some prime number p). However, they carry an analogous structure:
since the functor X ÞÑ SpecpAXGq is functorial for unpointed maps between Eilenberg-
MacLane spaces, each Gpdq is equipped with a map ed : ΣdpQ {Zq Ñ GpdqpAq, which
specializes to the preorientation of G “ Gp1q when d “ 1 (this follows from a variant
of Theorem 3.5.5).

Our goal for the rest of this section is to formulate a more precise version of
Theorem 4.4.1 (which we will prove in §4.5). We begin with a few general remarks. Let
G be a preoriented P-divisible group over an E8-ring A. For every pair of orbispaces
X and Y, the projection maps X Ð X ˆ Y Ñ Y determine morphisms of E8-algebras
AX

G Ñ AXˆY
G Ð AY

G, which we can assemble into a single map

m : AX
G bA A

Y
G Ñ AXˆY

G .

Proposition 4.4.7 (Tempered Künneth Formula). Let G be a preoriented P-divisible
group over an E8-ring A. Let X and Y be orbispaces. If either AX

G or AY
G is perfect

as an A-module spectrum, then the multiplication map

m : AX
G bA A

Y
G Ñ AXˆY

G .

is an equivalence.

Proof. Assume that AY
G is perfect as an A-module spectrum. Regarding the orbispace

Y as fixed and allowing X to vary, we note that the functors

X ÞÑ AX
G bA A

Y
G X ÞÑ AXˆY

G

carry colimits in the 8-category OS to limits in the 8-category CAlgA. Since the
8-category of orbispaces is generated under small colimits by the image of the Yoneda
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embedding, we may assume without loss of generality that X “ T p´q for some T P T .
Under this assumption, we claim that m is an equivalence for every orbispace Y.
Repeating the above argument (with X “ T p´q fixed and allowing Y to vary), we can
reduce to the case where Y “ T 1p´q for some object T 1 P T . In this case, the desired
result follows from the definition of a P-divisible functor T op Ñ CAlgA (Definition
3.5.3).

Corollary 4.4.8. Let G be a preoriented P-divisible group over an E8-ring A. Let
X and Y be orbispaces. If either X or Y is representable by an object of T , then the
multiplication map

m : AX
G bA A

Y
G Ñ AXˆY

G .

is an equivalence.

Under a suitable flatness assumption, Proposition 4.4.7 supplies a Künneth formula
at the level of tempered cohomology groups.

Corollary 4.4.9. Let G be a preoriented P-divisible group over an E8-ring A. Let
X and Y be orbispaces, and suppose that AX

G is a projective A-module of finite rank.
Then the multiplication map of Proposition 4.4.7 induces an isomorphism

A0
GpXq bπ0pAq A

˚
GpYq Ñ A˚GpX ˆ Yq.

Corollary 4.4.10. Let G be a preoriented P-divisible group over an E8-ring A. Let
X and Y be orbispaces. If X “ T p´q is the orbispace represented by an object T P T ,
then the multiplication map of Proposition 4.4.7 induces an isomorphism

A0
GpXq bπ0pAq A

˚
GpYq Ñ A˚GpX ˆ Yq.

We now recall some algebraic constructions from [6].

Notation 4.4.11. Let R be a commutative ring and let G be a finite flat commutative
group scheme over R. For every integer d ě 0, we let SkewpdqG denote the group scheme
over R given in Definition Ambi.3.2.9 , so that we can identify R-valued points of
SkewpdqG with maps

GˆSpecpRq ¨ ¨ ¨ ˆSpecpRq GÑ Gm

which are multilinear and skew-symmetric (in particular, Skewp1qG is the Cartier dual of
G). If H is the R-linear dual of the ring of functions on G, then we can identify SkewpdqG
with a closed subscheme of the affine space SpecpSym˚

RpH
bdqq (which parametrizes

all maps from GˆSpecpRq ¨ ¨ ¨ ˆSpecpRq G to the affine line).
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We let AltpdqG Ď SkewpdqG denote the subgroup scheme given by Construction
Ambi.3.2.11 (so that AltpdqG “ SkewpdqG whenever multiplication by 2 is an isomor-
phism from G to itself).

Definition 4.4.12. Let p be a prime number and let X be a p-finite space. We will
say that X is split if it can be written as a finite product of spaces of the form KpH,mq,
where H is a finite abelian p-group and m is a nonnegative integer. In other words,
X is split if it is a generalized Eilenberg-MacLane space: that it, if it has the form
Ω8pMq, where M P Modcn

Z is a Z-module spectrum (which is necessarily truncated
with p-power torsion homotopy groups, since X is p-finite). We let S˛ denote the full
subcategory of S spanned by the split p-finite spaces.

Notation 4.4.13. Let p be a prime number and let G be a preoriented p-divisible
group over an E8-ring A which satisfies the following condition:

pF q For every split p-finite space X, the tempered function spectrum AXG is a perfect
A-module.

For every split p-finite space X, let AG
˚ pXq denote the graded abelian group given by

the formula
AG
˚ pXq “ π˚ppA

X
Gq
_
q “ Ext´˚A pAXG, Aq,

where pAXGq_ denotes the A-linear dual of AXG. We will refer to the groups AG
˚ pXq as

the G-tempered homology groups of X.

Remark 4.4.14. Let p be a prime number and let G be a preoriented p-divisible
group over an E8-ring A which satisfies condition pF q of Notation 4.4.13. Then, if X
and Y are split p-finite spaces, the canonical map

AXG bA A
Y
G Ñ AXˆYG

is an equivalence (in fact, it suffices to assume that either one of the spaces X and Y is
p-finite; see Proposition 4.4.7). It follows that the construction X ÞÑ pAXGq

_ determines
a symmetric monoidal functor from the 8-category S˛ (with the symmetric monoidal
structure given by Cartesian product) to the 8-category ModA (with symmetric
monoidal structure gives by bA). Passing to homotopy groups, we deduce that the
tempered homology functor X ÞÑ AG

˚ pXq is lax symmetric monoidal (as a functor from
the 8-category S˛ to the ordinary category of graded π˚pAq-modules). In particular,
the functor

S˛ Ñ Mod♥
π0pAq

X ÞÑ AG
0 pXq
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is also lax symmetric monoidal: that is, for every pair of split π-finite spaces X and
Y , we have a canonical map

AG
0 pXq bπ0pAq A

G
0 pY q Ñ AG

0 pX ˆ Y q.

Construction 4.4.15. Let p be a prime number and let G be a preoriented p-divisible
group over an E8-ring A which satisfies condition pF q of Notation 4.4.13. We let G♥

denote the underlying P-divisible group over the ordinary commutative ring π0pAq

and G♥rpts the finite flat group scheme of pt-torsion points G♥.
For every pair of nonnegative integers d, t ě 0, we view the the Eilenberg-MacLane

space KpZ {pt Z, dq as a commutative monoid object of the 8-category S˛ of split
p-finite spaces. Applying Remark 4.4.14, we see that the G-tempered homology group
AG

0 pKpZ {pt Z, dqq inherits the structure of a commutative algebra over π0pAq. We
denote its spectrum by SpecpAG

0 pKpZ {pt Z, dqqq, which we view as an affine scheme
over π0pAq. In the special case d “ 1, we can view SpecpAG

0 pKpZ {pt Z, dqq as a finite
flat group scheme over π0pAq: it is the Cartier dual of the finite flat group scheme
G♥rpts. In particular, each AG

0 pKpZ {pt Z, 1qq has the structure of a (commutative
and cocommutative) Hopf algebra over π0pAq. The iterated cup product is classified
by a map of split p-finite spaces KpZ {pt Z, 1qd Ñ KpZ {pt Z, dq which induces a map
of π0pAq-modules

AG
0 pKpZ {pt Z, 1qqbd Ñ AG

0 pKpZ {pt Z, dqq

which extends to a map of π0pAq-algebras

Sym˚
π0pAqpA

G
0 pKpZ {pt Z, 1qqbdq Ñ AG

0 pKpZ {pt Z, dqq.

Using the multilinearity and skew-symmetry of the cup product, we obtain a map of
affine schemes

ρd,t : SpecpAG
0 pKpZ {pt Z, dqqq Ñ SkewpdqG♥rpts .

Theorem 4.4.16. Let G be a preoriented p-divisible group over an E8-ring A which
is oriented over the p-completion of A. Then:

p1q For every split p-finite space X, the tempered function spectrum AXG is a projective
A-module of finite rank (in particular, G satisfies condition pF q of Notation
4.4.13).

p2q For every pair of integers d, t ě 0, the map

ρd,t : SpecpAG
0 pKpZ {pt Z, dqqq Ñ SkewpdqG♥rpts
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of Construction 4.4.15 induces an isomorphism of SpecpAG
0 pKpZ {pt Z, dqqq with

the subscheme AltpdqG♥rpts Ď SkewpdqG♥rpts.

To deduce Theorem 4.4.1 from Theorem 4.4.16, we will need one more elementary
observation.

Lemma 4.4.17. Let G be a preoriented P-divisible group over an E8-ring A, let S
be a set of prime numbers, and regard GpSq “

À

pPS Gppq as a direct factor of G (so
that GpSq inherits a preorientation). Then, for every S-finite space X (see Definition
1.1.25), the canonical map AXGpSq

Ñ AXG is an equivalence.

Proof. Let TpSq denote the full subcategory of T spanned by those spaces of the
form BH, where H is a finite abelian group whose prime divisors belong to S.
By construction, the map of preoriented P-divisible groups G Ñ GpSq induces an
equivalence ATGpSq

Ñ ATG for each object T P T . It follows that the map AX
GpSq

Ñ AX
G

is an equivalence whenever X : T op Ñ S is an orbispace which is a left Kan extension
of its restriction to the full subcategory T op

pSq Ď T op. We conclude by observing that
this condition is satisfied in the case where X “ Xp´q is representable by an S-finite
space X.

Proof of Theorem 4.4.1 from Theorem 4.4.16. Let G be an oriented P-divisible group
over an E8-ring A. We wish to show that G satisfies conditions paq, pbq, and pcq of
Remark 4.4.2. Note that if p is a prime number, then the canonical map AXGppq

Ñ AXG
is an equivalence for any p-finite space X (Lemma 4.4.17). Applying Theorem 4.4.16,
we deduce that AKpH,dqG is a projective A-module of finite rank whenever H is a finite
p-group. Assertions paq and pbq now follow from the Künneth formula of Proposition
4.4.7. To prove pcq, it will suffice to show that for every short exact sequence of finite
abelian groups

0 Ñ H 1
Ñ H Ñ H2

Ñ 0,

the resulting sequence of finite flat group schemes

0 Ñ SpecpA0
GpKpH

1, dqqq Ñ SpecpA0
GpKpH, dqqq Ñ SpecpA0

GpKpH
2, dqqq Ñ 0

is also short exact. Using pbq, we can reduce to the case where H is a cyclic group
of prime power order. Passing to Cartier duals and applying Theorem 4.4.16 to the
p-divisible group Gppq, we are reduced to proving the exactness of sequences of the
form

0 Ñ AltpdqG♥
ppq
rpts
Ñ AltpdqG♥

ppq
rpt`t1 s

Ñ AltpdqG♥
ppq
rpt1 s

Ñ 0,
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which follows from Corollary Ambi.3.5.4 (since our assumption that G is oriented
guarantees that the p-divisible group G♥

ppq has dimension 1).

Remark 4.4.18. Let G be an oriented P-divisible group over an E8-ring A, let d
be a nonnegative integer, and let Gpdq be the P-divisible group which appears in the
statement of Theorem 4.4.1. Then Theorem 4.4.16 supplies a complete description of
the underlying classical P-divisible group Gpdq♥ over the commutative ring π0pAq. In
particular, it implies the following:

• If p is a prime number and the p-divisible group and the p-local summand Gppq

has height n, then the p-local summand Gpdq
ppq has height

`

n
d

˘

and dimension
`

n´1
d´1

˘

(see Corollary Ambi.3.5.4 ). In particular, the p-divisible group Gpdq
ppq vanishes for

d ą n.

• For every perfect field κ of characteristic p and every map x : Specpκq Ñ
Specpπ0pAqq, the Dieudonné module of Gpdq at the point x can be identified
with the dth exterior power of the Dieudonné module of G at the point x (see
Theorem Ambi.3.3.1 ).

4.5 The Proof of Theorem 4.4.16
We devote this section to the proof of Theorem 4.4.16. Let G be a preoriented

p-divisible group over an E8-ring A which is oriented after extending scalars to the
p-completion of A. For every E8-algebra B over A, we let GB denote the oriented
p-divisible group obtained from G by extending scalars from A to B and G♥

B the
underlying classical p-divisible group over the commutative ring π0pBq. We will say
that B is good if it satisfies the following conditions:

pT1q For every split p-finite space X, the tempered function spectrum BX
G is a

projective B-module of finite rank.

pT2q For every pair of integers d, t ě 0, the map

ρBd,t : SpecpBG
0 pKpZ {pt Z, dqqq Ñ SkewpdqG♥

Brp
ts

of Construction 4.4.15 induces an isomorphism of schemes

SpecpBG
0 pKpZ {pt Z, dqqq » AltpdqG♥

Brp
ts
.
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To prove Theorem 4.4.16, we must show that A is good. Note that when A

is a Lubin-Tate spectrum and G is the Quillen p-divisible group of A, this is one
of the main theorems of [6] (Theorem Ambi.3.4.1 ). Our strategy is to reduce to
the Lubin-Tate case by showing that the collection of good A-algebras has strong
closure properties. We first observe that class of good A-algebras is closed under finite
products. Consequently, we may assume without loss of generality that the p-divisible
group G has some fixed height n. Proceeding by induction on n, we may assume that
Theorem 4.4.16 holds for preoriented p-divisible groups of height ă n. The case n “ 0
is trivial (since the p-divisible group G vanishes and p is invertible in the commutative
ring π0pAq). We will therefore assume that n ą 0.

Lemma 4.5.1. Let B Ñ B1 be a morphism of E8-algebras over A and let X be a
split p-finite space. If B and B1 are good, then the canonical map θ : B1bB BX

G Ñ B1XG
is an equivalence.

Proof. By virtue of the Künneth formula of Proposition 4.4.7, we may assume without
loss of generality that X is an Eilenberg-MacLane space KpZ {pt Z, dq. Note that the
domain and codomain of θ are projective B1-modules of finite rank. It will therefore
suffice to show that the B1-linear dual of θ induces an isomorphism of commutative
rings

B1G0 pXq Ñ π0pB
1
q bπ0pBq B

G
0 pXq,

which follows from the description supplied by pT2q.

Lemma 4.5.2. Let B be an E8-algebra over A and let B‚ be a flat hypercovering of
B. If each Bk is good, then B is good.

Proof. Let C “ lim
ÐÝ

ModB‚ denote the 8-category of cosimplicial spectra M‚ which
are modules over B‚, for which the canonical map BdbBd1M

d1 ÑMd are equivalences.
According to Corollary SAG.D.7.7.7 , the canonical map

ModB Ñ lim
ÐÝ

ModB‚ “ C

is an equivalence of 8-categories, with a homotopy inverse given by the functor
M‚ ÞÑ lim

ÐÝ
M‚. Let X be a split p-finite space. Using Lemma 4.5.1, we see that the

cosimplicial spectrum B‚XG can be identified with an object of C, whose image in ModB
is given by the totalization TotpB‚XG q » TotpB‚qXG » AXG (where the first equivalence
is supplied by Lemma 4.2.11). It follows that the canonical map B0 bB B

X
G Ñ B0X

G is
an equivalence for every split p-finite space X.

114



Since B0 satisfies conditions pT1q, B0X
G is a projective module of finite rank over

B0 for every split p-finite space X. Using faithfully flat descent, we deduce that BX
G

is a projective B-module of finite rank. This proves pT1q. To prove pT2q, it suffices to
observe that the map of affine schemes

ρBd,t : SpecpBG
0 pKpZ {pt Z, dqqq Ñ SkewpdqG♥

Brp
ts

factors through an isomorphism

SpecpBG
0 pKpZ {pt Z, dqqq » AltpdqG♥

Brp
ts

if and only if it does so after extending scalars along the faithfully flat map of
commutative rings π0pBq Ñ π0pB

0q.

Suppose that B is an E8-algebra over A which satisfies condition pT1q. If p is odd,
then we have AltpdqG♥

Brp
ts
“ SkewpdqG♥

Brp
ts

, so Construction 4.4.15 directly supplies maps

ρBd,t : SpecpBG
0 pKpZ {pt Z, dqqq Ñ AltpdqG♥

Brp
ts

that we wish to prove are isomorphisms. When p “ 2, the situation is a bit more
complicated: it is not immediately obvious that the maps ρBd,t factor through AltpdqG♥

Brp
ts

.
To address this point, we will need some auxiliary constructions.

Notation 4.5.3. Fix an integer d ě 0. Then we have a commutative diagram

¨ ¨ ¨ // SkewpdqG♥rp3s
//

��

SkewpdqG♥rp2s
//

��

SkewpdqG♥rps
//

��

Specpπ0pAqq

¨ ¨ ¨ // AltpdqG♥rp3s
// AltpdqG♥rp2s

// AltpdqG♥rps
// Specpπ0pAqq

of commutative group schemes over the commutative ring π0pAq where the vertical
maps are monomorphisms. It follows from Corollary Ambi.3.5.4 that the upper
horizontal maps in this diagram are finite flat of degree pp

n
dq. In particular, each

SkewpdqG♥rpts can be written as the spectrum of a commutative ring Rd,t which is finite
flat of degree ptp

n
dq over the commutative ring π0pAq. Consequently, the vertical maps

in the preceding diagram are closed immersions. Write AltpdqG♥rpts “ SpecpRd,tq for
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some commutative algebra Rd,t (which need not be finite over π0pAq when p “ 2), so
that we have a commutative diagram of rings

¨ ¨ ¨ Rd,3oo Rd,2oo Rd,1oo Rd,0oo

¨ ¨ ¨ // Rd,3oo

OO

Rd,2oo

OO

Rd,1oo

OO

Rd,0oo

„

OO

where the vertical maps exhibit each Rd,t as the quotient of Rd,t by an ideal Jd,t Ď Rd,t.
Note that the exact sequences

0 Ñ Jd,t Ñ Rd,t Ñ Rd,t Ñ 0

are automatically split in the category of π0pAq-modules (since each Rd,t is a projective
module over π0pAq). Choose a collection of splittings sd,t : Rd,t Ñ Rd,t (so that each
sd,t is a map of π0pAq-modules). We assume that these splittings are chosen to be
compatible as t varies, in the sense that each of the diagrams

Rd,t`1

sd,t`1
��

Rd,t
oo

sd,t
��

Rd,t`1 Rd,t
oo

is commutative (note that it is always possible to arrange this, since the maps
Rd,t Ñ Rd,t`1 are split monomorphisms in the category of π0pAq-modules).

For each d, t ě 0, fix an A-module Ad,t which is projective of finite rank and an
isomorphism π0pAd,tq » Rd,t. Note that Ad,t exists and is unique up to isomorphism
as an object of the homotopy category of ModA (Corollary HA.7.2.2.19 ). We can even
regard Ad,t as a commutative algebra object of the homotopy category hModA, but
we will not need this: we regard Ad,t only as a module over A.

Remark 4.5.4. In the situation of Notation 4.5.3, each of the transition maps
SkewpdqG♥rpt`1s Ñ SkewpdqG♥rpts factors through the closed subscheme AltpdqGrpts Ď SkewpdqG♥rpts.
This is tautological when p is odd, and follows from Lemma Ambi.3.3.8 when p “ 2.
In other words, each of the ring homomorphisms Rd,t Ñ Rd,t`1 annihilates the ideal
Id,t Ď Rd,t.

Construction 4.5.5. Let B be an E8-algebra over A which satisfies the following
weaker version of condition pT1q:
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pT11q For every split p-finite space X, the tempered function spectrum BX
G is a perfect

B-module.

Under this assumption, we can apply Construction 4.4.15 to obtain maps

ρBd,t : SpecpBG
0 pKpZ {pt Z, dqq Ñ SkewpdqG♥

Brp
ts
,

which are classified by π0pAq-algebra homomorphisms Rd,t Ñ BG
0 pKpZ {pt Z, dqq. For

each d, t ě 0, the composite map

Rd,t
sd,t
ÝÝÑ Rd,t Ñ BG

0 pKpZ {pt Z, dqq

can be lifted to a map of A-module spectra ψd,t : Ad,t Ñ pB
KpZ {pt Z,dq
G q_, which is

uniquely determined up to homotopy.

Lemma 4.5.6. Let B be an E8-algebra over A. Then B is good if and only if it
satisfies condition pT11q together with the following:

pT21q For each d, t ě 0, the map ψd,t : Ad,t Ñ pB
KpZ {pt Z,dq
G q_ extends to an equivalence

B bA Ad,t » pB
KpZ {pt Z,dq
G q_.

Proof. It is easy to see that if B is good, then conditions pT11q and pT21q are satisfied
(note that pT11q is a weaker version of pT1q and pT21q is a weaker version of pT2q).
Conversely, suppose that B satisfies pT11q and pT21q; we wish to show that it also
satisfies pT1q and pT2q. Without loss of generality, we may assume that B “ A, so
that pT21q asserts that pAKpZ {p

t Z,dq
G q_ » Ad,t is a projective module of finite rank over

A. Combining this with pT11q, we conclude that the tempered function spectrum
A
KpZ {pt Z,dq
G itself is a projective module of finite rank over A. Applying the Künneth

formula of Proposition 4.4.7, we deduce that AXG is projective of finite rank for every
split p-finite space X. This proves pT1q. To prove pT2q, let us identify each of
the maps ρd,t : SpecpAG

0 pKpZ {pt Z, dqqq Ñ SkewpdqG♥rpts with a ring homomorphism
ud,t : Rd,t Ñ AG

0 pKpZ {pt Z, dqq. We wish to show that ud,t annihilates the ideal Id,t of
Notation 4.5.3 and induces an isomorphism

Rd,t{Id,t » Rd,t Ñ AG
0 pKpZ {pt Z, dqq.

The second assertion is immediate from assumption pT21q. To prove the first, we
observe that there is a commutative diagram of π0pAq-modules

Rd,t

sd,t //

��

Rd,t

ud,t //

��

AG
0 pKpZ {pt Z, dqq

��
Rd,t`1

sd,t`1 // Rd,t`1
ud,t`1 // AG

0 pKpZ {pt`1 Z, dqq

117



where the left vertical map is a monomorphism, the middle vertical map annihilates
the ideal Id,t (Remark 4.5.4), and the horizontal composites are isomorphisms (by
assumption pT21q). It follows that the right vertical map is also a monomorphism, so
that ud,t must also annihilate the ideal Id,t.

Lemma 4.5.7. Let B be an E8-algebra over A, let I Ď π0pBq be a finitely generated
ideal. Suppose that, for each element x P I, the localization Brx´1s is good. If B is
I-local, then B is good.

Proof. Choose a finite sequence x1, . . . , xm P I of generators for the ideal I. For every
subset J Ď t1, . . . ,mu, set xJ “

ś

jPJ xj, and set BJ “ Brx´1
J s. Let P denote the

partially ordered set of all nonempty subsets of t1, . . . ,mu. For each 1 ď j ď m, let
Pj denote the set tJ P P : j P Ju.

Our assumption that B is I-local implies that the canonical map B Ñ lim
ÐÝJPP

BJ is
an equivalence. In particular, for every space X, the canonical map BX

G Ñ lim
ÐÝJPP

BX
JG

is an equivalence (Lemma 4.2.11). Fix an element j P t1, . . . ,mu, so that we have an
equivalence

BX
Grx

´1
j s Ñ lim

ÐÝ
JPP

BX
JGrx

´1
j s.

By assumption, for each J P P , the A-algebras BJ and BJYtju are good. Applying
Lemma 4.5.1, we conclude that for every split p-finite space X, the canonical map

BX
JGrx

´1
j s » BJYtju bBJ B

X
JG Ñ pBJYtjuq

X
G “ pBJYtjuq

X
Grx

´1
j s

is an equivalence. It follows that the functor J ÞÑ BX
JGrx

´1
j s is a right Kan extension

of its restriction to Pj. Since Pj contains the set tju as an initial object, we conclude
that the restriction map

lim
ÐÝ
JPP

BX
JGrx

´1
j s Ñ BX

tjuGrx
´1
j s » Brx´1

j s
X
G

is an equivalence. It follows that the natural map BX
Grx

´1
j s Ñ Brx´1

j s
X
G is an equiva-

lence for 1 ď j ď m.
We now show that B satisfies the criterion of Lemma 4.5.6. We first verify condition

pT11q. Let X be a split p-finite space; we wish to prove that BX
G is a compact object of

the 8-category ModB. Equivalently, we wish to show that for every filtered diagram
tMαu in ModB having colimit M , the canonical map

θ : lim
ÝÑ

MapModBpB
X
G ,Mαq Ñ MapModBpB

X
G ,Mq
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is a homotopy equivalence. Since filtered colimits in S commute with finite limits, we
can write θ as the limit of a diagram of maps

θJ : lim
ÝÑ

MapModBpB
X
G , BJ bB Mαq Ñ MapModBpB

X
G , BJ bB Mq,

where J ranges over the nonempty subsets of t1, . . . ,mu. Using the first part of the
proof, we can identify each θJ with the canonical map

lim
ÝÑ

MapModBJ
pBX

JG, BJ bB Mαq Ñ MapModBJ
pBX

JG, BJ bB Mq,

which is an equivalence by virtue of our assumption that each BJ satisfies pT11q.
We now verify pT21q. Choose d, t ě 0, and let ψd,t : Ad,t Ñ pBX

Gq
_ be as in

Construction 4.5.5. We wish to show that ψd,t induces an equivalence B bA Ad,t Ñ
pBX

Gq
_. Since B is I-local, it will suffice to show that this map becomes an equivalence

after tensoring both sides with BJ , for J P P . This follows from our assumption that
BJ satisfies pT21q.

Lemma 4.5.8. Suppose that B P CAlgA has the property that LKpnqB » 0. Then B

is good.

Proof. Let R “ π0pAq{ppq, so that G determines a p-divisible group GR over the
commutative Fp-algebra R having identity component G˝

R. Let J Ď R be the nth
Landweber ideal of the formal group G˝

R, and let I Ď π0pAq be the inverse image of
the ideal J . Then I is a finitely generated ideal of π0pAq which contains p, and the
image of I in π0pA

^
ppqq generates the nth Landweber ideal in the complex periodic

E8-ring A^ppq. Since G has height ď n, the ring spectrum A is Epnq-local. It follows
that, for any A-module spectrum M , we can identify the I-completion M^

I with the
Kpnq-localization of M . In particular, our hypothesis guarantees that the completion
B^I vanishes: that is, the algebra B is local with respect to I. Consequently, to show
that B is good, it will suffice to show that Brx´1s is good, for each element x P I
(Lemma 4.5.7). We may therefore replace B by Brx´1s and thereby reduce to the case
where I generates the unit ideal of B.

Let G♥
Brps denote the p-torsion subgroup of the p-divisible group G♥

B, which we
regard as a finite flat group scheme over the commutative ring π0pBq. Let G♥

Brps
˝

denote the quasi-compact open subscheme of G♥
Brps obtained by removing the zero

section. Our assumption that I generates the unit ideal of π0pBq guarantees that
the map G♥

Brps
˝ Ñ Specpπ0pBqq is surjective. Choose an étale surjection of schemes

U Ñ G♥
Brps

˝, where U is affine. Then the map U Ñ G♥
Brps » SpecpB0

GpBCpqq is
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surjective. Invoking Theorem HA.7.5.0.6 , we can write U “ Specpπ0pB
1qq, where B1

is an E8-algebra which is étale over BBCp
G and faithfully flat over B. Let B2 denote

the direct limit of the sequence

B1 Ñ B1 b
B
BCp
G

B
BCp2
G Ñ B1 b

B
BCp
G

B
BCp3
G Ñ ¨ ¨ ¨ .

Each term in this sequence is faithfully flat over B, so that B2 is also faithfully flat
over B. By virtue of Lemma 4.5.2, it will suffice to show that every E8-algebra C
over B2 is good. Replacing A by C, we are reduced to proving that A is good in the
special case where the p-divisible group G splits as a direct sum G0 ‘Qp {Zp. In
this case, G0 is an oriented p-divisible group of height n´ 1, and therefore satisfies
Theorem 4.4.16 by virtue of our inductive hypothesis. Moreover, for every p-finite
space X, Theorem 4.3.2 supplies an equivalence of tempered function spectra

AXG » A
LpXq
G0 ,

where LpXq “ LZppXq “ XB Zp is the free loop space of X. If X is a split p-finite space,
then LpXq is also a split p-finite space. Our inductive hypothesis then guarantees
that ALpXq

G0 is a projective A-module of finite rank, so that AXG is also a projective
A-module of finite rank: that is, A satisfies condition pT1q.

We will complete the proof by showing that A satisfies pT2q. Fix integers d, t ě 0,
and set X “ KpZ {pt Z, dq. Set Y “ KpZ {pt Z, 1q, so that the iterated cup product is
classified by a pair of maps

md : Y d
Ñ X md´1 : Y d´1

Ñ ΩX.

These maps are multilinear and skew symmetric up to homotopy, and therefore induce
maps of π0pAq-schemes

ρd,t : SpecpAG
0 pXqq Ñ SkewpdqG♥rpts

ρ`d,t : SpecpAG0
0 pXqq Ñ SkewpdqG♥

0 rp
ts

ρ´d,t : SpecpAG0
0 pΩpXqq Ñ Skewpd´1q

G♥
0 rp

ts

Our inductive hypothesis implies that the maps ρ`d,t and ρ´d,t are closed immersions,
having schematic images AltpdqG♥

0 rp
ts
Ď SkewpdqG♥

0 rp
ts

and Altpd´1q
G♥

0 rp
ts
Ď Skewpd´1q

G♥
0 rp

ts
, respec-

tively. We wish to prove that ρd,t is a closed immersion with schematic image
AltpdqG♥rpts Ď SkewpdqG♥rpts.
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The splitting of p-divisible groups G » G0 ‘Qp {Zp determines an isomorphism
of finite flat group schemes

G♥
rpts » G♥

0 rp
t
s ‘ Z {pt Z

over the commutative ring π0pAq. Applying Remark Ambi.3.2.21 , we obtain an
isomorphism of π0pAq-schemes

β : SkewpdqG♥rpts » SkewpdqG♥
0 rp

ts
ˆSpecpπ0pAqq Skewpd´1q

G♥
0 rp

ts
,

given by a pair of projection maps

β` : SkewpdqG♥rpts Ñ SkewpdqG♥
0 rp

ts
β´ : SkewpdqG♥

0 rp
ts
Ñ Skewpd´1q

G1
0rp

ts
.

Moreover, Remark Ambi.3.2.21 implies that β restricts to an isomorphism

AltpdqG♥rpts » AltpdqG♥
0 rp

ts
ˆSpecpπ0pAqq Altpd´1q

G♥
0 rp

ts
.

Note that we have canonical maps

X Ñ LpXq ΩpXq Ñ LpXq,

where the first is given by precomposition with the projection map B Zp Ñ ˚ and the
second by the identification of ΩpXq with the space of pointed maps from B Zp into
X. Using the addition law on LpXq, we can amalgamate these maps to a homotopy
equivalence ζ : XˆΩpXq Ñ LpXq. Our inductive hypothesis then supplies a Künneth
decomposition

AXG » A
LpXq
G0 » AXG0 bA A

ΩpXq
G .

Since both tensor factors are flat over A, this gives an isomorphism of affine schemes

γ : SpecpAG
0 pXqq » SpecpAG0

0 pXqq ˆSpecpπ0pAqq SpecpAG0
0 pΩpXqqq

given by a pair of projection maps

γ` : SpecpAG
0 pXqq Ñ SpecpAG0

0 pXqq γ´ : SpecpAG
0 pXqq Ñ SpecpAG0

0 pΩpXqqq.

To complete the proof that ρd,t is a closed immersion with image AltpdqG♥rpts, it will
suffice to verify the following:
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paq The diagram of π0pAq-schemes

SpecpAG
0 pXqq

γ` //

ρd,t
��

SpecpAG0
0 pXqq

ρ`
d,t
��

SkewpdqG♥rpts

β` // SkewpdqG♥
0 rp

ts

commutes.

pbq The diagram of π0pAq-schemes

SpecpAG
0 pXqq

γ´ //

ρd,t
��

SpecpAG0
0 pΩpXqqq

ρ´
d,t
��

SkewpdqG♥rpts

β´ // Skewpd´1q
G♥

0 rp
ts

commutes.
Assertion paq follows immediately from fact that the diagram of spaces

Y d //

md
��

X

��
LpY qd Lpmq // LpXq

commutes up to homotopy (where the vertical maps are given by the diagonal embed-
dings). Similarly, pbq follows from the homotopy commutativity of the diagram

ΩpY q ˆ Y d´1 ν //

��

ΩpXq

��
LpY qd µd // LpXq,

where ν : KpZ {pt Z, 0qˆKpZ {pt Z, 1qd´1 Ñ KpZ {pt Z, d´1q classifies the cup product
(together with a careful inspection of the definition of the isomorphism ρd,t).
Lemma 4.5.9. Let B be an E8-ring, let I Ď π0pBq be a finitely generated ideal, and
let M be a B-module. Suppose that there exists a pullback diagram of B-modules

M
ψ1 //

φ1

��

M0

φ
��

M1
ψ //M01

in ModA with the following properties:
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paq The B-module M0 is I-complete, and therefore admits the structure of a module
over the I-completion B0 “ B^I .

pbq The B-module M1 is I-local, and therefore admits the structure of a module over
the I-localization B1 “ LIpBq.

pcq Set B01 “ LIpB
^
I q. Then M01 admits the structure of an B01-module, and the

maps φ and ψ induce equivalences

B01 bB0 M0 ÑM01 Ð B01 bB1 M1.

Then the maps φ1 and ψ1 induce equivalences B0 bB M » M0 and B1 bB M » M1.
Moreover, if M0 and M1 are perfect as modules over B0 and B1, respectively, then M

is perfect over B.

Proof. We first show that φ1 induces an equivalence B1 bB M ÑM1. Note that the
left hand side can be identified with LIpMq. It will therefore suffice to show that
the map M ÑM1 becomes an equivalence after applying the functor LI . Since σ is
a pullback diagram, this is equivalent to the requirement that the map M0 Ñ M01

becomes an equivalence after applying the functor LI , which follows from assumption
pcq.

We next claim that ψ1 induces an equivalence µ : B0 bB M ÑM0. To prove this,
it will suffice to show that µ becomes an equivalence after applying the localization
functor LI or the completion functor p´q^I . Using the first step of the proof, we deduce
that LIpµq can be identified with the canonical map B01 bB1 M1 ÑM01, which is an
equivalence by virtue of pcq. We are therefore reduced to proving that µ induces an
equivalence after I-completion. Since unit map ν : M Ñ B0 bB M is an equivalence
after I-completion, it will suffice to show that the I-completion of the composite map
ψ1 “ µ ˝ ν is an equivalence. Since σ is a pullback diagram, this is equivalent to the
assertion that ψ induces an equivalence pM1q

^
I Ñ pM01q

^
I , which is clear (since both

completions vanish).
To prove that M is perfect as an B-module, it will suffice to show that the functor

N ÞÑ MapModBpM,Nq commutes with filtered colimits. For each N P ModB we have
a pullback diagram

N //

��

B0 bB N

��
B1 bB N // B01 bB N,
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and therefore a pullback diagram of spaces σ :

MapModBpM,Nq //

��

MapModApM,B0 bB Nq

��
MapModBpM,B1 bB Nq //MapModApM,B01 bB Nq.

It will therefore suffice to prove that the functors

N ÞÑ MapModBpM,B0 bB Nq » MapModB0
pM0, B0 bB Nq

N ÞÑ MapModBpM,B1 bB Nq » MapModB1
pM1, B1 bB Nq

N ÞÑ MapModB01
pM,B01 bB Nq » MapModB1

pM1, B01 bB Nq

preserve filtered colimits, which follows from assumptions paq and pbq.

Lemma 4.5.10. Let B P CAlgA. If LKpnqpBq is good, then B is good.

Proof. Let I Ď π0pBq be as in the proof of Lemma 4.5.8. Set B0 “ B^I » LKpnqpBq,
B1 “ LIpBq, and B01 “ LIpB

^
I q. Our hypothesis guaranees that B0 is good, and

Lemma 4.5.8 guarantees that B1 and B01 are good. For every split p-finite space X,
Lemma 4.2.11 supplies a pullback diagram σX of tempered function spectra

BX
G

//

��

pB0q
X
G

��
pB1q

X
G

// pB01q
X
G.

Using Lemma 4.5.1, we see that this diagram satisfies the hypotheses of Lemma 4.5.9.
This allows us to draw three conclusions:

piq For every split p-finite space X, the tempered function spectrum BX
G is a perfect

B-module.

piiq For every split p-finite space X, the canonical map B0 bB B
X
G Ñ pB0q

X
G is an

equivalence.

piiiq For every split p-finite space X, the canonical map B1 bB B
X
G Ñ pB1q

X
G is an

equivalence.
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We will complete the proof by showing that B satisfies criterion pT21q of Lemma
4.5.6. Set X “ KpZ {pt Z, dq, and let ψd,t : Ad,t Ñ pBX

Gq
_ be the map of Construction

4.5.5; we wish to show that ψd,t induces an equivalence of B-modules θ : B bA Ad,t Ñ
pBX

Gq
_. Since B0 and B1 are good, it follows from piiq and piiiq that θ becomes an

equivalence after extending scalars from B to B0 or B1 (hence also after extending
scalars from B to B01). Since B is the fiber product of B0 and B1 over B01, it follows
that θ is an equivalence.

Proof of Theorem 4.4.16. We wish to prove that A is good. By virtue of Lemma
4.5.10, we can replace A by LKpnqpAq and thereby reduce to the case where A is
Kpnq-local. Then A is p-complete, so G is oriented and A is complex periodic. Let E
be a Lubin-Tate spectrum of height n, and let A0 denote the smash product AbS E.
Let A‚ be the cosimplicial A-algebra given by the iterated tensor powers of A0 over
A. Since E is Landweber exact, A0 is faithfully flat over A. By virtue of Lemma
4.5.2, it will suffice to show that each Ak is good. Applying Lemma 4.5.10 again, we
are reduced to proving that the localization LKpnqpA

kq is good. We may therefore
replace A by LKpnqpAq and thereby reduce to the case where A is a Kpnq-local algebra
over the Lubin-Tate spectrum E. Then G is an oriented p-divisible group of height n
over A and therefore equivalent to the Quillen p-divisible group GQ

A of Construction
Or.4.6.2 . Applying Theorem 4.2.5, we deduce that the Atiyah-Segal completion map
ζ : AXG Ñ AX is an equivalence for every space X. Using Corollary Ambi.5.4.7 , we
deduce that the map AbE E

X Ñ AX is an equivalence whenever X is π-finite. We
can therefore replace A by the Lubin-Tate spectrum E, in which case the desired
result follows from Theorem Ambi.3.4.1 .

4.6 The Tate Construction
Let G be a preoriented P-divisible group over an E8-ring A. According to

Proposition 4.2.15, G is oriented if and only if the Atiyah-Segal comparison map

ζ : BBCpn
G Ñ BBCpn

exhibits BBCpn as the completion of BBCpn
G with respect to the augmentation ideal

ICpn for every prime power pn and every E8-algebra B over A. Our goal in this section
is to supply a variant of this criterion, which only needs to be checked in the special
case where B “ A and n “ 1. The proof is based on a locality property of the Tate
construction AtCp (Proposition 4.6.8) which will play an essential role in the theory of
G-tempered local systems we introduce in §5.
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Notation 4.6.1. Let A be an E8-ring, let H be a finite group, and let M : BH Ñ

ModA be a local system of A-modules on the classifying space BH. We let MhH

denote the associated homotopy fixed point spectrum (that is, the limit of the diagram
M) and MhH the homotopy orbit spectrum (that is, the colimit of the diagram M).
We let M tH denote the Tate construction on M : that is, the cofiber of the norm map
Nm : MhH Ñ MhH (see Example Ambi.4.4.14 ). Note that since FunpBH,ModAq is
an ABH-linear 8-category, we can regard Nm as a morphism of ABH-modules, so that
the Tate construction M tH inherits the structure of a module over ABH .

In particular, if G is a preoriented P-divisible group over A, then we can view
MhH Ñ MhH Ñ M tH as a fiber sequence of modules over the tempered function
spectrum ABHG (via the Atiyah-Segal comparison map ζ : ABHG Ñ ABH).

Theorem 4.6.2. Let A be an E8-ring and let G be a preoriented P-divisible group
over A. Then G is oriented if and only if, for every prime number p, the following
conditions are satisfied:

p˚pq The Atiyah-Segal comparison map ζ : ABCpG Ñ ABCp exhibits ABCp as the
completion of ABCpG with respect to the augmentation ideal ICp Ď A0

GpBCpq.

p˚1pq The Tate construction AtCp is ICp-local when viewed as a module over the
tempered function spectrum A

BCp
G .

Remark 4.6.3. Let G be a preoriented P-divisible group over an E8-ring A, let H
be a finite group, and assume that the augmentation ideal IH Ď A0

GpBHq is finitely
generated (this is satisfied automatically if H is abelian or A is Noetherian). Viewing
M as a local system of ABHG -modules on the classifying space BH, we note that the
value of M on each point x P BH is both IH-nilpotent and IH-complete (since the
action of ABHG on Mx factors through the evaluation map ABHG Ñ A

txu
G » A, which

annihilates the ideal IH). It follows that the homotopy orbit spectrum MhH also
IH-nilpotent (since the collection of IH-nilpotent objects of ModAHG is closed under
colimits) and the homotopy fixed point spectrum MhH is IH-complete (since the
collection of IH-complete objects of ModABHG

is closed under limits).

Remark 4.6.4. Let G be a preoriented P-divisible group over an E8-ring A. Then,
for every prime number p, the function spectrum ABCp can be identified with the
homotopy fixed point spectrum AhCp , where we endow A with the trivial action of
Cp. It follows that ABCp is automatically ICp-complete when viewed as a module over
A
BCp
G . Consequently, assertion p˚pq of Theorem 4.6.2 is equivalent to the requirement

that the fiber of the Atiyah-Segal comparison map ζ : ABCpG Ñ ABCp is ICp-local.
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Remark 4.6.5. Let A be an E8-ring and let G be a preoriented P-divisible group
over A. Then conditions p˚`q and p˚1`q of Theorem 4.6.2 are automatically satisfied
for any prime number ` which is invertible in π0pAq. In particular, if the E8-ring
A is p-local, then Theorem 4.6.2 asserts that G is oriented if and only if it satisfies
conditions p˚pq and p˚1pq.

Remark 4.6.6 (Condition p˚pq and Equivariant Stable Homotopy Theory). Let G
be a preoriented P-divisible group over an E8-ring A which satisfies condition p˚pq of
Theorem 4.6.2. Then, if M is any ABCpG -module which is ICp-nilpotent, composition
with ζ induces an isomorphism

Ext˚
A
BCp
G
pM,A

BCp
G q Ñ Ext˚

A
BCp
G
pM,ABCpq.

Applying this observation in the special case M “ AhCp , we deduce that the norm
map Nm : AhCp Ñ AhCp “ ABCp admits an essentially unique factorization as a
composition

AhCp
Nm0
ÝÝÑ A

BCp
G

ζ
ÝÑ ABCp .

This factorization equips A with the structure of a genuine Cp-spectrum. More precisely,
it allows us to construct a Cp-spectrum with underlying spectrum is A (equipped with
the trivial action of Cp), “genuine” fixed point spectrum is ABCpG , and geometric fixed
point spectrum ΦCppAq given by the the cofiber of the map Nm0 : AhCp Ñ A

BCp
G . We

then have a homotopy pullback diagram of spectra

A
BCp
G

ζ //

��

AhCp

��
ΦCppAq // AtCp ,

which we will refer to as the equivariant fracture square.

Remark 4.6.7 (Condition p˚1pq and Equivariant Stable Homotopy Theory). Let A be
an E8-ring, let G be a preoriented P-divisible group over A. Fix a prime number p
and let I “ ICp Ď π0pA

BCp
G q be the augmentation ideal of Notation 4.2.7. For every

A
BCp
G -module M , we will denote the I-completion of M by M^

I and the I-localization
of M by LIpMq, so that we have a pullback diagram of ABCpG -modules σM :

M //

��

M^
I

��
LIpMq // LIpM

^
I q
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which we will refer to as the algebraic fracture square.
Suppose that G satisfies condition p˚pq of Theorem 4.6.2. Taking M “ A

BCp
G , we

conclude that the completion M^
I can be identified with the function spectrum ABCp .

Moreover, the homotopy orbit spectrum AhCp is automatically ICp-nilpotent (Remark
4.6.3). It follows that there exists a commutative diagram of ABCpG -modules

A
BCp
G

ζ //

��

ABCp

��
LIpA

BCp
G q //

u

��

LIpA
BCpq

v

��
ΦCppAq // AtCp ,

where the upper square is the algebraic fracture square of M and the outer rectangle
is the equivariant fracture square of Remark 4.6.6. In particular, the lower square is
also a pushout diagram, so that u is an equivalence if and only if v is an equivalence.
The following conditions are equivalent:

• The P-divisible group G satisfies condition p˚1pq of Theorem 4.6.2: that is, the
Tate construction AtCp is ICp-local as a module over ABCpG .

• The morphisms u and v appearing in the above diagram are invertible: in other
words, the algebraic fracture square of M “ A

BCp
G agrees with the equivariant

fracture square of Remark 4.6.6.

• The spectrum ΦCppAq is ICp-local. Equivalently, the map Nm0 : AhCp Ñ A
BCp
G

identifies AhCp with the local cohomology spectrum ΓICp pA
BCp
G q (this can be

viewed as a “homological” version of the condition p˚pq of Theorem 4.6.2).

The proof of Theorem 4.6.2 will require some preliminaries. We first show that
every oriented P-divisible group satisfies condition p˚1pq.

Proposition 4.6.8. Let G be an oriented P-divisible group over an E8-ring A. Let Cp
be a cyclic group of order p, for some prime number p, and let M P FunpBCp,ModAq
be Cp-equivariant object of the 8-category ModA. Then the Tate construction M tCp is
ICp-local when viewed as a module over ABCpG .

Remark 4.6.9. In the situation of Proposition 4.6.8, the homotopy fixed point
spectrum MhCp is automatically complete with respect to the augmentation ideal ICp
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(Remark 4.6.3). Consequently, Proposition 4.6.8 is equivalent to the assertion that
the norm map Nm : MhCp ÑMhCp exhibits MhCp as the ICp-completion of MhCp (or
dually that it induces an equivalence equivalence MhCp » ΓICp pM

hCpq.

Remark 4.6.10. The assertion of Proposition 4.6.8 is a priori stronger than condition
p˚1pq of Theorem 4.6.2, since it applies to any Cp-equivariant object M of the8-category
ModA, rather than just to A itself (endowed with the trivial action of Cp). However,
it is actually equivalent to p˚1pq. The Tate construction can be viewed as a lax
symmetric monoidal functor from FunpBCp,ModAq to ModA. Consequently, AtCp has
the structure of an E8-algebra over A, and M tCp has the structure of a module over
AtCp . In particular, if AtCp is ICp-local, then so is M tCp .

The proof of Proposition 4.6.8 will make use of the following elementary observation:

Lemma 4.6.11. Let H be a finite group and suppose we are given a map of spaces
f : X Ñ BH. Let F P FunpX, Spq be a local system of spectra on X and let
f˚F P FunpBH, Spq denote its pushforward to BH (that is, the right Kan extension
of F along f). If X is a finite space, then the Tate construction pf˚F qtH vanishes.

Proof. Let C denote the full subcategory of FunpBH, Spq spanned by those objects
M with M tH » 0. Since the construction M ÞÑ M tH is exact, C is closed under
finite limits in FunpBH, Spq. We wish to prove that f˚F P C. For each x P X, let
ix : txu Ñ X denote the inclusion map. Using the equivalence F » lim

ÐÝxPX
ix˚i

˚
x F

(and the finiteness of X), we can reduce to the case where F has the form ix˚F 1,
for some F 1

P Funptxu, Spq » Sp. We may therefore replace X by txu and thereby
reduce to the case where X is a point, in which case the desired result follows from
Example HA.6.1.6.26 .

Proof of Proposition 4.6.8. Let xM be the p-completion of M and let N denote the fiber
of the canonical map M Ñ xM . We then have a fiber sequence of Tate constructions

N tCp ÑM tCp Ñ xM tCp ,

where the first term vanishes because p acts invertibly on N . We may therefore replace
M by xM and thereby reduce to the case where M is a module over the p-completion
of A. In this case, we can replace A by its p-completion and thereby reduce to the case
where A is p-complete. We may also replace the P-divisible group G by its p-local
summand Gppq (since this does not change the tempered function spectrum A

BCp
G ),

and thereby reduce to the case where G is an oriented p-divisible group.
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For each n ě 0, let IAn Ď π0pAq denote the nth Landweber ideal of A (Definition
Or.4.4.11 ) Note that every A-module is IAn`1-local (or equivalently Epnq-local, where
Epnq denotes the nth Johnson-Wilson spectrum) for n " 0; in fact, it suffices to take
n to be any upper bound for the height of the p-divisible group G (since we then have
IAn`1 “ π0pAq). It will therefore suffice to prove the following:

p˚nq If M is IAn -local, then the Tate construction M tCp is ICp-local.

We proceed by induction on n. If n “ 1, then the assumption that M is IAn -local
guarantees that p acts invertibly on M , so that M tCp vanishes. To carry out the
inductive step, assume that p˚nq holds for some n ě 1 and that M is IAn`1-local. Let
xM denote the completion of M for the ideal IAn , and let LM and LxM denote the
localizations of M and xM with respect to IAn . We then have a pullback square

M //

��

xM

��

LM // LxM

of Cp-equivariant objects of ModA, which induces a pullback square of Tate construc-
tions

M tCp //

��

xM tCp

��

pLMqtCp // pLxMqtCp .

Our inductive hypothesis then guarantees that pLMqtCp and pLxMqtCp are ICp-local.
Consequently, to show that M tCp is ICp-local, it will suffice to show that xM tCp is
ICp-local. We may therefore replace M by xM and thereby reduce to the case where M
is IAn`1-local and IAn -complete: that is, the case where M is Kpnq-local as a spectrum
(see Proposition Or.4.5.4 ). Replacing A by its Kpnq-localization, we can assume also
that A is Kpnq-local. In this case, our orientation of G supplies a short exact sequence
of p-divisible groups

0 Ñ GQ
A Ñ G Ñ Gét Ñ 0,

where GQ
A is the Quillen p-divisible group of A (Proposition 2.5.6). In particular, the

underlying map of finite flat group scheme GQ
Arps Ñ Grps is a strict monomorphism,

so that the Atiyah-Segal comparison map ζ : A˚GpBCpq Ñ A˚pBCpq is surjective.
We have a short exact sequence of abelian groups 0 Ñ Z p

Ñ Z Ñ Cp Ñ 0
which induces a fiber sequence of spaces BCp

φ
Ñ CP8 p

Ñ CP8. Let e P A2pCP8
q

130



be a complex orientation of A. We can then choose an element e P A2
GpBCpq

satisfying ζpeq “ φ˚peq in A2pBCpq. Note that e is annihilated by the pullback map
A2

GpBCpq Ñ A2
GpECpq » π´2pAq, so that eA´2

G pBCpq is contained in the augmentation
ideal ICp . Consequently, to show that M tCp is ICp-local, it will suffice to show that
multiplication by e induces an equivalence θ : Σ´2M tCp ÑM tCp .

To prove this, form a pullback diagram of spaces

X //

f 1

��

˚

f
��

BCp
φ // CP8,

and let AX P FunpX,ModAq denote the constant local system on X with the value
A. The cofiber of θ is then given by the Tate construction QtCp , where Q is the
Cp-equivariant object of ModA given by

M bA φ
˚ cofibpe : Σ´2ACP8 Ñ ACP8q » M bA φ

˚f˚pAqq

» M bA f
1
˚AX

» f 1˚f
1˚M.

The vanishing of QtCp now follows from Lemma 4.6.11, since X is homotopy equivalent
to a circle.

Lemma 4.6.12. Let p be a prime number and let G be a preoriented P-divisible group
over an E8-ring A which satisfies conditions p˚pq and p˚1pq of Theorem 4.6.2. Then,
for every module M over the tempered function spectrum A

BCp
G , the canonical map

θM : M Ñ pM b
A
BCp
G

A
ECp
G q

hCp

exhibits pM b
A
BCp
G

A
ECp
G qhCp as the ICp-completion of M .

Proof. Set I “ ICp and let ModCplpIq
A
BCp
G

denote the full subcategory of Mod
A
BCp
G

spanned

by the ABCpG -modules which are I-complete. Then the construction

M ÞÑ pM b
A
BCp
G

A
ECp
G q

hCp

determines a functor F : Mod
A
BCp
G

Ñ ModCplpIq
A
BCp
G

. Let C Ď Mod
A
BCp
G

be the full
subcategory spanned by those objects M for which the map θM : M Ñ F pMq exhibits
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F pMq as an ICp-completion of M . It follows from assumption p˚pq C contains the
tempered function spectrum A

BCp
G (and all of its shifts). Consequently, to show that

C “ Mod
A
BCp
G

, it will suffice to show that C is closed under small colimits. For this,
it will suffice to show that the functor F preserves small colimits. Using assumption
p˚1pq (and Remark 4.6.10), we can factor F as a composition

Mod
A
BCp
G

F 1
ÝÑ Mod

A
BCp
G

F 2
ÝÑ ModCplpIq

A
BCp
G

,

where F 2 is the functor of completion with respect to I (which preserves small
colimits, since it is left adjoint to the inclusion) and F 1 given by the construction
M ÞÑ pM b

A
BCp
G

A
ECp
G qhCp (which also preserves small colimits).

Lemma 4.6.13. Let p be a prime number and let G be a preoriented P-divisible group
over an E8-ring A which satisfies conditions p˚pq and p˚1pq of Theorem 4.6.2, for some
prime number p. Then, for every nonnegative integer n, the Atiyah-Segal comparison
map

ζ : ABCpnG Ñ ABCpn

exhibits ABCpn as the completion of ABCpnG with respect to the augmentation ideal ICpn .

Proof. We proceed by induction on n, the case n “ 0 being trivial. To carry out
the inductive step, we observe that the short exact sequence of abelian groups 0 Ñ
Cpn´1 Ñ Cpn Ñ Cp provides a factorization of ζ as a composition

A
BCpn
G

ζ1
ÝÑ pA

BCpn´1
G q

hCp ζ2
ÝÑ pABCpn´1 q

hCp » ABCpn .

It follows from Lemma 4.6.12 that the fiber fibpζ 1q is local with respect to the
augmentation ideal ICp Ď A0

GpBCpq, hence also with respect to the augmentation ideal
ICpn Ď A0

GpBCpnq (which contains the image of ICp). Since ICpn´1 is generated by the
image of ICpn , our inductive hypothesis guarantees that fibpζ2q is also ICpn -local. It
follows that fibpζq is ICpn -local, and therefore exhibits ABCpn as the ICpn -completion
of ABCpnG (since ABCpn is automatically ICpn -local, by virtue of Remark 4.6.3).

Lemma 4.6.14. Let G be a preoriented P-divisible group over an E8-ring A, let B
be an E8-algebra over A, and let p be a prime number. If G satisfies conditions p˚pq
and p˚1pq of Theorem 4.6.2, then the preoriented P-divisible group GB also satisfies
conditions p˚pq and p˚1pq.
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Proof. Condition p˚1pq follows from Remark 4.6.10. To prove p˚pq, we must show that
the Atiyah-Segal comparison map ζ : BBCp

G Ñ BBCp exhibits BBCp as the completion
of BBCp

G with respect to the augmentation ideal ICp Ď A0
GpBCpq (or equivalently, with

respect to the ideal that it generates in B0
GpBCpq). Note that we have a commutative

diagram
B bA A

BCp
G

//

��

B bA A
BCp

��
B
BCp
G

// BBCp ,

where the left vertical map is an equivalence and the upper horizontal map induces
an equivalence after completion with respect to ICp (by virtue of assumption p2q). It
will therefore suffice to show that the right vertical map also induces an equivalence
after completion with respect to ICp . To prove this, we observe that it fits into a
commutative diagram of fiber sequences

B bA AhCp
Nm //

„

��

B bA A
hCp //

��

B bA A
tCp

��
BhCp

Nm // BhCp // BtCp ,

where the left vertical map is an equivalence. It will therefore suffice to show that the
right vertical map becomes an equivalence after completion with respect to ICp . In
fact, both B bA A

tCp and BtCp vanish after completion with respect to ICp , by virtue
of our assumption that G satisfies p˚1pq.

Proof of Theorem 4.6.2. Let G be a preoriented P-divisible group over an E8-ring A.
If G is oriented and p is a prime number, then G satisfies condition p˚pq (Proposition
4.2.8) and condition p˚1pq (Proposition 4.6.8). Conversely, suppose that G satisfies
conditions p˚pq an p˚1pq for every prime number p. Then, for every E8-algebra B

over A, the preoriented P-divisible group GB has the same property (Lemma 4.6.14).
Applying Lemma 4.6.13, we deduce that the Atiyah-Segal comparison maps

ζ : BBCpn
G Ñ BBCpn

exhibit each BBCpn as the completion of BBCpn
G with respect to the augmentation ideal

ICpn , so that G is oriented by virtue of Proposition 4.2.15.

133



4.7 Base Change and Finiteness
Let f : A Ñ B be a morphism of E8-rings. Then, for every space X, f induces

an A-linear map of (unpointed) function spectra fX : AX Ñ BX , which extends
to a B-algebra map B bA A

X Ñ BX . This map is an equivalence if the space X
is finite, or if B is perfect as an A-module. However, it is rarely an equivalence in
general. In essence, our theory of tempered cohomology is designed to correct this
problem: it provides a replacement for the function spectrum AX , which is more likely
to be compatible with extension of scalars. If G is an oriented P-divisible group over
A, then Theorem 4.4.16 (along with Lemma 4.5.1) implies that the canonical map
B bA A

X
G Ñ BX

G is an equivalence when X “ KpH, dq is an Eilenberg-MacLane space
associated to a finite abelian p-group H. In fact, we have the following more general
result:

Theorem 4.7.1 (Base Change for Tempered Cohomology). Let G be an oriented
P-divisible group over an E8-ring A and let X be a π-finite space. Then, for every
map of E8-rings AÑ B, the canonical map AXG Ñ BX

G extends to an equivalence

ρ : B bA AXG Ñ BX
G

of E8-algebras over B.

We will give a proof of Theorem 4.7.1 in §7 (see Corollary 7.3.12).

Remark 4.7.2. In the special case where X “ BH is the classifying space of a
finite abelian group H, Theorem 4.7.1 is a tautology: it follows immediately from the
definition of the P-divisible group GB, and does not require the assumption that G is
oriented.

Let us collect some consequences of Theorem 4.7.1.

Corollary 4.7.3. Let G be an oriented P-divisible group over an E8-ring A and let
X be a π-finite space. Let f : AÑ B be a morphism of E8-rings. If either AXG or B
is flat as an A-module spectrum, then the comparison map of Theorem 4.7.1 induces
an isomorphism of G-tempered cohomology rings

π0pBq bπ0pAq A
˚
GpXq » B˚GpXq.

Proof. Combine Theorem 4.7.1 with Proposition HA.7.2.2.13 .
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Remark 4.7.4. Let G be a preoriented P-divisible group over an E8-ring A. If B is a
finite flat E8-algebra over A, then the comparison map π0pBq bπ0pAq A

˚
GpXq » B˚GpXq

is an equivalence for every orbispace X (see Remark 4.2.10).

Corollary 4.7.5. Let G be an oriented P-divisible group over an E8-ring A. Let
H be a finite group and let X be a finite H-space. Then, for every E8-ring B, the
comparison map ρ : B bA AX{{HG Ñ B

X{{H
G is an equivalence of E8-algebras over B.

Proof. The constructions X ÞÑ B bA A
X{{H
G and X ÞÑ B

X{{H
G carry finite colimits in

the8-category SH of H-spaces to finite limits in the8-category CAlgB of E8-algebras
over B. It will therefore suffice to prove Corollary 4.7.5 in the special case where
X is an H-space of the form H0zH, where H0 is a subgroup of H. In this case, the
orbispace quotient X{{H can be identified with the BHp´q

0 , and the desired result is
a special case of Theorem 4.7.1.

From Corollary 4.7.5, we immediately deduce the following slightly stronger form
of Theorem 1.1.19:

Corollary 4.7.6. Let G be an oriented P-divisible group over an E8-ring A. Let
H be a finite group, let X be a finite H-space, and let B be an E8-algebra over A.
If either AX{{HG or B is flat as an A-module spectrum, then the comparison map of
Corollary 4.7.5 induces an isomorphism of G-tempered cohomology rings

π0pBq bπ0pAq A
˚
GpX{{Hq Ñ B˚GpX{{Hq.

Proof. Combine Corollary 4.7.5 with Proposition HA.7.2.2.13 .

Corollary 4.7.7. Let H be a finite group and let X be a finite H-space. Then the
equivariant Chern character of Example 4.3.8 induces an isomorphism of complex
vector spaces

chH : CbZ KU˚HpXq Ñ H˚pp
ž

hPH

Xh
qhH ; Cqppβ´1

qq.

Proof. Apply Corollary 4.7.6 in the case where A “ KU is complex K-theory, G “ µP8

is the multiplicative P-divisible group over KU (endowed with the orientation of
Construction 2.8.6), and B “ CbS KU is the complexification of KU.

Corollary 4.7.8. Let H be a finite group. Then the construction rV s ÞÑ χV induces
an isomorphism of complex vector spaces

χ : CbZ ReppHq Ñ tClass functions H Ñ Cu.
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Proof. Combine Corollary 4.7.7 with Example 4.3.9.

If G is an oriented P-divisible group over an E8-ring A and X “ KpH, dq is an
Eilenberg-MacLane space associated to a finite group H, then Theorem 4.4.1 implies
that the tempered function spectrum AXG is a projective A-module of finite rank. Using
Theorem 4.7.1, we can prove a weak version of this assertion for π-finite spaces in
general:

Proposition 4.7.9. Let G be an oriented P-divisible group over an E8-ring A and
let X be a π-finite space. Then AXG is perfect as an A-module spectrum.

Corollary 4.7.10. Let G be an oriented P-divisible group over an E8-ring A, let H
be a finite group, and let X be a finite H-space. Then AX{{HG is perfect as an A-module
spectrum.

Proof. As in the proof of Corollary 4.7.5, we can reduce to the case where X “ H0zH

is an orbit of H, in which case the orbispace quotient X{{H can be identified with
BH

p´q

0 and the result follows from Proposition 4.7.9.

Corollary 4.7.11. Let G be an oriented P-divisible group over an E8-ring A. Let
X and Y be orbispaces. Suppose that X “ Xp´q for a π-finite space X. Then the
multiplication map

m : AX
G bA A

Y
G Ñ AXˆY

G .

is an equivalence.

Proof. Combine Propositions 4.4.7 and 4.7.9.

The proof of Proposition 4.7.9 will make use of the following general observation:

Lemma 4.7.12. Let A be an E8-ring and let M be an A-module spectrum. Suppose
that the functor

CAlgA Ñ ModA B ÞÑ B bAM

preserves small limits. Then M is perfect.

Proof. Specializing to A-algebras of the form A‘N for N P ModA, we deduce that
the functor

ModA Ñ ModA N ÞÑ N bAM

preserves small limits, and therefore admits a left adjoint (Corollary HTT.5.5.2.9 ). It
follows that M is dualizable and therefore perfect as an A-module.
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Proof of Proposition 4.7.9. Let G be an oriented P-divisible group over an E8-ring
A and let X be a π-finite space. Then the functor

CAlgA Ñ ModA B bA A
X
G

can be identified with B ÞÑ BX
G (by virtue of Theorem 4.7.1), and therefore preserves

small limits (Lemma 4.2.11). Applying Lemma 4.7.12, we conclude that AXG is a
perfect A-module spectrum.

We say that an E8-ring A is Noetherian if π0pAq is Noetherian and each homotopy
group πnpAq is finitely generated as a module over π0pAq. If A is Noetherian and M is
a perfect A-module spectrum, then each homotopy group πnpMq is finitely generated
as a module over π0pAq. We therefore obtain the following:

Corollary 4.7.13. Let A be a Noetherian E8-ring and let G be an oriented P-divisible
group over A. Then:

paq If X is a π-finite space, then each of the tempered cohomology groups AnGpXq is
finitely generated as a module over π0pAq.

pbq If H is a finite group and X is a finite H-space, then each of the tempered
cohomology groups AnGpX{{Hq is finitely generated as a module over π0pAq.

4.8 Application: Character Theory for π-Finite Spaces
We now combine the results of §4.2, §4.3, and §4.7. We begin by studying the

rational version of tempered cohomology.

Proposition 4.8.1. Let A be an E8-ring and let G be an oriented P-divisible group
over A. Assume that, for every prime number p, the p-divisible group Gppq has some
constant height hp, and set Λ “

À

pPPpQp {Zpq
hp. Then:

paq The P-divisible group G admits a splitting algebra B “ SplitΛpGq (see Definition
2.7.7) which is faithfully flat over the rationalization AQ “ QbSA.

pbq Let X be a π-finite space and let S be the finite set of all homotopy classes of
maps from the classifying space BpΛ into X, where pΛ is the Pontryagin dual of
Λ. Then there is a canonical equivalence

B bA A
X
G »

ź

sPS

B
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of E8-algebras over B, which induces an isomorphism of graded rings

π0pBq bπ0pAq A
˚
GpXq »

ź

sPS

B˚ptsuq “ B˚pSq

Proof. Note that, if G admits a splitting Λ Ñ GpA1q for an E8-algebra A1 over A,
then the P-divisible group GA1 is étale. The existence of an orientation of G then
guarantees that A1 is an E8-algebra over Q (Remark 2.6.17). It follows that we can
identify a splitting algebras of G with a splitting algebras of GAQ , which exists (and
is faithfully flat over AQ) by virtue of Proposition 2.7.9. This proves paq. To prove
pbq, let G0 “ 0 denote the trivial P-divisible group over AQ. Then the tautological
splitting of G over B can be regarded as a splitting of the monomorphism G0 Ñ GAQ .
We have a diagram of equivalences

B bA A
X
G

„
ÝÑ BX

G
„
ÝÑ B

LΛpXp´qq
G0

„
ÐÝ BXB pΛ

G0
„
ÝÑ BXB pΛ „

ÐÝ BS

where the first map is supplied by Theorem 4.7.1, the second by Theorem 4.3.2, the
third by Proposition 3.4.7, the fourth by Variant 4.2.6, and the fifth by the observation
that the projection map XBpΛ Ñ π0pX

BpΛq “ S induces an isomorphism on rational
cohomology (since XBpΛ is a π-finite space). Passing to homotopy groups (and invoking
the fact that B is flat over AQ, hence over A), we obtain the isomorphism of graded
rings

π0pBq bπ0pAq A
˚
GpXq »

ź

sPS

B˚ptsuq “ B˚pSq.

Remark 4.8.2. In the situation of Proposition 4.8.1, the isomorphism of graded rings

π0pBq bπ0pAq A
˚
GpXq » B˚pSq

is equivariant with respect to the action of the profinite group AutpΛq; here AutpΛq
acts on the left hand side via its action on B “ SplitΛpGq, and on the right hand side
by combining its action on B and on the finite set S “ π0pX

BpΛq. Note that π0pBq

can be regarded as a (profinite) Galois extension of π0pAQq with Galois group AutpΛq
(Remark 2.7.10). Passing to invariants, we obtain an isomorphism of graded rings

QbZA
˚
GpXq » B˚pSqAutpΛq,

where the right hand side denotes the fixed points for the action of AutpΛq on the
graded ring B˚pSq.
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Remark 4.8.3. In the situation of Proposition 4.8.1, the existence of an isomorphism

π0pBq bπ0pAq A
˚
GpXq »

ź

sPS

B˚ptsuq

guarantees that the tensor product π0pBq bπ0pAq A
˚
GpXq is a finitely generated free

module over the coefficient ring π´˚pBq, having a canonical basis parametrized by the
set of homotopy classes of maps BpΛ Ñ X.

Corollary 4.8.4. Let A be an E8-algebra over Q and let G be a P-divisible group
over A. Assume that, for every prime number p, the p-divisible group Gppq has some
constant height hp, and set Λ “

À

pPPpQp {Zpq
hp. Let X be a π-finite space. Then

the graded ring QbZA
˚
GpXq is a projective module over the coefficient ring π´˚pAQq,

with rank equal to the number of homotopy classes of maps from BpΛ into X.

Proof. Combine Remark 4.8.3 with the faithful flatness of the map π0pAQq Ñ

π0pSplitΛpGqq.

Corollary 4.8.5. Let A be an E8-ring which is complex periodic and Kpnq-local for
some n ą 0. Set Λ “ pQp {Zpq

n. Then:

paq The Quillen p-divisible group GQ
A admits a splitting algebra B “ SplitΛpGQ

Aq

which is faithfully flat over the rationalization AQ “ QbSA.

pbq Let X be a π-finite space and let S be the finite set of all homotopy classes
of maps from the classifying space B Zn

p into X. Then there is a canonical
equivalence

B bA A
X
»
ź

sPS

B

of E8-algebras over B, which induces an isomorphism of graded rings

π0pBq bπ0pAq A
˚
pXq »

ź

sPS

B˚ptsuq “ B˚pSq

Proof. Combine Proposition 4.8.1 with Theorem 4.2.5.

Let Kpnq denote the nth Morava K-theory (for some fixed prime number p). We
say that a space X is Kpnq-finite if each of the groups KpnqipXq is finite-dimensional
as a vector space over the field κ “ π0pKpnqq. In this case, we refer to the difference

χKpnqpXq “ dimκpKpnq
0
pXqq ´ dimκpKpnq

1
pXqq

as the Kpnq-Euler characteristic of X.
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Corollary 4.8.6. Fix a prime number p and an integer n ą 0, and let X be a π-
finite space. Then X is Kpnq-finite, and the Kpnq-Euler characteristic χKpnqpXq is
equal to the number of homotopy classes of maps B Zn

p Ñ X. In particular, we have
χKpnqpXq ě 0, with equality if and only if X is empty.

Proof. Let E be the Lubin-Tate spectrum associated to a formal group of height n over
a perfect field κ, Without loss of generality, we may assume that Kpnq is the Morava
K-theory associated to E. Let L denote the fraction field of the Lubin-Tate ring π0pEq,
and let G be the Quillen p-divisible group of E. Then the Atiyah-Segal comparison
map ζ : EX

G Ñ EX is an equivalence (Theorem 4.2.5), so that EX is perfect as an
E-module spectrum (Proposition 4.7.9). Let r be the number of homotopy classes of
maps B Zn

p Ñ X. According to Corollary 4.8.5, the tensor product Qbπ˚pEXq is a
free module over Qbπ˚pEq, of rank equal to r. In particular, we have

dimLpLbπ0pEq π0pE
X
qq “ r dimLpLbπ0pEq π´1pE

X
qq “ 0.

It will therefore suffice to prove the following general assertion:

p˚q Let M be a perfect module over the Lubin-Tate spectrum E. Then the integers

χLpMq “ dimLpLbπ0pEq π0pMqq ´ dimLpLbπ0pEq π´1pMqq

χκpMq “ dimκpπ0pKpnq bE Mqq ´ dimκpπ´1pKpnq bE Mqq

are the same.

To prove p˚q, let d denote the projective dimension of π0pMq ‘ π´1pMq as a module
over π0pEq (which is necessarily finite, since π0pEq is a regular local ring). We proceed
by induction on d. If d “ 0, then M can be written as a finite sum of copies of E and
its suspension ΣpEq; in this case, the equality asserted by p˚q is clear. To treat the
case d ą 0, we observe that our assumption that M is perfect guarantees that the
homotopy groups of M are finitely generated as modules over π0pEq. Choose a fiber
sequence M 1 Ñ P

u
ÝÑM where P is a sum of copies of E and its suspension ΣpEq, and

u induces a surjection π˚pP q Ñ π˚pMq. In this case, we have a short exact sequence of
homotopy groups 0 Ñ π˚pM

1q Ñ π˚pP q Ñ π˚pMq Ñ 0. It follows that the homotopy
groups of M 1 and P have projective dimension ă d over the Lubin-Tate ring π0pEq, so
that our inductive hypothesis (and the additivity of the Euler characteristics defined
in p˚q) supplies an identity

χLpMq “ χLpP q ´ χLpM
1
q “ χκpP q ´ χκpM

1
q “ χκpMq.
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4.9 Application: The Completion Theorem
Let G be an oriented P-divisible group over an E8-ring A. For every finite abelian

group H, Proposition 4.2.8 implies that the Atiyah-Segal comparison map

ζ : ABHG Ñ ABH

exhibits ABH as the completion of ABHG with respect to the augmentation ideal IH .
Our goal in this section is to prove a more general version of this result (Theorem
4.9.2), where we replace the classifying space BH by an orbispace quotient X{{H
and we drop the assumption that H is abelian. Here we potentially encounter a
technical problem: when H is not abelian, it is not clear that the augmentation ideal
IH Ď A0

GpBHq is finitely generated. To address this point, we will assume that the
E8-ring A is Noetherian. This guarantees that A0

GpBHq is finitely generated as a
module over π0pAq (Corollary 4.7.13), and therefore a Noetherian ring.

Remark 4.9.1. Let A be an E8-ring, let G be a preoriented P-divisible group over
A, and let H be a finite group. For every H-space X, the canonical map of orbispaces

X{{H Ñ ˚{{H “ BHp´q

induces a homomorphism of tempered cohomology rings A˚GpBHq Ñ A˚GpX{{Hq. In
particular, we can view each tempered cohomology group AnGpX{{Hq as a module
over the commutative ring A0

GpBHq. If A is Noetherian, G is oriented, and X is a
finite H-space, then AnGpX{{Hq is finitely generated as a module over A0

GpBHq (since
it is already finitely generated as a module over π0pAq, by virtue of Corollary 4.7.13).

We can now state our main result.

Theorem 4.9.2 (Tempered Atiyah-Segal Completion Theorem). Let A be a Noethe-
rian E8-ring, let G be an oriented P-divisible group over A, let H be a finite group,
and let IH Ď A0

GpBHq be the augmentation ideal of Notation 4.2.7. Then, for every
finite H-space X, the Atiyah-Segal comparison map

ζ : A˚GpX{{Hq Ñ A˚pXhHq

exhibits each AnpXhHq as the IH-adic completion of AnGpX{{Hq. That is, it induces
an isomorphism

AnpXhHq » lim
ÐÝ
m

AnGpX{{Hq{I
m
HA

n
GpX{{Hq

.
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Corollary 4.9.3 (Atiyah). Let H be a finite group and let X be a finite H-space. Then
the comparison map ζ : KU˚HpXq Ñ KU˚pXhHq exhibits KU˚pXhHq as the completion
of KU˚HpXq with respect to the augmentation ideal of ReppHq.

Proof. Combine Theorem 4.9.2 with Theorem 4.1.2.

Remark 4.9.4. For a general version of Atiyah’s completion theorem in equivariant
stable homotopy theory (closely related to our Theorem 4.9.2), we refer the reader to
the work of Greenlees-May ([4]).

Theorem 4.9.2 is a consequence of a more basic spectrum-level completion theorem,
which does not require the finiteness of X.

Theorem 4.9.5. Let A be a Noetherian E8-ring, let G be an oriented P-divisible
group over A, and let H be a finite group. Let X be an H-space, and regard A

X{{H
G

as a module spectrum over the E8-ring ABHG . Then the Atiyah-Segal comparison map
ζ : AX{{HG Ñ AXhH exhibits AXhH as the IH-completion of AX{{HG , where IH is the
augmentation ideal of Notation 4.2.7.

Proof of Theorem 4.9.2 from Theorem 4.9.5. Let M be a module spectrum over the
E8-ring ABHG , and let xM denote the IH-completion of M . If each homotopy group of
M is finitely generated as a module over A0

GpBHq, then the canonical map π˚pMq Ñ
π˚pxMq exhibits each πnpxMq as the classical IH-adic completion of πnpMq (Corollary
SAG.II.4.3.6.6 ). When X is a finite H-space, this finiteness hypothesis is satisfied
in the case M “ A

X{{H
G (Remark 4.9.1). In this case, Theorem 4.9.5 allows us

to identify xM with the function spectrum AXhH , so that the cohomology groups
AnpXhHq » π´npxMq are the classical IH-adic completions of the tempered cohomology
groups AnGpX{{Hq » π´npMq.

We will reduce the general case of Theorem 4.9.5 to the abelian case using the
following:

Lemma 4.9.6. Let A be a Noetherian E8-ring and let G be an oriented P-divisible
group over A. Let H be a finite group and let H0 Ď H be an abelian subgroup. Let
IH Ď A0

GpBHq be the augmentation ideal of Notation 4.2.7, and define IH0 Ď A0
GpBH0q

similarly. Then there exists an integer m " 0 such that ImH0 Ď IHA
0
GpBH0q Ď IH0.
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Remark 4.9.7. Lemma 4.9.6 admits an algebro-geometric interpretation. The com-
mutative diagram of spaces

EH0
„ //

��

EH

��
BH0 // BH

determines a commutative diagram of affine schemes

Specpπ0pAqq
id //

i0
��

Specpπ0pAqq

i
��

SpecpA0
GpBH0qq

f // SpecpA0
GpBHqq,

where i and i0 are closed immersions. Lemma 4.9.6 is equivalent to the assertion that
this diagram is a pullback square at the level of the underlying topological spaces:
that is, a point x of the space | SpecpA0

GpBH0qq| belongs to the image of i0 if and only
if fpxq belongs to the image of i.

Proof of Lemma 4.9.6. We use the formulation of Remark 4.9.7. Let x be a point
of the Zariski spectrum | SpecpA0

GpBH0qq| which does not belong to the image of i0;
we will show that fpxq P | SpecpA0

GpBHqq| does not belong to the image of i. Let
p Ď π0pAq be the prime ideal corresponding to the image of x in | Specpπ0pAqq|, let Ap

be the localization of A with respect to p, and let pA be the completion of Ap. Since A
is Noetherian, pA is flat over A. It follows that the natural maps

π0p pAq bπ0pAq A
0
GpBH0q Ñ pA0

GpBH0q π0p pAq bπ0pAq A
0
GpBHq Ñ

pA0
GpBHq

are isomorphisms (Corollary 4.7.3). We may therefore replace A by pA and thereby
reduce to the case where π0pAq is complete local Noetherian ring and x lies over the
closed point of | Specpπ0pAqq|.

Let κ be the residue field of the local ring π0pAq. If κ has characteristic p, then
the p-divisible group Gppq admits a connected-étale sequence

0 Ñ G0 Ñ Gppq Ñ G2
Ñ 0

where G2 is étale and the closed fiber of G0 is connected (Corollary Or.2.5.22 ). If
κ has characteristic zero, set G0 “ 0. In either case, we have a monomorphism of
P-divisible groups f : G0 Ñ G for which the quotient G{G0 is étale. Let pH0 denote
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the Pontryagin dual of the finite abelian group H0. We then have a short exact
sequence

0 Ñ G0r pH0s Ñ Gr pH0s
q
ÝÑ pG{G0qr pH0s Ñ 0

of finite flat group schemes over A, where first term has connected fiber over the closed
point of | Specpπ0pAqq| and the third term is étale over A, and the middle term has
underlying topological space | SpecpA0

GpBH0qq|. Consequently, our assumption that x
does not belong to the image of i0 guarantees that that its image under q does not
belong to the zero section of pG{G0qr pH0s.

Since | Specpπ0pAqq| is connected, the `-divisible groups pG{G0qp`q each have some
constant height h`. Let Λ be the colattice given by the sum

À

`PPpQ` {Z`q
h` . Applying

Proposition 2.7.15, we deduce that f admits a splitting algebra B “ SplitΛpfq which
is faithfully flat over A. Using Corollary 4.7.3 and Theorem 4.3.2, we obtain canonical
isomorphisms

π0pBq bπ0pAq A
0
GpBH0q » B0

GpBH0q »
ź

α:pΛÑH0

B0
G0pBH0q

π0pBq bπ0pAq A
0
GpBHq » B0

GpBHq »
ź

α:pΛÑH

B0
G0
pBZpαqq

where pΛ denotes the Pontryagin dual of Λ, the second product is indexed by the
collection of all conjugacy classes of homomorphisms α : pΛ Ñ H, and Zpαq Ď H

denotes the centralizer of the image of α. Since π0pBq is faithfully flat over π0pAq, we
can lift x to a point rx of the affine scheme

Specpπ0pBq bπ0pAq A
0
GpBH0qq »

ž

α:pΛÑH0

SpecpB0
G0pBH0qq.

Our assumption that qpxq is not contained in the zero section of pG{G0qr pH0s guarantees
that rx belongs to a component of the right hand side which corresponds to a nontrivial
homomorphism α : pΛ Ñ H0. Then the image of rx in the fiber product

Specpπ0pBq bπ0pAq A
0
GpBHqq »

ž

α:pΛÑH

SpecpB0
G0pBZpαqqq.

is contained in a summand which corresponds to a conjugacy class of nonzero maps
pΛ Ñ H. In particular, it is contained in the inverse image of impiq, so that fpxq
cannot be contained in the image of i.
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Proof of Theorem 4.9.5. Let A be a Noetherian E8-ring, let G be an oriented P-
divisible group over A, and let H be a finite group. We wish to show that, for every
H-space X, the Atiyah-Segal comparison map ζ : AX{{HG Ñ AXhH exhibits AXhH as
the IH-completion of AX{{HG . Let us regard the H-space X as a functor of 8-categories
OrbitpHqop Ñ S. Let OrbitpHqab Ď OrbitpHq be the full subcategory defined in
Construction 3.2.16. Note that replacing X by the left Kan extension of X|OrbitpHqop

ab

does not change the orbispace quotient X{{H or the homotopy orbit space XhH ; we
may therefore assume without loss of generality that X is a left Kan extension of its
restriction to OrbitpHqop

ab. In this case, we can write X as a colimit of H-spaces which
are represented by orbits of the form H{H0, where H0 is an abelian subgroup of H.
Since the constructions X ÞÑ A

X{{H
G and X ÞÑ AXhH carry colimits of H-spaces to

limits in CAlgA (and the IH-completion functor commutes with limits), it will suffice
to prove Theorem 4.9.5 in the special case where X has the form H{H0. In this case,
we are reduced to proving that the Atiyah-Segal comparison map ζ : ABH0

G Ñ ABH0

exhibits ABH0 as the completion of ABH0
G with respect to the augmentation ideal

IH Ď A0
GpBHq. Equivalently, we wish to show that ζ exhibits ABH0 as the completion

of ABH0
G with respect to the ideal IHA0

GpBH0q Ď A0
GpBH0q. By virtue of Lemma 4.9.6,

we can replace H by H0 and thereby reduce to the situation treated in Proposition
4.2.8.

5 Tempered Local Systems
Let A be an E8-ring. For any space X, we let LocSysApXq denote the 8-category

FunpX,ModAq of local systems of A-modules on X, and we let AX P LocSysApXq
denote the constant local system taking the value A P ModA. The construction
X ÞÑ LocSysApXq can be regarded as a categorification of the functor X ÞÑ A˚pXq in
the following sense: for any space X, we have a canonical isomorphism of graded rings

A˚pXq » Ext˚LocSysApXqpAX , AXq.

Our goal in this section is to show that if G is an oriented P-divisible group over A, then
our theory of tempered cohomology X ÞÑ A˚GpXq admits an analogous categorification.
More precisely, we will associate to each space X an 8-category LocSysGpXq, whose
objects we refer to as G-tempered local systems on X. This stable 8-category contains
a distinguished object which we will denote by AX , and the tempered cohomology ring
A˚GpXq can be recovered as the endomorphism ring Ext˚LocSysGpXq

pAX , AXq (Remark
5.1.20).
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Before giving a formal definition, let us begin by describing some of the essential
features of our construction:

paq For any space X, there is a forgetful functor U : LocSysGpXq Ñ LocSysApXq,
which can be regarded as a categorification of the Atiyah-Segal comparison map
on tempered cohomology (Construction 4.2.2).

pbq To every G-tempered local system F P LocSysGpXq, we can associate a spec-
trum ΓGpX; F q of tempered global sections of F , which is a module over the
tempered function spectrum AXG of Construction 4.0.3.

pcq Let F is a G-tempered local system on X, let UpF q denotes the underlying
local system of F , and let ΓpX;UpF qq denote the spectrum of global sections of
UpF q (in other words, the homotopy limit of the functor UpF q : X Ñ ModA).
Then there is a comparison map

ζF : ΓGpX; F q Ñ ΓpX;UpF qq,

which we will refer to as the Atiyah-Segal comparison map with coefficients in
F (in the special case F “ AX , it specializes to the Atiyah-Segal comparison
map of Construction 4.0.3).

pdq Suppose that X “ BH is the classifying space of a finite abelian group H, and
let F be a G-tempered local system on X. Then the comparison map

ζF : ΓGpX; F q Ñ ΓpX;UpF qq

of pcq exhibits ΓpX;UpF qq as the completion of ΓGpX; F q with respect to the
augmentation ideal IH Ď A0

GpBHq of Notation 4.2.7.

The simplest nontrivial case to consider is where X “ BCp is the classifying space
of the the cyclic group Cp “ Z {pZ of order p, for some prime number p. In this
case, properties paq through pdq provide a complete description of the 8-category
LocSysGpXq. More precisely, suppose we are given a local system F 0 P LocSysApXq,
which we can view an object of LocSysApXq as an A-module spectrum M equipped
with an action of Cp (in the “naive” sense of Definition 3.2.1). Then the global sections
spectrum ΓpX; F 0q can be identified with the homotopy fixed point spectrum MhCp .
This homotopy fixed point has the structure of a module over the E8-ring ABCp , and
can therefore also be viewed as a module over the tempered function spectrum A

BCp
G
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by means of the Atiyah-Segal comparison map ζ : ABCpG Ñ ABCp . Promoting F 0 to a
tempered local system F P LocSysGpXq then equivalent to choosing an A

BCp
G -module

N “ ΓGpX; F q equipped with an A
BCp
G -linear map ζ : N Ñ MhCp which exhibits

MhCp as the completion of N with respect to the augmentation ideal ICp Ď A0
GpBCpq

(see Example 5.4.5).
Let us now consider the more general situation where X “ BH is the classifying

space of a finite abelian group H. In this case, a tempered local system F on X

generally cannot be recovered from the data paq, pbq, and pcq alone. For every subgroup
H0 Ď H, we can restrict F to a tempered local system on the classifying space BH0,
which has a tempered global section spectrum ΓGpBH0; F |BH0q (which is a module
over the tempered function spectrum ABH0

G ). This tempered function spectrum then
carries an action of the quotient group H{H0 (which acts by deck transformations on
the finite covering map BH0 Ñ BH). This construction recovers the datum of the
underlying local system UpF q in the special case where H0 “ t0u, and the datum of
the module ΓGpX; F q in the special case H0 “ H. To reconstruct a general tempered
local system on X “ BH, one must specify all of the spectra ΓGpBH0; F |BH0q, along
with relative versions of the comparison maps pcq (which we require to satisfy a suitable
generalization of pdq: see Definition 5.2.4).

As with the theory of G-tempered cohomology, we will define the notion of G-
tempered local system on a general spaces X by a Kan extension procedure. Roughly
speaking, to give a G-tempered local system F on X, one must give a compatible
family of G-tempered local systems tF |T P LocSysGpT quTÑT{X , indexed by the
collection of all maps T Ñ X where T is the classifying space of a finite abelian group.
Note that the role of X here is a bit indirect: the input to the construction is really
the orbispace

Xp´q : T op
Ñ S T ÞÑ MapSpT,Xq

represented by X (Example 3.1.6). For various applications, it will be consider a
more general construction X ÞÑ LocSysGpXq whose input is an arbitrary orbispace X
(through we will ultimately be most interested in the special case where X “ Xp´q is
the orbispace represented by a π-finite space X).

Let us now outline the contents of this section. We begin in §5.1 by associating
to each orbispace X an 8-category LocSyspre

G pXq of G-pretempered local systems
(Construction 5.1.3), where we do not require the analogue of the Atiyah-Segal
completion theorem: in the special case where X “ BCp is the classifying space of a
cyclic group Cp “ Z {pZ of prime order, an object of LocSyspre

G pXq can be identified
with a triple pM,N, ζq, where M is an A-module spectrum equipped with an action of
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Cp and ζ : N ÑMhCp is a morphism of modules over the tempered function spectrum
A
BCp
G which is not required to satisfy any additional conditions (see Proposition 5.1.12

for a more general description, which applies to the classifying space of any finite
abelian group). In §5.2, we define the 8-category LocSysGpXq to be a certain full
subcategory of LocSyspre

G pXq (Definition 5.2.4). The definition makes sense in general
for any preoriented P-divisible group G. However, to show that it has good properties
(and to guarantee a good supply of examples of tempered local systems), we will need
to assume that G is oriented. In §5.3, we illustrate this point by showing that if
G is oriented, then the full subcategory LocSysGpXq Ď LocSyspre

G pXq is closed under
colimits: that is, colimits of G-tempered local systems can be computed levelwise.
In §5.4, we use similar techniques to analyze the 8-category LocSysGpT q in the case
where T is the classifying space of a finite abelian group: under the assumption that
G is oriented, we show that the 8-category LocSysGpT q admits a concrete description
which generalizes the discussion above in the case T “ BCp (Proposition 5.4.2). The
theory of tempered local systems in general is controlled by its behavior on the objects
of T : for every orbispace X we have a canonical equivalence of 8-categories

LocSysGpXq » lim
ÐÝ
TÑX

LocSysGpT q,

where T ranges over classifying spaces of finite abelian groups (Remark 5.2.11). In
fact, we do not even need to allow all finite abelian groups: in §5.6, we show that
it suffices to allow finite abelian groups H »

À

pPP Hppq with the property that each
Hppq can be generated by at most hp elements, where hp is (any upper bound for) the
height of the p-divisible group Gppq (Theorem 5.6.2). In particular, if G is a p-divisible
group, then we can take T to range over classifying spaces of finite abelian p-groups
(Example 5.6.5).

For any orbispace X, the inclusion of stable 8-categories

LocSysGpXq ãÑ LocSyspre
G pXq

admits a left adjoint L (Proposition 5.2.12). Consequently, we can identify LocSysGpXq
as the quotient of LocSyspre

G pXq by a stable subcategory LocSysnul
G pXq Ď LocSyspre

G pXq
(namely, the stable subcategory annihilated by the functor L). In §5.7, we give an
explicit description of the subcategory LocSysnul

G pXq (assuming that G is oriented) in
terms of the geometry of the P-divisible group G (Theorem 5.7.3). We apply this
result in §5.8 to define construct a tensor product of G-tempered local systems, by
localizing the “levelwise” tensor product on G-pretempered local systems.
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Remark 5.0.1 (Relationship with Equivariant Stable Homotopy Theory). Let X “

BCp be the classifying space of a cyclic group of prime order. As indicated above, we
can identify objects F P LocSyspre

G pXq with triples pM,N, ζq, where M is an A-module
spectrum equipped with an action of Cp and ζ : N ÑMhCp is a morphism of ABCpG -
modules. From this data, we can assemble a “naive” Cp-spectrum (that is, spectrum
object of the 8-category SCp of Definition 3.2.10), having underlying spectrum M

and Cp-fixed point spectrum N (so that ζ plays the role of the comparison map of
genuine and homotopy fixed points). If F belongs to the subcategory LocSysGpXq,
then this “naive” Cp-spectrum can be promoted to a “genuine” Cp-spectrum: that is,
we can complete the following diagram:

MhCp
Norm //

""

MhCp

N.

ζ

<<

To see this, note that if ζ exhibits MhCp as the completion of N with respect to
the augmentation ideal ICp Ď A0

GpBCpq, then it induces an equivalence ΓICp pNq »
ΓICp pM

hCpq, whose codomain can be identified with the homotopy orbit spectrum
MhCp . In the case of the constant local system, this recovers the construction described
in Remark 4.6.7.

More generally, if H is any finite group, then our theory of G-tempered local
systems on the classifying space BH can be formulated in terms of H-equivariant
stable homotopy theory. We will return to this point in [10].

5.1 Pretempered Local Systems
We begin by introducing some notation.

Notation 5.1.1. Let T be the 8-category introduced in Notation 3.1.1 and let
OS “ FunpT op,Sq denote the 8-category of orbispaces. For each orbispace X P OS,
we let T{X denote the fiber product T ˆOS OS{X. More informally, T{X is the 8-
category whose objects are pairs pT, ηq, where T is an object of T and η : T p´q Ñ X
is a map of orbispaces, or equivalently a point of the space XT . We will write T op

{X for
the opposite of the 8-category T{X. We will generally abuse notation by identifying
an object pT, ηq of 8-category T{X with the underlying object T P T .
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Notation 5.1.2. Let A be an E8-ring and let G be a preoriented P-divisible group
over A, so that G determines a functor

AG : T op
Ñ CAlgA T ÞÑ ATG

(see Notation 4.0.1). If X is an orbispace, we let AX denote the composite functor

T op
{X Ñ T op AG

ÝÝÑ CAlg,

which we view as a commutative algebra in the symmetric monoidal 8-category
FunpT op

{X , Spq. We let ModAX
“ ModAX

pFunpT op
{X , Spqq denote the 8-category of

AX-module objects of FunpT op
{X , Spq.

More informally, an object F P ModAX
is a rule which associates to each object

T of T{X a module F pT q for the G-tempered function spectrum ATG, and associates
to each morphism α : T 1 Ñ T in T{X an ATG-linear map F pT q Ñ F pT 1q (compatible
with composition up to coherent homotopy).

Construction 5.1.3 (Pretempered Local Systems). Let A be an E8-ring and let G
be a preoriented P-divisible group over A. Let X be an orbispace, and let AX be as in
Notation 5.1.2. A G-pretempered local system is an AX-module object of the functor
8-category FunpT op

{X , Spq which satisfies the following condition:

pAq Let α : T 1 Ñ T be a morphism in T{X with connected homotopy fibers (that
is, α induces a surjection of fundamental groups π1pT

1q� π1pT q). Then F pαq

induces an equivalence AT 1G bATG
F pT q Ñ F pT 1q of AT 1G -modules.

We will write LocSyspre
G pXq to denote the full subcategory of ModAX

spanned by the
G-pretempered local systems.

Variant 5.1.4. Let A be an E8-ring, let G be a preoriented P-divisible group over
A, and let X be a space. We define a G-pretempered local system on X to be a
G-pretempered local system on the orbispace Xp´q represented by X (Example 3.1.6).
We let LocSyspre

G pXq “ LocSyspre
G pXp´qq denote the 8-category of G-pretempered

local systems on X.

Example 5.1.5. Let G be a preoriented P-divisible group over an E8-ring A and let
X be an orbispace. Then AX is a G-pretempered local system on X (when viewed as a
module over itself). We will refer to AX as the trivial G-pretempered local system. In
the special case where X “ Xp´q is the orbispace represented by a space X, we will
denote AX by AX .
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Remark 5.1.6 (Pullback of G-Pretempered Local Systems). Let f : X Ñ Y be a
morphism of orbispaces. Then composition with f induces a functor of 8-categories
F : T{X Ñ T{Y which is compatible with the projection to T . Precomposition with
F then induces a functor f˚ : ModAY

Ñ ModAX
which restricts to a functor of full

subcategories
f˚ : LocSyspre

G pYq Ñ LocSyspre
G pXq.

If F is a G-pretemprered local system on Y, then f˚F is a G-pretempered local
system on X which we will refer to as the pullback of F along f . Concretely, it is
given by the formula

pf˚F qpT p´q
η
ÝÑ Xq “ F pT p´q

f˝η
ÝÝÑ Yq.

Remark 5.1.7. Let X be an orbispace, and suppose we are given a family of maps
tfα : Xα Ñ Xu with the property that, for every object T P T , the induced map

ž

α

π0pXT
αq Ñ π0pXT

q

is surjective. Let F be an AX-module object of the functor 8-category FunpT op
{X , Spq.

If each pullback f˚α F is a G-pretempered local system on Xα, then F is a G-
pretempered local system on X.

In the sequel, we will need a more refined version of Remark 5.1.6, which allows us
to view the construction X ÞÑ LocSyspre

G pXq as a functor of 8-categories.

Construction 5.1.8. Let ModpSpq denote the 8-category whose objects are pairs
pB,Mq, where B is an E8-ring and M is a B-module spectrum. The construction
pB,Mq ÞÑ B then determines a forgetful functor q : ModpSpq Ñ CAlgpSpq “ CAlg.

Let G be a preoriented P-divisible group over an E8-ring A, and let T be an
8-category equipped with a functor T Ñ T . We let FunCAlgpT

op
,ModpSpqq denote

the 8-category given by the fiber product

FunpT op
,ModpSpqq ˆFunpT op

,CAlgq tAGu,

so that the objects of FunCAlgpT
op
,ModpSpqq can be identified with functors F which

fit into a commutative diagram

T
op F //

��

ModpSpq

��
T op AG // CAlg .
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Note that, if T Ñ T is a right fibration classified by a functor X : T op Ñ S, then
T is equivalent to the 8-category T{X of Notation 5.1.1. In this case, we obtain an
equivalence of 8-categories ModAX

» FunCAlgpT
op
,ModpSpqq. We let LocSyspre

G pT q

denote the essential image of LocSyspre
G pXq under this equivalence.

Let Q denote the ordinary category whose objects are simplicial sets T equipped
with a right fibration T Ñ T . We view Q as a simplicially enriched category, with

HomQpT ,T
1
q‚ “ HompSet∆q{T pT ˆ p∆‚

q
op,T

1
q.

Then the homotopy coherent nerve Nhc
pQq is an 8-category. Moreover, the construc-

tion T ÞÑ LocSyspre
G pT q determines a simplicially enriched functor from Qop to the

category of (large) simplicial sets. Passing to homotopy coherent nerves, we obtain a
functor of 8-categories

θ : Nhc
pQqop

ÑyCat8 T ÞÑ FunCAlgpT
op
,ModpSpqq.

Note that there is a canonical equivalence of 8-categories

ψ : OS “ FunpT op,Sq » Nhc
pQq,

which carries each orbispace X to a right fibration T Ñ T which is classified by
the functor X : T op Ñ S and can therefore be identified with the 8-category
T{X of Notation 5.1.1 (see §HTT.5.1.1 ). Composing this equivalence with θ, we
obtain a functor OSop

Ñ yCat8. We will abuse notation by denoting this functor
by LocSyspre

G p‚q : OSop
Ñ yCat8. By construction, its value on an orbispace X is

equivalent to the 8-category LocSyspre
G pXq of Construction 5.1.3, and its value on a

morphism of orbispaces is given by the construction of Remark 5.1.6.

Proposition 5.1.9. Let A be an E8-ring and let G be a preoriented P-divisible group
over A. Then the functor

LocSyspre
G p‚q : OSop

ÑyCat8

of Construction 5.1.8 preserves small limits.

Proof. Let us abuse notation by identifying OS “ FunpT op,Setq with the 8-category
Nhc
pQq appearing in Construction 5.1.8. It follows from Theorem HTT.2.2.1.2 that

the functor
Nhc
pQqop

ÑyCat8 T ÞÑ FunCAlgpT
op
,ModpSpqq
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preserves small limits. We wish to show that the subfunctor T ÞÑ LocSyspre
G pT q has

the same property. To prove this, suppose we are given a diagram tT αu in Nhc
pQqop

having a colimit T . We then obtain a commutative diagram of 8-categories

LocSyspre
G pT q

θ //

��

lim
ÐÝα

LocSyspre
G pT αq

��

FunCAlgpT
op
,ModpSpqq θ1 // lim

ÐÝα
FunCAlgpT

op
α ,ModpSpqq,

where θ1 is an equivalence of 8-categories and the vertical maps are inclusions of
full subcategories. To show that the upper horizontal map is an equivalence, it will
suffice to show that the diagram is a pullback square, which follows immediately from
Remark 5.1.7.

Warning 5.1.10. The functor

Sop
ÑyCat8 X ÞÑ LocSyspre

G pXq

generally does not carry colimits of spaces to limits of 8-categories. However, it does
carry coproducts in S to products of 8-categories (see Remark 3.1.7).

It follows from Proposition 5.1.9 that the functor X ÞÑ LocSyspre
G pXq is determined

by its restriction along the Yoneda embedding

T Ñ OS T ÞÑ T p´q.

We now describe this restriction more explicitly.

Notation 5.1.11. Let T be an object of T . We let CovpT q denote the category of
connected covering spaces T0 Ñ T . Note that if we fix a base point t P T , then the
construction

T0 ÞÑ T0 ˆT ttu

induces an equivalence of categories CovpT q Ñ Orbitpπ1pT qq, where Orbitpπ1pT qq

denotes the orbit category of the finite abelian group π1pT q (Notation 3.2.7). We will
identify CovpT q with a full subcategory of the 8-category T{T » T{T p´q of Notation
5.1.1, spanned by those maps T0 Ñ T for which the induced map π1pT0q Ñ π1pT q is a
monomorphism of finite abelian groups.

If G is a preoriented P-divisible group over an E8-ring A, we let AG,T denote the
composite functor

CovpT qop ãÑ T op
{T Ñ T op AG

ÝÝÑ CAlg,
which we regard as a commutative algebra object of 8-category FunpCovpT qop, Spq.
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Proposition 5.1.12. Let G be a preoriented p-divisible group over an E8-ring A,
and let T be an object of T . Then composition with the inclusion CovpT q ãÑ T{T
induces an equivalence of 8-categories

φ : LocSyspre
G pT q Ñ ModAG,T pFunpCovpT qop, Spqq.

Proof. Let q : ModpSpq Ñ CAlg be as in Construction 5.1.8, so that we can identify
φ with the restriction map

LocSyspre
G pT q ãÑ FunCAlgpT

op
{T ,ModpSpqq Ñ FunCAlgpCovpT qop,ModpSpqq.

By virtue of Proposition HTT.4.3.2.15 , it will suffice to prove the following:

p˚q Let F P FunCAlgpT
op
{T ,ModpSpqq. Then F is a G-pretempered local system on

T if and only if it is a q-left Kan extension of the restriction F |CovpT qop .

To prove this, we first note that the inclusion CovpT q ãÑ T{T admits a left adjoint
U . Concretely, U carries an object T 1 P T{T to another object UpT 1q P T{T , which is
characterized up to equivalence by the existence of a diagram

T 1
µT 1
ÝÑ UpT 1q

νT 1
ÝÑ T,

where µ is surjective on fundamental groups and ν is injective on fundamental groups.
It follows that F P FunCAlgpT{T

op,ModpSpqq is a q-left Kan extension of F |CovpT qop if
and only if, for every object T 1 P T{T , it carries µT 1 to a q-coCartesian morphism of the
8-category ModpSpq. More concretely, this amounts to the condition that F induces
an equivalence of AT 1G -modules AT 1GbAUpT

1q

G
F pUpT 1qq Ñ F pT 1q. The “only if” direction

of p˚q follows immediately from the definitions. For the converse, suppose that F pµT 1q

is an equivalence for each object T 1 P T{T ; we wish to show that F satisfies condition
pAq of Construction 5.1.3. Let α : T 2 Ñ T 1 be a morphism in T{T with connected
homotopy fibers. Then α induces an homotopy equivalence Upαq : UpT 2q Ñ UpT 1q. It
follows that we can identify µT 2 with the composition µT 1 ˝α. Since F carries µT 1 and
µT 2 to q-coCartesian morphisms of ModpSpq, it must also carry α to a q-coCartesian
morphism of ModpSpq (Proposition HTT.2.4.1.7 ).

Example 5.1.13. If T P T is contractible, then CovpT q is equivalent to the cate-
gory with a single object and a single morphism. Applying Proposition 5.1.12, we
deduce that the evaluation functor F ÞÑ F pT q is an equivalence of 8-categories
LocSyspre

G pT q » ModA (for any preoriented P-divisible group G over A).
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Example 5.1.14. Let p be a prime number and let T “ BCp be the classifying space
of the cyclic group Cp of order p. Then, up to isomorphism, the category CovpT q has
exactly two objects:

• The covering map ECp Ñ BCp, whose automorphism group is the cyclic group
Cp.

• The space T “ BCp itself, which is a final object of CovpT q.

The object ECp spans a full subcategory of CovpT q which we can identify with the
classifying space BCp itself, so that the entire category CovpT q can be identified with
the cone pBCpqŹ.

Let G be a preoriented P-divisible group over an E8-ring A. Then the 8-category
ModAG,T pFunpCovpT qop, Spqq is easy to describe: its objects can be identified with
pairs pM, ζ : N ÑMhCpq where M is a Cp-equivariant object of the 8-category ModA,
N is a module over the tempered function spectrum A

BCp
G , and ζ : N Ñ MhCp is a

morphism of ABCpG -modules (where we regard MhCp as a module over ABCpG via the
Atiyah-Segal comparison map A

BCp
G Ñ ABCp).

Variant 5.1.15. Let X be any orbispace. Then the underlying space |X| of Notation
3.1.5 can be identified with a full subcategory of the 8-category T{X, spanned by
those objects T P T{X whose underlying space is contractible. If G is a preoriented
P-divisible group over an E8-ring A, then precomposition with the inclusion functor
|X| ãÑ T{X supplies a forgetful functor

LocSyspre
G pXq Ñ Funp|X|,ModAq “ LocSysAp|X|q.

In the special case where X “ X is the constant orbispace associated to a space X
(Example 3.1.8), this forgetful functor supplies an equivalence of categories

LocSyspre
G pXq » LocSysAp|X|q.

To prove this, we can use Proposition 5.1.9 to reduce to the case where X is contractible,
in which case it follows from Example 5.1.13.

Remark 5.1.16. Let X be a space. Applying Variant 5.1.15 to the representable
orbispace X “ Xp´q of Example 3.1.6, we obtain a forgetful functor LocSyspre

G pXq Ñ

LocSysApXq from G-pretempered local systems on X to the 8-category of local
systems of A-modules on X. Under the identification of Variant 5.1.15, this forgetful
functor is given by pullback along the map of orbispaces X Ñ Xp´q. In particular,
it is an equivalence if X is a finite space (Remark 3.1.14). However, it is not an
equivalence in general.
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Example 5.1.17. Let p be a prime number, let T “ BCp be the classifying space of
the cyclic group Cp of order p, and let T0 “ ECp be its universal cover. Let F and
G be G-pretempered local systems on T , and let F 0,G 0 P LocSysApT q denote their
images under the forgetful functor of Remark 5.1.16. Using the analysis of Example
5.1.14, we obtain a pullback diagram of spaces

MapLocSysGpT q
pF ,G q //

��

MapMod
ATG
pF pT q,G pT qq

��
MapLocSysApT qpF 0,G 0q //MapMod

ATG
pF pT q,G pT0q

hCpq.

In particular, we have a fiber sequence of mapping spaces

MapLocSysGpT q
pF ,G q Ñ MapLocSysApT qpF 0,G 0q Ñ MapMod

ATG
pF pT q, cofibpζqq

where ζ denotes the canonical map G pT q Ñ G pT0q
hCp .

Corollary 5.1.18. Let G be a preoriented p-divisible group over an E8-ring A, and
let T be an object of T . Then:

p1q The 8-category LocSyspre
G pT q is stable and presentable.

p2q For each object T 1 P T{T , the evaluation functor

LocSyspre
G pT q Ñ ModAT 1G

F ÞÑ F pT 1q

preserves small limits and colimits.

Proof. Since the 8-category ModA is stable and presentable, the functor 8-category
FunpCovpT qop,ModAq has the same properties. Proposition 5.1.12 allows us to identify
LocSyspre

G pT q with the 8-category of AG,T -module objects of FunpCovpT qop,ModAq.
It is therefore also stable (by virtue of Proposition HA.7.1.1.4 ) and presentable (by
virtue of Corollary HA.4.2.3.7 ). This proves p1q. To prove p2q, let T 1 be an object of T

and let UpT 1q be as in the proof of Proposition 5.1.12. Then the functor F ÞÑ F pT 1q

is given by the composition

LocSyspre
G pT q

F ÞÑF pUpT 1qq
ÝÝÝÝÝÝÝÝÑ Mod

A
UpT 1q
G

AT
1

GbAUpT
1q

G
‚

ÝÝÝÝÝÝÝÝÑ ModAT 1G
.

Since AT
1

G is finite flat over AUpT
1q

G , the second functor preserves small limits and
colimits. We can therefore replace T 1 by UpT 1q and thereby reduce to the case where
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T 1 belongs to CovpT q, in which case the desired result follows from the fact that the
forgetful functor ModAG,T pFunpCovpT qop, Spqq Ñ ModA preserves small limits and
colimits (Corollaries HA.4.2.3.3 and HA.4.2.3.5 ).

Corollary 5.1.19. Let G be a preoriented p-divisible group over an E8-ring A. Then:

p1q For every orbispace X, the 8-category LocSyspre
G pXq is stable and presentable.

p2q For every orbispace X and every object T P T{X, the evaluation functor

LocSyspre
G pXq Ñ ModATG F ÞÑ F pT q

preserves small limits and colimits.

p3q For every morphism of orbispaces f : X Ñ Y, the pullback functor f˚ :
LocSyspre

G pYq Ñ LocSyspre
G pXq preserves small limits and colimits.

Proof. To prove p1q, we observe that every orbispace X can be written as a small
colimit lim

ÝÑα
Xα, where each Xα is representable by an object T p´qα P T (in fact, it

has a canonical representation in this form, where the diagram is indexed by the
8-category T{X). Then Proposition 5.1.9 supplies an equivalence of 8-categories
LocSyspre

G pXq » lim
ÐÝα

LocSyspre
G pXαq. Corollary 5.1.19 implies that each of the 8-

categories LocSyspre
G pXαq is stable and presentable and that each of the transition

functors LocSyspre
G pXαq Ñ LocSyspre

G pXβq preserves small limits and colimits. It follows
that LocSyspre

G pXq is also stable (Theorem HA.1.1.4.4 ) and presentable (Proposition
HTT.5.5.3.13 ), and that the pullback functors LocSyspre

G pXq Ñ LocSyspre
G pXαq preserve

small limits and colimits. This immediately implies p1q and p2q, and the implication
p2q ñ p3q follows from the definition of pullback for G-pretempered local systems.

Remark 5.1.20 (Relationship with G-Tempered Cohomology). Let A be an E8-
ring and let G be a preoriented P-divisible group over A. For every orbispace X,
the 8-category LocSyspre

G pXq is a presentable A-linear 8-category. In particular, to
every pair of objects F ,G P LocSyspre

G pXq, we can associate an A-module spectrum
MappF ,G q which classifies maps from F into G in the following sense: for every
A-module spectrum M , we have a canonical homotopy equivalence

MapModApM,MappF ,G qq » MapLocSyspre
G pXqpM bA F ,G q.

In the special case F “ G “ AX, we obtain an associative algebra MappAX, AXq. It is
not difficult see that the construction X ÞÑ MappAX, AXq determines a functor OSop

Ñ
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AlgA. This functor carries colimits of orbispaces to limits in AlgA (Proposition 5.1.9)
and carries each representable orbispace T p´q to the tempered function spectrum ATG
(by Proposition 5.1.12). It follows that we can functorially identify MappAX, AXq with
the G-tempered function spectrum AX

G of Construction 4.0.3. Passing to homotopy
groups, we obtain a canonical isomorphism

A˚GpXq » Ext˚LocSyspre
G pXqpAX, AXq,

depending functorially on X.

5.2 The 8-Category LocSysGpXq
Let A be an E8-ring and let G be a preoriented P-divisible group over A. In

this section, we associate to each orbispace X a full subcategory LocSysGpXq Ď
LocSyspre

G pXq, whose objects we will refer to as G-tempered local systems on X. First,
we need to establish some notation.

Notation 5.2.1. Let T be an object of the 8-category T : that is, a space which
is homotopy equivalent to BH, for some finite abelian group H. Let f : T0 Ñ T be
a map which exhibits T0 as a connected covering space of T . Then T0 is homotopy
equivalent to the classifying space BH0, where H0 Ď H is the subgroup given by the
image of the map π1pT0q Ñ π1pT q. In particular, T0 is also an object of T . We let
AutpT0{T q denote the group of deck transformations of the covering T0 Ñ T . Then
AutpT0{T q can be identified with the quotient group H{H0: in particular, it is also a
finite abelian group.

Let X be an orbispace, and suppose we are given an object T P T{X corresponding to
a pair pT, η : T p´q Ñ Xq. Then we can lift f to a morphism T 0 Ñ T in the 8-category
T{X, where T 1 is the pair pT0, f ˝ η : T 1p´q Ñ Xq. Moreover, the automorphism group
AutpT0{T q acts on the object T 0.

Let G be a preoriented P-divisible group over an E8-ring A. Then f induces
a surjective homomorphism of tempered cohomology rings A0

GpT q Ñ A0
GpT0q. We

will denote the kernel of this homomorphism by IpT0{T q Ď A0
GpT q and refer to it

as the relative augmentation ideal of the map T0 Ñ T . Note that IpT0{T q is a
projective module of finite rank over the commutative ring π0pAq, and is therefore
finitely generated as an ideal of the ring A0

GpT0q.

Remark 5.2.2. Let H be a finite abelian group. Then the canonical map EH Ñ BH

is a covering, and the relative augmentation ideal IpEH{BHq Notation 5.2.1 coincides
with the augmentation ideal IH of Notation 4.2.7.
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Remark 5.2.3. Let T0 Ñ T be a covering map in the 8-category T , and let T 1 Ñ T

be a morphism in T with connected homotopy fibers (so that the map π1pT
1q Ñ π1pT q

is surjective). Then the fiber product T 10 “ T0 ˆT T
1 is a connected covering space of

T 1, and therefore also belongs to T . If G is a preoriented P-divisible group over an
E8-ring A, then the pullback diagram

T 10 //

��

T 1

��
T0 // T

induces a pullback diagram of affine schemes

SpecpA0
GpT

1
0qq

//

��

SpecpA0
GpT

1qq

��
SpecpA0

GpT0qq // SpecpA0
GpT qq,

where the horizontal maps are closed immersions and the vertical maps are finite
flat. It follows that the relative augmentation ideal IpT 10{T 1q Ď A0

GpT
1q is equal to

IpT0{T qA
0
GpT

1q: that is, it is generated by the image of the relative augmentation
ideal IpT0{T q Ď A0

GpT q.

Definition 5.2.4 (Tempered Local Systems). Let A be an E8-ring, let G be a
preoriented P-divisible group over A, let X be an orbispace, and let F P LocSyspre

G pXq
be a G-pretempered local system on X. We say that F is a G-tempered local system
if it satisfies the following additional condition:

pBq Let T be an object of T{X and let T0 be a connected covering space of T .
Then the canonical map F pT q Ñ F pT0q

hAutpT0{T q exhibits F pT0q
hAutpT0{T q as an

IpT0{T q-completion of F pT q, where IpT0{T q is the relative augmentation ideal
of Notation 5.2.1.

We let LocSysGpXq denote the full subcategory of LocSyspre
G pXq spanned by the G-

tempered local systems on X.

Remark 5.2.5. In the case where G is oriented, we will give alternate characterization
of the class of tempered local systems in §5.5; see Theorem 5.5.1.

Variant 5.2.6. Let A be an E8-ring, let G be a preoriented P-divisible group over
A, and let X be a space. We define a G-tempered local system on X is a G-tempered
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local system on the orbispace Xp´q represented by X (Example 3.1.6). We let
LocSysGpXq “ LocSysGpX

p´qq denote the 8-category of G-tempered local systems
on X.

Remark 5.2.7. In the situation of axiom pBq of Definition 5.2.4, note that any
AT0

G -module M is automatically IpT0{T q-complete when viewed as a ATG-module
(since the homotopy groups of M are annihilated by the relative augmentation ideal
IpT0{T q). Since the collection of IpT0{T q-complete ATG-modules is closed under limits,
it follows that the homotopy fixed point spectrum F pT0q

hAutpT0{T q is automatically
IpT0{T q-complete. We may therefore replace pBq by the following a priori weaker
condition:

pB1q The fiber of the canonical map F pT q Ñ F pT0q
hAutpT0{T q is IpT0{T q-local.

Remark 5.2.8. Let G be a preoriented P-divisible group over an E8-ring A, let X
be an orbispace, and let F P LocSyspre

G pXq be a G-pretempered local system on X.
Then condition pBq of Definition 5.2.4 is equivalent to the following a priori weaker
condition:

pB2q Let T be an object of T{X and let T0 be a connected covering space of T for
which the automorphism group AutpT0{T q is isomorphic to Cp for some prime
number p. Then the fiber of the canonical map F pT q Ñ F pT0q

hAutpT0{T q is
IpT0{T q-local.

The implication pBq ñ pB2q is immediate. To prove the reverse implication, we note
that every covering map T0 Ñ T in T factors as a composition

T0 Ñ T1 Ñ ¨ ¨ ¨ Ñ Tn “ T,

where each Tk´1 is a connected p-fold covering space of Tk for some prime number p
(which might depend on k). It follows that the fiber of the canonical map F pT q Ñ

F pT0q
hAutpT0{T q can be written as a composition of maps

ξk : F pTkq
hAutpTk{T q Ñ F pTk´1q

hAutpTk´1{T q.

By virtue of Remark 5.2.7, it will suffice to show that each of the fibers fibpξkq
is IpT0{T q-local. Note that the fibpξkq can be identified with the homotopy fixed
points for the action of AutpTk{T q on fibpθkq, where θk denotes the canonical map
F pTkq Ñ F pTk´1q

hAutpTk´1{Tkq. Assumption pB2q guarantees that fibpθkq is IpTk´1{Tkq-
local when regarded as an ATkG -module spectrum, and therefore IpTk´1{T q-local when
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regarded as an ATG-module spectrum. It now suffices to observe that every ATG-
module which is IpTk´1{T q-local is also IpT0{T q-local (since IpTk´1{T q is contained
in IpT0{T q).

Remark 5.2.9. Let G be a preoriented P-divisible group over an E8-ring A and let f :
X Ñ Y be a morphism of orbispaces. Then the pullback functor f˚ : LocSyspre

G pYq Ñ
LocSyspre

G pXq of Remark 5.1.6 carries G-tempered local systems on Y to G-tempered
local systems on X and therefore restricts to a functor LocSysGpYq Ñ LocSysGpXq,
which we will also denote by f˚.

Remark 5.2.10. Let G be a preoriented P-divisible group over an E8-ring A and
let F P LocSyspre

G pXq be a G-pretempered local system on an orbispace X. Suppose
that there exists a collection of orbispace morphisms fα : Xα Ñ X with the following
properties:

• For every object T P T , the induced map
š

α π0pXT
αq Ñ π0pXq is surjective.

• Each pullback f˚α F is a G-tempered local system on Xα.

Then F is a G-tempered local system on X.

Remark 5.2.11. Let G be a preoriented P-divisible group over an E8-ring A. Then
the construction X ÞÑ LocSysGpXq determines a functor

LocSysGp‚q : OSop
ÑyCat8

which carries (small) colimits of orbispaces to (small) limits of 8-categories: this
follows from Proposition 5.1.9 and Remark 5.2.10.

We now summarize some formal properties of Definition 5.2.4:

Proposition 5.2.12. Let G be a preoriented P-divisible group over an E8-ring
and let X be an orbispace. Then LocSysGpXq is a presentable stable 8-category.
Moreover, the inclusion functor LocSysGpXq ãÑ LocSyspre

G pXq admits a left adjoint
L : LocSyspre

G pXq Ñ LocSysGpXq.

Proof. Choose a set of representatives for all equivalence classes of pairs u “ pT, f :
T0 Ñ T q, where T is an object of T{X and f : T0 Ñ T exhibits T0 as a connected
covering space of T . For every such pair u, let φu : LocSysGpXq Ñ ModATG be the
functor given by

φupF q “ fibpF pT q Ñ F pT0q
hAutpT0{T qq.
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The functor φu is accessible and preserves small limits. Let Cu denote the full
subcategory of LocSyspre

G pXq spanned by those objects F such that φupF q is IpT0{T q-
local. Applying Lemma HTT.5.5.4.17 , we deduce that Cu is a strongly reflective
subcategory of LocSyspre

G pXq. Note that LocSysGpXq is given by the intersection
Ş

u Cu.
Applying Lemma HTT.5.5.4.18 , we deduce that LocSysGpXq is a strongly reflective
subcategory of LocSyspre

G pXq: that is, the 8-category LocSysGpXq is presentable and
the inclusion LocSysGpXq ãÑ LocSyspre

G pXq admits a left adjoint. The stability of
LocSysGpXq follows from the observation that it closed under suspensions and limits
in the stable 8-category LocSyspre

G pXq.

Corollary 5.2.13. Let G be a preoriented p-divisible group over an E8-ring A and
let X be an orbispace. Then:

• For each object T P T{X, the evaluation functor

pF P LocSysGpXqq ÞÑ pF pT q P ModATGq

preserves small limits.

• For every map of orbispaces f : Y Ñ X, the pullback functor f˚ : LocSysGpXq Ñ
LocSysGpYq preserves small limits.

Proof. Combine Proposition 5.2.12 with Corollary 5.1.19.

5.3 Colimits of Tempered Local Systems
The 8-category LocSysGpXq can be defined for any preoriented P-divisible group

G and any orbispace X. However, it is particularly well-behaved when the P-divisible
group G is oriented.

Theorem 5.3.1. Let G be an oriented P-divisible group over an E8-ring A and let
X be an orbispace. Then the full subcategory LocSysGpXq Ď LocSyspre

G pXq is closed
under small colimits.

Corollary 5.3.2. Let G be an oriented P-divisible group over an E8-ring A. Then:
Then:

p1q For every orbispace X and every object T P T{X, the evaluation functor

LocSysGpXq Ñ ModATG F ÞÑ F pT q

preserves small colimits.
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p2q For every map of orbispaces f : X Ñ Y, the pullback functor f˚ : LocSysGpYq Ñ
LocSysGpXq preserves small colimits.

Proof. Combine Theorem 5.3.1 with Corollary 5.1.19.

Corollary 5.3.3. Let A be an E8-ring, let G be an oriented P-divisible group over A,
and let X be an orbispace. Then the 8-category LocSysGpXq is compactly generated.

Proof. For each object T P T{X, let eT : LocSysGpXq Ñ ModATG denote the evaluation
functor given by eT pF q “ F pT q. It follows from Corollaries 5.2.13 and 5.3.2 that eT
preserves small limits and colimits. Applying Corollary HTT.5.5.2.9 , we deduce that
eT admits a left adjoint FT . Using Proposition HTT.5.5.7.2 , we conclude that FT
carries compact objects of ModATG to compact objects of LocSysGpXq. Let C denote the
full subcategory of LocSysGpXq spanned by objects of the form FT pΣnATGq, where T is
an object of T{X and n is an integer. Let C denote the full subcategory of LocSysGpXq
generated by C under small colimits. Then C is compactly generated, so Corollary
HTT.5.5.2.9 implies that the inclusion C ãÑ LocSysGpXq admits a right adjoint U . To
prove that C “ LocSysGpXq, it will suffice to show that U is conservative. Let α be a
morphism in LocSysGpXq such that Upαq is an equivalence. Then Upfibpαqq » 0, so
that

MapLocSysGpXqpFT pΣ
nATGq, fibpαqq » Ω8´n fibpαqpT q

is contractible for every object T P T{X and every integer n. It follows that fibpαq » 0,
so that α is an equivalence.

Proof. Let G be an oriented P-divisible group over an E8-ring A, let X be an
orbispace, and let tFαu be a diagram taking values in the 8-category LocSysGpXq.
Let F “ lim

ÝÑα
Fα, where the colimit is formed in the larger 8-category LocSyspre

G pXq
of G-pretempered local systems. We wish to show that F is G-tempered. We will
prove this by verifying condition pB2q of Remark 5.2.8. Let T be an object of T{X
and let T0 be a connected covering space of T for which the automorphism group
AutpT0{T q is isomorphic to the cyclic group Cp, for some prime number p. We wish to
show that the fiber of the canonical map ξ : F pT q Ñ F pT0q

hAutpT0{T q is IpT0{T q-local.
For each index α, our assumption that Fα is G-tempered guarantees that the

natural map ξα : FαpT q Ñ FαpT0q
hAutpT0q has IpT0{T q-local fiber. Note that the map

ξ factors as a composition

lim
ÝÑ
α

FαpT q
lim
ÝÑ

ξα
ÝÝÝÑ lim

ÝÑ
α

FαpT0q
hAutpT0{T q θ

ÝÑ plim
ÝÑ

FαpT0qq
hAutpT0{T q.
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Since the collection of IpT0{T q-local ATG-modules is closed under colimits, the fiber of
the map lim

ÝÑα
ξαq is IpT0{T q-local (since the collection of J-local OGpT q-modules is

closed under small colimits). It will therefore suffice to show that fibpθq is IpT0{T q-
local.

By assumption, we have, we have a pullback diagram of spaces

T0 //

��

ECp

��
T // BCp

which induces a pushout diagram of tempered function spectra

AT0
G

//

��

A
ECp
G

��

ATG // A
BCp
G ,

where the horizontal maps are finite flat. It follows that the relative augmentation
ideal IpT0{T q is generated by the image of the augmentation ideal ICp Ď A0

GpBCpq. It
will therefore suffice to show that the fiber of θ is ICp-local when viewed as a module
over ABCpG .

Note that θ fits into a commutative diagram of fiber sequences

lim
ÝÑα

pFαpT0qhCpq

θ1

��

// lim
ÝÑα

pFαpT0q
hCpq

θ
��

// lim
ÝÑα

pFαpT0q
tCpq

θ2

��
plim
ÝÑα

FαpT0qqhCp
// plim
ÝÑα

FαpT0qq
hCp // plim

ÝÑα
FαpT0qq

tCp .

Here the map θ1 is an equivalence, so we have an equivalence of fibers fibpθq » fibpθ2q.
It will therefore suffice to show that fibpθ2q is ICp-local. In fact, both the domain and
codomain of θ2 are ICp-local, by virtue Proposition 4.6.8.

5.4 Tempered Local Systems on Classifying Spaces
Let G be a preoriented P-divisible group over an E8-ring A, and let T be an

object of T . According to Proposition 5.2.12, a G-pretempered local system F on T
can be recovered (functorially) from its restriction F 0 “ F |CovpT qop to the category
CovpT q of connected covering spaces of T . Our goal in this section is to show that,
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if G is oriented, then the condition that F is tempered has a simple formulation in
terms of F 0.

Notation 5.4.1. Let G be a preoriented P-divisible group over an E8-ring A, let
T be an object of T , and let AG,T : CovpT qop Ñ CAlg be the functor given by
pT0 P CovpT qq ÞÑ AT0

G . Let F 0 be an AG,T -module object of FunpCovpT qop, Spq. We
will say that F 0 is tempered if it satisfies the following condition:

pB10q Let T1 be a connected covering space of T , and let T0 be a connected covering
space of T0. Then the fiber of the canonical map F pT1q Ñ F pT0q

hAutpT0{T1q is
IpT0{T1q-local.

We let
Modtem

AG,T
pFunpCovpT qop, Spqq Ď ModAG,T pFunpCovpT qop, Spqq

denote the full subcategory spanned by the tempered AG,T -modules.

Proposition 5.4.2. Let G be an oriented P-divisible group over an E8-ring A and
let T be an object of T . Then the equivalence

LocSyspre
G pT q » ModAG,T pFunpCovpT qop, Spqq

of Proposition 5.1.12 restricts to an equivalence of 8-categories

LocSysGpT q Ñ Modtem
AG,T

pFunpCovpT qop, Spqq.

In other words, a G-pretempered local system F P LocSyspre
G pT q is G-tempered (in the

sense of Definition 5.2.4) if and only if the restriction F 0 “ F |CovpT qop is tempered
(in the sense of Notation 5.4.1).

Before giving the proof of Proposition 5.4.2, let us note some of its consequences.

Corollary 5.4.3. Let G be an oriented P-divisible group over an E8-ring A and let
X “ X be a constant orbispace (Example 3.1.8). Then every G-pretempered local
system on X is G-tempered. Consequently, the restriction procedure of Variant 5.1.15
determines an equivalence of 8-categories LocSysGpXq » LocSysApXq.

Proof. Using Remark 5.2.10, we can reduce to the case where X is contractible, in
which case the desired result follows from Proposition 5.4.2 (note that condition pB10q
of Notation 5.4.1) is vacuous when the space T is contractible).
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Corollary 5.4.4. Let G be an oriented P-divisible group over an E8-ring A, let X
be an orbispace, and let AX be the trivial G-pretempered local system on X. Then AX
is G-tempered.

Proof. Since the collection of G-tempered local systems is stable under pullback
(Remark 5.2.9), we can assume without loss of generality that X is the final object of
OS. In this case, the desired result follows from Corollary 5.4.3.

Example 5.4.5. Let G be an oriented P-divisible group over an E8-ring A and let p be
a prime number. Using Example 5.1.14, we can identify the objects of LocSyspre

G pBCpq

with pairs pM, ζ : N ÑMhCpq, where M is a Cp-equivariant object of the 8-category
ModA and ζ is a morphism of ABCpG -modules. Under this identification, LocSysGpBCpq

corresponds to the full subcategory spanned by those pairs pM, ζ : N ÑMhCpq where
ζ exhibits MhCp as the completion of N with respect to the augmentation ideal
ICp Ď A0

GpBCpq.

Proof of Proposition 5.4.2. Let G be an oriented P-divisible group over an E8-ring
A, let T be an object of T , and let F be a G-pretempered local system on T . It
follows immediately from the definitions that if F is G-tempered (in the sense of
Definition 5.2.4), then the restriction F 0 “ F |CovpT qop is tempered (in the sense
of Notation 5.4.1). Conversely, assume that F 0 is tempered; we will show that F

satisfies condition pB2q of Remark 5.2.8. Choose any morphism T 2 Ñ T in T , and
let β : T 20 Ñ T 2 exhibit T 20 as a connected covering space of T 2 whose automorphism
group AutpT 20 {T 2q is cyclic of order p, for some prime number p. We wish to show
that the fiber of the canonical map

θ : F pT 2q Ñ F pT 20 q
hAutpT 20 {T 2q

is local with respect to the ideal the ideal IpT 20 {T 2q Ď A0
GpT

2q.
Form a commutative diagram in T

T 20 //

β
��

T 10

γ

��
T 2 //

α
  

T 1

��
T

where the vertical maps are finite coverings the horizontal maps have connected
homotopy fibers. Since β has degree p, the map γ has degree either 1 or p. We
consider these cases separately:
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p1q Suppose that γ has degree p: that is, the upper square in the preceding diagram
above is a pullback. Then we can identify AutpT 20 {T 2q with AutpT 10{T 1q, and
A
T 20
G with the tensor product AT 2G bAT 1G

A
T 10
G . Invoking our assumption that F is

G-pretempered, we can identify θ with the natural map

AT
2

G bAT 1G
F pT 1q Ñ pA

T 20
G b

A
T 10
G

F pT 10qq
hAutpT 20 {T 2q

» pAT
2

G bAT 1G
F pT 10qq

hAutpT 10{T 1q

» AT
2

G bAT 1G
F pT 10q

hAutpT 10{T 1q;

here the second equivalence follows from the observation that AT 2G is finite flat as a
module over AT 1G . It follows that the fiber of θ is given by AT 2G bAT 1G

fibpµq, where µ
denotes the canonical map F pT 1q Ñ F pT 10q

hAutpT 10{T 1q. Our assumption that F 0

is tempered guarantees that fibpµq is local with respect to the ideal IpT 10{T 1q, so
that AT 2G bAT 1G

fibpµq is local with respect to the ideal IpT 10{T 1qA0
GpT

2q “ IpT 20 {T
2q

(see Remark 5.2.3).

p2q Suppose that γ has degree 1: that is, T 10 is isomorphic to T 1. In this case, our
assumption that F is G-pretempered allows us to identify θ with the canonical
map

AT
2

G bAT 1G
F pT 1q Ñ pA

T 20
G bAT 1G

F pT 1qqhAutpT 20 {T 2q.

Since T 20 is a connected cyclic p-fold covering map of T 2, there is a pullback
diagram of spaces

T 20 //

��

ECp

��
T 2 // BCp,

where the horizontal maps have connected homotopy fibers. It follows that we can
identify AT

2
0

G with the tensor product AT 2G b
A
BCp
G

A
ECp
G . Set M “ AT

2

G bAT 1G
F pT 1q

and regard M as module over the tempered function spectrum A
BCp
G . Then θ

can be identified with the natural map M Ñ pA
ECp
G b

A
BCp
G

MqhCp . Applying
Lemma 4.6.12 (and Theorem 4.6.2), we deduce that fibpθq is ICp-local when
viewed as an A

BCp
G -module spectrum. It is therefore IpT 20 {T 2q “ ICpA

0
GpT

2q

when viewed as an AT
2

G -module spectrum.
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5.5 Recognition Principle for Tempered Local Systems
We now provide an alternate characterization of tempered local systems for oriented

P-divisible groups.

Theorem 5.5.1. Let G be an oriented P-divisible group over an E8-ring A and let
F be a G-pretempered local system on an orbispace X. Then F is G-tempered if and
only if it satisfies the following condition:

p˚q Let T P T{X, let T0 P CovpT q be a connected covering space for which the
automorphism group AutpT0{T q is a cyclic group of order p, and let M denote the
cofiber of the multiplication map AT0

G bATG
F pT q Ñ F pT0q. Then multiplication

by p is an equivalence from M to itself, and the action of AutpT0{T q on π˚pMq

has no nonzero fixed points.

Before giving the proof of Theorem 5.5.1, let us note some of its consequences.

Corollary 5.5.2. Let G be an oriented P-divisible group over an E8-ring A, let X
be an orbispace, and let F be an object of ModAX

. Suppose that, for every morphism
T 1 Ñ T in T{X, the induced map AT

1

G bATG
F pT q Ñ F pT 1q is an equivalence. Then

F is a G-tempered local system on X.

Corollary 5.5.2 admits a weak converse:

Corollary 5.5.3. Let G be an oriented P-divisible group over an E8-ring A, let p be
a prime number, and let X be an orbispace which satisfies the following condition:

p˚q For every finite abelian group H, the canonical map XBHppq Ñ XBH is surjective
on connected components.

Let F be an object of the 8-category ModAX
which is p-nilpotent (that is, the localiza-

tion F r1{ps vanishes). Then F is a G-tempered local system if and only if, for every
morphism T 1 Ñ T in T{X, the induced map AT 1G bATG

F pT q Ñ F pT 1q is an equivalence.

Remark 5.5.4. Condition p˚q of Corollary 5.5.3 is automatic in the following cases:

• The orbispace X has the form Xp´q, where X is a p-finite space.

• The orbispace X has the form X{{H, where H is a finite p-group and X is an
H-space.
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Proof of Corollary 5.5.3. The “if” direction of Corollary 5.5.3 follows from Corollary
5.5.2. Conversely, suppose that F is G-tempered. Let us say that a morphism
f : T 1 Ñ T in T{X is good if the induced map θ : AT 1G bATG

F pT q Ñ F pT 1q is an
equivalence. Note that the collection of good morphisms in T{X is closed under
composition. We wish to show that every morphism f : T 1 Ñ T in T{X is good. Since
F is G-pretempered, this condition is automatic when f has connected homotopy
fibers. In general, the morphism f factors as a composition T 1

f 1
ÝÑ T0

f2
ÝÑ T , where

f2 is a covering map and f 1 has connected homotopy fibers. It will therefore suffice
to show that every covering map T0 Ñ T is good. Proceeding by induction on the
order of the finite group AutpT0{T q, we can reduce to the case where AutpT0{T q is a
cyclic group of prime order. If AutpT0{T q has order p, then Theorem 5.5.1 guarantees
that multiplication by p induces an equivalence from the cofiber cofibpθq to itself.
Since F is p-nilpotent, it follows that θ is an equivalence. To handle the case where
AutpT0{T q has order prime to p, we apply hypothesis p˚q to factor the map T Ñ X
as a composition T

g
ÝÑ Tppq Ñ X, where π1pTppqq is the p-local factor of π1pT q. Then

both g and g|T0 have connected homotopy fibers, and are therefore good (since F is
G-pretempered). It follows that the covering map T0 Ñ T is also good.

Corollary 5.5.5. Let G be an oriented P-divisible group over an E8-ring A, let p be
a prime number, and let T be the classifying space of a finite abelian p-group. Then
evaluation on T induces an equivalence of 8-categories

LocSysNilppq
G pT q » ModNilppq

ATG
.

Here LocSysNilppq
G pT q denotes the full subcategory of LocSysGpT q spanned by the p-

nilpotent objects, and ModNilppq
ATG

Ď ModATG is defined similarly.

The proof of Theorem 5.5.1 will require the following:

Lemma 5.5.6. Let p be a prime number and let M be a Cp-equivariant object of the
8-category of spectra. Suppose that the p-completion of M is Epnq-local for some
n " 0. Then MhCp vanishes if and only if the map p : M ÑM is invertible and the
action of Cp on π˚pMq has no nonzero fixed points.

Proof. Note that if the map p : M ÑM is an equivalence, then the cohomology of Cp
with coefficients in π˚pMq vanishes in degrees ą 0. It follows that the canonical map
MhCp ÑM induces an isomorphism from π˚pM

hCpq to the fixed points for the action
of Cp on π˚pMq. This proves the “if” direction of Lemma 5.5.6. Conversely, suppose
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that the homotopy fixed point spectrum MhCp vanishes; we will complete the proof by
showing that the map p : M ÑM is an equivalence. Let N denote the p-completion
M^
ppq; we wish to show that N » 0. By assumption, there exists some integer n for

which the spectrum N is Epnq-local. Choose n to be as small as possible; we will
complete the proof by showing that n “ 0. Assume otherwise, so that n ą 0 and the
localization LKpnqpNq does not vanish. It follows from Theorem Ambi.5.4.3 that the
homotopy fixed point spectrum LKpnqpNq

hCp also does not vanish. This contradicts
the vanishing of MhCp , since the p-completion functor M ÞÑ M^

ppq commutes with
limits and the Kpnq-localization functor LKpnq commutes with limits when restricted
to Epnq-local spectra.

Proof of Theorem 5.5.1. Let F be a G-pretempered local system on an orbispace X.
Suppose we are given an object T P T{X, a connected covering space T0 P CovpT q, and
an isomorphism of finite groups AutpT0{T q » Cp for some prime number p. We will
prove that the following assertions are equivalent:

paq The fiber of the comparison map θ : F pT q Ñ F pT0q
hAutpT0{T q is IpT0{T q-local.

pbq Let ρ : AT0
G bATG

F pT q Ñ F pT0q be the canonical map. Then multiplication by
p induces an equivalence from fibpρq to itself, and the abelian group π˚pfibpρqq
contains no nonzero elements which are fixed by the action of the cyclic group
AutpT0{T q.

Allowing T and T0 to vary, this will show that F is a G-tempered local system if and
only if it satisfies condition p˚q of Theorem 5.5.1 (see Remark 5.2.8).

Note that the map θ factors as a composition

F pT q θ1
ÝÑ pAT0

G q
hAutpT0{T q bATG

F pT q

θ2
ÝÑ pAT0

G bATG
F pT qqhAutpT0{T q

θ3
ÝÑ F pT0q

hAutpT0{T q,

where θ3 is obtained from ρ by passing to homotopy fixed points for the action of
AutpT0{T q. Note that the fiber fibpθ1q is given by the tensor product

fibpATG Ñ pAT0
G q

hAutpT0{T qq bATG
F pT q,

which is IpT0{T q-local because the first factor is IpT0{T q-local (note that AX is a
G-tempered local system; see Corollary 5.4.4). The map θ2 fits into a commutative
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diagram of fiber sequences

pAT0
G qhAutpT0{T q bATG

F pT q //

��

pAT0
G bATG

F pT qqhAutpT0{T q

��

pAT0
G q

hAutpT0{T q bATG
F pT q θ2 //

��

pAT0
G bATG

F pT qqhAutpT0{T q

��

pAT0
G q

tAutpT0{T q bATG
F pT q // pAT0

G bATG
F pT qqtAutpT0{T q

where the upper horizontal map is an equivalence and the lower horizontal map
has IpT0{T q-local domain and codomain (Proposition 4.6.8). It follows that fibpθ2q
is also IpT0{T q-local. Note that spectra AT0

G bATG
F pT q and F pT0q are both AT0

G -
modules, and therefore IpT0{T q-complete when viewed as modules over ATG. Passing
to homotopy fixed points, we deduce that the domain and codomain of θ3 are both
IpT0{T q-complete. Consequently, the fiber fibpθ3q is IpT0{T q-local if and only if it
vanishes. It follows that paq can be restated as follows:

pa1q The map θ3 : pAT0
G bATG

F pT qqhAutpT0{T q Ñ F pT0q
hAutpT0{T q is an equivalence.

The equivalence of pa1q and pbq now follows from Lemma 5.5.6.

5.6 Extrapolation from Small Groups
Let A be an E8-ring and let G be an oriented P-divisible group over A. It follows

from Remark 5.2.11 that for any orbispace X, the 8-category LocSysGpXq can be
identified with the inverse limit

lim
ÐÝ
TÑX

LocSysGpT q,

indexed by the collection of all objects T P T equipped with a map of orbispaces
T p´q Ñ X. We now formulate a refinement of this result.

Notation 5.6.1. Let ~h “ thpupPP be a collection of nonnegative integers, indexed by
the set P of all prime numbers. We let T pď ~hq denote the full subcategory of T

spanned by those spaces of the form BH, where H is a finite abelian group with the
following additional property:

p˚q For each prime number p P P, the quotient H{pH has dimension ď hp when
regarded as a vector space over the finite field Fp.
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If G is a P-divisible group over an E8-ring A, we will say that G has height ď ~h
if, for each prime number p, the p-local summand Gppq has height ď hp.

Theorem 5.6.2. Let G be an oriented P-divisible group over an E8-ring A. Let
~h “ thpupPP be a collection of nonnegative integers such that G has height ď ~h. Then
the functor

OSop
ÑyCat8 X ÞÑ LocSysGpXq

is a right Kan extension of its restriction to T pď ~hqop Ď OSop. In other words, for
every orbispace X, the canonical map

LocSysGpXq Ñ lim
ÐÝ
TÑX

LocSysGpT q

is an equivalence of 8-categories, where T ranges over objects of T pď ~hq equipped
with a map of orbispace T p´q Ñ X.

Let us first note some consequences of Theorem 5.6.2.

Corollary 5.6.3. Let G be an oriented P-divisible group over an E8-ring A. Let
~h “ thpupPP be a collection of nonnegative integers such that G has height ď ~h. Then
the functor

OSop
Ñ CAlgA X ÞÑ AX

G

is a right Kan extension of its restriction to T pď ~hqop Ď OSop. In other words, for
every orbispace X, the canonical map

AX
G Ñ lim

ÐÝ
TÑX

ATG

is an equivalence of E8-algebras, where T ranges over objects of T pď ~hq equipped with
a map of orbispace T p´q Ñ X.

Proof. Let X be an orbispace and let AX P LocSyspre
G pXq be as in Example 5.1.5. Since

G is oriented, AX is G-tempered (Corollary 5.4.4). Combining Theorem 5.6.2 with
Remark 5.1.20, we obtain equivalences

AX
G » MappAX, AXq

» lim
ÐÝ

f :TÑX
Mappf˚AX, f

˚AXq

» lim
ÐÝ

f :TÑX
ATG;

here the limit is taken over objects T P T p~hq equipped with a map of orbispaces
f : T p´q Ñ X.
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Remark 5.6.4. In §7.6, we will discuss some more concrete variants of Corollary
5.6.3 which can be used to obtain information about the G-tempered cohomology ring
A˚GpXq: see Theorems 7.6.3 and 7.6.5.

Example 5.6.5. Let p be a prime number and let G be an oriented p-divisible group
over an E8-ring A. It follows from Theorem 5.6.2 and Corollary 5.6.3 that, for any
orbispace X, the canonical maps

LocSysGpXq Ñ lim
ÐÝ
TÑX

LocSysGpT q AX
G Ñ lim

ÐÝ
TÑX

ATG

are equivalences, where both limits are taken over the collection of maps T p´q Ñ X
where T is the classifying space of a finite abelian p-group.

Example 5.6.6. Let µP8 be the multiplicative P-divisible group, viewed as an
oriented P-divisible group over the complex K-theory spectrum KU (Construction
2.8.6). It follows from Theorem 5.6.2 and Corollary 5.6.3 that, for any orbispace X,
the canonical maps

LocSysGpXq Ñ lim
ÐÝ
TÑX

LocSysGpT q KUX
G Ñ lim

ÐÝ
TÑX

KUT
G

are equivalences, where both limits are taken over the collection of maps T p´q Ñ X
where T is the classifying space of a finite cyclic group.

Example 5.6.7. Let A be an E8-ring, let E be an oriented elliptic curve over A, and
let ErP8

s denote the torsion subgroup of E, regarded as an oriented P-divisible group
as in Construction 2.9.6. It follows from Theorem 5.6.2 and Corollary 5.6.3 that, for
any orbispace X, the canonical maps

LocSysErP8spXq Ñ lim
ÐÝ
TÑX

LocSysErP8spT q AX
ErP8s Ñ lim

ÐÝ
TÑX

ATErP8s

are equivalences, where both limits are taken over the collection of maps T p´q Ñ X
where T is the classifying space of a finite abelian group that can be generated by two
elements.

The proof of Theorem 5.6.2 is based on a reformulation of condition pBq appearing
in the definition of G-tempered local system (Definition 5.2.4). First, we need a
bit of terminology. Let R be an E8-ring and let K Ď | SpecpRq| be a cocompact
closed subset (that is, a closed subset with quasi-compact complement). Then K
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can be realized as the vanishing locus of a finitely generated ideal I Ď π0pRq. We
will say that an R-module spectrum M is K-complete (K-local, K-nilpotent) if it is
I-complete (I-local, I-nilpotent), in the sense of Definition SAG.II.4.3.1.1 (Definition
SAG.II.4.2.4.1 , Definition SAG.II.4.1.1.6 ). We say that a morphism of R-modules
M Ñ xM exhibits xM as the completion of M along K if it exhibits xM as the completion
of M with respect to I. We will be particularly interested in the case where R is
a tempered function spectrum ATG; in this case, there are several closed subsets of
| SpecpRq| of geometric interest.

Notation 5.6.8. Let G be a P-divisible group over an E8-ring A. For each finite
abelian group M , we let |GrM s| denote the underlying topological space of the finite
flat A-scheme representing the functor

CAlgA Ñ S B ÞÑ MapModZ
pM,GpBqq.

Note that for every subgroup M0 ĎM , the canonical map ιM0 : |GrM{M0s| Ñ |GrM s|
is a closed embedding. We let |GrM s|deg Ď |GrM s| denote the union of the images of
the maps ιM0 , where M0 ranges over all nontrivial subgroups of M . More informally,
|GrHs|deg is the closed subset of |GrM s| which parametrizes maps M Ñ G which are
degenerate in the sense that they annihilate some nonzero subgroup of M (at the level
of geometric points).

Now suppose that G is equipped with a preorientation. Let T be an object of T ,
and let M “ {π1pT q be the Pontryagin dual of the finite abelian group π1pT q, so that
we can identify |GrM s| with the Zariski spectrum | SpecpATGq|. We let | SpecpATGq|deg

denote the image of |GrM s|deg under this identification.

Theorem 5.6.9. Let G be a preoriented P-divisible group over an E8-ring A and let
T be an object of T . Then an object F P ModAG,T pFunpCovpT qop, Spqq is tempered
(in the sense of Notation 5.4.1) if and only if it satisfies the following condition, for
every object T 1 P CovpT q:

p˚q Let Cov˝pT 1q Ĺ CovpT 1q denote the full subcategory of CovpT 1q spanned by those
connected covering maps T 2 Ñ T 1 which are not homotopy equivalences. Then
the canonical map

F pT 1q Ñ lim
ÐÝ

T 2PCov˝pT 1qop
F pT 2q

exhibits lim
ÐÝT 2PCov˝pT 1qop F pT 2q as the completion of F pT 1q along the closed subset

| SpecpAT 1G q|
deg Ď | SpecpAT 1G q|.

174



Remark 5.6.10. In the situation of Theorem 5.6.9, the limit lim
ÐÝT 2PCov˝pT 1qop F pT 2q

is automatically complete for the closed subset | SpecpAT 1G q|
deg Ď | SpecpAT 1G q|. Con-

sequently, condition p˚q is satisfied if and only if the fiber of the map F pT 1q Ñ

lim
ÐÝT 2PCov˝pT 1qop F pT 2q is local with respect to | SpecpAT 1G q|

deg (that is, it arises from a
quasi-coherent sheaf on the complement of | SpecpAT 1G q|

deg).

Corollary 5.6.11. Let G be an oriented P-divisible group over an E8-ring A, let
X be an orbispace, and let F P LocSyspre

G pXq be a G-pretempered local system on X.
Then F is G-tempered if and only if, for each T P T{X, the following condition is
satisfied:

p˚1q Let Cov˝pT q Ĺ CovpT q denote the full subcategory of CovpT q spanned by those
connected covering maps T 1 Ñ T which are not homotopy equivalences. Then
the canonical map

F pT q Ñ lim
ÐÝ

T 1PCov˝pT qop
F pT 1q

exhibits lim
ÐÝT 1PCov˝pT 1qop F pT 1q as the completion of F pT q along the closed subset

| SpecpATGq|deg Ď | SpecpATGq|.

Proof of Theorem 5.6.2 from Theorem 5.6.9. Let LocSys1G : OSop
ÑyCat8 be a right

Kan extension of the functor

T pď ~hqop T ÞÑT p´q
ÝÝÝÝÝÑ OSop LocSysG

ÝÝÝÝÝÑyCat8,

given informally by LocSys1GpXq “ lim
ÐÝTÑX LocSysGpT q where the limit is taken over

objects T P T pď ~hq. We wish to show that for every orbispace X, the canonical map
LocSysGpXq Ñ LocSys1GpXq is an equivalence of 8-categories. By the transitivity of
Kan extensions (Proposition HTT.4.3.2.8 ), it will suffice to prove this in the special
case where X “ T p´q is representable by an object T P T . We proceed by induction
on the order of the finite group π1pT q. If T belongs to T pď ~hq, there is nothing
to prove. Otherwise, let T ˝

{T Ď T{T be the full subcategory spanned by those maps
T 1 Ñ T which are not surjective on fundamental groups. Then T ˝

{T contains every
map T 1 Ñ T where T 1 belongs to T pď ~hq. It follows that we can identify LocSys1GpT q
with the limit lim

ÐÝT 1PpT ˝
{T
qop LocSys1GpT 1q. Let Cov˝pT q be as in Theorem 5.6.9, so that

we can regard Cov˝pT q as a full subcategory of T ˝
{T . Moreover, the inclusion functor

Cov˝pT q ãÑ T ˝
{T has a left adjoint, and is therefore left cofinal. We have a commutative
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diagram of 8-categories

LocSysGpT q //

��

lim
ÐÝT 1PCov˝pT qop LocSysGpT

1q

��
LocSys1GpT q // lim

ÐÝT 1PCov˝pT qop LocSys1GpT 1q,

where the bottom horizontal map is an equivalence (by the preceding argument) and
the right vertical map is an equivalence (by our inductive hypothesis). It therefore
suffice to show that the upper horizontal map is an equivalence of 8-categories.

Let q : ModpSpq Ñ CAlg be as in Construction 5.1.8. We then have a commutative
diagram of 8-categories

LocSysGpT q //

ι

��

lim
ÐÝT 1PCov˝pT qop LocSysGpT

1q

ι˝

��
FunCAlgpCovpT qop,ModpSpqq // FunCAlgpCov˝pT qop, Spq

where the horizontal maps are given by restriction and the vertical maps are fully
faithful embeddings. Moreover, Theorem 5.6.9 implies that an object F of the 8-
category FunCAlgpCovpT qop,ModpSpqq belongs to the essential image of ι if and only
if F |Cov˝pT qop belongs to the essential image of ι˝ and the canonical map

θ : F pT q Ñ lim
ÐÝ

T 1PCov˝pT qop
F pT 1q

exhibits lim
ÐÝT 1PCov˝pT qop F pT 1q as the completion of F pT q along the closed subset

| SpecpATGq|deg Ď | SpecpATGq|. Our assumption that T does not belong to T pď ~hq

guarantees that there exists some prime number p for which the quotient π1pT q{pπ1pT q

has dimension strictly larger than the height of the p-divisible group Gppq. It fol-
lows that | SpecpATGq|deg is equal to | SpecpATGq|. Consequently, a functor a func-
tor F P FunCAlgpCovpT qop,ModpSpqq belongs to the essential image of ι if and
only if F |Cov˝pT qop belongs to the essential image of ι˝ and the map θ is an equiv-
alence: that is, F is a q-right Kan extension of its restriction to the subcat-
egory Cov˝pT qop Ď CovpT qop. The desired result now follows from Proposition
HTT.4.3.2.15 .

The proof of Theorem 5.6.9 will require the following general fact about completions:
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Proposition 5.6.12. Let R be an E8-ring. Let S be a finite partially ordered set, let
tKsusPS be a collection of cocompact closed subsets of | SpecpRq| parametrized by s,
and let M : Sop Ñ ModR be a diagram of R-modules parametrized by Sop. Assume
that the following conditions are satisfied:

paq The partially ordered set S is a lower semilattice. That is, S contains a greatest
element 1, and every pair of elements s, s1 P S have a greatest lower bound
s^ s1 P S.

pbq The construction s ÞÑ Ks is a homomorphism of lower semilattices. That is, we
have K1 “ | SpecpRq|, and Ks^s1 “ Ks XKs1 for all s, s1 P S.

pcq For s ď s1 ă 1, the map Mps1q Ñ Mpsq exhibits Mpsq as the completion of
Mps1q along the closed subset Ks. In particular, each Mpsq is Ks-compete.

Let K “
Ť

să1 Ks. Then the following conditions are equivalent:

p1q For each s P S, the map Mp1q Ñ Mpsq exhibits Mpsq as the completion of
Mp1q along Ks.

p2q Let M 1 “ lim
ÐÝsă1 Mpsq. Then the canonical map Mp1q ÑM 1 exhibits M 1 as the

completion of Mp1q along K.

Proof. Assume first that p2q is satisfied, and choose s P S. We wish to prove that
the map Mp1q ÑMpsq exhibits Mpsq as the completion of Mp1q along Ks. We may
assume that s “ 1 (otherwise there is nothing to prove). For t ‰ 1, condition pcq
implies that Mptq is Kt-complete. Let Mptq^Ks denote the completion of Mptq along
Ks. Then Mptq^Ks is also the completion of Mptq along the intersection Ks X Kt,
which is equal to Ks^t by virtue of pbq. Applying pcq, we conclude that the canonical
map Mptq Ñ Mps ^ tq exhibits Mps ^ tq as the completion of Mt along Ks. Since
completion along Ks commutes with with limits, we obtain an equivalence

M 1^
Ks » lim

ÐÝ
t‰1

Mptq^Ks » lim
ÐÝ
t‰1

Mps^ tq »Ms.

In other words, the canonical map M 1 Ñ Ms exhibits Ms as the completion of M 1

along Ks. It will therefore suffice to show that the natural map M ÑM 1 induces an
equivalence after completion along Ks. This follows immediately from assumption p2q,
since Ks is contained in K.

The implication p1q ñ p2q can be rephrased as follows:
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p˚q Let N be an R-module. Then the canonical map N Ñ lim
ÐÝt‰1 N

^
Kt exhibits

lim
ÐÝt‰1 N

^
Kt as the completion of N along K.

To prove p˚q, we note that for each s P S there is a fiber sequence

N 1
Ñ N Ñ N^

Ks ,

where N 1 is Ks-local. It therefore suffices to prove that condition p˚q holds for N” and
N^
Ks individually. Moreover, if N is Ks-complete (Kt-local) for some other index t P S,

then N 1 and N^
Ks are Kt-complete (Kt-local). Applying this observation repeatedly,

we may reduce to the case where N is either Ks-local or Ks-complete for every value
s P S.

Let S 1 Ď S be the collection of those elements s P S for which N is Ks-complete.
Then the completions N^

Ks vanish for s R S 1. It follows that the functor pSzt1uqop Ñ

ModR given by s ÞÑ N^
Ks is a right Kan extension of its restriction to pS 1zt1uqop, so

that
lim
ÐÝ

tPSzt1u
N^
Kt » lim

ÐÝ
tPS1zt1u

N^
Kt .

Using conditions paq and pbq, we see that S 1 is closed under finite meets in S. Since
S 1 is finite, it has a smallest element s. There are two cases to consider:

• Suppose that s ‰ 1. Then Ks Ď K. Since s P S 1, the R-module N is Ks-
complete and therefore also K-complete. We are therefore reduced to proving
that the canonical map

N Ñ lim
ÐÝ

tPSzt1u
N^
Kt » lim

ÐÝ
tPS1zt1u

N^
Kt » N^

Ks

is an equivalence, which is clear.

• Suppose that s “ 1, so that the completion N^
Kt vanishes for t ‰ 1. Then N

is local with respect to the closed subset K Ď | SpecpRq|, so that the canonical
map N Ñ lim

ÐÝt‰1 N
^
Kt » 0 exhibits lim

ÐÝt‰1 N
^
Kt » 0 as the completion of N along

K.

Proof of Theorem 5.6.9. Let G be an oriented P-divisible group over an E8-ring A,
let T be an object of T , and let F be an object of ModAG,T pFunpCovpT qop, Spqq.
Assume first that F is tempered; we wish to show that F satisfies condition p˚q of
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Theorem 5.6.9. Let T 1 be a connected covering space of T , so that the restriction
of F to CovpT 1q determines a functor M0 : CovpT 1qop Ñ ModAT 1G

. Let S denote the
collection of subgroups of π1pT

1q, ordered by inclusion. We have an evident functor
CovpT 1q Ñ S, which carries a covering space T 2 Ñ T 1 to the image of the induced
homomorphism π1pT

2q ãÑ π1pT
1q. Let M : Sop Ñ ModAT 1G

be the right Kan extension
of M0 along the map CovpT 1qop Ñ Sop. Unwinding the definitions, we see that if
H Ď π1pT

1q is the image of the fundamental group of some covering space T 2 of T 1,
then MpHq can be identified with the homotopy fixed point spectrum F pT 2qhAutpT 2{T 1q.

For every subgroup H Ď π1pT
1q, let KH Ď | SpecpAT 1G q| denote the image of the

closed embedding | SpecpAT 2G q| ãÑ | SpecpAT 1G q|, where T 2 is the connected covering
space of T with fundamental group H. We claim that the constructions

H ÞÑ KH H ÞÑMpHq

satisfy hypotheses paq through pcq of Proposition 5.6.12:

paq As a partially ordered set, S is a lower semi-lattice. This is clear, since the
intersection of a finite collection of subgroups of π1pT

1q is again a subgroup of
π1pT

1q.

pbq The construction H ÞÑ KH is a homomorphism of lower semilattices. At
the level of geometric points, this follows from the observation that a group
homomorphism {π1pT 1q Ñ Gpκq factors through the Pontryagin dual of an
intersection of subgroups H XH 1 if and only if it factors through both pH and
pH 1.

pcq For H Ď H 1 Ĺ π1pT q, the map MpH 1q ÑMpHq exhibits MpHq as the comple-
tion of MpH 1q along the closed subset KH Ď | SpecpAT 1G q|. Write H “ π1pT

2q

and H 1 “ π1pT
3q for covering maps T3 Ñ T 2 Ñ T 1. Unwinding the definitions,

we wish to show that the map

F pT 2qhAutpT 2{T 1q
Ñ F pT3qhAutpT3{T 1q

exhibits F pT3qhAutpT3{T 1q as a completion of F pT 2qhAutpT 2{T 1q with respect to
the relative augmentation ideal IpT3{T 2q. Since the formation of comple-
tions completions commutes with limits, it will suffice to show that the map
β : F pT 2q Ñ F pT3qhAutpT3{T 2q exhibits F pT3qhAutpT3{T 2q as the IpT3{T 2q-
completion of F pT 2q, which follows from our assumption that F is tempered.
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Note that the verification of condition pcq does not require the assumption that H
is a proper subgroup of π1pT

1q. It follows that the functor M : Sop Ñ ModAT 1G
satisfies

condition p1q of Proposition 5.6.12. It therefore also satisfies condition p2q: that is,
the canonical map

F pT 1q “Mpπ1pT
1
qq Ñ lim

ÐÝ
HĹπ1T 1q

MpHq » lim
ÐÝ

T 2PCov˝pT 1qop
F pT 2q

exhibits lim
ÐÝT 2PCov˝pT 1qop F pT 2q as the completion of F pT 1q along the closed set

ď

HĹπ1pT 1q

KH “ | SpecpAT 1G q|
deg

of Notation 5.6.8.
Suppose now that F satisfies condition p˚q of Theorem 5.6.9; we wish to show

that it also satisfies condition pB10q of Notation 5.4.1. Let T 1 be a connected covering
space of T and let T 2 be a connected covering space of T 1. We will show that the
map F pT 1q Ñ F pT 2qhAutpT 2{T 1q exhibits F pT 2qhAutpT 2{T 1q as an IpT 2{T 1q-completion
of F pT 1q. We proceed by induction on the order of the finite group π1pT q. Let S,
tMHuMPS, and tKHuHPS be defined as in the first part of the proof. Then the data

H ÞÑ KH H ÞÑMH

satisfies conditions paq through pcq of Proposition 5.6.12 (the proof is exactly as above,
except that pcq follows from the inductive hypothesis rather than our assumption that
F arises from a G-tempered local system). Hypothesis p˚q of Theorem 5.6.9 then
guarantees that the map

Mpπ1pT
1
qq » F pT 1q Ñ lim

ÐÝ
T 2PCov˝pT 1qop

F pT 2q » lim
ÐÝ

HĹπ1pT 1q

MpHq

exhibits lim
ÐÝHĹπ1pT 1q

MpHq as the completion of Mpπ1pT
1qq along | SpecpAT 1G q|

deg. Ap-
plying Proposition 5.6.12, we deduce that if H Ď π1pT

1q is the fundamental group of
a connected covering space T 2 of T 1, then the canonical map

F pT 1q »Mpπ1pT
1
qq ÑMpHq » F pT 2qhAutpT 2{T 1q

exhibits F pT 2qhAutpT 2{T 1q as an IpT 2{T 1q-completion of F pT 1q, as desired.
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5.7 Digression: The 8-Category LocSysnul
G pXq

Let G be a preoriented P-divisible group over an E8-ring A and let X be an
orbispace. Then the 8-category LocSysGpXq is a localization of the stable 8-
category LocSyspre

G pXq: that is, the inclusion functor LocSysGpXq ãÑ LocSyspre
G pXq

admits a left adjoint L : LocSyspre
G pXq Ñ LocSysGpXq (Proposition 5.2.12). It

follows that the 8-category LocSyspre
G pXq admits a semi-orthogonal decomposition

pK LocSysGpXq,LocSysGpXqq (see Proposition SAG.II.4.2.1.4 ); here K LocSysGpXq de-
notes the full subcategory of LocSyspre

G pXq spanned by those G-pretempered local
systems F satisfying LF » 0 (or, equivalently, the full subcategory spanned by those
objects F satisfying Ext˚LocSyspre

G pXqpF ,G q » 0 whenever G is G-tempered). Our goal
in this section is to give an explicit description of the subcategory K LocSysGpXq in
the special case where G is oriented (Theorem 5.7.3).

Definition 5.7.1. Let G be a preoriented P-divisible group over an E8-ring A, and
let F P LocSyspre

G pXq be a G-pretempered local system on an orbispace X. We will say
that F is null if, for every object T P T{X, the ATG-module F pT q is | SpecpATGq|deg-
nilpotent. We let LocSysnul

G pXq denote the full subcategory of LocSyspre
G pXq spanned

by the null G-pretempered local systems on X.

Remark 5.7.2. Let G be a preoriented P-divisible group over an E8-ring A and let
F P LocSyspre

G pXq be a G-pretempered local system on an orbispace X. Then:

• If F is null and f : Y Ñ X is any map of orbispaces, then the pullback f˚F is
null.

• Suppose that there exists a collection of maps tfα : Xα Ñ Xu which induces a
surjection

š

α π0pXT
αq Ñ π0pXT q, for each T P T . If each pullback f˚α F is null,

then F is null.

Our main result can be stated as follows:

Theorem 5.7.3. Let G be an oriented P-divisible group over an E8-ring A. Then,
for any orbispace X, the subcategories pLocSysnul

G pXq,LocSysGpXqq determine a semi-
orthogonal decomposition of LocSyspre

G pXq. In other words, a G-pretempered local
system F on X is null if and only if it is annihilated by the localization functor
L : LocSyspre

G pXq Ñ LocSysGpXq of Proposition 5.2.12.

Remark 5.7.4. Let G be an oriented P-divisible group over an E8-ring A. For any
orbispace X, the inclusion functor LocSysGpXq ãÑ LocSyspre

G pXq preserves small colimits
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(Theorem 5.3.1), and therefore admits a right adjoint L1 : LocSyspre
G pXq Ñ LocSysGpXq

(Corollary HTT.5.5.2.9 ). It follows that LocSyspre
G pXq admits a semi-orthogonal

decomposition pLocSysGpXq,LocSysGpXqKq, where LocSysGpXqK Ď LocSysGpXq is the
right orthogonal to the subcategory LocSysGpXq: that is, the full subcategory spanned
by those objects which are annihilated by the functor L1. We do not know an analogue
of Theorem 5.7.3 for the subcategory LocSysGpXqK.

Before giving the proof of Theorem 5.7.3, let us note some consequences.

Corollary 5.7.5. Let G be an oriented P-divisible group over an E8-ring A and let
f : X Ñ Y be a morphism of orbispaces. Then the diagram of 8-categories

LocSysGpYq
f˚

��

// LocSyspre
G pYq
f˚

��
LocSysGpXq // LocSyspre

G pYq

is left adjointable. That is, if

LX : LocSyspre
G pXq Ñ LocSysGpXq LY : LocSyspre

G pYq Ñ LocSysGpYq

denote left adjoints to the inclusion maps, then the evident natural transformation
LX ˝ f

˚ Ñ f˚ ˝ LY is an equivalence of functors from LocSyspre
G pYq to LocSysGpXq.

Proof. Let F be a G-pretempered local system Y, so that we have a fiber sequence
F 1

Ñ F α
ÝÑ LY F in the 8-category LocSyspre

G pYq. Pulling back along f , we obtain a
fiber sequence

f˚F 1
Ñ f˚F

f˚pαq
ÝÝÝÑ f˚LY F .

We wish to show that f˚pαq exhibits f˚LY F as a LocSysGpXq-localization of f˚F .
Since f˚LY F is G-tempered, it will suffice (by virtue of Theorem 5.7.3) to show that
the pullback f˚F 1 is null. This follows from Remark 5.7.2, since F 1 is null (Theorem
5.7.3).

Remark 5.7.6. Let G be an oriented P-divisible group over an E8-ring A, let
F P LocSyspre

G pXq be a G-pretempered local system on an orbispace X, and let
α : F Ñ LF be a morphism which exhibits LF as a LocSysGpXq-localization of
F . Then the forgetful functor LocSyspre

G pXq Ñ LocSysAp|X|q of Variant 5.1.15 carries
α to an equivalence in LocSysAp|X|q. In other words, replacing a G-pretempered
local system F with the associated G-tempered local system does not change the
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underlying local system of F . To prove this, it suffices to observe that G “ fibpαq
is null (Theorem 5.7.3), so that G pT q vanishes whenever T is contractible (since the
topological space | SpecpATGq|deg is empty when T is contractible).

The proof of Theorem 5.7.3 will require some preliminaries. We begin by observing
that for each orbispace X, Proposition 5.1.9 supplies an equivalence of 8-categories

LocSyspre
G pXq » lim

ÐÝ
TPT op

{X

LocSyspre
G pT q.

By virtue of Remarks 5.2.11 and 5.7.2, this restricts to equivalences of full subcategories

LocSysnul
G pXq » lim

ÐÝ
TPT op

{X

LocSysnul
G pT q LocSysGpXq » lim

ÐÝ
TPT op

{X

LocSysGpT q.

Consequently, to show that the pair pLocSysnul
G pXq,LocSysGpXqq is a semi-orthogonal

decomposition of the stable 8-category LocSyspre
G pXq, it will suffice to establish the

following special case of Theorem 5.7.3:

Proposition 5.7.7. Let G be an oriented P-divisible group over an E8-ring A. Then,
for every object T P T , the subcategories pLocSysnul

G pT q,LocSysGpT qq determine a
semi-orthogonal decomposition of the stable 8-category LocSyspre

G pT q.

Our next step is to describe the 8-category LocSysnul
G pT q more concretely.

Notation 5.7.8. Let G be a preoriented P-divisible group over an E8-ring A, let T
be an object of T , and let F be an AG,T -module object of FunpCovpT qop, Spq. We will
say that F is null if, for every connected covering space T0 of T , the spectrum F pT0q

is | SpecpAT0
G q|

deg-nilpotent, when viewed as a module over the tempered function
spectrum AT0

G . We let Modnul
AG,T

pFunpCovpT qop, Spqq denote the full subcategory of
ModAG,T pFunpCovpT qop, Spqq spanned by the null AG,T -modules.

Lemma 5.7.9. Let G be a preoriented P-divisible group over an E8-ring A and let T
be an object of T . Then the equivalence LocSyspre

G pT q » ModAG,T pFunpCovpT qop, Spqq
of Proposition 5.1.12 restricts to an equivalence of 8-categories LocSysnul

G pT q »

Modnul
AG,T

pFunpCovpT qop, Spqq. In other words, a G-pretempered local system F on T

is null (in the sense of Definition 5.7.1) if and only if the restriction F 0 “ F |CovpT qop

is null (in the sense of Notation 5.7.8).
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Proof. It follows immediately from the definition that if F P LocSyspre
G pT q is null,

then F 0 “ F |CovpT qop is null. Conversely, suppose that F 0 is null; we wish to show
that F is null. In other words, we wish to show that for each morphism α : T 2 Ñ T in
T , the AT 2G -module F pT 2q is | SpecpAT 2G q|

deg-nilpotent. Note that the map α factors
as a composition T 2

β
ÝÑ T 1

γ
ÝÑ T , where γ exhibits T 1 as a connected covering space

of T and β has connected homotopy fibers. Since F 0 is null, the spectrum F pT 1q is
| SpecpAT 1G q|

deg-nilpotent, and our assumption that F is G-pretempered supplies an
equivalence F pT 2q » AT

2

G bAT 1G
F pT 1q. It follows that F pT 2q is also | SpecpAT 1G q|

deg-
nilpotent when viewed as a module over AT 1G . It now suffices to observe that the map
of Zariski spectra | SpecpAT 2G q| Ñ | SpecpAT 1G q| carries the closed subset | SpecpAT 2G q|

deg

into | SpecpAT 1G q|
deg (see Remark 5.2.3).

Using Proposition 5.1.12, Proposition 5.4.2, and Lemmas 5.7.9, we see that Propo-
sition 5.7.7 reduces to the following result (which no longer requires the assumption
that G is oriented):

Proposition 5.7.10. Let G be a preoriented P-divisible group over an E8-ring A
and let T be an object of T . Then the pair of subcategories

pModnul
AG,T

pFunpCovpT qop, Spqq,Modtem
AG,T

pFunpCovpT qop, Spqqq

is is a semi-orthogonal decomposition of the stable 8-category

ModAG,T pFunpCovpT qop, Spqq.

The proof of Proposition 5.7.10 will require some preliminaries.

Notation 5.7.11. Let G be a preoriented P-divisible group over an E8-ring A,
let T be an object of T , and let M be an ATG-module spectrum. We let M !

T P

ModAG,T pFunpCovpT qop, Spqq denote the functor given informally by the formula

M !
T pT0q “

#

M if T0 » T

0 otherwise.

More precisely, if q : ModpSpq Ñ CAlg is the forgetful functor, then we view M !
T as a

functor from CovpT qop to ModpSpq fitting in to a commutative diagram

CovpT qop M !
T //

��

ModpSpq
q

��
T op AG // CAlg,
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such that M !
T pT q “ M and M !

T is a q-right Kan extension of its restriction to
tT u Ď CovpT qop.

More generally, if T P CovpT q is a connected covering space of T and M is a
module over the tempered function spectrum ATG, we let M !

T {T
denote the object

of ModAG,T 1
pFunpCovpT 1qop, Spqq given by the q-left Kan extension of M !

T
along the

forgetful functor CovpT qop Ñ CovpT qop. More explicitly, if T0 is a connected covering
space of T , then the spectrum M !

T {T
pT0q vanishes unless T0 is isomorphic to T , in

which case it is equivalent to a direct sum of copies of M (indexed by the set of all
isomorphisms of T0 with T in the category CovpT q).

Remark 5.7.12. Let G be a preoriented P-divisible group over an E8-ring A, let
T be an object of T , and let M be an ATG-module spectrum. Then, for any object
F P ModAG,T pFunpCovpT qop, Spqq, we have a canonical homotopy equivalence

MapModAG,T
pM !

T ,F q » MapMod
ATG
pM, fibpF pT q Ñ lim

ÐÝ
T0PCov˝pT qop

F pT0qqq.

More generally, if T is a connected covering space of T and M is an ATG-module
spectrum, then we have a canonical homotopy equivalence

MapModAG,T
pM !

T {T
,F q » MapMod

ATG
pM, fibpF pT q Ñ lim

ÐÝ
T 0PCov˝pT qop

F pT 0qqq.

Remark 5.7.13. Let G be a preoriented P-divisible group over an E8-ring A, let T
be an object of T , and let F be an AG,T -module object of FunpCovpT qop, Spq. Then
F is tempered (in the sense of Notation 5.4.1) if and only if it satisfies the following
condition:

p˚q For every connected covering space T of T and every ATG-module M which
is | SpecpATGq|deg-nilpotent, the mapping space MapModAG,T

pM !
T {T

,F q is con-
tractible.

This follows by combining the calculation of Remark 5.7.12 with the criterion of
Theorem 5.6.9.

Proof of Proposition 5.7.10. Let G be a preoriented P-divisible group over an E8-ring
A and let T be an object of T . Let C Ď ModAG,T pFunpCovpT qop, Spqq be the smallest
stable subcategory which is closed under small colimits and contains every object of
the form M !

T {T
, where T is a connected covering space of T and M is a ATG-module

spectrum which is | SpecpATGq|deg-nilpotent. It follows from Proposition HA.1.4.4.11
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that the stable 8-category ModAG,T pFunpCovpT qop, Spqq admits a semi-orthogonal
decomposition pC, CKq, where CK denotes the full subcategory spanned by those objects
F for which the mapping space MapModAG,T

pG ,F q is contractible for each G P C.
Remark 5.7.13 shows that CK “ Modtem

AG,T
pFunpCovpT qop, Spqq. We will complete the

proof by showing that C “ Modnul
AG,T

pFunpCovpT qop, Spqq. The inclusion

C Ď Modnul
AG,T

pFunpCovpT qop, Spqq

is clear, since Modnul
AG,T

pFunpCovpT qop, Spqq is a stable subcategory of the 8-category
ModAG,T pFunpCovpT qop, Spqq which is closed under small colimits and contains M !

T {T

whenever M P Mod
ATG

is | SpecpATGq|deg-nilpotent. Conversely, suppose that F is
an AG,T -module object of FunpCovpT qop, Spq which is null; we wish to show that F

belongs to C. Note that F fits into a fiber sequence F 1
Ñ F Ñ F 2, where F 1

belongs to C and F 2 is tempered. We will complete the proof by showing that F 2
» 0.

Suppose otherwise: then there exists some connected covering space T of T such that
F 2
pT q is not zero. Choose T so that the fundamental group π1pT q is as small as

possible. It then follows that F 2
pT 0q » 0 for every connected covering space T 0 of T

which is not isomorphic to T . Consequently, the limit lim
ÐÝT 0PCov˝pT qop F 2

pT 0q vanishes.
Since F 2 is tempered, Theorem 5.6.9 implies that F 2

pT q is | SpecpATGq|deg-local. On
the other hand, F 2 is null (since both F 1 and F are null), so that F 2

pT q is also
| SpecpATGq|deg-nilpotent. It follows that F 2

pT q vanishes, contradicting our choice of
T .

5.8 Tensor Products of Tempered Local Systems
We now exploit Theorem 5.7.3 to construct a tensor product operation in the

setting of tempered local systems.

Notation 5.8.1. Let G be a preoriented P-divisible group over an E8-ring A. For
each orbispace X, we let AX denote the composite functor

T op
{X Ñ T op AG

ÝÝÑ CAlg,

which we view as a commutative algebra object of FunpT op
{X , Spq. Then the 8-category

ModAX
“ ModAX

pFunpT op
{X , Spqq inherits a symmetric monoidal structure, given by

the formation of relative tensor product over AX (see §HA.4.5.2 ). We will denote this
relative tensor product operation by

b : ModAX
ˆModAX

Ñ ModAX
.
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Concretely, it is given by the formula pF bG qpT q “ F pT q bATG G pT q.

From the levelwise description of the tensor product b, we immediately deduce
the following:

Proposition 5.8.2. Let A be an E8-ring, and let G be a preoriented P-divisible group
over A. For every orbispace X, the full subcategory LocSyspre

G pXq Ď ModAX
contains

the unit object AX and is closed under the tensor product functor b of Notation 5.8.1.
In particular, LocSyspre

G pXq inherits the structure of a symmetric monoidal 8-category.

Remark 5.8.3 (Functoriality). In the situation of Proposition 5.8.2, let f : X Ñ Y be a
morphism of orbispaces. Then the pullback functor f˚ : LocSyspre

G pYq Ñ LocSyspre
G pXq

of Remark 5.1.6 is given by precomposition with the forgetful functor T{X Ñ T{Y, and
can therefore be promoted to a symmetric monoidal functor: that is, it commutes
with the tensor product operation b of Notation 5.8.1.

Proposition 5.8.4. Let A be an E8-ring, let G be a preoriented P-divisible group over
A, and let X be an orbispace. Then the full subcategory LocSysnul

G pXq Ď LocSyspre
G pXq

is a tensor ideal. That is, if F belongs to LocSysnul
G pXq and G belongs to LocSyspre

G pXq,
then F bG belongs to LocSysnul

G pXq.

Proof. For each object T P T{X, we have pF bG qpT q “ F pT q bATG G pT q. Since F is
null, F pT q is | SpecpATGq|deg-nilpotent when viewed as an ATG-module. It follows that
the tensor product F pT q bATG G pT q is also | SpecpATGq|deg-nilpotent.

Corollary 5.8.5. Let A be an E8-ring, let G be an oriented P-divisible group over
A, let X be an orbispace, and let L : LocSyspre

G pXq Ñ LocSysGpXq be a left adjoint to
the inclusion (Proposition 5.2.12). Then the localization functor L is compatible with
the symmetric monoidal structure of Proposition 5.8.2. That is, if α : F Ñ F 1 is a
morphism in LocSyspre

G pXq for which Lpαq : LpF q Ñ LpF 1
q is an equivalence, and G

is any object of LocSyspre
G pXq, then the induced map LpF bG q Ñ LpF 1

bG q is an
equivalence.

Proof. Combine Proposition 5.8.4 with Theorem 5.7.3.

Corollary 5.8.6. Let A be an E8-ring, let G be an oriented P-divisible group
over A, and let X be an orbispace. Then there is an essentially unique symmetric
monoidal structure on the 8-category LocSysGpXq for which the localization functor
L : LocSyspre

G pXq Ñ LocSysGpXq is symmetric monoidal.
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Proof. Combine Corollary 5.8.5 with Proposition HA.2.2.1.9 .

Construction 5.8.7 (The Tempered Tensor Product). Let G be an oriented P-
divisible group over an E8-ring A. For any orbispace X, we will regard LocSysGpXq as
equipped with the symmetric monoidal structure of Corollary 5.8.6. We will denote
the underlying tensor product of this symmetric monoidal structure by

b : LocSysGpXq ˆ LocSysGpXq Ñ LocSysG pF ,G q ÞÑ F bG .

Concretely, it is given by the formula F bG “ LpF bG q, where L : LocSyspre
G pXq Ñ

LocSysGpXq is left adjoint to the inclusion functor.

Remark 5.8.8. In the situation of Construction 5.8.7, the unit object of the sym-
metric monoidal 8-category LocSysGpXq is the trivial G-tempered local system AX
of Example 5.1.5 (which is G-tempered by virtue of Corollary 5.4.4).

Remark 5.8.9. Let G be an oriented P-divisible group over an E8-ring A, and let
F and G be G-tempered local systems on an orbispace X. It follows from Theorem
5.7.3 that the tensor product F bG of Construction 5.8.7 can be characterized as
follows:

• There exist ATG-linear maps µT : F pT q bATG G pT q Ñ pF bG qpT q, depending
functorially on T P T op

{X .

• For each T P T op
{X , the fiber fibpµT q is | SpecpATGq|deg-nilpotent (when regarded

as an ATG-module).

Remark 5.8.10. In the situation of Remark 5.8.9, the map µT Is an equivalence
whenever T is contractible (Remark 5.7.6). It follows that the forgetful functor
LocSysGpXq Ñ LocSysAp|X|q (see Variant 5.1.15) is symmetric monoidal: that is, it
carries the tensor products of tempered local systems (given by Construction 5.8.7) to
the pointwise tensor product of ModA-valued local systems on |X|.

Warning 5.8.11. In the situation of Remark 5.8.9, the map µT : F pT q bATG G pT q Ñ

pF bG qpT q is generally not an equivalence when T is not contractible. That is, the
tensor product of tempered local systems cannot be computed levelwise.

Example 5.8.12. Let G be an oriented P-divisible group over an E8-ring A and let
X be a space. Applying Remark 5.7.6 and Corollary 5.4.3 to the constant orbispace
X, we obtain an equivalence of symmetric monoidal 8-categories LocSysGpXq »

LocSysApXq. In particular, when X » ˚ is contractible, we obtain an equivalence of
symmetric monoidal 8-categories LocSysGp˚q » ModA.
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Note that if we are given a map of orbispaces f : X Ñ Y, then the symmetric
monoidal pullback functor f˚ : LocSyspre

G pYq Ñ LocSyspre
G pXq automatically restricts

to a lax symmetric monoidal functor LocSysGpYq Ñ LocSysGpXq, which we will also
denote by f˚.

Proposition 5.8.13. Let G be an oriented P-divisible group over an E8-ring A.
For every map of orbispaces f : X Ñ Y, the pullback functor f˚ : LocSysGpYq Ñ
LocSysGpXq is symmetric monoidal.

Proof. It follows from Remark 5.8.8 that the pullback functor f˚ preserves unit
objects. We will complete the proof by showing that for every pair of objects F ,F 1

P

LocSysGpYq, the canonical map α : f˚F bf˚F 1
Ñ f˚pF bF 1

q is an equivalence.
We have a commutative diagram

f˚F bf˚F 1 //

��

f˚pF bF 1
q

��
f˚F bf˚F 1 α // f˚pF bF 1

q

in the 8-category LocSyspre
G pXq. Note that the upper horizontal map is an equivalence,

and that the fibers of the vertical maps belong to LocSysnul
G pXq. It follows that

fibpαq P LocSysnul
G pXq X LocSysGpXq, so that fibpαq » 0 and α is an equivalence.

Proposition 5.8.14. Let G be an oriented P-divisible group over an E8-ring A, let
f : X Ñ Y be a map of orbispaces, and let F P LocSysGpXq and G P LocSysGpYq be
G-tempered local systems on X and Y, respectively. If Y » ˚ is a final object of OS,
then the canonical map

θ : f˚ G bF Ñ f˚ G bF

is an equivalence in LocSyspre
G pXq. In other words, the map µT : G pT q bATG F pT q Ñ

pf˚ G bF qpT q of Remark 5.8.9 is an equivalence for each object T P T op
{X .

Proof. Let us regard F as fixed, and let C denote the full subcategory of LocSysGpYq
spanned by those objects G for which the morphism θ is an equivalence. Then C
is a stable subcategory of LocSysGpYq, and it follows from Theorem 5.3.1 that C is
closed under small colimits. Since LocSysGpYq is equivalent to ModA as a symmetric
monoidal 8-category (Example 5.8.12), to prove that C “ LocSysGpYq it will suffice
to show that C contains the unit object of LocSysGpYq, which is immediate.
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Remark 5.8.15. Let G be an oriented P-divisible group over an E8-ring A and
let f : X Ñ Y be a map of orbispaces. It follows from Proposition 5.8.13 that the
8-category LocSysGpXq is tensored over LocSysGpYq, with action given concretely by
the construction

LocSysGpYq ˆ LocSysGpXq Ñ LocSysGpXq pG ,F q ÞÑ pf˚ G q bF .

Proposition 5.8.14 makes this action explicit in the special case where Y “ ˚ is a final
object of OS. In this case, we can identify LocSysGpYq with the 8-category ModA
(Example 5.8.12). Then LocSysGpXq inherits an action of ModA, which we will denote
by

ModAˆLocSysGpXq Ñ LocSysGpXq pM,F q ÞÑM bA F .

Proposition 5.8.14 asserts that this action is computed levelwise: that is, it is given
on objects by the formula pM bA F qpT q “M bA F pT q.

6 Analysis of LocSysGpXq
Let G be an oriented P-divisible group over an E8-ring A. In §5, we introduced

the 8-category LocSysGpXq of G-tempered local systems on an orbispace X (Definition
5.2.4). Our goal in this section is to develop an arsenal of tools for working with
G-tempered local systems, which can often be used to translate questions about
G-tempered local systems on orbispaces to questions about ordinary local systems on
spaces.

To simplify the discussion, let us assume for the moment that the E8-ring A is
p-local for some prime number p and that G is a p-divisible group of some fixed height
h ě 0. We will say that a G-tempered local system F P LocSysGpXq is Kpnq-local
if, for each object T P T{X, the spectrum F pT q is Kpnq-local; here Kpnq denotes the
nth Morava K-theory (at the prime p). The collection of Kpnq-local G-tempered
local systems span a full subcategory LocSysKpnqG pXq Ď LocSysGpXq. In §6.1, we show
that the 8-category LocSysGpXq admits a semi-orthogonal decomposition by the
subcategories tLocSysKpnqG pXqu0ďnďh (Corollary 6.1.17). Consequently, the problem of
understanding the 8-category LocSysGpXq can be partially reduced to the problem of
understanding the subcategories LocSysKpnqG pXq.

In §6.3, we study the 8-category LocSysKpnqG pXq in the special case where n “ h is
the height of the p-divisible group G. In this case, we show that the forgetful functor
LocSysGpXq Ñ LocSysAp|X|q of Variant 5.1.15 restricts to an equivalence of full subcat-
egories LocSysKpnqG pXq » LocSysKpnqA p|X|q, where LocSysKpnqA p|X|q » Funp|X|,ModKpnqA q
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denotes the 8-category of local systems on |X| with values in the 8-category ModKpnqA

of Kpnq-local A-modules (Theorem 6.3.1). This can be regarded as a categori-
fication of Theorem 4.2.5, which asserts that the Atiyah-Segal comparison map
ζ : A˚GpXq Ñ A˚p|X|q is an isomorphism in the case where A is Kpnq-local and
G “ GQ

A is the Quillen p-divisible group of A.
To understand the 8-categories LocSysKpnqG pXq for n ă h, it will be convenient to

enlarge the E8-ring A. To every E8-algebra B over A, we can associate a p-divisible
group GB over B, obtained from G by extensions of scalars. In §6.2, we study the
relationship between the 8-categories LocSysGpXq and LocSysGB

pXq. In the special
case where B “ LKpnqpAq is the Kpnq-localization of A, we show that the subcategories
LocSysKpnqG pXq and LocSysKpnqGB

pXq are equivalent (Corollary 6.2.8). We may therefore
assume without loss of generality that the E8-ring A is Kpnq-local. In this case, the
orientation of G determines a short exact sequence

0 Ñ G0
ι
ÝÑ G Ñ Gét Ñ 0,

where G0 “ GQ
A is the Quillen p-divisible group of A (see Corollary 2.5.7) and Gét is

an étale p-divisible group of height h´ n. Set Λ “ pQp {Zpq
h´n and let B “ SplitΛpιq

be a splitting algebra of ι (Definition 2.7.12). Then B is a faithfully flat A-algebra
(Proposition 2.7.15), so that A can be identified with the totalization fo the cosimplicial
A-algebra

B‚ “ pB Ñ B bA B
ÑÑÑ ¨ ¨ ¨ q.

According to Proposition 6.2.6, the theory of G-tempered local systems satisfies
faithfully flat descent: that is, we can identify LocSysGpXq with the totalization of
the cosimplicial 8-category LocSysGB‚

pXq. Consequently, various questions about the
structure of the 8-category LocSysKpnqG pXq can be addressed after extending scalars
along the maps A Ñ Bm, so that the p-divisible group G splits as a direct sum
G0 ‘ Λ. Beware that the A-algebras Bm are essentially never Kpnq-local (so that,
after extending scalars, we cannot identify G0 with the Quillen p-divisible group of
Bm), but (if desired) this can rectified by replacing each Bm by its Kpnq-localization.

Let LΛ
pXq denote the formal loop space of X given by Construction 3.4.3. In §6.4,

we construct a fully faithful embedding of 8-categories

Φ : LocSysGpXq ãÑ LocSysG0pL
Λ
pXqq,

which can be regarded as a categorification of the character isomorphism A˚GpXq »
A˚G0pL

Λ
pXqq of Theorem 4.3.2 (see Theorem 6.4.1). In §6.5 we identify the essential
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image of Φ with the full subcategory LocSysiso
G0pL

Λ
pXqq of isotropic local systems on

LΛ
pXq (Definition 6.5.8). For m ą 0, every Kpmq-local object of LocSysG0pL

Λ
pXqq is

automatically isotropic (Corollary 6.5.16), and the embedding above restricts to an
equivalence of 8-categories

LocSysKpmqG pXq » LocSysKpmqG0 pLΛ
pXqq

(beware that the situation is a bit more complicated if m “ 0, or if G is a P-divisible
group with nonvanishing components Gp`q for ` ‰ p). Consequently, for the purpose
of understanding the 8-category LocSysKpnqG pXq when n ą 0, we can replace G by the
p-divisible group G0 (at the cost of replacing X by the more complicated orbispace
LΛ
pXq), thereby reducing to the situation studied in §6.3.

6.1 Localization and Completions of Tempered Local Sys-
tems

Let A be an E8-ring and let I Ď π0pAq be a finitely generated ideal. We let
ModNilpIq

A , ModLocpIq
A , and ModCplpIq

A denote the full subcategories of ModA spanned
by those A-modules which are I-nilpotent, I-local, and I-complete, respectively (see
Chapter SAG.II.4 ). The 8-category ModA then admits a pair of semi-orthogonal
decompositions pModNilpIq

A ,ModLocpIq
A q and pModLocpIq

A ,ModCplpIq
A q. In particular, for

every A-module M , there are essentially unique fiber sequences

M 1
ÑM ÑM^

I ΓIpMq ÑM ÑM2

where M^
I is I-complete, ΓIpMq is I-nilpotent, and M 1 and M2 are I-local. Our goal

in this section is to establish a generalization of this picture, where we replace ModA
with the 8-category LocSysGpXq of G-tempered local systems on an orbispace X.
In this situation, we can make sense of the sequence on the left for any preoriented
P-divisible group G over A (Corollary 6.1.6), and the sequence on the right under the
assumption that G is oriented (Corollary 6.1.10).

Definition 6.1.1. Let A be an E8-ring, let G be a preoriented P-divisible group
over A, let X be an orbispace, and let I Ď π0pAq be a finitely generated ideal. We
will say that a G-tempered local system F P LocSysGpXq is I-nilpotent (I-local,
I-complete) if, for every object T P T{X, the spectrum F pT q is I-nilpotent (I-local,
I-complete) when viewed as an A-module. We let LocSysNilpIq

G pXq (LocSysLocpIq
G pXq,

LocSysCplpIq
G pXq) denote the full subcategory of LocSysGpXq spanned by those objects

are which are I-nilpotent (I-local, I-complete).
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Warning 6.1.2. Let A be an E8-ring, let I Ď π0pAq be a finitely generated ideal,
and let C be a presentable A-linear stable 8-category. We say that an object C P C is
I-nilpotent if, for each element x P I, the colimit of the diagram

C
x
ÝÑ C

x
ÝÑ C

x
ÝÑ C

x
ÝÑ ¨ ¨ ¨

vanishes (Definition SAG.II.4.1.1.6 ), and that C is I-complete if, for each element
x P I, the limit of the diagram

¨ ¨ ¨
x
ÝÑ C

x
ÝÑ C

x
ÝÑ C

x
ÝÑ C

vanishes (see Corollary SAG.II.4.3.3.3 ). In the situation of Definition 6.1.1, a G-
tempered local system F is I-complete in the sense of Definition 6.1.1 if and only if it is
I-complete when viewed as an object of the A-linear 8-category C “ LocSysGpXq: this
follows from the fact that the evaluation functors F ÞÑ F pT q are jointly conservative
and preserve small limits (Corollary 5.2.13). If G is oriented, then F is I-nilpotent in
the sense of Definition 6.1.1 if and only if it is I-nilpotent when viewed as an object
of C “ LocSysGpXq (since the evaluation functors F ÞÑ F pT q also preserve small
colimits when G is oriented; see Corollary 5.3.2). Beware that this is generally not
true if G is only assumed to be preoriented.

Remark 6.1.3 (Functoriality). Let G be a preoriented P-divisible group over an
E8-ring A, let I Ď π0pAq be a finitely generated ideal, and let f : X Ñ Y be a map of
orbispaces. If F P LocSysGpYq is I-nilpotent (I-local, I-complete), then the pullback
f˚pF q P LocSysGpXq is also I-nilpotent (I-local, I-complete).

Proposition 6.1.4. Let A be an E8-ring, let G be a preoriented P-divisible group
over A, and let X be an orbispace. Then the inclusion functor

LocSysCplpIq
G pXq ãÑ LocSysGpXq

admits a left adjoint. Moreover, if α : F Ñ F 1 is a morphism in LocSysGpXq, then
the following conditions are equivalent:

p1q The morphism α exhibits F 1 as a LocSysCplpIq
G pXq-localization of F .

p2q For every object T P T{X, the induced map αpT q : F pT q Ñ F 1
pT q exhibits

F 1
pT q as an I-completion of F pT q in the 8-category ModA.
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Proof. Fix an element x P I. For each object F P LocSysGpXq, let ΘxpF q denote
the limit of the tower ¨ ¨ ¨ x

Ñ F x
Ñ F x

Ñ F , and let F^
pxq denote the cofiber of

the canonical map ΘxpF q Ñ F . By construction, x acts by an equivalence on
ΘxpF q. It follows that multiplication by x acts by a homotopy equivalence from
MapLocSysGpXqpΘxpF q,G q to itself, for every object G P LocSysGpXq. In particular,
the canonical map

MapLocSysGpXqpΘxpF q,ΘxpG qq Ñ MapLocSysGpXqpΘxpF q,G q

is a homotopy equivalence. If G is I-complete, then it is annihilated by the functor
Θx, so that the mapping space MapLocSysGpXqpΘxpF q,G q is contractible. It follows
that the canonical map

MapLocSysGpXqpF
^
pxq,G q Ñ MapLocSysGpXqpF ,G q

is a homotopy equivalence.
Choose a finite collection of generators x1, . . . , xn P π0pAq for the ideal I, and let

F P LocSysGpXq. Let α denote the composite map

F Ñ F^
px1q Ñ pF^

px1qq
^
px2q Ñ ¨ ¨ ¨ ppF^

px1qq ¨ ¨ ¨ q
^
pxnqF “ F 1

Corollary 5.2.13 implies that for every object T P T{X, the canonical map F pT q Ñ

F 1
pT q exhibits F 1

pT q as an I-completion of F pT q, so that F 1 is I-complete. It
follows from the above analysis that α exhibits F 1 as a LocSysCplpIq

G pXq-localization
of F . This completes the proof that LocSysCplpIq

G pXq is a localization of LocSysGpXq,
and proves that p1q ñ p2q.

We now complete the proof by showing that p2q ñ p1q. Let β : F Ñ G be a
morphism in LocSysGpXq satisfying condition p2q. Then G is I-complete, so that β
factors as a composition F α

Ñ F 1 γ
Ñ G , where α is defined as above. Then α and

β both satisfy condition p2q. It follows that for every object T P T{X, the induced
map F 1

pT q Ñ G pT q is an equivalence. We conclude that γ is an equivalence, so that
β “ γ ˝ α exhibits G as a LocSysCplpIq

G pXq-localization of F .

Notation 6.1.5 (Completion with Respect to an Ideal). Let G be a preoriented
P-divisible group over an E8-ring A, let X be an orbispace, and let I Ď π0pAq be a
finitely generated ideal. For each G-pretempered local system F on X, we let F^

I

denote the image of F under the functor LocSysGpXq Ñ LocSysCplpIq
G pXq which is left

adjoint to the inclusion. More informally, F^
I is the G-tempered local system on X

given by the formula F^
I pT q “ F pT q^I . We will refer to F^

I as the I-completion of
F .
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In the situation of Notation 6.1.5, the completion F^
I » 0 vanishes if and only

if the G-tempered local system F is I-local, in the sense of Definition 6.1.1. We
therefore obtain the following:

Corollary 6.1.6. Let A be an E8-ring, let G be a preoriented P-divisible group
over A, and let X be an orbispace. For every finitely generated ideal I Ď π0pAq,
the pair of stable subcategories pLocSysLocpIq

G pXq,LocSysCplpIq
G pXqq determine a semi-

orthogonal decomposition of LocSysGpXq. In particular, every G-tempered local system
F determines an (essentially unique) fiber sequence F 1

Ñ F Ñ F^
I , where F 1 is

I-local and F^
I is I-complete.

Proposition 6.1.7. Let G be an oriented P-divisible group over an E8-ring A, let
I Ď π0pAq be a finitely generated ideal, and let X be an orbispace. Then the inclusion
LocSysNilpIq

G pXq ãÑ LocSysGpXq admits a right adjoint. Moreover, if α : F 1
Ñ F is a

morphism in LocSysGpXq, then the following conditions are equivalent:

p1q The morphism α exhibits F 1 as a LocSysNilpIq
G pXq-colocalization of F .

p2q For every object T P T{X, the morphism αpT q induces an equivalence of A-module
spectra F 1

pT q » ΓI F pT q.

Proof. We proceed as in the proof of Proposition 6.1.4. Fix an element x P I. For
each object F P LocSysGpXq, let F rx´1s denote the colimit of the sequence

F x
Ñ F x

Ñ F x
Ñ ¨ ¨ ¨ ,

and let ΓpxqF denote the fiber of the canonical map F Ñ F rx´1s. By construction,
x acts by an equivalence on F rx´1s. It follows that multiplication by x acts by
a homotopy equivalence from MapLocSysGpXqpG ,F rx

´1sq to itself, for every object
G P LocSysGpXq. In particular, the canonical map

MapLocSysGpXqpG rx
´1
s,F rx´1

sq Ñ MapLocSysGpXqpG ,F rx
´1
sq

is a homotopy equivalence. If G is I-nilpotent, then G rx´1s » 0, so that the mapping
space MapLocSysGpXqpG ,F rx

´1sq is contractible. It follows that the natural map

MapLocSysGpXqpG ,ΓpxqF q Ñ MapLocSysGpXqpG ,F q

is a homotopy equivalence.
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Choose a finite collection of generators x1, . . . , xn P π0pAq for the ideal I, and let
F P LocSysGpXq. Let α denote the composite map

F 1
“ Γpxnqp¨ ¨ ¨ pΓpx1qF qq Ñ ¨ ¨ ¨ Ñ Γpx1qF Ñ F .

Corollary 5.3.2 implies that for every object T P T{X, α induces an equivalence
F 1
pT q » ΓI F pT q, so that F 1 is I-nilpotent. It follows from the above analysis that

α exhibits F 1 as a LocSysNilpIq
G pXq-colocalization of F . This completes the proof that

LocSysNilpIq
G pXq is a colocalization of LocSysGpXq, and shows that p1q ñ p2q.

We now complete the proof by showing that p2q ñ p1q. Let β : G Ñ F be a
morphism in LocSysGpXq satisfying condition p2q. Then G is I-nilpotent, so that β
factors as a composition

G
γ
Ñ F 1 α

Ñ F ,

where α is defined as above. Then α and β both satisfy condition p2q. It follows that for
every object T P T{X, the induced map G pT q Ñ F 1

pT q is an equivalence. We conclude
that γ is an equivalence, so that β “ α˝γ exhibits G as a LocSysNilpIq

G pXq-colocalization
of F .

Notation 6.1.8. Let G be an oriented P-divisible group over an E8-ring A, let X be
an orbispace, and let I Ď π0pAq be a finitely generated ideal. We let

ΓI : LocSysGpXq Ñ LocSysNilpIq
G pXq

denote a right adjoint to the inclusion functor, whose existence is asserted by Propo-
sition 6.1.7. More informally, the functor ΓI carries each G-tempered local system
F to an I-nilpotent G-tempered local system ΓI F , given informally by the formula
pΓI F qpT q “ ΓIpF pT qq.

Warning 6.1.9. In the situation of Notation 6.1.8, suppose that we assume only
that G is a preoriented P-divisible group over A. Then, to every G-tempered local
system F P LocSysGpXq, we can associate a G-pretempered local system ΓI F by the
formula pΓI F qpT q “ ΓIpF pT qq. However, this formula need not define a G-tempered
local system unless G is oriented.

In the situation of Notation 6.1.8, the G-tempered local system ΓI F vanishes if
and only if F is I-local. This proves the following:

Corollary 6.1.10. Let A be an E8-ring, let G be an oriented P-divisible group
over A, and let X be an orbispace. For every finitely generated ideal I Ď π0pAq,
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the pair of stable subcategories pLocSysNilpIq
G pXq,LocSysLocpIq

G pXqq determine a semi-
orthogonal decomposition of LocSysGpXq. In particular, every G-tempered local system
F determines an (essentially unique) fiber sequence ΓI F Ñ F Ñ F 2, where ΓI F

is I-nilpotent and F 2 is I-local.

Combining Corollaries 6.1.6 and 6.1.10 with Proposition HA.A.8.20 , we obtain
the following:

Corollary 6.1.11. Let A be an E8-ring, let G be an oriented P-divisible group over
A, and let X be an orbispace. Then, for every finitely generated ideal I Ď π0pAq, the
8-category LocSysGpXq is a recollement of the full subcategories

LocSysLocpIq
G pXq,LocSysCplpIq

G pXq Ď LocSysGpXq,

in the sense of Definition HA.A.8.1 .

Corollary 6.1.12. Let A be an E8-ring, let G be an oriented P-divisible group over
A, and let X be an orbispace. Then, for every finitely generated ideal I Ď π0pAq, the
functor of I-completion determines an equivalence of 8-categories

LocSysNilpIq
G pXq Ñ LocSysCplpIq

G pXq.

We now specialize to a particularly important case.

Definition 6.1.13. Let p be a prime number, let A be a p-local E8-ring, and let G
be an oriented P-divisible group over A. Let F be a G-tempered local system on
an orbispace X. We will say that F is Kpnq-local if, for each object T P T{X, the
spectrum F pT q is Kpnq-local (here Kpnq denotes the nth Morava K-theory spectrum
at the prime p). We let LocSysKpnqG pXq denote the full subcategory of LocSysGpXq
spanned by the Kpnq-local G-tempered local systems on X.

We say that F is Epnq-local if, for each object T P T{X, the spectrum F pT q

is Epnq-local (where Epnq denotes the nth Johnson-Wilson spectrum at the prime
p). We let LocSysEpnqG pXq denote the full subcategory of LocSysGpXq spanned by the
Epnq-local G-tempered local systems on X.

Remark 6.1.14. Let p be a prime number, let A be a p-complete E8-ring, and let G
be an oriented P-divisible group over A. Then A is complex periodic. For each m ě 0,
we let IAm Ď π0pAq denote the mth Landweber ideal of A (Definition Or.4.5.1 ). Then:
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• A G-tempered local system F is Epnq-local if and only if it is IAn`1-local. That
is, we have

LocSysEpnqG pXq “ LocSysLocpIAn`1q

G pXq.

• A G-tempered local system is Kpnq-local if and only if it is both IAn`1-local and
IAn -complete. That is, we have

LocSysKpnqG pXq “ LocSysLocpIAn`1q

G pXq X LocSysCplpIAn q
G pXq.

Notation 6.1.15. Let G be an oriented P-divisible group over a p-local E8-ring
A and let X be an orbispace. It follows from Corollaries 6.1.6 and 6.1.10 that the
inclusion functors

LocSysEpnqG pXq Ď LocSysGpXq LocSysKpnqG pX Ď LocSysGpXq

admits left adjoints, which we will denote by LEpnq : LocSysGpXq Ñ LocSysEpnqG pXq
and LKpnq : LocSysGpXq Ñ LocSysKpnqG pXq, respectively. Concretely, these functors
are given by the formulae

pLEpnqF qpT q “ LEpnqpF pT qq pLKpnqF qpT q “ LKpnqpF pT qq

for T P T{X.

Proposition 6.1.16. Let G be an oriented P-divisible group over a p-local E8-ring A,
and let X be an orbispace. Then, for each n ě 1, the stable 8-category LocSysEpnqG pXq
is a recollement of the full subcategories

LocSysEpn´1q
G pXq,LocSysKpnqG pXq Ď LocSysEpnqG pXq.

Proof. Let I “ IAn be the nth Landweber ideal of A. For F P LocSysGpXq, Corollaries
6.1.6 and 6.1.10 supply fiber sequences

F 1
Ñ F Ñ F^

I ΓI F Ñ F Ñ F 2

where F 1 and F 2 are I-local (that is, Epn´ 1q-local). If F is Epnq-local, then F^
I

and ΓI F are also Epnq-local (so that F^
I is Kpnq-local).

Corollary 6.1.17. Let G be an oriented P-divisible group over a p-local E8-ring
A, and suppose that the p-divisible group Gppq has height ď h for some nonnegative
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integer h. Then, for any orbispace X, the stable 8-category LocSysGpXq admits a
semi-orthogonal decomposition by full subcategories

pLocSysKp0qG pXq,LocSysKp1qG pXq, ¨ ¨ ¨ ,LocSysKphqG pXqq.

In particular, every G-tempered local system F on X admits a canonical filtration

0 “ F p´1q Ñ F p0q Ñ F p1q Ñ ¨ ¨ ¨ Ñ F phq “ F ,

where each cofiber F pnq{F pn´ 1q is Kpnq-local.

6.2 Change of Ring
Let φ : AÑ B be a morphism of E8-rings. If G is a preoriented P-divisible group

over A, we let GB denote the preoriented P-divisible group over B obtained from G
by extension of scalars along φ. For each orbispace X, we let AX, BX : T op

{X Ñ CAlg
denote the functors given by Notation 5.1.2, so that we have an equivalence of functors
BXp‚q » B bA AXp‚q. There is an evident restriction of scalars functor

φ˚ : ModBX
Ñ ModAX

.

In what follows, we will generally abuse notation by identifying an object G P ModBX

with its image under φ˚. The functor φ˚ admits a left adjoint φ˚. For each object
F P ModAX

, we denote φ˚F by B bA F ; concretely, it is given by the formula

pB bA F qpT q “ BT
G bATG

F pT q » B bA F pT q

for T P T op
{X .

Proposition 6.2.1. Let φ : AÑ B be a morphism of E8-rings, let G be a preoriented
P-divisible group over A, and let X be an orbispace. Then:

paq An object G P ModBX
is a GB-pretempered local system on X if and only φ˚ G

is a G-pretempered local system on X.

pbq An object G P ModBX
is a GB-tempered local system on X if and only φ˚ G is a

G-tempered local system on X.

pcq If F P ModAX
is a G-pretempered local system on X, then φ˚F “ B bA F is a

GB-pretempered local system on X.
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pdq If G is oriented and F is a G-tempered local system on X, then φ˚F “ BbAF

is a GB-tempered local system on X.

Proof. Assertions paq, pbq, and pcq follow immediately from the definitions. To prove
pdq, it will suffice (by virtue of pbq) to show that if G is oriented, F is a G-tempered
local system on X, and M is an A-module spectrum, then the relative tensor product
M bA F (given by pT P T op

{X q ÞÑM bA F pT q) is also a G-tempered local system on
X, which follows from Remark 5.8.15.

Remark 6.2.2. In the situation of Proposition 6.2.1, assume that G is oriented.
Then:

p1q If G Ñ G 1 is a morphism in LocSyspre
GB
pXq which exhibits G 1 as a LocSysGB

pXq-
localization of G , then the induced map φ˚ G Ñ φ˚ G 1 exhibits φ˚ G 1 as a
LocSysGpXq-localization of φ˚ G .

p2q If F Ñ F 1 is a morphism in LocSyspre
G pXq which exhibits F 1 as a LocSysGpXq-

localization of F , then the induced map

B bA F “ φ˚F Ñ φ˚F 1
“ B bA F 1

exhibits B bA F 1 as a LocSysGB
pXq-localization of B bA F .

These assertions follow from Theorem 5.7.3, combined with the observation that the
adjoint functors

LocSyspre
G pXq

φ˚ //LocSyspre
GB
pXq

φ˚
oo

carry LocSysnul
G pXq into LocSysnul

GB
pXq and vice-versa.

In the situation of Proposition 6.2.1, the extension of scalars functor

LocSyspre
G pXq Ñ LocSyspre

GB
pXq F ÞÑ B bA F

is symmetric monoidal with respect to the levelwise symmetric monoidal structure on
the 8-categories LocSyspre

G pXq and LocSyspre
GB
pXq (given by the tensor product b of

Notation 5.8.1). If G is oriented, then it restricts to a lax symmetric monoidal functor

φ˚ : LocSysGpXq Ñ LocSysGB
pXq F ÞÑ B bA F .

In fact, we can say more:
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Proposition 6.2.3. Let φ : AÑ B be a morphism of E8-rings, let G be a preoriented
P-divisible group over A, and let X be an orbispace. Then the lax symmetric monoidal
functor

φ˚ : LocSysGpXq Ñ LocSysGB
pXq F ÞÑ B bA F

is symmetric monoidal.

Proof. Let F and G be G-tempered local systems on X; we wish to show that the
canonical map θ : pφ˚F q b pφ˚ G q Ñ φ˚pF bG q is an equivalence in the 8-category
LocSysGB

pXq. Unwinding the definitions, we see that θ fits into a commutative
diagram

pφ˚F qbpφ˚ G q „ //

��

φ˚pF bG q

��
pφ˚F q b pφ˚ G q θ // φ˚pF bG q

where the upper horizontal map is an equivalence, and the left vertical map ex-
hibits pφ˚F q b pφ˚ G q as a LocSysGB

pXq-localization of the levelwise tensor product
pφ˚F qbpφ˚ G q. It will therefore suffice to show that the right vertical map exhibits
φ˚pF bG q as a LocSysGB

pXq-localization of φ˚pF bG q, which follows from Remark
6.2.2.

Remark 6.2.4. Let G be a preoriented P-divisible group over an E8-ring A, and let
X be an orbispace. Then we can regard C “ ModAX

as an A-linear 8-category. If B is
an E8-algebra over A, then CB “ ModBX

can then be identified with the 8-category
B bA C » ModBpCq of B-module objects of C. By virtue of Proposition 6.2.1, this
identification restricts to equivalences

LocSyspre
GB
pXq » B bA LocSyspre

G pXq » ModBpLocSyspre
G pXqq

LocSysGB
pXq » B bA LocSysGpXq » ModBpLocSysGpXqq.

Example 6.2.5. Let G be an oriented P-divisible group over an E8-ring A and let
I Ď π0pAq be a finitely generated ideal, and let B “ LIpAq denote the I-localization
of A (so that B is I-local as an A-module, and the fiber of the map A Ñ B is
I-nilpotent). Then, for any A-linear 8-category C, we can identify ModBpCq with the
full subcategory of C spanned by the I-local objects. In particular, for any orbispace
X, the forgetful functor LocSysGB

pXq Ñ LocSysGpXq is a fully faithful embedding,
whose essential image is the subcategory LocSysLocpIq

G pXq Ď LocSysGpXq appearing in
Definition 6.1.1.

201



Let A be complex periodic and p-local (for some prime number p). Applying the
above analysis in the case where I “ IAn`1 is the pn` 1qst Landweber ideal of A, we
obtain an equivalence LocSysEpnqG pXq “ LocSysGB

pXq, where B “ LIpAq “ LEpnqpAq

is the Epnq-localization of A.

Proposition 6.2.6 (Faithfully Flat Descent). Let A be an E8-ring, let G be an
oriented P-divisible group over A, and let A‚ be a flat hypercovering of A (see Definition
SAG.D.6.1.4 ). Then, for any orbispace X, extension of scalars induces an equivalence
of 8-categories

LocSysGpXq Ñ TotpLocSysGA‚
pXqq.

Proof. Since G is oriented, the 8-category C “ LocSysGpXq is compactly generated
(Corollary 5.3.3). By virtue of Remark 6.2.4, we are reduced to proving that the
canonical map C Ñ TotpA‚bA Cq is an equivalence, which is a special case of Corollary
SAG.D.7.7.7 .

Let G be a preoriented P-divisible group over an E8-ring A and let I Ď π0pAq

be a finitely generated ideal. Let B be an E8-algebra over A and let J “ Iπ0pBq

be the ideal generated by the image of I. Then a B-module spectrum M is J-
nilpotent (J-local, J-complete) if and only if it is I-nilpotent (I-local, I-complete)
when viewed as an A-module. It follows that, for any orbispace X, the forgetful functor
LocSysGB

pXq Ñ LocSysGpXq restricts to functors

LocSysNilpJq
GB

pXq Ñ LocSysNilpIq
G pXq

LocSysLocpJq
GB

pXq Ñ LocSysLocpIq
G pXq

LocSysCplpJq
GB

pXq Ñ LocSysCplpIq
G pXq.

Proposition 6.2.7. Let G be an oriented P-divisible group over an E8-ring A and let
I Ď π0pAq be a finitely generated ideal. Let B be an E8-algebra over A, let J “ Iπ0pBq

denote the ideal generated by I, and suppose that the map of completions A^I Ñ B^J is
an equivalence. Then, for any orbispace X, the restriction functors

LocSysNilpJq
GB

pXq Ñ LocSysNilpIq
G pXq LocSysCplpJq

GB
pXq Ñ LocSysCplpIq

G pXq

are equivalences of 8-categories.
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Proof. Let φ : A Ñ B exhibit B as an E8-algebra over A. We will show that
the forgetful functor φ˚ : LocSysNilpJq

GB
pXq Ñ LocSysNilpIq

G pXq is an equivalence; the
analogous assertion for complete objects is then a formal consequence (see Corollary
6.1.12). Note that φ˚ admits a left adjoint φ˚ : LocSysNilpIq

G pXq Ñ LocSysNilpJq
GB

pXq.
Since φ˚ is conservative, it will suffice to show that the unit map id Ñ φ˚φ

˚ is an
equivalence of functors from LocSysNilpIq

G pXq to itself. In other words, it will suffice to
show that if F is I-nilpotent, then the canonical map F Ñ BbA F is an equivalence
of G-tempered local systems on X. Fix an object T P T op

{X ; we wish to show that the
canonical map θ : F pT q Ñ BbA F pT q is an equivalence. This is clear: the homotopy
fiber fibpθq can be identified with the tensor product fibpφq bA F pT q, which vanishes
because fibpφq is I-local and F pT q is I-nilpotent.

Corollary 6.2.8. Let p be a prime number, let φ : A Ñ B be a map of p-local
E8-rings, and let G be an oriented P-divisible group over A. Let n be a nonnegative
integer for which φ induces an equivalence LKpnqpAq Ñ LKpnqpBq. Then, for any
orbispace X, the forgetful functor

LocSysKpnqGB
pXq Ñ LocSysKpnqG pXq

is an equivalence of 8-categories.

Proof. When n “ 0, this follows from Example 6.2.5. Let us therefore assume that
n ą 0. In this case, we can apply Proposition 6.2.7 (with I “ ppq) to reduce to
the case where A and B are p-complete. Our assumption that G is oriented then
guarantees that A is complex periodic (so that B is also complex periodic). Using
Example 6.2.5 again, we can replace A by LEpnqpAq and thereby reduce to the case
where A is Epnq-local. In this case, a G-tempered local system F on X is Kpnq-local
if and only if it is IAn -complete, where IAn denotes the nth Landweber ideal of π0pAq

(Remark 6.1.14). The desired result now follows from Proposition 6.2.7.

6.3 The Infinitesimal Case
Let p be a prime number, which we regard as fixed throughout this section. Let

A be a p-local E8-ring and let G be an oriented p-divisible group over A. For any
orbispace X, Corollary 6.1.17 asserts that the stable 8-category LocSysGpXq admits a
semi-orthogonal decomposition by the full subcategories tLocSysKpmqG pXqumě0. The
last of these subcategories admits a more concrete description:
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Theorem 6.3.1. Let G be an oriented p-divisible group of height n over a p-local
E8-ring A, and let X be an orbispace with underlying space |X|. Then the forgetful
functor LocSysGpXq Ñ LocSysAp|X|q of Variant 5.1.15 restricts to an equivalence of
8-categories

LocSysKpnqG pXq » LocSysKpnqA p|X|q.

Here LocSysKpnqA p|X|q “ Funp|X|,ModKpnqA q denotes the full subcategory of LocSysAp|X|q
spanned by those local systems of A-modules on |X| which take Kpnq-local values.

Remark 6.3.2. To prove Theorem 6.3.1, we are free to replace A by its Kpnq-
localization LKpnqpAq (see Corollary 6.2.8). If n ą 0, the orientation of G then
determines an equivalence GQ

A » G, where GQ
A is the Quillen p-divisible group of A

(Proposition 2.5.6).

Remark 6.3.3. Let A be an E8-ring which is Kpnq-local and complex periodic, and
let G “ GQ

A be the Quillen p-divisible group of A. For any orbispace X, the forgetful
functor LocSysGpXq Ñ LocSysAp|X|q of Variant 4.9.6 carries the trivial G-tempered
local system AX to the trivial local system A|X|. Since AX is Kpnq-local, Theorem
6.3.1 implies that the induced map

ζ : Ext˚LocSysGpXqpAX, AXq » Ext˚LocSysAp|X|qpA|X|, A|X|q

is an isomorphism. Combining this observation with Remark 5.1.20, we recover
the statement that the Atiyah-Segal comparison map ζ : A˚GpXq Ñ A˚p|X|q is an
isomorphism. In other words, we can regard Theorem 6.3.1 as a categorified version
of Theorem 4.2.5.

Proof of Theorem 6.3.1. Without loss of generality, we may assume that the E8-ring
A is Kpnq-local and that G “ GQ

A is the Quillen p-divisible group of A (Remark
6.3.2). Let us abuse notation by identifying |X| with the full subcategory of T op

{X
spanned by those objects T Ñ X where T is contractible. Let C Ď ModAX

denote the
full subcategory spanned by those AX-modules F which are right Kan extensions
of their restriction to |X|, and let CKpnq denote the full subcategory of C spanned by
those objects F for which the spectrum F pT q is Kpnq-local for T P |X|. Applying
Proposition HTT.4.3.2.15 (to the fibration q : ModpSpq Ñ CAlg of Construction
5.1.8), we deduce that the restriction functors

C Ñ LocSysApXq F ÞÑ F ||X|

CKpnq Ñ LocSysKpnqA pXq F ÞÑ F ||X|
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are equivalences of 8-categories. It will therefore suffice to show that CKpnq “
LocSysKpnqG pXq.

Unwinding the definitions, we see that a module F P ModAX
belongs to CKpnq if

and only if it satisfies the following conditions:

paq For each T P |X|, the spectrum F pT q is Kpnq-local.

pbq For each object T P T{X having universal cover T0 P CovpT q, the canonical map
F pT q Ñ F pT0q

hAutpT0{T q is an equivalence.

Suppose first that F P LocSysKpnqG pXq; we wish to show that F satisfies paq and
pbq. Condition paq is obvious. To prove pbq, it suffices to show that F pT q is IpT0{T q-
complete when viewed as a module over ATG “ AT . We will assume that n ą 0
(otherwise there is nothing to prove), so that A is complex periodic. Let IAn Ď π0pAq

denote the nth Landweber ideal of A. Then the inverse image of the vanishing locus
of IAn under the map | SpecpATGq| Ñ | SpecpAq| is contained in the zero section: that
is, some power of the ideal IpT0{T q is contained in IAnA

0
GpT q. Consequently, to show

that F pT q is IpT0{T q-local, it suffices to show that it is IAn -local, or equivalently that
it is Kpnq-local (which follows by assumption).

Now suppose that F satisfies paq and pbq. It follows immediately that for each
T P T{X, the spectrum F pT q is Kpnq-local. We will show that F is a G-tempered
local system. We first verify condition pBq of Definition 5.2.4. Let T be any object of
T{X and let T0 P CovpT q be a connected covering space of T ; we wish to show that
the map θ : F pT q Ñ F pT0q

hAutpT0{T q has IpT0{T q-local fiber. To prove this, let T1 be
a universal cover of T0. We then have a commutative diagram

F pT q θ //

''

F pT0q
hAutpT0{T q

uu
F pT1q

hAutpT1{T q

where the vertical maps are equivalences by virtue of assumption pbq. It follows that θ
is an equivalence (so that fibpθq » 0 is automatically IpT0{T q-local).

It remains to prove that F is a G-pretempered local system on X. Fix a map
u : T 1 Ñ T in T{X with connected homotopy fibers; we wish to show that the canonical
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map ρ : AT 1G bATG
F pT q Ñ F pT 1q is an equivalence. Form a pullback square

T 10 //

��

T0

��
T 1 // T,

where T0 is a universal cover of T . Using condition pbq, we can identify ρ with the map

ρ : AT 1G bATG
F pT0q

hAutpT0{T q Ñ F pT 10q
hAutpT 10{T 1q.

Since AT
1

G is finite and flat as a module over ATG, the functor M ÞÑ AT
1

G b ATGM

commutes with limits. Consequently, it will suffice to show that the natural map

ρ0 : AT 1G bATG
F pT0q » A

T 10
G b

A
T0
G

F pT0q Ñ F pT 10q

is an equivalence. In other words, we can replace T by T0 (and T 1 by T 10) and thereby
reduce to the problem of showing that ρ is an equivalence in the special case T is
contractible. Setting M “ F pT q, we are reduced to the problem of showing that
the canonical map AT

1

bAM ÑMT 1 is an equivalence. It follows from Proposition
Ambi.5.4.6 that this map is an equivalence after Kpnq-localization, and is therefore
an equivalence (since both AT

1

bAM and MT 1 are Kpnq-local).

6.4 Categorified Character Theory
Let G be a preoriented P-divisible group over an E8-ring A which splits as a

direct sum G0‘Λ, where Λ is the constant P-divisible group associated to a colattice
Λ (Construction 2.7.5). For any orbispace X, Theorem 4.3.2 supplies an equivalence
of χ : AX

G » A
LΛpXq
G0 . When G is oriented, this result has a counterpart for tempered

local systems:

Theorem 6.4.1. Let G be an oriented P-divisible group over an E8-ring A which
decomposes as a sum G0 ‘ Λ, for some colattice Λ. For any orbispace X, there exists
a symmetric monoidal fully faithful embedding

Φ : LocSysGpXq Ñ LocSysG0pL
Λ
pXqq.

The remainder of this section is devoted to the proof of Theorem 6.4.1. In what
follows, we fix a preoriented P-divisible group G0 over an E8-ring A, a colattice Λ

206



with Pontryagin dual pΛ, and an orbispace X. Let G denote the direct sum G0 ‘ Λ,
which we also regard as a preoriented P-divisible group over A. Our first step is to
construct a functor Ψ : LocSysG0pL

Λ
pXqq Ñ LocSysGpXq which will be right adjoint

to the embedding Φ of Theorem 6.4.1 (at least in the case where G is oriented), but
is much easier to describe.

Notation 6.4.2. For each object T P T , we will identify the set of connected com-
ponents π0pLΛ

pT qq “ π0pT
BpΛq with the set HomppΛ, π1pT qq of group homomorphisms

from pΛ to the finite group π1pT q. If α : pΛ Ñ π1pT q is a group homomorphism, we will
write LΛ

pT qα for the corresponding connected component of LΛ
pT q (so that LΛ

pT qα
is homotopy equivalent to T , by evaluation at the base point of the classifying space
BpΛ).

Construction 6.4.3 (The Functor Ψ). For every functor G : T op
{LΛpXq Ñ Sp, we define

a functor ΨpG q : T op
{X Ñ Sp by the formula

ΨpG qpT q “
ź

α:pΛÑπ1pT q

G pLΛ
pT qαq.

The construction G ÞÑ ΨpG q then determines a lax symmetric monoidal functor

Ψ : FunpT op
{LΛpXq, Spq Ñ FunpT op

{X , Spq;

see Construction 6.4.10 below for a more precise description of this functor. In
particular, the functor Ψ carries commutative algebra objects of FunpT op

{LΛpXq, Spq
to commutative algebra objects of FunpT op

{X , Spq. By virtue of Proposition 2.7.15,
it carries the trivial G0-pretempered local system ALΛpXq on LΛ

pXq to the trivial
G-pretempered local system AX on X. It follows that Ψ also determines a functor

ModALΛpXq
Ñ ModALΛpXq

,

which we will also denote by Ψ.

Remark 6.4.4. Let AX be the trivial G-tempered local system on X, which we view
as a commutative algebra object of the functor 8-category FunpT op

{X , Spq. Let F be
an AX-module. For each object T P T{X, we can view F pT q as a module over the ring
spectrum

ATG “ A
LΛpT q
G0 “

ź

α:pΛÑπ1pT q

A
LΛpT qα
G0 .
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For each homomorphism α : pΛ Ñ π1pT q, we define

F pT qα “ A
LΛpT qα
G0 bATG

F pT q.

Then F pT q factors as a product
ś

α:pΛÑπ1pT q
F pT qα, where each factor F pT qα is a

module over the tempered function spectrum A
LΛpT qα
G0 » ATG0 .

Unwinding the definitions, we see that:

paq The AX-module F is a G-pretempered local system on X if and only if, for each
object T P T{X, each morphism f : T 1 Ñ T with connected homotopy fibers,
and each homomorphism α : pΛ Ñ π1pT

1q, the canonical map

AT
1

G0 bATG0
F pT qα Ñ F pT 1qα1

is an equivalence. Here we abuse notation by identifying α with its image in
HomppΛ, π1pT qq.

pbq An object F P LocSyspre
G pXq is G-tempered if and only if, for each object

T P T{X, each connected covering space T0 P CovpT q, and each homomorphism
α : pΛ Ñ π1pT0q, the canonical map

F pT qα Ñ F pT0q
hAutpT0{T q
α

exhibits F pT0q
hAutpT0{T q
α as the completion of F pT qα with respect to the aug-

mentation ideal IpT0{T q Ď A0
G0pT q; here we abuse notation by identifying α

with its image in HomppΛ, π1pT qq.

Remark 6.4.5. Let G be an ALΛpXq-module object of FunpT op
{LΛpXq, Spq. Using the

conventions of Remark 6.4.4, we see that the AX-module ΨpG q of Construction 6.4.3
is given by the formula ΨpG qpT qα “ G pLΛ

pT qαq; here T denotes an object of T{X and
α any homomorphism from pΛ to π1pT q.

Combining Remarks 6.4.4 and 6.4.5, we obtain the following:

Proposition 6.4.6. For every G0-pretempered local system G on the formal loop
space LΛ

pXq, the AX-module ΨpG q of Construction 6.4.3 is a G-pretempered local
system on X. If G is a G0-tempered local system on LΛ

pXq, then ΨpG q is G-tempered
local system on X.
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Notation 6.4.7 (The Functor Ψ). It follows from Proposition 6.4.6 that the construc-
tion G ÞÑ ΨpG q restricts to functors

Ψpre : LocSyspre
G0pL

Λ
pXqq Ñ LocSyspre

G pXq Ψ : LocSysG0pL
Λ
pXqq Ñ LocSysGpXq.

The lax symmetric monoidal structure on Ψ then determines a lax symmetric monoidal
structure on the functor Ψpre (with respect to the levelwise tensor productb of Notation
5.8.1). If G is oriented, it determines a lax symmetric monoidal structure on Ψ (with
respect to the tempered tensor product of Construction 5.8.7).

Remark 6.4.8. The lax symmetric monoidal functor Ψpre is actually symmetric
monoidal. However, the functor Ψ is not symmetric monoidal.

We can now formulate Theorem 6.4.1 more precisely:

Theorem 6.4.9. If G is an oriented P-divisible group, then the functor Ψ of Notation
6.4.7 has a fully faithful left adjoint Φ : LocSysGpXq Ñ LocSysG0pL

Λ
pXqq. Moreover,

the lax symmetric monoidal structure on Ψ induces a symmetric monoidal structure
on Φ.

We now construct the left adjoint Φ appearing in Theorem 6.4.9.

Construction 6.4.10. Let M`
Ñ ∆1 be a Cartesian fibration which classifies the

formal loop functor LΛ : OS{LΛpXq Ñ OS{X, so that the fibers are given by

M`
0 “ OS{LΛpXq M`

1 “ OS{X .

We let M denote the full subcategory of M` spanned by the objects which belong
either to the full subcategory T{LΛpXq Ă OS{LΛpXq “M`

0 or to T{X Ă OS{X »M`
0 .

More informally, M is an 8-category equipped with a functor MÑ ∆1 having fibers
M0 “ T{LΛpXq, M1 “ T{X, with morphisms given by

MapMpT0, T1q “ MapOS
{LΛpXq

pT0,LΛ
pT1qq “

ž

α:pΛÑπ1pT1q

MapT
{LΛpXq

pT0,LΛ
pT1qαq

for T0 PM0, T1 PM1.
Note that we have an evident retraction r ofM` onto the subcategoryM`

0 (whose
restriction toM`

1 is the formal loop functor LΛ : OS{LΛpXq Ñ OS{X). Let AM denote
the opposite of the composite functor

M ãÑM` r
ÝÑM`

0 Ñ OS
AG0
ÝÝÝÑ CAlgop .
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We regard AM as a functor from Mop to CAlg, whose restriction to Mop
0 » T op

{LΛpXq
is the trivial G0-tempered local system ALΛpXq, and whose restriction to Mop

1 » T{X
is the trivial G-tempered local system AX.

Let ι0 : T{LΛpXq “M0 ãÑM and ι1 : T{X “M1 ãÑM be the inclusion maps,
and let q : ModpSpq Ñ CAlg be the fibration of Construction 5.1.8. Unwinding the
defintions, we see that the functor Ψ of Construction 6.4.3 is given (on ALΛpXq-modules)
by the composition

ModALΛpXq
» FunCAlgpT

op
{LΛpXq,ModpSpqq

ι0˚
ÝÝÑ FunCAlgpMop,ModpSpqq
ι˚1
ÝÑ FunCAlgpT

op
{X ,ModpSpqq

» ModAX
,

where ι˚1 is given by precomposition with ι1 and ι0˚ is given by q-right Kan extension
along ι0. It follows that Ψ admits a left adjoint Φ, given by the composition

ModAX
» FunCAlgpT

op
{X ,ModpSpqq

ι1!
ÝÑ FunCAlgpMop,ModpSpqq
ι˚0
ÝÑ FunCAlgpT

op
{LΛpXq,ModpSpqq

» ModALΛpXq
,

where ι˚0 is given by precomposition with ι0 and ι1! is given by q-left Kan extension
along ι1.

More informally: if F is an AG-module object of FunpT op
{X , Spq, then ΦpF q is

given by the formula ΦpF qpT q “ lim
ÝÑT 1

pATG0bAT 1G
F pT 1qq, where the colimit is indexed

by the opposite of the 8-category T{X ˆT
{LΛpXq

TT { {LΛpXq.

Remark 6.4.11. Let T be an object of T . By definition, the space LΛ
pXqT “

MapOSpT,LΛ
pXqq can be identified with the filtered colimit

lim
ÝÑ
Λ1ĎΛ

MapOSpT ˆB
pΛ1,Xq,

indexed by the collection of all finite subgroups Λ1 Ď Λ (and pΛ1 denotes the Pontryagin
dual group HompΛ1,Q {Zq). If Λ0 Ď Λ is a finite subgroup, we will say that a map of
orbispaces f : T Ñ LΛ

pXq is represented by a map f0 : T ˆBpΛ0 Ñ X if it is the image
of f0 under the composite map

MapOSpT ˆB
pΛ0,Xq Ñ lim

ÝÑ
Λ1ĎΛ

MapOSpT ˆB
pΛ1,Xq » MapOSpT,LΛ

pXqq.
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If this condition is satisfied, then the construction Λ1 ÞÑ T ˆB pΛ1 determines a right
cofinal functor

tFinite subgroups Λ1 Ď Λ containing Λ0u Ñ T{X ˆT
{LΛpXq

TT { {LΛpXq

If F is a AG-module object of FunpT op
{X , Spq, we therefore obtain an equivalence

ΦpF qpT q “ lim
ÝÑ

Λ0ĎΛ1ĎΛ
pATG0 bATˆB

xΛ1
G

F pT ˆB pΛ1qq.

Example 6.4.12. Let F be a G-pretempered local system on X, let T be an object
of T , and let f : T Ñ LΛ

pXq be a map of orbispaces which is represented by
f0 : T ˆ BpΛ0 Ñ X, for some finite subgroup Λ0 Ď Λ. Let ρ : pΛ � pΛ0 denote
the Pontryagin dual of the inclusion map, so that we can view the pair p0, ρq as a
homomorphism from pΛ to X. Our assumption that F is G-pretempered guarantees
that all of the transition maps in the filtered diagram

tATG0 bATˆB
xΛ1

G
F pT ˆB pΛ1quΛ0ĎΛ1ĎΛ

of Remark 6.4.11 are equivalences. We therefore obtain an equivalence

ΦpF qpT q » ATG0 bATˆB
pΛ0

G
F pT ˆBpΛ0q

» ATG0 bś

α A
LΛpTˆByΛ0qα
G0

p
ź

α

F pT ˆBpΛ0qαq

» ATG0 bATˆB
pΛ0

G0

F pT ˆBpΛ0qp0,ρq

» Ab
A
B pΛ0
G0

F pT ˆBpΛ0qp0,ρq;

here the tensor product is formed along the augmentation map ε : ABpΛ0
G0 Ñ A

Proposition 6.4.13. Let F be an AX-module object of FunpT op
{X , Spq. If F is a

G-pretempered local system on X, then ΦpF q is a G0-pretempered local system on
LΛ
pXq. If G is oriented and F is a G-tempered local system on X, then ΦpF q is a

G0-tempered local system on LΛ
pXq.

Proof. Assume first that F is a G-pretempered local system on X. Fix an object
T P T equipped with a map f : T Ñ LΛ

pXq, and let T 1 be a connected covering space
of T . We wish to show that the canonical map

θ : AT 1G0 bATG0
Φpre

pF qpT q Ñ ΦpF qpT 1q
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is an equivalence. Choose a representative of f by a map of orbispaces f0 : TˆBxΛ0 Ñ X,
where Λ0 is a finite subgroup of Λ, and let ρ : pΛ � xΛ0 be the Pontryagin dual of the
inclusion map. Using Example 6.4.12, we see that θ is obtained from the tautological
map

θ : AT 1ˆBpΛ0
G0 b

A
TˆB pΛ0
G0

F pT ˆBpΛ0qp0,ρq Ñ F pT 1 ˆBpΛ0qp0,ρq

by extending scalars along the augmentation map ε : ABpΛ0
G0 Ñ A. It will therefore

suffice to show that θ is an equivalence, which follows from our assumption that F is
G-pretempered (by virtue of assertion paq of Remark 6.4.4).

Now suppose that F is a G-tempered local system on X and that G is oriented.
We wish to show that ΦpF q is a G0-tempered local system on LΛ

pXq. We will
prove this by verifying condition pB2q of Remark 5.2.8. Let f : T Ñ LΛ

pXq and
f0 : T ˆ BxΛ0 Ñ X be as above, and let T0 be a connected covering space of T for
which the automorphism group AutpT0{T q is cyclic of order p, for some prime number
p. We then have a fiber sequence T0 Ñ T Ñ BCp, and the ideal IpT0{T q Ď A0

G0pT q of
Notation 5.2.1 is generated by the image of the augmentation ideal ICp Ď A0

G0pBCpq.
Using the description of ΦpF qpT q and ΦpF qpT0q supplied by Example 6.4.12, we can
identify ξ with the composition of the natural map

ξ1 : Ab
A
B pΛ0
G0

F pT ˆBpΛ0qp0,ρq Ñ Ab
A
B pΛ0
G0

F pT ˆBpΛ0q
hCp
p0,ρq

with the map ξ2 which appears in the diagram of fiber sequences maps ξ1 and ξ2

appearing in the diagram

Ab
A
B pΛ0
G0

pF pT0 ˆBpΛ0qp0,ρqqhCp
„ //

Nm
��

pAb
A
B pΛ0
G0

F pT0 ˆBpΛ0qp0,ρqqhCp

Nm
��

Ab
A
B pΛ0
G0

F pT ˆBpΛ0q
hCp
p0,ρq

ξ2 //

��

pAb
A
B pΛ0
G0

F pT ˆBpΛ0qp0,ρqq
hCp

��

Ab
A
B pΛ0
G0

F pT ˆBpΛ0q
tCp
p0,ρq

γ // pAb
A
B pΛ0
G0

F pT ˆBpΛ0qp0,ρqq
tCp .

Our assumption that F is G-tempered guarantees that the fiber fibpξ1q is IpT0{T q-local
(see Remark 6.4.4). It will therefore suffice to show that fibpξ1q is also IpT0{T q-local,
or equivalently that it is ICp-local when viewed as a module over ABCpG0 . Since the
square on the lower right is a pullback, it induces an equivalence fibpξ1q „ÝÑ fibpγq. It
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will therefore suffice to show that fibpγq is ICp-local. In fact, our assumption that G
is oriented guarantees that the domain and codomain of γ are individually ICp-local
(Proposition 4.6.8).

Notation 6.4.14 (The Functor Φ). It follows from Proposition 6.4.13 that the
functor Φ : ModAX

Ñ ModALΛpXq
of Construction 6.4.10 restricts to a functor Φpre :

LocSyspre
G pXq Ñ LocSyspre

G0pL
Λ
pXqq, which is left adjoint to the functor Ψpre of Notation

6.4.7. If the P-divisible group G is oriented, then Φpre restricts to a functor

Φ : LocSysGpXq Ñ LocSysG0pL
Λ
pXqq,

which is left adjoint to the functor Ψ : LocSysG0pL
Λ
pXqq Ñ LocSysGpXq of Notation

6.4.7.

Remark 6.4.15. Suppose that G is oriented. Then the functor Φpre : LocSyspre
G pXq Ñ

LocSyspre
G0pL

Λ
pXqq carries the full subcategory LocSysnul

G pXq Ď LocSyspre
G pXq into the full

subcategory LocSysnul
G0pL

Λ
pXqq Ď LocSyspre

G0pL
Λ
pXqq. This follows from Theorem 5.7.3,

together with the fact that the right adjoint Ψpre : LocSyspre
G0pL

Λ
pXqq Ñ LocSyspre

G pXq
carries G0-tempered local systems to G-tempered local systems (Proposition 6.4.6).

Proposition 6.4.16. The functor Φpre : LocSyspre
G pXq Ñ LocSyspre

G0pL
Λ
pXq is fully

faithful. In particular, if G is oriented, then the functor

Φ : LocSysGpXq Ñ LocSysG0pL
Λ
pXq

is fully faithful.

Proof. Let F be a G0-pretempered local system on X; we wish to show that the unit
map u : F Ñ pΨpre ˝ ΦpreqpF q is an equivalence. Choose an object T P T equipped
with a map f : T Ñ X, and let α : pΛ Ñ π1pT q be a homomorphism; we wish to show
that u induces an equivalence of ATG0-modules

uT,α : F pT qα Ñ Ψpre
pΦpre

pF qqpT qα.

Note that the image of α can be identified with the Pontryagin dual pΛ0 for some
finite subgroup Λ0 Ď Λ, and that the map LΛ

pT qα ãÑ LΛ
pT q

LΛpfq
ÝÝÝÑ LΛ

pXq is then
represented by the composition

LΛ
pT qα ˆBpΛ0

a
ÝÑ T

f
ÝÑ X,
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where a is obtained by amalgamating the homotopy equivalence LΛ
pT qα » T with

the inclusion map pΛ0 ãÑ π1pT q. Let ρ : pΛ � pΛ0 denote the Pontryagin dual of the
inclusion Λ0 ãÑ Λ. Using the descriptions of Φpre and Ψpre supplied by Remark 6.4.5
and Example 6.4.12, we can identify uT,α with the composite map

F pT qα Ñ F pLΛ
pT qα ˆBpΛ0qp0,ρq Ñ Ab

A
B pΛ0
G0

F pLΛ
pT qα ˆBpΛ0qp0,ρq

determined by a. Since a has connected homotopy fibers and F is G-pretempered,
we can use Remark 6.4.4 to rewrite this map as

F pT qα Ñ A
LΛpT qαˆBpΛ0
G0 bATG

F pT qα

Ñ Ab
A
B pΛ0
G0

A
LΛpT qαˆBpΛ0
G0 bATG0

F pT qα

» AT
1

G0 bATG0
F pT qα,

where T 1 denotes the homotopy fiber of the map LΛ
pT qα ˆ BpΛ0 Ñ BxΛ0 given by

projection onto the second factor. The desired result now follows from the observation
that the composite map T 1 Ñ LΛ

pT qα ˆBpΛ0
a
ÝÑ T is a homotopy equivalence.

Proof of Theorem 6.4.9. Suppose that G is oriented. Then the functors Ψpre and Ψ
of Notation 6.4.7 admit left adjoints Φpre and Φ (Notation 6.4.14), which are fully
faithful by virtue of Proposition 6.4.16. Moreover, since the functors Ψpre and Ψ are lax
symmetric monoidal with respect to the tensor products b and b, the left adjoints Φpre

and Φ inherit the structure of colax symmetric monoidal functors with respect to b
and b. In particular, for every pair of G-tempered local systems F ,G P LocSysGpXq,
we have canonical maps

θ : Φpre
pF bG q Ñ Φpre

pF qbΦpre
pG q θ : ΦpF bG q Ñ ΦpF q b ΦpG q

which fit into a commutative diagram

ΦprepF bG q θ //

u

��

ΦprepF qbΦprepG q

v

��
ΦpF bG q θ // ΦpF q b ΦpG q.

To complete the proof, it will suffice to show that θ is an equivalence (and to prove
an analogous assertion for unit objects, which we leave to the reader). From the
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description of Φpre supplied by Example 6.4.12, it is easy to see that the map θ is
an equivalence. It follows from the construction of the tempered tensor product
on LocSysG0pL

Λ
pXqq that the fiber fibpvq belongs to LocSysnul

G0pL
Λ
pXqq. Similarly,

using the construction of the tempered tensor product on LocSysGpXq together with
Remark 6.4.15, we conclude that fibpuq belongs to LocSysnul

G0pL
Λ
pXqq. It follows that

the fiber fibpθq must belong to the intersection LocSysG0pL
Λ
pXqq X LocSysnul

G0pL
Λ
pXqq,

and therefore vanishes (Theorem 5.7.3).

6.5 Isotropic Local Systems
Let G0 be an oriented P-divisible group over an E8-ring, and let G “ G0 ‘ Λ,

where Λ is a colattice. For every orbispace X, Theorem 6.4.1 supplies a fully faithful
embedding

Φ : LocSysGpXq Ñ LocSysG0pL
Λ
pXqq.

The goal of this section is to describe the essential image of the embedding Φ.
We begin with a few heuristic remarks. Let Y be an orbispace and let T “ BH be

the classifying space of a finite abelian group H. Evaluation at the base point of T
then determines a map

ev : MapOSpT,Yq Ñ MapOSp˚,Yq » |Y|.

Roughly speaking, one can think of a point f of the space YT » MapOSpT,Yq as
consisting of a point y “ evpfq of the underlying space |Y|, together with an “action”
of the group H on y.

Suppose now that Y “ LΛ
pXq, for some colattice Λ. In this case, every point

y P |Y| can be represented by a map of orbispaces f0 : BpΛ0 Ñ X, for some finite
subgroup Λ0 Ď Λ (see Remark 6.4.11). For any homomorphism of finite abelian groups
u : H Ñ pΛ0, we obtain the composite map

BpH ˆ pΛ0q
pu,idq
ÝÝÝÑ BpΛ0

f0
ÝÑ X

then represents a map BH Ñ LΛ
pXq “ Y. This can be viewed as an action of H on

the point y of a special type: roughly speaking, it is associated to the monodromy of
the profinite torus BpΛ. We now axiomatize a relative version of this condition.

Definition 6.5.1. Let X be an orbispace and let Λ be a colattice. We will say
that a morphism f : T 1 Ñ T be a morphism in the 8-category T{LΛpXq is relatively
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monodromic if the structure map T Ñ LΛ can be represented (in the sense of Remark
6.4.11) by a composite map

T ˆBpΛ0
g
ÝÑ BH Ñ X

where Λ0 is a finite subgroup of Λ, H is a finite abelian group, and the composite map

π1pT
1
ˆBpΛ0q Ñ π1pT ˆBpΛ0q

g
ÝÑ π1pBHq “ H

is surjective.

Warning 6.5.2. In the situation of Definition 6.5.1, let Y denote the formal loop
space LΛ

pXq. The notion of relatively monodromic morphism in T{Y is not intrinsic
to the orbispace Y: it depends on the presentation of Y as a formal loop space.

Example 6.5.3. Let X be an orbispace, let Λ be a colattice, and let f : T 1 Ñ T be a
morphism in the 8-category T{LΛpXq. If f induces a surjection π1pT

1q Ñ π1pT q, then
it is relatively monodromic. The converse holds if Λ “ 0 is the trivial colattice (in
which case LΛ

pXq can be identified with X).

Remark 6.5.4. Let X be an orbispace, let Λ be a colattice, and suppose we are
given a composable pair of morphisms T 2 f

ÝÑ T 1
g
ÝÑ T in the 8-category T{LΛpXq. If

pg ˝ fq is relatively monodromic, then g and f are relatively monodromic. Conversely,
if g is relatively monodromic and f induces a surjection of fundamental groups
π1pT

2q Ñ π1pT q, then g ˝ f is relatively monodromic.

Warning 6.5.5. In the situation of Definition 6.5.1, the collection of relatively
monodromic morphisms is not necessarily closed under composition. However, one can
show that it is closed under composition if the orbispace X is corporeal (see Remark
3.3.15).

Example 6.5.6. Let X be an orbispace and let Λ be a colattice. Then any morphism
f : T 1 Ñ T in the 8-category T{LΛpXq admits an essentially unique factorization
as a composition T 1

g
ÝÑ T0

h
ÝÑ T , where g induces an epimorphism of fundamental

groups π1pT
1q � π1pT0q and h induces a monomorphism of fundamental groups

π1pT0q ãÑ π1pT q. It follows from Remark 6.5.4 that f is relatively monodromic if and
only if h is relatively monodromic.
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Remark 6.5.7. Let X be an orbispace and let Λ be a colattice. Using Remark 6.5.4
and Example 6.5.6, we see that every relatively monodromic morphism T 1 Ñ T in
T{LΛpXq can be factored as a composition of relatively monodromic morphisms

T 1
f
ÝÑ T0 Ñ T1 Ñ ¨ ¨ ¨ Ñ Tn “ T

where f induces a surjection π1pT
1q� π0pT0q, and each of the maps Ti Ñ Ti`1 exhibits

Ti as a connected covering space of Ti`1, where the automorphism group AutpTi{Ti`1q

is cyclic of order pi for some prime number pi.

Definition 6.5.8. Let Λ be a colattice, let X be an orbispace, and let G0 be a
preoriented P-divisible group over an E8-ring A. We will say that a G0-pretempered
local system G on LΛ

pXq is isotropic if, for every relatively monodromic morphism
f : T 1 Ñ T in T{LΛpXq, the induced map

AT
1

G0 bATG0
G pT q Ñ G pT 1q

is an equivalence.

Remark 6.5.9. In the situation of Definition 6.5.8, it suffices to verify that the map

AT
1

G0 bATG0
G pT q Ñ G pT 1q

is an equivalence in the special case where f : T 1 Ñ T is a relatively monodromic
map which exhibits T 1 as a connected covering space of T whose automorphism group
AutpT 1{T q is cyclic of prime order (see Remark 6.5.7).

Remark 6.5.10. Let Λ be a colattice, let f : X Ñ Y be a map of orbispaces, and let
G0 be a preoriented P-divisible group over an E8-ring A. Let G be a G0-pretempered
local system on the formal loop space LΛ

pYq. If G is isotropic, then the pullback
LΛ
pfq˚pG q P LocSyspre

G0pL
Λ
pXqq is isotropic.

Proposition 6.5.11. Let Λ be a colattice, let X be an orbispace, and let G0 be an
oriented P-divisible group over an E8-ring A. Let G be a G0-tempered local system
on the formal loop space LΛ

pXq. Then G is isotropic if and only if it satisfies the
following condition:

p˚q Let T be an object of T{LΛpXq and let T0 P CovpT q be a connected covering space
of T such for which the map T0 Ñ T is relatively monodromic and AutpT0{T q

is a cyclic group of order p, for some prime number p. Then AutpT0{T q acts
trivially on the homotopy groups π˚pG pT0qr1{psq.

217



Proof. Let T and T0 P CovpT q be as in p˚q, and let M denote the cofiber of the map

θ : AT0
G0 bATG0

G pT q Ñ G pT0q.

Since G is pretempered, the canonical map M ÑM r1{ps is an equivalence (Theorem
5.5.1). We therefore obtain another fiber sequence

AT0
G0r1{psbATG0

r1{ps Ñ G pT qr1{ps Ñ G pT0qr1{ps ÑM.

Note that the group AutpT0{T q acts trivially on the first term (since AT0
G r1{ps is

a direct factor of ATGr1{ps), and that AutpT0{T q has no nonzero fixed points on
π˚pMq (Theorem 5.5.1). It follows that the induced map π˚pG pT0qr1{psq Ñ π˚pMq

is an epimorphism, whose kernel is the subgroup of π˚pG pT0qr1{psq which is fixed
by the action of AutpT0{T q. Consequently, the group AutpT0{T q acts trivially on
π˚pG pT0qr1{psq if and only if M » 0: that is, if and only if θ is an equivalence. The
desired result now follows from Remark 6.5.9.

Corollary 6.5.12. Let Λ be a colattice, let X be an orbispace, and let G0 be an
oriented P-divisible group over an E8-ring A. Suppose that Λ “ Λppq is p-nilpotent,
for some prime number p. Then every p-nilpotent G0-tempered local system G P

LocSysG0pL
Λ
pXqq is isotropic.

Proof. We verify condition p˚q of Proposition 6.5.11. Let T be an object of T{LΛpXq
and let T0 P CovpT q be a connected covering space of T such for which the map
T0 Ñ T is relatively monodromic and AutpT0{T q is a cyclic group of order `, for some
prime number `. Using the assumption that Λ “ Λppq, we deduce that ` “ p. Our
assumption that G is p-nilpotent then guarantees that π˚pG pT0qr1{psq vanishes, and
therefore carries a trivial action of AutpT0{T q.

We can now state the main result of this section:

Theorem 6.5.13. Let Λ be a colattice, let X be an orbispace, let G0 be an oriented
P-divisible group over an E8-ring A, and set G “ G0‘Λ. Let G be a G0-pretempered
local system on the formal loop space LΛ

pXq. Then G is isotropic if and only if it
belongs to the essential image of the functor

Φpre : LocSyspre
G pXq Ñ LocSyspre

G0pL
Λ
pXqq

of Notation 6.4.14.

218



Variant 6.5.14. In the situation of Theorem 6.5.13, suppose that the P-divisible
group G is oriented. Then the functor

Φ : LocSysGpXq Ñ LocSysG0pL
Λ
pXqq

is a fully faithful embedding, whose essential image consists of the isotropic G0-
tempered local systems on LΛ

pXq. This follows from Theorem 6.5.13: note that if a
G0-tempered local system G on LpXq is isotropic, then it can be identified with ΦpF q
(Theorem 6.5.13), where F “ ΦpG q is G-tempered by virtue of Proposition 6.4.6.

Proof of Theorem 6.5.13. Assume first that we can write G “ ΦprepF q, for some
G-pretempered local system F on X. We wish to show that G is isotropic. Fix
a relatively monodromic morphism g : T 1 Ñ T in T{LΛpXq. Then the structural
map f : T Ñ X is represented by a map f0 : T ˆ BpΛ0 Ñ X which factors as a
composition T ˆ BpΛ0

f 10
ÝÑ T Ñ X for some object T P T for which the composition

T 1ˆBpΛ0 Ñ T ˆBpΛ0
f 10
ÝÑ T has connected homotopy fibers. We wish to show that the

canonical map θ : AT 1G0 bATG0
G pT q Ñ G pT 1q is an equivalence. Let ρ : pΛ � pΛ0 denote

the Pontryagin dual of the inclusion map. Using the description of Φpre supplied by
Example 6.4.12, we see that θ can be obtained from a map

θ : AT 1ˆBpΛ0
G0 b

A
TˆB pΛ0
G0

F pT ˆBpΛ0qp0,ρq Ñ F pT 1 ˆBpΛ0qp0,ρq

by extending scalars along the augmentation map ε : ABpΛ0
G0 Ñ A. It will therefore

suffice to show that θ is an equivalence. This follows from our assumption that F is
G-pretempered (and Remark 6.4.4), which allows us to identify both sides with the
tensor product AT 1ˆBpΛ0

G0 b
ATG0

F pT qα; here α denotes the composite homomorphism

pΛ ρ
ÝÑ xΛ0 ãÑ π1pT ˆBpΛ0q

π1pf 10q
ÝÝÝÑ π1pT q.

We now prove the converse. Let G be a G0-pretempered local system on the formal
loop space LΛ

pXq which is isotropic, in the sense of Definition 6.5.8. We wish to show
that the counit map v : ΦprepΨprepG qq Ñ G is an equivalence. Fix an object T 1 in T

and a map of orbispaces f 1 : T 1 Ñ LΛ
pXq, which we may assume is represented by

f 10 : T 1 ˆBpΛ0 Ñ X for some finite subgroup Λ0 Ď Λ (Remark 6.4.11). Let ρ : pΛ � pΛ0

denote the Pontryagin dual of the inclusion, and set T “ LpT 1 ˆ BxΛ0qp0,ρq, so that
the map f 1 factors as a composition T 1

g
ÝÑ T

f
ÝÑ LΛ

pXq where f is given by the
restriction of the map Lpf 10q : LΛ

pT 1 ˆ BpΛ0q Ñ LΛ
pXq. Using the descriptions of
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Φpre and Ψpre supplied by Remark 6.4.5 and Example 6.4.12, we see that the map
ΦprepΨprepG qqpT 1q Ñ G pT 1q determined by v can be identified with the composition

Ab
A
B pΛ0
G0

G pLΛ
pT 1 ˆBpΛ0qp0,ρqq » AT

1

G0 bATG0
G pT q

γ
ÝÑ G pT 1q

where γ is obtained by applying the functor G to the morphism g : T 1 Ñ T in the 8-
category T{LΛpXq. Note that the evaluation map ev : LΛ

pT 1ˆBpΛ0qp0,ρqˆBpΛ Ñ T 1ˆBpΛ0

factors as a composition

LΛ
pT 1 ˆBpΛ0qp0,ρq ˆBpΛ idˆBρ

ÝÝÝÝÑ LΛ
pT 1 ˆBpΛ0qp0,ρq ˆBpΛ0

e
ÝÑ T 1 ˆBpΛ0,

so the map f is represented by the composition

T ˆBpΛ0 “ LΛ
pT 1 ˆBpΛ0qp0,ρq ˆBpΛ0

e
ÝÑ T 1 ˆBpΛ0

f 10
ÝÑ X.

The composition T 1 ˆ BpΛ0
gˆid
ÝÝÝÑ T ˆ BpΛ0

e
ÝÑ T 1 ˆ BpΛ0 is homotopic to the identity

map, and therefore has connected homotopy fibers. It follows that g is relatively
monodromic, so that γ is an equivalence by virtue of our assumption that G is
isotropic.

Corollary 6.5.15. Let Λ be a colattice, let G0 be an oriented P-divisible group over
an E8-ring A, and set G “ G0 ‘ Λ. Let f : X Ñ Y be a map of orbispaces, and
let G be a G0-tempered local system on the formal loop space LΛ

pYq. If G belongs
to the essential image of the functor Φ : LocSysGpYq ãÑ LocSysG0pL

Λ
pYqq, then the

pullback LΛ
pfq˚pG q belongs to the essential image of the functor Φ : LocSysGpXq ãÑ

LocSysG0pL
Λ
pXqq.

Proof. Combine Variant 6.5.14 with Remark 6.5.10.

Corollary 6.5.16. Let p be a prime number, let Λ » pQp {Zpq
n be a p-nilpotent

colattice, let X be an orbispace, let G0 be an oriented P-divisible group over an E8-ring
A, and set G “ G0 ‘ Λ. Then every p-nilpotent object of LocSysG0pL

Λ
pXqq belongs

to the essential image of the embedding

Φ : LocSysGpXq Ñ LocSysG0pL
Λ
pXqq.

Proof. Combine Variant 6.5.14 with Corollary 6.5.12.
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7 Ambidexterity for Tempered Local Systems
Let G be an oriented P-divisible group over an E8-ring A. In §5.2, we associated to

each map of orbispaces f : X Ñ Y a pullback functor f˚ : LocSysGpYq Ñ LocSysGpXq
(Remark 5.2.9). If F is a G-local system on Y, then the pullback f˚F is given
concretely by the formula

pf˚F qpT
η
ÝÑ Xq “ F pT

f˝η
ÝÝÑ Yq;

in particular, it preserves small limits and colimits (since these are computed levelwise).
It follows from the adjoint functor theorem (Corollary HTT.5.5.2.9 ) that the pullback
functor f˚ admits both left and right adjoints.

Notation 7.0.1 (Direct Image Functors). Let G be an oriented P-divisible group
over an E8-ring and let f : X Ñ Y be a map of orbispaces. We let f! : LocSysGpXq Ñ
LocSysGpYq denote a left adjoint to the pullback functor f˚ : LocSysGpYq Ñ
LocSysGpXq, and we let f˚ : LocSysGpXq Ñ LocSysGpYq denote a right adjoint
to the pullback functor f˚ : LocSysGpYq Ñ LocSysGpXq.

Our goal in this section is to prove Theorem 1.1.21, which asserts that if f : X Ñ Y

is a map of π-finite spaces, then there is a canonical equivalence Nmf : f! » f˚ which
we call the norm map of f (see Theorem 7.2.10 for a more precise statement). In
[6], we proved an analogous assertion for (ordinary) local systems with values in the
8-category SpKpnq of Kpnq-local spectra. Let us begin by recalling some of the main
steps in the argument given in [6]:

paq Let f : X Ñ Y be a map of π-finite spaces, and let f!, f˚ : LocSysSpKpnqpXq Ñ

LocSysSpKpnqpY q denote the left and right adjoint of the pullback functor f˚ :
LocSysSpKpnqpY q Ñ LocSysSpKpnqpXq. Then there exists an integer m " 0 for
which the homotopy fibers of f are m-truncated. The norm equivalence of
[6] was constructed by a recursive procedure: more precisely, the norm map
Nmf : f! Ñ f˚ was constructed using the inverse norm map Nm´1

δ : δ˚ Ñ δ!

associated to the relative diagonal δ : X Ñ X ˆY X (which we can assume to
have been previously constructed, since the homotopy fibers of δ are pm´ 1q-
truncated). The difficulty is then to show that the map Nmf is invertible.

pbq Let p denote the residue characteristic of the Morava K-theory Kpnq. Then the
8-category SpKpnq is p-local, in the sense that the multiplication ` : M ÑM is
an equivalence for every Kpnq-local spectrum and every prime number ` ‰ p.
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Combining this observation with formal arguments, we can reduce to the case
where the spaces X and Y are connected and p-finite.

pcq Any map of connected p-finite spaces f : X Ñ Y can be factored as a composition

X “ Xp0q Ñ Xp1q Ñ ¨ ¨ ¨ Ñ Xptq “ Y,

where each of the maps Xpiq Ñ Xpi` 1q is equivalent to a principal fibration
whose fiber is an Eilenberg-MacLane space KpFp, dq. We can therefore assume
without loss of generality that the map f fits into a fiber sequeence

X
f
ÝÑ Y Ñ KpFp, d` 1q.

pdq Using the fact that the norm transformation Nmf : f! Ñ f˚ can be computed
fiberwise, one can reduce to the case where Y “ ˚ consists of a single point, so
that X “ KpFp, dq is an Eilenberg-MacLane space.

peq Let E P LocSysSpKpnqpXq be the constant local system E associated to a Lubin-
Tate spectrum E. In this case, the norm map Nmf : f!pF q Ñ f˚pF q can be
identified with a bilinear form AFormpfq : ErXsbEErXs Ñ E on the E-module
spectrum ErXs “ LKpnqpEbS Σ8`pXqq. Using formal arguments, one can reduce
to proving that this bilinear form is nondegenerate (that is, it exhibits rXs as a
self-dual object of the 8-category of Kpnq-local E-modules).

pfq In the case where X “ KpFp, dq, the homotopy groups of ErXs can be computed
explicitly (by a mild extension fo the work of Ravenel-Wilson on the Kpnq-
homology of Eilenberg-MacLane spaces). In particular, one can show that ErXs
is a projective E-module of finite rank, and the nondegeneracy of the bilinear
form b can be verified by an algebraic calculation.

Our proof of Theorem 1.1.21 will loosely follow the same approach. We begin in
§7.1 by giving a concrete description of the direct image functor

f˚ : LocSysGpXq Ñ LocSysGpYq

associated to a map of orbispaces f : X Ñ Y. Using this description, we show that
both the functors f! and f˚ of Notation 7.0.1 satisfy a Beck-Chevalley condition for
pullback diagrams of orbispaces (Theorem 7.1.6 and Corollary 7.1.7). In §7.2, we
carry out an analogue of paq by using the Beck-Chevalley construction to produce a
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norm map Nmf : f! Ñ f˚, under the assumption that we have already constructed
an invertible norm map Nmδ : δ! » δ˚ for the relative diagonal δ : X Ñ X ˆY X (see
Notation 7.2.3).

Recall that, for any orbispace X, the 8-category LocSysGpXq can be equipped with
a symmetric monoidal structure given by the tempered tensor product of studied in
§5.8. In §7.3, we combine the results of §6 to show that the functor f! : LocSysGpXq Ñ
LocSysGpYq always satisfies a projection formula with respect to the tempered tensor
product (Theorem 7.3.1). Using this, we carry out an analogue of step peq: assuming
that the norm transformation Nmf : f! Ñ f˚ has been constructed, we show that it
is an equivalence if and only if a certain map AFormpfq : rX{Y s b rX{Y s Ñ AY is a
duality pairing in the 8-category LocSysGpYq (Proposition 7.3.15).

Choose a prime number p. In §7.5, we will prove that the norm map Nmf : f! Ñ f˚
is an equivalence in the special case where X “ Xp´q and Y “ Y p´q are representable
by p-finite spaces X and Y , respectively (Theorem 7.5.1). In this case, we can
proceed as in pcq to reduce to the case where the map f fits into a fiber sequence
X

f
ÝÑ Y Ñ KpFp, d ` 1q. The essential case is where Y “ ˚ is a single point, so

that X “ KpFp, dq is an Eilenberg-MacLane space. In this case, the calculations of
§4 show that the tempered function spectrum AXG is a projective A-module of finite
rank, which can be described explicitly in terms of the arithmetic of the p-divisible
group Gppq (Theorem 4.4.16). The map AFormpfq : rX{Y s b rX{Y s Ñ AY can then
be identified with a bilinear form on the A-linear dual pAXGq_, whose nondegeneracy
can be verified by an explicit calculation as in pfq; see Proposition 7.5.2. Beware
that the analogue of step pdq is somewhat nontrivial in our case: a tempered local
system F P LocSysGpY q is generally not determined by its restriction to the points of
Y (the forgetful functor LocSysGpY q Ñ LocSysApY q of Variant 5.1.15 is usually not
conservative). Consequently, the reduction to the essential case Y “ ˚ will require
considerably more effort than the analogous reduction in [6].

In §7.7, we show that the norm map Nmf : f! Ñ f˚ is an equivalence for a general
map of π-finite spaces f : X Ñ Y . In the special case where G “ Gppq is a p-divisible
group for some fixed prime number p, this is a straightforward consequence of the
analogous assertion for p-finite spaces. It is possible to reduce to the case G “ Gppq by
combining the categorified character theory of §6.4 with descent arguments (Proposition
6.2.6). However, we will adopt a different approach, which is instead based on
tempered versions of the celebrated induction theorems of Artin and Brauer. In §7.4,
we associate to a transfer map trX{Y : A˚GpXq Ñ A˚GpY q to each map f : X Ñ Y of
π-finite spaces. In the special case where A “ KU is the complex K-theory spectrum,
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G “ µP8 is the multiplicative P-divisible group, and f : BH Ñ BG is the covering
map associated to an inclusion of finite groups H ãÑ G, the map trX{Y recovers
the induction homomorphism IndGH : ReppHq Ñ ReppGq of representation theory
(Proposition 7.6.7). The classical Artin (Brauer) induction theorem asserts that
ReppGq is generated rationally (integrally) by elements of the form IndGHpxq, where H
is a cyclic (elementary) subgroup of G. In §7.6, we prove analogues of both of these
theorems for the tempered cohomology theory of π-finite spaces (Theorems 7.6.3 and
7.6.5), which we apply in §7.7 to reduce the study of the norm map Nmf : f! Ñ f˚ to
the case where f is a map between nilpotent π-finite spaces (and therefore factors as
a product of maps between p-finite spaces, for various primes p).

We conclude in §7.8 and §7.9 by describing some applications to the theory of
tempered local systems on π-finite spaces:

• Let X be a π-finite space. Then the 8-category LocSysGpXq is compactly
generated (Corollary 5.3.3). Moreover, an object F P LocSysGpXq is compact
if and only if it is dualizable (Proposition 7.8.8).

• Let f : X Ñ Y be a map of π-finite spaces. Then the functors f! » f˚ and f˚

carry compact objects to compact objects (Proposition 7.8.5).

• Let X be a π-finite space. Then LocSysGpXq is proper when viewed as an A-
linear8-category. That is, for every pair of compact objects F ,G P LocSysGpXq,
the mapping spectrum MappF ,G q is a perfect A-module (the 8-category
LocSysGpXq is generally not smooth, but satisfies a weaker “p-adic smoothness”
property for each prime number p: see Warning 7.9.12).

• Let X be a π-finite space and let F be a G-tempered local system on X. If F

is dualizable, then F pT q is a perfect A-module for each T P T{X (Proposition
7.9.1). The converse holds if F is p-nilpotent, for any prime number p (Theorem
7.9.2).

• Let X and Y be π-finite spaces. Then external tensor product

b : LocSysGpXq ˆ LocSysGpY q Ñ LocSysGpX ˆ Y q

induces fully faithful embedding of 8-categories

λ : LocSysGpXq bA LocSysGpY q ãÑ LocSysGpX ˆ Y q

(Corollary 7.8.12). If G is a p-divisible group, then the essential image of λ
includes all p-nilpotent objects of LocSysGpX ˆ Y q (Proposition 7.8.13).
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Warning 7.0.2. The exposition in this section has been arranged in a somewhat
circular fashion:

• In §7.2, we define the notion of a υG-ambidextrous morphism of orbispaces
f : X Ñ Y (Notation 7.2.3) and state (but do not yet prove) that every truncated
relatively π-finite morphism f : X Ñ Y is υG-ambidextrous (Theorem 7.2.10).

• In §7.4, we associate a transfer map trX{Y : A˚GpXq Ñ A˚GpYq to each relatively
π-finite morphism f : X Ñ Y. The definition of this transfer map trX{Y depends
on Theorem 7.2.10.

• In §7.7 we give a proof of Theorem 7.2.10 which exploits the existence of the
transfer maps trX{Y and their basic properties (Theorem 7.2.10 also depends on
Theorem 7.5.1, which we will prove using transfer maps).

However, the circularity is only apparent: to prove Theorem 7.2.10 for an n-truncated
morphism f : X Ñ Y, we will only make use of transfer maps trX1{Y1 associated to
pn´ 1q-truncated morphisms f 1 : X1 Ñ Y1, which can be constructed assuming that
Theorem 7.2.10 holds for pn´ 1q-truncated morphisms of orbispaces.

7.1 Direct Images of Tempered Local Systems
Let G be an oriented P-divisible group over an E8-ring A. Our goal in this

section is to give an explicit description of the direct image functor f˚ : LocSysGpXq Ñ
LocSysGpYq associated to a map of orbispaces f : X Ñ Y.

Construction 7.1.1 (The Direct Image Functor). Let f : X Ñ Y be a map of
orbispaces, so that composition with f determines a functor of 8-categories p˝fq :
T{X Ñ T{Y. Let G be a preoriented P-divisible group over an E8-ring A and let F be
an AX-module object of FunpT op

{X , Spq and let q : ModpSpq Ñ CAlg be the fibration
of Construction 5.1.8, so that we can identify F with a functor T op

{X Ñ ModpSpq
such that q ˝F “ AX. We let f˚F denote a q-right Kan extension of F along the
functor p˝fq : T{X Ñ T{Y, which we view as an AY-module object of the 8-category
FunpT op

{Y , Spq. We refer to f˚F as the direct image of F along f . Concretely, it is
given by the formula

pf˚F qpT q “ lim
ÐÝ

TPT op
{TˆYX

F pT q.

Note that the construction F ÞÑ f˚F determines a functor f˚ : ModAX
Ñ ModAY

,
which is right adjoint to the restriction functor f˚ : ModAY

Ñ ModAX
.
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Proposition 7.1.2. Let G be a preoriented P-divisible group over an E8-ring and
let f : X Ñ Y be a map of orbispaces. Then:

p1q If F is a G-pretempered local system on X, then the direct image f˚F is a
G-pretempered local system on Y.

p2q If F is a G-tempered local system on X, then the direct image f˚F is a G-
tempered local system on Y.

Notation 7.1.3. Let G be an oriented P-divisible group over an E8-ring A and let
f : X Ñ Y be a map of orbispaces. By virtue of Proposition 7.1.2, the direct image
functor f˚ of Construction 7.1.1 restricts to functors

LocSyspre
G pXq Ñ LocSyspre

G pYq LocSysGpXq Ñ LocSysGpYq.

We will abuse notation by denoting both of these functors by f˚. Note that they are
right adjoint to the pullback functors

f˚ : LocSyspre
G pYq Ñ LocSyspre

G pXq f˚ : LocSysGpYq Ñ LocSysGpXq.

of Remarks 5.1.6 and 5.2.9.

Example 7.1.4 (The Global Sections Functor). Let G be an preoriented P-divisible
group over an E8-ring A and let F be a G-tempered local system on an orbispace X.
We let ΓpX; F q denote the image of F under the functor

LocSysGpXq
q˚
ÝÑ LocSysGp˚q » ModA,

where q : X Ñ ˚ denotes the projection map from X to a point. We will refer to the
construction F ÞÑ ΓpX; F q as the tempered global sections functor. Concretely, it is
given by the formula

ΓpX; F q “ lim
ÐÝ
TPT op

{X

F pT q.

In the special case where X “ Xp´q is the orbispace represented by a space X, we
will denote the A-module ΓpX; F q by ΓpX; F q.

Example 7.1.5 (Tempered Cohomology). Let G be an oriented P-divisible group
over an E8-ring A. For every orbispace X, the tempered function spectrum AX

G can be
identified with ΓpX;AXq, where AX is the trivial G-tempered local system of Notation
5.1.2.
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Proof of Proposition 7.1.2. Suppose first that F is a G-pretempered local system on
X; we will show that the direct image f˚F is a G-pretempered local system on Y.
Fix a morphism T 1 Ñ T in T{Y with connected homotopy fibers; we wish to show that
the canonical map

θ : AT 1G bATG
pf˚F qpT q Ñ pf˚F qpT 1q

is an equivalence. Unwinding the definitions, we see that this map factors as a
composition

AT
1

G bATG
p lim
ÐÝ

TPT op
{TˆYX

F pT qq „
ÝÑ lim

ÐÝ
TPT op

{TˆYX

pAT
1

G bATG
F pT qq

„
ÝÑ lim

ÐÝ
TPT op

{TˆYX

F pT 1 ˆT T q

„
ÐÝ lim

ÐÝ
T
1
PT op
{T 1ˆYX

F pT
1
q

where the first map is an equivalence because AT
1

G is a projective ATG-module of
finite rank, the second is an equivalence by virtue of our assumption that F is
G-pretempered, and the third map is supplied by the left cofinality of the functor

ρ : T{TˆYX Ñ T{T 1ˆYX T ÞÑ T 1 ˆT T

(which follows from the observation that ρ is right adjoint to the forgetful functor).
This completes the proof of p1q.

Now suppose that F is G-tempered; we wish to show that the direct image
f˚F is also G-tempered. Choose an object T P T{Y and a connected covering space
T0 P CovpT q; we wish to show that the fiber of the canonical map α : pf˚F qpT q Ñ

pf˚F qpT0q
hAutpT0{T q is IpT0{T q-local. Let C denote the 8-category T{TˆYX, and let

D Ď C denote the full subcategory spanned by those objects T for which the map
T Ñ T factors through T0. Unwinding the definitions, we see that α can be identified
with the restriction map

lim
ÐÝ
TPCop

F pT q Ñ lim
ÐÝ
TPDop

F pT q,

and can therefore be written as a limit of maps

αT : F pT q Ñ lim
ÐÝ

T
1
PDop

{T

F pT
1
q.
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For each T P C, let T 0 denote any connected component of the fiber product T ˆT T0.
Then αT coincides with the canonical map F pT q Ñ F pT 0q

hAutpT 0{T q. Note that the
ideal IpT 0{T q Ď A0

GpT q is generated by the image of the ideal IpT0{T q Ď A0
GpT q.Our

assumption that F is G-tempered guarantees that the fiber fibpαT q is IpT 0{T q-local
when viewed as a module over ATG, hence also IpT0{T q-local when viewed as a module
over ATG. Since the collection of IpT0{T q-local ATG-modules is closed under limits, it
follows that fibpαq is also IpT0{T q-local.

Theorem 7.1.6 (The Beck-Chevalley Condition). Let G be an oriented P-divisible
group and let σ :

X1 f 1 //

g1

��

Y1

g

��
X f // Y

be a pullback diagram of orbispaces. Then the associated diagram of pullback functors

LocSysGpYq
f˚ //

g˚

��

LocSysGpXq
g1˚

��
LocSysGpY1q

f 1˚ // LocSysGpX1q

is right adjointable. In other words, the canonical equivalence f 1˚g˚ » g1˚f˚ induces a
natural transformation g˚f˚ Ñ f 1˚g

1˚ which is also an equivalence.

Proof. Let F be a G-tempered local system on X; we wish to show that the Beck-
Chevalley map g˚f˚F Ñ f 1˚g

1˚F is an equivalence of G-tempered local systems on
Y1. This follows from the description of the direct image supplied by Construction
7.1.1: when evaluated on an object T P T{Y1 , both sides can be identified with the
limit lim

ÐÝT
F pT q, indexed by the opposite of the 8-category T{TˆY1X1 » T{TˆYX.

Passing to left adjoints (and exchanging the roles of X and Y1), we obtain the
following formal consequence of Theorem 7.1.6:

Corollary 7.1.7. Let G be an oriented P-divisible group and let σ :

X1 f 1 //

g1

��

Y1

g

��
X f // Y
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be a pullback diagram of orbispaces. Then the associated diagram of pullback functors

LocSysGpYq
f˚ //

g˚

��

LocSysGpXq
g1˚

��
LocSysGpY1q

f 1˚ // LocSysGpX1q

is left adjointable: that is, the canonical equivalence g1˚f˚ » f 1˚g˚ induces a natural
transformation f 1! g

1˚ Ñ g˚f! which is also an equivalence.

7.2 The Tempered Ambidexterity Theorem
Let X be an 8-category which admits pullbacks and let υ : C Ñ X be a functor

of 8-categories. Recall that υ is said to be a Beck-Chevalley fibration if the following
conditions are satisfied (see Definition Ambi.4.1.3 ):

p1q The map υ is both a Cartesian fibration and a coCartesian fibration. In
particular, every object X P X determines an 8-category CX “ CˆX tXu, and
every morphism f : X Ñ Y in C determines an adjunction

CX
f! //CY .
f˚
oo

p2q For every pullback square
X 1 f 1 //

g1

��

Y 1

g

��
X

f // Y

in the 8-category X , the Beck-Chevalley transformation f 1! g
1˚ Ñ g˚f! is an

equivalence of functors from CY 1 to CX .

Construction 7.2.1. Let G be an oriented P-divisible group over an E8-ring A.
Then the construction X ÞÑ LocSysGpXq determines a functor of 8-categories

LocSysGp‚q : OSop
ÑyCat8.

We let υG : TotSysG Ñ OS be a Cartesian fibration which is classified by the functor
LocSysG. The 8-category TotSysG can be described more informally as follows:
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• The objects of LocSysG are pairs pX,F q, where X is an orbispace and F is a
G-tempered local system on X.

• A morphism from pX,F q to pY,G q in LocSysG is given by a map of orbispaces
f : X Ñ Y together with a map F Ñ f˚ G of G-tempered local systems on X
(or equivalently a map f! F Ñ G of G-tempered local systems on Y).

Corollary 7.1.7 can now be restated as follows:

Proposition 7.2.2. Let G be an oriented P-divisible group over an E8-ring A. Then
the map υG : LocSysG Ñ OS of Construction 7.2.1 is a Beck-Chevalley fibration.

We now apply the general formalism of §Ambi.4.1 to the Beck-Chevalley fibration
υG : LocSysG Ñ OS. For the reader’s convenience, we include a brief summary.

Notation 7.2.3. Let G be an oriented P-divisible group over an E8-ring A. For
every map of orbispaces f : X Ñ Y, we let

φf : f! ˝ f
˚
Ñ idLocSysGpYq ψf : idLocSysGpXq Ñ f˚ ˝ f!

denote a compatible counit and unit for the adjunction between the functors f! :
LocSysGpXq Ñ LocSysGpYq.

Applying Construction Ambi.4.1.8 to the Beck-Chevalley fibration υG : LocSysG Ñ

OS, we obtain the following data:

• A collection of orbispace maps f : X Ñ Y which we refer to as weakly υG-
ambidextrous maps, together with natural transformations νf : f˚ ˝ f! Ñ

idLocSysGpXq when f is weakly υ-ambidextrous.

• A smaller collection of orbispace maps f : X Ñ Y which we refer to as υG-
ambidextrous maps, for which νf is the counit of an adjunction (which exhibits f!

as the right adjoint of f˚); in this case, we let µf : idLocSysGpYq Ñ f! ˝ f
˚ denote

a compatible unit for the adjunction.

This data is uniquely determined (up to homotopy) by the following requirements:

• Every equivalence of orbispaces f : X Ñ Y is υG-ambidextrous. Moreover, the
morphisms

µf : idLocSysGpYq Ñ f! ˝ f
˚ νf : f˚ ˝ f! Ñ idLocSysGpXq

are homotopy inverses to φf and ψf , respectively.
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• A map of orbispaces f : X Ñ Y is weakly υG-ambidextrous if and only if the
relative diagonal δ : X Ñ X ˆY X is υG-ambidextrous. In this case, the natural
transformation νf is given by the composition

f˚f! » π0!π
˚
1

µδ
ÝÑ π0!δ!δ

˚π˚1 » idLocSysGpXq .

Here the first map is the inverse of the Beck-Chevalley transformation associated
to the pullback diagram

X ˆY X π0 //

π1
��

X
f
��

X f // Y.

• A map of orbispaces f : X Ñ Y is υG-ambidextrous if and only if, for every
pullback diagram

X1

f 1

��

// X
f
��

Y1 // Y,

the map f 1 is weakly υG-ambidextrous and the natural transformation νf 1 :
f 1˚ ˝ f 1! Ñ idLocSysGpX1q is the counit of an adjunction.

• Every υG-ambidextrous map f : X Ñ Y is n-truncated for some n " 0 (so
that the preceding properties supply a recursive algorithm for “computing” the
natural transformations µf and νf ).

If a map of orbispaces f : X Ñ Y is weakly υ-ambidextrous, then the natural
transformation νf : f˚ ˝ f! Ñ idLocSysGpXq can be identified with a natural transfor-
mation Nmf : f! Ñ f˚ between the functors f!, f˚ : LocSysGpXq Ñ LocSysGpY q. We
will refer to Nmf as the norm map associated to f . Note that νf is the counit of an
adjunction if and only if the form map Nmf : f!pF q Ñ f˚pF q is an equivalence, for
every G-tempered local system F on X.

We now describe a source of examples of υG-ambidextrous morphisms of orbispaces.

Definition 7.2.4. Let f : X Ñ Y be a map of orbispaces. We will say that f is
relatively π-finite if, for every object T P T{Y, the orbispace T p´qˆY X is (representable
by) a π-finite space.

Example 7.2.5. Every equivalence of orbispaces is relatively π-finite.
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Remark 7.2.6. Suppose we are given a pullback diagram of orbispaces

X1

f 1

��

// X
f
��

Y1 // Y.

If f is relatively π-finite, then so is f 1.

Proposition 7.2.7. Let f : X Ñ Y be a map of orbispaces, and suppose that Y “ Y p´q

is representable by a π-finite space Y . Then f is relatively π-finite if and only if X is
representable by a π-finite space X.

Proof. Suppose first that X is representable by a π-finite space X. Then, for any
object T P T{Y, the fiber product of orbispaces T p´q ˆY X is representable by the
π-finite space T ˆY X, so f is relatively π-finite.

For the converse, suppose that f is relatively π-finite and let X “ |X| be the
underlying space of X (Notation 3.1.5). For each point y P Y , the fiber X ˆY tyu

underlies the orbispace X ˆY tyu and is therefore π-finite by virtue of our assumption
on f . Since Y is π-finite, it follows that X is π-finite. We will complete the proof by
showing that the canonical map X Ñ Xp´q is an equivalence of orbispaces. Let T be
an object of T ; we wish to show that upper horizontal map in the diagram σ :

XT //

��

XT

��
YT // Y T

is a homotopy equivalence. Since the lower horizontal map is a homotopy equivalence
by assumption, it will suffice to show that σ is a pullback square. In other words,
it will suffice to show that for every map of orbispaces η : T p´q Ñ Y, the diagram σ

induces a homotopy equivalence XT ˆYT tηu Ñ XT ˆY T tηu. To prove this, we can
replace f by the projection map X ˆY T

p´q Ñ T p´q, in which case the representability
of X is automatic from our assumption that f is relatively π-finite.

Corollary 7.2.8. Let f : X Ñ Y and g : Y Ñ Z be maps of orbispaces. If f and g are
relatively π-finite, then pg ˝ fq : X Ñ Z is relatively π-finite.

Proof. Fix an object T P T{Z. We wish to show that the fiber product T p´q ˆZ X is
representable by a π-finite space. This follows by applying Proposition 7.2.7 to the
map

fT : T p´q ˆZ X Ñ T p´q ˆZ Y;
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note that fT is relatively π-finite (by virtue of our assumption on f and Remark
7.2.6) and the codomain of fT is representable by a π-finite space (by virtue of our
assumption on g).

Remark 7.2.9. Let f : X Ñ Y be a relatively π-finite map of orbispaces and let
n ě ´2 be an integer. Then the following conditions are equivalent:

paq The map f is n-truncated (as a morphism in the 8-category OS). In other
words, for every orbispace Z, the induced map MapOSpZ,Xq Ñ MapOSpZ,Yq has
n-truncated homotopy fibers.

pbq For each object T P T{Y, the fiber product T p´q ˆY X is representable by a
π-finite space Z for which the projection map Z Ñ T has n-truncated homotopy
fibers.

pcq For each point y P |Y|, the fiber Xy “ tyuˆYX is (repesentable by) an n-truncated
π-finite space.

In particular, if the underlying space |Y| is connected, then f is n-truncated for some
n " 0.

We can now state the main result of this paper; the proof will be given in §7.7.

Theorem 7.2.10 (Tempered Ambidexterity). Let G be an oriented P-divisible group
over an E8-ring A and let f : X Ñ Y be a map of orbispaces which is relatively π-finite
and n-truncated for some n " 0. Then f is υG-ambidextrous.

Remark 7.2.11. In the statement of Theorem 7.2.10, the requirement that f is
relatively n-truncated is essentially a technicality. Any relatively π-finite map of
orbispaces f : X Ñ Y can be realized as a coproduct of relatively π-finite maps
tfi : Xi Ñ YiuiPI , where the underlying spaces |Yi| are connected. Then each fi is
relatively n-truncated for some integer n (which might depend on i), so Theorem 7.2.10
supplies norm equivalences Nmfi : fi! » fi˚. Taking the product of these equivalences
as i varies, we obtain an equivalence Nmf : f! » f˚ of functors f!, f˚ : LocSysGpXq Ñ
LocSysGpYq.

7.3 Projection Formulas
Let G be an oriented P-divisible group over an E8-ring A. For every map of

orbispaces f : X Ñ Y, the pullback functor f˚ : LocSysGpYq Ñ LocSysGpXq is
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symmetric monoidal with respect to the tempered tensor product (Proposition 5.8.13).
In particular, for every pair of objects F P LocSysGpYq, G P LocSysGpXq, we obtain
a comparison map

f!pf
˚F bG q Ñ f!pf

˚F bf˚f! G q

» f!f
˚
pF bf! G q

Ñ F bf! G ,

which we will denote by βF ,G and refer to as the projection morphism from f!pf
˚F bG q

to F bf! G . The main result of this section can be stated as follows:

Theorem 7.3.1 (Projection Formula for f!). Let G be an oriented P-divisible group
over an E8-ring A and let f : X Ñ Y be a morphism of orbispaces. Then, for every
pair of objects F P LocSysGpYq and G P LocSysGpXq, the projection morphism

βF ,G : f!pf
˚F bG q Ñ F bf! G

is an equivalence in LocSysGpYq.

We will give the proof of Theorem 7.3.1 at the end of this section. First, let us
describe some of its consequences.

Construction 7.3.2. Let G be an oriented P-divisible group over an E8-ring A and
let f : X Ñ Y be a map of orbispaces. We let rX{Ys denote the G-tempered local
system f!pAYq P LocSysGpYq. In the special case where X “ Xp´q and Y “ Y p´q are
representable by spaces X and Y , we will denote rX{Ys simply by rX{Y s.

For any G-tempered local system F on Y, Theorem 7.3.1 supplies a canonical
equivalence

pf! ˝ f
˚
qpF q » f!pf

˚
pF q b AXq Ñ F bf!pAXq “ F brX{Ys.

Remark 7.3.3 (Compatibility with Pullback). Every commutative diagram of orbis-
paces σ :

X1 g1 //

f 1

��

X
f
��

Y1 g // Y
determines a comparison map

rX1{Y1s “ f 1! g
1˚
pAXq Ñ g˚f!pAXq “ g˚rX{Ys.

This map is an equivalence when σ is a pullback square (Corollary 7.1.7).
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Remark 7.3.4. Let G be an oriented P-divisible group over an E8-ring A. For every
orbispace X, we will abuse notation by identifying rX{˚s with its image under the
equivalence of 8-categories LocSysGp˚q » ModA. Note that if B is an E8-algebra over
A, then we have a canonical equivalence Map

A
prX{˚s, Bq » BX

G. In particular, we can
view rX{˚s as an A-linear predual of the tempered function spectrum AX

G. Concretely,
one can show that it is given by the formula

rX{˚s “ lim
ÝÑ
TPT{X

pATGq
_,

where pATGq_ denotes the A-linear dual of the tempered function spectrum ATG.
In the special case where X “ KpFp,mq is (representable by) an Eilenberg-MacLane

space, Theorem 4.4.16 guarantees that the functor B ÞÑ Map
A
prX{˚s, Bq » BX

G
commutes with filtered colimits. Restricting our attention to A-algebras of the form
B “ A‘M , we conclude that the functor M ÞÑ MapModA

prX{˚s,Mq also commutes
with filtered colimits: that is, rX{˚s is perfect as an A-module spectrum. In this case,
the double duality map

rX{˚s Ñ rX{˚s__ » pAX
Gq
_

is an equivalence: that is, rX{˚s can be identified with the A-linear dual of the tempered
function spectrum AX

G. In particular, the homotopy groups π˚rX{˚s can be identified
with the G-tempered homology groups AG

˚ pXq of Notation 4.4.13.

For any map of orbispaces f : X Ñ Y, the pullback functor f˚ : LocSysGpYq Ñ
LocSysGpXq is symmetric monoidal (with respect to the tempered tensor products
on both sides) and can therefore be regarded as a LocSysGpYq-linear functor (where
LocSysGpYq acts on LocSysGpXq via the functor f˚). It follows from Theorem 7.3.1 that
the left adjoint f! : LocSysGpXq Ñ LocSysGpYq inherits the structure of LocSysGpYq-
linear functor, Combining Theorem 7.3.1 with Remark HA.7.3.2.9 , we obtain the
following:

Corollary 7.3.5. Let G be an oriented P-divisible group over an E8-ring A and let
f : X Ñ Y be a map of orbispaces. Then the functor f! : LocSysGpXq Ñ LocSysGpYq
can be regarded as a LocSysGpYq-linear functor, and the unit and counit maps

φf : f!f
˚
Ñ idLocSysGpYq ψf : idLocSysGpXq Ñ f˚f!

can be regarded as LocSysGpYq-linear natural transformations.

235



Remark 7.3.6. In the situation of Corollary 7.3.5, the functor f!f
˚ is a LocSysGpYq-

linear object of LocSysGpYq, and is therefore given by tensor product with the object
rX{Ys “ f!f

˚pAYq introduced in Construction 7.3.2. The LocSysGpYq-linear natural
transformation φf : f!f

˚ Ñ id can then be identified with a morphism ε : rX{Ys Ñ AY,
which is given by evaluating φf on the G-tempered local system AY.

Combining Corollary 7.3.5 with a simple inductive argument, we obtain the
following:

Corollary 7.3.7. Let G be an oriented P-divisible group over an E8-ring A. Then:

paq If f : X Ñ Y is a weakly υG-ambidextrous map of orbispaces, then νf : f˚ ˝ f! Ñ

idLocSysGpXq has the structure of a LocSysGpYq-linear natural transformation.

pbq If f : X Ñ Y is a υ-ambidextrous map of orbispaces, then µf : idLocSysGpYq Ñ

f! ˝ f
˚ has the structure of a LocSysGpYq-linear natural transformation.

Warning 7.3.8. The statement of Corollary 7.3.7 is somewhat imprecise: what
we really mean (and will make use henceforth) is that the natural transformations
νf and µf (when defined) have canonical promotions to LocSysGpYq-linear natural
transformations, which can be obtained by a suitable refinement of the ambidexterity
constructions of §7.2.

Variant 7.3.9. Let f : X Ñ Y be a map of orbispaces. Then we can regard the pullback
f˚ : LocSysGpYq Ñ LocSysGpXq as a symmetric monoidal functor from LocSysGpYq
to LocSysGpXq. Then, for every pair of objects F P LocSysGpYq, G P LocSysGpXq,
we obtain a canonical map

F bf˚pG q Ñ f˚f
˚
pF bf˚pG qq

» f˚pf
˚
pF q b f˚f˚pG qq

Ñ f˚pf
˚
pF q b G q.

Theorem 7.3.10 (Projection Formula for f˚). Let G be an oriented P-divisible group
over an E8-ring A and let f : X Ñ Y be a morphism of orbispaces which is υG-
ambidextrous. Then, for every pair of objects F P LocSysGpXq, G P LocSysGpYq,
the preceding construction induces an equivalence F bf˚ G Ñ f˚pf

˚F bG q of G-
tempered local systems on Y.
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Proof. Theorem 7.3.10 is equivalent to the assertion that f˚ admits a LocSysGpYq-
linear right adjoint: that is, that we can find a LocSysGpYq-linear functor g :
LocSysGpXq Ñ LocSysGpYq and together with compatible LocSysGpYq-linear nat-
ural transformations

u : idLocSysGpYq Ñ g ˝ f˚ v : f˚ ˝ g Ñ idLocSysGpXq .

If f is υG-ambidextrous, this follows from Corollary 7.3.7 (we can take g “ f!, u “ µf ,
and v “ νf ).

Remark 7.3.11. It follows from Theorem 7.3.10 that if f : X Ñ Y is υG-ambidextrous,
then f˚ : LocSysGpXq Ñ LocSysGpYq has the structure of a LocSysGpYq-linear functor.
The proof gives a more precise description of this struture: it is given by transporting
the LocSysGpYq-linearity of the functor f! (supplied by Theorem 7.3.1) along the norm
equivalence Nmf : f!

„
ÝÑ f˚ supplied by our assumption that f is υG-ambidextrous.

Assuming Theorem 7.2.10, we can now deduce Theorem 4.7.1, which was stated
without proof in §4.7.

Corollary 7.3.12. Let G be an oriented P-divisible group over an E8-ring A and let
X be a π-finite space. Then, for every map of E8-rings AÑ B, the canonical map
AXG Ñ BX

G extends to an equivalence ρ : B bA AXG Ñ BX
G of E8-algebras over B.

Proof. It follows from Theorem 7.2.10 that the projection map f : X Ñ ˚ is υG-
ambidextrous. The desired result now follows by applying the projection formula of
Theorem 7.3.10 in the special case where F “ B and G “ AX .

Construction 7.3.13 (The Ambidexterity Form). Let G be an oriented P-divisible
group over an E8-ring A, and let f : X Ñ Y be a weakly υG-ambidextrous map of
orbispaces. Then νf induces a LocSysGpY q-linear natural transformation

pf! ˝ f
˚
q ˝ pf! ˝ f

˚
q “ f! ˝ pf

˚
˝ f!q ˝ f

˚ νf
ÝÑ f! ˝ idLocSysGpXq ˝f˚ “ f! ˝ f

˚,

which we can identify with a map m : rX{Ys b rX{Ys Ñ rX{Ys of G-tempered local
systems on Y. We let AFormpfq denote the composition

rX{Ys b rX{Ys m
Ñ rX{Ys ε

Ñ AY.

We will refer to AFormpfq as the ambidexterity form of f .
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Remark 7.3.14. Let G be an oriented P-divisible group over an E8-ring A, and
suppose we are given a pullback diagram of orbispaces

X1 //

f 1

��

X
f
��

Y1 g // Y
where f and f 1 are weakly υG-ambidextrous. Then the ambidexterity form AFormpf 1q :
rX1{Y1s b rX1{Y1s Ñ AY1 can be identified with the image under the pullback g˚ of the
ambidexterity form AFormpfq : rX{Ys b rX{Ys Ñ AY. In particular, if AFormpfq is a
duality datum (in the symmetric monoidal 8-category LocSysGpYq), then AFormpf 1q
is a duality datum (in the symmetric monoidal 8-category LocSysGpY1q).

Proposition 7.3.15. Let G be an oriented P-divisible group over an E8-ring A and
let f : X Ñ Y be a map of orbispaces which is weakly υG-ambidextrous. The following
conditions are equivalent:

paq The map νf : f˚ ˝ f! Ñ id of Notation 7.2.3 is the counit of an adjunction.

pbq For every object F P LocSysGpXq, the norm map Nmf : f!pF q Ñ f˚pF q of
Notation 7.2.3 is an equivalence.

pcq The ambidexterity form AFormpfq : rX{Ysb rX{Ys Ñ AY of Construction 7.3.13
is a duality datum: that is, it exhibits rX{Ys as a self-dual object of the 8-category
LocSysGpYq).

pdq The map f is υG-ambidextrous.

Proof. The equivalence paq ô pbq is a tautology, and the equivalence paq ô pcq follows
from Proposition Ambi.5.1.8 . The implication pdq ñ paq is clear. The converse follows
from the observation that if the morphism f : X Ñ Y satisfies condition pcq, then any
pullback of f also satisfies condition pcq (Remark 7.3.14).

Corollary 7.3.16. Let G be an oriented P-divisible group over an E8-ring A and
let f : X Ñ Y be a map of orbispaces which is n-truncated for some n " 0. Then f is
υG-ambidextrous if and only, for every T P T{Y, the pullback diagram of orbispaces

XT
fT
��

// X
f
��

T p´q // Y
exhibits fT as a υG-ambidextrous morphism of orbispaces.
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Proof. The “only if” direction is clear, since the collection of υG-ambidextrous mor-
phisms is closed under pullback. To prove the reverse direction, we proceed by
induction on n. Using the inductive hypothesis, we can assume without loss of gener-
ality that f is weakly υG-ambidextrous. In this case, the desired result follows from
Proposition 7.3.15 and Remark 7.3.14 (since LocSysGpYq can be identified with the
limit of the diagram of symmetric monoidal 8-categories tLocSysGpT quTPT op

{Y
).

Proof of Theorem 7.3.1. Since a morphism of G-tempered local systems is an equiv-
alence if and only if it is an equivalence after localization at every prime, we may
assume without loss of generality that the E8-ring A is p-local, for some prime number
p. We will prove the following assertion:

p˚nq For every oriented P-divisible group over a p-local E8-ring A, every map of
orbispaces f : X Ñ Y, and every pair of objects F P LocSysGpYq and G P

LocSysGpXq, the projection morphism

βF ,G : f!pf
˚F bG q Ñ F bf! G

becomes an equivalence after Epnq-localization.

Note that Theorem 7.3.1 follows from p˚nq for n " 0 (it suffices to take n to be any
upper bound for the height of the p-divisible group Gppq). We will prove p˚nq by
induction on n. For the remainder of the proof, we regard n as fixed and assume that,
if n ą 0, then p˚n´1q holds. Note that, to prove that the projection map βF ,G is an
equivalence, it will suffice to show that it becomes an equivalence after extending
scalars to the localization Am, for every maximal ideal m Ď π0pAq. We may therefore
assume that A is local. It follows that, for every prime number `, the `-divisible
group Gp`q has some fixed height h`. By virtue of p˚n´1q, it will suffice to show that
LKpnqpβF ,G q is an equivalence in the 8-category LocSysKpnqG pYq. To prove this, we can
extend scalars to the Kpnq-localization LKpnqpAq, and thereby reduce to the case where
A is Kpnq-local (beware that this replacement will generally injure our hypothesis that
A is local). In this case, our hypothesis that G is oriented guarantees the existence of
a connected-étale sequence of p-divisible groups

0 Ñ GQ
A

e
ÝÑ Gppq Ñ G1

Ñ 0,

where GQ
A denotes the Quillen p-divisible group of A and G1 is an étale p-divisible

group of height hp ´ n (Proposition 2.5.6). Set Λ “ pQp {Zpq
hp´n ‘

À

`‰ppQ` {Z`q
h` ,

and let B “ SplitΛpeq be the splitting algebra of the monomorphism e (Definition
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2.7.12). Then B is faithfully flat over A (Proposition 2.7.15). It will therefore suffice to
show that βF ,G becomes an equivalence after extending scalars from A to B. Replacing
A by B (which might injure our hypothesis that A is Kpnq-local), we are reduced
to the problem of showing that βF ,G is an equivalence in the special case where G
splits as a direct sum G0 ‘ Λ, where G0 is a p-divisible group of height n. Replacing
G by G0 (and f by the morphism LΛ

pfq : LΛ
pXq Ñ LΛ

pXq), we can reduce to the
case where G is a p-divisible group of height n. Invoking our inductive hypothesis
again, we are reduced to showing that LKpnqpβF ,G q is an equivalence in the 8-category
LocSysKpnqG pYq. In this case, Theorem 6.3.1 supplies equivalences

LocSysKpnqG pXq » Funp|X|,ModKpnqA q LocSysKpnqG pYq » Funp|Y|,ModKpnqA q.

Under these equivalences, the pullback functor f˚ can be identified with the func-
tor U : Funp|Y|,ModKpnqA q Ñ Funp|X|,ModKpnqA q induced by composition with |f | :
|X| Ñ |Y|, and the functor LKpnqf! with its left adjoint V : Funp|X|,ModKpnqA q Ñ

Funp|Y|,ModKpnqA q, given by left Kan extension along the map of spaces |X| Ñ |Y|. Let
F 1 and G 1 be the images of LKpnqF and LKpnq G in the8-categories Funp|Y|,ModKpnqA q

and Funp|X|,ModKpnqA q, respectively. Then the evaluation of LKpnqβF ,G at a point
y P |Y| can be identified with the natural map

lim
ÝÑ
xP|X|y

pF 1
pyqpbG 1

pxqq Ñ F 1
pyqpb lim

ÝÑ
xP|X|y

G 1
pxq,

where |X|y denotes the homotopy fiber of the map |X| Ñ |Y| over the point y. Since the
tensor product pb on ModKpnqA preserves small colimits in each variable, we conclude
that LKpnqβF ,G is an equivalence.

7.4 Transfer Maps in Tempered Cohomology
For every preoriented P-divisible group G over an E8-ring A, the formation

of tempered cohomology groups A˚Gp‚q of Construction 4.0.5 can be regarded as a
contravariant functor from (the homotopy category of) the category of orbispaces to the
category of graded-commutative rings. However, when G is oriented, then Theorem
7.2.10 supplies a much richer structure: tempered cohomology is also covariantly
functorial for relatively π-finite maps of orbispaces with π-finite fibers.

Construction 7.4.1 (The Transfer Map). Let G be an oriented P-divisible group
over an E8-ring A, and let f : X Ñ Y be a morphism of orbispaces which is relatively
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π-finite (Definition 7.2.4) and let Nmf : f!
„
ÝÑ f˚ be the isomorphism of Notation 7.2.3

(see Remark 7.2.11). We let trX{Y : AX
G Ñ AY

G be the map given by the composition

AX
G “ ΓpX;AXq » ΓpY ; f˚AXq

Nm´1
f

ÝÝÝÑ ΓpY ; f!AXq Ñ ΓpY ;AYq “ AY
G.

We will refer to trX{Y as the transfer map associated to f . Passing to homotopy groups,
we obtain a map of tempered cohomology groups A˚GpXq Ñ A˚GpYq, which we will also
denote by trX{Y and refer to as the transfer map.

In the special case where X “ Xp´q and Y “ Y p´q are represented by spaces X and
Y , respectively, we will denote the transfer map trX{Y by trX{Y .

Warning 7.4.2. Let f : X Ñ Y be a morphism of orbispaces which is relatively
π-finite. The transfer map trX{Y : AX

G Ñ AY
G is not a morphism of ring spectra.

However, it is a morphism of AY
G. In particular, at the level of tempered cohomology

rings, we have the projection formula

trX{Yppf
˚uq ¨ vq “ u ¨ trX{Ypvq.

Warning 7.4.3. To define the transfer maps of Construction 7.4.1 in complete
generality, we need the full strength of Theorem 7.2.10, which asserts that every
truncated relatively π-finite morphism of orbispaces is ambidextrous with respect to
the Beck-Chevalley fibration υ : TotSysG Ñ OS of §7.2. However, to construct the
transfer map trX{Y : AX

G Ñ AY
G for a particular map of orbispaces f : X Ñ Y, we

only need to know that f is υ-ambidextrous. Our proof of Theorem 7.2.10 will make
use of this observation: to show that every n-truncated relatively π-finite morphism
f : X Ñ Y is υ-ambidextrous, we will use transfer maps associated to pn´1q-truncated
relatively π-finite morphisms of orbispaces.

We now summarize some of the basic formal properties of Construction 7.4.1.

Proposition 7.4.4 (Push-Pull). Let G be an oriented P-divisible group over an
E8-ring A. Suppose we are given a pullback diagram of orbispaces

X1 f 1 //

g1

��

Y1

g

��
X f // Y,

241



where the map f (and therefore f 1) is relatively π-finite. Then the diagram of tempered
function spectra

AX1
G

trX1{Y1 // AY1
G

AX
G

trX{Y //

g1˚

OO

AY
G

g˚

OO

commutes up to homotopy. In particular, the diagram of graded abelian groups

A˚GpX1q
trX1{Y1 // A˚GpY1q

A˚GpXq
trX{Y //

g1˚

OO

A˚GpYq

g˚

OO

Proof. Decomposing Y as a disjoint union if necessary, we can assume that f is
truncated. In this case, the desired result follows from the compatibility of norm maps
with pullback (Remark Ambi.4.2.3 ).

Proposition 7.4.5. Let G be an oriented P-divisible group over an E8-ring A, and
suppose we are given relatively π-finite morphisms of orbispaces X f

ÝÑ Y g
ÝÑ Z. Then

the transfer map trX{Z : AX
G Ñ AZ

G is homotopic to the composition trY{Z ˝ trX{Y. In
particular, we have a commutative diagram of graded abelian groups

A˚GpYq
trY{Z

%%
A˚GpXq

trX{Y
99

trX{Z // A˚GpZq.

Proof. Decomposing Z into connected components if necessary, we may assume that
f and g are truncated. In this case, the desired result follows from the compatibility
of norm maps with composition (Remark Ambi.4.2.4 ).

Remark 7.4.6 (Functoriality for Correspondences). Define a category C as follows:

• The objects of C are orbispaces.

• For orbispaces X and Y, HomCpX,Yq is the set of equivalence classes of diagrams

X Ð M f
ÝÑ Y,

where f is relatively π-finite.
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• Given morphisms X Ð M Ñ Y and Y Ð N Ñ Z of C, their composition is given
by (the equivalence class of) the diagram

X Ð MˆY N Ñ Z.

Every oriented P-divisible group G over an E8-ring A then determines a functor
C Ñ hModA, which carries each orbispace X to the tempered function spectrum AX

G,
and each correspondence X f

ÐÝ M g
ÝÑ Y to the composite map

AX
G

f˚
ÝÑ AM

G
trM{Y
ÝÝÝÑ AY

G.

The compatibility of this construction with composition is precisely the content of
Propositions 7.4.4 and 7.4.5. In particular, the construction X ÞÑ A˚GpXq determines
a functor from C to the category of graded abelian groups (or graded modules over
π´˚pAq).

Remark 7.4.7. The category C appearing in Remark 7.4.6 can be identified with
the homotopy category of an 8-category C (where the morphism spaces MapCpX,Yq
can be identified with the summand of the Kan complex OS»{XˆY spanned by those
diagrams X Ð M g

ÝÑ Y where g is relatively π-finite. Using a more elaborate version
of the ambidexterity formalism of §Ambi.4 , one can upgrade Remark 7.4.6 to obtain
a functor of 8-categories A‚G : C Ñ ModA. We will return to this point in a future
work.

Remark 7.4.8 (Change of Ring). Let G be an oriented P-divisible group over an
E8-ring A and let f : X Ñ Y be a relatively π-finite morphism of orbispaces. Then,
for every E8-algebra B over A, the diagram

AX
G

trX{Y //

��

AY
G

��
BX

G
trX{Y // BY

G

commutes (up to homotopy) in the 8-category of AYG-modules. In particular, we
obtain a commutative diagram of graded abelian groups

A˚GpXq
trX{Y //

��

A˚GpYq

��
B˚GpXq

trX{Y // B˚GpYq
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Remark 7.4.9 (Compatibility with Character Maps). Let G0 be an oriented P-
divisible group over an E8-ring A, let Λ be a colattice, and let G “ G0‘Λ (which we
also regard as an oriented P-divisible group over A). Then, for any map of orbispaces
f : X Ñ Y, the diagram of A-modules

AX
G

trX{Y //

χ„

��

AY
G

χ„

��

A
LΛpXq
G0

trLΛpXq{LΛpYq // A
LΛpYq
G0

commutes (up to homotopy), where the horizontal maps are the transfer morphisms of
Construction 7.4.1, and the vertical maps are the character equivalences of Notation
4.3.3. In particular, we have a commutative diagram of graded abelian groups

A˚GpXq
trX{Y //

χ„

��

A˚GpYq

χ„

��

A˚G0pL
Λ
pXqq

trLΛpXq{LΛpYq // A˚G0pL
Λ
pYqq.

We now describe the behavior of transfers in the “rational” case.

Definition 7.4.10. For every π-finite space X define the mass of X to be the rational
number

MasspXq “
ÿ

x

ź

ną0
|πnpX, xq|

p´1qn .

where the sum is taken over a set of representatives for the set π0pXq of connected
components of X. Note that if S is a set of prime numbers and X is S-finite (Definition
1.1.25), then MasspXq belogns to the subring ZrS´1s Ď Q.

Proposition 7.4.11. Let G be an oriented P-divisible group over an E8-ring A. Let
S be a set of prime numbers with the property that, for each p P S, the p-divisible
group Gppq vanishes (so that p is invertible in π0pAq, by virtue of Remark 2.6.14).
Then, for every connected connected S-finite space X, the unit map A Ñ AXG is an
equivalence.
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Proof. Let TpSq denote the full subcategory of T spanned by those objects of the
form BH, where every prime divisor of H belongs to S. For each T P TpSq, the unit
map A Ñ ATG is an equivalence (since Gppq vanishes for p P S) and the unit map
AÑ AT is an equivalence (since every element of S is invertible in π0pAq). It follows
that for T P TpSq, the Atiyah-Segal comparison map ATG Ñ AT is an equivalence.
Let C be the full subcategory of OS spanned by those orbispaces X for which the
Atiyah-Segal comparison map AX

G Ñ A|X|. Then C contains TpSq and is closed under
small colimits, and therefore contains every orbispace X : T op Ñ S which is a left
Kan extension of its restriction to T op

pSq. It follows that C contains the representable
orbispace Xp´q whenever X is S-finite. We are therefore reduced to showing that
the unit map AÑ AX is an equivalence, which is clear (since every element of S is
invertible in π0pAq).

Proposition 7.4.12. Let G be an oriented P-divisible group over an E8-ring A. Let
S be a set of prime numbers with the property that, for each p P S, the p-divisible
group Gppq vanishes. Let f : X Ñ Y be a map of S-finite spaces, which decompose
into connected components

X “
ž

iPI

Xi Y “
ž

jPJ

Yj.

Then the diagram
ś

iPI A
M //

„

��

ś

jPJ A

„

��
AXG

trX{Y // AYG

commutes, where the vertical maps are the equivalences supplied by Proposition 7.4.11
and M is given by the matrix of rational numbers

Mij “ MasspfibpXi Ñ Yjqq “
MasspXiq

MasspYjq
.

Remark 7.4.13. In the situation of Proposition 7.4.12, each of the prime numbers
p P S is invertible in the commutative ring π0pAq, so we can view the rational numbers
Mij P ZrS´1s as elements of π0pAq.

Proof of Proposition 7.4.12. Choose an integer n such that the homotopy fibers of
f are n-truncated. We proceed by induction on n. Using Proposition 7.4.4, we can
reduce to the case where Y “ tyu consists of a single point. We may also assume
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without loss of generality that X is connected. If n “ 0, then f is a homotopy
equivalence and there is nothing to prove. Assume therefore that n ą 0 and choose a
point x P X, so that the inclusion txu ãÑ X has pn´ 1q-truncated homotopy fibers.
We then have a commutative diagram

A //

N

��

A

��

M // A

��

A
txu
G

trtxu{X // AXG
trX{tyu // A

t

Gyu,

where the vertical maps are the unit morphisms (which are equivalences by virtue of
Proposition 7.4.11), for some elements M and N of the commutative ring π0pAq. The
commutativity of the diagram shows that M ¨N “ 1, and our inductive hypothesis
implies that N “ MasspΩpXqq. It follows that

M “
1
N
“

1
MasspΩpXqq “ MasspXq.

By combining Remarks 7.4.8, 7.4.9, and Proposition 7.4.12, we obtain (at least in
principle) a complete recipe for computing the rationalized transfer map

trX{Y : QbA˚GpXq Ñ QbA˚GpY q,

where X and Y are π-finite spaces. Using Remark 7.4.8, we can reduce to the case
where A is an E8-algebra over Q and G is the constant P-divisible group associated
to a colattice Λ. We can then use Remark 7.4.9 to reduce to the case where G “ 0 (at
the cost of replacing X and Y by the mapping spaces XBpΛ and Y BpΛ), in which case
the transfer map is given by the formula of Proposition 7.4.12. For some illustrations
of this principle, see the proofs of Propositions 7.5.2 and 7.6.7.

7.5 Tempered Ambidexterity for p-Finite Spaces
We now prove a weak form of Theorem 7.2.10.

Theorem 7.5.1. Let G be an oriented P-divisible group over an E8-ring A and
let f : X Ñ Y be a map of p-finite spaces, for some prime number p. Then f is
υG-ambidextrous.
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The proof of Theorem 7.5.1 will require some preliminaries. We begin by carrying
out the essential step.

Proposition 7.5.2. Let G be an oriented P-divisible group over an E8-ring A, let p
be a prime number, and let X “ KpFp,mq be an Eilenberg-MacLane space for some
m ą 0. Assume that the projection map f : X Ñ ˚ is weakly υG-ambidextrous. Then
f is υG-ambidextrous.

Proof. Without loss of generality, we may assume that m ą 0 and that the p-divisible
group Gppq has some fixed height n. Let X “ KpFp,mq, and assume that the
projection map f : X Ñ ˚ is weakly υG-ambidextrous. We wish to show that f is
υG-ambidextrous. By virtue of Proposition 7.3.15, it will suffice to show that the
ambidexterity form AFormpfq : rX{˚s bA rX{˚s Ñ A is a duality datum: that is, that
it exhibits rX{˚s as a self-dual object of the 8-category ModA. Remark 7.3.4 implies
that rX{˚s is a projective A-module of finite rank, and that π0rX{˚s can be identified
with the G-tempered homology ring AG

0 pXq of Notation 4.4.13. It will therefore suffice
to show that the ambidexterity form AFormpfq induces a perfect pairing

AG
0 pXq bπ0pAq A

G
0 pXq Ñ π0pAq,

or equivalently that the dual map

π0pAFormpfq_q : π0pAq Ñ A0
GpXq bπ0pAq A

0
GpXq

is a duality datum in the ordinary category Mod♥
π0pAq

. Unwinding the definitions, we
see that this map carries the element 1 P π0pAq to

trX{XˆXp1q P A0
GpX ˆXq » A0

GpXq bπ0pAq A
0
GpXq,

where trX{XˆX denotes the transfer map of Construction 7.4.1 (which is well-defined
by virtue of our assumption that f is weakly υG-ambidextrous).

Let R “ π0pAq
red denote the quotient of π0pAq by its nilradical. Set B “ R bπ0pAq

A0
GpXq, and let e denote the image of trX{XˆXp1q in the tensor product BbRB. Then

B is a projective R-module of finite rank. We will complete the proof by showing
that e induces an isomorphism from B to its R-linear dual. Note that the existence
of the oriented P-divisible group G guarantees that the tensor product A bS F`

vanishes for every prime number ` (see Remark 2.5.11). Applying the May nilpotence
conjecture (Theorem 2 of [14]), we deduce that every torsion element of π0pAq is
nilpotent. Consequently, the commutative ring R is torsion-free.
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Using Theorem 4.4.16 (and Remark 4.4.18), we see that the spectrum SpecpA0
GpXqq

is a truncated p-divisible group over π0pAq of level 1, height
`

n
m

˘

, and dimension
d “

`

n´1
m´1

˘

. It follows that SpecpBq is a truncated p-divisible group over R of level 1
and dimension d. If m ą n, then B » 0 and there is nothing to prove. Otherwise,
Proposition Ambi.5.2.2 implies that the trace map tr : B Ñ R is divisible by pd, and
the pairing

px, yq ÞÑ
trpxyq
pd

determines a perfect pairing of B with itself (in the category of R-modules). We will
complete the proof by showing that the dual pairing is given by e. To prove this,
we are free to replace A by the localization Ar1

p
s, and thereby reduce to the case

where Gppq is an étale p-divisible group. Replacing A by a faithfully flat extension, we
may further assume that Gppq » pQp {Zpq

n is a constant p-divisible group. Writing
G “ G0 ‘ pQp {Zpq

n with G0ppq » 0, Theorem 4.3.2 supplies an isomorphism

A0
GpXq » A0

G0pX
B Znp q » A0

pXB Znp q »
ź

α:B ZnpÑX
π0pAq,

where the product is taken over the (finite) collection of all homotopy classes of maps α :
B Zn

p Ñ X. Using Remark 7.4.9 and Proposition 7.4.12, we see that this isomorphism
carries e to the matrix of rational numbers teα,βu given by eα,β “ Massptαuˆ

X
B Znp tβuq.

The desired equality now follows from the observation that eα,β vanishes when α and
β belong to different connected components of XB Znp , and is otherwise given by

MasspKpFp,m´ 1qB Znp q “
ź

iě0
|πipKpFp,m´ 1qB Znp q|p´1qi

“
ź

iě0
|Hm´1´i

pB Zn
p ; Fpq|

p´1qi

“
ź

iě0
pp´1qip n

m´1´iq

“ p
ř

iě0p´1qip n
m´1´iq

“ p
ř

iě0p´1qip n´1
m´1´iq`p´1qip n´1

m´2´iq

“ pd.

We now consider some cases where ambidexterity is easy to verify.
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Proposition 7.5.3. Let G be an oriented P-divisible group over an E8-ring A and
let f : X Ñ Y be a map of spaces which exhibits X as a summand of Y . Then f is
υG-ambidextrous.

Proof. By virtue of Corollary 7.3.16, we may assume without loss of generality that
Y P T is the classifying space of a finite abelian group. In this case, either the map f
is a homotopy equivalence or the space X is empty. In the former case there is nothing
to prove, and in the latter case we have that rX{Y s » 0, so that f is υG-ambidextrous
by virtue of Proposition 7.3.15.

Proposition 7.5.4. Let G be an oriented P-divisible group over an E8-ring A and
let f : X Ñ Y be a map of orbispaces. Suppose that X decomposes as a finite disjoint
union

š

iPI Xi. If each fi “ f |Xi is υG-ambidextrous, then f is υG-ambidextrous.

Proof. The map f factors as a composition

X “
ž

iPI

Xi
š

iPI fi
ÝÝÝÝÑ

ž

iPI

Y g
ÝÑ Y,

where g is given by the identity on each factor. Note that for every pullback diagram

Z

f 1

��

//
š

iPI Xi
š

iPI fi
��

T p´q //
š

iPI Y

for T P T , the map f 1 is a pullback of some fi and is therefore υG-ambidextrous
by assumption. Applying Corollary 7.3.16, we deduce that f 1 is υG-ambidextrous.
It will therefore suffice to show that g is υG-ambidextrous. Note that g is weakly
υG-ambidextrous by virtue of Proposition 7.5.3. It will therefore suffice to show that
for every pullback diagram

š

iPI Y1

g1

��

//
š

iPI Y

��
Y1 // Y,

the norm map Nmg1 : g1! Ñ g1˚ is an equivalence. This follows immediately from the
additivity of the 8-category LocSysGpY1q.

Note that for every orbispace X, we can regard the 8-category LocSysGpXq as
an AX

G-linear 8-category. If f : X Ñ Y is a map of orbispaces, then it induces an
AY

G-linear functor f˚ : LocSysGpYq Ñ LocSysGpXq, which we can identify with an
AX

G-linear functor AX
G bAY

G
LocSysGpYq Ñ LocSysGpXq.
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Proposition 7.5.5. Let G be an oriented P-divisible group over an E8-ring A and
let f : T 1 Ñ T be a morphism in T with connected homotopy fibers. Then the natural
map

ρ : AT 1G bATG
LocSysGpT q Ñ LocSysGpT

1
q

is fully faithful.

Proof. For every pair of objects F ,G P LocSysGpT q, the functor ρ induces a map

AT
1

G bATG
MappF ,G q Ñ Mappf˚pF q, f˚pG qq.

By virtue of Corollary 5.3.3, it will suffice to show that this map is an equivalence in
the special case when F is compact. Without loss of generality, we may assume that
F “ rT0{T s, for some connected covering space T0 P CovpT q. Then T 10 “ T0 ˆT T

1

is a connected covering space of T 1, and we can identify f˚pF q with the object
rT 10{T

1s (Remark 7.3.3). Unwinding the definitions, we are reduced to showing that
the canonical map

AT
1

G bATG
G pT0q Ñ G pT 10q

is an equivalence. This follows from our assumption that G is G-pretempered, since
the diagram of E8-rings

ATG //

��

AT
1

G

��

AT0
G

// A
T 10
G

is a pushout square.

Corollary 7.5.6. Let G be an oriented P-divisible group over an E8-ring A, let f :
T 1 Ñ T be a morphism in T with connected homotopy fibers, and let b : F bG Ñ AT
be a morphism of G-tempered local systems on T . Then b is a duality datum in the
8-category LocSysGpT q if and only if the pullback map

f˚pbq : f˚pF q b f˚pG q Ñ f˚pAT q » AT 1

is a duality datum in the 8-category LocSysGpT
1q.

Proof. It is clear that if b is a duality datum, then so is f˚pbq. Conversely, assume that
f˚pbq is a duality datum. Set B0 “ AT

1

G and let B‚ denote the cosimplicial ATG-algebra
given by the tensor powers of B0. Since B0 is a faithfully flat ATG-algebra and the
8-category LocSysGpT q is compactly generated, we can identify LocSysGpT q with the
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totalization of the cosimplicial symmetric monoidal 8-category B‚ bATG LocSysGpT q

(see Corollary SAG.D.7.7.7 ). It will therefore suffice to show that for each k ě 0, the
image of b in the 8-category Bk bATG

LocSysGpT q is a duality datum. Without loss
of generality we may assume that k “ 0. Set C “ B0 bATG

LocSyspG T q and suppose
we are given a pair of objects H ,H 1

P C; we wish to show that the composite map

MapCpH ,G bH 1
q Ñ MapCpF bH ,F bG bH 1

q
b
ÝÑ MapCpF bH ,H 1

q

is an equivalence, and that an analogous statement holds with the roles of F and G

reversed. By virtue of Proposition 7.5.5, we can identify C with a full subcategory of
LocSysGpT

1q, so that the desired result follows from our assumption that f˚pbq is a
duality datum.

Corollary 7.5.7. Let G be an oriented P-divisible group over an E8-ring A, let
g : T 1 Ñ T be a morphism in T with connected homotopy fibers, and suppose we are
given a pullback diagram of spaces

X 1 //

f 1

��

X

f
��

T 1
g // T.

If f is weakly υG-ambidextrous and f 1 is υG-ambidextrous, then f is υG-ambidextrous.

Proof. Combine Proposition 7.3.15, Remark 7.3.14, and Corollary 7.5.6.

Proposition 7.5.8. Let G be a p-divisible group of dimension ď 1 over a commutative
ring R, let V be a finite-dimensional vector space over Fp, let GrV s be the finite flat
group scheme over R classifying maps from V into G, and let U Ď GrV s be the open
subset whose κ-valued points are given by injective maps V Ñ Gpκq, for every field
κ. Let AltpmqGrps denote the R-scheme of Construction Ambi.3.2.11 and let DpAltpmqGrpsq

denote its Cartier dual. Let η be a nonzero element of the exterior power
Źm

pV q, so
that η induces a map

φ : GrV s Ñ DpAltpmqGrpsq

of finite flat group schemes over R. Then φpUq does not intersect the zero section of
DpAltpmqGrpsq.

Proof. Without loss of generality, we may assume that R is an algebraically closed
field. In this case, the p-divisible group G fits into a (canonically split) exact sequence

0 Ñ G1
Ñ G Ñ G2

Ñ 0
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where G1 is connected and G2 is étale. We have a commutative diagram of R-schemes

GrV s //

��

DpAltpmqGrpsq

��

G2rV s //DpAltpmqG2rpsq

where the vertical maps are homeomorphisms. We may therefore replace G by G2 and
thereby reduce to the case where G is étale. Since R is an algebraically closed field,
Grps is a constant group scheme associated to a vector space W of finite dimension
over Fp. Then DpAltpmqGrpsq is also a constant group scheme, associated to the Fp-vector
space

ŹmW . We are therefore reduced to verifying the following elementary fact of
linear algebra: every injective map of Fp-vector spaces V Ñ W induces an injection
of exterior powers

Źm V Ñ
ŹmW .

Proposition 7.5.9. Let G be an oriented P-divisible group over an E8-ring A, let p
be a prime number, and suppose we are given a fiber sequence of spaces X f

ÝÑ Y
η
ÝÑ

KpFp,mq. Then f is υG-ambidextrous.

Proof. Given a fiber sequence of spaces X f
ÝÑ Y

η
ÝÑ KpFp,mq, we will say that η is

good if f is υG-ambidextrous. We wish to show that every map η : Y Ñ KpFp,mq is
good. The proof proceeds by induction on m. In the case m “ 0, f is the inclusion
of a summand and the desired result follows from Proposition 7.5.3. For m ą 0, we
observe that the relative diagonal δ : X Ñ X ˆY X fits into a fiber sequence

X
δ
ÝÑ X ˆY X Ñ KpFp,m´ 1q,

and is therefore υG-ambidextrous by virtue of our inductive hypothesis. Note that
if a map η1 : Y 1 Ñ KpFp,mq factors as a composition Y 1 Ñ Y

η
ÝÑ KpFp,mq, then we

have a commutative diagram of fiber sequences

X 1 //

��

Y 1
η1 //

��

KpFp,mq

X // Y
η // KpFp,mq

where the left square is a pullback. Applying Corollaries 7.3.16 and 7.5.7, we deduce
the following:
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paq If the map η : Y Ñ KpFp,mq is good, then so is any composite map Y 1 Ñ Y
η
ÝÑ

KpFp,mq.

pbq To show that a map η : Y Ñ KpFp,mq is good, it will suffice to show that any
composition T Ñ Y

η
ÝÑ KpFp,mq is good for T P T .

pcq If g : T 1 Ñ T is a morphism in T with connected homotopy fibers some
composite map T 1

g
ÝÑ T

η
ÝÑ KpFp,mq is good, then η is good.

We must show that every morphism η : Y Ñ KpFp,mq is good. By virtue of pbq, it
will suffice to prove this in the special case where Y » BM is the classifying space
of a finite abelian group M . In this case, the map η factors through the localization
BMppq, so we can use paq to reduce further to the case where M is a finite abelian
p-group. Let k “ dimFppM{pMq denote the minimal number of generators of M . Our
proof will proceed by induction on k.

Let us abuse notation by identifying η with its homotopy class, regarded as an
element of the cohomology group HmpY ; Fpq. Choose a surjection of abelian groups
Zk
ÑM and let u : B Zk

Ñ BM “ Y be the induced map of classifying spaces. For
1 ď i ď k, let αi P H1pBpZ {pZqk; Fpq denote the cohomology class corresponding
to the homomorphism pZ {pZqk Ñ Fp given by projection onto the ith factor. In
what follows, we will abuse notation by identifying each αi with its images under the
natural maps

H1
pBpZ pZqk; Fpq Ñ H1

pBpZ {pt Zqk; Fpq Ñ H1
pB Zk; Fpq.

A standard calculation shows that the cohomology ring H˚pB Zk; Fpq is an exterior
algebra on the classes tαiu1ďiďk. In particular, we can write

u˚pηq “
ÿ

~i

c~ipαi1 Y ¨ ¨ ¨ Y αimq P
m
ľ

Fp

H1
pBΛ; Fpq » Hm

pBΛ; Fpq,

where ~i ranges over all sequences 0 ă i1 ă ¨ ¨ ¨ ă im ď k and each coefficient c~i is an
element of Fp. For t " 0, the map u factors as a composition

B Zk
Ñ BpZ {pt Zqk ut

Ñ Y

and the equality
u˚t pηq “

ÿ

~i

c~ipαi1 Y ¨ ¨ ¨ Y αimq
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holds in the ring H˚pBpZ {pt Zqk; Fpq. By virtue of pbq, it will suffice to show that the
composite map

BpZ {pt Zqk ut
Ñ Y

η
ÝÑ KpFp,mq

is good. By construction, this map also factors as a composition

BpZ {pt Zqk Ñ BpZ {pZqk η1
ÝÑ KpFp,mq,

where η1 represents the cohomology class
ř

~i c~ipαi1 Y ¨ ¨ ¨ Y αimq P HmpBpZ {pZqk; Fpq.
Applying paq, we can replace η by η1 and thereby reduce to the case where Y has the
form BpZ {pZqk.

If each of the coefficients c~i vanishes, then the map η : Y Ñ KpFp,mq is null-
homotopic. In this case, f is a pullback of the projection map KpFp,m ´ 1q Ñ ˚,
which is υG-ambidextrous by virtue of Proposition 7.5.2. We may therefore assume
that some coefficient c~i is nonzero. Let AFormpfq : rX{Y s b rX{Y s Ñ AY be the
ambidexterity form of f (Construction 7.3.13); we wish to show that AFormpfq is a
duality pairing (Proposition 7.3.15). To prove this, it will suffice to show that for
every pair of G-tempered local systems F ,G P LocSysGpY q, the composite map

θF ,G : MappF , rX{Y s b G q Ñ MapprX{Y s bF , rX{Y s b brX{Y s b G q
AFormpfq
ÝÝÝÝÝÝÑ MapprX{Y s bF ,G q

is an equivalence of AYG-modules (and that a similar assertion holds for the composition
of AFormpfq with the automorphism of rX{Y s b rX{Y s given by exchanging the two
factors, though this is actually unnecessary: one can show that the ambidexterity
form of f is symmetric).

Let C Ď LocSysGpYq denote the full subcategory spanned by those G-tempered
local systems F for which the map θF ,G is an equivalence of spectra. Since the
construction F ÞÑ θF ,G carries colimits in LocSysGpYq to limits in Funp∆1, Spq, the
8-category C is presentable and closed under small colimits in LocSysGpYq. Let
CK be the full subcategory of LocSysGpYq spanned by those objects F for which
the spectrum MappF 0,F q vanishes for each object F 0 P C. Then every object
F P LocSysGpYq fits into an essentially unique fiber sequence F 1

Ñ F Ñ F 2, where
F 1

P C and F 2
P CK. It will therefore suffice to show that CK contains only zero

objects of LocSysGpY q.
Fix an object F P CK; we will complete the proof by showing that F belongs to C

(in which case it follows that F » 0). Note that if Y0 P CovpY q is a connected covering
space of Y which the covering map Y0 Ñ Y is not an isomorphism, then fundamental
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group π1pY0 is an Fp-vector space of dimension ă k, and our inductive hypothesis
(together with Remark 7.3.14) guarantees that rY0{Y s belongs to C. It follows that the
spectrum MapprY0{Y s,F q » F pY0q vanishes. Since F is G-tempered, the canonical
map F pY q Ñ F pY0q

hAutpY0{Y q exhibits F pY0q
hAutpY0{Y q » 0 as the IpY0{Y q-completion

of F pY q. It follows that F pY q is IpY0{Y q-local when viewed as an AYG-module.
Let J Ď A0

GpKpFp,mqq denote the kernel of the augmentation map

ε : A0
GpKpFp,mqq Ñ π0pAq

(given by pullback along the inclusion of the base point to KpFp,mq), and let J Ď
A0

GpY q denote the ideal generated by the image of J under the pullback map η˚ :
A0

GpKpFp,mqq Ñ A0
GpY q. It follows from Proposition 7.5.8 and Theorem 4.4.16 that

the vanishing locus of J is contained in the union of the vanishing loci of the ideals
IpY0{Y q, where Y0 is a connected covering space of Y which is not equivalent to Y .
The preceding argument then shows that F is J-local when viewed as an object fo
the 8-category LocSysGpYq (where we view LocSysGpYq as an AYG-linear 8-category).
Using the commutativity of the diagram

A0
GpKpF,mqq

ε //

η˚

��

π0pAq

��
A0

GpY q
f˚ // A0

GpXq,

we see that J is annihilated by the pullback map f˚. In particular, for each element
x P J , multiplication by x induces a nullhomotopic map from rX{Y s to itself. It
follows that the tensor product rX{Y s bF is simultaneously J-nilpotent and J-local,
and therefore vanishes. Similarly, multiplication by each x P J induces a nullhomotopic
map from rX{Y s b G to itself, so that rX{Y s b G is J-complete. Since F is J-local,
the spectrum MappF , rX{Y sbG q vanishes. It follows that the domain and codomain
of θF ,G are both trivial, so that θF ,G is a homotopy equivalence and F belongs to C,
as desired.

Proof of Theorem 7.5.1. Let f : X Ñ Y be a map of p-finite spaces; we wish to show
that f is υG-ambidextrous. Factoring f as a composition (using the Postnikov tower
of X as an object of S{Y ), we can assume that there exists some integer n ě ´1
for which the homotopy fibers of f are n-truncated and n-connective. By virtue of
Corollary 7.3.16, we can also assume that Y is the classifying space of a finite abelian
p-group. We now consider several cases:
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• If n “ ´1, then the desired result follows from Proposition 7.5.3.

• If n “ 0, then X is a covering space of Y . Using Proposition 7.5.4, we can assume
that X is a connected covering space of Y . Then f induces a monomorphism of
fundamental groups π1pXq Ñ π1pY q. Proceeding by induction, we can reduce
to the case where the quotient group π1pY q{π1pXq is cyclic of order p. In this
case, X is the fiber of a map Y Ñ KpFp, 1q, so the desired result follows from
Proposition 7.5.9.

• Suppose that n ě 1, so that the homotopy fiber of f has the form KpG, nq for
some finite p-group G (which is abelian for n ě 2). Proceeding by induction on
the order of the group G, we can reduce to the case where G is cyclic of order p
(so that the fundamental group π1pXq automatically acts trivially on G). Then
X is the homotopy fiber of a map Y Ñ KpFp, n ` 1q, and the desired result
again follows from Proposition 7.5.9.

7.6 Induction Theorems
Let G be a finite group and let H Ď G be a subgroup. If V is a finite-dimensional

complex representation of H, then the tensor product CrGs bCrHs V is a finite-
dimensional complex representation of G, which we denote by IndGHpV q and refer
to as the induced representation. The construction V ÞÑ IndGHpV q determines a
homomorphism of abelian groups

IndGH : ReppHq Ñ ReppGq rV s ÞÑ rIndGHpV qs,

which we refer to as the induction homomorphism. The celebrated induction theorems
of Artin and Brauer assert that every representation of G can be expressed as a linear
combination of representations induced from special kinds of subgroups of G.

Theorem 7.6.1 (Artin Induction Theorem). Let G be a finite group and let ReppGq
denote its representation ring. Then the localization ReppGqr 1

|G|
s is generated, as a

module over Zr 1
|G|
s, by the images of the induction maps

IndGH : ReppHqr 1
|G|
s Ñ ReppGqr 1

|G|
s,

where H ranges over the collection of cyclic subgroups of G.
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Theorem 7.6.2 (Brauer Induction Theorem). Let G be a finite group. Then the
representation ring ReppGq is generated, as an abelian group, by the images of the
induction maps

IndGH : ReppHq Ñ ReppGq,
where H ranges over subgroups of G which factor as a product C ˆ P , where C is
cyclic and P is a p-group (for some prime number p).

Our goal in this section is to prove analogues of Theorems 7.6.1 and 7.6.2 in the
setting of tempered cohomology. Let ~h “ thpupPP be a collection of nonnegative
integers. Recall that a P-divisible group G has height ď ~h if each summand Gppq is a
p-divisible group of height ď hp, and that T pď ~hq Ď T denotes the full subcategory
spanned by those objects of the form BH, where each p-local component Hppq can be
generated by ď hp elements (Notation 5.6.1).

Theorem 7.6.3 (Tempered Artin Induction Theorem). Let ~h “ thpupPP be a collection
of nonnegative integers, let G be an oriented P-divisible group of height ď ~h over an
E8-ring A, and let X be a π-finite space. Assume that each homotopy group πnpX, xq
has order invertible in the commutative ring π0pAq. Then the tempered cohomology
ring A0

GpXq is generated (as an abelian group) by the images of transfer maps

trT {X : A0
GpT q Ñ A0

GpXq

where T belongs to T pď ~hq.

Remark 7.6.4. In the situation of Theorem 7.6.3, suppose that X “ BG is the
classifying space of a finite group G. In that case, every map of classifying spaces
f : BH Ñ BG factors as a composition BH

f 1
ÝÑ BH0

f2
ÝÑ BG, where f 1 induces

a surjection on fundamental groups and f2 induces an injection on fundamental
groups. Using Proposition 7.4.5, we see that the image of the transfer map trBH{BG is
contained in the image of the transfer map trBH0{BG. Consequently, A0

GpBGq can also
be generated by the images of transfer maps trBH{BG, where H ranges over abelian
subgroups of G (having the property that each Hppq can be generated by at most hp
elements).

Theorem 7.6.5 (Tempered Brauer Induction Theorem). Let ~h “ thpupPP be a col-
lection of nonnegative integers, let G be an oriented P-divisible group of height ď ~h
over an E8-ring A, and let X be a π-finite space. Then the tempered cohomology ring
A0

GpXq is generated, as an abelian group, by the images of the transfer maps

trY {X : A0
GpY q Ñ A0

GpXq,
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where Y ranges over π-finite spaces (equipped with map to X) having the following
property:

p˚q For some prime number p, the space Y factors as a product T ˆ P , where
T P T pď ~hq and P is a connected p-finite space.

Remark 7.6.6. In the situation of Theorem 7.6.5, suppose that the π-finite space
X is n-truncated for some n ě 1. Any map of spaces f : Z Ñ X factors as a
composition Z

f 1
ÝÑ Y

f2
ÝÑ X, where the homotopy fibers of f2 are pn ´ 1q-truncated

and the homotopy fibers of f 1 are n-connective. It follows that, for any base point
z P Z, we have isomorphisms

πmpY, gpzqq »

$

’

’

&

’

’

%

πmpZ, zq if m ă n

impπnpZ, zq Ñ πnpX, fpzqq if m “ n

0 if m ą n .

If Z satisfies condition p˚q of Theorem 7.6.5, then so does Y , and the image of the
transfer map trZ{X is contained in the image of trY {X (Proposition 7.4.5). It follows
that the tempered cohomology ring A0

GpXq is generated by the images of the transfer
maps trY {X associated to pn´ 1q-truncated maps Y Ñ X which satisfy condition p˚q.

We now show that Theorems 7.6.1 and 7.6.2 can be deduced from their tempered
counterparts. First, we need to relate the transfers of §7.4 with the classical induction
maps.

Proposition 7.6.7. Let G be a finite group and let H Ď G be a subgroup. Let
G “ µP8, regarded as an oriented P-divisible group over the complex K-theory
spectrum KU (Construction 2.8.6). Then the diagram of abelian groups

KU0
GpBHq

trBH{BG //

„

��

KU0
GpBGq

„

��
ReppHq

IndGH // ReppGq

commutes, where the vertical maps are the isomorphisms supplied by Example 4.1.4.

Proof. Define a C-linear map

IndGH : tClass functions H Ñ Cu Ñ tClass functions GÑ Cu
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by the formula
IndGHpχqpgq “

1
|H|

ÿ

sPG,sgs´1PH

χpsgs´1
q,

and consider the diagram

KU0
GpBHq

trBH{BG //

„

��

KU0
GpBGq

„

��
ReppHq

IndGH //

rV sÞÑχV
��

ReppGq
rV sÞÑχV
��

tClass functions H Ñ Cu
IndGH // tClass functions GÑ Cu.

A standard elementary calculation shows that the lower square commutes. Moreover,
the lower vertical maps are injective. Consequently, it will suffice to show that the
outer rectangle commutes. Let KUC “ CbS KU denote the complexification of
the complex K-theory spectrum. Then, over the ring spectrum KUC, we have an
isomorphism of P-divisible groups

Q {Z » GKUC α ÞÑ expp2πiαq,

so that Theorem 4.3.2 supplies isomorphisms

pKUCq
0
GpBGq » KU0

CpLQ {Z
pBGqq » tClass functions GÑ Cu

pKUCq
0
GpBHq » KU0

CpLQ {Z
pBHqq » tClass functions H Ñ Cu.

By virtue of Example 4.3.9, we are reduced to verifying the commutativity of the
outer rectangle in the diagram

KU0
GpBHq

trBH{BG //

„

��

KU0
GpBGq

„

��
pKUCq

0
GpBHq

trBH{BG //

„

��

pKUCq
0
GpBGq

„

��

KU0
CpLQ {Z

pBHqq
trLQ {ZpBHq{LQ {ZpBGq //

„

��

KU0
CpLQ {Z

pBGqq

„

��
tClass functions H Ñ Cu

IndGH // tClass functions GÑ Cu.
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In fact, the entire diagram commutes: for the upper square this follows from Remark
7.4.8, for the middle square it follows from Remark 7.4.9, and for the lower square it
follows from Proposition 7.4.12.

Proof of Theorems 7.6.1 and 7.6.2 from Theorems 7.6.3 and 7.6.5. We give an argu-
ment that Theorem 7.6.5 implies Theorem 7.6.2; the proof that Theorem 7.6.3 implies
Theorem 7.6.1 is similar. Let KU denote the complex K-theory spectrum and let
G “ µP8 be the multiplicative P-divisible group over KU, endowed with the orien-
tation of Construction 2.8.6. Let G be a finite group, so that X “ BG is a π-finite
space. Then Theorem 7.6.5 implies that the tempered cohomology ring KU0

GpXq is
generated by the images of the maps trY {X : KU0

GpY q Ñ KU0
GpXq, where f : Y Ñ X

is a map satisfying condition p˚q of Theorem 7.6.5. Moreover, since X is 1-truncated,
we may assume without loss of generality that the map f : Y Ñ X is 0-truncated
(Remark 7.6.6), so that we can identify Y with the classifying space of a subgroup
H Ď G. In this case, p˚q guarantees that H factors as a product of a cyclic group and
a p-group for some prime number p. Combining this observation with Proposition
7.6.7, we deduce that the representation ring ReppGq is generated by the images of
the induction maps IndGH : ReppHq Ñ ReppGq, where H ranges over subgroups of G
which are products of cyclic groups with p-groups.

Theorem 7.6.5 has a local version:

Theorem 7.6.8. Let p be a fixed prime number, let ~h “ th`u`PP be a collection of
nonnegative integers, let G be a P-divisible group of height ď ~h over a p-local E8-ring
A, and let X be a π-finite space. Then the tempered cohomology ring A0

GpXq is
generated, as an abelian group, by the images of the transfer maps

trY {X : A0
GpY q Ñ A0

GpXq,

where Y ranges over π-finite spaces of the form T ˆ P , where T P T pď ~hq and P is a
connected p-finite space.

Proof of Theorem 7.6.5 from Theorem 7.6.8. Let G be a P-divisible group over an
E8-ring A, let X be a π-finite space, and let I Ď A0

GpXq be the subgroup generated
by the images of the transfer maps trY {X : A0

GpY q Ñ A0
GpXq, where Y Ñ X satisfies

condition p˚q of Theorem 7.6.8. It follows from the projection formula of Warning
7.4.2 that I is an ideal. Consequently, to show that I coincides with A0

GpXq, it will
suffice to show agreement after localizing at every prime number p. By virtue of
Corollary 4.7.3, we can replace A by the localization Appq and thereby reduce to the
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case where A is p-local, in which case the desired result follows immediately from
Theorem 7.6.8.

Warning 7.6.9. In our deduction of Theorem 7.6.5 from Theorem 7.6.8, we invoked
the fact that the formation of tempered cohomology of π-finite spaces is compatible
with faithfully flat base change (Corollary 4.7.3). To prove Theorems 7.6.3 and
7.6.8, we will not use this fact (despite the fact that it would simplify our argument
somewhat). This is actually important to the overall logic of §7: to prove that the
tempered function spectrum AXG of an n-truncated, π-finite space X is compatible
with base change, we use the fact that the projection map X Ñ ˚ is υ-ambidextrous
(Theorem 7.2.10), whose proof will make use of Theorem 7.6.3 and Theorem 7.6.8
(applied to the same π-finite space X), but will not use Theorem 7.6.5.

Proof of Theorem 7.6.3. Let G be an oriented P-divisible group over an E8-ring A.
Let S be the (finite) collection of all prime numbers which divide the order of some
homotopy group πnpX, xq, and assume that each p P S is invertible in the commutative
ring π0pAq. Without loss of generality, we may assume that for each p P S, the p-
divisible group Gppq has some fixed height hp. Let Λ be the colattice

À

pPSpQp {Zpq
hp

and let pΛ »
ś

pPS Zhp
p denote its Pontryagin dual. Let I be the set of all homotopy

classes of maps BpΛ Ñ X, and choose a representative fi : BpΛ Ñ X for each homotopy
class i P I. By virtue of Proposition 3.4.7, we can choose finite subgroups Mi Ď Λ
such that each of the maps fi factors as a composition

BpΛ Ñ BxMi
gi
ÝÑ X.

By construction, the finite group pxMiqppq can be generated by ď hp elements for each
p P S (and vanishes for p R Sq. We will complete the proof by showing that the
transfer maps trBxMi{X

induce a surjection
à

iPI

A0
GpB

xMiq Ñ A0
GpXq.

Let G1 denote the sum
À

pPS Gppq and let C “ SplitΛpG1q be a splitting algebra
for G1 (Definition 2.7.7). Then C is a direct limit of finite étale A-algebras, and there
is an isomorphism ρ : Λ Ñ G1

C of P-divisible groups over C. The restriction of ρ
to each M i is then classified by a map of A-algebras ui : ABxMi

G Ñ C. We can then
factor the unit map AÑ C as a composition AÑ B Ñ C, where B is a finite étale
A-algebra (of nonzero degree), C is faithfully flat over B, and each of the maps ui
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factors through some map of A-algebras ABxMi
G Ñ B, which we can identify with a map

of B-algebras vi : BBxMi
G Ñ B. Since BBxMi

G is an étale B-algebra, this map decomposes
the commutative ring B0

GpB
xMiq as a Cartesian product of π0pBq with some auxiliary

commutative ring Ri (so that vi is given by projection onto the first factor). Let
ξi P B

0
GpB

xMiq be the element which corresponds to the pair p1, 0q under this product
decomposition. We will prove the following:

paq The sum
ř

iPI trBxMi{X
pξiq is an invertible element of the tempered cohomology

ring B0
GpXq.

Note that if paq is satisfied, then the transfer map
À

iPI B
0
GpB

xMiq Ñ B0
GpXq is

surjective (since its image is automatically an ideal). Since B is finite flat (and
faithfully flat) over A, it will then follow from Remark 4.7.4 that the transfer map
À

iPI A
0
GpB

xMiq Ñ A0
GpXq is also surjective, completing the proof of Theorem 7.6.3.

Let C‚ denote the cosimplicial B-algebra given by the iterated tensor powers of
C over B. Since C is faithfully flat over B, the canonical map B Ñ TotpC‚q is an
equivalence. It then follows from Lemma 4.2.11 that the map of tempered function
spectra BX

G Ñ TotpC‚XG q is also an equivalence. Consequently, to show that the
element

ř

iPI trBxMi{X
pξiq is an invertible element of the tempered cohomology ring

B0
GpXq “ π0pB

X
Gq is invertible, it will suffice to show that its image in C0

GpXq “

π0pC
X
Gq is invertible. Set G0 “

À

pRS Gppq, so that the P-divisible group GC splits as
a direct sum G0C ‘ Λ. We then have a commutative diagram

À

iPI C
0
GpB

xMiq
tr
BxMi{X //

„

��

C0
GpXq

„

��
À

iPI C
0
G0pB

xMBpΛ
i q

tr
BxMB pΛ

i
{XB

pΛ
// C0

G0pX
BpΛq,

where the vertical maps are the character isomorphisms supplied by Theorem 4.3.2.
Note that the mapping space Z “ XBpΛ splits as a disjoint union of connected S-finite
spaces

š

iPI Zi, so that the tempered cohomology ring C0
G0pX

BpΛq can be identified
with

ś

iPI π0pCq (Proposition 7.4.11). Using Proposition 7.4.12, we see that the image
of

ř

iPI trBxMi{X
pξiq under this identification is given by the tuple of rational numbers

t
MasspBxMiq

MasspZiq uiPI , each of which is invertible in π0pCq.

Our proof of Theorem 7.6.8 will use a similar strategy. However, it is somewhat
more complicated, because we cannot explicitly describe the tempered cohomology
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rings which appear. We will need a few preliminary remarks. Recall that if G is a
finite p-group acting on a finite set X, then the fixed point set XG “ tx P X : p@g P
Gqrxg “ xsu satisfies |XG| ” |X| pmod pq. We will need an analogous fact for π-finite
spaces:

Lemma 7.6.10. Let X be a π-finite space, and let p be a prime number which does
not divide the order of any homotopy group of X. Let G be a finite p-group acting on
X. Then:

p1q The homotopy fixed point set XhG is also a π-finite space, whose homotopy
groups have order not divisible by p.

p2q If X is connected, then XhG is connected.

p3q We have MasspXhGq ” MasspXq pmod pq in the commutative ring Zppq.

Proof. Decomposing X as a disjoint union, we may assume without loss of generality
that π0pXq consists of a single orbit of G. If X is not connected, then G has no fixed
points on the set π0pXq and therefore the homotopy fixed point space XhG is empty.
On the other hand, the mass MasspXq is the product of |π0pXq| with the mass of any
connected component of X, and is therefore divisible by p (in the ring Zppq). We may
therefore assume without loss of generality that X is connected. Since X is π-finite,
there exists an integer n " 0 for which X is n-truncated. We proceed by induction on
n. If n “ 0, then X is contractible and the result is clear. To carry out the inductive
step, assume that n ą 0 and let Y “ τďn´1pXq be the pn´ 1q-truncation of X. Then
Y inherits an action of G, and our inductive hypothesis guarantees that Y hG is a
connected π-finite space satisfying MasspY hGq ” MasspY q pmod pq. Fix a base point
y P Y hG. Then G acts on the homotopy fiber F “ tyuˆY X, and we have a homotopy
fiber sequence

F hG
Ñ XhG

Ñ Y hG,

which yields an equality

MasspXhG
q “ MasspY hG

q ¨MasspF hG
q

” MasspY q ¨MasspF hG
q

“
MasspXq
MasspF q ¨MasspF hG

q

“ MasspXq ¨ MasspF hGq

MasspF q .
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We may therefore replace X by F and thereby reduce to the case where X » KpM,nq

is the Eilenberg-MacLane space associated to a finite group M whose order is not
divisible by p.

Suppose now that n ě 2, so that the group H is abelian. In this case, the action
of G on X “ KpM,nq is classified by an action of G on the group M together with a
k-invariant η P Hn`1pG;Mq. Since G is a finite p-group and M has order relatively
prime to p, the invariant η automatically vanishes. It follows that the homotopy fixed
point space XhG is nonempty, and its homotopy groups (for any choice of base point)
are given by

π˚pX
hG
q “ Hn´˚

pG;Mq »
#

MG if ˚ “ n

0 otherwise.

Assertions p1q and p2q are now immediate, and p3q follows from the identity |MG| “

|M |.
It remains to treat the case n “ 1. In this case, the action of G on X is encoded

by a homotopy fiber sequence

X Ñ XhG
u
ÝÑ BG.

Choose a point x P XhG lying over the base point of BG and set rG “ π1pXhG, xq, so
that we have an exact sequence of finite groups 0 Ñ M Ñ rG

ϕ
ÝÑ G Ñ 0. Note that

the space of pointed sections of the map u can be identified with the set of sections of
ϕ in the category of groups, or equivalently with the set of all p-Sylow subgroups of rG

(by identifying a section of ϕ with its image in rG). We therefore obtain a homotopy
equivalence

XhG
» tUnpointed sections of uu
» tPointed sections of uuhM
» tp-Sylow subgroups of rGuhM .

It follows immediately that XhG is a π-finite space whose homotopy groups are
equivalent to subgroups of M (and therefore not divisible by p). Note that the
collection of p-Sylow subgroups of G form a single orbit under the action of rG (by
Sylow’s theorem), hence also under the action of M (since rG is generated by M

together with any choice of p-Sylow subgroup P Ď rG); this proves that XhG is
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connected. The congruence

MasspXhG
q “

|tp-Sylow subgroups of rGu|

|M |

“ MasspXq ¨ |tp-Sylow subgroups of rGu|

” MasspXq pmod pq

also follows from Sylow’s theorem (which guarantees that the number of p-Sylow
subgroups of rG is congruent to 1 modulo p).

Variant 7.6.11. Let X be a π-finite space, let p be a prime number which does not
divide the order of any homotopy group of X, and suppose that X is equipped with an
action of G “ Zn

p for some nonnegative integer n. Then XhG is a π-finite space, whose
homotopy groups have order not divisible by p, and we have MasspXhGq ” MasspXq
pmod pq in the commutative ring Zppq.

Proof. Let AutpXq Ď XX denote the subspace consisting of homotopy equivalences
from X to itself, and let BAutpXq denote its classifying space. Then BAutpXq
is a π-finite space, and the action of G on X is classified by a pointed map f :
BG Ñ BAutpXq. It follows from Proposition 3.4.7 that the map f is homotopic
to a composition BG Ñ BpG{G0q Ñ BAutpXq for some subgroup G0 Ď G of finite
index. Then G0 » Zn

p acts trivially on X, so the homotopy fixed point space XhG0 is
equivalent to the mapping space FunpBG0, Xq » X (by virtue of our assumption that
the homotopy groups of X have order relatively prime to p). The desired result now
follows by applying Lemma 7.6.10 to the residual action of the finite p-group G{G0

on XhG0 .

We will also need the notion of a p-Sylow map between π-finite spaces (see [17] for
a general discussion).

Definition 7.6.12. Let X be a connected π-finite space and let p be a prime number.
We say that a map of spaces f : Y Ñ X is p-Sylow if Y is connected and, for each
integer m ě 1, the induced map of homotopy groups πmpY, yq Ñ πmpX, fpyqq induces
an isomorphism from πmpY, yq to a p-Sylow subgroup of πmpX, fpyqq; here y P Y is
any choice of base point.

Example 7.6.13. Let G be a finite group. Then a map of spaces Y Ñ BG is p-Sylow
if and only if it induces a homotopy equivalence of Y with a connected covering space
of BG whose fundamental group is a p-Sylow subgroup P Ď G.
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Remark 7.6.14. Let X be a connected π-finite space and let f : Y Ñ X be a p-Sylow
map. Then Y is a connected p-finite space. Moreover, the homotopy fiber fibpfq is a
π-finite space whose homotopy groups have order relatively prime to p, and the mass

Masspfibpfqq “ MasspY q
MasspXq “

ź

ną0
p
|πnpY q|

|πnpXq|
q
p´1qn

P Zppq

is not divisible by p.

Lemma 7.6.15. Let X be a connected π-finite space and let p be a prime number.
Then there exists a p-Sylow map f : Y Ñ X.

Proof. Note that X is n-truncated for some n " 0. We proceed by induction on n. If
n “ 1, the desired result follows from Sylow’s theorem (Example 7.6.13). For n ą 1,
let X 1 denote the truncation τďn´1pXq. Our inductive hypothesis then guarantees that
there exists a p-Sylow map Y 1 Ñ X 1. Replacing X by the fiber product X ˆX 1 Y 1, we
can reduce to the case where X 1 is p-finite. The construction x ÞÑ πnpX, xq determines
a local system of finite abelian groups on X. Since n ą 1, this is the pullback of a local
system L of finite abelian groups on X 1. Write L as a direct sum L`‘L´, where L` is
a local system of finite abelian p-groups on X 1 and L´ is a local system of finite abelian
groups of order relatively prime to p. It follows from obstruction theory that the map
X Ñ X 1 is classified by a k-invariant η P Hn`1pX 1;Lq » Hn`1pX 1;L`q‘Hn`1pX 1;L´q.
Since X 1 is p-finite, the cohomology group Hn`1pX 1;L´q vanishes. It follows that
η is the image of a cohomology class η` P Hn`1pX 1;L`q, which is the k-invariant
associated to a map Y Ñ X 1. By construction, this space is equipped with a p-Sylow
map Y Ñ X.

Remark 7.6.16 (Uniqueness of p-Sylow Maps). Let X be a π-finite space and let p
be a prime number. One can show that the p-Sylow map Y Ñ X of Lemma 7.6.15 is
unique up to homotopy equivalence. However, it is not unique up to a contractible
space of choices. More precisely, let C Ă S{X be the full subcategory spanned by the
p-Sylow maps. By refining the argument of Lemma 7.6.15, one can show that C is
a connected π-finite space, whose homotopy groups have order relatively prime to p
(moreover, if X is n-truncated, then C is also n-truncated).

Lemma 7.6.17. Let p be a prime number and let G be an oriented P-divisible group
over a p-local E8-ring A. Let f : Y Ñ X be a p-Sylow map of connected π-finite
spaces. Assume that, for every prime number ` ‰ p which divides the order of some
homotopy group of X, the `-divisible group Gp`q vanishes. Then the transfer map
trY {X : A0

GpY q Ñ A0
GpXq carries 1 to an invertible element of A0

GpXq.
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Proof. Let us say that an object B P CAlgA is good if the image of trY {Xp1q in the
tempered cohomology ring B0

GpXq » π0pB
X
Gq is invertible. Using Lemma 4.2.11, we

see that the collection of good E8-algebras over A is closed under limits. We wish to
prove that A is good.

Without loss of generality, we may assume that the p-divisible group Gppq has some
fixed height h. Then A is Ephq-local. We will complete the proof by showing that
every Epnq-local A-algebra is good, for any n ě 0. Our proof proceeds by induction
on n. For n ą 0, we have a pullback diagram of A-algebras

B //

��

LKpnqpBq

��
LEpn´1qpBq // LEpn´1qpLKpnqpBqq

where the bottom left and right corners are good by virtue of our inductive hypothesis.
We may therefore replace A by LKpnqpBq and thereby reduce to the case where A is
Kpnq-local. In this case, our orientation of G supplies an exact sequence of p-divisible
groups

0 Ñ GQ
A

i
ÝÑ Gppq Ñ G1

Ñ 0,

where G1 is an étale p-divisible group of height h ´ n (Proposition 2.5.6). Set
Λ “ pQp {Zpq

h´n and let C “ SplitΛpiq be a splitting algebra of f (Definition 2.7.12).
Then C is a faithfully flat A-algebra (Proposition 2.7.15), so A can be realized as
the totalization TotpC‚q of the cosimplicial A-algebra C‚ given by the iterated tensor
powers of C over A. It will therefore suffice to show that C is good. Using our
inductive hypothesis again, we can replace A by LKpnqpCq and thereby reduce to
the case where A is Kpnq-local and the p-divisible group Gppq splits as a direct sum
G0 ‘ Λ, where G0 “ GQ

A is the Quillen p-divisible group of A. In this case, Remark
7.4.9 supplies a commutative diagram

A0
GpY q

trY {X //

��

A0
GpXq

��

A0
G0pY

BpΛq
tr
Y B

pΛ{XB pΛ
// A0

G0pX
BpΛq,

where the vertical maps are the character isomorphisms of Theorem 4.3.2. Using
Lemma 4.4.17 and Theorem 4.2.5, we deduce that Atiyah-Segal comparison map

A0
G0pX

BpΛ
q Ñ A0

pXBpΛ
q
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is an isomorphism. Consequently, an element of the tempered cohomology ring
A0

G0pX
BpΛq is invertible if and only if it is invertible when evaluated at any point u

of the mapping space XBpΛ, which we can represent by a map of spaces u : BpΛ Ñ X.
Using Remark 7.4.8, we are reduced to showing that the transfer map associated to the
projection Y BpΛ ˆ

XB pΛ tuu Ñ tuu carries the identity element 1 P A0
G0pY

BpΛ ˆ
XB pΛ tuuq

to an invertible element in A0
G0ptuuq » π0pAq. By virtue of Proposition 7.4.12, this is

equivalent to the assertion that the mass of the π-finite space Z “ Y BpΛ ˆ
XB pΛ tuu is

an invertible element of the commutative ring π0pAq. Note that Z can be identified
with the homotopy fixed point space for an action of pΛ on the homotopy fiber
F “ fibpX Ñ Y q. Applying Variant 7.6.11 and Remark 7.6.14, we deduce that
MasspZq ” MasspF q pmod pq is an invertible element of the local ring Zppq, and
therefore also invertible in the commutative ring π0pAq.

Proof of Theorem 7.6.8. We proceed as in the proof of Theorem 7.6.3, with a few
modifications. Let G be an oriented P-divisible group over a p-local E8-ring A, let
X be a π-finite space, and let S be the (finite) collection of all prime numbers other
than p which divide the order of some homotopy group πnpX, xq. Without loss of
generality, we may assume that for each ` P S, the `-divisible group Gp`q has some
fixed height h`. Let Λ be the colattice

À

`PSpQ` {Z`q
h` and let pΛ »

ś

`PS Zh`
` denote

its Pontryagin dual. Let Z denote the mapping space XBpΛ. Then Z is also a π-finite
space, which decomposes into connected components

š

iPI Zi where I denotes the
finite set π0pZq “ HomhSpBpΛ, Xq. For each i P I, we have an evaluation map

evi : BpΛˆ Zi Ñ X,

which we can identify with a map ei : BpΛ Ñ XZi . Since XZi is also a π-finite space,
each of the maps ei factors as a composition BpΛ Ñ BxMi

e˝i
ÝÑ XZi for some finite

subgroup Mi Ď Λ (Proposition 3.4.7). It follows that the evaluation maps evi admit a
corresponding factorization as

BpΛˆ Zi Ñ BxMi ˆ Zi
ev˝i
ÝÝÑÑ X.

For each i P I, choose a p-Sylow map Yi Ñ Zi (Lemma 7.6.15). Let gi denote the
composite map YiˆBxMi Ñ ZiˆBxMi

ev˝i
ÝÝÑ X. We will complete the proof by showing

that the transfer maps tr
pBxMiˆYiq{X

induce a surjection
à

iPI

A0
GpB

xMi ˆ Yiq Ñ A0
GpXq.
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Let G1 denote the sum
À

`PS Gp`q and let C “ SplitΛpG1q be a splitting algebra
for G1 (Definition 2.7.7). Then C is a direct limit of finite étale A-algebras, and there
is an isomorphism ρ : Λ Ñ G1

C of P-divisible groups over C. The restriction of ρ
to each Mi is then classified by a map of A-algebras ui : ABxMi

G Ñ C. We can then
factor the unit map AÑ C as a composition AÑ B Ñ C, where B is a finite étale
A-algebra (of nonzero degree), C is faithfully flat over B, and each of the maps ui
factors through some map of A-algebras ABxMi

G Ñ B, which we can identify with a map
of B-algebras vi : BBxMi

G Ñ B. Since BBxMi
G is an étale B-algebra, this map decomposes

the commutative ring B0
GpB

xMiq as a Cartesian product of π0pBq with some auxiliary
commutative ring Ri (so that vi is given by projection onto the first factor). Let
ξi P B

0
GpB

xMiq be the element which corresponds to the pair p1, 0q under this product
decomposition. We will prove the following:

paq The sum
ř

iPI tr
pBxMiˆYiq{X

pξiq is an invertible element of the tempered cohomol-
ogy ring B0

GpXq.

Note that if paq is satisfied, then the transfer map
À

iPI B
0
GpB

xMiq Ñ B0
GpXq is

surjective (since its image is automatically an ideal). Since B is finite flat (and
faithfully flat) over A, it will then follow from Remark 4.7.4 that the transfer map
À

iPI A
0
GpB

xMi ˆ Yiq Ñ A0
GpXq is also surjective, completing the proof of Theorem

7.6.8.
Let C‚ denote the cosimplicial B-algebra given by the iterated tensor powers of

C over B. Since C is faithfully flat over B, the canonical map B Ñ TotpC‚q is an
equivalence. It then follows from Lemma 4.2.11 that the map of tempered function
spectra BX

G Ñ TotpC‚XG q is also an equivalence. Consequently, to show that the
element

ř

iPI tr
pBxMiˆYiq{X

pξiq is an invertible element of the tempered cohomology ring
B0

GpXq “ π0pB
X
Gq is invertible, it will suffice to show that its image in C0

GpXq “

π0pC
X
Gq is invertible. Set G0 “

À

`RS Gp`q, so that the P-divisible group GC splits as
a direct sum G0C ‘ Λ. We then have a commutative diagram

À

iPI C
0
GpB

xMi ˆ Yiq
tr
BxMi{X //

χ
��

C0
GpXq

χ
��

À

iPI C
0
G0ppB

xMi ˆ Yiq
BpΛq // C0

G1pXBpΛq,

where the vertical maps are the character isomorphisms supplied by Theorem 4.3.2.
Since each Yi is p-finite, the mapping spaces pBxMi ˆ Yiq

BpΛ can be identified with a
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disjoint union
ž

αPHomppΛ,Miq

pBxMi ˆ Yiq

By construction, the image of ξ under the character map can be identified with the
element of the tempered cohomology ring

C0
G0ppB

xMi ˆ Yiq
BpΛ
q »

ź

αPHomppΛ,Miq

C0
G0pB

xMi ˆ Yiq

which takes the value 1 on the connected component corresponding to the homomor-
phism pΛ Ñ xMi which is Pontryagin dual to the inclusion map, and 0 on all other
connected components. We are therefore reduced to showing that each of the transfer
maps

trYiˆBxMi{Zi
: C0

G0pB
xMi ˆ Yiq Ñ C0

G0pZiq

carries 1 to an invertible element of the tempered cohomology ring C0
G0pZiq. In

fact, we claim that tr
pBxMiˆYiq{Zi

p1q “ trYi{Zi p1q
|Mi|

(which will imply the desired result,
by virtue of Lemma 7.6.17). Using the functoriality of the transfer (Proposition
7.4.5), we are reduced to verifying the identity trYi{pBxMiˆYiq

p1q “ |Mi| in the tempered
cohomology ring C0

G0pB
xMi ˆ Yiq. Using the push-pull identity of Proposition 7.4.4,

we are reduced to showing that transfer along the base point inclusion teu ãÑ BxMi

satisfies tr
teu{BxMi

p1q “ |Mi|, which is a special case of Proposition 7.4.12.

7.7 Proof of Tempered Ambidexterity
Let G be an oriented P-divisible group over an E8-ring A, which we regard as fixed

throughout this section. Our goal in this section is to prove Theorem 7.2.10, which
asserts that every n-truncated relatively π-finite morphism of orbispaces f : X Ñ Y is
υG-ambidextrous. Our proof will proceed by induction on n. The case n “ ´1 follows
from Proposition 7.5.3 (and Corollary 7.3.16). To carry out the inductive step, we
will prove the following:

Proposition 7.7.1. Let n be a nonnegative integer, and let f : X Ñ Y be a morphism
of orbispaces which is relatively π-finite and n-truncated. Assume that every pn´ 1q-
truncated, relatively π-finite morphism of orbispaces is υG-ambidextrous. Then f is
υG-ambidextrous.

The proof will make use of the following:
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Lemma 7.7.2. Let f : X1 Ñ X be a υG-ambidextrous morphism of orbispaces. Suppose
that the transfer map trX1{X : A0

GpX1q Ñ A0
GpXq is surjective. Then every G-tempered

local system F on X can be realized as a direct summand of f!pG q, for some G-tempered
local system G on X1.

Proof. By virtue of the projection formula (Theorem 7.3.1), it will suffice to treat the
case F “ AX. Let u : AX1 Ñ f˚pAX1q and v : f!pAXq Ñ AX1 be the unit and counit
maps. For any element t P A0

GpX1q, the composite map

AX
u
ÝÑ f˚pAX1q

f˚ptq
ÝÝÝÑ f˚pAX1q

Nm´1
f

ÝÝÝÑ f!pAX1q
v
ÝÑ AX

is given by multiplication by the element trX1{Xptq P A
0
GpXq. Choosing t such that

trX1{Xptq “ 1, we see that this diagram exhibits AX1 as a retract of f!pAXq.

Proof of Proposition 7.7.1. Let f : X Ñ Y be a map of orbispaces which is n-truncated
and relatively π-finite; we wish to show that f is υG-ambidextrous. By virtue of
Corollary 7.3.16, we may assume without loss of generality that Y “ Y p´q where
Y P T is the classifying space of a finite abelian group. Our assumption that f is
relatively π-finite then implies that X is representable by a π-finite space X. Using
Proposition 7.5.3, we can assume that X is connected. If n “ 0, then X is a connected
covering space of Y P T , and is therefore also the classifying space of a finite abelian
group. In this case, we can identify f with a finite product of maps fppq : Xppq Ñ Yppq
between p-finite spaces, so that the desired result follows from Theorem 7.5.1. We
will therefore assume that n ą 0, so that the space X is n-truncated. Note that
the relative diagonal map δ : X Ñ X ˆY X is pn ´ 1q-truncated, and is therefore
υG-ambidextrous by virtue of our inductive hypothesis. It follows that f is weakly
υG-ambidextrous. In particular, for every G-tempered local system F on X, we can
associate a norm map Nmf : f!pF q Ñ f˚pF q (Notation 7.2.3).

Let AFormpfq : rX{Y sb rX{Y s Ñ AY denote the ambidexterity form of Construc-
tion 7.3.13. Then f is υG-ambidextrous if and only if AFormpfq is a duality datum
in the 8-category LocSysGpY q (Proposition 7.3.15). Let S be the (finite) set of all
prime numbers which divide the order of some homotopy group of X, and let N be
the product of all the numbers which belong to S. Then Ar 1

N
s and tAppqupPS comprise

a faithfully flat covering of A. By virtue of Proposition 6.2.6, the ambidexterity form
AFormpfq is a duality datum in LocSysGpY q if and only if its image is a duality datum
in each of the symmetric monoidal 8-categories

Ar
1
N
s bA LocSysGpY q Appq bA LocSysGpY q.
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It will therefore suffice to show that f is υG-ambidextrous after extending scalars
from A to the localizations Ar 1

N
s and Appq for p P S. We now break into two cases:

• Suppose that A “ Ar 1
N
s: that is, every prime number p P S is invertible in A.

To complete the proof, it will suffice to show that the norm map Nmf : f!pF q Ñ

f˚pF q is an equivalence for every G-tempered local system F on X. Using
Theorem 7.6.3, we can choose a map of spaces g : X 1 Ñ X, where X 1 is a finite
disjoint union of objects of T and the transfer map trX 1{X : A0

GpX
1q Ñ A0

GpXq

is surjective. Moreover, we can assume that the map g is pn´ 1q-truncated (this
is automatic for n ě 2, and for n “ 1 it follows from Remark 7.6.4). Invoking
Lemma 7.7.2, we deduce that F can be written as a direct summand of g!pG q,
for some object G on LocSysGpXq. It we are therefore reduced to showing that
the norm map Nmf : f!pg! G q Ñ f˚pg!pG qq is an equivalence. By assumption,
every pn ´ 1q-truncated morphism of π-finite spaces is υG-ambidextrous. In
particular, we have a norm equivalence Nmg : g!pG q Ñ g˚pG q. Moreover, the
composition

f!pg!pG qq
Nmf
ÝÝÝÑ f˚pg!pG qq

f˚pNmgq
ÝÝÝÝÝÑ f˚pg˚pG qq

is given by the norm map Nmg˝f associated the composition pg ˝ fq : X 1 Ñ Y

(Remark Ambi.4.2.4 ). It will therefore suffice to show that the composite map
g ˝ f is υG-ambidextrous. Writing X 1 as a union of connected components
š

iPI X
1
i, we are reduced to showing that each of the composite maps hi : X 1

i ãÑ

X 1 g
ÝÑ X

f
ÝÑ Y is υG-ambidextrous (Proposition 7.5.3). This is clear, since hi is

a map between classifying spaces of finite abelian groups, and therefore factors
as a finite product of maps pX 1

iqppq Ñ Yppq between p-finite spaces (each of which
is υG-ambidextrous by virtue of Theorem 7.5.1).

• Suppose that the E8-ring A is p-local, for some prime number p. As before, we
will complete the proof by showing that the norm map Nmf : f!pF q Ñ f˚pF q

is an equivalence for every G-tempered local system F on X. Using Theorem
7.6.8, we can choose a map of spaces g : X 1 “

š

iPI X
1
i Ñ X, where each X 1

i

is a product of an object of T with a p-finite space, and the transfer map
trX 1{X : A0

GpX
1q Ñ A0

GpXq is surjective. By virtue of Remark 7.6.6, we can
assume without loss of generality that g is pn ´ 1q-truncated. Lemma 7.7.2
implies that F can be written as a direct summand of g!pG q, for some object
G on LocSysGpXq. It we are therefore reduced to showing that the norm map
Nmf : f!pg! G q Ñ f˚pg!pG qq is an equivalence. As above, we note that g is
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υG-ambidextrous and that the composition

f!pg!pG qq
Nmf
ÝÝÝÑ f˚pg!pG qq

f˚pNmgq
ÝÝÝÝÝÑ f˚pg˚pG qq

can be identified with the norm map Nmg˝f : pg ˝ fq!pG q Ñ pg ˝ fq˚pG q. It will
therefore suffice to show that g ˝ f is υG-ambidextrous. By virtue of Proposition
7.5.3, we are reduced to showing that each of the composite maps g ˝ f is υG-
ambidextrous. Writing X 1 as a union of connected components

š

iPI X
1
i, we are

reduced to showing that each of the composite maps hi : X 1
i ãÑ X 1 g

ÝÑ X
f
ÝÑ Y

is υG-ambidextrous. This again follows from Theorem 7.5.1, since hi can be
written as a finite product of maps between `-finite spaces (which are classifying
spaces of finite abelian `-groups for ` ‰ p).

7.8 Applications of Tempered Ambidexterity
Our goal in this section is to summarize some of the consequences of tempered

ambidexterity. Let G be an oriented P-divisible group over an E8-ring A. Then
Theorem 7.2.10 immediately implies the following:

Proposition 7.8.1. Let f : X Ñ Y be a map of π-finite spaces. Then the functors
f!, f˚ : LocSysGpXq Ñ LocSysGpY q are equivalent.

Corollary 7.8.2. Let f : X Ñ Y be a map of π-finite spaces. Then the func-
tor f˚ : LocSysGpXq Ñ LocSysGpY q preserves small colimits, and the functor
f! : LocSysGpXq Ñ LocSysGpY q preserves small limits.

Fix a prime number p. It follows immediately from the definition that for every
map of spaces f : X Ñ Y , the pullback functor f˚ : LocSysGpY q Ñ LocSysGpXq

carries LocSysKpmqG pY q into LocSysKpmqG pXq for every nonnegative integer m. Since the
collection of Kpmq-local spectra is closed under the formation of limits, the description
of f˚ supplied by Construction 7.1.1 shows that the functor f˚ carries LocSysKpmqG pXq

into LocSysKpmqG pY q. In particular, for each object F P LocSysGpXq, the canonical
map f˚F Ñ f˚pLKpmqF q factors through LKpmqf˚F .

Corollary 7.8.3. Let f : X Ñ Y be a map of π-finite spaces. Then, for every
object F P LocSysGpXq and every integer m ě 0, the canonical map LKpmqpf˚F q Ñ

f˚pLKpmqF q is an equivalence in LocSysGpY q.
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Proof. We wish to prove that the map f˚F Ñ f˚pLKpmqF q is a Kpmq-equivalence.
Let F 1 denote the fiber of the canonical map F Ñ LKpmqF ; we wish to prove that
f˚F 1 is Kpmq-acyclic: that is, that the mapping space MapLocSysGpY q

pf˚F 1,G q is
contractible for every object G P LocSysKpmqG pY q. Using Proposition 7.8.1, we obtain
a homotopy equivalence

MapLocSysGpY q
pf˚F 1,G q » MapLocSysGpXq

pF 1, f˚ G q,

so that the desired result follows from the Kpmq-acyclicity of F 1 (since the pullback
f˚ G is Kpmq-local).

Remark 7.8.4. Using Corollary 7.8.3, we can deduce Theorem 7.2.10 from Theorem
Ambi.5.2.1 . However, we do not know a direct proof of Corollary 7.8.3.

Proposition 7.8.5. Let f : X Ñ Y be a map of π-finite spaces. Then the functors
f˚ : LocSysGpY q Ñ LocSysGpXq and f˚ : LocSysGpXq Ñ LocSysGpY q preserve
compact objects.

Proof. Proposition 7.8.1 supplies an equivalence f˚ » f!; it will therefore suffice to
show that f˚ and f! preserve compact objects. By virtue of Proposition HTT.5.5.7.2 ,
it will suffice to prove that the right adjoint functors f˚ and f˚ preserve filtered
colimits. In the second case this is obvious, and in the first case it follows from
Corollary 7.8.3.

If F is a G-tempered local system on a space X, then the A-module ΓpX; F q is
given by the direct image q˚F , where q is the projection map from X to a point (and
we identify LocSysGp˚q with the 8-category ModA). We therefore have the following
consequence of Corollary 7.8.2 and Proposition 7.8.5:

Corollary 7.8.6. Let X be a π-finite space. Then the tempered global sections functor

ΓpX; ‚q : LocSysGpXq Ñ ModA F ÞÑ ΓpX; F q

commutes with small colimits, and carries compact objects of LocSysGpXq to compact
objects of ModA.

Notation 7.8.7. For every space X, we view LocSysGpXq as an A-linear 8-category.
For every pair of objects F ,G P LocSysGpXq, we write MappG ,F q for the A-module
classifying morphisms from F to G (so that we have canonical homotopy equivalences
MapModApM,MappG ,F qq » MapLocSysGpXq

pM bA G ,F q, depending functorially on
M P ModA).
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Proposition 7.8.8. Let X be a π-finite space and let F P LocSysGpXq. The following
conditions are equivalent:

p1q The object F is a compact object of LocSysGpXq

p2q The object F is dualizable (with respect to the tensor product introduced in §5.8.

Proof. If F is dualizable, then the functor

G ÞÑ MappF ,G q

» MappAX ,F_
bG q

» ΓpX; F_
bG q

commutes with small colimits, since the functors G ÞÑ F_
bG and ΓpX; ‚q commute

with small colimits (Corollary 7.8.6). This shows that p2q ñ p1q.
We now prove that p1q ñ p2q. Let C Ď LocSysGpXq be the full subcategory

spanned by the dualizable objects. Then C is a stable subcategory of LocSysGpXq,
and the first part of the proof shows that every object of C is compact in LocSysG.
Applying Proposition HTT.5.3.5.11 , we obtain a fully faithful embedding f : IndpCq Ñ
LocSysGpXq which preserves filtered colimits. We will show that f is an equivalence
of 8-categories. It will then follow that every compact object of LocSysGpXq is a
retract of an object of C; since C is closed under retracts, the implication p1q ñ p2q
follows.

Using Corollary HTT.5.5.2.9 , we see that f admits a right adjoint g. To prove
that f is an equivalence of 8-categories, it will suffice to show that g is conservative.
Fix an object F P LocSysGpXq such that gpF q » 0; we wish to show that F » 0.
Choose any object T P T{X . Then we have an equivalence F pT q » Mappf!AT ,F q “

MapprT {Xs,F q. This spectrum vanishes, since rT {Xs “ f!AT is a self-dual object of
LocSysGpXq.

Corollary 7.8.9. Let X be a π-finite space. Then LocSysGpXq is a proper A-linear
8-category. That is, for every pair of compact objects F ,G P LocSysGpXq, the
A-module MappF ,G q is perfect.

Proof. Since F and G are compact, they are dualizable (Proposition 7.8.8). We then
have a equivalences

MappF ,G q » MappAX ,F_
bG q » ΓpX; F_

bG q.

We now observe that the tensor product F_
bG is dualizable and therefore compact,

and the functor ΓpX; ‚q preserves compact objects by virtue of Corollary 7.8.6.
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Recall that if X and Y are π-finite spaces, then Corollary 4.7.11 guarantees that
the multiplication map AXG bA A

Y
G Ñ AXˆYG is an equivalence of A-modules. We now

establish a relative version of this result.
Notation 7.8.10 (External Tensor Products). Let G be an oriented P-divisible
group over an E8-ring A, let X and Y be spaces, and let qX : X ˆ Y Ñ X and
qY : X ˆ Y Ñ Y denote the projection maps. Then the pullback functors

LocSysGpXq
q˚X
ÝÑ LocSysGpX ˆ Y q

q˚Y
ÐÝ LocSysGpY q

determine an A-linear functor

λ : LocSysGpXq bA LocSysGpY q Ñ LocSysGpX ˆ Y q.

In particular, we obtain an external tensor product functor

b : LocSysGpXq ˆ LocSysGpY q Ñ LocSysGpX ˆ Y q,

which is A-linear separately in each variable, given concretely by the formula

F b G “ q˚X F bq˚Y G .

Proposition 7.8.11 (Künneth Formula). Let G be an oriented P-divisible group
over an E8-ring A. Let X and Y be π-finite spaces. Then, for every pair of objects
F P LocSysGpXq and G P LocSysGpY q, the canonical map

θ : ΓpX; F q bA ΓpY ; G q Ñ ΓpX ˆ Y ; F b G q

is an equivalence in ModA.
Proof. Form a pullback diagram of spaces

X ˆ Y
qX //

qY
��

X

pY

��
Y

pX // ˚.

Using Theorem 7.3.10 (and Theorem 7.1.6), we see that θ factors as a composition of
equivalences

ΓpX; F q bA ΓpY ; G q “ ppY ˚F q bA ppX˚ G q
„
ÝÑ pY ˚pF bp˚Y pX˚ G q
„
ÝÑ pY ˚pF bqX˚q

˚
Y G q

„
ÝÑ pY ˚pqX˚pq

˚
X F bq˚Y G qq

“ ΓpX ˆ Y ; F b G q.
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Corollary 7.8.12. Let G be an oriented P-divisible group over an E8-ring A. Let
X and Y be π-finite spaces. Then the A-linear functor

λ : LocSysGpXq bA LocSysGpY q Ñ LocSysGpX ˆ Y q

of Notation 7.8.10 is fully faithful.

Proof. For every pair of objects F P LocSysGpXq and G P LocSysGpY q, we let F b G

denote the image of pF ,G q in the tensor product LocSysGpXqbALocSysGpY q. We also
define F b G P LocSysGpX ˆ Y q as in Notation 7.8.10, so that F b G » λpF b G q.

Since LocSysGpXq and LocSysGpY q are compactly generated A-linear8-categories,
the tensor product LocSysGpXq bA LocSysGpY q is also compactly generated. To
prove that λ is fully faithful, it will suffice to prove the following (see Proposition
HTT.5.3.5.11 ):

paq The functor λ carries compact objects of LocSysGpXqbALocSysGpY q to compact
objects of LocSysGpX ˆ Y q.

pbq The functor λ is fully faithful when restricted to compact objects.

Let C denote the full subcategory of LocSysGpXqbModALocSysGpY q spanned by the
compact objects, and let C0 denote the full subcategory of LocSysGpXqbALocSysGpY q

spanned by objects of the form F b G , where F P LocSysGpXq and G P LocSysGpY q

are compact. Then C is generated by C0 under colimits and retracts. Consequently,
to prove paq, it will suffice to show that λpF b G q » F b G is a compact object of
LocSysGpXˆY q whenever F P LocSysGpXq and G P LocSysGpY q are compact. This
follows immediately from Corollary 7.8.8, since it is clear that F b G is dualizable
whenever F and G are dualizable.

To prove pbq, it will suffice to show that for every pair of objects C,C 1 P C, the
canonical map

θ : MapLocSysGpXqbALocSysGpY q
pC,C 1q Ñ MappλpCq, λpC 1qq

is an equivalence of A-modules If we regard C 1 as fixed, then the collection of those
objects C P C for which θ is an equivalence is closed under retracts and finite colimits;
we may therefore assume without loss of generality that C has the form F b G , where
F P LocSysGpXq and G P LocSysGpY q are compact. By a similar argument, we may
suppose that C 1 “ F 1

b G 1 where F 1
P LocSysGpXq and G 1

P LocSysGpY q. In this
case, the θ can be identified with the canonical map

ΓpX; F_
bF 1

q bA ΓpY ; G _
bG 1

q Ñ ΓpX ˆ Y ; pF_
bF 1

qb pG _
bG 1

qq,
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which is an equivalence by virtue of Proposition 7.8.11.

In the situation of Corollary 7.8.12, the embedding

λ : LocSysGpXq bA LocSysGpY q Ñ LocSysGpX ˆ Y q

is generally not essentially surjective. However, we have the following partial result:

Proposition 7.8.13. Let p be a prime number and let G be an oriented p-divisible
group over an E8-ring A. Let X and Y be π-finite spaces, and let

λ : LocSysGpXq bA LocSysGpY q ãÑ LocSysGpX ˆ Y q

be the fully faithful embedding of Corollary 7.8.12. Then the essential image of λ
includes all p-nilpotent objects of LocSysGpX ˆ Y q.

Proof. Let F be a p-nilpotent object of the 8-category LocSysGpX ˆ Y q; we wish
to show that F belongs to the essential image of λ. Let λR : LocSysGpX ˆ Y q Ñ

LocSysGpXq bA LocSysGpY q be a right adjoint to λ. Then we have a canonical fiber
sequence F 1

Ñ F u
ÝÑ F 2 where F 1

» pλ ˝λRqpF q belongs to the essential image of λ
and F 2 is annihilated by the functor λR. We will complete the proof by showing that u
is nullhomotopic, so that F is equivalent to a direct summand of F 1 and therefore also
belongs to the essential image of λ. By virtue of our assumption that F is p-nilpotent,
it will suffice to show that the multiplication map p : F 2

Ñ F 2 is an equivalence.
Assume otherwise. Then we can choose an object T P T{XˆY such that for which
the map p : F 2

pT q Ñ F 2
pT q is not an equivalence. Choose a connected covering

space T0 P CovpT q for which the fundamental group of T0 is the p-local summand of
the fundamental group of π1pT q. Our assumption that G is a p-divisible group then
guarantees that the pullback map ATG Ñ AT0

G is an equivalence, so that IpT0{T q is the
zero ideal of A0

GpT q. Invoking the fact that F 2 is a tempered local system, we see that
the canonical map F 2

pT q Ñ F 2
pT0q

hAutpT0{T q is an equivalence. It follows that the
map p : F 2

pT0q Ñ F 2
pT0q is not an equivalence: in other words, the cofiber F 2

{pF 2

does not vanish on T0. is nonzero. Set f0 “ f |T0 and g0 “ g|T0 , and regard the product
T0 ˆ T0 as an object of T{XˆY via the product map f0 ˆ g0 : T0 ˆ T0 Ñ X ˆ Y. Using
Corollary 5.5.5, we deduce that pF 2

{pF 2
qpT0q can be identified with the tensor

product AT0
G ˆAGT0ˆT0

pF 2
{pF 2

qpT0 ˆ T0q. It follows that the spectrum F 2
pT0 ˆ T0q

does not vanish, contradicting our assumption that F 2 is annihilated by the functor
λR.
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Remark 7.8.14. Assume that G is an oriented p-divisible group (for some prime
number p) and let X and Y be π-finite spaces. Proposition 7.8.13 is equivalent to the
assertion that the embedding

λ : LocSysGpXq bA LocSysGpY q ãÑ LocSysGpX ˆ Y q

becomes an equivalence after extending scalars along the p-completion functor ModA Ñ
ModCplppq

A . More precisely, λ induces an equivalence of 8-categories

pλ : LocSysCplppq
G pXq bModCplppq

A
LocSysCplppq

G pY q » LocSysCplppq
G pX ˆ Y q.

7.9 Dualizability of Tempered Local Systems
Let G be an oriented P-divisible group over an E8-ring A. For any π-finite space

X, the 8-category LocSysGpXq is compactly generated 8-category (Corollary 5.3.3),
whose compact objects are the dualizable tempered local systems on X (Proposition
7.8.8). In this section, we study the condition of dualizability in more detail.

Proposition 7.9.1. Let G be an oriented P-divisible group over an E8-ring A, and
let F be a G-tempered local system on an orbispace X. If F is a dualizable (as an
object of LocSysGpXq, then F pT q is a perfect A-module for each object T P T{X.

Proof. Let T be an object of T equipped with a map f : T Ñ X. Then f˚pF q is a
dualizable object of LocSysGpT q and therefore compact as an object of LocSysGpT q

(Proposition 7.8.8). Applying Corollary 7.8.6, we conclude that F pT q » ΓpT ; f˚pF qq
is a perfect A-module.

Proposition 7.9.1 has a partial converse.

Theorem 7.9.2. Let G be an oriented P-divisible group over an E8-ring A, let F

be a G-tempered local system on an orbispace X, and let p be a prime number. The
following conditions are equivalent:

p1q For each object T P T{X, the cofiber of the map p : F pT q Ñ F pT q is perfect
when regarded as an A-module.

p2q The cofiber F {pF “ cofibpp : F Ñ F q is dualizable when regarded as an object
of LocSysGpXq (with respect to the tempered tensor product of Construction
5.8.7).

279



Remark 7.9.3. Let G be an oriented P-divisible group over an E8-ring A and let
p be a prime number. Let X be an orbispace and let LocSysCplppq

G pXq denote the full
subcategory of LocSysGpXq spanned by the p-complete tempered local systems. Then
the symmetric monoidal structure on tempered local systems (Construction 5.8.7)
induces a symmetric monoidal structure

pb : LocSysCplppq
G pXq ˆ LocSysCplppq

G pXq Ñ LocSysCplppq
G pXq F pbG “ pF bG q^ppq.

Using Theorem 7.9.2, we see that the following conditions on p-complete tempered
local system F P LocSysGpXq are equivalent:

p1q For each object T P T{X, the spectrum F pT q is dualizable as an object of the
8-category ModCplppq

A (with respect to the completed tensor product).

p2q The tempered local system F is a dualizable object of LocSysCplppq
G pXq.

Remark 7.9.4. Let G be an oriented P-divisible group over an E8-ring A, let p be
a prime number, and let F be a G-tempered local system on an orbispace X which
satisfies the equivalent conditions of Remark 7.9.3. Then, for every object T P T{X, the
spectrum F pT q is dualizable as an object of the 8-category ModCplppq

ATG
(with respect to

the completed tensor product). When π1pT q is a p-group, this follows from Corollary
5.5.5 (and the general case follows from a similar argument).

Example 7.9.5. Let G be an oriented P-divisible group over a p-complete E8-ring
A and let f : T 1 Ñ T be any morphism in T . It follows from Proposition 7.8.5 that
the direct image f˚pAT 1q is dualizable as an object of the 8-category LocSysGpT q,
and therefore also with respect to the completed tensor product on the subcategory
LocSysCplppq

G pT q. Applying Remark 7.9.4, we deduce that the tempered function
spectrum AT

1

G is dualizable as an object of the 8-category of p-complete modules
over ATG. In other words, the cofiber AT 1G{pA

T 1

G » cofibpp : AT 1G Ñ AT
1

G q is a perfect
ATG-module. Beware that AT 1G itself is usually not perfect as an ATG-module (unless
the map f : T 1 Ñ T has connected homotopy fibers, in which case AT 1G is a projective
module of finite rank over ATG).

Remark 7.9.6. Let G be an oriented P-divisible group over an E8-ring A, and let
F be a G-tempered local system on an orbispace X. Suppose that, for every object
T P T{X, the spectrum F pT q is perfect as an A-module. Using Remark 7.9.3), we
conclude that for every prime number p, the completion F^

ppq is dualizable with respect
to the completed tensor product on the 8-category LocSysCplppq

G pXq. One can also
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show (by a much easier argument) that the rationalization QbS F is dualizable as
an object of the symmetric monoidal 8-category QbA LocSysGpXq. However, it does
not follow formally that F is a dualizable as an object of LocSysGpXq (it unlikely
that this is true in general: see Warning 7.9.12).

Our proof of Theorem 7.9.2 will make use of some auxiliary constructions which
may be of independent interest.

Construction 7.9.7 (Integral Transforms). Let G be an oriented P-divisible group
over an E8-ring A. Let X and Y be orbispaces, and let

πX : X ˆ Y Ñ X πY : X ˆ Y Ñ Y

denote the projection maps. Let K be a G-tempered local system on the product
X ˆ Y. We let TK : LocSysGpXq Ñ LocSysGpYq denote the functor given by the
formula

TK pF q “ πY!pK bπ˚X F q.

We refer to TK as the integral transform associated to the G-tempered local system
K .

Example 7.9.8 (The Functor f! as an Integral Transform). Let f : X Ñ Y be a
morphism of orbispaces, let Γpfq : X Ñ X ˆ Y denote its graph, and set K “

Γpfq!pAXq P LocSysGpX ˆ Yq. Then the integral transform TK is given by the
construction

TK pF q “ πY!pK bπ˚XpF qq

» πY!pΓpfq!pAXq b π
˚
XpF qq

» πY!pΓpfq!pAX b Γpfq˚π˚XpF qq
» pπY ˝ Γpfqq!ppπX ˝ Γpfqq˚pF qq
» f!pF q.

where the second equivalence is provided by the projection formula of Theorem 7.3.1.

Example 7.9.9 (The Functor f˚ as an Integral Transform). Let f : Y Ñ X be
a morphism of orbispaces, let Γpfq : Y Ñ X ˆ Y denote its graph, and set K “

Γpfq!pAXq P LocSysGpX ˆ Yq. Then the integral transform TK is given by the
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construction

TK pF q “ πY!pK bπ˚XpF qq

» πY!pΓpfq!pAYq b π
˚
XpF qq

» πY!pΓpfq!pAY b Γpfq˚π˚XpF qq
» pπY ˝ Γpfqq!ppπX ˝ Γpfqq˚pF qq
» f˚pF q

where the second equivalence is provided by the projection formula of Theorem 7.3.1.

Example 7.9.10. Let X and Y be π-finite spaces, and consider the pullback diagram

X ˆ Y
πX //

πY
��

X

q

��
Y

q1 // ˚.

Suppose we are given tempered local systems G P LocSysGpXq and H P LocSysGpY q,
where G is dualizable. Set K “ G _

b H P LocSysGpX ˆ Y q. The the integral
transform TK is given by the construction

TK pF q “ πY !pK bπ˚XpF qq

» πY !pπ
˚
XpG

_
q b π˚Y pH q b π˚XpF qq

» πY !pπ
˚
XpG

_
bF qq bH

» q1˚q!pG
_
bF q bH

» q1˚q˚pG
_
bF q bH

» HompG ,F q bA H .

Here the second equivalence is given by the projection formula of Theorem 7.3.1,
the third by the Beck-Chevalley property of Corollary 7.1.7, and the fourth from
ambidexterity for the projection map q : X Ñ ˚ (Proposition 7.8.1).

Remark 7.9.11. Let G be an oriented P-divisible group over an E8-ring A, and let
X and Y be π-finite spaces. It follows from Proposition 7.8.8 that LocSysGpXq is
canonically self-dual as an A-linear 8-category. Consequently, we can identify the
tensor product LocSysGpXqbALocSysGpY q with the 8-category of colimit-preserving
A-linear functors from LocSysGpXq to LocSysGpY q. Under this identification, the
formation of integral transforms K ÞÑ TK corresponds to a functor

λR : LocSysGpX ˆ Y q Ñ LocSysGpXq bA LocSysGpY q.
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Unwinding the definitions, we see that λR can be identified with the right adjoint of
the functor

λ : LocSysGpXq bA LocSysGpY q Ñ LocSysGpX ˆ Y q.

classifying the external tensor product of G-tempered local systems (Notation 7.8.10).
It follows from Corollary 7.8.12 that the functor λR is essentially surjective: in other
words, every colimit-preserving A-linear functor from LocSysGpXq to LocSysGpY q

is equivalent to the integral transform TK for some G-tempered local system K P

LocSysGpX ˆ Y q. Beware that K is not unique: it can be chosen canonically by
demanding that it belongs to the essential image of the functor λ, but this choice
might not be desirable (see Warning 7.9.12).

Proof of Theorem 7.9.2. Let F be a G-tempered local system on an orbispace X with
the property that, for every object T P T{X, the cofiber F pT q{pF pT q “ cofibpp :
F pT q Ñ F pT qq is a perfect A-module. We wish to show that F {pF is a dualizable
object of LocSysGpXq (the converse follows from Proposition 7.9.1). By virtue of
Remark 5.2.11, we may assume that X “ Xp´q is representable by an object X P T .
Without loss of generality, we can replace A by Appq and thereby reduce to the case
where A is p-local. Let S be the collection of all prime numbers ` ‰ p which divide
the order of the fundamental group π1pXq. Note that replacing G by the oriented
P-divisible group G1 “ Gppq‘

À

`PS Gp`q does not change the 8-category LocSysGpXq

(see Proposition 5.4.2). We may therefore replace G by G1 and thereby reduce to the
case where the `-divisible groups Gp`q vanish for ` R S Y tpu. By virtue of Proposition
6.2.6, it will suffice to test the dualizability of F {pF after faithfully flat base change.
We may therefore assume without loss of generality that the P-divisible group G splits
as a direct sum G0 ‘ Λ, where G0 “ Gppq is a p-divisible group and Λ is the constant
P-divisible group associated to a colattice with Λppq » 0. In this case, Theorem 6.4.1
supplies a fully faithful symmetric monoidal embedding

Φ : LocSysGpXq Ñ LocSysG0pL
Λ
pXqq,

whose essential image is spanned by the isotropic objects of LocSysG0pL
Λ
pXqq (Theo-

rem 6.5.13). It is not difficult to see that if the isotropic G0-tempered local system
ΦpF {pF q is dualizable, then the dual ΦpF pF q_ is also isotropic and can therefore
be written as ΦpG q, where G is a dual of F {pF in the 8-category LocSysGpXq. We
may therefore replace F by ΦpF q, X by LΛ

pXq, and G by G0, thereby reducing to
the case where G is a p-divisible group and X is a π-finite space (which might no
longer belong to T ).
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Let δ : X Ñ X ˆ X be the diagonal map and set K 0 “ δ!AX . Then TK 0 is
the identity functor (see Example 7.9.8 or 7.9.9), so we can identify F {pF with
the G-tempered local system TK 0 {pK 0pF q. It follows from the above analysis that
K 0 {pK 0 belongs to C0. Let us say that an object K P LocSysGpX ˆXq is good if
the integral transform TK pF q is a dualizable object of LocSysGpXq. It will therefore
suffice to show that K 0 {pK 0 is good. In fact, we will prove something stronger:
every compact p-nilpotent object of LocSysGpX ˆXq is good.

Given a pair of objects T, T 1 P T{X , let K T,T 1 denote the external tensor product
rT {Xs b rT 1{Xs, which we view as a G-tempered local system on X ˆ X Let C0

be the smallest stable subcategory of LocSysGpX ˆ Xq which contains the objects
K T,T 1 {pK T,T 1 and is closed under retracts, let C1 Ď LocSysGpX ˆXq be the sub-
category generated by C0 under small colimits, and let C2 Ď LocSysGpX ˆXq be the
smallest subcategory which contains the objects K T,T 1 and is closed under shifts and
small colimits. Then we have inclusions

C0 Ď C1 Ď C2 Ď LocSysGpX ˆXq

with the following properties:

• The 8-category C2 is the essential image of the functor λ appearing in Corollary
7.8.12. Consequently, C2 contains all p-nilpotent objects of LocSysGpX ˆ Xq

(Proposition 7.8.13).

• For every object G P C2, the fiber of the rationalization map G Ñ G rp´1s belongs
to C1. Consequently, C1 also contains all p-nilpotent objects of LocSysGpX ˆXq.

• The 8-category C1 is equivalent to IndpC0q. Consequently, if a compact object
of LocSysGpX ˆXq is contained in C1, then it is also contained in C0.

We will complete the proof by showing that every object of C0 is good. Since the
collection of good objects of LocSysGpX ˆ Xq is closed under shifts, suspensions,
and retracts, it will suffice to show that each of the G-tempered local systems
K T,T 1 {pK T,T 1 is good. Using the self-duality of rT {Xs and Example 7.9.10, we
obtain an equivalence

TK T,T 1 {pK T,T 1
pF q » pF pT q{pF pT qq bA rT

1
{Xs,

which is dualizable by virtue of our assumption that F pT q{pF pT q is perfect as an
A-module (together with the dualizability of the object rT 1{Xs).
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Warning 7.9.12. For every π-finite space X, the 8-category of tempered local
systems LocSysGpXq is a proper A-linear 8-category (Corollary 7.8.9). However, it is
usually not a smooth A-linear 8-category: that is, the identity functor idLocSysGpXq :
LocSysGpXq Ñ LocSysGpXq need not be compact as an object of the 8-category
EndApLocSysGpXqq of A-linear endofunctors of LocSysGpXq. In essence, this is due
to the failure of the embedding

λ : LocSysGpXq bA LocSysGpXq Ñ LocSysGpX ˆXq

of Corollary 7.8.12 to be an equivalence of 8-categories. By virtue of Remark 7.9.11,
the smoothness of LocSysGpXq is equivalent to the compactness of λRpδ!AXq, where
δ : X Ñ X ˆX is the diagonal map and λR denotes the right adjoint of the functor

λ : LocSysGpXq bA LocSysGpXq Ñ LocSysGpX ˆXq.

The G-tempered local system δ!AX is compact when viewed as an object of the
8-category LocSysGpX ˆXq but usually does not belong to the essential image of
the functor λ, so that λRpδ!AXq need not be compact.

Note that when G is a p-divisible group, then the functor λ induces an equivalence
on p-nilpotent objects. One can use this to show that the 8-category LocSysCplppq

G pXq

is “p-adically smooth”: that is, it is fully dualizable when viewed as an object of the
symmetric monoidal p8, 2q-category of ModCplppq

A -linear 8-categories (this smoothness
was implicitly used in our proof of Theorem 7.9.2).
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[7] A. Körschgen. A comparison of two models of orbispaces. Homology Homotopy
Appl., 20(1):329–358, 2018.

[8] J. Lurie. Elliptic cohomology I: Spectral abelian varieties.

[9] J. Lurie. Elliptic cohomology II: Orientations.

[10] J. Lurie. Elliptic cohomology IV: Equivariant elliptic cohomology.

[11] J. Lurie. Higher Algebra.

[12] J. Lurie. Spectral Algebraic Geometry.

[13] J. Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies.
Princeton University Press, Princeton, NJ, 2009.

[14] A. Mathew, N. Naumann, and J. Noel. On a nilpotence conjecture of J. P. May.
J. Topol., 8(4):917–932, 2015.

[15] J. P. May. Equivariant homotopy and cohomology theory, volume 91 of CBMS
Regional Conference Series in Mathematics. Published for the Conference Board
of the Mathematical Sciences, Washington, DC; by the American Mathematical
Society, Providence, RI, 1996. With contributions by M. Cole, G. Comezaña, S.

286



Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza,
G. Triantafillou, and S. Waner.

[16] H. Miller. The Sullivan conjecture on maps from classifying spaces. Ann. of Math.
(2), 120(1):39–87, 1984.

[17] M. Prasma and T. M. Schlank. Sylow theorems for 8-groups. Topology Appl.,
222:121–138, 2017.

[18] S. Schwede. Orbispaces, orthogonal spaces, and the universal compact lie group.

[19] S. Schwede. Global homotopy theory, volume 34 of New Mathematical Monographs.
Cambridge University Press, Cambridge, 2018.

[20] G. Segal. Equivariant K-theory. Inst. Hautes Études Sci. Publ. Math., (34):129–
151, 1968.

[21] N. Stapleton. Transchromatic generalized character maps. Algebr. Geom. Topol.,
13(1):171–203, 2013.

[22] N. Stapleton. Transchromatic twisted character maps. J. Homotopy Relat. Struct.,
10(1):29–61, 2015.

287


	Introduction
	Acknowledgements

	Orientations and P-Divisible Groups
	Preorientations of p-Divisible Groups
	The p-Complete Case
	Reduction to the p-Complete Case
	The K(n)-Local Case
	Orientations of p-Divisible Groups
	P-Divisible Groups
	Splitting of P-Divisible Groups
	Example: The Multiplicative P-Divisible Group
	Example: Torsion of Elliptic Curves

	Orbispaces
	The oo-Category of Orbispaces
	Equivariant Homotopy Theory
	Representable Morphisms of Orbispaces
	Formal Loop Spaces
	Preorientations Revisited
	Example: Complex K-Theory

	Tempered Cohomology
	Equivariant K-Theory as Tempered Cohomology
	Atiyah-Segal Comparison Maps
	Character Isomorphisms
	Tempered Cohomology of Eilenberg-MacLane Spaces
	The Proof of Theorem 4.4.16
	The Tate Construction
	Base Change and Finiteness
	Application: Character Theory for pi-Finite Spaces
	Application: The Completion Theorem

	Tempered Local Systems
	Pretempered Local Systems
	The oo-Category LocG(X)
	Colimits of Tempered Local Systems
	Tempered Local Systems on Classifying Spaces
	Recognition Principle for Tempered Local Systems
	Extrapolation from Small Groups
	Digression: The oo-Category NLocG(X)
	Tensor Products of Tempered Local Systems

	Analysis of LocG(X)
	Localization and Completions of Tempered Local Systems
	Change of Ring
	The Infinitesimal Case
	Categorified Character Theory
	Isotropic Local Systems

	Ambidexterity for Tempered Local Systems
	Direct Images of Tempered Local Systems
	The Tempered Ambidexterity Theorem
	Projection Formulas
	Transfer Maps in Tempered Cohomology
	Tempered Ambidexterity for p-Finite Spaces
	Induction Theorems
	Proof of Tempered Ambidexterity
	Applications of Tempered Ambidexterity
	Dualizability of Tempered Local Systems


