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1 Introduction

Let G be a finite group. We let Rep(G) denote the complex representation ring of
G. That is, Rep(G) is the abelian group generated by symbols [V], where V' ranges
over the collection of all finite-dimensional complex representations of GG, subject to
the relation

[VI=1V]+[V']

for every isomorphism of complex representations V ~ V' @ V”. It is a free abelian
group of finite rank, equipped with a canonical basis consisting of elements [W], where
W is an irreducible representations of G. We regard Rep(G) as a commutative ring,
whose multiplication is characterized by the formula [V]- [W] = [V ®c W].

If V is a finite-dimensional complex representation of G, we let xy : G — C denote
the character of V', given concretely by the formula

xv(g) = Tr(V & V).

The character yy is an example of a class function on G: that is, it is invariant under
conjugation (so xv(g) = xv(hgh™?!) for all g, h € G). Using the identities

xvew (9) = xv(g) +xw(9)  xvew(9) = xv(g)xw(9),

we see that the construction [V] — xy determines a ring homomorphism
Rep(G) — {Class functions y : G — C}.

The starting point for the character theory of finite groups is the following result (see
Corollary [4.7.8)):

Theorem 1.1.1. Let G be a finite group. Then the characters of the irreducible repre-
sentations of G form a basis for the vector space of class functions on G. Consequently,
the construction [V] — xv induces an isomorphism of complex vector spaces

C®z Rep(G) ~ {Class functions y : G — C}.

Theorem [1.1.1] can be reformulated using the language of equivariant complex
K-theory (see [20]). Given a topological space X equipped with an action of G, we let
KUg(X) denote the (0th) G-equivariant complex K-group of X. If X is a finite G-CW
complex, then KU?;(X ) is a finitely generated abelian group, which can be realized
concretely as the Grothendieck group of G-equivariant complex vector bundles on X.
In particular, when X = = consists of a single point, we have a canonical isomorphism

KUg(#) ~ Rep(G). Theorem can be generalized as follows (see Corollary |4.7.7)):
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Theorem 1.1.2. Let G be a finite group and let X be a finite G-CW complex. For
each g€ G, let X9 = {x € X : 29 = x} denote the set of fixed points for the action of
g. We regard the disjoint union

Hng{(g,x)erX:xgzx}ngX

geG
as equipped with the right action of G given by the formula (g, z)* = (h=tgh,z"). Then

there is a canonical isomorphism

che : CRZKU(X) — HY((] [ X9)/G; C),
geG
called the equivariant Chern character. Here

([ [x9/G;0) = [B( [ X*)/G;C)

geG neZ geG

denotes the product of the even cohomology groups of (ngG X9)/G with coefficients
in the field C of complex numbers.

Example 1.1.3. In the special case where X = = consists of a single point, we
can identify the quotient (] [,., X?)/G appearing in Theorem with the set of
conjugacy classes of elements of G (regarded as a finite set with the discrete topology),
so that H*(([ [ e X9)/G; C) =~ H(([ [ e X)/G; C) is isomorphic to the vector space
of class functions x : G — C. Under this identification, the equivariant Chern character
chg : C®z KUL(X) ~ HY(([ [,e X?)/G; C) corresponds to the isomorphism

C ®z Rep(G) ~ {Class functions x : G — C} V= xv

of Theorem [L.1.1] (see Example [4.3.9).

Example 1.1.4. When the group G is trivial, the equivariant Chern character of
Theorem [1.1.2] specializes to the usual Chern character

ch: C®z KU’ (X) - H¥(X;C),

which is an isomorphism whenever X is a finite CW complex. In this case, it is not
necessary to work over the complex numbers: there is already a canonical isomorphism
of rational vector spaces

Q®z KU"(X) ~ H"(X; Q)
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which induces the isomorphism ch after extending scalars along the inclusion Q — C.
Beware that this is not true in the equivariant case (even when X is a point): if V/
is a finite-dimensional representation of GG, then the character xy : G — C generally
does not take values in Q.

Let EG denote a contractible space equipped with a free action of the finite
group G. If X is any topological space equipped with a G-action, we let X} denote
the homotopy orbit space of X by the action of G, defined as the quotient space
(X x EG)/G. The projection map X x EG — X induces a homomorphism

¢ : KUL(X) - KUL(X x EG) ~ KU (Xue),

which we will refer to as the Atiyah-Segal comparison map. It is not far from being an
isomorphism, by virtue of the following classical result (see Corollary [4.9.3)):

Theorem 1.1.5 (Atiyah [1]). Let G be a finite group and let I < Rep(G) be the
augmentation ideal, defined as the kernel of the ring homomorphism

Rep(G) — Z [V] — dimg(V).
For every finite G-CW complex X, the Atiyah-Segal comparison map
¢ : KU (X) = KU(Xpq)

exhibits KU®(X,q) as the Ig-adic completion of KUL(X); here we regard KUL(X) as
a module over the representation ring Rep(G) ~ KUg(*).

The conclusion of Theorem |1.1.5/can be simplified by applying a further completion.
Fix a prime number p. We say that an element g € G is p-singular if the order of g is
a power of p, and we let G®) < G denote the subset consisting of p-singular elements.
Let KU denote the p-adic completion of the complex K-theory spectrum KU. Then,
after p-adic completion, the Atiyah-Segal comparison map yields a homomorphism

—0
2y Rz KUL(X) — KU (Xpe)

which is the projection onto a direct factor. After extending scalars to the complex
numbers, we can describe this direct factor concretely by the following variant of

Theorem [L.1.2



Theorem 1.1.6. Fiz a prime number p and an embedding v : Z,, — C. Then there is
a canonical isomorphism of complex vector spaces

~ —0
che : C®z,KU (X)) — HY(( [ | X9)/G;C).
geG(P)

Remark 1.1.7. In the situation of Theorem m the isomorphism che is related to
the equivariant Chern character chg of Theorem by a commutative diagram

C®z KUL(X) — 2%~ H(([ ], X¥)/G; C)

~

igp l
C@z, KU (X)) 2 H ([ L e X*)/G: C)
Example 1.1.8. In the situation of Theorem [1.1.6, suppose that G is a p-group. Then
one can show that the augmentation ideal I < Rep(G) of Theorem satisfies
IX < pRep(G) for n » 0. It follows that the completed Atiyah-Segal comparison
map ¢, : Z, ®z KUL(X) — KAUO(XhC;) is an isomorphism. In this case, Theorem |1.1.6
reduces to Theorem m (note also that we have G® = G when G is a p-group).

In [5], Hopkins, Kuhn, and Ravenel prove a generalization of Theorem m
in the setting of chromatic homotopy theory. To state their result, we will need
a bit of notation. Let k be a perfect field of characteristic p and let Go be a 1-
dimensional formal group of height n < o over k. The formal group (A}O admits a
universal deformation é, which is defined over the Lubin-Tate ring R (noncanonically
isomorphic a power series ring W (k)[[v1, ..., vn_1]]). Then G can be realized as
the identity component of a connected p-divisible group G over R. Let Cj be the
R-algebra classifying isomorphisms of p-divisible groups (Q,/Z,)" ~ G. Then
Spec(Cy) is a GL,,(Z,)-torsor over the affine scheme Spec(Rq), where Rq = R[%] is

the rationalization of R. Let E denote the Lubin-Tate spectrum associated to éoz

that is, F is an even periodic ring spectrum equipped with isomorphisms
R~m(E)  Gg =~ Spf(E°(CP®)).

Let Fq = F [%] denote the rationalization of F, so that we have an isomorphism
mo(Eq) ~ Rq. We then have the following:

Theorem 1.1.9 (Hopkins-Kuhn-Ravenel). Let G be a finite group and let X be a
finite G-CW complex. For each homomorphism « : Z; — G, let X* < X denote
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the subspace of X consisting of points which are fixed by the action of the subgroup
im(a) € G. Then there is a canonical isomorphism of graded Cy-algebras

Co ®r E*(Xna) = Co®nrq EQ(( [ X/G).

aZy—G

Example 1.1.10. Let X = = be a single point, so that the homotopy orbit space
X can be identified with the classifying space BG = EG/G. Then the space

[ x

aZy—G

appearing in the statement of Theorem can be identified with the finite set S of
n-tuples (g1, . . ., gn) of p-singular elements of G satisfying ¢;,g9; = g;¢; for 1 <i < j < n.
It follows that we can identify Co®g E°(BG) with the module of “higher class functions”
X : S — Cy satisfying the identity x(g1,...,9,) = x(h"tg1h, -+ ,h71g,h) for h e G.

Example 1.1.11. Let £ = F), be the finite field with p-elements, and let @0 = (A}m be
the formal multiplicative group over k. Then the Lubin-Tate ring R can be identified
with Z,, and Cy can be identified with the field Q,((x) = (U,,51 Q,(¢pm) obtained
from Q,, by adjoining all p-power roots of unity. The Lubin-Tate spectrum E is then

given by the p-adically completed complex K-theory spectrum I/(TJ, and the classical
Chern character supplies isomorphisms

ch : E%(Y) ~ HY(Y;Q,).
In this case, Theorem [I.1.9 supplies an isomorphism

Q,(G+) ®2, KU (Xng) =~ Q,(G) ®q, KUg(( [ X)/G)

a:Zp—G

~ Q,(Gr) ®q, HY(( [ [ X9)/G;Q,).

geG’(P)

After extending scalars along an embedding ¢ : Q,((y») < C, this recovers the
isomorphism of Theorem provided that ¢ is chosen to satisfy the normalization
condition ¢((ym) = exp(2mi/p™).

Remark 1.1.12. In the situation of Theorem |1.1.9, the isomorphism

Co ®r E*(Xna) — Co ®rq Eg(( H X)/G)

aZy—G



is equivariant with respect to the action of the profinite group GL,(Z,). Passing to
fixed points, we obtain an isomorphism

E*<th)[;]:(Co®RQ Ey(( [ x)/G))c@.

a:ZZ—»G

Here the fixed points on the right hand side are taken with respect to the simultaneous
action of GL,(Z,) on the coefficient ring Cy and the space [ [,.,n_ o X
“Hp

Remark 1.1.13. In the statement of Theorem [1.1.9] we can replace the set-theoretic
quotient

( [[ xv@

aZy—G

by the homotopy orbit space (] [,.z»_,o X*)na; the canonical map
p

(1] xma—( ][] x/@

a:Zy—G a:Zy—G

induces an isomorphism on cohomology with coefficients in Fq, since G is a finite
group and the coefficient ring m,(Eq) is a rational vector space.

In the case where the group G is trivial, Theorem follows from the observation
that the comparison map

p: Rq®r E*(Y) — E4(Y)

is an isomorphism. This is a much more elementary statement, which is immediate
from the flatness of Rq over R. However, it depends crucially on the assumption that
Y is finite. If we instead take Y = X}, where X is a finite G-CW complex, then,
after extending scalars from Rq to Cp, the map p factors as a composition

Co ®r E*(Xna) ~ Co ®rq Eg(( ]_[ Xna) = Co ®rq ES(Xna),

a:ZZ—»G

where the first map is the isomorphism of Theorem m (and Remark and the
second is induced by the inclusion of X as a summand of the coproduct [ [, ,» o X
(namely, the summand corresponding to the trivial homomorphism Z; — {l}p — G).

From this perspective, we can view Theorem [1.1.9] as measuring the failure of
the comparison map p to be an isomorphism for spaces of the form Y = X,4. Note
that the cohomology theories E and Eq have different chromatic heights. The
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spectrum Eq is K (0)-local, and therefore captures the same information as ordinary
cohomology with coefficients in Q. In particular, cohomology with coefficients in
Eq cannot detect the difference between the homotopy orbit space X and the
set-theoretic quotient X /G when G is a finite group (Remark . By contrast,
the Lubin-Tate spectrum E' is K (n)-local, and therefore has the potential to capture
delicate p-torsion information. Theorem describes the part of this information
that survives after inverting the prime number p: roughly speaking, the localization
E* (th)[%] ~ Rq ®r E*(Xhe) knows not only about the Eq-cohomology of X,
but also about the Eq-cohomology of “twisted sectors” (X*)uz(q) (Where Z(a) € G
denotes the centralizer of a homomorphism «a : Z) — G).

In [21], Stapleton proves a “transchromatic” generalization of Theorem , which
articulates the sort of information which is lost by passing from K (n)-local to K (m)-
local homotopy theory for 0 < m < n. Let Lg,E denote the K (m)-localization
of the Lubin-Tate spectrum £ defined above, and set R,, = mo(Lkm)E). Let Gg,
denote the p-divisible group over R,, obtained from G by extending scalars along
the canonical map R = mo(E) — mo(Lk(m)E) = Rp. Then the p-divisible group Gg,,
admits a connected-étale sequence

0 -G — G, 5G"—0,

where G’ is a connected p-divisible group of height m and G” is étale of height
n —m. Let C,, be universal among those R,,-algebras A which are equipped with a
morphism (Q, /Z,)"~™ — G4 of p-divisible groups over A for which the composite
map (Q,/Z,)" ™ — G4 - G/} is an isomorphism (see . The main result of [21]
can be formulated as follows:

Theorem 1.1.14 (Stapleton). The commutative ring C,, is flat both as an R-algebra
and as an R,,-algebra. Moreover, if G is a finite group and X is a finite G-CW
complex, then there is a canonical isomorphism of graded C,,-algebras

C ®r B*(Xne) = C®r,, LxeE)* (- [  Xe).

a:Zy” " -G

Remark 1.1.15. In the case m = 0, the isomorphism of Theorem [1.1.14] reduces to
the isomorphism of Theorem [1.1.9}

Remark 1.1.16. As in Remark [1.1.12 one can use Theorem [1.1.14] (and faithfully
flat descent) to obtain a description of the groups R, ®g E*(X,¢) in terms of the



cohomology theory L, E. However, the description is a bit more complicated in the

case m > 0, because the map Spec(C,,) — Spec(R,,) is not a torsor for a profinite

group. To specify an A-valued point of Spec(C,,) (where A is some commutative

R,,-algebra), one must specify not only a trivialization of the étale p-divisible group
", but also a splitting of the sequence

0->G,—GsLG)—0.
We refer the reader to [22] for a related discussion.

The goal of this paper is to place all of the results stated above into a more general
framework. Fix a prime number p. In [§], we introduced the notion of a p-divisible
group G over an E,-ring A. In the case where A is p-complete, we can associate
to each p-divisible group G a formal group G° over A, which we call the identity
component of G ([9]). If A is complex periodic and p-local, we say that a p-divisible
group G over A is oriented if, after extending scalars to the p-completion of A, the
identity component G° is identified with the Quillen formal group G§ ~ Spf(ACP™).

Let G be an oriented p-divisible group over a p-local E,-ring A. To avoid confusion,
let us henceforth use the letter H to denote a finite group. In this paper, we will
introduce a functor

A& (e//H) : {H-spaces}® — {Graded rings}.

This functor associates to each H-space X a graded ring AE(X//H), which we will
refer to as the G-tempered cohomology ring of X //H (Construction 4.0.5)). Moreover,
there is a natural comparison map

(e Ag(X//H) — A*(Xhn),

which we will refer to as the Atiyah-Segal comparison map. Let us briefly summarize
some of the essential properties of this construction (for a more complete overview,

we refer the reader to §4))):

Theorem 1.1.17 (Normalization). Let A be an Eo-ring which K(n)-local and let G
be an oriented p-divisible group of height n over A (which is then necessarily equivalent
to the Quillen p-divisible group GS: see Proposition . Then, for any finite group
H and any H-space X, the Atiyah-Segal comparison map AL(X//H) — A*(Xng) is
an isomorphism.
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Theorem 1.1.18 (Character Isomorphisms). Let A be a p-local Eo,-ring, let Go be an
oriented p-divisible group over A, and let G = Go®(Q, / Z,)" for some integer n. Let

H be a finite group and let X be an H-space. Then there is a canonical isomorphism
of graded rings

X AGX/H) ~ Ag,(( [T X*)/H).

aZy—G
In particular, in the case n = 1, we have an isomorphism

AG(X//H) ~ Ag,(( [ ] X")//H).

heH ()

Theorem 1.1.19 (Base Change). Let f : A — B be a flat morphism of p-local E,-
rings and let G be an oriented p-divisible group over A. Then extending scalars along
f determines an oriented p-divisible group over B, which we will also denote by G.
For any finite group H and any finite H-space X, we have a canonical isomorphisms

70(B) ®ro(a) Ag(X//H) ~ Bg(X//H).

Remark 1.1.20. Let us sketch how Theorems [1.1.17], [I.1.19] and [T.1.1§| can be
combined to recover Theorem [1.1.14] (and therefore also Theorem [1.1.9)). Let E be a
Lubin-Tate spectrum associated to a formal group of height n and let G = G denote

the associated Quillen p-divisible group (which we now view as a p-divisible group over
the E,-ring £, rather than over the ordinary commutative ring R = mo(E)). Choose
0 <m < n,let Ly (E) denote the K (m)-localizaiton of F, and let G, () denote
the p-divisible group over L, (£) obtained from G by extension of scalars. We then
have a connected-étale sequence

0— G, - GLK(m)(E) i) G” g O,

where G’ is an oriented p-divisible group of height m and G” is an étale p-divisible
group of height n —m. Let B be universal among those Ey-algebras over Ly () (£)
which are equipped with a map v : (Q,/Z,)"™™ — Gp for which the composition

(Q,/Z,)"™ * Gp - G} is an equivalence (for a more detailed construction of
B, we refer the reader to §2.7). Then B is flat over both E and Lk, (E), and
7o(B) can be identified with the commutative ring C,, appearing in the statement

of Theorem [1.1.14. By construction, the p-divisible group Gp splits as a direct sum
5 ®(Q,/Z,)" ™. Consequently, if H is a finite group and X is a finite H-CW

11



complex, we have isomorphisms

Cm@RE*(XhH) = 71-O(B)QQWO(E)E‘a(*X//I{)
~ Bg(X//H)
~ B&(( ] x/H)
a:Zy "G
Con @y Licomy (E)*(C ] Xnnr)

ARNE:

0

whose composition is the transchromatic character isomorphism of Theorem [1.1.14}

Theorems [1.1.17) and [1.1.18 are more or less formal: they will follow immediately
from our definition of G-tempered cohomology, as will the existence of a natural
comparison map

pa : T0(B) @ry(a) Ag(X//H) — Bg(X//H)

in the situation of Theorem [1.1.19] Arguing as in Remark [1.1.20] these ingredients
are sufficient to construct the character map

Crm ®r E*(Xna) = Cp Qr,,, (L) E)*(( H XV nr)

a:Zy” "G

appearing in the statement of Theorem [1.1.14] However, to prove that the character
map is an isomorphism, we will need need to know that pg is an isomorphism.
This is much less obvious. Recall that, if A is any E,-ring, then the A-cohomology
groups A*(Y') of a space Y can be realized as the homotopy groups of a spectrum
AY (parametrizing unpointed maps from Y to A), so that we have isomorphisms
A*(Y) ~ m_,(AY). Suppose that f : A — B is a flat morphism of E-rings. Then,
for any space Y, the canonical map of graded rings

0(B) ®ry(a) A*(Y) — B*(Y)

can be realized as the homotopy of a map of ring spectra ¢y : B®y AY — ABY;
here B ®4 AY denotes the smash product of B with AY over A. If Y is a finite
CW complex, then the map ¢y is a homotopy equivalence. However, the map ¢y is
generally not a homotopy equivalence when Y is not finite. In particular, it need not
be a homotopy equivalence in the case Y = Xy, where H is a finite group and X
is a finite H-CW complex. Consequently, Theorem [1.1.19| articulates a property of
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G-tempered cohomology which is not shared by the “Borel-equivariant” cohomology
theory
{H-spaces}®® — {Graded rings} X — A" (Xnm)-

Let us study the preceding situation in more detail. Let Mods denote the oo-
category of A-module spectra. For every space S, we let LocSys4(S5) = Fun(S, Mod )
denote the oco-category of Mod 4-valued local systems on S. We will be particularly
interested in the case S = BH is the classifying space of a finite group H: objects
of the oo-category LocSys,(BH) can be thought of as A-module spectra equipped
with an action of H. Pullback along the projection map BH — = induces a functor
Mod, — Fun(BH,Mod,) which carries an A-module spectrum to itself (equipped
with the trivial action of H). This functor has both left and right adjoints, which
carry an A-module spectrum M equipped with an action of H to the homotopy orbit
spectrum My and the homotopy fixed point spectrum M"™ | respectively. These
constructions are related by a canonical map Nmy : Mg — M given informally
by “averaging” with respect to the action of H. If X is an H-space, then the function
spectrum AX*H can be realized the homotopy invariants for the tautological action of
H on the function spectrum AX. It follows that the map py, ,, factors as a composition

B®yAS ~ BRy (AX)hH KR (B®a AX)hH px, (BX>hH ~ BXnu

If X is a finite H-CW complex, then the map ¢x is a homotopy equivalence. However,
the map v is generally not a homotopy equivalence: the extension of scalars functor
M — B ®4 M usually does not preserve homotopy limits, and therefore need not
commute with the operation of taking homotopy invariants with respect to H. However,
extension of scalars does preserve homotopy colimits, such as the operation of taking
homotopy orbits with respect to H. Consequently, the map v fits into a commutative
diagram
B®a (A% )y —— (B )wn

\LB®ANmH \LNmH
B ®A (AX)hH s (BX)th

where the upper horizontal map is a homotopy equivalence. We can informally
summarize the situation as follows: in the case Y = Xy, the (potential) failure of the
map ¢y to be an equivalence is a result of the (potential) failure of the norm maps

NmH . (AX)hH — (AX)hH NmH . (BX)hH — (BX)hH

13



to be equivalences.

Our proof that G-tempered equivariant cohomology satisfies Theorem [1.1.19] will
use a variant of the preceding ideas. Let A be a p-local E,-ring and let G be an
oriented p-divisible group over A. To every space S, we will associate an co-category
LocSysg (S) whose objects we will refer to as G-tempered local systems on S (Definition
5.2.4). This oo-category is equipped with a forgetful functor

LocSysg(S) — LocSys 4(S) = Fun(S, Mody)

which, in the case S = BH, can be viewed as a categorification of the Atiyah-Segal
comparison map

¢ Ag(X//H) — A*(Xhn)-

More precisely, if H is a finite group, X is a G-space, and f : BH — = denotes
the projection map, then the G-tempered H-equivariant cohomology of X can be
described by the formula

A(X//H) =7 (f(F)),

where .7 is a certain G-tempered local system on BH (which is a preimage of the
function spectrum A% under the forgetful functor LocSysg(BH) — LocSys ,(BH)),
and f, : LocSysg(BH) — LocSysg(*) ~ Mody denotes the right adjoint to the
functor f* : LocSysg(*) — LocSysg(BH) given by pullback along f. To prove
Theorem [I.1.19] the essential point is to show that the functor f, preserves homotopy
colimits (and therefore commutes with extension of scalars along a morphism of
E,-rings A — B). We will prove this by constructing a norm map Nmyg : fi — fy,
where fi denotes the left adjoint to the functor f*, and showing that the map Nmy is
an equivalence. This is a special case of a much more general assertion (see Theorem

F210):

Theorem 1.1.21 (Tempered Ambidexterity). Let A be an E-ring, let G be an
oriented p-divisible group over A, and let f : S — S’ be a map of w-finite spaces
(that is, spaces having only finitely many connected components and finitely many
nonvanishing homotopy groups, each of which is a finite group). Then the functors
fi, f« : LocSysg (S) — LocSysg (S”) are canonically equivalent to one another.

Remark 1.1.22. Let n be a nonnegative integer, and let Sp,,) denote the co-category
of K(n)-local spectra. In [6], we proved that if f :.S — 5’ is a map of 7-finite spaces,
then the functors

i, f« - LocSysg, (S) — LocSysgp, ., (S")
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are canonically equivalent to one another. Roughly speaking, Theorem [1.1.21] asserts
that this phenomenon persists outside of the K (n)-local setting, provided that we
work with G-tempered local systems, rather than ordinary local systems.

Let us now outline the contents of this paper. We begin in §2| by reviewing the
notion of P-divisible group (Definition ; here (and throughout this paper) we
will use the symbol P to denote the set {2,3,5,---} of all prime numbers. If A is an
E-ring, then a P-divisible group G over A can be identified with a system {G ;) }pep
of p-divisible groups G,), where p ranges over all prime numbers. We will say that a
P-divisible group G is oriented if A if, after extending scalars to the p-completion of
A, each of the identity components G‘()p) is equipped with an orientation (Definition

2.6.12)). Such objects arise naturally in (at least) three ways:

(a) Fix a prime number p, and let A be an E.-ring which is complex periodic and
K (n)-local, for some n > 1. Then the Quillen formal group Spf(A®F”) is the
identity component of an oriented p-divisible group G<, which we refer to as
the Quillen p-divisible group (see . We can also regard G% as an oriented
P-divisible group over A, having trivial ¢-torsion for ¢ # p.

(b) Over any Eq-ring A, we can define a P-divisible group up» ~ @ ,p iy, Which
we refer to as the multiplicative P-divisible group (Construction . In the
special case where A = KU is the complex K-theory spectrum, the P-divisible
group pp» can be endowed with an orientation (Construction , which
arises from the orientation of the formal multiplicative group G,, over KU ([9]).

(c) Let E be a strict elliptic curve over an Ey,-ring A. Then E determines a P-
divisible group E[P*] ~ ,.p E[p™] of torsion points of E. Any orientation of
X (in the sense of [9]) determines an orientation of the P-divisible group E[P*]
(Construction [2.9.6).

The entirety of the preceding discussion can be generalized, using oriented P-divisible
groups (over general E,-rings) in place of oriented p-divisible groups (over p-local
E-rings). Moreover, working in this generality yields real dividends: when A = KU
and G = up= is the multiplicative P-divisible group, there are canonical isomorphisms

A5(X//H) ~ KUp(X)

for any finite group H and any H-space X (Theorem {4.1.2). In other words, our
notion of G-tempered equivariant cohomology recovers equivariant complex K-theory
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(at least for finite groups). We will return to this point in [10] (where we prove a more
general result, which applies also to compact Lie groups). Similarly, if G = E[P*]
is the P-divisible group of torsion on an oriented elliptic curve E over A, then the
G-tempered cohomology A& (X //H) can be interpreted as the H-equivariant elliptic
cohomology of X (for the variant of elliptic cohomology associated to the oriented
elliptic curve E). We will develop this idea further in [I0] (where we will essentially
take it as a definition of equivariant elliptic cohomology, at least for finite groups).

To organize our discussion of G-tempered cohomology, it will be convenient to use
the formalism of orbispaces, which we review in §3] For the purpose of this paper, we
define an orbispace to be a functor of co-categories

TP S,

where S denotes the co-category of spaces and .7 < S is the full subcategory consisting
of spaces of the form BH, where H is a finite abelian group. The collection of orbispaces
can be organized into an oo-category which we will denote by OS (Definition ,
which includes the co-category S of spaces as a full subcategory (we will generally
abuse notation by identifying a space X with the orbispace X () given by the functor
(Te T)— XT). We let Sp(OS) denote the oo-category of spectrum objects of OS;
the objects of Sp(OS) can be identified with functors

E: 7 - Sp T — ET.
Our starting point is that if A is an E,-ring, then there is a fully faithful embedding
{Oriented P-divisible groups over A}°? — Fun(.7°P, CAlg,),

which carries an oriented P-divisible group G to a functor Ag : 7°° — CAlg,, which
carries each object BH € 7 to an object AZH which corepresents the functor Gﬁ | of
maps from the Pontryagin dual group H= Hom(H,Q/Z) into G (see Theorem @
By neglect of structure, we can regard Ag as a spectrum object of OS, representing a
cohomology theory

AL 1 OSP — {Graded rings}

which we will refer to as G-tempered cohomology. If H is a finite group, then G-
tempered H-equivariant cohomology is defined as the composition

X—X//H

{ H-spaces}°? os» s, {Graded rings};
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here X //H denotes the formation of the orbispace quotient of an H-space X by
the action of H (see Construction . In , we provide a summary of the
formal properties enjoyed G-tempered cohomology in general, including suitable
generalizations of Theorems [1.1.17], [T.1.19] and [T.T.18]

In , we define the co-category LocSysg (S) of G-tempered local systems on any

space S (or, more generally, any orbispace S). Roughly speaking, a G-tempered local
system % on S is a rule which assigns, to each object T' € .7 and each map T" — S,
a module .Z (T) over the ring spectrum AL. These modules are required to depend
functorially on 7', in the sense that every commutative diagram

N

w: Ag(T') @z F(T) — F(T)

T’ T

induces a map

which is not too far from being an equivalence (see Definition for a precise
definition, and Theorem for a convenient reformulation).

Our theory of tempered local systems is essentially controlled by three formal
properties, which we establish in §6}

(1) Suppose that the E,-ring A is p-local for some prime number p and that G is
an oriented p-divisible group over A (regarded as a P-divisible group for which
the summands G, vanish for ¢ # p). We say that a G-tempered local system
F € LocSysg(S) is K(n)-local if, for every object T' € .7 and every map T' — 5,
the spectrum .7 (T') is K (n)-local (Definition |6.1.13)). Let LocSysg(n)(S) denote
the full subcategory of LocSysg (S) spanned by the K (n)-local G-tempered local
systems on S, and define LocSysf:(n)(S) < LocSys,(S) similarly. In , we
show that the forgetful functor

LocSyse ™ () — LocSysf(n)(S)

is an equivalence when n is equal to the height of the p-divisible group G

(Theorem [6.3.1]).

(2) Let G be an oriented P-divisible group over an E,-ring A which splits as a
direct sum Go@ A, where A is a divisible torsion group whose p-torsion subgroup
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A[p] is finite for each prime number p. In §6.4] we construct a fully faithful
embedding of co-categories

® : LocSysg (S) — LocSysg, (£(5))

(Theorem [6.4.9)), and in we characterize its essential image (Theorem |6.5.13)).
Here A = Hom(A, Q/Z) denotes the Pontryagin dual of A, and £*(S) denotes

the formal loop space parametrizing maps from the classifying space BA to S
which are compatible with the profinite topology on A (see Construction m
for a precise definition).

(3) Let G be an oriented P-divisible group over an E,-ring A. For any space (or or-
bispace S), we can regard LocSysg(S) as an A-linear oo-category. Consequently,
if B is an [E-algebra over A, we can consider the oco-category

B ®4 LocSysg (S) ~ Modpg(LocSysg (5))

of B-module objects of LocSysg (S). In §6.2) we show that this oo-category can
be identified with LocSysg,(S), where Gp is the oriented P-divisible group
obtained from G by extending scalars along the map A — B (Remark .
In particular, the construction B +— LocSysg . (S) satisfies faithfully flat descent

(Proposition |6.2.6)).

Properties (1), (2), and (3) can be regarded as categorified versions of Theorems
[I.1.17 [I.1.18 and [I.I1.19] respectively. In fact, Theorems [I.I.17] and [I.1.1§] are
easy to deduce from (1) and (2) (though they even easier to establish directly, as
we will see in §4). Theorem does not follow from (3) alone: it requires our
tempered ambidexterity theorem, which we prove in §7 Let us briefly outline our
approach to the problem, following the ideas introduced in [6]. Let f : S — S be

a map of m-finite spaces; we wish to construct an equivalence between the functors
fi, f« : LocSysg (S) — LocSysg (S’). Working by induction on the number of homotopy
groups of the fibers of f, we can assume that we have already constructed an equivalence
0y >~ 04, where 0 : S — S xg S is the relative diagonal. Using this equivalence, we
can associated to each tempered local system .# € LocSysg(S) a comparison map
Nmy : fi(#) — f«(F), which we call the norm map. The essence of the problem is
to show that this map is an equivalence. In §7.6] we establish tempered analogues
of Artin and Brauer induction (Theorems [7.6.3 and [7.6.5]), which allow us to reduce

to the case where S and S’ are p-finite spaces (for some fixed prime number p).
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Using formal arguments, we can further reduce to the case S’ = = is a single point,
S = K(F,,m) is an Eilenberg-MacLane space, and .% = Ag is the unit object of the
w-category LocSysg(S). In this case, the norm map Nmy determines bilinear form
on the (pre)dual of the tempered cohomology ring A& (S), and we must show that
this bilinear form is nondegenerate. The proof then rests on a computation of the
tempered cohomology ring of Eilenberg-MacLane spaces, which we carry out in
(see Theorem [4.4.16).

Note that, to recover Theorem [I.1.14] we do not need the full strength of our
tempered ambidexterity theorem: it suffices to establish that G-tempered local systems
satisfy ambidexterity for maps of the form f : BH — =, where H is a finite group.
However, our main result allows us to extend the reach of character theory to m-finite
spaces which have nontrivial higher homotopy groups. For example, we have the

following (see Corollary [4.8.5)):

Corollary 1.1.23. Let E be the Lubin-Tate spectrum associated to a formal group of
height n, andlet Cy be as in the statement of Theorem|[1.1.9. Then then tensor product
Co ®ro(py E°(S) is a free Co-module of finite rank, with a canonical basis indexed by
the set of homotopy classes of maps BZ; — S.

For some other concrete consequences of Theorem [1.1.21], see §4.8]

Remark 1.1.24. Many of the results of this paper can be interpreted in the language
of equivariant stable homotopy theory. Let A be an E -ring and let G be an oriented
P-divisible group over A. For any finite group H, one can show that the G-tempered
H-equivariant cohomology functor

AG(e//H) : {H-Spaces} — {Graded rings}

is representable by a genuine H-spectrum: that is, it is functorial with respect to
stable maps of H-spaces (this is not obvious from the definition: it is a special case
of our ambidexterity results); we defer a detailed discussion of this point to [10].
However, this observation in some sense misses the point: it follows from Theorem
that our theory of G-tempered cohomology has much more functoriality than
is encoded by the framework of equivariant stable homotopy theory: for example, it
has “transfer” maps tryy : A&(X) — A&(Y) for every map of spaces X — Y with
m-finite homotopy fibers (see Construction .

19



Notation and Terminology

Throughout this paper, we will assume that the reader is familiar with the language
of co-categories developed in [I3] and [I1], as well as the language of spectral algebraic
geometry as developed in [12]. Since we will need to refer to these texts frequently,
we adopt the following conventions:

(HTT) We will indicate references to [13] using the letters HTT.
(HA) We will indicate references to [11] using the letters HA.

(SAG) We will indicate references to [12] using the letters SAG.

For example, Theorem HTT.6.1.0.6 refers to Theorem 6.1.0.6 of [13].
We adopt a similar convention for references to the previous papers in this series:

(AV) We will indicate references to [8] using the letters AV.
(Or) We will indicate references to [9] using the letters Or.

(Ambi) We will indicate references to [6] using the letters Ambi.

Throughout this paper, we will adopt the following notational conventions (some
of which differ from the established mathematical literature):

differ from those of the texts listed above, or from the established mathematical
literature.

e We write S denote the oco-category of spaces, Sp for the co-category of spectra,
and CAlg = CAlg(Sp) for the co-category of E,-ring spectra (whose objects we
will refer to simply as E.-rings).

o If A is a spectrum and X is a space, we let AX denote the function spec-
trum parametrizing unpointed maps from X into A. This function spectrum
is characterized by the existence of homotopy equivalences Mapg, (B, AX) =
Mapg (X, Mapg,(B, A)), depending functorially on B € Sp. We write A*(X)
for the A-cohomology groups of the space X, given concretely by the formula
A*(X) = m_(AY).

e We will generally not distinguish between a category C and its nerve N(C). In
particular, we regard every category C as an co-category.
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o We will generally abuse terminology by not distinguishing between an abelian
group M and the associated Eilenberg-MacLane spectrum: that is, we view the
ordinary category of abelian groups as a full subcategory of the co-category Sp
of spectra. Similarly, we regard the ordinary category of commutative rings as a
full subcategory of the co-category CAlg of E.-rings.

e Let A be an E-ring. We will refer to A-module spectra simply as A-modules.
The collection of A-modules can be organized into a stable co-category which
we will denote by Mod and refer to as the co-category of A-modules. This
convention has an unfortunate feature: when A is an ordinary commutative ring,
it does not reduce to the usual notion of A-module. In this case, Mod 4 is not the
abelian category of A-modules but is closely related to it: the homotopy category
hMod, is equivalent to the derived category D(A). Unless otherwise specified,
the term “A-module” will be used to refer to an object of Mod 4, even when A
is an ordinary commutative ring. When we wish to consider an A-module M
in the usual sense, we will say that M is a discrete A-module or an ordinary
A-module. If M and N are A-modules spectra, we write Ext’ (M, N) for the
graded abelian group given by Ext’ (M, N) = m Mapy,q, (M, ZF(N)).

e Unless otherwise specified, all algebraic constructions we consider in this book
should be understood in the “derived” sense. For example, if we are given
discrete modules M and N over a commutative ring A, then the tensor product
M®4 N denotes the derived tensor product M ®ﬁ N. This may not be a discrete
A-module: its homotopy groups are given by m,(M®4 N) ~ Tor’ (M, N). When
we wish to consider the usual tensor product of M with N over A, we will denote
it by Torj (M, N) or by mo(M ®4 N).

e If M and N are spectra, we will denote the smash product of M with N by
M ®g N, rather than M A N (here S denotes the sphere spectrum). More
generally, if M and N are modules over an E,-ring A, then we will denote the
smash product of M with N over A by M ®4 N, rather than M A4 N. Note
that when A is an ordinary commutative ring and the modules M and N are
discrete, this agrees with the preceding convention.

Definition 1.1.25. Let X be a space. We say that X is w-finite if, for every base
point x € X, the homotopy groups 7, (X, x) are finite and vanish for n » 0. Here
we include the case n = 0 (that is, we require that the set of connected components
mo(X) is finite).
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Let S be a set of prime numbers. We will say that X is S-finite if it is w-finite
and S contains every prime number which divides the order of a homotopy group
(X, x), for any point x € X and any n > 0.

If p is a prime number, we say that X is p-finite if it is w-finite and each homotopy
group 7,(X,x) is a finite p-group (in other words, if it is S-finite for S = {p}).

Definition 1.1.26. Let A be an E,-ring and let I < 7y(A) be a finitely generated
ideal. Then:

e An A-module M is I-nilpotent if, for each element ¢ € I, the colimit
Mt =lim(M 5> M5 M5
vanishes.
e An A-module M is I-complete if, for each element ¢ € I, the limit
lim(-- — tM 5 M5 M5 M)
vanishes.

e An A-module M is I-local if the groups Ext’ (N, M) vanish whenever N is I-
nilpotent (equivalently, M is I-local if the groups Ext’ (M, N) vanish whenever
N is I-complete). If I = (t) is a principal ideal, this is equivalent to the
requirement that the map ¢t : M — M is an equivalence.

We refer the reader to Chapter SAG.I1.4 for a more detailed discussion of the
notions introduced in Definition [1.1.26] (see also [4]).

Warning 1.1.27. Let M be an A-module spectrum and let p be a prime number.
We say that M is p-complete if it is (p)-complete in the sense of Definition
where (p) < mo(A) is the principal ideal generated by p. However, we will say that M
is p-local if it is a module over the localization A,): in other words, if M is (¢)-local
for every prime number ¢ # p.

Warning 1.1.28. In this paper, we will use the notation M for two essentially
unrelated purposes:

e If M is a module over an E-ring A, we will sometimes write M to denote the
completion of M with respect to a finitely generated ideal I < m(A). This will
occur most frequently in the special case where M = A and where I = (p), for
some prime number p.
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e If M is a torsion abelian group, we will sometimes write M to denote the
Pontryagin dual group Hom(M,Q /Z). If M is finite, then the Pontryagin dual
M is also a finite abelian group (of the same order as M); more generally, M
can be regarded as a profinite group (by identifying it with the inverse limit
lim ]\//[\0, where M, ranges over the collection of all finite subgroups of M.

1.2 Acknowledgements

This work was supported by the National Science Foundation under grant DMS-
1810917.

2 Orientations and P-Divisible Groups

Let A be an E,-ring and let G be a formal group over A, which we view as a
functor

G : CAlg,_,(4) — Mody'.

Recall that a preorientation of G is a map of Z-module spectra e : $2(Z) — G(A)
(Definition Or.4.3.19). Our goal in this section is to study a variant of this definition
in the setting of p-divisible groups. In we associate to each p-divisible group G a
space Pre(G), which we will refer to as the space of preorientations of G (Definition
2.1.4). Our theory of preorientations is uniquely determined by the following two
assertions, which we will prove in and respectively:

(a) If A is the p-completion of A and G ; is the p-divisible group over A obtained
from G by extension of scalars, then we have a canonical homotopy equivalence:
Pre(G) — Pre(G;) (Proposition . Consequently, for the purpose of
understanding preorientations of p-divisible groups, there is no harm in restricting
our attention to E,-rings which are p-complete.

(b) If A is a p-complete E,-ring, then there is a canonical homotopy equivalence
Pre(G) ~ Pre(G°) (Proposition [2.2.1)). Here G° denotes the identity component
of G and Pre(G°) the space of preorientations of G° introduced in Definition
Or.4.3.19.

Let us now assume that A is not only p-complete, but K (n)-local for some integer
n > 0. In §0r.4.6, we constructed a p-divisible group G§ over A, which we refer to
as the Quillen p-divisible group (Definition Or.4.6.4). In §2.4] we show that giving

23



a preorientation of an arbitrary p-divisible group G over A is equivalent to giving a
morphism of p-divisible groups e : G% — G (Proposition [2.4.1)). In other words, the
Quillen p-divisible group G is universal among preoriented p-divisible groups over A.

If G is a p-divisible group over an E.-ring which is p-complete and complex
periodic, then we can identify preorientations e of G with morphisms of formal
groups ¢ : (A}% — G°, where (A}% denotes the Quillen formal group of A (Construction
Or.4.1.13). We will be particularly interested in the case where ¢ is an equivalence (so
that e identifies é% with the identity component of G). In this case, we will say that
e is an orientation of G and that G is an oriented p-divisible group over A (Definition
2.5.1)).

For some applications, it is inconvenient to restrict our attention to a single prime
number p. In §2.6] we remove this restriction by reviewing the notion of a P-divisible
group over an E,-ring A, where P = {2,3,5,- -} denotes the set of all prime numbers
(Definition . This is essentially just notation: a P-divisible group G can be
identified with a family of p-divisible groups {G,)}yep, indexed by the set of all
prime numbers p (Remark . We define a preorientation e of G to be a family of
preorientations {e, € Pre(G,))}pep (Definition and Remark [2.6.9), and we say

that e is an orientation if A is complex periodic and each e, induces an orientation of
Gy after extending scalars to the p-completion of A (Definition [2.6.12]). We will be
primarily interested in the following pair of examples, which we discuss in and
92.9;

e To any E-ring A, we can associate a P-divisible group pup~ which we refer to
as the multiplicative P-divisible group (Construction . This P-divisible
group is equipped with a canonical orientation in the case where A = KU is the
periodic complex K-theory spectrum.

e To any strict elliptic curve X over an E,-ring A, we can associate a P-divisible
group X[P%] of torsion of X (Construction 2.9.1)). Moreover, any orientation of
the elliptic curve X (in the sense of Definition Or.7.2.7) determines an orientation
of the P-divisible group X[P*] (Construction [2.9.6]

Remark 2.0.1. Let Ry be a commutative algebra over F), and let Gg be a p-divisible
group over R). In [9], we proved that if R, is Noetherian, F-finite, and Gy is
nonstationary, then Gy can be “lifted” to an oriented p-divisible group G over an
even complex periodic E-ring Rg, , which we call the oriented deformation ring of
Gy (Theorem Or.6.0.3). This result can be used to produce a large class of examples
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of oriented P-divisible groups (to which we can apply the formalism developed in this
paper).

2.1 Preorientations of p-Divisible Groups

Let p be a prime number, which we regard as fixed throughout this section. For
the reader’s convenience, we recall the definition of p-divisible group over an E,-ring
A (see Definition Or.2.0.2).

Definition 2.1.1. Let A be a connective E,-ring and let CAlg 4, denote the co-category
of E-algebras over A. A p-divisible group over A is a functor

G : CAlg, — Mody'
which satisfies the following conditions:

(1) For each B € CAlg,, the Z-module spectrum G(B) is p-nilpotent: that is, it
satisfies G(B)[1/p] ~ 0

(2) For every finite abelian p-group M, the functor
(B € CAlg}') — (Mapyoq, (M, G(A)) € S)
is corepresentable by a finite flat A-algebra.

(3) The map p : G — G is locally surjective with respect to the finite flat topology.
In other words, for every object B € CAlg}' and every element z € mo(G(B)),
there exists a finite flat map B — C for which |Spec(C)| — |Spec(B)] is
surjective and the image of = in mo(G(C)) is divisible by p.

If A is a nonconnective E,-ring, we define a p-divisible group over A to be
a p-divisible group over the connective cover 7>(A), which we view as a functor

G : CAlg,_ 4y — Modz'.

Remark 2.1.2. Let A be a connective E.,-ring and let G be a p-divisible group over
A. Tt follows from (1) and (2) that, for any E,-algebra B over A, the canonical map
G(7>0(B)) — G(B) is an equivalence. In other words, G is a left Kan extension of
its restriction to the full subcategory CAlg$y' < CAlg, (so no information is lost by
replacing G by its restriction Gloaigep)-
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Remark 2.1.3. Let A be an E,-ring which is not necessarily connective, and let G
be a p-divisible group over A. It is not difficult to see that G is determined by its
restriction to E-algebras over A: that is, by the composite functor

CAlgA — CAlgT;o(A) - MOdCZn .

However, it is sometimes technically convenient to be able to evaluate G on objects of
CAlg,_,4) which do not admit A-algebra structures (like the ordinary commutative
ring mo(A)).

We now introduce an analogue of Definition Or.4.3.19 in the setting of p-divisible
groups.

Definition 2.1.4. Let A be an E,-ring and let G be a p-divisible group over A. A
preorientation of G is a morphism of Z-module spectra ©'(Q, /Z,) — G(A). The
collection of preorientations of G are parametrized by a space

Pre(G) = Mapyoa,(3(Q, / Z), G(A)),
which we will refer to as the space of preorientations of G.

Example 2.1.5. Let A be a commutative ring and let G be a p-divisible group
over A. Then the Z-module spectrum G(A) is discrete. It follows that the space of
preorientations Pre(G) = Mapy,q, (X'(Q, / Z,), G(A)) is contractible. In other words,
G admits an essentially unique preorientation (given by the zero map ¥'(Q,, /Z,) —

G(A).

Example 2.1.6. Let A be an E,-ring and let G be an étale p-divisible group over
A (Definition Or.2.5.3). Then the Z-module spectrum G(B) is discrete for every
object B € CAlg,_ (4 (see Theorem HA.7.5.4.2). It follows that the space Pre(G) is
contractible: that is, G admits an essentially unique preorientation.

Remark 2.1.7. Let A be an E.-ring and suppose we are given a short exact sequence
0 -G — G — G” — 0 of p-divisible groups over A (Definition Or.2.4.9). We then
obtain a fiber sequence of spaces Pre(G’) — Pre(G) — Pre(G”). In particular, if G”
is étale, then the canonical map Pre(G’) — Pre(G) is a homotopy equivalence: in
other words, we can identify preorientations of G with preorientations of G'.
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Remark 2.1.8. Let A be an E,-ring and let Q, / Z, denote the constant p-divisible
group over A (of height 1) associated to the p-divisible abelian group Q,, /Z,. For any
p-divisible group G over A, we have a canonical homotopy equivalence

Ma’pBTP(A)<Qp/ZPJ G) = MapModz(Qp/ZP7 G(A))~
It follows that the Pre(G) of preorientations of G can be identified with the loop
space Q2 Mapprr(4)(Q, / Zy, G). In particular, homotopy classes of preorientations of

G are classified by the fundamental group m Mapgrr(4)(Q, / Zy, G).

Notation 2.1.9. Let A be an E-ring and let G be a p-divisible group over A. For
every [E-algebra B over A, we let G denote the p-divisible group over B given by
the composite functor

G cn
CAlngo(B) — CAlngo(A) —> MOdZ .
Then we have a canonical homotopy equivalence

Pre(Gp) ~ Mapy,, (2(Q, / Z,), G(B)).

In particular, we can regard the construction B — Pre(Gp) as a functor from
CAlg, to the oo-category S of spaces, given explicitly by the composition

MapModZ (Z(Qp / ZP)")

CAlg, S Mod$® S.

We will need the following elementary observation:

Proposition 2.1.10. Let A be an Ey-ring and let G be a p-divisible group over A.
Then the functor (B € CAlgg) — Pre(Gp) is corepresentable by an object of the
w-category CAlg . In particular, it commutes with small limits.

Proof. Replacing A by 75¢(A), we can reduce to the case where A is connective.
In this case, we will show that the functor B — Pre(Gp) is corepresentable by a
connective E-algebra over A. By virtue of Notation [2.1.9] we are reduced to showing
that the functor B — Mapy,q,(2(Q, /Z,), G(B)) is corepresentable by a connective
E-algebra over A. Writing Q,, /Z, as a filtered colimit of finite subgroups of the
form Z /p* Z, we are reduced to showing that each of the functors

pr: CAlgy -8  pi(B) = Mapyq, (X(Z /p* Z), G(B))
is corepresentable by a connective E-algebra over A. Our assumption that G is a
p-divisible group guarantees that each of the functors B — Mapy.q, (Z /p* Z, G(B))
is corepresentable by a finite flat A-algebra A(k). Then py is corepresentable by the

suspension of A(k) in the co-category CAlg%™® of augmented E.,-algebras over A: that
is, by the relative tensor product A ®a) A. n
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2.2 The p-Complete Case

Let G be a p-divisible group defined over an E-ring A which is p-complete, and
let G° denote the formal group given by the identity component of G (Definition
Or.2.0.10). Our goal in this section is to relate preorientations of G (in the sense of
Definition to preorientations of G° (in the sense of Definition Or.4.3.19):

Proposition 2.2.1. Let A be a p-complete E-ring, let G be a p-divisible group over
A, and let G° be its identity component (Definition Or.2.0.10). Then there is a
canonical homotopy equivalence Pre(G) ~ Pre(G°).

To prove Proposition [2.2.1] we may assume without loss of generality that A is
connective. Recall that, if G is a formal group over A, then the space Pre((A}) or
preorientations of G can be identified with the mapping space Mapypoa, (2%(Z), G(4))
(Remark Or.4.3.20). In the p-complete case, this can be reformulated:

Proposition 2.2.2. Let G bea formal group over a connective p-complete Eq-ring
A. Let o : X(Q, /Zy) — ¥*(Z) denote the map of Z-module spectra determined by
the short exvact sequence of abelian groups 0 — Z — Z[1/p] — Q, /Z, — 0. Then the
map

Pre(é) ~  Mapyjoq, (2 ()é( )A)
=5 Mapy,q,(2(Q, / Z,), G(4))

is a homotopy equivalence.

Proof. Without loss of generality, we may assume that A is connective. It will suffice
to show that the mapping space F(A) = Mapy,q, (X(Z[1/p]), G(A)) is contractible.
Since the functor G is nilcomplete (Proposition Or.1.6.8), we can identify F'(A) with
the limit lim F'(7<,(A)). We are therefore reduced to showing that each F(7<,(A)) is
contractible. We proceed by induction on n. In the case n = 0, the desired result is
obvious (since G(T@(A)) is discrete). To carry out the inductive step, assume that
n > 0 and set M = 7m,(A), so that we can regard 7<,(A) as a square-zero extension of
Ten—1(A) by X"(M) (Theorem HA.7.4.1.26 ). It follows that there exists a pullback
diagram

T<n(4) mo(A)

| l

Ten_1(A) —=mo(A) @ LT (M).
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Since the functor G is cohesive (Proposition Or.1.6.8) and F(mo(A)) is contractible,
we obtain a fiber sequence

F(r<n(A)) = F(r<n-1(4)) = F(m(A) @ X" (M)).

x x

It will therefore suffice to show that the space F(mA) @ X"t M) is contractible. Note
that we can identify F(my(A)@ X" M) with the zeroth space of the limit of the tower

gz(zn-ﬁ-lM)&Z(En+1M>gz(En+lM)iz(zn-‘rlM),

where we define Z(N) = QG(m(A) ® N) € Mody". Note that the construction
N — Z(N) determines an additive functor Mod} 4y — Modz’, so that the map
p: Z(X"IM) — Z(3""M) is induced by the multiplication p : M — M. We
therefore obtain a homotopy equivalence F((mo(A) @ X" M) ~ Q*Z(M’), where M’
denotes the limit of the tower

"'—>Zn+1Mﬂ>En+1Mﬂ>En+lM,

formed in the co-category Mody'. We conclude the proof by observing that M’ ~ 0,
by virtue of our assumption that A is p-complete. O

Proof of Proposition[2.2.1. Without loss of generality, we may assume that A is a
connective p-complete E,-ring. Let G be a p-divisible group over A and let G° be its
identity component. Let C < CAlg$' denote the full subcategory spanned by those
connective A-algebras B such that B is truncated and p is nilpotent in my(B). Then,
for each B € C, we have a canonical fiber sequence

G°(B) — G(B) — G(B™).
We therefore obtain a natural map Pre(G%) — Pre(Gg), given by the composition
Pre(Gj) =~ Mapy,q,(X*(Z), G°(B))
- MapModz(E(Qp/Zp>7 GO(B))

= Mapyoa, (5(Q, / Zy), G(B))
~ Pre(GB),

where the first map is given by precomposition with the map o : ¥(Q, /Z,) — Z
appearing in Proposition (and is therefore a homotopy equivalence), and the
second is a homotopy equivalence by virtue of the fact that G(B*Y) is discrete. The
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resulting homotopy equivalence depends functorially on B, and therefore supplies a
homotopy equivalence

lim Pre(G%) ~ lim Pre(Gp).
BeC BeC
The desired result now follows from the fact that the tautological maps

Pre(G®) — lim Pre(Gj) Pre(G) — lim Pre(Gp)
BeC BeC
are homotopy equivalences (Lemma Or.4.3.16 and Proposition [2.1.10)). O

Corollary 2.2.3. Let A be an Ey-ring which is p-complete and complex periodic, and
let G be a p-divisible group over A. Then we have a canonical homotopy equivalence

Pre(G) = MapFGroup(A)(G,%’ GO)J
where é% is the Quillen formal group over A (Construction Or.4.1.13).

Proof. Combine Propositions and Or.4.3.21. n

Corollary 2.2.4. Let A be a connective E-ring which is p-complete and 1-truncated.
Then, for every p-divisible group G over A, the space of preorientations Pre(G) is
contractible.

Proof. Combine Proposition with Example Or.4.3.5. O]

2.3 Reduction to the p-Complete Case

Let A be an E,-ring and let G be a p-divisible group over A. Proposition [2.2.1
asserts that, if A is p-complete, then giving a preorientation of G (in the sense of
Definition is equivalent to giving a preorientation of its identity component G°
(in the sense of Definition Or.4.3.19). The general case can be always be reduced to
the p-complete case, by virtue of the following result:

Proposition 2.3.1. Let A be an Ey-ring, let G be a p-divisible group over A, and
let A be the p-completion of A. Then the map Pre(G) — Pre(G ;) of Notation\?.].g
is a homotopy equivalence.

Our proof begins with a simple observation:

Lemma 2.3.2. Let f: A — B be a morphism of E-rings which induces an isomor-
phism 7, (A) — m,(B) for n > 0 and let G be a p-divisible group over A. Then the
canonical map Pre(G) — Pre(Gpg) is a homotopy equivalence.
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Proof. Without loss of generality, we may assume that A and B are connective. We
then have a homotopy pullback diagram of connective [E,-rings

A B
L
7o(A) —mo(B).

Applying Proposition [2.1.10, we obtain a pullback diagram of spaces

Pre(G) Pre(Gp)

| |

Pre(GWO(A)) —— Pre(Gﬂo(B)).

The bottom horizontal map is a homotopy equivalence (since both spaces are con-
tractible by virtue of Example [2.1.5)). Consequently, the upper horizontal map is a
homotopy equivalence as well. O

Proof of Proposition[2.3.1. Let A" = 75¢(A) be the connective cover of A, so that G
is obtained from a p-divisible group G’ over A’ by extension of scalars. Let A’ be the
(p)-completion of A’. Then the map A’ — A induces an isomorphism on 7, for = > 0.
It follows from Lemma that the vertical maps in the diagram

Pre(G') —— Pre(G';)

| |

Pre(G) —— Pre(Gj;)

are homotopy equivalences. Consequently, to show that the upper horizontal map
is a homotopy equivalence, it will suffice to show that the lower horizontal map is a
homotopy equivalence. Replacing A by A’ (and G by G’) we may reduce to the case
where A is connective.

For each integer £ > 0, let Fj, : CAlgy’ — S denote the functor given by the
formula Fy,(B) = Mapyeq, (3(Z /p* Z), G(B)). Writing Q,,/Z, as a direct limit of
finite subgroups Z /p* Z, we obtain a canonical equivalence Pre(Gp) ~ lim Fi(B).

For each B € CAlg}’, let B denote the p-completion of B. We will prove Proposition

2.3.1| by showing that the canonical map 6” : lim Fy.(B) — lim,_ Fy,(B) is a homotopy
equivalence for each B € CAlg§'. Note that if B is discrete, then each Fj(B) is
contractible.
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For k > 0, define a functor Gy : CAlgy' — S by the formula Gy (B) = fib(F(B) —
Fi(mo(B)). Note that the p-completion my(B) is 1-truncated and p-complete (Corollary

SAG.I1.4.3.2.4), so that Pre(G@)) ~ lim _Fj(mo(B)) is contractible (Corollary [2.2.4).

It follows that the evident maps Gi(B) — Fi(B) induce a homotopy equivalence
lim Gy(B) — lim, Fy(B) for each B € CAlgS". We can therefore identify #2 with the
limit of maps 67 : Fj,(B) — G(B). We will complete the proof by showing that each
0P is a homotopy equivalence.

~

Since G is a p-divisible group, the functor
(B € CAlgY') — Mapyoa, (Z /p* Z, G(B))

is corepresentable by some finite flat A-algebra C. It follows that the functors Fj, and
G, are given concretely by the formulae

F.(B) = fib(Q MapCAlgA(O7 B) — QM&PCAlgR(O, mo(B)))
Gr(A) = fib(Q2 MapCAlgA(C> é) - QMapCAlgR(C> mo(B)))-

It follows from these formulae that the functors F) and G} are nilcomplete; conse-
quently, it will suffice to show that 02 is a homotopy equivalence under the additional
assumption that B is n-truncated for some n > 0. We proceed by induction on n. In
the case n = 0, the spaces Fi(B) and G (B) are both contractible, so there is nothing
to prove. To carry out the inductive step, let us suppose that B is n-truncated for
some n = 0. Using Theorem HA.7.4.1.26 , we see that B is a square-zero extension of
Ten—1(B) by the module M = ¥"(m,(B)): that is, there exists a pullback diagram

B 7T0(B)

| |

Tgn—l(B) *>7T0(B) @ ZM

This diagram remains a pullback square after applying the functors Fj, and Gy, so we

have a pullback diagram

GkB 02’0(3)

l l

egsnfl(B) 920(3)@2]\/[

in the oo-category Fun(A!,S). Since 67" and g;="(?)

by our inductive hypothesis, we are reduced to proving that the map

— grWEEM . o (10(B) ® SM) — Gy(mo(B) ® M)

are homotopy equivalences
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is a homotopy equivalence. Using the formula for GG) given above and the fact that
the functor Mapg e, (€, ®) commutes with limits, we obtain a homotopy equivalence
Gr(mo(B) ®XM) ~ Fi.(mo(B) ® ZM\), where M denotes the p-adic completion of M.
It follows that we have a fiber sequence

Fi(mo(B) ® M) £ Fy(mo(B) @ SM) — Fi(m(B) ® N),

where N denotes the cofiber of the map XM — S M.
Define a functor H : Mod?) ) — Modz',. 7 by the formula

H(K) = fib(G[p"]((m(A) ® K) — G[p"](mo(B)).

Note that the functor H is additive. Consequently, applying H to the multiplication
map p¥ : K — K induces multiplication by p* on H, which is nullhomotopic by
construction. It follows that if multiplication by p is an equivalence from K to itself,
then H(K) ~ 0. Applying this observation in the case K = N, we deduce that
H(N) ~ 0 so that Fy(mo(B) ® N) = Q®TH(N) is contractible. It follows that p is a
homotopy equivalence, as desired. O

2.4 The K(n)-Local Case

Let A be an E,-ring which is complex periodic and K (n)-local, for some n > 1.
In §0r.4.6, we introduced a p-divisible group G which we refer to as the Quillen p-
divisible group of A (see Definition Or.4.6.4 ). This p-divisible group is characterized (up
to equivalence) by the fact that it is formally connected (with respect to the topology
on 7(A) given by the nth Landweber ideal J7) and that its identity component is
the Quillen formal group é% (Theorem Or.4.6.16 ). For our purposes, this can be
reformulated as follows:

Proposition 2.4.1. Let A be an Ey-ring which is complex periodic and K (n)-local
for some n > 0. Then, for any p-divisible group over A, there is a canonical homotopy

equivalence
MaPBTP(A)(G,% G) = Pre(G).

Proof. Since G is formally connected, Theorem Or.2.3.12 implies that passage to
the identity component induces a homotopy equivalence

Mapg e (a) (G%.G) ~ Mapproup(a) (G$",G).
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Theorem Or.4.6.16 allows us to identify G%O with the Quillen formal group CA}%,
so that the mapping space Mappg;oup( A)(G%O, G°) can be identified with the space
Pre(G°) classifying preorientations of G° (Proposition Or.4.3.21). The desired result
now follows from from the homotopy equivalence Pre(G) ~ Pre(G°) of Corollary
2.2 .5l [

Remark 2.4.2. The homotopy equivalence of Proposition depends functorially
on G. It follows that that the functor

(G € BT?(A)) — Pre(4) = Mapy,q,(3(Q, / Zp), G(A))

is corepresented by the Quillen formal group GS. In other words, there exists a
preorientation 7 € G which is universal in the sense that, for any p-divisible group
G, evaluation on 7 induces the homotopy equivalence

Mapgrr(4)(GR, G) ~ Pre(G)

of Proposition [2.4.1]

Let us describe the preorientation 1 more explicitly, without reference to the theory
of formal groups. For each finite abelian p-group H, let H= Hom(H, Q/Z) denote
the Pontryagin dual of H. The Quillen p-divisible group G% is charactered by the
existence of homotopy equivalences

(720(A"M), B) ~ Mapyo4, (H, G3(B))

MapCAIgTZO( Hy\T=

depending functorially on H and B (which ranges over E,,-algebras over the connective
cover of A); see Construction Or.4.6.2. Setting B = A and composing with the natural
map

BM — MapCAlgA (ABH’ A) >~ MapCAlgTZO(A) (Tzo(ABH)’ A>’

we obtain maps p: BH — MapMOdZ(ﬁ ,GS(A)), depending functorially on H. Here
we can regard both sides as p-torsion objects of the co-category of spaces, in the sense
of Definition AV.6.4.2. The fully faithful embedding Tors, S < Mod7' of Example
AV.6.4.11 carries p to a morphism of Z-module spectra ¥(Q, / Z,) — G$(A), which
we can view as a preorientation of GS. We leave it to the reader to verify that this
agrees with the preorientation constructed implicitly in the proof of Proposition [2.4.1]

34



2.5 Orientations of p-Divisible Groups

Let A be an E-ring and let G be a formal group over A. Recall that a preorien-
tation e of G is said to be an orientation if A is complex periodic and e is classified
by an equivalence of formal groups é% -G (Proposition Or.4.3.23 ). We now adapt
this definition to the setting of p-divisible groups.

Definition 2.5.1. Let A be a p-complete E -ring and let G be a p-divisible group
over A. We will say that a preorientation e of G is an orientation if its image under
the homotopy equivalence Pre(G) ~ Pre(G°) of Proposition is an orientation of
the identity component G°, in the sense of Definition Or.4.3.9. We let OrDat(G) <
Pre(G) denote the summand consisting of all orientations of the p-divisible group G.

Remark 2.5.2 (Functoriality). Let f : A — A’ be a morphism of p-complete E.,-rings
and let G be a p-divisible group over A. Then the natural map Pre(G) — Pre(Gy/)
carries orientations of G to orientations of G 4.

Remark 2.5.3. Let A be a p-complete E-ring and let G be a p-divisible group over
A. If A is complex periodic, then giving an orientation of G is equivalent to choosing
an equivalence of formal groups CA}% ~ G°, where CA}% is the Quillen formal group of
A. If A is not complex periodic, then the space of orientations OrDat(G) is empty
(Proposition Or.4.3.23).

Remark 2.5.4. Let A be a p-complete E,-ring and let G be a p-divisible group of
height < n over A. Suppose that G admits an orientation (so that A is necessarily
complex periodic, by Remark [2.5.3). Then:

e The p-divisible group G is 1-dimensional (since G° is equivalent to the 1-
dimensional formal group G¢).

e The Quillen p-divisible group (A}% has height < n (since it is equivalent to the
identity component of G).

Warning 2.5.5. Let A be a p-complete E-ring and let G be a p-divisible group
over A. Then G can be identified with a p-divisible group Gy over the connective
cover To(A), and we can identify preorientations e of G with preorientations ey of
Gy. Beware, however, that that eq is never an orientation (even if e is an orientation),
except in the trivial case A ~ 0.
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We now prove an analogue of Proposition Or.4.3.23 , which allows us to reformulate
Definition [2.5.1] without reference to the theory of formal groups. We begin with the
K (n)-local case.

Proposition 2.5.6. Let A be an Ey-ring which is K(n)-local for some n = 1, let
G be a p-divisible group over A, and let e be a preorientation of G. Then e is an
ortentation if and only if the following conditions are satisfied:

(0) The p-divisible group G is 1-dimensional.

(1) The E-ring A is complex periodic, so that the Quillen p-divisible group G is
well-defined (Definition Or.4.6.4 ).

(2) The image of e under the homotopy equivalence Pre(G) ~ MapBTp(A)(G%, G)
of Proposition is a monomorphism of p-divisible groups G% — G (in the
sense of Definition Or.2.4.3).

Proof. Assume first that conditions (0), (1), and (2) are satisfied. Let us abuse
notation by identifying e with the map of p-divisible groups G% — G supplied by
Proposition [2.4.1} Using (2), we obtain a short exact sequence of p-divisible groups

0-G?5G—->H-0

(in the sense of Definition Or.2.4.9). Since G and G are both 1-dimensional, it
follows that H is an étale p-divisible group over A. Consequently, the map e induces an
equivalence of identity components CA}% ~ (G9)° % G° and is therefore an orientation
in the sense of Definition R.5.11

We now prove the converse. Suppose that e is an orientation of G. Then conditions
(0) and (1) are automatic (Remarks and [2.5.4). Let 34 < m(A) be the nth
Landweber ideal (Definition Or.4.4.11). We will regard A as an adic Ey,-ring by
equipping mo(A) with the J4-adic topology. Our assumption that A is K (n)-local
guarantees that it is complete (as an adic E,-ring); see Proposition Or.4.5.4. The
Quillen formal group é% is the identity component of the Quillen p-divisible group
G (Theorem Or.4.6.16 ). The p-divisible group G is formally connected (essentially
by the definition of the ideal J4), so that (A}% is a p-divisible formal group over
A in the sense of Definition Or.2.3.14. Since e is an orientation, it follows that
G° ~ (GS)° ~ @% is also a p-divisible formal group over A. Applying Proposition
Or.2.5.17, we deduce that G admits a connected-étale sequence

0-G 5G -G -0
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Then e factors as a composition G< 4 G L G. Sinceiisa monomorphism of
p-divisible groups, it will suffice to show that f is an equivalence. Since G and G/
are formally connected p-divisible groups over A, this is equivalent to the requirement
that f induces an equivalence of identity components (Corollary Or.2.3.13), which
follows from our assumption that e is an orientation. O

Corollary 2.5.7. Let A be a p-complete Ey-ring, let G be a p-divisible group over
A, and let e be a preorientation of G. Then e is an orientation if and only if the
following conditions are satisfied:

(0) The p-divisible group G is 1-dimensional.

(1) The Eyp-ring A is complex periodic and the classical Quillen formal group G‘%O
has finite height at every point of | Spec(A)].

(2) For each integer m = 1, the image of e under the composite map
PI‘G(G) — Pre(GLK<m)A) >~ MapBTp(A)(G%K(m)(A), GLK(m)(A))

is a monomorphism f,, : G%K () Gy (a) Of p-divisible groups over

L) (A) (in the sense of Definition Or.2.4.8 ).

Warning 2.5.8. In the statement of Corollary , the assumption that CA}%) has
finite height at every point of |Spec(A)| cannot be omitted. Otherwise, we could
obtain a counterexample taking A to be any complex periodic E-algebra over F,
(and G to be any 1-dimensional preoriented p-divisible group over A).

Remark 2.5.9. In the statement of Corollary [2.5.7) conditions (0) and (1) do not
depend on the preorientation e: they are conditions on A and G which are necessary
for the existence of any orientation.

Proof of Corollary[2.5.7. 1f e is an orientation, then conditions (0) and (1) follow from
Remarks [2.5.3] and [2.5.4] while (2) follows from Proposition [2.5.6l Conversely, suppose
that (0), (1), and (2) are satisfied. Then the formal group G° is 1-dimensional. Let
wgo denote its dualizing line (Definition Or.4.2.14) and let 3, : wge — Y 72(A) be the
Bott map associated to e (Construction Or.4.3.7). We wish to show that (. is an
equivalence.

Let B be an E-algebra over A. We will say that B is good if it is p-complete and
the map Pre(G) — Pre(Gpg) carries e to an orientation of Gg. Equivalently, B is
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good if it is p-complete and the morphism [, becomes an equivalence after extending
scalars to B. From this description, we see that the collection of good A-algebras is
closed under fiber products.

For each n > 0, let 34 denote the nth Landweber ideal of A (Definition Or.4.5.1),
so that the vanishing locus of 3 in |Spec(A)| consists of those points where the
classical Quillen formal group CA}%O has height > n. It follows from condition (1) that
the union | J, 32 is the unit ideal of mo(A). In other words, there exists some integer
n » 0 such that 37 = my(A). In particular, A is J2-local as an A-module. We will

complete the proof by establishing the following assertion, for each positive integer m:

(*m) Let B € CAlg, be an Ey-algebra over A which is p-complete and J4-local as
an A-module (this is equivalent to the requirement that B is E(m — 1)-local as
a spectrum). Then B is good.

The proof of (x,,) will proceed by induction on m. In the case m = 1, we have
fJA

A = (p), so any A-algebra which is p-complete and J2-local must vanish. To carry

out the inductive step, assume that assertion (,,) is satisfied and let B be a p-complete
Eq-algebra over A which is J2  -local; we will show that B is good. Let I = J7

denote the mth Landweber ideal of my(A). Let
M — L;(M) M — M}

denote the functors of localization and completion with respect to I. Then we have a
pullback diagram

B By

-

Li(B) — Li(Br)

of E-algebras over A (since the vertical maps become equivalences after I-localization,
and the horizontal maps become equivalences after [-completion). Passing to p-
completions (and invoking our assumption that B is p-complete), we obtain a pullback
diagram

B By

| |

LI(B)(Ap) HLJ(BIA)(A;,)-

Here L;(B)(,, and L;(B})(, are I-local and p-complete, and therefore good by virtue
of our inductive hypothesis. Consequently, to show that B is good, it will suffice to
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show that B} is good. However, the ring spectrum B} is K(m)-local (see Theorem
Or.4.5.2), so the unit map A — B} factors through the K (m)-localization L k() (A).
We are therefore reduced to showing that Ly, (A) is good, which follows from
assumption (2). O

Remark 2.5.10. In the statement of Corollary we can replace (1) with the
following alternate condition:

(1) The E,-ring A is complex periodic and E(m)-local for some m > 0.

If A is a complex periodic Ey-ring, then conditions (1) and (1’) can both be phrased
in terms of the Landweber ideals J2: condition (1) asserts that we have J4 = my(A)
for n » 0, while condition (1’) asserts that A is J4-local for n » 0 (note that A is
E(m)-local as a spectrum if and only if it is 37, ;-local as an A-module). It follows
immediately that (1) = (1’). On the other hand, condition (1) is all that was needed
in the proof of Corollary 2.5.7]

Beware that it is generally not true that condition (1’) implies condition (1) (in
the absence of the other assumptions of Corollary . For example, if MP is the
periodic complex bordism spectrum, then the canonical map

MP ) — Lpa)(MP,))

induces an isomorphism on 7my. Consequently the classical Quillen formal group of
A = Lpu)(MP,)) coincides with the classical Quillen formal group of MPy,, and
therefore has unbounded height (despite the fact that A is E(1)-local). It follows that
there cannot exist an oriented p-divisible group over A.

Remark 2.5.11. In the statement of Corollary 2.5.7, we can also replace (1) with
the following:

(1”) The Ey-ring A is complex periodic and the smash product F, ®s A vanishes.

2.6 P-Divisible Groups

Throughout this paper, we will write P for the set {2,3,5, -} of all prime numbers.
In §AV.6.5, we introduced the notion of a P-divisible group over an E-ring. Let us
recall the definition in a form which will be convenient for our applications here.
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Definition 2.6.1. Let A be a connective E,-ring and let CAlg 4 denote the co-category
of Ep-algebras over A. A P-divisible group over A is a functor

G : CAlg, — Mody
which satisfies the following conditions:

(1) For each B € CAlg, the Z-module spectrum G(B) is torsion: that is, it satisfies
Q@zG(B) ~0

(2) For every finite abelian group M, the functor
(B € CAlg}') — (Mapyq, (M, G(A)) € S)
is corepresentable by a finite flat A-algebra.

(3) For every positive integer n, the map n : G — G is locally surjective with
respect to the finite flat topology. In other words, for every object B € CAlg}’
and every element x € my(G(B)), there exists a finite flat map B — C' for which
| Spec(C)| — | Spec(B)] is surjective and the image of = in mo(G(C')) is divisible
by n.

If A is a nonconnective E -ring, we define a P-divisible group over A to be
a P-divisible group over the connective cover 75¢(A), which we view as a functor

G’ . CAlngo(A) — MOdCZn.

Remark 2.6.2. Let A be a connective E,-ring and let G be a P-divisible group over
A. Tt follows from (1) and (2) that, for any Ey-algebra B over A, the canonical map
G(7>0(B)) — G(B) is an equivalence. In other words, G is a left Kan extension of
its restriction to the full subcategory CAlg$' < CAlg, (so no information is lost by
replacing G by its restriction Glcaigep)-

Remark 2.6.3. In the situation of Definition [2.6.1], it suffices to check condition (3)
in the special case where n = p is a prime number.

Example 2.6.4. Let p be a prime number and let A be an E,-ring. Then every
p-divisible group over A (in the sense of Definition [2.1.1)) is a P-divisible group over
A (in the sense of Definition [2.6.1]).

Example has a converse:
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Construction 2.6.5. For each object M € Mody' and each prime number p, we
let M,y denote the localization of M at the ideal (p) (given by the formula M, ~
Z ) ®zM).

Let A be an E,-ring and let G be a P-divisible group over A. For each prime
number p, we let G, : CAlg, — Modz' denote the functor given by the formula
G (B) = G(B) ). Then Gy is a p-divisible group over A: it satisfies requirements

(1), (2), and (3) of Definition by virtue of the fact that G satisfies the corre-
sponding requirement of Definition [2.6.1, We refer to G, as the p-local component
of G.

Notation 2.6.6. Let A be an E,-ring. We let BT(A) denote the full subcategory
of Fun(CAlg,, Mod7') spanned by the P-divisible groups over A. We will refer to
BT(A) as the co-category of P-divisible groups over A.

Remark 2.6.7. Let A be an E,-ring. Then, for every prime number p, the construc-
tion G — G, determines a forgetful functor BT (A) — BT”(A). Moreover, these
functors amalgamate to an equivalence of co-categories

BT(A) — [ [ BT?(4),

peP

with homotopy inverse given by the construction

{G(p) € BT?(A)}pep — (—B G € BT(A).

peP

In other words, we can identify a P-divisible group G over A as a family of p-divisible
groups {G ) }pep, where p ranges over the set P of all prime numbers.

We now introduce a “global” version of Definition [2.1.4}

Definition 2.6.8. Let A be an E,-ring and let G be a P-divisible group over A.
A preorientation of G is a morphism of Z-module spectra %(Q /Z) — G(A). The
collection of preorientations of G are parametrized by a space

Pre(G) = MapModZ(E(Q/Z)a G(A)),

which we will refer to as the space of preorientations of G.
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Remark 2.6.9. The group Q /Z splits canonically as a direct sum of local summands
@pep Q, /Z,. Consequently, if G is a p-divisible group over an E..-ring A, we have a
canonical homotopy equivalence

Pre(G) = MapModz(Z(Q/Z)aG(A))
= HMapMOdZ(E(Qp/ZP)7 G (4))

peP

H Pre(G(p)).

0

In other words, giving a preorientation e of G (in the sense of Definition [2.6.8]) is
equivalent to giving a preorientation e, of the p-local summand Gy, for each prime
number p (in the sense of Definition [2.1.4)).

Example 2.6.10. Let A be an E-ring and let G be a p-divisible group over A. Then
we can also regard G as a P-divisible group over A (Example . In this case,
we can identify preorientations of G as a p-divisible group (Definition with
preorientations of G as a P-divisible group (Definition .

Example 2.6.11. Let G be a P-divisible group over an E-ring A. Suppose that A
is p-local, for some prime number p. Then, for every prime number ¢ # p, the ¢-local
component Gy is an étale (-divisible group. It follows that the space of preorientations
Pre(Gy) is contractible (Example . Consequently, the product decomposition
of Remark simplifies to a homotopy equivalence Pre(G) ~ Pre(Gy,). That is,
when we are working over a p-local Eo-ring A, then we can identify preorientations of
a P-divisible group G (in the sense of Definition with preorientations of the
p-local summand G (in the sense of Definition .

Definition 2.6.12. Let A be an E,-ring, let G be a P-divisible group over A, and
let e be a preorientation of G (Definition , so that e determines a preorientation
ep of the p-local component G, for every prime number p (Remark . We will
say that e is an orientation of G if, for every prime number p, the following condition
is satisfied:

+) Let A denote the p-completion of A and let G, , 7 denote the p-divisible group
(p),A

over A obtained from G(p) by extending scalars along the canonical map A — A.
Then the image of €, under the homotopy equivalence Pre(G,)) = Pre(G,, ;)
of Proposition is an orientation of G, 7, in the sense of Definition m
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We let OrDat(G) denote the summand of Pre(G) consisting of orientations of G.

Example 2.6.13. Let A be a p-local E-ring, let G be a P-divisible group over A, and
let e be a preorientation of G. Then, for every prime number ¢ # p, the /-completion of
A vanishes. It follows that condition () of Definition is automatically satisfied
for prime numbers different from p. Consequently, e is an orientation of G (in the
sense of Definition if and only if its image under the homotopy equivalence

Pre(G) ~ Pre(Gy,)) ~ Pre(G ) 3)

is an orientation of the p-divisible group é(p) 4 (in the sense of Definition [2.5.1). Here

A denotes the p-completion of G.

Remark 2.6.14. Let A be an E,-ring, let G be a P-divisible group over A, and
suppose that G admits an orientation (in the sense of Definition [2.6.12)). Then,
for every prime number p, the p-local component G, admits an orientation after
extending scalars to the p-completion A of A. It follows that the p-divisible group
G(p)7 4 is 1-dimensional (Remark . In particular, if the p-local component G

vanishes, then the p-completion A must also vanish: that is, the prime number p must
be invertible in A.

Example 2.6.15. Let A be an E-ring and let G be a p-divisible group over A. Then
we can regard G as a P-divisible group over A (Example , where the (-local
component Gy vanishes for £ # p. It follows from Remark that G can only
admit an orientation (in the sense of Definition if the E,-ring A is p-local.

Example 2.6.16. Let A be an Ey-algebra over Q. Then the p-adic completion of A
vanishes, for each prime number p. It follows that every P-divisible group G over A
admits an essentially unique preorientation, which is automatically an orientation.

Remark 2.6.17. Let A be an E-ring and let G be an oriented P-divisible group
over A. If G is étale, then A is an E-algebra over Q. To prove this, it suffices to
observe that for every prime number p, the p-divisible group G,y becomes both étale
and 1-dimensional after extending scalars to the p-completion A(Ap) of A, so we must
have A(Ap) ~ 0.

Warning 2.6.18. Let A be an E,-ring. The existence of an oriented P-divisible
group G over A guarantees that the p-completion A(Ap) is complex periodic for every
prime number p (Proposition Or.4.3.23 ). However, it does not guarantee that A itself
is complex periodic (Example 2.6.16])).
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2.7 Splitting of P-Divisible Groups

Let G be a P-divisible group over an E,-ring A. We will say that G is étale if, for
every prime number p, the p-divisible group Gy is étale (in the sense of Definition
Or.2.5.3). Equivalently, G is étale if, for every finite abelian group M, the functor

G[M]: CAlgy — S B — Mapyaq, (M, G(B))

is corepresentable by an E.-algebra which is finite and étale over A. If the p-divisible
groups G, have constant height, this condition guarantees that, after a faithfully
flat base change, we can arrange that G is actually constant (see Proposition m
below). In this section, we sketch the proof of this (and related) facts and establish
some terminology which will be useful later in this paper.

Definition 2.7.1. A colattice is an abelian group A which satisfies the following
conditions:

e The abelian group A is torsion; that is, for every element x € A, there exists a
positive integer n such that nz = 0.

e For every positive integer n, the map n : A — A is a surjection with finite kernel.

Remark 2.7.2. Let A be an abelian group. For each prime number p, we let A,
denote the localization of A with respect to the prime ideal (p) € Z. Then A is a
colattice if and only each each localization A, is isomorphic to (Q,, /Z,)", for some
integer n (which might depend on p).

Example 2.7.3. The abelian group Q /Z is a colattice.
Example 2.7.4. For every prime number p, the quotient Q, /Z, is a colattice.

Construction 2.7.5 (Constant P-Divisible Groups). Let A be an abelian group.
We let A : CAlg — Mody' denote the functor given concretely by the formula
A(B) = Hom(| Spec(B)|, A), where the right hand side denotes the set of all locally
constant functions from the Zariski spectrum | Spec(A)| into A. If A is an Ey-ring,
we will generally abuse notation by identifying A with the composition

CAlg,_, 1) — CAlg % Mody'.

When A is a colattice, this functor is a P-divisible group over A, which we will refer
to as the constant P-divisible group associated to A.
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Remark 2.7.6. Let A be an E,-ring and let A be an abelian group. Then the functor
A CAlg,_ 4y — Modyz' of Construction is the sheafification (with respect to
the Zariski topology) of the constant functor taking the value A. It follows that, if G
is any P-divisible group over A, we have a canonical homotopy equivalence

MapFun(CAlgTZO(A),Mod%n)(Aa G) ~ Mapyoq, (A, G(A)).

In particular, if A is a colattice, then we have an equivalence Mappr 4)(A, G) ~

MapModz (A, G(A))-

Definition 2.7.7. Let A be an E -ring, let G be a P-divisible group over A, and let
A a colattice. If B is an Ey-algebra over A, we say that a map p: A - G(B) is a
splitting of G over B if it induces an equivalence A — Gpg of P-divisible groups over
B.

Let p : A — G(B) be a splitting of G over B. We say that p exhibits B as a
splitting algebra of G if it satisfies the following universal property:

(x) For every E-algebra C' € CAlg,, the induced map
MapCAlgA(B> C) = Mapyea, (A, G(C))

restricts to a homotopy equivalence from Mapgy, , (B, C) to the summand of
Mapyoq, (A, G(C')) consisting fo those maps A — G(C') which are splittings of
G over C.

Note that if there exists a map p : A — G(B) which exhibits B as a splitting algebra
of G, then the E -algebra B (and the map p) are unique up to a contractible space
of choices. In this case, we will denote B by Split, (G).

Warning 2.7.8. Our terminology is slightly abusive: a splitting algebra of G (if it
exists) depends not only on G, but also on A.

For existence, we have the following:

Proposition 2.7.9. Let A be an E,-ring, let G be a P-divisible group over A, and
let A be a colattice. Then there exists a splitting algebra Split, (G) which is faithfully
flat over A if and only if the following conditions are satisfied:

(a) The P-divisible group G is étale.
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(b) Let p be a prime number and let h be the unique integer for which A, is
isomorphic to (Qp/Zp)h. Then the p-divisible group Gy has height h.

Moreover, if these conditions are satisfied, then Split,(G) can be realized as a filtered
colimit of finite étale A-algebras.

Proof. Suppose first that there exists a splitting algebra Split, (G) which is faithfully
flat over A. Since assertions (a) and (b) can be tested after faithfully flat base change,
we can replace A by Split, (G) and thereby reduce to the case where there exists a
splitting p : A — G(A). In this case, G is isomorphic to the constant P-divisible
group A, so assertions (a) and (b) are obvious.

Conversely, suppose that (a) and (b) are satisfied. For each positive integer n, let
A[n] denote the kernel of the map n: A — A), let X, : CAlg, — S denote the functor
given by the formula

X, (B) = Mapygos, (Aln], G(B)),

and let X, < X,, be the subfunctor whose value on an E,-algebra B is spanned by
those maps A[n] — Gp which induce an equivalence of finite flat group schemes
A[n] — Gpg[n]. Tt follows from (a) that the functors X,, and X are representable by
finite étale A-algebras, and from (b) that these A-algebras are faithfully flat over A.
Passing to the inverse limit over n, we conclude that the functor

B — {Splittings p: A — G(B) }

is corepresentable by an E.-algebra Split, (B) which is a filtered colimit of finite étale
A-algebras of positive degree (and is therefore faithfully flat over A). O

Remark 2.7.10. In the situation of Proposition , the splitting algebra Split, (G)
depends functorially on A, and therefore admits an action of the automorphism
group Aut(A). In fact, we can be more precise: the spectrum Spec(Split, (G)) can be
regarded as a torsor over Spec(A) (locally trivial for the flat topology) with respect to
the profinite group group Aut(A).

We will need to consider a more general notion of splitting algebra which applies
in a relative situation.

Notation 2.7.11. Let A be an E,-ring and let f : Go — G be a morphism of
P-divisible groups over A. We will say that f is a monomorphism if, for every prime
number p, the induced map f,y : Gop) — G(p) is a monomorphism of p-divisible
groups over A (in the sense of Definition Or.2.4.3). In this case, f admits a cofiber in
the co-category BT (A), which we will denote by G/Gy (see Proposition Or.2.4.8).
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Definition 2.7.12. Let A be an E,-ring, let f : Gg — G be a monomorphism of
P-divisible groups over A, and let A be a colattice. If B is an Ey-algebra over A,
we say that a map p : A — G(B) is a splitting of f over B if the induced map
A — (G/Gy)(B) is a splitting of G/Gy over B, in the sense of Definition [2.7.7]

Let p : A — G(B) be a splitting of f over B. We say that p exhibits B as a
splitting algebra of f if it satisfies the following universal property:

(x) For every E,-algebra C' € CAlg,, the induced map
MapCAlgA(B> C) = Mapyea, (A, G(C))

restricts to a homotopy equivalence from Mapgy,, (B, C) to the summand of
Mapyoq, (A, G(C')) consisting fo those maps A — G(C') which are splittings of
f over C.

Note that if there exists a map p : A — G(B) which exhibits B as a splitting algebra
of f, then the Ey-algebra B (and the map p) are unique up to a contractible space of
choices. In this case, we will denote B by Split, (f).

Example 2.7.13. Let A be an E-ring, let G be a P-divisible group over A, and
let A be a colattice. Then a morphism p : A — G(B) is a splitting of G over B (in
the sense of Definition if and only if it is a splitting of the monomorphism
f:0— G over B (in the sense of Definition . In particular, we can identify the
splitting algebra Split, (G) of Definition [2.7.7] (if it exists) with the splitting algebra
Split, (f : 0 = G) of Definition (if it exists).

Remark 2.7.14. Let A be an E,-ring, let f : G — G be a monomorphism of
P-divisible groups over A, and let A be a colattice. Then a morphism p: A — G(B)
is a splitting of f over B if and only if f and p together induce an equivalence
Gos ® A — Gp of P-divisible groups over B.

Proposition 2.7.15. Let A be an Ey-ring, let f : Gog — G be a monomorphism of
P-divisible groups over A, and let A be a colattice. Then there exists a splitting algebra
Split, (f) which is faithfully flat over A if and only if the following conditions are
satisfied:

(a) The P-divisible group G/Gy is étale.

(b) Let p be a prime number and let h be the unique integer for which Ay is
isomorphic to (Q, / Z,)". Then the p-divisible group (G/Go)) has height h.

47



Proof. As in the proof of Proposition [2.7.9] the necessity of conditions (a) and (b)
is clear. To prove that they are sufficient, suppose that (a) and (b) are satisfied.
For each positive integer n, let A[n] denote the kernel of the map n : A — A), let
X, : CAlg, — S denote the functor given by the formula

X,(B) = MapModz(A[n]v G(B)),

and let X, < X,, be the subfunctor whose value on an E-algebra B is spanned by
those maps A[n] — Gp which induce an equivalence of finite flat group schemes
Aln] — (G/Go)g[n]. Then X, and X, are representable by finite flat A-algebras,
E(b) guarantees these A-algebras are faithfully flat over A. Passing to the inverse
limit over n, we conclude that the functor

B — {Splittings p: A — G(B) of f }

is corepresentable by an E.-algebra Split, (B) which is a filtered colimit of finite flat
A-algebras of positive degree (and is therefore faithfully flat over A). m

Remark 2.7.16. In the situation of Proposition [2.7.15] every splitting of the monomor-
phism f : Gy — G determines a splitting of the quotient P-divisible group G/Gy.
In particular, the universal splitting of f is classified by a map of splitting algebras
Split, (G/Gg) — Split, (f). This map is an equivalence in the case Gy ~ 0 (Example
[2.7.13). In general, it exhibits Split, (f) as the tensor product of Split,(G/Gy) with
an auxiliary A-algebra B, where B classifies splittings of the exact sequence

0> Gyl G- G/Gy— 0.

Remark 2.7.17. Let f : Gy — G be a monomorphism of P-divisible groups over an
E,-ring A and let A be a colattice. Assume that f and A satisfy the the hypotheses of
Proposition so that there exists a splitting algebra Split, (f) which is faithfully
flat over A. Then, for any morphism of E-rings A — A’, the relative tensor product
A" ®4 Split, (f) can be regarded as a splitting algebra for the induced monomorphism
far: Goar — Gy of P-divisible groups over A'.

Applying this observation to the maps A < 750(A) — m(A), we deduce that
To(Split, (f)) can be identified with a splitting algebra for (fy, A), where fo : Gorya) —
Gy (4) is the underlying map of P-divisible groups over the commutative ring m(A).
This algebra can be characterized in terms of ordinary algebra: it is determined by
the fact that it satisfies condition (x) of Definition [2.7.12| whenever C' € CAlng( A I8
an ordinary commutative algebra over the commutative ring my(A).

48



We can summarize the situation as follows. Let f : Gy — G is a monomorphism
of P-divisible groups over an ordinary commutative ring R. Assume that the quotient
G/Gy is étale and let A be a colattice satisfying the hypotheses of Proposition
Then the splitting algebra Split, (f) is flat over R, and in particular an ordinary
commutative ring. If A is an Ey-ring equipped with an isomorphism R ~ my(A), then
every lift ]7 of f to a monomorphism of P-divisible groups over A determines a lift of
Split, (f) to a flat E,-algebra over A, given by the splitting algebra Split A(f)

2.8 Example: The Multiplicative P-Divisible Group

Recall that the strict multiplicative group G,, : CAlg — Mody' is the functor
characterized by the formula

Mapyoq, (M, Gm(A)) = Mapoa, (X7 (M), A),
where M is any abelian group.

Construction 2.8.1. Let A be an Ey-ring. We let up»(A) denote the fiber of the
canonical map

u: Gp(A) - Q®zG,(4),

formed in the co-category Mody' (that is, it is the connective cover of the usual fiber
of u). The construction A — pp»(A) then defines a functor upe : CAlg — Mod7'.

Proposition 2.8.2. The functor up» : CAlg = CAlgg — Mody' is a P-divisible
group over the sphere spectrum S (in the sense of Definition .

Proof. We must show that pp~ satisfies conditions (1), (2), and (3) of Definition [2.6.1]
Condition (1) is immediate from the definitions. For condition (2), we observe that
for any finite abelian group M, we have a canonical homotopy equivalences

MapModz(M7 pp=(A)) =~ ﬁb(MapMOdz (M, G, (A)) — MapModz<M7 Q®zGn(A))
= MapModz (M, G, (A))
= MapCAlg(Eof(M)? A)

It follows that the functor A — Mapyg, (M, up=(A)) is corepresentable by the
suspension spectrum X% (M), which is a free module over the sphere spectrum S
(of rank equal to the order |M| of the group M). Requirement (3) follows from the
observation that for any monomorphism M < N of finite abelian groups, the induced
map of suspension spectra X7 (M) — X2 (N) is finite flat. O
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Definition 2.8.3. We will refer to the functor up» : CAlg — Mody' as the multi-
plicative P-divisible group over S. If A is any E,-ring, we will abuse notation by
writing ppe for the P-divisible group (up=)4 given by the composition

CAlg, — CAlg £2% Mod$';
we refer to this composite functor as the multiplicative P-divisible group over A.

Remark 2.8.4. Let A be an E-ring and let pup» be the multiplicative P-divisible
group over A. Then, for every prime number p, the p-local component (jp=)(, can
be identified with the multiplicative p-divisible group p,» over A (see Proposition
Or.2.2.11). We therefore have a direct sum decomposition

ppe (A) ~ @Mpoo (A).

peP

Remark 2.8.5. Let A be an E,-ring and let up> be the multiplicative P-divisible
group over A. Then we have canonical homotopy equivalences

Pre(pp=) = Mapyq, (X(Q/Z), pp=(A))
~  fib(Mapyea, (3(Q/Z), Gin(A)) — Mapyq, (3(Q/Z), QRzGm(A))
~ Mapyoq, (X(Q/Z), Gn(A))
= MaPCAlg(ZfK(Q/Z 1), A).

In other words, preorientations of the multiplicative P-divisible group pp«~ are classified

by the Eq-ring X7 (K(Q/Z,1)).

Construction 2.8.6 (The Orientation of pup=). Set R = £¥7(CP*) = XY K(Z,2).
The fiber sequence of Z-module spectra

%(Q/2) 5 ¥4(Z) - 2*(Q),

and u determines a map of E-rings X7 K(Q /Z,1) — XY K(Z,2) = R, which classifies
a preorientation e : ¥(Q /Z) — pp=(R) of the multiplicative P-divisible group over
R. However, we get a bit more: there is also a tautological map e : ¥*(Z) — G,,(R)
which fits into a commutative diagram of fiber sequences

%(Q/2) —=¥*(Z) 2*(Q)

ok l

pip (R) —> G (R) —> Q®RzG(R)
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in the co-category Mody'. Here we can think of € as a preorientation of the strict
multiplicative group G,, over R, or equivalently of its formal completion G,,. This
preorientation determines a map of R-modules

we ~ R 2R

whose homotopy class determines an element 3 € my(R), represented concretely by
the composite map

5% = CP!' — CP” — Q*%°(CP%) — Q*%7(CP%) = Q*(R).

Let KU denote the periodic complex K-theory spectrum. Then there is a canonical
map of E,-rings
p: R=X7(CP*) — KU,
which carries 5 to an invertible element of 7y(KU) (in fact, it induces a homotopy
equivalence R[37'] ~ KU, by a classical theorem of Snaith; see Theorem Or.6.5.1). Tt

follows that, if we regard up~ as a P-divisible group over KU, then the preorientation
classified by the composite map

SPK(Q/Z) - S7K(Z,2) = R % KU

is an orientation (in the sense of Definition [2.6.12)). We will refer to this orientation
as the tautological orientation of pp» over KU.

Remark 2.8.7. Let A be an E,-ring and regard up» as a P-divisible group over
A. For each prime number p, let A(Ap) denote the p-completion of A. Then supplying
an orientation e of the multiplicative P-divisible group pup~ over A is equivalent to
supplying a family of orientations

€p S OrDat((upoo)A(Ap)),

where p ranges over all prime numbers, or equivalently to providing an orientation of
the formal multiplicative group G, over each A(Ap). We therefore obtain a homotopy
equivalence

OrDat(up=) ~ [ [ Mapaa (KU, Af,)) ~ Mapg,, (KU, A),

peP
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where A =[]
E-rings

sep A() denotes the profinite completion of A. The pullback diagram of

A—>A

.

Aq — Aq,
then determines a pullback diagram of spaces

Mapc (KU, A4) OrDat(up»)

| 3

MapCAlg(KU’ AQ) - MaPCAlg(KU, AQ).

It follows that KU is very close to being universal among E.-rings over which there
exists an orientation of up=. In particular, every orientation e of ppx determines
a map x(e) : KU — EQ, carrying the Bott element § € m(KU) to some element
x(e)(B) € FQ(A\Q); the orientation e can then be obtained from the tautological
orientation of Construction if and only if x(e)(53) can be lifted to an element of

WQ(AQ).

2.9 Example: Torsion of Elliptic Curves
We now consider another natural source of examples of P-divisible groups.

Construction 2.9.1. Let A be an Ey-ring and let X be a strict abelian variety over
A (Definition AV.1.5.1), which we view as a functor

CAIgT;o(A) — MOd%n .

For every object B € CAlg,_ 4), we let X[P*](B) denote the fiber of the canonical
map

u: X(B) = Q®zX(B),

formed in the oo-category Mody' (that is, it is the connective cover of the usual fiber
of u). The construction B — X[P*](B) then defines a functor X[P*] : CAlg,_ 4y —
Mody'.

Proposition 2.9.2. Let X be a strict abelian variety over an Eo-ring A. Then the
functor X[P*] of Construction is a P-divisible group over A (in the sense of

Definition .
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Proof. We must show that X[P*] satisfies conditions (1), (2), and (3) of Definition
2.6.1] Condition (1) is immediate from the definitions, while (2) and (3) follow from
the observation that for every positive integer n, the multiplication map X - X is
finite flat (of nonzero degree); see Proposition AV.6.7.3. O]

Remark 2.9.3. Let A be an E-ring and let X be a strict abelian variety over A.
Then, for every prime number p, the p-local component of X[P®] can be identified
with the p-divisible group X[p*] associated to X. We therefore have a direct sum
decomposition X[P*] ~ @, .p X[p*].

Remark 2.9.4. Let A be an E,-ring and let X be a strict abelian variety over A.
Then we have canonical homotopy equivalences

Pre(X[P”]) = Mapy,q, (2(Q/Z), X[P*](A))
fib(Mapyoa, (2(Q / Z), X(A)) — Mapyea, (2(Q/ Z), Q®z X(A))
~ MapModZ(E(Q/Z)aX(A))'

0

In other words, giving a preorientation of X[P*] is equivalent to giving a map

%(Q, /) Zy) — X(A).

Remark 2.9.5. Let A be an E-ring and let X be a strict abelian variety over A.
We define a preorientation of X to be a map of pointed spaces S* — Q% X(A), or
equivalently a map of Z-module spectra e : ¥%(Z) — X(A). Note that giving a
preorientation of X is equivalent to giving a preorientation of its formal completion.
Moreover, every preorientation e of X determines a preorientation of the P-divisible
group X[P®], given by the composition (Q /Z) — ¥2(Z) 5 X.

The following observation provides a rich supply of oriented P-divisible groups
(giving non-trivial examples in which we can apply our formalism of tempered coho-
mology).

Construction 2.9.6. Let A be an E,-ring and let X be a strict elliptic curve over
A. Recall that a preorientation e of X is said to be an orientation if it determines an
orientation of the underlying formal group X (Definition Or.7.2.7). If this condition is
satisfied, then the composite map %(Q /Z) — 3?(Z) 5 X determines an orientation
of the P-divisible group X[P®], in the sense of Definition [2.6.12]

93



3 Orbispaces

Let G be a compact Lie group. For every G-space X, we let KUZ(X) denote
the G-equivariant complex K-theory of X, in the sense of [20]. The construction
X — KU (X) determines a cohomology theory on the homotopy category of G-spaces,
which is representable by a (genuine) G-spectrum which we denote by KUg. Moreover,
these equivariant spectra are related as the group G varies: for example, if H is a
subgroup of GG, then the underlying H-spectrum of KUg can be identified with KUy.
This observation can be summarized by saying that complex K-theory is an example
of a global spectrum: it has an underlying G-spectrum KU for every compact Lie
group G, varying functorially with G (for various formalizations of this notion, we
refer the reader to [2], [4], and [19]).

The theory of tempered cohomology developed in this paper has a similar feature:
given an oriented P-divisible group G over an E-ring A, it allows us to construct a
family of {Ag i} of H-spectra (all having the same underlying spectrum A), where H
ranges over the collection of all finite groups. The construction of Ag i as a genuine
H-spectrum is somewhat subtle, and requires the assumption that G is oriented.
However, the underlying naive H-spectrum is much easier to define, and makes sense
more generally when G is a preoriented P-divisible group over A. This is already
enough information to construct a family of cohomology theories

AG .y {H-Spaces}” — {Graded abelian groups},

where H ranges over the collection of finite groups. For our purposes, it will be
convenient to assemble this collection of cohomology theories into a single functor

AL 1 OS? — {Graded abelian groups}.

Here OS denotes the co-category of functors Fun(.7°P,S), where S is the co-category
of spaces and .7 < S is the full subcategory spanned by spaces of the form BH, where
H is a finite abelian group. We will refer to the objects of OS as orbispaces and to
OS as the co-category of orbispaces.

Warning 3.0.1. Our use of the term orbispace is borrowed from the work of Gepner-
Henriques ([3]), who associate a homotopy theory of orbispaces to every family F of
topological groups. The oco-category OS that we consider here is a model for this
homotopy theory in the special case where F is the family of all finite abelian groups.
See also [18] and [7] for related discussions.
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Our goal in this section is to give a brief overview of the theory of orbispaces,
emphasizing the constructions which will play an important role in this paper. The
oo-category OS can be viewed as an enlargement of the co-category S of spaces. In
83.1], we show that every space X can be promoted to an orbispace in (at least) two
ways: we can associate to X the constant functor

X: TP 5 {X}—>S
taking the value X (Example |3.1.8)), or the functor
X g% -8 T XT

represented by X (Example . These constructions determine a fully faithful
embeddings of co-categories S — OS8, which are left and right adjoint to the “forgetful”
functor OS — S given by evaluation on the final object of 7. In general, these
embeddings are different (though they coincide on finite spaces, by a nontrivial theorem
of Miller: see Remark .

In §3.2] we review the relationship between the homotopy theory of orbispaces
and equivariant unstable homotopy theory. To every finite group G, we associate a
functor of co-categories

{G-Spaces} — OS X - X//G,

which we refer to as the orbispace quotient functor. This construction does not
lose very much information: in §3.3] we show that it induces an equivalence from
a localization of G-spaces (relative to the family of abelian subgroups of G) to the
full subcategory of OS g spanned by orbispaces X equipped with a representable
morphism X — BG() (Proposition .

In §3.4] we associate to each torsion abelian group A a functor
£ 08 - 0S.

Roughly speaking, this functor carries an orbispace X to a new orbispace £A(X) which
parametrizing maps from the classifying space BA into X which are “continuous” with
respect to the profinite topology on the Pontryagin dual group A= Hom(A,Q/Z)
(Construction [3.4.3). We will be particularly interested in the case where A =
(Q,/Z,)"; in this case, we can think of L£2(X) as a p-adic version of an iterated free
loop space, parametrizing maps from a p-adic torus into X. This construction will
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play an essential role in our discussion of character theory for tempered cohomology
(see §4.3)).

We conclude this section by establishing a connection of the theory of orbispaces
with the notion of P-divisible group introduced in Let A be an E-ring and let
G be a P-divisible group over A. For every finite abelian group H (with Pontryagin
dual group H ) the functor

(B € CAlgy) — Mapyq, (H, G(B))

is representable by a finite flat A-algebra which we will denote by OG[I?]' The
construction H — Ogp determines a functor Abgy — CAlgy, where Abg, denotes
the category of finite abelian groups. In §3.5] we show that choosing a preorientation
of G (in the sense of Definition is equivalent to factoring this functor as a
composition

Abg H=BH gov , CAlg .

see Theorem [3.5.5] In particular, every preorientation of G determines a functor
Ag 1 T°P — CAlg,: this will be the representing object for our theory of G-tempered
cohomology.

Remark 3.0.2. The notion of orbispace we consider here is defined in terms of the
oo-category 7 of classifying spaces BH, where H is a finite abelian group. Many
variants of this definition are possible: for example, we could allow all finite groups.
For our objectives in this paper, this extra generality serves no purpose. Our theory
of G-tempered cohomology already determines an H-equivariant cohomology theory
for every finite group H, whose values can be extrapolated (by the process of Kan
extension) from the case where H is abelian. Perhaps unexpectedly, this extrapolation
procedure gives rise to a theory with excellent properties, at least in the case G is an
ortented P-divisible group.

3.1 The co-Category of Orbispaces

We begin by introducing some definitions.

Notation 3.1.1. Let S denote the oco-category of spaces. For every group H, we let
BH denote the classifying space of H, which we regard as an object of the co-category
S. We let .7 denote the full subcategory of S spanned by those objects which are
homotopy equivalent to BH, where H is a finite abelian group.
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Remark 3.1.2. Let T be an object of the category .7: that is, a space which is
homotopy equivalent to BH, for some finite abelian group H. Note that the group
H is canonically determined by T it can be recovered as the fundamental group
7m1(T") (which is canonically independent of the choice of base point, because G is
abelian). Moreover, the space T' can be recovered up to homotopy equivalence as the
classifying space of H = m(T'). Beware, however, that the identification T~ BH
is not functorial: it depends on a choice of base of T. In particular, the composite
functor

T I Abg, 122 7

is not equivalent to the identity functor id ».

To avoid confusion, we will generally use the notation BH to indicate objects of
7 that are equipped with a specified base point (or in situations where it is harmless
to choose a base point), and the letter T' to denote a generic object of the co-category

.
The oo-category 7 of Notation can be described more concretely.

Remark 3.1.3. Let Group denote the category of groups (with morphisms given by
group homomorphisms). Then Group can be viewed as the underlying category of a
(strict) 2-category Group™, which can be described informally as follows:

e The objects of Group™ are groups.

e If G and H are groups, then a l-morphism from G to H in Group™ is a group
homomorphism ¢ : G — H.

o If G and H are groups and ¢, : G — H are group homomorphisms, then a 2-
morphism from ¢ to ¥ in Group™ is an element h € H satisfying ¢)(g) = hp(g)h™?
for each g € G.

Let us abuse notation by identifying the 2-category Group™ with the associated oo-
category (given by its Duskin nerve). Then the construction (G € Group®t) — (BG €
S) induces an equivalence from the co-category Group™ to the full subcategory of S
spanned by objects of the form BG. It follows that the oo-category 7 of Notation
is equivalent to the full subcategory of Group® spanned by the finite abelian
groups.

Definition 3.1.4. An orbispace is a functor of co-categories X : P — S. If X is
an orbispace, we will denote the value of X on an object T' € 7° by XT. We let

27



OS denote the oo-category Fun(.7°P,S). We will refer to OS as the co-category of
orbispaces.

Notation 3.1.5. For any orbispace X, we let |X| denote the value of X on the final
object {*} of the oco-category 7. We will refer to |X| as the underlying space of X.
The construction X — |X| determines a functor OS — S, which we will refer to as the
forgetful functor.

The forgetful functor of Notation has left and right adjoints.

Example 3.1.6. Let X be a space. For each object T'€ .7, we let X7 = Fun(T, X ) ~
Mapg(T, X) denote the space parametrizing maps from 7" into X. Then the construc-
tion T — X7 determines a functor of co-categories .7°° — S, which we can regard as
an orbispace. We will denote this orbispace by X (7).

Remark 3.1.7. The functor
S — 0S8 X XO)

does not preserve colimits in general. However, it does preserve coproducts: this
follows from the observation that each of the spaces T € .7 is connected.

Example 3.1.8. Let X be a space. We let X denote the constant functor 7P —
{X} — S. We will refer to X as the constant orbispace associated to X.

Note that, if X is any space, then the functor (7' e 7°) — (X1 € S) of Example
[3.1.6) is a right Kan extension of its restriction to the full subcategory of .7°P spanned
by the contractible space {*} ~ A°. Similarly, the constant functor X is a left Kan
extension of its restriction to the same subcategory. This immediately implies the
following;:

Proposition 3.1.9. Let X be a space and let Y be any orbispace. Then evaluation
on the final object {x} € T induces homotopy equivalences

MapOS(Y>X(_)) — Mapg([Y], X)
Mapps(X,Y) = Mapg(X, [Y]).
Corollary 3.1.10. The forgetful functor
oS —-S§ Y — Y|

has both a left adjoint (given by X — X ) and a right adjoint (given by X v~ X(7)).
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Corollary 3.1.11. Let X and Y be spaces. Then evaluation on the contractible space
{e} € T induces homotopy equivalences

Mapes(Y ), X)) = Mapg(Y, X) < Homes(Y, X).

Corollary 3.1.12. The construction X — X of Example determines a fully
faithful embedding of co-categories S — OS.

Corollary 3.1.13. The construction X — X of Ezxample[3.1.8 induces a fully faithful
embedding of co-categories S — OS.

Remark 3.1.14 (The Sullivan Conjecture). For any space X, there is a canonical map
X — X ) comparing the orbispaces of Examples [3.1.6/and [3.1.8f When evaluated on
an object T' € .7, it induces the diagonal embedding X = X© — X7. In general, this
map is not a homotopy equivalence. However, it is a homotopy equivalence when X is
finite, by deep theorem of Miller (see [16]).

Example 3.1.15 (The Yoneda Embedding). Let T" be an object of of 7. Then the
orbispace T() of Example is the functor

TP - S T' — Mapg(T',T) = Map (T, T);
represented by the object T' € 7. In other words, the composition
7 8 X=X, 08
is the Yoneda embedding for the oo-category 7.

Remark 3.1.16. Let X be an orbispace. Our use of the notation X” to indicate the
value of X on an object T' € 7P is intended to suggest a point of view: one should
view X' as a parameter space for “maps from 7T into X.” Note that this is literally

correct if we identify T' with the orbispace T(-) of Example [3.1.6} by Yoneda’s lemma,
we have a canonical homotopy equivalence XT ~ Mapyg (T, X).

3.2 Equivariant Homotopy Theory

We now give a brief review of (unstable) equivariant homotopy theory, from the
perspective we will adopt in this paper.
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Definition 3.2.1. Let G be a group and let BG denote its classifying space. If C
is an co-category, we will refer to a functor BG — C as a G-equivariant object of
C. The collection of G-equivariant objects of C can be organized into an co-category
Fun(BG, C), which we will refer to as the co-category of G-equivariant objects of C.

Remark 3.2.2. Let G be a group. For any co-category C, evaluation at the base
point = of BG determines a forgetful functor Fun(BG,C) — C. We will generally
abuse notation by not distinguishing between an object X € Fun(BG,C) and its image
X (x) € C under this forgetful functor. One should think of the functor X : BG — C
as encoding an action of G on the underlying object X (x) € C.

Example 3.2.3. Let G be a group. For any oo-category C, composition with the
projection map BG — = determines a diagonal map C ~ Fun(x,C) — Fun(BG,C).
More informally, this functor carries each object X € C to itself, equipped with the
trivial action of the group G.

Notation 3.2.4. Let GG be a group and let C be an co-category which admits small
colimits. Then the diagonal map C — Fun(BG,C) of Example admits a left
adjoint Fun(BG,C) — C. If X is an object of Fun(BG, C), we denote its image under
this functor by X,g. We refer to the construction X — X as the homotopy orbits
functor.

Notation 3.2.5. Let GG be a group and let C be an co-category which admits small
limits. Then the diagonal map C — Fun(BG,C) of Example admits a right
adjoint Fun(BG,C) — C. If X is an object of Fun(BG, C), we denote its image under
this functor by X"“. We refer to the construction X — X"¢ as the homotopy fized
point functor.

Example 3.2.6. Let Top denote the ordinary category of topological spaces. Then
the construction X — Sing,(X) determines a functor Sing, from Top (regarded as
an ordinary category) to S (regarded as an oo-category). Passing to G-equivariant
objects, we obtain a functor

{Topological spaces with a G-action} = Fun(BG, Top) — Fun(BG, S).

Let G be a group. Then the co-category Fun(BG, S) is a setting of the “naive”
version of G-equivariant homotopy theory. If X and Y are topological spaces equipped
with actions of G and f: X — Y is a continuous G-equivariant map, then f induces
an equivalence Sing,(X) — Sing,(Y") in the oo-category Fun(BG, S) if and only if it
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is a weak homotopy equivalence of the underlying topological spaces. If X and Y
are CW complexes, this implies that f admits a homotopy inverse g : ¥ — X, but
does not guarantee that we can choose g to be a G-equivariant map. To model the
“genuine” version of G-equivariant homotopy theory, one needs a variant of Definition

.21
Notation 3.2.7. Let G be a group. We define a category Orbit(G) as follows:

e The objects of Orbit(G) are right G-sets of the form H\G, where H is a subgroup
of G.

e The morphisms in Orbit(G) are G-equivariant maps.
We will refer to Orbit(G) as the orbit category of the group G.

Remark 3.2.8. Let G be a group. Then we can identify the classifying space BG
with the full subcategory of Orbit(G) spanned by the orbit G = {e}\G.

Remark 3.2.9. Let GG be a group and suppose we are given subgroups H, H' < G.
Then giving a map of right G-sets H\G — H'\G is equivalent to giving an element of
H'\G which is fixed by the right action of H. Using this observation, we can define a
category Orbit'(G) which is isomorphic to Orbit(G) as follows:

e The objects of Orbit’(G) are the subgroups H < G (corresponding to the right
G-set H\G € Orbit(G)).

e Given subgroups H, H' < G, a morphism from H to H' in Orbit’(G) is a coset
uH' € H'\G satisfying u"'Hu = H'.

e Given subgroups H, H', H” < (G, the composition of morphisms
UH/ € HOmorbit/(G) (H, H/) UH” S Homorbit/(g) (Hl, H”)
is given by uvH" € Homo,i ) (H, H")

Definition 3.2.10. Let G be a finite group. A G-space is a functor X : Orbit(G)°P —
S. We let S denote the functor co-category Fun(Orbit(G)P, S); we will refer to S¢
as the co-category of G-spaces.
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Remark 3.2.11. Let G be a finite group. Then the inclusion BG < Orbit(G) of
Remark determines a forgetful functor

S¢ = Fun(Orbit(G)?, S) — Fun(BG®, S) ~ Fun(BG, S),

which carries a G-space (in the sense of Definition to a G-equivariant object of
S (in the sense of Definition [3.2.1). Composing with the functor Fun(BG,S) — S
of Remark [3.2.2] we obtain a forgetful functor S¢ — S, given by evaluation on the
G-orbit G = {e}\G € Orbit(G).

We will often abuse notation by not distinguishing between a G-space X € Sg,
the underlying G-equivariant object X|pq, and the underlying space X ({e}\G). In
particular, if X is a G-space, then we write X} and X" for the homotopy orbit and
homotopy fixed points of the underlying G-equivariant object of S (Notation m
and Notation [3.2.5)).

Remark 3.2.12. Let G be a finite group. Then the co-category S¢ is generated,
under small colimits, by the image of the Yoneda embedding Orbit(G) — Sg. We
say that a G-space X is finite if it belongs to the subcategory generated by the image
of Orbit(G) under finite colimits.

Example 3.2.13. Let X be a topological space equipped with a continuous right
action of a finite group G. Then X determines a functor of ordinary categories

Orbit(G)? — {Topological spaces},

H\G — Homg(H\G,X) = X" = {2 e X : (Vhe H)[z" = 2]};

here Homg(H\G, X) is the set of G-equivariant maps from H\G into X (equipped
with the obvious topology). Composing with the singular complex functor

Sing, : Top — S,
we obtain a functor of co-categories
Sing¥(X) : Orbit(G)*® - S  H\G — Sing, (X),

which we can regard as a G-space in the sense of Definition [3.2.10; note that the
restriction Sing®(X)|p¢ is the G-equivariant object of S given by Example m
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Remark 3.2.14. Let G be a finite group. The construction of Example [3.2.13|induces
a functor Sing® from the ordinary category of topological spaces with a right action of
G to the oo-category S¢ of G-spaces (Definition . If f: X — Y is a continuous
G-equivariant map, then Sing,G( f) is an equivalence in the co-category S¢ if and only if|
for each subgroup H < G, the induced map X — Y is a weak homotopy equivalence
of topological spaces. In fact, one can say more: by a theorem of Elmendorff, the
functor Sing® exhibits S¢ as the co-category underlying the classical homotopy theory
of G-spaces: for example, it induces an equivalence from the homotopy category of
G-CW complexes to the homotopy category of the co-category S¢. (this is essentially
a theorem of Elmendorff; see [15]).

Notation 3.2.15. Let GG be a finite group and let Y be a G-space. For each subgroup
H < G, we let Y denote the object of S given by evaluating ¥ on the G-orbit
H\G € Orbit(G)°P. This notation motivated by Example [3.2.13; if Y = Sing¥ (X) for
a topological space equipped with a free action of G, then Y = Sing,(X#) is the
singular simplicial set of the subspace X = {z € X : (Vh e H)[z" = z]}.

We now relate the equivariant homotopy theory of to the theory of orbispaces
developed in §3.1}

Construction 3.2.16. Let G be a finite group. We let Orbit(G),, denote the full
subcategory of Orbit(G) spanned by those objects of the form H\G, where H € G
is an abelian subgroup of G. Let 7 be the co-category of Notation [3.1.1] Note
that if S ~ H\G is an object of Orbit(G)ap, then the homotopy orbit space Syq is
isomorphic to the classifying space BH, and therefore belongs to 7. Consequently,
the construction S — Spg determines a functor @ : Orbit(G)., — 7.

Let R : Sg = Fun(Orbit(G)°P, ) — Fun(Orbit(G)q}, S) be the restriction functor,
and let @, : Fun(Orbit(G)sp, S) — Fun(7°P,S) = OS be the functor given by left
Kan extension along (the opposite of) @), Then the composition @, o R is a functor
from the oo-category S¢g of G-spaces to the co-category OS of orbispaces. We will
denote the value of this functor on a G-space X by X//G, and refer to it as the
orbispace quotient of X by G.

Remark 3.2.17. Let G be a finite group and let X be a G-space. The orbispace
quotient X //G of Construction can be described more concretely by the formula
(X//GyP = (] X
a:H—G
Here H denotes a finite abelian group, and the coproduct is taken over all group
homomorphisms o : H — G.
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Example 3.2.18. Let GG be a finite group and let X be a G-space. Then the image
of X//G under the forgetful functor

0S—>8  Ye Y

is the homotopy orbit space Xjg. Consequently, for each Y € §, we have canonical
homotopy equivalences

Mapos(X//G»Y(_)) ~ Mapg(Xya,Y) ~ Mapg(X,Y)"“.

Mapog(Z, X//G) = MapS(Y, th).

In particular, we have canonical maps
X — X//G — (Xpe)D

in the co-category of orbispaces (whose composition is the comparison map of Remark
3.1.14]).

Remark 3.2.19. Let G be a finite group and let X be a G-space. Then the comparison
map X//G — (X)), when evaluated on an object BH € .7, yields a map of spaces

o:( [] X™e— ([ X" e
a:H—G a:H—G

here both coproducts are indexed by the collection of all group homomorphisms
a: H — G, and ® is comprised of individual comparison maps ®, : X™(®) — XhH

Example 3.2.20. Let GG be a finite group and let X = * be a final object of S¢
(so that X is contractible for each subgroup H < G). Then the comparison map
X//G — (Xpng)™) = BGY) of Example [3.2.18]is an equivalence of orbispaces (this

follows easily from Remark |3.2.19)).

Example 3.2.21. Let G = {e} be the trivial group. Then the co-category S can
be identified with the co-category S of spaces (via the evaluation functor X — X©).
Under this identification, the orbispace quotient construction X — X //G corresponds
to the functor X — X of Example [3.1.8]
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3.3 Representable Morphisms of Orbispaces

Let G be a finite group, and consider the orbispace quotient functor
Sg — OS X - X//G

of Construction |3.2.16| This functor fails to be an equivalence of categories for at
least two reasons:

(a) For any G-space X € Sg, our definition of orbispace quotient X //G involves
only the restriction X |Orbit(G)§§3 that is, it depends only on the fixed-point spaces
X" where H is an abelian subgroup of G, and ignores the information provided
by fixed points for nonabelian groups.

(b) The orbispace quotient functor S¢ — OS does not preserve final objects:
instead, it carries the final object of S¢ to the orbispace BG(™) associated to
the classifying space of G (Example [3.2.20). Consequently, for every G-space X,
the orbispace quotient X //G comes equipped with an additional datum, given
by a structure morphism X//G — «//G = BG).

Our goal in this section is to show that these are essentially the only differences
between S and OS. More precisely, we show that the functor X//G induces an
equivalence of co-categories

{G-Spaces X satisfying X? = & for H is nonabelian}

lw

{Representable orbispace morphisms f : Y — BG(7};
see Proposition [3.3.13| below. First, we need to introduce some terminology.

Definition 3.3.1. Let .7 be the oo-category of Notation [3.1.1] We will say that a
morphism f: Ty — T in 7 is a covering map if the induced map m (7p) — m(T) is a
monomorphism (of finite abelian groups). We let Cov(T") denote the full subcategory
of 7)p spanned by the covering maps Ty — 7.

Definition 3.3.2. Let T" be an object of 7. Then we have a canonical equivalence
of co-categories

(A OS/T(_) a FUH(T(/)%,S),
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given concretely by the formula W(X)(7Tp) = Mapos/ﬂ,) (Té_),X) (see Corollary

HTT.5.1.6.12). We will say that a morphism of orbispaces X — T(7) is repre-
sentable if the functor W(X) € Fun(7 77, S) is a left Kan extension of its restriction to
the subcategory Cov(T')°? < T3 of Definition m

Example 3.3.3. Let T" be the final object of 7. Then every orbispace X admits an
essentially unique map X — 7), which is representable if and only if the orbispace
X is a constant functor: that is, if and only if it is equivalent to the functor X of

Example [3.1.8] for some X € S.

Remark 3.3.4. Let T be an object of .7. Then the collection of representable
morphisms X — 77 is closed under the formation of small colimits (in the oo-
category OS/T(_).

Remark 3.3.5. Let T be an object of .7. Then a map of orbispaces X — T ig
representable if and only if X can be written as a colimit (in the oo-category OS p-)

of objects of the form T(f), where Ty — T' is a covering map in 7.

Remark 3.3.6. Let S — T be a morphism in the oo-category .7, and suppose we
are given a pullback square of orbispaces

X Y

T

G )

If g is representable, then f is also representable. To prove this, we can use Remarks
|3.3.4| and |3.3.5| to reduce to the case where Y has the form Téf), for Ty — T is
a covering map in .7. In this case, Remark implies that the fiber product
S <y Té_) ~ (S x7T")) decomposes as a disjoint union of finitely many objects

of the form Sé_), where Sy — S is a covering map in .7; the desired result then follows

from Remark 3.3.4]

Definition 3.3.7. Let f : X — Y be a map of orbispaces. We will say that f is
representable if, for every object T' € .7 and every pullback square

Xp——X

Tl

T(_) —_— Y’

the morphism f’ is representable (in the sense of Definition [3.3.2)).
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Example 3.3.8. Let T be an object of .7. Then a morphism of orbispaces X — 7
is representable in the sense of Definition |3.3.7]if and only if it is representable in the
sense of Definition [3.3.2] The “only if” direction is obvious, and the converse follows

from Remark 3.3.6]

Remark 3.3.9. Let Y be an orbispace. Then the collection of representable morphisms
f: X =Y is closed under small colimits in the oo-category OS v (this is an immediate
consequence of Remark since the formation of pullbacks commutes with the
formation of colimits).

Remark 3.3.10. Suppose we are given a pullback diagram of orbispaces

X ——=X

Tl

Y —=Y.
If f is representable, then f’ is representable.

Remark 3.3.11. Suppose we are given morphisms of orbispaces X Ly %z 1 f
and g are representable, then the composition go f is representable. To prove this, we
can assume without loss of generality that Z = T, for some T € .7. In this case, we
can write Y as a colimit of orbispaces of the form 7"(-), where 77 — T is a covering
map (Remark . By virtue of Remark , it will suffice to show that each of
the composite maps

X xvy 7<) (=) 5 (=)

are representable. Using our representability assumption f, we can write the fiber
product X xv T"7) as a colimit of orbispaces of the form 7", where T” — T’ is a
covering map in .7. The desired result now follows from the observation that the
composite map 7”7 — T" — T is a covering.

Lemma 3.3.12. Let G be a finite group, and let C = OS g be the smallest full
subcategory which is closed under small colimits and contains BHY), for each abelian
subgroup H < G. Then a map of orbispaces f : X — BG™) belongs to C if and only if
f is representable.

Proof. We first prove the “only if” direction. By virtue of Remark [3.3.9, it will suffice
to show that for every subgroup H < G, the map BH") — BG() is representable
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(in fact, it will suffice to prove this when H is abelian, but we will not need this).
Form a pullback diagram of orbispaces

X BH®)

b

(BH)") —— BG),

where H' is a finite abelian group. Then X = X () where X is the fiber product
BH' xpg BH. Note that X is a finite covering space of BH'. It follows that each
connected component X; of X belongs to .7, and the map X; — BH’ is a covering.
The representability of f now follows from Remark [3.3.4| (and Remark [3.1.7]).

We now prove the converse. Assume that f : X — BG(7) is representable; we
wish to show that X belongs to C. Let Jpg = 7 x5 S/pe denote the co-category
whose objects are maps u : T' — BG, where T belongs to 7. Then the orbispace
Te T ng T, Let cy/%)é - <7/BG
be the full subcategory spanned by those maps v : T — BG which are covering

BG) can be realized tautologically as the colimit lim

maps: that is, which are injective on the level of fundamental groups. Then the
inclusion ¢ : 9/‘}30& — Jpc has a left adjoint (carrying an object T' € J)pg to its
Postnikov truncation 7<¢(7"), formed in the co-topos S/p¢). It follows that ¢ is left
cofinal, so that the orbispace BG(™) can also be realized as the colimit lim,__ geov 1 =),
J/BaG
Consequently, to show that X belongs to C, it will suffice to show that the fiber
product Xy = T) x gy X belongs to C for each T € Zg’é Our assumption that
f is representable guarantees that the projection map X — T is representable,
so that we can realize Xp as a colimit of objects of the form T"), where T" — T is
a covering map. We now observe that the composite map 7" — T' — BG is also a

covering, so that T” is equivalent to BH for some abelian subgroup H < G. O

Proposition 3.3.13 ([3]). Let G be a finite group, and let % denote the full subcat-
egory of S¢ spanned by those G-spaces X such that X® = & for every nonabelian
subgroup H < G. Then the construction X — X//G determines a fully faithful
embedding

S s OS /g

whose essential image is spanned by the representable maps Y — BG(7).

Remark 3.3.14. Let G be a finite group. Then an object of S¢ = Fun(Orbit(G)?, S)
belongs to the subcategory % of Proposition [3.3.13|if and only if it is a left Kan exten-
sion of its extension to the full subcategory Orbit(G)sh < Orbit(G)°P of Construction
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3.2.16| It follows that the restriction functor X — X |orbit(G);’§ induces an equivalene of
co-categories % ~ Fun(Orbit(G)P, S). More informally, the co-category 8% models
“G-equivariant homotopy theory relative to the family of abelian subgroups of G.”

Proof of Proposition |3.3.15. By virtue of Remark [3.3.14], it will suffice to show that
the functor @) of Construction [3.2.16|induces a fully faithful embedding

Fun(Orbit(G)sp, S) — OS /pe,

whose essential image is the collection of representable maps X — BG(). This follows
immediately from the observation that () induces an equivalence of co-categories
Orbit(G)an >~ T3¢, together with the characterization of representable morphisms

supplied by Lemma [3.3.12] O]

Remark 3.3.15. The discussion of this section can be formulated in the language
of fractured oo-topoi, developed in Chapter SAG.VI.1. By definition, an orbispace is
a S-valued presheaf on the co-category .7, so the co-category OS = Fun(.7°P,S) is
an oo-topos. The collection of representable morphisms of orbispaces determines a
geometric admissibility structure on the oo-category OS (Definition SAG.VI.1.3.4.1).
It follows from Theorem SAG.VI.1.3.4.4 that we can regard OS as a fractured oo-
topos; moreover, the fracture subcategory of corporeal objects OS®“™ < OS can be
identified Fun(.7 " S); here 7" denotes the non-full subcategory of .7 whose
morphisms are covering maps Ty — 7', and the presheaf oo-category Fun(.7 VP S)
embeds as a non-full subcategory of the co-topos OS = Fun(.7°P,S) by means of left
Kan extension along the inclusion .7 V%P «— J°P,

3.4 Formal Loop Spaces

Let X € S be a space. We let £(X) = Fun(S!, X) denote the free loop space of X,
parametrizing maps from the circle S' = K(Z,1) into X. More generally, for each
integer n > 0 we can consider the iterated free loop space

£r(X) = X ifn=0
LX) iftn>0,

parametrizing maps from the torus 7" = K(Z",1) into X. Our goal in this section is
to introduce a related construction in the setting of orbispaces.
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Notation 3.4.1. The co-category of orbispaces OS = Fun(.7°P,§) is an co-topos; in
particular, it is Cartesian closed. Consequently, to any pair of orbispaces X and Y,
we can associate an orbispace Map S(Y, X) parametrizing maps from Y to X. More
precisely, the orbispace Map S(Y, X) is equipped with an evaluation map

ev:Y x Map,.(Y,X) — X

with the following universal property: for every orbispace Z, composition with ev
induces a homtopy equivalence

Map(’)8<27 Map@g(va)) = MapOS(Y X Za X)

Remark 3.4.2. Let X and Y be orbispaces. For any object T' € .7, we have canonical
homotopy equivalences
Map,s(Y,X)T =~ Mapos (T, Map,5(Y, X))
~ Mapps(Y x T, X).

Construction 3.4.3 (Formal Loop Spaces). Let X be an orbispace and let A be a
torsion abelian group. We define a new orbispace £*(X) by the formula

LX) = lim Map,,;(BAo, X);
AoCSA

here the colimit is taken over the collection of all finite subgroups A¢ < A, and
Ao = Hom(Ag, Q/Z) denotes the Pontryagin dual of Ag. We will refer to £*(X) as
the formal loop space of X with respect to A. Concretely, it is characterized by the
formula A
,CA(X)T ~ h_H)l XBAOXT'
Y=\

Example 3.4.4. Let X be an object of S and let X denote the constant orbispace
associated to X (Example [3.1.8). Then, for any torsion abelian group A, the formal
loop space £*(X) can be identified with X.

Example 3.4.5. Let G be a finite group, let X € S be a G-space. For any torsion
abelian group A, we can construct a new G-space



which is essentially characterized by the formula

yGo — L[XGO im(a);
here Gy denotes a subgroup of GG, the coproduct is taken over all continuous group
homomorphisms « : A — G which are centralized by Gy, and Gy im(«) denotes the
subgroup of G generated by G together with the image of . If X//G denotes
the orbispace quotient of X by G (Construction , then we have a canonical
equivalence of orbispaces

Lx//G) ~( [] xm@)a.

wA—G
In the special case where G is trivial, this recovers the identification of Example

Remark 3.4.6. Let A be a torsion abelian group. Then the functor £* : OS — OS
preserves small colimits. To prove this, we can assume without loss of generality that
A is finite, in which case it follows from the description of Map ,(BA, e) supplied by

Remark [3.4.2

Let X be an object of S and let X(~) be the orbispace represented by X. For any
torsion abelian group A, the underlying space of the orbispace cA (X)) is given by

the direct limit lim Ao XBAo_ taken over the collection of all finite subgroups Ag < A.

In particular, we have a canonical map of spaces | L*(X (7)) — X B[A‘, which (by virtue
of Proposition [3.1.9)) can be identified with a map of orbispaces

LANXO) - (Xl

Here X5 denotes the space Fun(B/A\, X) of all maps from the classifying space BA
into X (where we ignore the profinite topology on the group A). In good cases, this
map is an equivalence.

Proposition 3.4.7. Let X be a w-finite space (Definition and let A be a
colattice (Definition . Then the preceding construction induces an equivalence of
orbispaces LY(X (7)) — (X P,

Proof. Let T be an object of .7; we wish to show that the canonical map LAXENT -
(XBMT is a homotopy equivalence. Replacing X by X7, we can reduce to the case
where T’ is contractible. In this case, we wish to show that the canonical map

lim XB% — xBA
ApCA
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is a homotopy equivalence; here Ay ranges over the collection of all finite subgroups
of A. Decomposing X as a union of connected components, we may assume without
loss of generality that X is connected. Since X is w-finite, there exists an integer n
such that X is n-truncated. We proceed by induction on n. In the case n = 1, we can
identify X with an Eilenberg-MacLane space BG = K(G, 1) for some finite group G.
In this case, we are reduced to proving that every group homomorphism « : A—G
is continuous. This follows from our assumption that A is a colattice, since ker(«)
contains the subgroup mA < A for m = |G| (so that a factors through the Pontryagin
dual of the finite subgroup A[m] < A). To carry out the inductive step, we note that
if n > 2 then we have a pullback diagram of 7-finite spaces

X X'

L

T<n_1(X) e BG,

x

where G = m (X, z) is the fundamental group of X (with respect to some choice of
base point) and X’ — BG has homotopy fibers K (M, n + 1), where M is some finite
abelian group with an action of G. Applying our inductive hypothesis to 7<,_1(X)
and K (G, 1), we are reduced to proving that for every homomorphism « : A—G
factoring through /A\o for some finite subgroup Ag € A, the canonical map

. BA BA

@X’ 1) X poBi {a} — X% x s {o}

Ay
is a homotopy equivalence; here A; ranges over the collection of all finite subgroups of
A which contain Ag. For this, it suffices to show that the map of cohomology rings

6 : lim H*(BAy; M) — H*(BA; M);
A
is bijective; here we abuse notation by identifying the finite abelian group M with the
corresponding local system on the classifying spaces BA and BJA\I. In other words, we
are reduced to proving that the cohomology of Aasa profinite group (with coefficients
in the continuous representation M) agrees with its cohomology as a discrete group.
Decomposing M as a direct sum, we may assume that it is a finite abelian p-group for
some prime number p. Write A = A’ @ A’, where A’ is the p-local summand of A. In
this case, 6 is induced by a map
¢: lim  H*(BA;; M) — H*(BA; M)

AgnA'CA|CN
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by taking fixed points for the action of BA”. Tt will therefore suffice to prove that ¢’ is
an isomorphism: that is, we can replace A by A’ and thereby reduce to the case where
A is p-nilpotent. In this case, M admits a finite composition series whose successive
quotients carry a trivial action of the group /A\; this allows us to reduce further to the
case where M = F,. We can then identify 6 with the canonical map

lim H* (B(Z" /p* Z'); F,) — H* (BZ}: F,).

To show that this map is an isomorphism, we make the stronger claim that the pro-
system of homology groups {H,(B(Z" /p* Z"); F})},=¢ is isomorphic to H,(B Z;; F,)
as a pro-system. Using the Kiinneth formula, we can reduce to the case r = 1,
where the result follows from a simple calculation (see, for example, Proposition
SAG.E.7.5.1). O

Variant 3.4.8. Let Z = lim Z /N Z denote the profinite completion of Z. Then

then inclusion Z < Z induces a map of classifying spaces v : BZ — BZ. For any
space X, precomposition with u induces a map

XP2% , XPZ = [(X)

Y

where £(X) is the free loop space of X. We therefore have canonical maps of orbispaces

LQ/Z(X(*)) N (XBZ)(f) N £<X)(,)_

If X is 7-finite, then these maps are equivalences: the first by virtue of Proposition
[3.4.7, and the second by virtue of the fact that u induces an equivalence of profinite
completions (which follows as in the proof of Proposition using the fact that u
induces an isomorphism on cohomology with coefficients in any abelian group with an
action of Z). More generally, we have comparison maps £(@/%" (X)) — £7(X)),
which are equivalences when X is w-finite.

Warning 3.4.9. In general, the comparison map v : £/%(X)) — £(X)) of
Variant is not an equivalence. For example, if X is a finite space, then v can be
identified with the map X~ — £(X)(7) induced by the identification of X with the
subspace of £(X) given by the constant loops (this follows from Remark and
Example .

In general, the orbispace £%/ 2(x (=)) need not be of the form Y= for any space
Y. This is one of the principal motivations for allowing more general orbispaces in
our definition of tempered cohomology.
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3.5 Preorientations Revisited

Let A be an E,-ring. In we introduced the notion of a preoriented P-divisible
group over A (Definition . In this section, we explain a reformulation of this
notion which will lead directly to our theories of tempered cohomology ( and
tempered local systems (§7)).

We begin with some general observations. Assume for the moment that A is
connective, and let G be a P-divisible group over A (Definition , which we

regard as a functor
G : CAlg, — Mody'.

For every finite abelian group M, we define a functor G[M| : CAlg, — S by the
formula

G[M](B) = MapModz<M7G(B))'

The P-divisibility of G guarantees that G[M] is corepresentable by a finite flat A-
algebra that we denote by Og(ar). The construction M +— Og[ar) then determines a
functor from the category of finite abelian groups Abg to the co-category CAlg, of
Ey-algebras over A. In [§], we gave a characterization of those functors which arise in
this way:

Definition 3.5.1. Let A be an E,,-ring. We will say that a functor E : Ab,, — CAlg,
is P-divisible if it satisfies the following conditions:

(7) The functor E preserves finite coproducts: that is, it carries direct sums of finite
abelian groups .7 to tensor products in CAlg,. In particular, the unit map
A — E(0) is an equivalence.

(74) For every short exact sequence of finite abelian groups 0 — M’ — M — M" — 0,
the diagram of E.-algebras

E(M") —— E(0)

L

E(M)—— E(M")
is a pushout square. Moreover, the vertical maps are finite flat of positive degree.

We let Fun® (Abg, , CAlg,) denote the full subcategory of Fun(Abg,, CAlg,) spanned
by P-divisible functors.
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Remark 3.5.2. Let A be an E,-ring. Then there is a canonical equivalence of
co-categories BT (A) ~ Fun® (Abg,, CAlg,)°, which carries a P-divisible group G to
a P-divisible functor E which is essentially characterized by the formula G[M] ~
Spec(FE(M)). We will review this equivalence below; see also §AV.6.5.

We now introduce a variant of Definition [3.5.1l Let .7 be the oo-category of
Notation m (so that the objects of .7 are spaces of the form BH, where H is a
finite abelian group).

Definition 3.5.3. Let A be an E-ring. We will say that a functor of co-categories
A: T°P — CAlg, is P-divisible if the composite functor

Abg, M=BM, grop A Al

is P-divisible, in the sense of Definition [3.5.1f We let Fun®(.7°P, CAlg,) denote the
full subcategory of Fun(.7°P, CAlg,) spanned by the P-divisible functors.

Remark 3.5.4. Let A be an E,-ring and let A : 7°° — CAlg, be a functor. Then
A is P-divisible (in the sense of Definition [3.5.3)) if and only if the following conditions
are satisfied:

(a) For each T € 7, the spectrum A(T') is projective of finite rank as an A-module.
(b) The construction T — my(A(T")) determines a P-divisible functor

7T0(A) . yOp g CAlgﬂ'o(A) .

Every P-divisible functor A : 7° — CAlg, determines a P-divisible functor
Abg, — CAlg,, which we can identify with a P-divisible group G over A (Remark
3.5.2)). The P-divisible group G is essentially characterized by the formula

G[M] = Spec(A(BM)).

From the P-divisible group G, we can use this formula to determine the value of
the functor A on each object of the oo-category 7. However, it does not allow us
to completely reconstruct A from G, because it only determines the value of A on
base-point preserving morphisms of .7 (see Remark . To promote a P-divisible
group G to a P-divisible functor A : 7°° — CAlg,, we need to supply some additional
data. The main result of this section asserts that this additional data can be identified
with a choice of preorientation of G:
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Theorem 3.5.5. Let A be an E-ring. Then the forgetful functor
Fun® (7°P, CAlg ,)°® — Fun® (Abg,, CAlg,)? ~ BT(A)
is equivalent to a left fibration, classified by the functor
BT(A) - S G — Pre(G).

Remark 3.5.6. More informally, Theorem [3.5.5] asserts that we can identify P-
divisible functors A : 7°° — CAlg, with pairs (G, e), where G is a P-divisible group
over A and e : X(Q/Z) — G(A) is a preorientation of G.

Example 3.5.7 (The K (n)-Local Case). Fix a prime number p, and let A be an
Ey-ring which is K (n)-local for some n > 0. It follows from Theorem Or.4.6.3 that

the functor
(T e T°°) — (AT € CAlg,)

is P-divisible (in the sense of Definition . Moreover, the P-divisible group
associated to this functor is the Quillen p-divisible group G% of Construction Or.4.6.2
(essentially by definition). The equivalence of Theorem supplies a preorientation
on the Quillen p-divisible group G, which can be identified with the universal
preorientation described in Remark (this identification will be implicit in our
proof of Theorem .

Example 3.5.8 (The Trivial Case). Let G be a P-divisible group over an E,-ring A,
which we identify with a P-divisible functor E : Abg, — CAlg, (Remark [3.5.2]). We
can then define a P-divisible functor A : 7°° — CAlg, by the composition

Tl—>7;(?
—_—

Fop ,, Abg, & CAlg, .

Note that the composition of A with the map Abg, 2=2Y%, Fop is equivalent to E
(Remark . By virtue of Theorem , the functor A supplies preorientation e of
the P-divisible group G. This preorientation is given by the zero map %(Q/Z) —
G(A) (this will again be implicit in our proof of Theorem [3.5.5)).

Variant 3.5.9. Let Ag : 7°° — CAlg be any functor, and let * denote the final
object of 7. Then A = Ay(*) is an E,-ring, and Ag can be promoted to a functor of
oo-categories

A: TP = (TP), 2 CAlga, (= CAlg,.

76



Let Fun® (.7°P, CAlg) denote the full subcategory of Fun(.7°P, CAlg) spanned by those
functors Ag for which A is P-divisible, in the sense of Definition [3.5.3] Using Theorem
we can identify objects of Fun® (7P, CAlg) with triples (A, G,e) where A is
an E,-ring, G is a P-divisible group over A, and e is an orientation of G.

To prove Theorem [3.5.5] we will need to recall how the equivalence of Remark
3.5.2| is constructed. Let C be an co-category which admits finite limits. A torsion
object of C (in the sense of Definition AV.6.4.2) is a functor X : Abg) — C which
satisfies the following pair of conditions:

(a) The functor X commutes with finite products; in particular, X (0) is a final

object of C.
(b) For every short exact sequence of abelian groups 0 — M’ — M — M” — 0, the
diagram
X(M") —= X(M)
X(0) —=X(M)

is a pullback square in C. In other words, the functor X carries short exact
sequences of abelian groups to fiber sequences in C.

We let Tors(C) denote the full subcategory of Fun(Abgh, C) spanned by the torsion
objects of C.

Example 3.5.10. Let N be a Z-module spectrum. Then the construction
(M e Abg) — Mapygq, (M, N)

determines a functor Abgd — S satisfying conditions (a) and (b) above, which we
will denote by N[P*]. The construction N — N[P%] determines a functor Modz —
Tors(S). By virtue of Example AV.6.4.11, this functor restricts to an equivalence of
co-categories Modg" ™ ~ Tors(S). Here Modg ™" denotes the full subcategory of
Modz spanned by those connective Z-module spectra N whose homotopy groups are
torsion (that is, N ®z Q ~ 0).

Definition 3.5.11. Let C be an oco-category which admits finite limits. A preoriented
torsion object of C is a functor X : .7 — C with the property that the composition

M—BM X
Abgp MoBM, g X, o
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is a torsion object of C. We let PTors(C) denote the full subcategory of Fun(.7,C)
spanned by the preoriented torsion objects of C. Note that precomposition with the
functor M — BM determines a functor PTors(C) — Tors(C), which we will refer to
as the forgetful functor.

Example 3.5.12. Let A be a connective Ey-ring and set C = Fun(CAlg,,S) be the
aw-category of all functors from CAlg, to S, and let Spec : CAlg’y — C denote the
Yoneda embedding. Then composition with Spec induces a fully faithful embedding

Fun® (Abg, , CAlg, )P < Tors(C).

Unwinding the definitions, we obtain a pullback diagram of co-categories

Fun® (7, CAlg 4)°P — Fun® (Aby,, CAlg ,)°P - BT (A)
l lSpec l
PTors(C) Tors(C) = Fun(CAlg 4, Mod» ™),

where the equivalence on the bottom right is provided by Example [3.5.10]

Example 3.5.13. Let ¢ : 7 < S be the inclusion functor. Then ¢ is a preoriented
torsion object of the co-category §. Moreover, the image of ¢ under the forgetful
functor PTors(S) — Tors(S) ~ Modg ™ can be identified with the Z-module
spectrum X(Q /Z).

Remark 3.5.14. Let ¢+ : 7 — S be the inclusion functor. Then ¢ is a left Kan
extension of its restriction to the full subcategory {+#} € 7 spanned by contractible
space * ~ A", Consequently, for any functor X : .7 — S, the canonical map

Mapg, (7 s)(t, X) = Mapg(u(+), X (%)) = X (x)

is a homotopy equivalence.

If X is a preoriented torsion object of S (in the sense of Definition [3.5.11]), then
X(#) is contractible. It follows that the mapping space Mapprys)(t, X) is also
contractible: that is, ¢ is an initial object of the co-category PTors(S).

We will deduce Theorem from the following categorical fact:

Proposition 3.5.15. Lett : .7 — S be the inclusion functor, regarded as a preoriented
torsion object of S. Then the forgetful functor The forgetful functor F' : PTors(S) —
Tors(S) induces an equivalence of co-categories

PTOI"S(S)L/ - TOI"S(S)F(L)/.
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Proof of Theorem from Proposition[3.5.15. Let A be an E.-ring, which we may
assume to be connective (without loss of generality). Set C = Fun(CAlg,,S), so that
Example |3.5.12 supplies a pullback diagram o :

Fun® (7P, CAlg ,)°P BT(A)

| |

PTors(C) Fun(CAlg ,, Modg" ™).

Let ¢ € PTors(C) ~ Fun(CAlg 4, PTors(S)) be the constant functor taking the value ¢ €
PTors(S). It follows from Remark [3.5.14) that the mapping space Mapproc) (L, U(A))
is contractible for every P-divisible functor A : 7 — CAlg,. We can therefore
promote o to a pullback diagram o’

Fun® (.77°, CAlg ,)°P BT (A)

| |

PTors(C),) — Fun(CAlg 4, Mody""™).

Using Proposition [3.5.15| and Example [3.5.13 we can rewrite o’ as a pullback diagram

Fun® (77°, CAlg ,)°P BT(A)

| |

Fun(CAlg 4, Mod""®)5q z), —> Fun(CAlg 4, Modz"™),

where ¥(Q/Z) denotes the constant functor CAlg, — Modg ™" taking the value
Y(Q/Z). It follows that the upper horizontal map is equivalent to the left fibration
classified by the functor

(G e BT(4)) — MapFun(CAlgA,Modz)(Z(Q/Z)7 G) ~ Pre(G).

Proof of Proposition[3.5.15. Let ® : .7 — Abgh be the functor given by
@(T) = m(T) = Hom(my(T),Q/Z) ~ H'(T;Q/ Z).
Then ® is a left homotopy inverse of the functor
AB® —F M — BM.
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Moreover, @ is a left fibration of co-categories, classified by the functor
U:AbP -8  UM)=K(M,2).

Note that U is a torsion object of the co-category S, whose image under the equivalence
Tors(S) ~ Mody" ™™ of Example is the Z-module spectrum ¥%(Q /Z). Apply-
ing Corollary HTT.5.1.6.12, we see that ® induces an equivalence of co-categories
Fun(.7,S) ~ Fun(Abg?, S) i, which restricts to an equivalence of full subcategories
PTors(S) ~ Tors(S)r ~ (Modz"") s2(q z). Under this equivalence, the forgetful
functor

PTOI”S(S)L/ — TOIS(S)L/ ~ (Mod%n’TorS)Z(Q/z)/

corresponds to the functor

(MOdczmTors)/Z%Q/Z) N (Mod%n,TorS)E(Q/z)/

which carries a map of Z-module spectra u : M — ¥?(Q /Z) to the fiber fib(u). This
functor is an equivalence of co-categories; the inverse equivalence carries a map of
Z-module spectra v : X(Q/Z) — N to the cofiber cofib(v). O

3.6 Example: Complex K-Theory

Let KU denote the periodic complex K-theory spectrum. Then Construction [2.8.0]
supplies an orientation of the multiplicative P-divisible group pup~ over KU. By virtue
of Theorem [3.5.5] the P-divisible group pup» and its orientation can be encoded by a
functor

KU: 9% — CAlgyy

which is P-divisible in the sense of Definition [3.5.3, Our goal in this section is to
give an explicit description of this functor and to explain its relationship to the
representation theory of finite groups.

Construction 3.6.1. Let Vectg be the groupoid whose objects are finite-dimensional
complex vector spaces and whose morphisms are isomorphisms. For any space T,
we let Fun(7', Vectg) denote the groupoid of functors from 7' (or equivalently the
fundamental groupoid 7<;(T')) into Vectg. In other words, Fun(T, Vectg) is the
ordinary category whose objects are local systems of finite-dimensional complex vector
spaces on 1" (and whose morphisms are isomorphisms).
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We will be exclusively interested in the situation 7' = BG is the classifying space
of a finite group G, so that Fun(7’, Vectg) can be identified with the category of finite-
dimensional complex representations of G (with morphisms given by isomorphisms).
In this case, the standard topology on the field C determines a topological enrichment
of the category Fun (T, Vectg). Let N™(Fun(T, Vectg)) denote the homotopy coherent
nerve of Fun(T, Vectg) (as a topologically enriched category).

The formation of direct sums of complex vector spaces determines a symmetric
monoidal structure on the categories Vectg and Fun(7, Vectg), and which induces an
E-structure on the space N™(Fun(T, Vectg)). We let ku(7T) denote the connective
spectrum given by the group completion of N"(Fun(7T), Vectg,)).

The formation of tensor products of complex vector spaces determines a second
symmetric monoidal structure on the categories Vectg and Fun(T, Vectg), which
distributes over the first. This structure endows each N"(Fun(T, Vectg)) with the
structure of a commutative algebra object of the co-category CMon(S) of E..-spaces,
where we regard CMon(S) as equipped with the symmetric monoidal structure given
by the smash product of E.-spaces (see Proposition AV.3.6.1). Put more informally,
N"(Fun(T, Vectg)) is an E,-semiring space, with addition given by direct sum of
local systems and multiplication given by the tensor product of local systems. It
follows that the group completion ku(7") inherits the structure of an E-ring.

Example 3.6.2. When the space T is contractible, the E.-ring ku(7") can be identified
with the connnective complex K-theory spectrum ku =~ 757(KU) (essentially by
construction).

Remark 3.6.3. Let GG be a finite group. Then connected components of the space
N"(Fun(BG, Vectg)) can be identified with isomorphism classes of finite-dimensional
complex representations of GG. Passing to group completions, we obtain an isomorphism
mo(ku(BG)) ~ Rep(G), where Rep(G) is the complex representation ring of G.

Remark 3.6.4 (Functoriality). Let 7" and 7" be spaces which are homotopy equiv-
alent to the classifying spaces of finite groups G and G’, respectively. For any
map f : T — T’ composition with f determines a topologically enriched functor
f* : Fun(7", Vectg) — Fun(T, Vectg). This functor is compatible with the forma-
tion of direct sums and tensor products, and therefore induces a map of E,-rings
f*:ku(T") — ku(T).

In the special case where G’ is the trivial group, we obtain a map of E,-rings
ku — ku(7"), which exhibits ku(T") as an Ey-algebra over the connective K-theory
spectrum ku.
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Notation 3.6.5. Let T be a space which is homotopy equivalent to BG, for some
finite group G. We let KU(T") denote the tensor product KU ®y,ku(7). In other words,
KU(T) is the E-algebra over KU which is obtained from ku(T") by inverting the Bott
class 8 € my(ku).

Remark 3.6.6. Let G be a finite group, and let V;,...,V,, be a set of representatives
for the collection of all isomorphism classes of irreducible complex representations of
G. Then the construction

Wi, , W) = @D Vi®c Wi

1<isn

induces an equivalence of topologically enriched categories
(Vectg)™ ~ Fun(BG, Vectg).

It follows that the E,-rings ku(BG) and KU(BG) are free of rank n when regarded
as a module over ku and KU, respectively.

Remark 3.6.7. Let H be a finite abelian group, and let 0= Hom(H,Q /Z) denote
the Pontryagin dual group of H. For each A € H, we let V) denote the representation
of H whose underlying vector space is C, where H acts by the character

H— C* h — exp(2mi\).

~

The construction A —> [V3] then induces an isomorphism of commutative rings Z[H] <>
Rep(H).

For the rest of this section, we specialize Construction further to the case
where T is the classifying space of a finite abelian group (we will return to considering
nonabelian groups in §4.1). Using Remark we can regard the constructions
T — ku(T") and T'— KU(T') as providing functors

ku: .7 — CAlg,,  KU:. 7% — CAlgyy

where .7 € § is the oo-category of Notation [3.1.1]

Proposition 3.6.8. The functor ku : T°° — CAlg,, is P-divisible (in the sense of

Definition .
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Proof. Tt follows from Remark that each ku(7) is a free module of finite rank
over ku. It will therefore suffice to show that the functor

TP — CAlg, 1) T — mo(ku(T))

is P-divisible (Remark [3.5.4). Using Remarks and Remark [3.6.7], we see that
this functor is given by BH — Rep(H) ~ Z[H], and therefore agrees with the P-
divisible functor 7 °P — CAlg, associated to the multiplicative P-divisible group pp«
of Construction R.8.11 O

Remark 3.6.9 (Relationship with Construction . Applying Theorem , we
can identify the P-divisible functor ku : 7°°? — CAlg,, with a pair (G, e), where G is
a P-divisible group over ku and e is a preorientation of G. The proof of Proposition
shows that, after extending scalars along the map ku — mg(ku) ~ Z, there is a
canonical isomorphism of P-divisible groups 7 : Gz ~ up«». Since up= is Cartier dual
to the étale P-divisible group Q /Z, it has no nontrivial deformations: in particular,
Yo admits an essentially uniqumto an equivalence G ~ pup» of P-divisible groups
over ku. We can therefore identify the preorientation e with a map of E-spaces
B(Q/Z) — GL;(ku), or equivalently with a map of Ey-rings ¥X¥B(Q/Z) — ku.
Unwinding the constructions, we see that this map factors as a composition

YPB(Q/Z) - X7 CP* % ku
where p is induced by the map of E-spaces
CP” ~ BU(1) > N™(Vectg) — Q°(ku),
carrying the canonical generator of m(CP®) to the Bott class 5 € mo(ku).

Combining Proposition [3.6.8] with Remark we obtain the following:

Corollary 3.6.10. The construction KU : 7°P — CAlgyy is P-divisible (in the sense
of Definition[3.5.5). Under the equivalence of Theorem[3.5.58, it corresponds to the

multiplicative P-divisible group pup» over KU, equipped with the orientation described
in Construction [2.8.0.

4 Tempered Cohomology

We now introduce the main object of study in this paper.
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Notation 4.0.1. Let A be an E,-ring and let G be a preoriented P-divisible group
over A. We let Ag denote the P-divisible functor 7 °° — CAlg, corresponding to G
under the equivalence Theorem [3.5.5] We will denote the value of Ag on an object
T € 7 by AL. In particular, if H is a finite abelian group, we have a canonical
equivalence Spec(AZH) = G[ﬁ ], where H= Hom(H, Q/Z) denotes the Pontryagin
dual of H.

Warning 4.0.2. Let A be an E,-ring and let G be a preoriented P-divisible group
over A. Then, for any object T' € .7, there exists an equivalence

Spec(Ag) ~ G[m(T)].

Beware that this equivalence is not canonical: it depends on a choice of base point
of T' (which allows us to identify 7" with the classifying space BH for H = m(T)).
Choosing an equivalence Spec(AL) ~ G[m(T)] which depends functorially on T is
equivalent to choosing a nullhomotopy of the preorientation e : 3(Q/Z) — G(A)

(Example [3.5.8)).

Construction 4.0.3 (Tempered Function Spectra). Let A be an Ey-ring and let G
be a preoriented P-divisible group over A. Let us abuse notation by identifying the
oo-category 7 of Notation with its essential image under the Yoneda embedding

T — O8S T T,

By virtue of Theorem HTT.5.1.5.6, the functor Ag : 7°° — CAlg, admits an
essentially unique extension to a functor OS°? — CAlg, which preserves small limits
(that is, it carries colimits in the co-category of orbispaces to limits in the co-category
CAlg ). We will abuse notation by denoting this functor also by Ag; it carries each
orbispace X to an E.-algebra over A which we will denote by Ag. We will refer to
AL as the G-tempered function spectrum (parametrizing maps from X to Ag).

In the special case where X = X(7) is the orbispace represented by a space X € S,
we will denote the E,-ring Ag simply by A&.

Remark 4.0.4. Let A be an E,-ring and let G be a preoriented P-divisible group
over A. Then, for each orbispace X, the spectrum Ag is essentially determined (as a
spectrum) by the formula

QP (A%) ~ Mapes (X, Q" Ag).

Here we identify Ag with a spectrum object of the co-category of orbispaces.
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Construction 4.0.5 (Tempered Cohomology). Let A be an E-ring and let G be a
preoriented P-divisible group over A. For each orbispace X, we let Ag(X) denote the
graded-commutative ring given by the formula

AG(X) = Ty (AQ).

We will refer to A& (X) as the G-tempered cohomology ring of X.

In the special case where X = X (7) is the orbispace represented by a space X € S,
we will denote the graded ring Ag (X) by A& (X), which we refer to as the G-tempered
cohomology ring of X.

Our goal in this section is to carry out a detailed study of Constructions
and [4.0.5] We begin in with the case where A = KU is the complex K-theory
spectrum and G = ppe is the multiplicative P-divisible group (endowed with the
orientation of Construction . In this case, we will see that Construction m
reproduces equivariant complex K-theory (for finite groups). More precisely, for every
finite group G and every G-space X € S, we construct a canonical isomorphism

KUy (X) = KU, (X//G),

whose domain is the G-equivariant complex K-theory of X and whose codomain
is the pipe-tempered cohomology of the orbispace quotient X //G (Corollary [4.1.3)).
When G is abelian, this is essentially a tautology (by virtue of our description of
the orientation of up» supplied by Corollary . The extension to nonabelian
groups articulates an important feature of G-equivariant complex K-theory: it can be
formally reconstructed (by a Kan extension procedure) from its behavior with respect
to abelian subgroups of G. This observation motivates all of the constructions which
appear in this paper: in essence, we are showing that an analogous procedure gives
sensible results in other contexts (like the setting of elliptic cohomology).

Remark 4.0.6 (Equivariant Stable Homotopy Theory). Let A be an E,-ring, let G
be a preoriented P-divisible group over A, and let H be a finite group. Then the
construction

(X € Su) — Ag(X//H)

can be viewed as a cohomology theory defined on the oco-category of H-spaces Sy. It
follows formally that this cohomology theory is representable by a spectrum object
of the co-category Sy that is, by a naive H-spectrum. In [10], we will show (using
ideas developed in this paper; see that this naive H-spectrum can be promoted
to a genuine H-spectrum in the case when G is an oriented P-divisible group.
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Fix a preoriented P-divisible group G over an E,-ring A. The most essential

features of G-tempered cohomology can be summarized by the following variants of
Theorems [1.1.17, [1.1.18, and [1.1.19¢

(a)

(c)

Let X be an orbispace with underlying space |X|. Then there is a canonical ring
homomorphism

¢ Ag(X) = A*(IX]),

which we call the Atiyah-Segal comparison map (Construction . In the case
where A is K(n)-local and G is the Quillen p-divisible over A, we show that ¢
is an isomorphism (Theorem this reduces to Theorem in the case
when X is an orbispace quotient Y//H).

Suppose that the P-divisible group G splits as a direct sum Gy @ A, where A is
a colattice. In we associate to every orbispace X a canonical isomorphism

X AG(X) = AG, (L (X)),

where £*(X) denotes the formal loop space of Construction m (Theorem
4.3.2)); this reduces to Theorem [1.1.18] in the case where X is an orbispace
quotient Y//H).

Let B be an E -algebra over A, and let us abuse notation by identifying G with
the P-divisible group Gpg obtained from G by extension of scalars. For every
orbispace X, there is a tautological comparison map

0: B®j AL — BE.

This map is an equivalence when G is oriented and X is representable by a

m-finite space X (Theorem which formally implies Theorem [1.1.19| by
arguments that we will outline in .

Properties (a) and (b) are essentially formal, and we prove them in and §4.3]
respectively. Assertion (c) is much more difficult. In this section, we prove (¢) only

in the special case where X is a generalized Eilenberg-MacLane space (with abelian

homotopy groups). In this case, we will show that the tempered cohomology ring

AE(X) is a projective module of finite rank over the coefficient ring 7_,(A), which

has an explicit description in terms of the arithmetic of the P-divisible group G. We
formulate this description precisely in (Theorem [4.4.16]) and carry out the proof in
§4.5| (making essential use of properties (a) and (b), together with the main results of
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[6]). We can then verify assertion (c) by explicitly comparing the tempered cohomology
rings A& (X) and BE(X). For a more general w-finite space X, this approach breaks
down (it seems unrealistic to hope for an explicit calculation of Ag&(X) in general).
We prove (c) in general in @ as a consequence of our tempered ambidexterity theorem
(Theorem , which ultimately rests on the calculations for Eilenberg-MacLane
spaces carried out in this section.

Properties (a), (b), and (¢) have many nontrivial consequences, some of which can
be formulated without reference to the theory of G-tempered cohomology. As noted
in they can be used to recover the “generalized character theory” of Hopkins-Kuhn-
Ravenel and Stapleton (as well as the classical character theory of finite groups: see
Corollary . For these applications, we do not need the full strength of (c): it
suffices to assume that (c) holds for orbispaces X of the form BG(), where G is a
finite group. However, the full strength of assertion (c) allows us to extend the scope
of character-theoretic methods. In §4.8 we make this explicit by using (a), (b), and
(¢) to compute the rationalized Lubin-Tate cohomology of an arbitrary m-finite space
X (Corollary . As an application, we show that the Euler characteristic of X
with respect to Morava K-theory K(n) (at some prime number p) can be identified
with the number of homotopy classes of maps from the p-adic torus K(Z;,1) into X
(Corollary [4.8.6).

Throughout this section, we view the tempered cohomology theory X — A% (X)
as a construct which depends on a choice of P-divisible group G together with a
preorientation e € Pre(G. By virtue of Theorem [3.5.5] the datum of the pair (G, e) is
equivalent to the datum of the P-divisible functor

Ag: T — CAlg,

of Notation 4.0.1] Note that Constructions [4.0.3| and 4.0.5| are phrased directly in
terms of the functor Ag (rather than the P-divisible group G itself). Consequently, it

is possible to adopt a more direct approach to our theory of tempered cohomology
(circumventing the formalism of by adopting Definition as the definition
of a preoriented P-divisible group. Beware, however, that many important formal
properties of tempered cohomology (like property (¢) above) depend on the assumption
that G is an oriented P-divisible group. It is therefore desirable to have a criterion
for determining if e € Pre(G) is an orientation directly in terms of the functor
Ag : T — CAlg,. We establish three such criteria in this section, each based on
properties of the Atiyah-Segal comparison map (:

e Assume that A is p-complete. Then G is oriented if and only if A is complex
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periodic and the Atiyah-Segal comparison map
C: A?;Cpn — AB%

exhibits AP%" as the completion of Agc”" with respect to the augmentation
ideal I¢,,, = AL (BCyn), for each n = 0 (Proposition [4.2.12)). Here Cpn denotes

the cyclic group with p™ elements.

o Let A be any E,-ring. Then G is oriented if and only if, for every prime power
p" and every E-algebra B over A, the Atiyah-Segal comparison map

¢:Bg ™ — BB

exhibits BB" as the completion of Bgcp" with respect to its augmentation

ideal I, < Ag(BCyn) (Proposition |4.2.15)).

e Let A be any E,-ring. Then G is oriented if and only if, for every prime number
p, the Atiyah-Segal comparison map

¢: Ang — ABCr
exhibits the function spectrum AZ¢» as the completion of AgC" with respect
to the augmentation ideal Ic, = A% (BC,), and the Tate construction A“r is

I¢,-local (Theorem {.6.2)).

We can roughly paraphrase these results as saying that a preoriented P-divisible
group G is oriented if and only if the theory of G-tempered cohomology satisfies an
analogue of the Atiyah-Segal completion theorem in a few special cases. In we
prove a strong converse of this result: if A is Noetherian and G is oriented, then our
theory of G-tempered cohomology satisfies a version of the Atiyah-Segal completion
theorem in general (Theorem [4.9.2)).

4.1 Equivariant K-Theory as Tempered Cohomology

Throughout this section, we let KU denote the complex K-theory spectrum and
ppe the multiplicative P-divisible group over KU. We regard pup~ as equipped with
the orientation of Construction [2.8.6, so that Construction [4.0.3|supplies functors

X
X KUX | X KUE(X).
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It follows from Corollary that we have equivalences (of E-algebras over KU)
KUZPOO ~ KU(T) depending functorially on T € 7; here KU(T) is the KU-algebra
described in Notation [3.6.5] In particular, if G is a finite abelian group, then the
tempered cohomology ring Kngw (BG) can be identified with the representation ring
Rep(G). In this section, we will extend this identification to the case where G is not
assumed to be abelian. More generally, for any G-space X, we construct a canonical
isomorphism

ux : KUg(X) ~ KU} (X//G)

from the G-equivariant K-theory of X to the pupw-tempered cohomology of the
orbispace quotient X //G (Theorem [£.1.2)). The existence of the isomorphism wux is
more or less tautological in the case where G is abelian; the extension to non-abelian
groups G will use the technique of complez-oriented descent appearing in the work of
Hopkins-Kuhn-Ravenel ([5]).

Let G be a finite group (not necessarily abelian), which we regard as fixed for the
remainder of this section. We begin with a brief review of G-equivariant complex
K-theory (see [20] for a more detailed exposition). For every G-space X, we let
KUZ(X) denote the graded ring given by G-equivariant complex K-theory of X. We
then have an isomorphism KU%(X) ~ 7_,(KUg), where KUy is an E-algebra over
KU which we will refer to as the G-equivariant complex K-theory spectrum of X.
This construction has the following properties:

(a) The construction X — KUy determines a functor of oo-categories S& —
CAlgky, where Sg denotes the co-category of G-spaces (Definition [3.2.10)).
Moreover, this functor carries small colimits in S¢ to small limits in CAlgyy.

(b) Let Orbit(G) denote the category of G-orbits, which (by slight abuse of notation)
we identify with a full subcategory of S¢. Then the composite functor

XHKg

Orbit(G)® — S¥ CAlgyy,

is given by the construction X — KU(X},q); here X, denotes the homotopy
orbit space of X by the action of G and KU(X}¢) is the E-algebra of Notation
In particular, when X = H\G is the quotient of G by a subgroup H < G,

we have equivalences

KU} ~KU(BH)  KU%(X) ~ Rep(H).
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(c¢) Let X be a topological space equipped with a continuous action of G, and let us
abuse notation by identifying X with the G-space Sing®(X) € S¢ described in
Example |3.2.13] Then there is a canonical map of sets

{G-equivariant complex vector bundles on X }/isomorphism — KUg(X).

& [&]

If X is a finite G-space, then this map exhibits KU%(X) as the Grothendieck
group of the commutative monoid of isomorphism classes of G-equivariant
complex vector bundles on X.

(d) Let X be a topological space equipped with a continuous action of G, let & be a
G-equivariant complex vector bundle of rank r over X, and let Y = P (&) denote
the projectivization of &, so that we have a G-equivariant map 7 : ¥ — X
which exhibits Y as a fiber bundle over X (whose fibers are homeomorphic to
the complex projective space CP"~!). We then have a tautological short exact

sequence
0— O(-1) > & — 2 — 0

of complex vector bundles on Y, where O(—1) has rank 1. For each integer
d € Z, let O(d) denote the (—d)th tensor power of O(—1). Let us abuse notation
by identifying X and Y with the G-spaces Sing% (X ) Sing(Y) € S¢ of Example
3.2.13| Then the elements {[O(d)]}o<a<, form a basis for KU;(Y) as a graded
module over KUZ(X).

Remark 4.1.1. The functor X — KUy is characterized by properties (a) and (b)
above: it follows formally that the functor KU(GT ) can be obtained as a right Kan
extension of the functor

Orbit(G)®? — CAlgyy X — KU(X)e)

along the Yoneda embedding Orbit(G)? — SZ. From this perspective, one can
obtain the comparison map

{G-equivariant complex vector bundles on X} /isomorphism — KUg(X)

of (¢) by formulating a more refined statement at the level of classifying spaces, and
formally extending from the case where X is a G-orbit. The fact that, in good cases,
this map exhibits KUZ(X) as the Grothendieck group of complex vector bundles on X
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requires additional effort: in essence, one must show that these Grothendieck groups
satisfy a form of excision ([20]). For our purposes here, this more refined statement
is unnecessary: the construction & — [&] is needed only to formulate property (d)
(which follows from the fact that equivariant complex K-theory admits a good theory
of Chern classes).

We can now formulate the main result of this section.

Theorem 4.1.2. Let G be a finite group and let X be a G-space. Then there is a
canonical equivalence

KU ~ KUX/“
Here X //G denotes the orbispace quotient of X by the action of G (Construction
3.2.16), and KUffF{éOG is the tempered function spectrum of Construction |4.0.5.

Corollary 4.1.3. Let G be a finite group and let X be a G-space. Then there is a
canonical isomorphism of graded rings KU (X) ~ KU (X//G).

Example 4.1.4. Let G be a finite group. Applying Corollary in the case where
X is a single point (and restricting to degree zero), we obtain a canonical isomorphism
Rep(G) = KU,,__ (BG).

Proof of Theorem[4.1.9 Let Orbit(G),, denote the full subcategory of Orbit(G)
spanned by G-orbits of the form H\G, where H < G is abelian. Let us abuse
notation by identifying Orbit(G),, with its image under the Yoneda embedding
Orbit(G) — Sg. When X belongs to Orbit(G)ap,, the homotopy X, is an object of
the oo-category .7 (which represents the orbispace quotient X //G), so property (b)
and Corollary provide a canonical equivalence

uy : KUS ~ KU(X)g) ~ KUX/G

Hpo

Note that the functor

S¥ - CAlgy, X — KUX/G

Hpoo

is a right Kan extension of its restriction to Orbit(G).p. Consequently, the construction
X — ux admits an essentially unique extension to a natural transformation uy :
KUé — KUZZ ZCG defined on the entire co-category Sg. We will complete the proof by
showing that ux is an equivalence, for all X € Sg.

The construction X — wux carries colimits in Sg to limits in the co-category
Fun(A', CAlgyy). It will therefore suffice to show that uy is an equivalence in the
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special case where X is a G-orbit. Suppose otherwise: then there exists some subgroup
H < G for which the map ug\ ¢ is not an equivalence. Among such subgroups, choose
one for which the cardinality |H| is as small as possible. The group H cannot be
abelian, and therefore admits an irreducible representation V' of dimension larger
than 1. Then we can identify V' with a G-equivariant vector bundle & on the orbit
X = H\G. Let Yy = P(&) denote the projectivization of the complex vector bundle
& (regarded as a topological space with an action of G), and let us abuse notation by
identifying Y, with the object Sing®(Y;) € S¢ given in Example [3.2.13] Let Y, denote
the Cech nerve of the projection map Yy — X. We then have a commutative diagram
of E -algebras over KU

KUy ux KU,...(X//G)

Tot(uvy,)

Tot(KUY) Tot(KU)2//).
We will obtain a contradiction by showing that the vertical maps and lower horizontal
map in this diagram are equivalences:

e It follows from property (d) above that KUY is a faithfully flat KUg-algebra
and that KUé‘ is the cosimplicial KUé{—algebra given by the iterated tensor
powers of KUéO. Consequently, the map v is an equivalence virtue of faithfully
flat descent.

e Note that the simplicial orbispace Y,//G can be identified with the Cech nerve
(formed in the co-category of orbispaces) of the canonical map 7 : Yy //G — X //G.
Consequently, to show that w is an equivalence, it will suffice to show that =
is an effective epimorphism of orbispaces. Equivalently, we must show that for
every abelian subgroup A € G and every point x € X which is fixed by A, we can
choose a point y € Yy lying over x which is fixed by A. Without loss of generality,
we may assume that x € H\G is the identity coset, so that A is an abelian
subgroup of H. In this case, the existence of the point y € Y is equivalent to
the existence of a 1-dimensional complex subspace L € V' which is fixed by the
action of A. This is clear: our assumption that A is abelian guarantees that the

representation V' decomposes as a direct sum of 1-dimensional representations
of A.
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e To show that the lower horizontal map is an equivalence, it will suffice to show
that the map uy, is an equivalence for each £ > 0. Writing Y}, as a colimit of
G-orbits of the form H'\G, we are reduced to the problem of showing that un¢
is an equivalence whenever there exists a fixed point y € YkH/. Let x denote
the image of y in the orbit X = H\G. Replacing H' by a conjugate subgroup,
we may assume that z is the identity coset, so that H' is a subgroup of H. It
follows from our minimality assumption that H' = H. In this case, the existence
of a fixed point y € Y}/ lying over the identity coset x € H\G implies that V/
contains a 1-dimensional complex subspace L € V' which is invariant under the
action of H. Since the representation V is irreducible, it follows that L =V,
contradicting our assumption that V' has dimension > 1.

]

Remark 4.1.5. It follows from Theorem that, when specialized to the mul-
tiplicative P-divisible group over KU, our theory of tempered cohomology can be
used to reconstruct the equivariant complex K-theory as a naive G-spectrum: that is,
as a cohomology theory defined on the homotopy category of G-spaces. To recover
equivariant complex K-theory as a genuine G-spectrum, there is additional work to
be done: essentially, one must show that the equivalence KU)G( o KUffP/ éOG behaves
functorially not only with respect to pullback, but also with respect to transfers. We
will return to this point in [I0] (see for a discussion of transfer maps in the setting
of tempered cohomology).

4.2 Atiyah-Segal Comparison Maps

Let G be a finite group and let X be a finite G-space. Then every G-equivariant
vector bundle on X determines a vector bundle on the homotopy orbit space X¢.
This construction determines a map of K-groups

KUY (X) — KU%(Xy0),

which is the subject of Atiyah’s completion theorem (Theorem . In this section,
we describe a variant of this construction in the more general setting of tempered
cohomology, and prove a weak version of Atiyah’s theorem (Proposition ; for a
stronger statement, we refer the reader to §4.9

Let A be an E,-ring. For any space X, we let A% denote the function spectrum
of (unpointed) maps from X into A. The construction X — A% determines a functor
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of co-categories S — CAlg,, which is determined (up to a contractible space of
choices) by the requirement that it preserves small limits and carries the one-point
space = to A (Theorem HTT.5.1.5.6). If G is a preoriented P-divisible group over A,
then the functor X — Aé has the same properties. This proves the following:

Proposition 4.2.1. Let G be a preoriented P-divisible group over an Ey -ring A.
Then, for any space X, we have a canonical equivalence Aé ~ AX of E-algebras over
A; here X denotes the constant orbispace associated to X (Ezample . Passing to
homotopy groups, we obtain a canonical isomorphism of graded rings A& (X) ~ A*(X).

We now exploit Proposition to compare our theory of G-tempered cohomology
with the usual cohomology theory represented by A.

Construction 4.2.2 (The Atiyah-Segal Comparison Map). Let A be an E-ring and
let G be a preoriented P-divisible group over A. Let X be any orbispace, and let
X = |X| denote its underlying space. Then the canonical map of orbispaces X — X
induces a map of E-algebras ¢ : AS — AX|. Passing to homotopy groups, we obtain
a map of cohomology rings Ag (X) — A*(|X]|), which we will also denote by ¢. We will
refer to both of the maps

CAG =AM AG(X) — A(IX])

as the Atiyah-Segal comparison map.
In particular, for every object X € S, the canonical map of orbispaces X — X ()
induces Atiyah-Segal comparison maps

¢ AL — A ¢ AL(X) = A*(X).

Example 4.2.3. Let X be a finite space. Then the canonical map X — X(7) is an
equivalence of orbispaces (by Miller’s theorem; see Remark . It follows that, for
any preoriented P-divisible group G over an E-ring A, the Atiyah-Segal comparison
map (¢ : Ag(X) — A*(X) is an isomorphism.

Example 4.2.4. Let G be a preoriented P-divisible group over an E-ring A. If H
is a finite group and X is an H-space, then we have canonical maps of orbispaces
Xy — X//H > X ,(J{), which induce comparison maps

AGH — AG = A NG (Xo) = AG(X//H) S A (X
We have the following result (which contains Theorem [1.1.17] as a special case):
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Theorem 4.2.5. Fix a prime number p and a positive integer n. Let A be an E-ring
which is K (n)-local, and let G = G§ be the Quillen p-divisible group of A (see .
Then, for every orbispace X, the Atiyah-Segal comparison map ¢ : AL — AXl is an
equivalence of Ey-algebras over A, and therefore induces an isomorphism of graded
rings ¢ : Ag(X) =~ A*(|X]).

Proof. Note that the functor
OS® — Fun(A',CAlg,) X ((: AL — AY)

preserves small limits. Since the oo-category of orbispaces is generated (under small
colimits) by the image of the Yoneda embedding 7 — OS, it will suffice to prove
Theorem in the special case where X = BH(7) is the classifying space of a finite
abelian group H. In this case, the desired result is immediate from the construction
G¢ as an oriented p-divisible group (see Example . ]

Theorem has an analogue at height zero:

Variant 4.2.6. Let A be an Ej-algebra over Q and let G = 0 be the trivial P-
divisible group over A (so that G admits an essentially unique preorientation). Then,
for every orbispace X with underlying space |X|, the Atiyah-Segal comparison map
¢ : AL — AXis an equivalence of E-algebras over A, and therefore induces an

isomorphism of graded rings ¢ : AL (X) ~ A*(|X]).

Proof. As in the proof of Theorem , we can reduce to the case where X = T(7) is
representable by an object T'€ 7. In this case, we are reduced to showing that the
unit map A*({x}) — A*(T) is an isomorphism. This is clear, since A is an E-algebra
over Q and the space T is rationally acyclic. O]

The terminology of Construction |4.2.2| is motivated by the special case where
A = KU is the complex K-theory spectrum and G = pup« is the multiplicative
P-divisible group over A, endowed with the orientation of Construction If
G is a finite group and X is an G-space, then the Atiyah-Segal comparison map
¢ AL(X//G) — A*(]X//G|) can be identified with the map KUZ(X) — KU (Xyq)
appearing in Theorem [1.1.5, When X is a finite G-complex, this map exhibits
KU*(Xne) as the completion of KU (X) with respect to the augmentation ideal in
the representation ring Rep(G). We will show in that an analogous phenomenon
occurs for any oriented P-divisible group, at least when A is Noetherian (Theorem
. For the moment, we consider only the special case where G is abelian and X is
a single point, in which case the Noetherian assumption on A is unnecessary.
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Notation 4.2.7. Let A be an E-ring, let G be a preoriented P-divisible group over
A, and let H be a finite group. Then the canonical map EH — BH determines a
surjective ring homomorphism

AL(BH) — AL(EH) ~ my(A).

We will denote the kernel of this homomorphism by Iy and refer to it as the augmen-
tation ideal of the commutative ring AL (BH).

Note that if the group H is abelian, then AL (BH) is a projective module of finite
rank as a module over my(A). In this case, the augmentation ideal Iy is also projective
of finite rank as a module over m(A); in particular, it is finitely generated.

Proposition 4.2.8. Let A be an K -ring, let G be an oriented P-divisible group
over A, and let H be a finite abelian group. Then the Atiyah-Segal comparison map
ABH — ABH exhibits the function spectrum AP as the Ig-completion of ABE, where
Iy is the augmentation ideal of Notation[4.2.7

The proof of Proposition will require some preliminaries.

Notation 4.2.9. Let G be a preoriented P-divisible group over A. Let f: A — B be
a morphism of E,-rings, and let Gg denote the preoriented P-divisible group over B
obtained from G by extending scalars along f. For every orbispace X, we will denote
the E-ring BéB of Construction Construction simply by Bg, and we denote the
G p-tempered cohomology ring Bg  (X) simply by Bg(X). In the special case where
X = X for some space X (Example , we denote BE and BE(X) by B& and
BE(X), respectively.

Remark 4.2.10. Let G be a preoriented P-divisible group over an E -ring A, and
let B be an E-algebra over A. For any orbispace X, we have a canonical map of
A-modules A& — Bg, which extends to a B-linear map 0x : B®4 A& — Bg. Then:

(a) If T is an object of 7, then the map 67 : B®a AL — BE is an equivalence.

(b) If B is perfect as an A-module, then the map Ox : B ®4 AL — B is an
equivalence for every orbispace X.

Assertion (a) is immediate from the definition of the P-divisible group Gp. Assertion
(b) follows from (a) by writing the orbispace X as a colimit of representable orbispaces.
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Lemma 4.2.11. Let G be an preoriented P-divisible group over an Ey-ring A. Then,
for every orbispace X, the functor

CAlg, — CAlg, B — B
preserves small limits.

Proof. Writing X as a colimit of representable functors, we may assume that X = BH ()
for some finite abelian group H. In this case, Remark implies that for each
B e CAlg,, the comparison map

p: B®a A — Bg

is an equivalence. The desired result now follows from the observation that AZH is
a finite flat A-module (representing the functor Mapy,q, (H, G(e)), where H is the
Pontryagin dual of H). O

Proof of Proposition[.2.8. Let B be an E,-algebra over A. We will say that B is
good if the Atiyah-Segal comparison map (p : B&" — BB exhibits BPH as the
Ig-completion of BE! (in other words, B is good if Proposition is true after
replacing A by B; note that the augmentation ideal of B&(BH) is generated by the
image of Iy). Note that the construction B — (g preserves small limits (Lemma
. It follows that the collection of good objects of CAlg, is closed under small
limits. We will prove that every object B € CAlg, is good.

The proof proceeds in several steps. Let m = |H| denote the order of the finite
group H. We first treat the case where m is invertible in B. In this case, the classifying
space BH is acyclic with respect to the spectrum B: that is, evaluation at the base
point of BH induces an equivalence B” ~ B. Tt follows that we can identify the
comparison map (p with the augmentation map € : BE¥ — B. Since |H| is invertible
in mo(B), BEY is an étale B-algebra, so that € is the projection onto a direct factor
and the result is clear.

Now let B be an arbitrary E.-algebra over A. For each prime number p which
divides n = |H|, let B, denote the p-completion of B. We then have a pullback
square

B [ Tom By

| |

Bl ] — (I m Bl
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where the algebras on the bottom left and bottom right are good by virtue of the
previous step. Consequently, to show that B is good, it will suffice to show that each
completion B, is good.

Replacing A by B(,, we are reduced to proving Proposition in the special
case where A is p-complete for some prime number p. Our assumption that G is
oriented guarantees that A is complex periodic and that the identity component of
G ) is the Quillen formal group. For each integer n, let 34 denote the nth Landweber
ideal of A (Definition Or.4.4.11). Note that there exists an integer n > 0 such that
Ais 74 +1-local (for example, if n is an upper bound for the height of the p-divisible
group Gy, then we have J2,, = m(A)). We proceed by induction on n, the case
n = 0 being trivial (since J2,, = (p)). Let A denote the JA-completion of A, let B
denote the J7-localization of A, and let B denote the J/-completion of B. Then we
have a pullback square

1
B——~B ,

where B and B are good by virtue of our inductive hypothesis. Consequently, to
show that A is good, it will suffice to show that Ais good. Replacing A by /Al, we are
reduced to proving Proposition m in the special case where A is J4 -local and
J4-complete: that is, when A is K (n)-local as a spectrum (see Theorem Or.4.5.2).
If Ais K(n)-local, then the orientation of G supplies a short exact sequence of
p-divisible groups
0— G — Gy — G —0,

where G” is étale. In this case, the Atiyah-Segal comparison map ¢ : AZH — ABH =
Ag%{ is given by the projection onto a direct factor, where the complementary factor

is Ir-local. We are therefore reduced to proving that the function spectrum AP is
Ig-complete as a module over AZH.

Let C be the full subcategory of (OS),py-) spanned by those maps f : X — BH®)
for which the induced map A7 — AY exhibits A as an Iy-complete module over
ABH . We wish to show that C includes the tautological map BH — BH). In fact,
we claim that C contains every object of the form f : X — BH(), where X is a
space. Writing X as a homotopy colimit of contractible spaces, we can reduce to
the case where X is contractible, in which case f is equivalent to the base point
inclusion {*} — BH. We are therefore reduced to proving that the augmentation map
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€ : AB" — A exhibits A as an Iy-complete module over AZ¥ | which is immediate
from the definition. O

In the statement of Proposition [4.2.8] the assumption that G is oriented cannot
be omitted. For example, if the preorientation ¥(Q, /Z,) — G(A) is nullhomotopic,
then the Atiyah-Segal comparison map factors as a composition AZ# 5 A — ABH
which cannot exhibit AP as the Iy-completion of AZH except in the trivial case
where the order of H is invertible in A. More generally, we will show that a preoriented
P-divisible group which satisfies Proposition 1.2.§] (in a sufficiently strong form) is
automatically oriented (see Proposition below). We begin by analyzing the
p-complete case.

Proposition 4.2.12. Let p be a prime number, let A be a p-complete E,-ring, and
let G be a preoriented p-divisible group over A. Then G is oriented if and only if the
following conditions are satisfied:

(1) The Ey-ring A is complex periodic.
(2) For every integer n = 0, the Atiyah-Segal comparison map

(1 Ag™ — ABGn

exhibits ABS»" as the completion of A(B;C"n with respect to the augmentation ideal

Ic,..
The proof of Proposition will require some algebraic preliminaries.

Lemma 4.2.13. Let R be a connective Ey-ring, let M be an R-module which is
n-truncated, and let M} denote the completion of M with respect to some finitely
generated ideal I < mo(R). Suppose that, locally on | Spec(R)|, the ideal I can be
generated by < d elements. Then M} is (n + d)-truncated.

Proof. Choose elements ty,...,t,, € mo(R) which generate the unit ideal, having the
property that each I[t; '] < mo(R[t;']) is generated by < k elements. For nonempty
subset S < {1,...,m}, let Rg be the R-algebra obtained by inverting the elements
{ti}ics, and set Mg = Rg®gr M. Then M can be realized as the limit lim Mg, so the
I-completion of M is given by lim (Mg)7. It will therefore suffice to show that each
(Msg)7 is (n + k)-truncated. Since Rg is flat over R, the module Mg is n-truncated.
We can therefore replace R by Rg and M by Mg, and thereby reduce to the case
where I is globally generated by < d elements. In this case, the desired result follows
from Proposition SAG.11.4.3.4.4. O]
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Lemma 4.2.14. Let R be a p-complete commutative ring and let G be p-divisible
group over R for which the identity component G° has dimension d = 0. Fix an
integer n > 0, and write G[p"] = Spec(H), where H is a Hopf algebra which is finite
flat over R. Then the augmentation ideal of H is locally generated by < d elements.

Proof. Note that the augmentation ideal I < H is a projective R-module of finite
rank, and is therefore finitely generated as an H-module. It will therefore suffice to
show that, for any maximal ideal m < H, the ideal [, £ H, is generated by < d
elements. Set n = m N R, so that n is a maximal ideal of R. By Nakayama’s lemma, it
will suffice to show that the quotient I,/nly, is generated by < d elements as a module
over Hy/nH,. We may therefore replace R by the residue field £ = R/n and thereby
reduce to the case where R = k is a field. If I # m, then I, is the unit ideal in H,,
and there is nothing to prove. Otherwise, we have I = m. By Nakayama’s lemma,
it will suffice to show that the quotient I/mI = I/I? has dimension < d as a vector
space over k. This is clear, since I/I? can be identified with the Zariski cotangent
space of the formal group G°. O]

Proof of Proposition[4.2.13 Let Abe a p-complete E,-ring and let G be a preoriented
p-divisible group over A. If G is oriented, then conditions (1) and (2) are satisfied

by virtue of Propositions [2.5.6| and [4.2.8] respectively. For the converse, assume
that (1) and (2) are satisfied; we wish to show that G is oriented. Let G denote
the Quillen formal group A (Construction Or.4.1.13) and let G° be the identity
component of G (Definition Or.2.0.10), so that the preorientation of G can be
identified with a map of formal groups e : (A}% — G°; we wish to show that e is an

equivalence (Proposition Or.4.3.23). Let us abuse notation by identifying G% and
G° with formal groups over the connective cover 7-0(A). Then the underlying formal
hyperplanes of @Q and G° can be written as Spf (Oég) and Spf(Og-), respectively,
where Og ao and Ogo are connective adic E-algebras over 7-¢(A). Then e induces a
map e* OGO — OG% and we wish to show that e* is an equivalence of E-algebras
over Tso(A) (it is then automatically a map of adic E-algebras, since the topologies
on my(Oge) and WO(OG%) are determined by their augmentation ideals). For each
n = 0,let I(n) = Ic , denote the augmentation ideal in the tempered cohomology ring

AL(BCyn), and let (T>0(A(B;C ""))im) denote the I(n)-completion of 7-0(AZ"). Then
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e* fits into a commutative diagram of E-algebras

*

Oc ¢

|

lim (Too(Ag ™)) fy — Lim 7=0(AP%")

T>O(ACPOO)

where the inverse limits are formed in the co-category CAlg?? | 4, the left vertical map
is an equivalence by the construction of G°, the right vertical map is an equivalence
by virtue of our assumption that A is p-complete, and the bottom horizontal map can
be realized as a limit (indexed by nonnegative integers n) of the composite maps

BCpn\ A (n) BCpyn\ A ¢(n) "
(T=0(Ag ))I(n) = m0((Ag " )I(n)) - Tzo(ABCp ),
where each ((n) is induced by the Atiyah-Segal comparison map determined by the
preorientation e and is therefore an equivalence by virtue of assumption (2). Lemma
4.2.14] guarantees that there exists an integer d » 0 such that each of the ideals I(n)

is locally generated by at most d elements, so that the completion (rg_l(Ang")) )

is (d — 1)-truncated (Lemma {4.2.13]). Using the fiber sequence
BCprny A BCynn A BCyn\\ A
(T20(Ac ™" Niwmy = (Ag " i) = (T<=1(Ag " ) ()

we deduce that p(n) induces an isomorphism on homotopy groups in degrees > d.
Passing to the inverse limit over n, we conclude that the map

e*: Ogo — Oé% = 750(A°F7)

induces an isomorphism on homotopy groups in degrees > d, and therefore in all
degrees (since A is assumed to be complex periodic, and both Og- and (’)G% can be
realized as the duals of projective modules over T>¢(A)). O

We now prove a variant of Proposition |4.2.12] where we do not assume that the
E,-ring A is complex periodic or p-complete.
Proposition 4.2.15. Let G be an preoriented P-divisible group over an Ey-ring A.
Then G is oriented if and only if it satisfies the following condition:

(x) For every prime power p™ and every Ey-algebra B over A, the Atiyah-Segal

comparison map

C:Bgcp” _ BBCpn

exhibits BPC as the completion of Bgc”n with respect to the augmentation ideal

Io,.
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Remark 4.2.16. The statement of Proposition[4.2.15]is potentially confusing, because
it does not specify whether we view the ideal Ic, as an ideal of the tempered
cohomology ring A& (BCjn) or the tempered cohomology ring B (BC)»). However,
this does not matter: the augmentation ideal of B&(BC,n) is generated by the image
of the augmentation ideal of AL (BCjn).

Remark 4.2.17. We will prove another variant of Proposition 4.2.15[ in (see

Theorem {4.6.2).

Proof of Proposition[f.2.15. If G is oriented, then it remains oriented after extending
scalars along any map A — B, and therefore satisfies condition () by virtue of
Proposition . Conversely, assume that (x) is satisfied; we wish to show that G is
oriented. Without loss of generality, we may assume that A is p-complete. Let G°
denote the identity component of the p-divisible group G,). Factoring A as a direct
product, we may assume without loss of generality that the formal group G° has some
constant dimension d. Suppose first that d # 1. In this case, we claim that the E-ring
A vanishes. Let MP denote the periodic complex bordism spectrum, let B denote the
smash product MP ®gA, and let B denote the p-completion of B. Then Bis complex
periodic, so the preoriented p-divisible group G(p) 5 1s oriented by virtue of Proposition

. Consequently, after extending scalars from A to B , the formal group G° is
equivalent to the Quillen formal group of B , and therefore has dimension 1. It follows
that the ring spectrum B vanishes. Set M = cofib(p : A — A) and let End 4 (M) denote
the algebra of endomorphisms of M. Then M ®4 B ~ cofib(p : B — B) vanishes,
so that Endg(M ®4 B) ~ MP ®g End (M) vanishes. It follows from the nilpotence
theorem that End4 (M) ~ 0, so that M ~ 0 and therefore the map p: A — A is an
equivalence of A-modules. Since A is assumed to be p-complete, we conclude that
A ~ 0 as desired.

We now treat the case where d = 1. Let w = wge denote the dualizing line of the
formal group G° (Definition Or.4.2.14), and let 3 : wg — X 7%(A) denote the Bott
map associated to the preorientation of G (Construction Or.4.3.7). We wish to show
that § is an equivalence. Let N denote the tensor product M ®4 cofib(3), where M
is defined as above. Since G(p) 7 is oriented, the tensor product B Qs N ~B®AN
vanishes. In particular, the endomorphism algebra Endg(B®a N) ~ MP ®g End 4 (V)
vanishes. Invoking the nilpotence theorem again, we conclude that End4 (V) ~ 0, so
that N ~ 0. By construction, we have a cofiber sequence of A-modules

cofib(3) &> cofib(3) — N,
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so multiplication by p induces an equivalence from cofib(3) to itself. However, the
cofiber cofib(3) is a perfect module over the p-complete E,-ring A, and is therefore
p-complete. It follows that cofib(/3) vanishes, so that the Bott map 3 : wg — L 7%(A)
is an equivalence. O]

4.3 Character Isomorphisms

Let A be an Ey -ring and let G be a preoriented P-divisible group over A. Our
goal in this section is to describe the G-tempered cohomology functor X — Ag(X) in
the case where G splits as a direct sum Gg @ A, where A is the constant P-divisible
group over A associated to a colattice A (see Construction . As an application,
we give a construction of the equivariant Chern character appearing in the formulation
of Theorem [I.1.2] Our starting point is the following observation:

Proposition 4.3.1. Let Gy be a preoriented P-divisible group over an E.-ring A, let
A be a colattice (Definition[2.7.1]), and set G = Gy @ A. Then the functors

(Te %) (AL e CAlg,)  (Te T%) — (AL e CAlg,)
are equivalent.

Proof. For each object T' € .7, evaluation at the base point of the classifying space
BA determines a map of spaces ev : TPA — T Since T is the classifying space of an
abelian group, the evaluation map ev restricts to a homotopy equivalence on each
connected component of the mapping space TP, and therefore induces a homotopy

equivalence ) )
TBY ~ T x 7o (TPY) = T x Hom(A, 7, (T)).

We therefore obtain equivalences

Agf\ ~ Ag ®a AHom(IA\,ﬂ*l (7))
0 0
Ag, @4 4y

~ AL,
depending functorially on T O]

Theorem 4.3.2. Let Gg be a preoriented P-divisible group over an Ey-ring A, let A
be a colattice, and selzz G =GoDA. Then, for any orbispace X, there is a canonical
equivalence A ~ Aéo(x).
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Proof. By definition, the functor
F:08" - CAlg, X— A%
is characterized (up to equivalence) by the following properties:

(a) The composition of F' with the Yoneda embedding 7P < OS°? is equivalent
to the functor Ag.

(b) The functor F carries small colimits of orbispaces to limits in the co-category
CAlgy,.

It will therefore suffice to show that the functor

X
X»—»AGO

0s® £ ogov

CAlg 4

also has properties (a) and (b). Property (a) follows from Proposition (and
Proposition [3.4.7), while (b) follows from the fact that the formal loop functor £ :
OS — OS preserves small colimits (Remark [3.4.6)). O

Notation 4.3.3 (Character Maps). Let Gy be a preoriented P-divisible group over
an Ey-ring A, let A be a colattice (Definition , and set G = Go @ A. For any
orbispace X, we let

X:AG — AéAO(X)
denote the equivalence constructed in the proof of Theorem [1.3.2] We will refer to
X as the character map. Passing to homotopy groups, we obtain an isomorphism of
tempered cohomology rings

X A&(X) — Ag, (£4(X))
which we will also refer to as the character map (and denote by the same symbol ).

From Theorem we obtain the following stronger version of Theorem [1.1.18}

Corollary 4.3.4. Let A be an Ey-ring and let G be a preoriented P-divisible group
over A which splits as a direct sum Go@ A. Let H be a finite group and let X € Sy be
an H-space, and let Y =] 1z .5 Xm() be the H-space appearing in Example .
Then there is a canonical equivalence x : A)é//H ~ Aé{)/H of E-algebras over A. In
particular, there is a canonical isomorphism of tempered cohomology ringstempered
cohomology rings

X AG(X//H) ~ AG, (( [ ] X™)//H).

a:IAX—>H
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Proof. Combine Theorem |4.3.2| with Example [3.4.5] O
We now specialize Theorem to the setting of complex K-theory.

Notation 4.3.5. Let KU denote the complex K-theory spectrum. We let KUgq denote
the E-ring given by the smash product Q ®s KU. The homotopy ring of this smash
product is given by

7T*(KUQ) ~ Q®zm,(KU) ~ Q[ﬁil]’

where 5 denotes the Bott element of mo(KU). It follows that, as an Ey-algebra over
Q, KUgq is freely generated by an invertible element of homological degree 2. The
spectrum KUgq represents the 2-periodic version of rational cohomology, whose value
on a space X is given concretely by the formula

KUR(X) = H'(X; Q)((5 7))

The canonical map KU — Q®g KU = KUq induces a map of cohomology theories,
which (when evaluated on a space X) is the classical Chern character map

ch : KU*(X) - H*(X; Q)((87Y)).

Replacing Q by the larger field C of complex numbers in the above discussion, we
obtain complexified K-theory spectrum KUc = C®g KU, and complexified Chern
character ch : KU*(X) — H*(X; C)((871)).

Construction 4.3.6 (The Orbispace Chern Character). Let KU denote the complex
K-theory spectrum. Let pup» denote the multiplicative P-divisible group, which we
regard as an oriented P-divisible group over KU (Construction . After extending
scalars to the complexification KUg = C®g KU, we have an equivalence of P-divisible
groups

exp: Q/Z — up» A — exp(2mil).

For any orbispace X, Theorem 4.3.2] and Variant supply equivalences
L£/Z(x
(KU, ~ (KUo)gz ~ KUS

X
Hpoo

Composing with the tautological map KUifPOO — (KUg) and passing to homotopy

groups, we obtain a map
ch : KUZ_ (X) — H*(| L2#(X)[; C)((871)),

which we will refer to as the orbispace Chern character.
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Example 4.3.7. Let X be a space and let X = X be the constant orbispace associated
to X. Then the orbispace Chern character map

ch: KU, (X) — H*(| L2#(X)[: ©)((571))
reduces to the classical (complexified) Chern character of Notation [4.3.5]

Example 4.3.8 (The Equivariant Chern Character). Let G be a finite group and let
X be a G-space. Combining the orbispace Chern character of Construction to
the orbispace quotient X = X //G with Theorem [4.1.2] (and using the description of
L£2/%(X) supplied by Example , we obtain a map

che : KUE(X) = KU (X//G) —=H*((] [ X))ne: C)((B7))

which we will refer to as the equivariant Chern character.

Example 4.3.9. Let G be a finite group. Applying Example in the case where
X is a point (and restricting to cohomological degree zero), we obtain a map

chg : Rep(G) — {Class functions f : G — C}.
We claim that this map carries the class [V] of a representation V' to the character

xv:G—C  x(g)=tr(glv)

By functoriality, it suffices to prove this when G is abelian (or even when G is a cyclic
group, since a class function on G is determined by its restriction to cyclic subgroups
of G). In this case, we may assume without loss of generality that V' is a 1-dimensional
representation of GG, whose character is given by xy(g) = exp(2miA(g)) for some
element A\ of the Pontryagin dual group G. The desired equality now follows from
fact that the isomorphism of P-divisible groups Q /Z ~ up» over KUg = C®s KU
is also given by the exponential map \ — eXp(27TW

4.4 Tempered Cohomology of Eilenberg-MacLane Spaces

For every finite abelian group H, let H= Hom(H, Q/Z) denote the Pontryagin
dual group of H. If G is a P-divisible group over an E.,-ring A, we let G[ﬁ ] denote
the functor

CAlg, =S B Mapy,, (H, G(B)).
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If G is preoriented, then the tempered cohomology theory Ag is related to G by the
existence of equivalences

Spec(Ag™) ~ G[H],

depending functorially on H. If G is oriented, then there is an analogous description of
the tempered cohomology of Eilenberg-MacLane spaces K (H,d) for every nonnegative
integer d:

Theorem 4.4.1. Let G be an oriented P-divisible group over an E-ring A and let
d =0 be an integer. Then there exists a P-divisible group G@ over A equipped with

equivalences
Spec(Ag ") ~ GY[A],

depending functorially on H.

Remark 4.4.2. Let G be an oriented P-divisible group over an E -ring A and let
d = 0 be an integer. Theorem is equivalent to the assertion that the functor

Abg, — CAlg, M AKOTD

is P-divisible, in the sense of Definition [3.5.1, More concretely, this is equivalent to
the following three assertions;
K(H,d) .

(a) For every finite abelian group H, the tempered function spectrum Ag is a
projective A-module of finite rank.
(b) For every pair of finite abelian groups H and H’, the canonical map
A[é(H,d) & Alé(H ) Ag(HxH,d)
is an equivalence.
(¢) For every short exact sequence of finite abelian groups
0—>H — H—H'—0,
the associated diagram of tempered function spectra
K(H" d K(H,d
AG( ) AG( )

| |

K(H'd
A AG( )

is a pushout diagram, and the horizontal maps are finite flat of nonzero degree.
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Example 4.4.3. Theorem holds for d = 1, and the P-divisible group G can be
identified with G. This is essentially immediate from the construction of G-tempered
cohomology (and does not require the assumption that G is oriented).

Example 4.4.4. Theorem holds for d = 0, and G© can be identified with the
constant P-divisible group Q /Z.

Remark 4.4.5. In the situation of Theorem 4.4.1] one can think of the P-divisible
group G@ as a kind of “dth exterior power” of G (see Remark [4.4.18 below).

Warning 4.4.6. In the situation of Theorem , the P-divisible groups G are
not generally not oriented for d # 1 (for example, they are generally not 1-dimensional
after completing at some prime number p). However, they carry an analogous structure:
since the functor X — Spec(Ag) is functorial for unpointed maps between Eilenberg-
MacLane spaces, each G@ is equipped with a map eq : 4(Q /Z) — G@(A), which
specializes to the preorientation of G = G®) when d = 1 (this follows from a variant

of Theorem (3.5.5)).

Our goal for the rest of this section is to formulate a more precise version of
Theorem m (which we will prove in . We begin with a few general remarks. Let
G be a preoriented P-divisible group over an E -ring A. For every pair of orbispaces
X and Y, the projection maps X < X x Y — Y determine morphisms of E -algebras
Af — AZY « AL, which we can assemble into a single map

m: A% @4 AL — ALY,

Proposition 4.4.7 (Tempered Kiinneth Formula). Let G be a preoriented P-divisible
group over an Ep-ring A. Let X and Y be orbispaces. If either AG or A& is perfect
as an A-module spectrum, then the multiplication map

m o A% @AY > AKSY.
s an equivalence.

Proof. Assume that A is perfect as an A-module spectrum. Regarding the orbispace
Y as fixed and allowing X to vary, we note that the functors

XHAé@AAé X»—»A)éxy

carry colimits in the oo-category OS to limits in the co-category CAlg,. Since the
oo-category of orbispaces is generated under small colimits by the image of the Yoneda
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embedding, we may assume without loss of generality that X = T for some T € 7.
Under this assumption, we claim that m is an equivalence for every orbispace Y.
Repeating the above argument (with X = 7(7) fixed and allowing Y to vary), we can
reduce to the case where Y = T"(-) for some object T € 7. In this case, the desired
result follows from the definition of a P-divisible functor .7°° — CAlg, (Definition
3.5.3)). O

Corollary 4.4.8. Let G be a preoriented P-divisible group over an Ey-ring A. Let
X and Y be orbispaces. If either X orY is representable by an object of 7, then the
multiplication map

m: AL @4 AL — ALY,

s an equivalence.

Under a suitable flatness assumption, Proposition supplies a Kiinneth formula
at the level of tempered cohomology groups.

Corollary 4.4.9. Let G be a preoriented P-divisible group over an E-ring A. Let
X and Y be orbispaces, and suppose that AY, is a projective A-module of finite rank.
Then the multiplication map of Proposition [{.4.7 induces an isomorphism

AG(X) ®ny(a) AG(Y) = AG(X < Y).

Corollary 4.4.10. Let G be a preoriented P-divisible group over an Eyp-ring A. Let
X and Y be orbispaces. If X = T2 is the orbispace represented by an object T € T,
then the multiplication map of Proposition [{.4.7 induces an isomorphism

AG(X) @nroa) AG(Y) = AG(X X Y).
We now recall some algebraic constructions from [6].

Notation 4.4.11. Let R be a commutative ring and let G be a finite flat commutative
group scheme over R. For every integer d > 0, we let Skewgf ) denote the group scheme
over R given in Definition Ambi.3.2.9, so that we can identify R-valued points of
Skewg) with maps

G Xgpec(R) " Xspec(r) G — Gy
which are multilinear and skew-symmetric (in particular, Skewg) is the Cartier dual of
G). If H is the R-linear dual of the ring of functions on G, then we can identify SkeW(Gd)
with a closed subscheme of the affine space Spec(Sym%(H®?)) (which parametrizes
all maps from G Xgpec(r) - - - Xspec(r) G to the affine line).
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We let Alt(él) c SkGW(Gd) denote the subgroup scheme given by Construction
Ambi.3.2.11 (so that Alt(él) = Skewg) whenever multiplication by 2 is an isomor-
phism from G to itself).

Definition 4.4.12. Let p be a prime number and let X be a p-finite space. We will
say that X is split if it can be written as a finite product of spaces of the form K(H,m),
where H is a finite abelian p-group and m is a nonnegative integer. In other words,
X is split if it is a generalized Eilenberg-MacLane space: that it, if it has the form
Q®(M), where M € Mody' is a Z-module spectrum (which is necessarily truncated
with p-power torsion homotopy groups, since X is p-finite). We let S° denote the full
subcategory of & spanned by the split p-finite spaces.

Notation 4.4.13. Let p be a prime number and let G be a preoriented p-divisible
group over an E,-ring A which satisfies the following condition:

(F) For every split p-finite space X, the tempered function spectrum Ag is a perfect
A-module.

For every split p-finite space X, let AS(X) denote the graded abelian group given by
the formula
AT (X) = m((Ag)Y) = Exty"(Ag, A),

where (A&)Y denotes the A-linear dual of Ag. We will refer to the groups AS(X) as
the G-tempered homology groups of X.

Remark 4.4.14. Let p be a prime number and let G be a preoriented p-divisible
group over an E,-ring A which satisfies condition (F') of Notation 4.4.13| Then, if X

and Y are split p-finite spaces, the canonical map
AZ @4 AL, — AR

is an equivalence (in fact, it suffices to assume that either one of the spaces X and Y is
p-finite; see Proposition. It follows that the construction X — (A&)Y determines
a symmetric monoidal functor from the co-category S° (with the symmetric monoidal
structure given by Cartesian product) to the oo-category Mod, (with symmetric
monoidal structure gives by ®,4). Passing to homotopy groups, we deduce that the
tempered homology functor X — A% (X) is lax symmetric monoidal (as a functor from
the co-category S°¢ to the ordinary category of graded m,(A)-modules). In particular,
the functor
S°—Mod; , X — A (X)

110



is also lax symmetric monoidal: that is, for every pair of split 7-finite spaces X and
Y, we have a canonical map

AG (X) ®rya) A7 (Y) = AF (X x V).

Construction 4.4.15. Let p be a prime number and let G be a preoriented p-divisible
group over an E,-ring A which satisfies condition (F') of Notation [4.4.13 We let G¥
denote the underlying P-divisible group over the ordinary commutative ring my(A)
and G [p'] the finite flat group scheme of p'-torsion points G°.

For every pair of nonnegative integers d,t > 0, we view the the Eilenberg-MacLane
space K(Z /p'Z,d) as a commutative monoid object of the oo-category S° of split
p-finite spaces. Applying Remark [4.4.14] we see that the G-tempered homology group
AS(K(Z /p'Z,d)) inherits the structure of a commutative algebra over mo(A). We
denote its spectrum by Spec(AS (K (Z /p' Z, d))), which we view as an affine scheme
over m(A). In the special case d = 1, we can view Spec(AS (K (Z /p' Z,d)) as a finite
flat group scheme over my(A): it is the Cartier dual of the finite flat group scheme
GY[p']. In particular, each AS(K(Z /p'Z,1)) has the structure of a (commutative
and cocommutative) Hopf algebra over mg(A). The iterated cup product is classified
by a map of split p-finite spaces K(Z /p' Z,1)? — K(Z /p' Z,d) which induces a map
of mo(A)-modules

A (K(Z [p'Z,1))® — AF(K(Z [p' Z,d))
which extends to a map of my(A)-algebras
Symy, ) (A5 (K(Z /p' Z2,1))%") — AG(K(Z /p' Z,d)).

Using the multilinearity and skew-symmetry of the cup product, we obtain a map of

affine schemes

pas : Spec(AS (K(Z /p' Z,d))) — Skewgzy[pt] :
Theorem 4.4.16. Let G be a preoriented p-divisible group over an Eo-ring A which
is oriented over the p-completion of A. Then:

(1) For every split p-finite space X , the tempered function spectrum Ag is a projective
A-module of finite rank (in particular, G satisfies condition (F') of Notation

E)

(2) For every pair of integers d,t = 0, the map
pa - Spec(AS(K(Z /p' Z,d))) — Skew'

“[pt]
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of Construction induces an isomorphism of Spec(AS (K (Z /p' Z,d))) with

the subscheme Alt(;i@[pt] c Skewgé[pt].

To deduce Theorem from Theorem {4.4.16] we will need one more elementary

observation.

Lemma 4.4.17. Let G be a preoriented P-divisible group over an Ey-ring A, let S
be a set of prime numbers, and regard G(gy = @pES G as a direct factor of G (so

that Gg) inherits a preorientation). Then, for every S-finite space X (see Definition

X
G(s)

1.1.25), the canonical map A — Ag is an equivalence.

Proof. Let Jg) denote the full subcategory of 7 spanned by those spaces of the
form BH, where H is a finite abelian group whose prime divisors belong to S.
By construction, the map of preoriented P-divisible groups G — Gys) induces an
equivalence Ag(s) — Ag, for each object T € 7. Tt follows that the map Aé(s) — A%
is an equivalence whenever X : .7°? — § is an orbispace which is a left Kan extension
of its restriction to the full subcategory (g})) < 7°P. We conclude by observing that
this condition is satisfied in the case where X = X () is representable by an S-finite
space X. ]

Proof of Theorem from Theorem[f.4.16. Let G be an oriented P-divisible group
over an E,-ring A. We wish to show that G satisfies conditions (a), (b), and (c) of
Remark 4.4.2l Note that if p is a prime number, then the canonical map Aé(p) — Ag
is an equivalence for any p-finite space X (Lemma . Applying Theorem ,
we deduce that Ag(H’d) is a projective A-module of finite rank whenever H is a finite
p-group. Assertions (a) and (b) now follow from the Kiinneth formula of Proposition
m To prove (c), it will suffice to show that for every short exact sequence of finite
abelian groups
0—>H —-H—>H'—0,

the resulting sequence of finite flat group schemes
0 — Spec(Ag (K (H', d))) — Spec(Ag (K (H, d))) — Spec(Ag(K (H",d))) — 0

is also short exact. Using (b), we can reduce to the case where H is a cyclic group
of prime power order. Passing to Cartier duals and applying Theorem [4.4.16| to the
p-divisible group G, we are reduced to proving the exactness of sequences of the
form

0 — Altls) -0,

L Ap@
(m[P'] AltGZ)

(d)
] — AltGQQ

[pt+? "]

112



which follows from Corollary Ambi.3.5.4 (since our assumption that G is oriented
guarantees that the p-divisible group GZ,) has dimension 1). O]

Remark 4.4.18. Let G be an oriented P-divisible group over an E,-ring A, let d
be a nonnegative integer, and let G@ be the P-divisible group which appears in the
statement of Theorem [4.4.1 Then Theorem supplies a complete description of
the underlying classical P-divisible group G(®9
particular, it implies the following:

over the commutative ring my(A4). In

e If p is a prime number and the p-divisible group and the p-local summand Gy,
has height n, then the p-local summand ngg has height (Z) and dimension (Zj)
(see Corollary Ambi.3.5.4). In particular, the p-divisible group GEZ; vanishes for

d>n.

e For every perfect field k of characteristic p and every map x : Spec(k) —
Spec(mo(A)), the Dieudonné module of G at the point x can be identified
with the dth exterior power of the Dieudonné module of G at the point z (see
Theorem Ambi.3.3.1).

4.5 The Proof of Theorem [4.4.16!

We devote this section to the proof of Theorem [£.4.16] Let G be a preoriented
p-divisible group over an E,-ring A which is oriented after extending scalars to the
p-completion of A. For every E,-algebra B over A, we let Gg denote the oriented
p-divisible group obtained from G by extending scalars from A to B and Gg the
underlying classical p-divisible group over the commutative ring mo(B). We will say
that B is good if it satisfies the following conditions:

(T1) For every split p-finite space X, the tempered function spectrum Bg is a
projective B-module of finite rank.

(T2) For every pair of integers d,t > 0, the map
Pl Spec(B§ (K (Z /p' Z,d))) — Skew's.

Gy lp]

of Construction [4.4.15|induces an isomorphism of schemes
Spec(BS(K(Z /' Z,d))) ~ Alt'Y, .
Gplp']
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To prove Theorem [4.4.16] we must show that A is good. Note that when A
is a Lubin-Tate spectrum and G is the Quillen p-divisible group of A, this is one
of the main theorems of [6] (Theorem Ambi.3.4.1). Our strategy is to reduce to
the Lubin-Tate case by showing that the collection of good A-algebras has strong
closure properties. We first observe that class of good A-algebras is closed under finite
products. Consequently, we may assume without loss of generality that the p-divisible
group G has some fixed height n. Proceeding by induction on n, we may assume that
Theorem holds for preoriented p-divisible groups of height < n. The case n =0
is trivial (since the p-divisible group G vanishes and p is invertible in the commutative
ring mo(A)). We will therefore assume that n > 0.

Lemma 4.5.1. Let B — B’ be a morphism of Ey-algebras over A and let X be a
split p-finite space. If B and B’ are good, then the canonical map 0 : B' @p BE — B&
is an equivalence.

Proof. By virtue of the Kiinneth formula of Proposition [4.4.7, we may assume without
loss of generality that X is an Eilenberg-MacLane space K(Z /p'Z,d). Note that the
domain and codomain of # are projective B’-modules of finite rank. It will therefore
suffice to show that the B’-linear dual of # induces an isomorphism of commutative
rings

BE(X) = 1o B) @ny) BE(X),

which follows from the description supplied by (72). O

Lemma 4.5.2. Let B be an Ey-algebra over A and let B® be a flat hypercovering of
B. If each B* is good, then B is good.

Proof. Let C = lim Modp. denote the co-category of cosimplicial spectra M* which
are modules over B*, for which the canonical map B¢® g M 4 M? are equivalences.
According to Corollary SAG.D.7.7.7 , the canonical map

MOdB - @Mod]g- =C

is an equivalence of oco-categories, with a homotopy inverse given by the functor
M?* +— lim M*. Let X be a split p-finite space. Using Lemma , we see that the
cosimplicial spectrum Bg* can be identified with an object of C, whose image in Modp
is given by the totalization Tot(BgY) ~ Tot(B*)& ~ A& (where the first equivalence
is supplied by Lemma [£.2.11]). It follows that the canonical map B° ®p Bg — B is
an equivalence for every split p-finite space X.
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Since B satisfies conditions (T'1), BE® is a projective module of finite rank over
B for every split p-finite space X. Using faithfully flat descent, we deduce that Bg
is a projective B-module of finite rank. This proves (7'1). To prove (T2), it suffices to
observe that the map of affine schemes

pB, : Spec(BS (K(Z /p' Z,d))) — Skew(élz;[pt]

factors through an isomorphism

SpeC(Bg(K(Z /pt Z, d))) = Altg)g[pt]

if and only if it does so after extending scalars along the faithfully flat map of
commutative rings 7o(B) — mo(BP). O

Suppose that B is an E-algebra over A which satisfies condition (7°1). If p is odd,

then we have Alt(dz7 o= Skew(dz, .+, 50 Construction 4.4.15| directly supplies maps
Gjlr'] Gglr']

piy + Spec(BE (K (Z /p' Z,d))) — Altgd,

that we wish to prove are isomorphisms. When p = 2, the situation is a bit more
(d)

complicated: it is not immediately obvious that the maps pgt factor through Alt G2

To address this point, we will need some auxiliary constructions.
Notation 4.5.3. Fix an integer d > 0. Then we have a commutative diagram

e Skewgzy R Skew(gé S Skewgé ] — Spec(mo(A))

i | i

e AltGh ) —— Al ———= AltSL ——= Spec(mo(A))

of commutative group schemes over the commutative ring mo(A) where the vertical
maps are monomorphisms. It follows from Corollary Ambi.3.5.4 that the upper
horizontal maps in this diagram are finite flat of degree p(g). In particular, each
Skewgzg [pt] Can be written as the spectrum of a commutative ring R;; which is finite

flat of degree pt(g) over the commutative ring my(A). Consequently, the vertical maps
in the preceding diagram are closed immersions. Write Altgzg ] = Spec(Rg,) for
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some commutative algebra R,; (which need not be finite over mo(A) when p = 2), so
that we have a commutative diagram of rings

= Ry3 Rao Raa Rao

R A

w=—>Ry3<—Rap Raa Rap

where the vertical maps exhibit each R4, as the quotient of Fd,t by an ideal J;; < Fdﬂg.
Note that the exact sequences

0— Jd,t - Fd,t - Rd,t — 0

are automatically split in the category of my(A)-modules (since each R, is a projective
module over m(A)). Choose a collection of splittings sq; : Rgy — Ray (so that each
Sa+ is a map of mo(A)-modules). We assume that these splittings are chosen to be
compatible as t varies, in the sense that each of the diagrams

Rii1<=—Ray

lsd,ﬂ—l J/Sd’t

Rd,t+1 ~ Rd,t

is commutative (note that it is always possible to arrange this, since the maps
Ryt — Rgt41 are split monomorphisms in the category of my(A)-modules).

For each d,t > 0, fix an A-module A;; which is projective of finite rank and an
isomorphism m(Ag¢) ~ Ra:. Note that Ay, exists and is unique up to isomorphism
as an object of the homotopy category of Mod 4 (Corollary HA.7.2.2.19). We can even
regard Ay, as a commutative algebra object of the homotopy category hMody4, but
we will not need this: we regard A, only as a module over A.

Remark 4.5.4. In the situation of Notation [4.5.3] each of the transition maps
Skewgé ] Skewgé '] factors through the closed subscheme Alt(g%pt] c Skewgg, ']
This is tautological when p is odd, and follows from Lemma Ambi.3.3.8 when p = 2.
In other words, each of the ring homomorphisms Ed,t — Edﬂf“ annihilates the ideal

Id7t g Rdﬂg .

Construction 4.5.5. Let B be an E-algebra over A which satisfies the following
weaker version of condition (7'1):
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(T1") For every split p-finite space X, the tempered function spectrum Bg is a perfect
B-module.
Under this assumption, we can apply Construction 4.4.15(to obtain maps
pil, : Spec( B (K(Z /p' Z,d)) — Skew (s .
’ GB [P ]
which are classified by my(A)-algebra homomorphisms Ry; — BS (K (Z /p' Z,d)). For
each d,t > 0, the composite map

Rd,t SN Ed,t - B(?(K(Z /pt Z,d))

@/p" 24V which is

can be lifted to a map of A-module spectra g, : Agy — (Bg
uniquely determined up to homotopy.

Lemma 4.5.6. Let B be an Ey-algebra over A. Then B is good if and only if it
satisfies condition (T'1") together with the following:

(T2') For each d,t =0, the map g : Aqr — (Bg(z/”tzvd))v extends to an equivalence
B ®A Ad,t ~ (Bg(Z/Pt Z,d))v’

Proof. Tt is easy to see that if B is good, then conditions (7'1") and (7'2) are satisfied
(note that (T'1) is a weaker version of (T'1) and (T2') is a weaker version of (72)).
Conversely, suppose that B satisfies (7'1") and (72'); we wish to show that it also
satisfies (7'1) and (72). Without loss of generality, we may assume that B = A, so
that (72') asserts that (Ag(z/ P Z’d))v ~ Ay, is a projective module of finite rank over
A. Combining this with (7'1"), we conclude that the tempered function spectrum
Ag(z/ P2 Stself is a projective module of finite rank over A. Applying the Kiinneth
formula of Proposition we deduce that Ag is projective of finite rank for every
split p-finite space X. This proves (T'1). To prove (72), let us identify each of
the maps pq; : Spec(AS(K(Z /p'Z,d))) — Skewggp[pt] with a ring homomorphism
Uay : Ray — AS(K(Z /p'Z,d)). We wish to show that ug; annihilates the ideal I, of
Notation [4.5.3] and induces an isomorphism

Ryi/lay ~ Ray — AS(K(Z /p' Z,d)).

The second assertion is immediate from assumption (72'). To prove the first, we
observe that there is a commutative diagram of my(A)-modules

Sd,t Ud,t

Ry Ed,t A(?(K(Z /pt Z, d))

N |

Rpi1 =22 Ry —22 AS(K(Z /pt*1 Z, d))
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where the left vertical map is a monomorphism, the middle vertical map annihilates
the ideal I;; (Remark , and the horizontal composites are isomorphisms (by
assumption (72)). It follows that the right vertical map is also a monomorphism, so
that uq: must also annihilate the ideal ;. O

Lemma 4.5.7. Let B be an E-algebra over A, let I < mo(B) be a finitely generated
ideal. Suppose that, for each element x € I, the localization B[z~!] is good. If B is
I-local, then B is good.

Proof. Choose a finite sequence z1, ..., x,, € I of generators for the ideal I. For every
subset J < {1,...,m}, set x; = [[,.; 2, and set B; = Blz;']. Let P denote the
partially ordered set of all nonempty subsets of {1,...,m}. For each 1 < j < m, let
P; denote the set {J e P:je J}.

Our assumption that B is I-local implies that the canonical map B — lim Jep Bj is
an equivalence. In particular, for every space X, the canonical map B& — lim Jep Bya
is an equivalence (Lemma [4.2.11)). Fix an element j € {1,...,m}, so that we have an
equivalence

Bglz;'] — lim Byg[a7'].
JeP

By assumption, for each J € P, the A-algebras B; and B ; are good. Applying

Lemma [£.5.1], we conclude that for every split p-finite space X, the canonical map

Bielz; '] = Biuyy ®s, Big — (Biog))a = (Biogyalz; ']

is an equivalence. It follows that the functor J — Bjg [x]_l] is a right Kan extension
of its restriction to P;. Since P; contains the set {j} as an initial object, we conclude
that the restriction map

lim Bjg[z; '] = B{elz; '] =~ Ble; &
JeP

is an equivalence. It follows that the natural map B&[z;'] — Bla;']& is an equiva-

lence for 1 <7 < m. ’

We now show that B satisfies the criterion of Lemma[4.5.6, We first verify condition
(T1"). Let X be a split p-finite space; we wish to prove that Bg is a compact object of
the co-category Modg. Equivalently, we wish to show that for every filtered diagram

{M,} in Modp having colimit M, the canonical map

0 : h_H)lMapModB (Béa Ma) - MapModB (B)G(7 M)
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is a homotopy equivalence. Since filtered colimits in S commute with finite limits, we
can write @ as the limit of a diagram of maps

9J : h_H)lMapModB(Bév BJ ®B MOL) - MapModB (Bé7BJ ®B M)?

where J ranges over the nonempty subsets of {1,...,m}. Using the first part of the
proof, we can identify each 6; with the canonical map

h_I,nMapModBJ (Bﬁ(ca B;®p M,) — MapModBJ (B§G7 B;®p M),

which is an equivalence by virtue of our assumption that each B satisfies (T'1").
We now verify (72'). Choose d,t > 0, and let 14, : Aqy — (B&)Y be as in
Construction We wish to show that 14, induces an equivalence B ®4 Aq; —
(B&)Y. Since B is I-local, it will suffice to show that this map becomes an equivalence
after tensoring both sides with B, for J € P. This follows from our assumption that
By satisfies (1T2'). O

Lemma 4.5.8. Suppose that B € CAlg, has the property that Ly B ~ 0. Then B
s good.

Proof. Let R = my(A)/(p), so that G determines a p-divisible group Gg over the
commutative F,-algebra R having identity component G%. Let J = R be the nth
Landweber ideal of the formal group G%, and let I < my(A) be the inverse image of
the ideal J. Then [ is a finitely generated ideal of mo(A) which contains p, and the
image of I in WO(A(AP)) generates the nth Landweber ideal in the complex periodic
Eo-ring Af,. Since G has height < n, the ring spectrum A is E (n)-local. Tt follows
that, for any A-module spectrum M, we can identify the I-completion M} with the
K (n)-localization of M. In particular, our hypothesis guarantees that the completion
B} vanishes: that is, the algebra B is local with respect to I. Consequently, to show
that B is good, it will suffice to show that B[z7!] is good, for each element z € I
(Lemma[4.5.7). We may therefore replace B by B[x~!] and thereby reduce to the case
where [ generates the unit ideal of B.

Let Gg[p] denote the p-torsion subgroup of the p-divisible group Gg, which we
regard as a finite flat group scheme over the commutative ring mo(B). Let G3[p]°
denote the quasi-compact open subscheme of Gg[p] obtained by removing the zero
section. Our assumption that I generates the unit ideal of my(B) guarantees that
the map G3[p]° — Spec(mo(B)) is surjective. Choose an étale surjection of schemes
U — Gy[p]°, where U is affine. Then the map U — G[p] ~ Spec(B&(BC,)) is
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surjective. Invoking Theorem HA.7.5.0.6 , we can write U = Spec(mo(B’)), where B’
is an E-algebra which is étale over BgCP and faithfully flat over B. Let B” denote

the direct limit of the sequence

BC o BC 3
B — B,®BBCp BG L B,®BBCp BG P
e} e}

Each term in this sequence is faithfully flat over B, so that B” is also faithfully flat
over B. By virtue of Lemma [4.5.2] it will suffice to show that every E-algebra C'
over B” is good. Replacing A by C', we are reduced to proving that A is good in the
special case where the p-divisible group G splits as a direct sum Gy ® Q, /Z,. In

this case, Gy is an oriented p-divisible group of height n — 1, and therefore satisfies
Theorem [4.4.16| by virtue of our inductive hypothesis. Moreover, for every p-finite
space X, Theorem supplies an equivalence of tempered function spectra

L(X
AX ~ AG(O )’

where £(X) = £%(X) = XB% is the free loop space of X. If X is a split p-finite space,
then £(X) is also a split p-finite space. Our inductive hypothesis then guarantees
that Aé((;x )is a projective A-module of finite rank, so that Ag is also a projective
A-module of finite rank: that is, A satisfies condition (71).

We will complete the proof by showing that A satisfies (7'2). Fix integers d,t = 0,
and set X = K(Z /p'Z,d). Set Y = K(Z /p' Z,1), so that the iterated cup product is
classified by a pair of maps

mg: Y% > X mg_1: Y4 - QX.

These maps are multilinear and skew symmetric up to homotopy, and therefore induce
maps of 7y(A)-schemes

pas  Spec(AS (X)) — Skewgz,[pt]

d
pas : Spec(A§(X)) — Skewé%?[pt]

pay + Spec(AF(Q(X)) — Skew(o ),
’ Go [p ]
Our inductive hypothesis implies that the maps pj’t and p,, are closed immersions,

. . (d) () (d-1) (d-1)
having schematic images Alt ap Skew GOt and Alt ap < Skew GOyt TESPec-
tively. We wish to prove that pg; is a closed immersion with schematic image

(d) (d)
AltG@[pt] < Skewgo 1]
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The splitting of p-divisible groups G ~ G ® Q,,/ Z, determines an isomorphism
of finite flat group schemes

Gl ~ Gl 1@z /p'Z

over the commutative ring my(A). Applying Remark Ambi.3.2.21, we obtain an
isomorphism of m(A)-schemes

(d (d—1
B Skevvcr@[p,5 ~ SkewGé[pt] X Spec(mo(A SkeWG@[;t]
given by a pair of projection maps

) (d) (d) - (d) (d—1)
/6+ . SkeWG@[pt] — SkeWG(Q)y[pt] 5 : SkeWGOQQ[p] — SkeWG/ [pt] -

Moreover, Remark Ambi.3.2.21 implies that 3 restricts to an isomorphism

AltG@[pt _Altgo[pt X Spec(ro(4)) Alt(d 1 b

Note that we have canonical maps
X = LX) Q) = LX),

where the first is given by precomposition with the projection map B Z, — * and the
second by the identification of Q(X) with the space of pointed maps from B Z, into
X. Using the addition law on £(X), we can amalgamate these maps to a homotopy
equivalence ¢ : X x Q(X) — £(X). Our inductive hypothesis then supplies a Kiinneth
decomposition

AX ~ Aé(OX) ~ Aéo X4 A%(X)

Since both tensor factors are flat over A, this gives an isomorphism of affine schemes
7+ Spec(AF (X)) = Spec(AG® (X)) Xspec(m(4)) SPec(AF* (2(X)))
given by a pair of projection maps
7 ¢ Spec(A§ (X)) — Spec(AF°(X)) 77 = Spec(AF (X)) — Spec(AF(Q(X))).

To complete the proof that pg: is a closed immersion with image Alt(éz,[pt], it will
suffice to verify the following:
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(a) The diagram of 7y(A)-schemes

Spec(AG (X)) — Spec(AF? (X))

ipmt ip;t

() Bt ()
Skew 5o P SkeWGg ']

commutes.

(b) The diagram of my(A)-schemes

Spec(AS (X)) —— Spec(AS(Q(X)))

lpmt ip¢t

(d—1)

(d) B~
SkeWG@[pt] _— SkeWGg ]

commutes.

Assertion (a) follows immediately from fact that the diagram of spaces

yd X
o
L) 2 ox)

commutes up to homotopy (where the vertical maps are given by the diagonal embed-
dings). Similarly, (b) follows from the homotopy commutativity of the diagram

Q(Y) x Y41 22 Q(X)
| |
LY)! —— L(X),

where v : K(Z /p'Z,0)x K(Z /p' Z,1)4' — K(Z /p' Z,d—1) classifies the cup product
(together with a careful inspection of the definition of the isomorphism pg;). ]

Lemma 4.5.9. Let B be an Ey-ring, let I < mo(B) be a finitely generated ideal, and
let M be a B-module. Suppose that there exists a pullback diagram of B-modules

MY

p
M, —— My,
in Mod 4o with the following properties:
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(a) The B-module My is I-complete, and therefore admits the structure of a module
over the I-completion By = B; .

(b) The B-module My is I-local, and therefore admits the structure of a module over
the I-localization By = L;(B).

(¢) Set Byy = L;(B}). Then My, admits the structure of an By -module, and the
maps ¢ and Y induce equivalences

By ®p, My — My < By ®p, M.

Then the maps ¢’ and ' induce equivalences By ®p M ~ My and By Qg M ~ M;.
Moreover, if My and M, are perfect as modules over By and By, respectively, then M
is perfect over B.

Proof. We first show that ¢’ induces an equivalence B; ® g M — M;. Note that the
left hand side can be identified with L;(M). It will therefore suffice to show that
the map M — M; becomes an equivalence after applying the functor L;. Since o is
a pullback diagram, this is equivalent to the requirement that the map My — My,
becomes an equivalence after applying the functor L, which follows from assumption
(c).

We next claim that v’ induces an equivalence i : By ®g M — Mj. To prove this,
it will suffice to show that u becomes an equivalence after applying the localization
functor L; or the completion functor (—)7. Using the first step of the proof, we deduce
that L;(u) can be identified with the canonical map By ®p, M7 — My;, which is an
equivalence by virtue of (¢). We are therefore reduced to proving that p induces an
equivalence after I-completion. Since unit map v : M — By ®g M is an equivalence
after I-completion, it will suffice to show that the I-completion of the composite map
' = pov is an equivalence. Since o is a pullback diagram, this is equivalent to the
assertion that ¢ induces an equivalence (M;); — (Mo1)7, which is clear (since both
completions vanish).

To prove that M is perfect as an B-module, it will suffice to show that the functor
N — Mapyjoq, (M, N) commutes with filtered colimits. For each N € Modp we have
a pullback diagram

N By®p N

| |

B, ®p N — By @ N,
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and therefore a pullback diagram of spaces o :

MapModB (M7 N) MapModA (Ma BO B N)

| l

Mapyjoq, (M, B1 ®3 N) — Mapy,q, (M, By ®s N).
It will therefore suffice to prove that the functors
N = Mapyeq, (M, Bo ®p N) =~ Mapy,q,, (Mo, Bo ®p N)

N = Mapyiq, (M, Bi ®@p N) = Mapy,q, (M1, Bi ®@p N)
N — 1\/[31)M<>c1301 (M, Boy ®p N) ~ Ma’pModBl (M1, By1 ®5 N)
preserve filtered colimits, which follows from assumptions (a) and (b). O

Lemma 4.5.10. Let B € CAlg,. If Lk (B) is good, then B is good.

Proof. Let I < mo(B) be as in the proof of Lemma [4.5.8] Set By = Bf ~ Li(n)(B),
By = Li(B), and By, = L;(B}). Our hypothesis guaranees that By is good, and
Lemma 4.5.8| guarantees that By and By, are good. For every split p-finite space X,
Lemma [4.2.11] supplies a pullback diagram ox of tempered function spectra

B& (Bo)&

L

(B1)g — (Boi)g-

Using Lemma [4.5.1] we see that this diagram satisfies the hypotheses of Lemma [4.5.9
This allows us to draw three conclusions:

() For every split p-finite space X, the tempered function spectrum Bg is a perfect
B-module.

(ii) For every split p-finite space X, the canonical map By ®p B& — (Boy)& is an
equivalence.

(4i1) For every split p-finite space X, the canonical map B; ®p B& — (B)g& is an
equivalence.
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We will complete the proof by showing that B satisfies criterion (7'2) of Lemma
(5.6l Set X = K(Z /p'Z,d), and let 1bg, : Aqy — (B&)Y be the map of Construction
; we wish to show that 14, induces an equivalence of B-modules 6 : B®4 Ay —
(B&)v. Since By and By are good, it follows from (i) and (i7) that 6 becomes an
equivalence after extending scalars from B to By or B; (hence also after extending
scalars from B to Byp). Since B is the fiber product of By and By over By, it follows
that 6 is an equivalence. O

Proof of Theorem[{.4.16, We wish to prove that A is good. By virtue of Lemma
, we can replace A by Lgn)(A) and thereby reduce to the case where A is
K (n)-local. Then A is p-complete, so G is oriented and A is complex periodic. Let F
be a Lubin-Tate spectrum of height n, and let A° denote the smash product A ®g E.
Let A® be the cosimplicial A-algebra given by the iterated tensor powers of A° over
A. Since E is Landweber exact, A is faithfully flat over A. By virtue of Lemma
[4.5.2] it will suffice to show that each A* is good. Applying Lemma again, we
are reduced to proving that the localization L K(n)(Ak) is good. We may therefore
replace A by L) (A) and thereby reduce to the case where A is a K (n)-local algebra
over the Lubin-Tate spectrum E. Then G is an oriented p-divisible group of height n
over A and therefore equivalent to the Quillen p-divisible group G of Construction
Or.4.6.2. Applying Theorem [4.2.5] we deduce that the Atiyah-Segal completion map
¢ : AE — AX is an equivalence for every space X. Using Corollary Ambi.5.4.7, we
deduce that the map A ®g EX — AX is an equivalence whenever X is m-finite. We
can therefore replace A by the Lubin-Tate spectrum FE, in which case the desired
result follows from Theorem Ambi.3.4.1. O

4.6 The Tate Construction

Let G be a preoriented P-divisible group over an E,-ring A. According to
Proposition [4.2.15] G is oriented if and only if the Atiyah-Segal comparison map

q¢: Bgop” — BBGm
S1s BC.n . BCpn
exhibits B”*r" as the completion of Bg

Ic,, for every prime power p" and every Ey-algebra B over A. Our goal in this section

with respect to the augmentation ideal

is to supply a variant of this criterion, which only needs to be checked in the special
case where B = A and n = 1. The proof is based on a locality property of the Tate
construction A'“» (Proposition which will play an essential role in the theory of
G-tempered local systems we introduce in §f]
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Notation 4.6.1. Let A be an E-ring, let H be a finite group, and let M : BH —
Mod, be a local system of A-modules on the classifying space BH. We let M
denote the associated homotopy fixed point spectrum (that is, the limit of the diagram
M) and Mg the homotopy orbit spectrum (that is, the colimit of the diagram M).
We let M*H denote the Tate construction on M: that is, the cofiber of the norm map
Nm : Mg — M"™ (see Example Ambi.4.4.14). Note that since Fun(BH, Mod,) is
an AP linear co-category, we can regard Nm as a morphism of AB#-modules, so that
the Tate construction M* inherits the structure of a module over ABH.

In particular, if G is a preoriented P-divisible group over A, then we can view
Mug — MM — MY as a fiber sequence of modules over the tempered function
spectrum AZF (via the Atiyah-Segal comparison map ¢ : AZ7 — ABH).

Theorem 4.6.2. Let A be an Ey-ring and let G be a preoriented P-divisible group
over A. Then G is oriented if and only if, for every prime number p, the following
conditions are satisfied:

(#p) The Atiyah-Segal comparison map ¢ : A(B;Cp — ABC exhibits AB% as the

completion of Ae"? with respect to the augmentation ideal Ie, = AL(BC,).

(«,) The Tate construction At s Ig, -local when viewed as a module over the

tempered function spectrum ACB;CP.

Remark 4.6.3. Let G be a preoriented P-divisible group over an E,-ring A, let H
be a finite group, and assume that the augmentation ideal Iy = A% (BH) is finitely
generated (this is satisfied automatically if H is abelian or A is Noetherian). Viewing
M as a local system of AZH-modules on the classifying space BH, we note that the
value of M on each point x € BH is both Iy-nilpotent and Iy-complete (since the
action of ABH on M, factors through the evaluation map AB# — A%} ~ A, which
annihilates the ideal Ify). It follows that the homotopy orbit spectrum M}y also
Iy-nilpotent (since the collection of Iy-nilpotent objects of Mod A is closed under
colimits) and the homotopy fixed point spectrum M"H is I[;-complete (since the
collection of I'g-complete objects of Mod ABH is closed under limits).

Remark 4.6.4. Let G be a preoriented P-divisible group over an E-ring A. Then,
for every prime number p, the function spectrum AZ® can be identified with the
homotopy fixed point spectrum A"°?, where we endow A with the trivial action of
C,. Tt follows that AP is automatically I¢,-complete when viewed as a module over
Ang. Consequently, assertion (#,) of Theorem is equivalent to the requirement
that the fiber of the Atiyah-Segal comparison map ( : A(B;Cp — ABGr s Ic,-local.
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Remark 4.6.5. Let A be an E,-ring and let G be a preoriented P-divisible group
over A. Then conditions (x,) and (*,) of Theorem are automatically satisfied
for any prime number ¢ which is invertible in my(A). In particular, if the E,-ring
A is p-local, then Theorem asserts that G is oriented if and only if it satisfies
conditions (x,) and ().

Remark 4.6.6 (Condition (x,) and Equivariant Stable Homotopy Theory). Let G
be a preoriented P-divisible group over an E,-ring A which satisfies condition (*,) of
Theorem . Then, if M is any Ang -module which is I¢ -nilpotent, composition
with ¢ induces an isomorphism

* BC) * »
Ext Agc,,(M, AG") — Ext Agc,,(M, ABO),

Applying this observation in the special case M = Ajc,, we deduce that the norm
map Nm : Apc, — AMCr = ABCr admits an essentially unique factorization as a
composition
Ay N 4B S, 450,

This factorization equips A with the structure of a genuine C,-spectrum. More precisely,
it allows us to construct a Cy-spectrum with underlying spectrum is A (equipped with
the trivial action of C}), “genuine” fixed point spectrum is Ang, and geometric fixed
point spectrum ®“»(A) given by the the cofiber of the map Nmg : Apc, — ASP . We
then have a homotopy pullback diagram of spectra

AL S ATP
PHCr (A) - Ath,
which we will refer to as the equivariant fracture square.

Remark 4.6.7 (Condition (x,) and Equivariant Stable Homotopy Theory). Let A be
an E,-ring, let G be a preoriented P-divisible group over A. Fix a prime number p
and let I = I¢, < Wo(AgC”) be the augmentation ideal of Notation m For every
Ang—module M, we will denote the I-completion of M by M} and the I-localization
of M by L;(M), so that we have a pullback diagram of Ag ”-modules o ;:

M———= M}

]

Li(M) —— L;(My)
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which we will refer to as the algebraic fracture square.

Suppose that G satisfies condition (x,) of Theorem 4.6.2, Taking M = AS we
conclude that the completion M} can be identified with the function spectrum AZC».
Moreover, the homotopy orbit spectrum Ayc, is automatically I -nilpotent (Remark
4.6.3). It follows that there exists a commutative diagram of Agc”—modules

Agcp < ABCy

|

Li(AE?) —— Li(AB%)

iu .

B (A) Aty

where the upper square is the algebraic fracture square of M and the outer rectangle
is the equivariant fracture square of Remark [£.6.6] In particular, the lower square is
also a pushout diagram, so that u is an equivalence if and only if v is an equivalence.
The following conditions are equivalent:

e The P-divisible group G satisfies condition () of Theorem W that is, the

. . BC
Tate construction A'“? is I -local as a module over Ag .

e The morphisms u and v appearing in the above diagram are invertible: in other
words, the algebraic fracture square of M = A(B;Cp agrees with the equivariant

fracture square of Remark [4.6.6]

e The spectrum &% (A) is I¢,-local. Equivalently, the map Nmg : A,c, — Ang
identifies Apc, with the local cohomology spectrum Iz, (AéCP) (this can be

viewed as a “homological” version of the condition (x,) of Theorem [4.6.2]).

The proof of Theorem will require some preliminaries. We first show that

every oriented P-divisible group satisfies condition (+).

Proposition 4.6.8. Let G be an oriented P-divisible group over an Ey-ring A. Let C,
be a cyclic group of order p, for some prime number p, and let M € Fun(BC),, Mody)
be Cy-equivariant object of the co-category Moda. Then the Tate construction M is
I¢,-local when viewed as a module over AﬁCP.

Remark 4.6.9. In the situation of Proposition 4.6.8] the homotopy fixed point

Cp

spectrum M"C? is automatically complete with respect to the augmentation ideal Ic,
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(Remark [4.6.3)). Consequently, Proposition is equivalent to the assertion that
the norm map Nm : M,c, — M hCr exhibits M as the I¢,-completion of Mjc, (or
dually that it induces an equivalence equivalence Mg, ~ T Ic, (MMC),

Remark 4.6.10. The assertion of Proposition |4.6.8|is a priori stronger than condition
(%) of Theoremm since it applies to any Cp-equivariant object M of the co-category
Mod 4, rather than just to A itself (endowed with the trivial action of C,). However,
it is actually equivalent to (,). The Tate construction can be viewed as a lax
symmetric monoidal functor from Fun(BC),, Mod4) to Mod4. Consequently, A’ has
the structure of an E,-algebra over A, and M!“» has the structure of a module over
At In particular, if A* is I¢ -local, then so is M™».

The proof of Proposition [4.6.8 will make use of the following elementary observation:

Lemma 4.6.11. Let H be a finite group and suppose we are given a map of spaces
f: X — BH. Let # € Fun(X,Sp) be a local system of spectra on X and let
f«F € Fun(BH, Sp) denote its pushforward to BH (that is, the right Kan extension
of F along f). If X is a finite space, then the Tate construction (f..F )" vanishes.

Proof. Let C denote the full subcategory of Fun(BH, Sp) spanned by those objects
M with M* ~ 0. Since the construction M — MU' is exact, C is closed under
finite limits in Fun(BH, Sp). We wish to prove that f, .# € C. For each z € X, let
iz : {x} — X denote the inclusion map. Using the equivalence .# ~ LiLan Loy F
(and the finiteness of X), we can reduce to the case where .# has the form i, %,
for some .Z' € Fun({x},Sp) ~ Sp. We may therefore replace X by {z} and thereby
reduce to the case where X is a point, in which case the desired result follows from
Example HA.6.1.6.26 . O

Proof of Proposition[{.6.8. Let M be the p-completion of M and let N denote the fiber
of the canonical map M — M. We then have a fiber sequence of Tate constructions

Nth N Mth N Mth7

where the first term vanishes because p acts invertibly on N. We may therefore replace
M by M and thereby reduce to the case where M is a module over the p-completion
of A. In this case, we can replace A by its p-completion and thereby reduce to the case
where A is p-complete. We may also replace the P-divisible group G by its p-local
summand Gy, (since this does not change the tempered function spectrum ACB;C”),
and thereby reduce to the case where G is an oriented p-divisible group.
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For each n > 0, let 34 < 7my(A) denote the nth Landweber ideal of A (Definition
Or.4.4.11) Note that every A-module is J7', ;-local (or equivalently E(n)-local, where
E(n) denotes the nth Johnson-Wilson spectrum) for n » 0; in fact, it suffices to take
n to be any upper bound for the height of the p-divisible group G (since we then have
34 = mo(A)). It will therefore suffice to prove the following:

(*,) If M is J/-local, then the Tate construction M'» is I -local.

We proceed by induction on n. If n = 1, then the assumption that M is J4-local
guarantees that p acts invertibly on M, so that M*“» vanishes. To carry out the
inductive step, assume that (=,) holds for some n > 1 and that M is 32, -local. Let
M denote the completion of M for the ideal J4, and let LM and LM denote the

localizations of M and M with respect to J2. We then have a pullback square

M——M

|

LM ——~> LM

of C)-equivariant objects of Mod 4, which induces a pullback square of Tate construc-
tions
MtCo M tCr

| |

(LM)€» — (LM)C>.

Our inductive hypothesis then guarantees that (LM)!®» and (LM)Cr are I¢,-local.
Consequently, to show that M is Ic,-local, it will suffice to show that M is
I¢,-local. We may therefore replace M by M and thereby reduce to the case where M
is 37, ;-local and J2-complete: that is, the case where M is K (n)-local as a spectrum
(see Proposition Or.4.5.4). Replacing A by its K (n)-localization, we can assume also
that A is K (n)-local. In this case, our orientation of G supplies a short exact sequence
of p-divisible groups
0 -GS — G — Gy — 0,

where G is the Quillen p-divisible group of A (Proposition . In particular, the
underlying map of finite flat group scheme G[p] — G[p] is a strict monomorphism,

so that the Atiyah-Segal comparison map ¢ : A& (BC,) — A*(BC,) is surjective.
We have a short exact sequence of abelian groups 0 — Z 5 Z — c, - 0

which induces a fiber sequence of spaces BC), 4 CP* % CP”. Let e e A%(CP”)
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be a complex orientation of A. We can then choose an element e € A%L(BC))
satisfying ((e) = ¢*(e) in A*(BC,). Note that e is annihilated by the pullback map
AL (BC,) — AL(EC,) ~ 1_5(A), so that eAg*(BC,) is contained in the augmentation
ideal I¢,. Consequently, to show that M 1 s I¢,-local, it will suffice to show that
multiplication by e induces an equivalence 6 : S 2M*Cr — M*tCr,

To prove this, form a pullback diagram of spaces

X *
lf’ J{f
BC,—2~ CP>,

and let Ay € Fun(X, Mod,) denote the constant local system on X with the value
A. The cofiber of # is then given by the Tate construction Q‘“», where @ is the
C)-equivariant object of Mody given by

M ®4 ¢* cofib(e: X 2Aape — Acpr) =~ M @4 ¢* f(A))

~ M®a f ;Ax

~ fuf"M.
The vanishing of Q*“» now follows from Lemma [4.6.11] since X is homotopy equivalent
to a circle. O]

Lemma 4.6.12. Let p be a prime number and let G be a preoriented P -divisible group
over an Eq-ring A which satisfies conditions (+,) and (x,) of Theorem . Then,

for every module M over the tempered function spectrum Ang, the canonical map
O M — (M@ Bcp AECp)hC”
exhibits (M ®Agcp Agc”)hcp as the Ic,-completion of M.

Proof. Set I = I, and let MOdCr;le denote the full subcategory of Mod 4B spanned

by the AG P-modules which are I complete. Then the construction
M — (M ®ABcp Ang)hCP
G

determines a functor F : Mod ABCr = Modcgléi. Let C <€ Mod 4B be the full
subcategory spanned by those obJects M for which the map Oy : M — F (M) exhibits
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F(M) as an I¢,-completion of M. It follows from assumption (x,) C contains the
tempered function spectrum ACB_;C" (and all of its shifts). Consequently, to show that
C = Mod ,5c,, it will suffice to show that C is closed under small colimits. For this,

it will suffice to show that the functor F' preserves small colimits. Using assumption

() (and Remark [4.6.10), we can factor F' as a composition

F F Cpl(I)

MOdAgcp — MOdAgcp —_— MOdA(B;Cp s

where F” is the functor of completion with respect to I (which preserves small

colimits, since it is left adjoint to the inclusion) and F’ given by the construction

M- (M ® ,5c, AEPY nc, (which also preserves small colimits). O
G

Lemma 4.6.13. Let p be a prime number and let G be a preoriented P -divisible group
over an Eq-ring A which satisfies conditions (x,) and (x,) of Theorem for some
prime number p. Then, for every nonnegative integer n, the Atiyah-Segal comparison
map

(A — ABG

exhibits ABC» as the completion of A(’Z,CP" with respect to the augmentation ideal Ic,, .

Proof. We proceed by induction on n, the case n = 0 being trivial. To carry out
the inductive step, we observe that the short exact sequence of abelian groups 0 —

C

-1 — Cpn — C), provides a factorization of ¢ as a composition

BCpnfl

Agcpn < (A )hCo < (ABCpm—1)1Cp . ABCpn,

It follows from Lemma that the fiber fib({’) is local with respect to the
augmentation ideal I, = AG(BC,), hence also with respect to the augmentation ideal
Ic,. = AL (BCyn) (which contains the image of I¢,). Since Ic,,_, is generated by the
image of I¢ ,, our inductive hypothesis guarantees that fib(¢") is also I¢ ,-local. It
follows that fib(¢) is I¢,.-local, and therefore exhibits ABC as the I¢,,-completion

of A(B;CP " (since ABY" is automatically Ic,.-local, by virtue of Remark 4.6.3)). O]

Lemma 4.6.14. Let G be a preoriented P-divisible group over an Eo-ring A, let B
be an Ey-algebra over A, and let p be a prime number. If G satisfies conditions ()

and () of Theorem then the preoriented P-divisible group Gpg also satisfies

p
conditions (x,) and (x},).
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Proof. Condition (x}) follows from Remark [4.6.10, To prove (+,), we must show that
the Atiyah-Segal comparison map ( : BgC" — BB exhibits BB as the completion
of B§Cp with respect to the augmentation ideal I, = Ag(BC)) (or equivalently, with
respect to the ideal that it generates in B&(BC,)). Note that we have a commutative
diagram

B@A A(B;Cp ——B X®a ABCP

| |

BCy BC,
Bg " ——— B7%»,

where the left vertical map is an equivalence and the upper horizontal map induces
an equivalence after completion with respect to I¢, (by virtue of assumption (2)). It
will therefore suffice to show that the right vertical map also induces an equivalence
after completion with respect to I¢,. To prove this, we observe that it fits into a
commutative diagram of fiber sequences

B®a Anc, —2> B4 ACr —~ B @, A

3 | |

N
Bth m Bth Bth ,

where the left vertical map is an equivalence. It will therefore suffice to show that the
right vertical map becomes an equivalence after completion with respect to I¢,. In
fact, both B ®4 A'“» and B vanish after completion with respect to ¢, by virtue

of our assumption that G satisfies (x}). O

Proof of Theorem[{.6.3 Let G be a preoriented P-divisible group over an E-ring A.
If G is oriented and p is a prime number, then G satisfies condition (x,) (Proposition
4.2.8) and condition (x,) (Proposition . Conversely, suppose that G satisfies
conditions (x,) an (x,) for every prime number p. Then, for every Ey-algebra B
over A, the preoriented P-divisible group Gp has the same property (Lemma .
Applying Lemma [4.6.13] we deduce that the Atiyah-Segal comparison maps

C:Bgcp” _ BBCpn

exhibit each BP%" as the completion of BgCPn with respect to the augmentation ideal
Ic,., so that G is oriented by virtue of Proposition 4.2.15| O
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4.7 Base Change and Finiteness

Let f : A — B be a morphism of E,-rings. Then, for every space X, f induces
an A-linear map of (unpointed) function spectra fX : A%X — B¥ which extends
to a B-algebra map B ®4 AX — BX. This map is an equivalence if the space X
is finite, or if B is perfect as an A-module. However, it is rarely an equivalence in
general. In essence, our theory of tempered cohomology is designed to correct this
problem: it provides a replacement for the function spectrum A~ which is more likely
to be compatible with extension of scalars. If G is an oriented P-divisible group over
A, then Theorem (along with Lemma implies that the canonical map
B®4 A& — BE is an equivalence when X = K(H,d) is an Eilenberg-MacLane space
associated to a finite abelian p-group H. In fact, we have the following more general
result:

Theorem 4.7.1 (Base Change for Tempered Cohomology). Let G be an oriented
P-divisible group over an Eo-ring A and let X be a w-finite space. Then, for every
map of Ey-rings A — B, the canonical map A — BE extends to an equivalence

p: B®s AL — Bg
of E-algebras over B.

We will give a proof of Theorem in §7| (see Corollary [7.3.12)).

Remark 4.7.2. In the special case where X = BH is the classifying space of a
finite abelian group H, Theorem [4.7.1| is a tautology: it follows immediately from the
definition of the P-divisible group Gp, and does not require the assumption that G is
oriented.

Let us collect some consequences of Theorem [4.7.1]

Corollary 4.7.3. Let G be an oriented P-divisible group over an E-ring A and let
X be a m-finite space. Let f: A — B be a morphism of E-rings. If either A& or B
is flat as an A-module spectrum, then the comparison map of Theorem [{.7.1] induces
an isomorphism of G-tempered cohomology rings

T0(B) ®ny(a) Ag(X) =~ B&(X).

Proof. Combine Theorem {4.7.1] with Proposition HA.7.2.2.13. m
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Remark 4.7.4. Let G be a preoriented P-divisible group over an E-ring A. If B is a
finite flat [E,-algebra over A, then the comparison map mo(B) ®x,a) A& (X) =~ B&(X)
is an equivalence for every orbispace X (see Remark 4.2.10)).

Corollary 4.7.5. Let G be an oriented P-divisible group over an Eo-ring A. Let
H be a finite group and let X be a finite H-space. Then, for every Ey-ring B, the

comparison map p: B &a A)é//H — Bé//H is an equivalence of Ey-algebras over B.

Proof. The constructions X — B ®4 Aé/ M and X — Bé/ /4 carry finite colimits in
the co-category Sy of H-spaces to finite limits in the co-category CAlgy of E-algebras
over B. It will therefore suffice to prove Corollary in the special case where
X is an H-space of the form Hy\H, where Hy is a subgroup of H. In this case, the
orbispace quotient X //H can be identified with the BH (7), and the desired result is
a special case of Theorem 4.7.1} O

From Corollary [4.7.5, we immediately deduce the following slightly stronger form
of Theorem [LT.I%

Corollary 4.7.6. Let G be an oriented P-divisible group over an Eo-ring A. Let
H be a finite group, let X be a finite H-space, and let B be an E-algebra over A.
If either A)é//H or B is flat as an A-module spectrum, then the comparison map of
Corollary induces an isomorphism of G-tempered cohomology rings

m0(B) ®ry(a) Aa(X//H) — Bg(X//H).
Proof. Combine Corollary with Proposition HA.7.2.2.13. m

Corollary 4.7.7. Let H be a finite group and let X be a finite H-space. Then the
equivariant Chern character of Example induces an isomorphism of complex
vector spaces

chyy : CRz KU (X) — H* (] [ X" ©((57Y)).

heH

Proof. Apply Corollary in the case where A = KU is complex K-theory, G = up=»
is the multiplicative P-divisible group over KU (endowed with the orientation of
Construction [2.8.6)), and B = C®g KU is the complexification of KU. O

Corollary 4.7.8. Let H be a finite group. Then the construction [V] — xy induces
an isomorphism of complex vector spaces

X : C®z Rep(H) — {Class functions H — C}.
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Proof. Combine Corollary with Example 4.3.9 m

If G is an oriented P-divisible group over an E,-ring A and X = K(H,d) is an
Eilenberg-MacLane space associated to a finite group H, then Theorem [4.4.1] implies
that the tempered function spectrum Ag is a projective A-module of finite rank. Using
Theorem we can prove a weak version of this assertion for m-finite spaces in
general:

Proposition 4.7.9. Let G be an oriented P-divisible group over an E.-ring A and
let X be a m-finite space. Then A is perfect as an A-module spectrum.

Corollary 4.7.10. Let G be an oriented P-divisible group over an Ey-ring A, let H
be a finite group, and let X be a finite H-space. Then Aé//H is perfect as an A-module
spectrum.

Proof. As in the proof of Corollary we can reduce to the case where X = Hy\H
is an orbit of H, in which case the orbispace quotient X //H can be identified with
BHS™ and the result follows from Proposition . m

Corollary 4.7.11. Let G be an oriented P-divisible group over an E.-ring A. Let
X and Y be orbispaces. Suppose that X = X for a n-finite space X. Then the

multiplication map
m: AL @4 AL — AT,

is an equivalence.

Proof. Combine Propositions [4.4.7] and [£.7.9] O

The proof of Proposition will make use of the following general observation:

Lemma 4.7.12. Let A be an Ey-ring and let M be an A-module spectrum. Suppose
that the functor
CAlg, — Mody4 B— B®s M

preserves small limits. Then M 1is perfect.

Proof. Specializing to A-algebras of the form A@® N for N € Mod,4, we deduce that
the functor
Mod 4 — Mody4 N— N®sM

preserves small limits, and therefore admits a left adjoint (Corollary HTT.5.5.2.9). It
follows that M is dualizable and therefore perfect as an A-module. n
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Proof of Proposition[{.7.9. Let G be an oriented P-divisible group over an E.-ring
A and let X be a m-finite space. Then the functor

CAlg, —» Mody  B®aAg

can be identified with B — B& (by virtue of Theorem [4.7.1)), and therefore preserves
small limits (Lemma [4.2.11]). Applying Lemma [4.7.12] we conclude that Ag is a
perfect A-module spectrum. m

We say that an E..-ring A is Noetherian if my(A) is Noetherian and each homotopy
group 7, (A) is finitely generated as a module over my(A). If A is Noetherian and M is
a perfect A-module spectrum, then each homotopy group 7, (M) is finitely generated
as a module over m(A). We therefore obtain the following:

Corollary 4.7.13. Let A be a Noetherian Ey-ring and let G be an oriented P-divisible
group over A. Then:

(a) If X is a w-finite space, then each of the tempered cohomology groups Ag(X) is
finitely generated as a module over my(A).

(b) If H is a finite group and X is a finite H-space, then each of the tempered
cohomology groups AL(X//H) is finitely generated as a module over my(A).

4.8 Application: Character Theory for 7-Finite Spaces

We now combine the results of §4.2] §4.3) and §4.7 We begin by studying the
rational version of tempered cohomology.

Proposition 4.8.1. Let A be an E-ring and let G be an oriented P-divisible group
over A. Assume that, for every prime number p, the p-divisible group G,y has some

constant height h,, and set A = @peP(Qp/ZP)hP. Then:

(a) The P-divisible group G admits a splitting algebra B = Split,(G) (see Definition
which is faithfully flat over the rationalization Aq = Q ®sA.

(b) Let X be a w-finite space and let S be the finite set of all homotopy classes of
maps from the classifying space BA into X, where A is the Pontryagin dual of
A. Then there is a canonical equivalence

BosAs~]]B

seS
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of Ex-algebras over B, which induces an isomorphism of graded rings

m0(B) @y AG(X) ~ | | B*({s}) = B*(5)

seS

Proof. Note that, if G admits a splitting A — G(A’) for an E,-algebra A" over A,
then the P-divisible group G4 is étale. The existence of an orientation of G then
guarantees that A’ is an E-algebra over Q (Remark . It follows that we can
identify a splitting algebras of G with a splitting algebras of G4, which exists (and
is faithfully flat over Aq) by virtue of Proposition m This proves (a). To prove
(b), let Go = 0 denote the trivial P-divisible group over Aq. Then the tautological
splitting of G over B can be regarded as a splitting of the monomorphism Gg — G 4.
We have a diagram of equivalences

~ ~ LAXG)Y) ~ BA ~ BA  ~
B®aAS > BE S Bg,N ) & BE 5 Yt &2 B

where the first map is supplied by Theorem [£.7.1] the second by Theorem the
third by Proposition [3.4.7, the fourth by Variant and the fifth by the observation
that the projection map X4 — my(XP4) = S induces an isomorphism on rational
cohomology (since X BA i5 a m-finite space). Passing to homotopy groups (and invoking
the fact that B is flat over Aq, hence over A), we obtain the isomorphism of graded
rings

70(B) ®ry(a) A& (X) ~ | [ B*({s}) = B*(S).

seS
O
Remark 4.8.2. In the situation of Proposition [4.8.1} the isomorphism of graded rings
m0(B) ®ro(a) Ag(X) ~ B*(S5)

is equivariant with respect to the action of the profinite group Aut(A); here Aut(A)
acts on the left hand side via its action on B = Split, (G), and on the right hand side
by combining its action on B and on the finite set S = mo(XP%). Note that m(B)
can be regarded as a (profinite) Galois extension of my(Aq) with Galois group Aut(A)
(Remark . Passing to invariants, we obtain an isomorphism of graded rings

Q®zAE(X) ~ B*(S)M W,

where the right hand side denotes the fixed points for the action of Aut(A) on the
graded ring B*(S).
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Remark 4.8.3. In the situation of Proposition |4.8.1] the existence of an isomorphism

mo(B) @nyt) AG(X) > | [ B*({s})
seS
guarantees that the tensor product my(B) ®xrya) A&(X) is a finitely generated free
module over the coefficient ring 7_,(B), having a canonical basis parametrized by the
set of homotopy classes of maps BA — X.

Corollary 4.8.4. Let A be an E-algebra over Q and let G be a P-divisible group
over A. Assume that, for every prime number p, the p-divisible group G,y has some
constant height h,, and set A = @peP(Qp/Zp)hP. Let X be a m-finite space. Then
the graded ring Q®zAg(X) is a projective module over the coefficient ring m_.(Aq),
with rank equal to the number of homotopy classes of maps from BA into X.

Proof. Combine Remark with the faithful flatness of the map my(Aq) —
mo(Splity (G)). O

Corollary 4.8.5. Let A be an E-ring which is complex periodic and K (n)-local for
somen > 0. Set A = (Q,/Z,)". Then:

(a) The Quillen p-divisible group GS admits a splitting algebra B = Split,(GS)
which is faithfully flat over the rationalization Aq = Q®gA.

(b) Let X be a m-finite space and let S be the finite set of all homotopy classes
of maps from the classifying space BZy into X. Then there is a canonical
equivalence

Bos A ~][B
seS
of Ex-algebras over B, which induces an isomorphism of graded rings

m0(B) @y A*(X) = [ | B*({s}) = B*(S)

seS
Proof. Combine Proposition with Theorem |4.2.5| O

Let K (n) denote the nth Morava K-theory (for some fixed prime number p). We
say that a space X is K (n)-finite if each of the groups K(n)*(X) is finite-dimensional
as a vector space over the field k = my(K (n)). In this case, we refer to the difference

Xrc(o)(X) = dim,. (K (n)"(X)) — dimy (K (n)" (X))

as the K (n)-Euler characteristic of X.

139



Corollary 4.8.6. Fiz a prime number p and an integer n > 0, and let X be a 7-
finite space. Then X is K(n)-finite, and the K(n)-Euler characteristic X g (X) is
equal to the number of homotopy classes of maps BZ, — X . In particular, we have
XK (n)(X) = 0, with equality if and only if X is empty.

Proof. Let E be the Lubin-Tate spectrum associated to a formal group of height n over
a perfect field k, Without loss of generality, we may assume that K (n) is the Morava
K-theory associated to E. Let L denote the fraction field of the Lubin-Tate ring 7o (E),
and let G be the Quillen p-divisible group of E. Then the Atiyah-Segal comparison
map ¢ : E§ — E¥ is an equivalence (Theorem [4.2.5), so that E¥ is perfect as an
E-module spectrum (Proposition . Let r be the number of homotopy classes of
maps BZ; — X. According to Corollary [4.8.5, the tensor product Q®m.(EX) is a
free module over Q ®,(FE), of rank equal to r. In particular, we have

dimp, (L ®ro(m) mo(EX)) =7 dimp, (L ®o(m) 7-1(EY)) = 0.
It will therefore suffice to prove the following general assertion:
(x) Let M be a perfect module over the Lubin-Tate spectrum FE. Then the integers
xo(M) = dimp, (L Qxy(m) To(M)) — dimp (L Qrypy 7—1(M))
Xe(M) = dim, (mo(K(n) ®g M)) — dim,(7_1(K(n) ®g M))
are the same.

To prove (x), let d denote the projective dimension of 7o(M) @ 7_1 (M) as a module
over 7o(F) (which is necessarily finite, since 7y(F) is a regular local ring). We proceed
by induction on d. If d = 0, then M can be written as a finite sum of copies of £ and
its suspension X(E); in this case, the equality asserted by () is clear. To treat the
case d > 0, we observe that our assumption that M is perfect guarantees that the
homotopy groups of M are finitely generated as modules over my(F). Choose a fiber
sequence M’ — P > M where P is a sum of copies of F and its suspension X(F), and
u induces a surjection m,(P) — (M ). In this case, we have a short exact sequence of
homotopy groups 0 — m,(M') — 7.(P) — m«(M) — 0. It follows that the homotopy
groups of M’ and P have projective dimension < d over the Lubin-Tate ring my(E), so
that our inductive hypothesis (and the additivity of the Euler characteristics defined
in (x)) supplies an identity

XL(M) = x0(P) = x£(M') = xx(P) = xx(M') = xx(M).
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4.9 Application: The Completion Theorem

Let G be an oriented P-divisible group over an E-ring A. For every finite abelian
group H, Proposition implies that the Atiyah-Segal comparison map

¢ ABIT > AP

exhibits AP as the completion of AZ7 with respect to the augmentation ideal Iy.
Our goal in this section is to prove a more general version of this result (Theorem
4.9.2), where we replace the classifying space BH by an orbispace quotient X //H
and we drop the assumption that H is abelian. Here we potentially encounter a
technical problem: when H is not abelian, it is not clear that the augmentation ideal
Iy = AL (BH) is finitely generated. To address this point, we will assume that the
E.-ring A is Noetherian. This guarantees that AL (BH) is finitely generated as a
module over 7y(A) (Corollary [£.7.13)), and therefore a Noetherian ring.

Remark 4.9.1. Let A be an E-ring, let G be a preoriented P-divisible group over
A, and let H be a finite group. For every H-space X, the canonical map of orbispaces

X//H — «//H = BH®)

induces a homomorphism of tempered cohomology rings A& (BH) — AL(X//H). In
particular, we can view each tempered cohomology group A% (X//H) as a module
over the commutative ring A% (BH). If A is Noetherian, G is oriented, and X is a
finite H-space, then A% (X //H) is finitely generated as a module over AL (BH) (since
it is already finitely generated as a module over my(A), by virtue of Corollary .

We can now state our main result.

Theorem 4.9.2 (Tempered Atiyah-Segal Completion Theorem). Let A be a Noethe-
rian B -ring, let G be an oriented P-divisible group over A, let H be a finite group,
and let Iy = AL (BH) be the augmentation ideal of Notation . Then, for every
finite H-space X, the Atiyah-Segal comparison map

¢ AG(X//H) = A*(Xou)

exhibits each A"(Xpy) as the Ig-adic completion of AL(X//H). That is, it induces
an isomorphism

A" (Xppr) > lim AG (X//H) [T Ag (X //H)
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Corollary 4.9.3 (Atiyah). Let H be a finite group and let X be a finite H-space. Then
the comparison map ¢ : KU (X) — KU*(Xp,g) exhibits KU*(Xpu) as the completion
of KU (X)) with respect to the augmentation ideal of Rep(H).

Proof. Combine Theorem [4.9.2| with Theorem [4.1.2 m

Remark 4.9.4. For a general version of Atiyah’s completion theorem in equivariant
stable homotopy theory (closely related to our Theorem [4.9.2)), we refer the reader to
the work of Greenlees-May ([4]).

Theorem [4.9.2]is a consequence of a more basic spectrum-level completion theorem,
which does not require the finiteness of X.

Theorem 4.9.5. Let A be a Noetherian Ey-ring, let G be an oriented P-divisible
group over A, and let H be a finite group. Let X be an H-space, and regard Aé//H
as a module spectrum over the E-ring ABH. Then the Atiyah-Segal comparison map
¢ : A)é//H — AXnH exhibits A% as the Iy-completion of A)é//H, where Iy is the
augmentation ideal of Notation [{.2.7.

Proof of Theorem from Theorem[.9.5. Let M be a module spectrum over the
E.-ring AZH and let M denote the Ij-completion of M. If each homotopy group of
M is finitely generated as a module over AL (BH), then the canonical map 7, (M) —
W*(]/\Z ) exhibits each Wn(]/\j ) as the classical Iy-adic completion of 7, (M) (Corollary
SAG.I1.4.3.6.6 ). When X is a finite H-space, this finiteness hypothesis is satisfied
in the case M = Aé/ H (Remark [4.9.1). In this case, Theorem allows us
to identify M with the function spectrum AX»# | so that the cohomology groups
A" (Xpp) ~ W,H(M\ ) are the classical Iy-adic completions of the tempered cohomology

groups A4 (X//H) ~n_,(M). O

We will reduce the general case of Theorem to the abelian case using the
following:

Lemma 4.9.6. Let A be a Noetherian Eo-ring and let G be an oriented P-divisible
group over A. Let H be a finite group and let Hy € H be an abelian subgroup. Let
Iy € AL(BH) be the augmentation ideal of Notation[4.2.7, and define Iy, < A% (BHy)
similarly. Then there exists an integer m » 0 such that I, = Iy A% (BHy) S Iy,
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Remark 4.9.7. Lemma {4.9.6[ admits an algebro-geometric interpretation. The com-
mutative diagram of spaces
FHy—=FEH

|

BHy—— BH

determines a commutative diagram of affine schemes

Spec(mo(A)) - Spec(mo(A))

J |

Spec(A% (BHy)) —~ Spec(A% (BH)),

where i and iy are closed immersions. Lemma [4.9.6| is equivalent to the assertion that
this diagram is a pullback square at the level of the underlying topological spaces:
that is, a point x of the space | Spec(A%(BHy))| belongs to the image of iy if and only
if f(z) belongs to the image of i.

Proof of Lemma[{.9.60. We use the formulation of Remark [£.9.7, Let x be a point
of the Zariski spectrum | Spec(A%(BHy))| which does not belong to the image of iy;
we will show that f(z) € |Spec(A%(BH))| does not belong to the image of i. Let
p < mo(A) be the prime ideal corresponding to the image of x in | Spec(m(A))|, let A,
be the localization of A with respect to p, and let A be the completion of A,. Since A
is Noetherian, A is flat over A. It follows that the natural maps

70(A) @ro(a) AL(BHo) — AL(BHy)  mo(A) ®pya) AL (BH) — A% (BH)

are isomorphisms (Corollary . We may therefore replace A by A and thereby
reduce to the case where m(A) is complete local Noetherian ring and x lies over the
closed point of | Spec(m(A))].

Let x be the residue field of the local ring mo(A). If k has characteristic p, then
the p-divisible group G,y admits a connected-étale sequence

0> Gy — G — G -0

where G” is étale and the closed fiber of Gy is connected (Corollary Or.2.5.22). If
k has characteristic zero, set Gy = 0. In either case, we have a monomorphism of
P-divisible groups f : Go — G for which the quotient G/Gy is étale. Let H, denote
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the Pontryagin dual of the finite abelian group Hy. We then have a short exact
sequence

0 — Go[Hy] — G[Ho] % (G/Go)[Hy] — 0

of finite flat group schemes over A, where first term has connected fiber over the closed
point of | Spec(my(A))| and the third term is étale over A, and the middle term has
underlying topological space | Spec(A% (BHy))|. Consequently, our assumption that x
does not belong to the image of ¢y guarantees that that its image under ¢ does not
belong to the zero section of (G/Gg)[Ho).

Since | Spec(mo(A))| is connected, the ¢-divisible groups (G/Gy) ) each have some
constant height . Let A be the colattice given by the sum @,.p(Q, / Z¢)". Applying
Proposition , we deduce that f admits a splitting algebra B = Split, (f) which
is faithfully flat over A. Using Corollary and Theorem [£.3.2] we obtain canonical
isomorphisms

70(B) ®ny(a) AG(BHy) ~ BG(BHy) ~ || Bg,(BHo)

a:/A\—>H0

7o(B) @rny AL(BH) = BY(BH) ~ ] By (BZ(a)
aA—H
where A denotes the Pontryagin dual of A, the second product is indexed by the
collection of all conjugacy classes of homomorphisms « : A — H, and Z () € H
denotes the centralizer of the image of . Since my(B) is faithfully flat over mo(A), we
can lift x to a point T of the affine scheme

Spec(mo(B) ®ny(a) AG(BHo)) = || Spec(Bg, (BH,)).

oz:/A\—>H0

Our assumption that ¢(x) is not contained in the zero section of (G/Gq)[Ho] guarantees
that o belongs to a component of the right hand side which corresponds to a nontrivial
homomorphism « : A — H,. Then the image of ¥ in the fiber product

Spec(mo(B) ®y(a) A% (BH)) ~ ]_[ Spec(B&, (BZ(a))).

is contained in a summand which corresponds to a conjugacy class of nonzero maps
A — H. In particular, it is contained in the inverse image of im(i), so that f(z)
cannot be contained in the image of i. O]
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Proof of Theorem[{.9.5. Let A be a Noetherian E.-ring, let G be an oriented P-
divisible group over A, and let H be a finite group. We wish to show that, for every
H-space X, the Atiyah-Segal comparison map ( : Aé//H — AXni exhibits AXrH as
the Ig-completion of A)é/ M Let us regard the H-space X as a functor of co-categories
Orbit(H)® — S. Let Orbit(H )., < Orbit(H) be the full subcategory defined in
Construction . Note that replacing X by the left Kan extension of X|q,p H)P
does not change the orbispace quotient X //H or the homotopy orbit space X y; we
may therefore assume without loss of generality that X is a left Kan extension of its
restriction to Orbit(H),p. In this case, we can write X as a colimit of H-spaces which
are represented by orbits of the form H/H,y, where Hy is an abelian subgroup of H.
Since the constructions X — Aé/ M and X — AXnn carry colimits of H-spaces to
limits in CAlg, (and the Iy-completion functor commutes with limits), it will suffice
to prove Theorem in the special case where X has the form H/H,. In this case,
we are reduced to proving that the Atiyah-Segal comparison map ¢ : A7 — ABHo
exhibits AP0 as the completion of AZ70 with respect to the augmentation ideal
Iy = AL (BH). Equivalently, we wish to show that ¢ exhibits APHo as the completion
of AGH® with respect to the ideal Iy AL (BH,) < A% (BH,). By virtue of Lemma M,
we can replace H by H, and thereby reduce to the situation treated in Proposition

1238 O

5 Tempered Local Systems

Let A be an E,-ring. For any space X, we let LocSys 4(X) denote the co-category
Fun(X,Mod,) of local systems of A-modules on X, and we let Ay € LocSys,(X)
denote the constant local system taking the value A € Mods. The construction
X — LocSys 4 (X) can be regarded as a categorification of the functor X — A*(X) in
the following sense: for any space X, we have a canonical isomorphism of graded rings

A” (X) = EXtEocSysA(X) (AX7AX)‘

Our goal in this section is to show that if G is an oriented P-divisible group over A, then
our theory of tempered cohomology X — A% (X) admits an analogous categorification.
More precisely, we will associate to each space X an co-category LocSysg(X), whose
objects we refer to as G-tempered local systems on X . This stable co-category contains
a distinguished object which we will denote by A, and the tempered cohomology ring
AE(X) can be recovered as the endomorphism ring Extyg.gys (x)(Ax, Ax) (Remark
5.1.20)).
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Before giving a formal definition, let us begin by describing some of the essential

features of our construction:

(@)

For any space X, there is a forgetful functor U : LocSysg(X) — LocSys 4 (X),
which can be regarded as a categorification of the Atiyah-Segal comparison map
on tempered cohomology (Construction [4.2.2)).

To every G-tempered local system .# € LocSysg (X ), we can associate a spec-
trum ' (X;.%) of tempered global sections of %, which is a module over the
tempered function spectrum Ag& of Construction m

Let Z is a G-tempered local system on X, let U(#) denotes the underlying
local system of .7, and let I'(X; U(.#)) denote the spectrum of global sections of
U(%) (in other words, the homotopy limit of the functor U(.#) : X — Mod,).
Then there is a comparison map

(7 Ta(X;7) - T(X;U(F)),

which we will refer to as the Atiyah-Segal comparison map with coefficients in
Z (in the special case .# = Ay, it specializes to the Atiyah-Segal comparison
map of Construction 4.0.3)).

Suppose that X = BH is the classifying space of a finite abelian group H, and
let .# be a G-tempered local system on X. Then the comparison map

(7 :Ta(X;7) > T(X;U(F))

of (¢) exhibits I'(X; U(#)) as the completion of I'q(X;.%#) with respect to the
augmentation ideal Iy = AL (BH) of Notation [4.2.7]

The simplest nontrivial case to consider is where X = BC, is the classifying space

of the the cyclic group C, = Z /pZ of order p, for some prime number p. In this

case,

properties (a) through (d) provide a complete description of the co-category

LocSysg (X). More precisely, suppose we are given a local system .% € LocSys 4(X),

which we can view an object of LocSys 4 (X) as an A-module spectrum M equipped
with an action of C), (in the “naive” sense of Definition [3.2.1)). Then the global sections
spectrum I'(X;.%,) can be identified with the homotopy fixed point spectrum M"r.

This homotopy fixed point has the structure of a module over the E.-ring A%, and

can therefore also be viewed as a module over the tempered function spectrum Agc"
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by means of the Atiyah-Segal comparison map ( : ACB;C" — ABC%_ Promoting .%, to a

tempered local system .Z € LocSysg(X) then equivalent to choosing an Ag "-module
N = T'g(X; %) equipped with an A](B;CP -linear map ¢ : N — M"®» which exhibits
M" as the completion of N with respect to the augmentation ideal I, = A% (BC))
(see Example [5.4.5)).

Let us now consider the more general situation where X = BH is the classifying
space of a finite abelian group H. In this case, a tempered local system % on X
generally cannot be recovered from the data (a), (b), and (c¢) alone. For every subgroup
Hy < H, we can restrict .% to a tempered local system on the classifying space BH,,
which has a tempered global section spectrum I'g(BHo; % |pn,) (which is a module
over the tempered function spectrum A(B;HO). This tempered function spectrum then
carries an action of the quotient group H/Hj (which acts by deck transformations on
the finite covering map BHy — BH). This construction recovers the datum of the
underlying local system U(.#) in the special case where Hy = {0}, and the datum of
the module I'g(X; %) in the special case Hy = H. To reconstruct a general tempered
local system on X = BH, one must specify all of the spectra 'q(BHy; % |gn,), along
with relative versions of the comparison maps (¢) (which we require to satisfy a suitable
generalization of (d): see Definition [5.2.4)).

As with the theory of G-tempered cohomology, we will define the notion of G-
tempered local system on a general spaces X by a Kan extension procedure. Roughly
speaking, to give a G-tempered local system % on X, one must give a compatible
family of G-tempered local systems {7 |p € LocSysg(T)}r—7, indexed by the
collection of all maps T" — X where T is the classifying space of a finite abelian group.
Note that the role of X here is a bit indirect: the input to the construction is really
the orbispace

X g% 58 T Mapg(T, X)

represented by X (Example [3.1.6). For various applications, it will be consider a
more general construction X — LocSysg(X) whose input is an arbitrary orbispace X
(through we will ultimately be most interested in the special case where X = X ) s
the orbispace represented by a 7-finite space X).

Let us now outline the contents of this section. We begin in by associating
to each orbispace X an oco-category LocSysk‘(X) of G-pretempered local systems
(Construction |5.1.3)), where we do not require the analogue of the Atiyah-Segal
completion theorem: in the special case where X = BC, is the classifying space of a
cyclic group C, = Z /pZ of prime order, an object of LocSysg®(X) can be identified
with a triple (M, N, (), where M is an A-module spectrum equipped with an action of
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C,and ¢ : N — M"® is a morphism of modules over the tempered function spectrum
ACB_;C" which is not required to satisfy any additional conditions (see Proposition
for a more general description, which applies to the classifying space of any finite
abelian group). In we define the co-category LocSysg(X) to be a certain full
subcategory of LocSysg®(X) (Definition [5.2.4). The definition makes sense in general
for any preoriented P-divisible group G. However, to show that it has good properties
(and to guarantee a good supply of examples of tempered local systems), we will need
to assume that G is oriented. In §5.3] we illustrate this point by showing that if
G is oriented, then the full subcategory LocSysg (X) € LocSysg© (X) is closed under
colimits: that is, colimits of G-tempered local systems can be computed levelwise.
In we use similar techniques to analyze the co-category LocSysg (7)) in the case
where T is the classifying space of a finite abelian group: under the assumption that
G is oriented, we show that the oo-category LocSysg(7') admits a concrete description
which generalizes the discussion above in the case T' = BC, (Proposition [5.4.2)). The
theory of tempered local systems in general is controlled by its behavior on the objects
of 7 for every orbispace X we have a canonical equivalence of co-categories

LocSysg(X) ~ lim LocSysg(T),
T—-X
where T ranges over classifying spaces of finite abelian groups (Remark [5.2.11)). In
fact, we do not even need to allow all finite abelian groups: in §5.6] we show that
it suffices to allow finite abelian groups H ~ @pEP H,) with the property that each
H,) can be generated by at most h, elements, where h,, is (any upper bound for) the
height of the p-divisible group G,y (Theorem [5.6.2)). In particular, if G is a p-divisible
group, then we can take T' to range over classifying spaces of finite abelian p-groups

(Example [5.6.5)).

For any orbispace X, the inclusion of stable co-categories
LocSysg (X) < LocSysg© (X)

admits a left adjoint L (Proposition[5.2.12)). Consequently, we can identify LocSysg (X)
as the quotient of LocSysi®(X) by a stable subcategory LocSysg'(X) < LocSysa®(X)
(namely, the stable subcategory annihilated by the functor L). In , we give an
explicit description of the subcategory LocSysg" (X) (assuming that G is oriented) in
terms of the geometry of the P-divisible group G (Theorem |5.7.3)). We apply this
result in to define construct a tensor product of G-tempered local systems, by

localizing the “levelwise” tensor product on G-pretempered local systems.
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Remark 5.0.1 (Relationship with Equivariant Stable Homotopy Theory). Let X =
BC, be the classifying space of a cyclic group of prime order. As indicated above, we
can identify objects . € LocSysg (X ) with triples (M, N, (), where M is an A-module
spectrum equipped with an action of C, and ¢ : N — M"“" is a morphism of AZCr-
modules. From this data, we can assemble a “naive” C,-spectrum (that is, spectrum
object of the co-category S¢, of Definition [3.2.10)), having underlying spectrum M
and Cp-fixed point spectrum N (so that ¢ plays the role of the comparison map of
genuine and homotopy fixed points). If .# belongs to the subcategory LocSysg(X),
then this “naive” Cpy-spectrum can be promoted to a “genuine” C,-spectrum: that is,
we can complete the following diagram:

To see this, note that if ¢ exhibits M"“» as the completion of N with respect to
the augmentation ideal I, S Ag(BC)), then it induces an equivalence I'z, (N) ~
I'r, (M"C?), whose codomain can be identified with the homotopy orbit spectrum
Mpc,. In the case of the constant local system, this recovers the construction described
in Remark [4.6.71

More generally, if H is any finite group, then our theory of G-tempered local
systems on the classifying space BH can be formulated in terms of H-equivariant
stable homotopy theory. We will return to this point in [10].

5.1 Pretempered Local Systems

We begin by introducing some notation.

Notation 5.1.1. Let 7 be the oo-category introduced in Notation [3.1.1] and let
OS = Fun(.7°P,S) denote the oo-category of orbispaces. For each orbispace X € OS,
we let J)x denote the fiber product .7 xps OS)x. More informally, )x is the oo-
category whose objects are pairs (7, 7), where T' is an object of 7 and 7 : TG - X
is a map of orbispaces, or equivalently a point of the space XT. We will write 9/‘;(1) for
the opposite of the co-category 7x. We will generally abuse notation by identifying
an object (T',n) of co-category 7)x with the underlying object T e 7.
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Notation 5.1.2. Let A be an E,-ring and let G be a preoriented P-divisible group
over A, so that G determines a functor

Ag:T® > CAlg, T AL
(see Notation 4.0.1). If X is an orbispace, we let Ax denote the composite functor
% TP 49 CAlg,

which we view as a commutative algebra in the symmetric monoidal co-category
Fuan(7y°,8p). We let Moda, = Modga, (Fun(.7y”, Sp)) denote the oo-category of
Ax-module objects of Fun(75", Sp).

More informally, an object # € Mod,, is a rule which associates to each object
T of Jx a module .Z (T) for the G-tempered function spectrum Ag, and associates
to each morphism a: 77 — T in Jx an Ag-linear map . (T') — % (T") (compatible
with composition up to coherent homotopy).

Construction 5.1.3 (Pretempered Local Systems). Let A be an Ey-ring and let G
be a preoriented P-divisible group over A. Let X be an orbispace, and let Ay be as in
Notation [5.1.2] A G-pretempered local system is an Ax-module object of the functor
oo-category F un(Z;p, Sp) which satisfies the following condition:

(A) Let o : 7" — T be a morphism in Z)x with connected homotopy fibers (that
is, a induces a surjection of fundamental groups 7 (7") — 71(7")). Then Z#(«)
induces an equivalence AL ® az, F(T') — F(T") of AL -modules.

pre

We will write LocSysg” (X) to denote the full subcategory of Mod,, spanned by the
G-pretempered local systems.

Variant 5.1.4. Let A be an E,-ring, let G be a preoriented P-divisible group over
A, and let X be a space. We define a G-pretempered local system on X to be a
G-pretempered local system on the orbispace X (7) represented by X (Example .
We let LocSysg®(X) = LocSysp®(X(7)) denote the oo-category of G-pretempered
local systems on X.

Example 5.1.5. Let G be a preoriented P-divisible group over an E-ring A and let
X be an orbispace. Then Ay is a G-pretempered local system on X (when viewed as a
module over itself). We will refer to Ay as the trivial G-pretempered local system. In
the special case where X = X () is the orbispace represented by a space X, we will
denote Ay by Ax.

150



Remark 5.1.6 (Pullback of G-Pretempered Local Systems). Let f : X — Y be a
morphism of orbispaces. Then composition with f induces a functor of co-categories
F: Jx — )y which is compatible with the projection to .7. Precomposition with
F then induces a functor f* : Mods, — Moda, which restricts to a functor of full
subcategories
¥ LocSysg (Y) — LocSysg‘ (X).

If . is a G-pretemprered local system on Y, then f*.%# is a G-pretempered local
system on X which we will refer to as the pullback of F along f. Concretely, it is
given by the formula

(f* FUTO) LX) = 7(TO L5 V),

Remark 5.1.7. Let X be an orbispace, and suppose we are given a family of maps
{fa : Xo = X} with the property that, for every object T' € 7, the induced map

[ [mo(XE) — mo(X")

is surjective. Let .# be an Ax-module object of the functor co-category Fun(ﬂ/;p, Sp).
If each pullback f¥.# is a G-pretempered local system on X,, then .# is a G-
pretempered local system on X.

In the sequel, we will need a more refined version of Remark [5.1.6] which allows us
to view the construction X — LocSysg°(X) as a functor of co-categories.

Construction 5.1.8. Let Mod(Sp) denote the co-category whose objects are pairs
(B, M), where B is an Ey-ring and M is a B-module spectrum. The construction
(B, M) — B then determines a forgetful functor ¢ : Mod(Sp) — CAlg(Sp) = CAlg.

Let G be a preoriented P-divisible group over an E.-ring A, and let 7 be an
co-category equipped with a functor 7 — 7. We let Funcalg (7, Mod(Sp)) denote
the oo-category given by the fiber product

Fun(7™, Mod(Sp)) X g7 care {Aa),

so that the objects of Fungai (-7, Mod(Sp)) can be identified with functors .% which
fit into a commutative diagram

T 2 Mod(Sp)

L

TP —— CAlg.
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Note that, if 7 — .7 is a right fibration classified by a functor X : Z°° — S. then
7 is equivalent to the oo-category Tx of Notation . In this case, we obtain an
equivalence of oo-categories Mody, ~ Funcai (7, Mod(Sp)). We let LocSysa®(7)
denote the essential image of LocSysg®(X) under this equivalence.

Let Q denote the ordinary category whose objects are simplicial sets .7 equipped

with a right fibration .7 — .7. We view Q as a simplicially enriched category, with
Homo (7, 7). = Homset ), (7 % (A%)P " T.

Then the homotopy coherent nerve NhC(Q) is an oo-category. Moreover, the construc-
tion 7 — LocSysg (7)) determines a simplicially enriched functor from Q°P to the
category of (large) simplicial sets. Passing to homotopy coherent nerves, we obtain a

functor of co-categories
6:N"(Q)® - Caty, 7 > Funca(Z", Mod(Sp)).
Note that there is a canonical equivalence of co-categories
YOS = Fun(7°,S) ~ N*(Q),

which carries each orbispace X to a right fibration .7 — .7 which is classified by
the functor X : 7°? — § and can therefore be identified with the co-category
T)x of Notation (see/§£—ITT.5.1.1 ). Composing this equivalence with 6, we
obtain a functor OS°* — Cat,. We will abuse notation by denoting this functor
by LocSysg () : OS®P — ax\toc. By construction, its value on an orbispace X is
equivalent to the oo-category LocSysg (X) of Construction [5.1.3] and its value on a

morphism of orbispaces is given by the construction of Remark [5.1.6]

Proposition 5.1.9. Let A be an E-ring and let G be a preoriented P-divisible group
over A. Then the functor

LocSysg (e) : OSSP — Cato
of Construction preserves small limits.

Proof. Let us abuse notation by identifying OS = Fun(.7°P, Set) with the co-category
N"(Q) appearing in Construction [5.1.8 It follows from Theorem HTT.2.2.1.2 that
the functor

N (Q)P — Cato T > Funca (7", Mod(Sp))
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pre

preserves small limits. We wish to show that the subfunctor 7 — LocSysg®(7) has
the same property. To prove this, suppose we are given a diagram {.7,} in N"(Q)°P
having a colimit .7. We then obtain a commutative diagram of oo-categories

LocSysg‘(7) o lim LocSysg”® (T )

| |

Funga (7, Mod(Sp)) LN lim Funcag (.7 Mod(Sp)),

where 0’ is an equivalence of oo-categories and the vertical maps are inclusions of
full subcategories. To show that the upper horizontal map is an equivalence, it will
suffice to show that the diagram is a pullback square, which follows immediately from

Remark 5.1.71 O
Warning 5.1.10. The functor

S > Cato X +— LocSysg‘(X)

generally does not carry colimits of spaces to limits of co-categories. However, it does
carry coproducts in S to products of co-categories (see Remark [3.1.7)).

It follows from Proposition that the functor X — LocSysg " (X) is determined
by its restriction along the Yoneda embedding

T 08 T—T0.
We now describe this restriction more explicitly.

Notation 5.1.11. Let T be an object of 7. We let Cov(T') denote the category of
connected covering spaces Ty — T'. Note that if we fix a base point t € T', then the
construction

To — Ty xr {t}

induces an equivalence of categories Cov(T') — Orbit(m(T")), where Orbit(m(T))
denotes the orbit category of the finite abelian group (") (Notation [3.2.7). We will
identify Cov(T') with a full subcategory of the co-category Jr ~ Fp-) of Notation
spanned by those maps Ty — T for which the induced map 71 (7y) — m1(T) is a
monomorphism of finite abelian groups.

If G is a preoriented P-divisible group over an E,-ring A, we let Agr denote the
composite functor

Cov(I)? — T — T As, CAlg,

which we regard as a commutative algebra object of co-category Fun(Cov(7T)°, Sp).

153



Proposition 5.1.12. Let G be a preoriented p-divisible group over an Ey-ring A,
and let T be an object of . Then composition with the inclusion Cov(T) — Fjp
induces an equivalence of co-categories

¢ : LocSysg (') — Mod g . (Fun(Cov(T)°P, Sp)).

Proof. Let q : Mod(Sp) — CAlg be as in Construction [5.1.8| so that we can identify
¢ with the restriction map

LocSysg"(T") — Fuancag(77, Mod(Sp)) — Fuancag(Cov(T)°?, Mod(Sp)).
By virtue of Proposition HTT.4.3.2.15, it will suffice to prove the following:

(+) Let F € Funcaig(7)7, Mod(Sp)). Then .7 is a G-pretempered local system on
T if and only if it is a g-left Kan extension of the restriction . |coy(r)or.

To prove this, we first note that the inclusion Cov(T") < J)r admits a left adjoint
U. Concretely, U carries an object 7" € 7 to another object U(T") € F)p, which is
characterized up to equivalence by the existence of a diagram

T Uy A T

where p is surjective on fundamental groups and v is injective on fundamental groups.
It follows that .7 € Funcai(Z/r°", Mod(Sp)) is a g-left Kan extension of .7 |cov(ryor if
and only if, for every object 17" € J)p, it carries pz to a g-coCartesian morphism of the
ao-category Mod(Sp). More concretely, this amounts to the condition that .% induces
an equivalence of AL -modules AL ® quen F(U(T) — F(T"). The “only if” direction
of (x) follows immediately from the definitions. For the converse, suppose that .7 (p)
is an equivalence for each object 7" € 7)p; we wish to show that .7 satisfies condition
(A) of Construction [5.1.3] Let a : 7" — T" be a morphism in 7 with connected
homotopy fibers. Then « induces an homotopy equivalence U(a) : U(T") — U(T"). It
follows that we can identify pup» with the composition g o . Since % carries 7+ and
prr to g-coCartesian morphisms of Mod(Sp), it must also carry « to a g-coCartesian
morphism of Mod(Sp) (Proposition HTT.2.4.1.7). O

Example 5.1.13. If T' € .7 is contractible, then Cov(T) is equivalent to the cate-
gory with a single object and a single morphism. Applying Proposition [5.1.12 we
deduce that the evaluation functor .# — % (T) is an equivalence of co-categories

pre

LocSysg (1)) ~ Mod, (for any preoriented P-divisible group G over A).

154



Example 5.1.14. Let p be a prime number and let 7' = BC), be the classifying space
of the cyclic group C, of order p. Then, up to isomorphism, the category Cov(T) has
exactly two objects:

e The covering map EC),, — BC,, whose automorphism group is the cyclic group
Cp.

e The space T' = BC, itself, which is a final object of Cov(T').

The object EC), spans a full subcategory of Cov(T") which we can identify with the
classifying space BC,, itself, so that the entire category Cov(7T') can be identified with
the cone (BC),)~.

Let G be a preoriented P-divisible group over an E -ring A. Then the co-category
Mod g, . (Fun(Cov(T')°?, Sp)) is easy to describe: its objects can be identified with
pairs (M, ¢ : N — M"%) where M is a Cj-equivariant object of the oo-category Mod 4,
N is a module over the tempered function spectrum Agc”, and ¢ : N — M" is a

Cp

morphism of Ang—modules (where we regard M"“» as a module over Ag via the

Atiyah-Segal comparison map Ag ? — ABO).

Variant 5.1.15. Let X be any orbispace. Then the underlying space |X| of Notation
3.1.5| can be identified with a full subcategory of the oo-category J)x, spanned by
those objects T € .7)x whose underlying space is contractible. If G is a preoriented
P-divisible group over an Ey-ring A, then precomposition with the inclusion functor
[X| < T)x supplies a forgetful functor

LocSysg” (X) — Fun(|X], Mod4) = LocSys 4(X]).

In the special case where X = X is the constant orbispace associated to a space X
(Example [3.1.8)), this forgetful functor supplies an equivalence of categories

LocSysg (X)) ~ LocSys 4(|X]).

To prove this, we can use Proposition to reduce to the case where X is contractible,
in which case it follows from Example [5.1.13

Remark 5.1.16. Let X be a space. Applying Variant to the representable
orbispace X = X(7) of Example , we obtain a forgetful functor LocSysg®(X) —
LocSys 4(X) from G-pretempered local systems on X to the oo-category of local
systems of A-modules on X. Under the identification of Variant [5.1.15] this forgetful
functor is given by pullback along the map of orbispaces X — X(). In particular,
it is an equivalence if X is a finite space (Remark . However, it is not an
equivalence in general.
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Example 5.1.17. Let p be a prime number, let 7' = BC), be the classifying space of
the cyclic group C), of order p, and let Tj, = EC,, be its universal cover. Let .# and
¢ be G-pretempered local systems on 7', and let %, ¥, € LocSys4(T) denote their
images under the forgetful functor of Remark [5.1.16] Using the analysis of Example
5.1.14) we obtain a pullback diagram of spaces

MapLocSysG (T) (3’, g) MapModAT (‘/ (T)7 g(T))

o
G
MapLocSysA(T) (y()? go) - MapModAT (ﬁ(T)’ g(TO)th).
G

In particular, we have a fiber sequence of mapping spaces

MapLocSysG (1) (ﬁ’ g) - MapLocSysA(T) (y(]? go) - MapModAT (y(T)v COﬁb(C))
G

where ¢ denotes the canonical map ¥4(T) — 4(Tp)">.

Corollary 5.1.18. Let G be a preoriented p-divisible group over an Ey-ring A, and
let T' be an object of . Then:

e ao-category LocSys is stable and presentable.
1) Th t LocSysg (T is stable and tabl
(2) For each object T € J)p, the evaluation functor
LocSysg (T) — Mod, 47/ F— F(T')
preserves small limits and colimits.

Proof. Since the co-category Mod 4 is stable and presentable, the functor co-category
Fun(Cov(T")°?, Mod 4) has the same properties. Proposition allows us to identify
LocSysg® (T) with the oo-category of Ag r-module objects of Fun(Cov(7')°P, Mod 4).
It is therefore also stable (by virtue of Proposition HA.7.1.1.4) and presentable (by
virtue of Corollary HA.4.2.3.7). This proves (1). To prove (2), let 7" be an object of .7
and let U(7") be as in the proof of Proposition Then the functor . — 7 (1")
is given by the composition

A£/®AU(T’) °

F=F(U(T")) G
MOdAg(T/) MOdAg .

LocSysg (T')

Since AL is finite flat over Ag(T/), the second functor preserves small limits and
colimits. We can therefore replace 7" by U(T") and thereby reduce to the case where
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T’ belongs to Cov(T'), in which case the desired result follows from the fact that the

forgetful functor Mod ,.(Fun(Cov(7T)°?, Sp)) — Mody preserves small limits and
colimits (Corollaries HA.4.2.3.3 and HA.4.2.3.5). O

Corollary 5.1.19. Let G be a preoriented p-divisible group over an E.,-ring A. Then:
(1) For every orbispace X, the co-category LocSysg  (X) is stable and presentable.

2) For every orbispace X and every object T € T)x, the evaluation functor
/
LocSysg"(X) — Mod 4z F — F(T)
preserves small limits and colimits.

(3) For every morphism of orbispaces f : X — Y, the pullback functor f* :

LocSysg (YY) — LocSysg (X) preserves small limits and colimits.

Proof. To prove (1), we observe that every orbispace X can be written as a small
colimit li_r)na Xa, Where each X, is representable by an object To(é_) € 7 (in fact, it
has a canonical representation in this form, where the diagram is indexed by the
co-category J)x). Then Proposition supplies an equivalence of co-categories

pre

LocSysg®(X) =~ lim_ LocSysg®(Xa). Corollary [5.1.19| implies that each of the oc-

categories LocSysg (X, ) is stable and presentable and that each of the transition

functors LocSysg®(Xa) — LocSysg® (Xg) preserves small limits and colimits. It follows
that LocSysg (X) is also stable (Theorem HA.1.1.4.4) and presentable (Proposition
HTT.5.5.3.13), and that the pullback functors LocSysg " (X) — LocSysg‘ (X, ) preserve
small limits and colimits. This immediately implies (1) and (2), and the implication

(2) = (3) follows from the definition of pullback for G-pretempered local systems. [

Remark 5.1.20 (Relationship with G-Tempered Cohomology). Let A be an E-
ring and let G be a preoriented P-divisible group over A. For every orbispace X,
the co-category LocSysg©(X) is a presentable A-linear co-category. In particular, to
every pair of objects %, ¥4 € LocSysg°(X), we can associate an A-module spectrum
Map(#,%) which classifies maps from .% into ¢ in the following sense: for every
A-module spectrum M, we have a canonical homotopy equivalence

Mapyoq, (M, Map(F,9)) = Mapyocgysprex) (M @4 F,9).

In the special case .7 = ¥ = Ay, we obtain an associative algebra Map(Ax, Ax). It is
not difficult see that the construction X — Map(Ayx, Ax) determines a functor OSSP —
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Alg . This functor carries colimits of orbispaces to limits in Alg, (Proposition [5.1.9)
and carries each representable orbispace T(7) to the tempered function spectrum AL
(by Proposition . It follows that we can functorially identify Map(Ax, Ax) with
the G-tempered function spectrum Ag of Construction . Passing to homotopy
groups, we obtain a canonical isomorphism

AE (X> = EXtIiocSysI();re(X) (AX7 AX) )

depending functorially on X.

5.2 The oo-Category LocSysg(X)

Let A be an E, -ring and let G be a preoriented P-divisible group over A. In
this section, we associate to each orbispace X a full subcategory LocSysg(X) <
LocSysg© (X), whose objects we will refer to as G-tempered local systems on X. First,

we need to establish some notation.

Notation 5.2.1. Let T be an object of the co-category .7: that is, a space which
is homotopy equivalent to BH, for some finite abelian group H. Let f : Ty — T be
a map which exhibits Tj as a connected covering space of T'. Then Tj is homotopy
equivalent to the classifying space BHy, where Hy < H is the subgroup given by the
image of the map m(7y) — 71 (7). In particular, T} is also an object of .7. We let
Aut(T,/T) denote the group of deck transformations of the covering Ty — 7. Then
Aut(Ty/T) can be identified with the quotient group H/Hy: in particular, it is also a
finite abelian group.

Let X be an orbispace, and suppose we are given an object T € Jx corresponding to
a pair (T,n : T7) — X). Then we can lift f to a morphism Ty — T in the co-category
Tx, Where T is the pair (Ty, f on : T"7) — X). Moreover, the automorphism group
Aut(Ty/T) acts on the object T.

Let G be a preoriented P-divisible group over an E -ring A. Then f induces
a surjective homomorphism of tempered cohomology rings AL (T) — A& (Ty). We
will denote the kernel of this homomorphism by I(Ty/T) < AL(T) and refer to it
as the relative augmentation ideal of the map Ty — T. Note that I(Tp/T) is a
projective module of finite rank over the commutative ring my(A), and is therefore
finitely generated as an ideal of the ring A% (Tp).

Remark 5.2.2. Let H be a finite abelian group. Then the canonical map FH — BH
is a covering, and the relative augmentation ideal I(EH/BH) Notation coincides
with the augmentation ideal Iy of Notation [4.2.7]
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Remark 5.2.3. Let T, — T be a covering map in the co-category .7, and let T — T
be a morphism in .7 with connected homotopy fibers (so that the map m(7") — m (T)
is surjective). Then the fiber product Tj) = Ty x¢ 7" is a connected covering space of
T’, and therefore also belongs to .7. If G is a preoriented P-divisible group over an
E,-ring A, then the pullback diagram

T, —=T

|

TO ——— T
induces a pullback diagram of affine schemes

Spec(Ag (1)) — Spec(Ag (1))

l l

Spec(Ag(To)) — Spec(Ag(T)),

where the horizontal maps are closed immersions and the vertical maps are finite
flat. It follows that the relative augmentation ideal I(T}/T") < AL(T") is equal to
I(Ty/T)AL(T"): that is, it is generated by the image of the relative augmentation
ideal I(T}/T) < AYL(T).

Definition 5.2.4 (Tempered Local Systems). Let A be an E, -ring, let G be a
preoriented P-divisible group over A, let X be an orbispace, and let .# € LocSysg* (X)
be a G-pretempered local system on X. We say that .# is a G-tempered local system
if it satisfies the following additional condition:

(B) Let T be an object of 7x and let T be a connected covering space of T.
Then the canonical map .7 (T) — . (Tp)* "t 70/T) exhibits .F (1) A (70/T) as an
I(Ty/T)-completion of .7 (T'), where I(Ty/T) is the relative augmentation ideal
of Notation [£.2.11

We let LocSysg (X) denote the full subcategory of LocSysg (X) spanned by the G-
tempered local systems on X.

Remark 5.2.5. In the case where G is oriented, we will give alternate characterization
of the class of tempered local systems in §5.5} see Theorem [5.5.1]

Variant 5.2.6. Let A be an E-ring, let G be a preoriented P-divisible group over
A, and let X be a space. We define a G-tempered local system on X is a G-tempered
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local system on the orbispace X(7) represented by X (Example [3.1.6). We let
LocSysg (X) = LocSysg (X (7)) denote the co-category of G-tempered local systems
on X.

Remark 5.2.7. In the situation of axiom (B) of Definition , note that any
AQ-module M is automatically I(Tp/T)-complete when viewed as a A&-module
(since the homotopy groups of M are annihilated by the relative augmentation ideal
I(Ty/T)). Since the collection of I(Ty/T)-complete AL-modules is closed under limits,

hAut(To/T) js automatically

it follows that the homotopy fixed point spectrum % (7)
I(Ty/T)-complete. We may therefore replace (B) by the following a priori weaker

condition:
(B') The fiber of the canonical map .7 (T) — % (T, /1) is [(T,/T)-local.

Remark 5.2.8. Let G be a preoriented P-divisible group over an E,-ring A, let X
be an orbispace, and let .# € LocSysg®(X) be a G-pretempered local system on X.
Then condition (B) of Definition is equivalent to the following a priori weaker

condition:

(B") Let T be an object of J)x and let T be a connected covering space of T' for
which the automorphism group Aut(7,/T") is isomorphic to C, for some prime
number p. Then the fiber of the canonical map 7 (T) — Z (T)rAutTo/T) jg
I(To/T)-local.

The implication (B) = (B”) is immediate. To prove the reverse implication, we note
that every covering map Ty — T in 7 factors as a composition

Ty~ Ty — - —T,=T,

where each Tj_; is a connected p-fold covering space of T} for some prime number p
(which might depend on k). It follows that the fiber of the canonical map .# (T) —
F (Tp)"A(T/T) can be written as a composition of maps

fk : ﬁ(Tk)hAut(Tk/T) N ﬁ(Tk_l)hAut(Tk_l/T).

By virtue of Remark [5.2.7 it will suffice to show that each of the fibers fib()
is I(To/T)-local. Note that the fib(&) can be identified with the homotopy fixed
points for the action of Aut(7}/T") on fib(6y), where 6; denotes the canonical map
F(Ty) — F (Tj_p )MA0Te2/Tk) - Assumption (B") guarantees that fib(6y) is I(Ty_1/Ty)-
local when regarded as an Agf-module spectrum, and therefore I(T}_1/T)-local when
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regarded as an AL-module spectrum. It now suffices to observe that every AL-
module which is I(Ty_1/T)-local is also I(Ty/T)-local (since I(Ty_1/T) is contained
in I(Ty/T)).

Remark 5.2.9. Let G be a preoriented P-divisible group over an E-ring A and let f :
X — Y be a morphism of orbispaces. Then the pullback functor f* : LocSysg (Y) —
LocSysg®(X) of Remark carries G-tempered local systems on Y to G-tempered
local systems on X and therefore restricts to a functor LocSysg(Y) — LocSysg(X),
which we will also denote by f*.

Remark 5.2.10. Let G be a preoriented P-divisible group over an E.,-ring A and
let .# € LocSysg (X) be a G-pretempered local system on an orbispace X. Suppose
that there exists a collection of orbispace morphisms f, : X, — X with the following
properties:

e For every object T € .7, the induced map [ [, mo(XL) — mo(X) is surjective.
e Each pullback f*.% is a G-tempered local system on X,.
Then .# is a G-tempered local system on X.

Remark 5.2.11. Let G be a preoriented P-divisible group over an E-ring A. Then
the construction X — LocSysg(X) determines a functor

LocSysg(e) : OS®P — Cato,

which carries (small) colimits of orbispaces to (small) limits of co-categories: this

follows from Proposition and Remark [5.2.10}
We now summarize some formal properties of Definition [5.2.4}

Proposition 5.2.12. Let G be a preoriented P-divisible group over an E-ring
and let X be an orbispace. Then LocSysg(X) is a presentable stable co-category.

Moreover, the inclusion functor LocSysg(X) < LocSysg (X) admits a left adjoint
L : LocSysg (X)) — LocSysg (X).

Proof. Choose a set of representatives for all equivalence classes of pairs u = (T, f :
Ty — T), where T is an object of J)x and f : Ty — T exhibits Tj as a connected
covering space of T. For every such pair u, let ¢, : LocSysg(X) — Mod AL be the
functor given by

6u(F) = BD(F(T) > F(Ty) P00,

161



The functor ¢, is accessible and preserves small limits. Let C, denote the full
subcategory of LocSysg(X) spanned by those objects % such that ¢, (%) is I(To/T)-
local. Applying Lemma HTT.5.5.4.17, we deduce that C, is a strongly reflective
subcategory of LocSysg®(X). Note that LocSysg (X) is given by the intersection (), C,.
Applying Lemma HTT.5.5.4.18 , we deduce that LocSysg(X) is a strongly reflective

pre

subcategory of LocSysg (X): that is, the oo-category LocSysg(X) is presentable and
the inclusion LocSysg(X) < LocSysg‘(X) admits a left adjoint. The stability of
LocSysg (X) follows from the observation that it closed under suspensions and limits
in the stable co-category LocSysg* (X). H

Corollary 5.2.13. Let G be a preoriented p-divisible group over an Ey -ring A and
let X be an orbispace. Then:

o For each object T € F)x, the evaluation functor
(F € LocSysg(X)) — (F(T') € Mod,z)
preserves small limits.

o For every map of orbispaces f : Y — X, the pullback functor f* : LocSysg(X) —
LocSysg (Y) preserves small limits.

Proof. Combine Proposition [5.2.12| with Corollary [5.1.19] O

5.3 Colimits of Tempered Local Systems

The co-category LocSysg(X) can be defined for any preoriented P-divisible group
G and any orbispace X. However, it is particularly well-behaved when the P-divisible
group G is oriented.

Theorem 5.3.1. Let G be an oriented P-divisible group over an E-ring A and let
X be an orbispace. Then the full subcategory LocSysg(X) € LocSysg®(X) is closed
under small colimits.

Corollary 5.3.2. Let G be an oriented P-divisible group over an Eo-ring A. Then:
Then:

1) For every orbispace X and every object T € ), the evaluation functor
Y P Yy 007 /
LocSysg (X) — Mod 4z F — Z(T)

preserves small colimits.
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(2) For every map of orbispaces f : X — Y, the pullback functor f* : LocSysg(Y) —
LocSysg (X) preserves small colimits.

Proof. Combine Theorem with Corollary [5.1.19, m

Corollary 5.3.3. Let A be an E-ring, let G be an oriented P-divisible group over A,
and let X be an orbispace. Then the co-category LocSysg(X) is compactly generated.

Proof. For each object T'e I, let er : LocSysg(X) — Mod r denote the evaluation
functor given by er(#) = .# (7). It follows from Corollaries and that er
preserves small limits and colimits. Applying Corollary HTT.5.5.2.9 , we deduce that
er admits a left adjoint Fp. Using Proposition HTT.5.5.7.2, we conclude that Fp
carries compact objects of Mod Az, to compact objects of LocSysg (X). Let C denote the
full subcategory of LocSysg (X) spanned by objects of the form Fr(X"AL), where T is
an object of F)x and n is an integer. Let C denote the full subcategory of LocSysg (X)
generated by C under small colimits. Then C is compactly generated, so Corollary
HTT.5.5.2.9 implies that the inclusion C < LocSysg(X) admits a right adjoint U. To
prove that C = LocSysg(X), it will suffice to show that U is conservative. Let a be a
morphism in LocSysg (X) such that U(«) is an equivalence. Then U(fib(«)) ~ 0, so
that
ML aesyeg o (Pr(5AB). fib(0)) ~ 07~ fib(a)(T)

is contractible for every object T' € J)x and every integer n. It follows that fib(a) ~ 0,
so that « is an equivalence. O

Proof. Let G be an oriented P-divisible group over an E,-ring A, let X be an
orbispace, and let {#,} be a diagram taking values in the co-category LocSysg (X).
Let # = h_r)na F o, where the colimit is formed in the larger co-category LocSysg® (X)
of G-pretempered local systems. We wish to show that .# is G-tempered. We will
prove this by verifying condition (B”) of Remark [5.2.8] Let T be an object of F)x
and let T be a connected covering space of T for which the automorphism group
Aut(Ty/T) is isomorphic to the cyclic group C,, for some prime number p. We wish to
show that the fiber of the canonical map ¢ : .F(T) — F (Tp)At (/D) is [(Ty/T)-local.
For each index «, our assumption that .#, is G-tempered guarantees that the
natural map &, : . Zo(T) — F o(Tp)*™0) has I(T/T)-local fiber. Note that the map
¢ factors as a composition
lim &q

li_r)nﬁa(T) =" h_r)ngza(TO)hAut(To/T) 9 (h_I)n §Q<TO))hAut(TO/T).
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Since the collection of I(Ty/T')-local AL-modules is closed under colimits, the fiber of
the map lim_¢&,) is I(1p/T)-local (since the collection of J-local Og(T')-modules is
closed under small colimits). It will therefore suffice to show that fib(6) is I(Ty/T)-
local.

By assumption, we have, we have a pullback diagram of spaces

T(] —_— ECp

]

T —— BC,
which induces a pushout diagram of tempered function spectra

Al —— AG”

|

Afé . ABCp

Y

where the horizontal maps are finite flat. It follows that the relative augmentation
ideal I(T/T) is generated by the image of the augmentation ideal I¢, = A% (BC,). It
will therefore suffice to show that the fiber of 6 is I -local when viewed as a module
over Ang

Note that 6 fits into a commutative diagram of fiber sequences

ling (Fa(To)nc,) —lim (Fa(Tp)"”) —lim (Fa(T0)")

: | -

(lim  #o(To))nc, — (lim )P —— (lim Fo(Tp))" .

>

L Fo(T)

Here the map ' is an equivalence, so we have an equivalence of fibers fib(6) ~ fib(#").
It will therefore suffice to show that fib(") is I¢, -local. In fact, both the domain and
codomain of 6" are I¢,-local, by virtue Proposition [£.6.8] O

5.4 Tempered Local Systems on Classifying Spaces

Let G be a preoriented P-divisible group over an E.-ring A, and let 7" be an
object of 7. According to Proposition a G-pretempered local system . on T’
can be recovered (functorially) from its restriction .%o = % |cov(r)er to the category
Cov(T) of connected covering spaces of T'. Our goal in this section is to show that,
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if G is oriented, then the condition that .% is tempered has a simple formulation in
terms of .%.

Notation 5.4.1. Let G be a preoriented P-divisible group over an E.,-ring A, let
T be an object of 7, and let Agr : Cov(T)°® — CAlg be the functor given by
(Tp € Cov(T)) — AQ. Let F, be an Ag r-module object of Fun(Cov(T)°?, Sp). We
will say that % is tempered if it satisfies the following condition:

B{) Let T} be a connected covering space of T, and let Ty be a connected covering
0
space of Ty. Then the fiber of the canonical map % (1)) — .Z (Tp)MAut 10/ jg
I(To/T))-1ocal.

We let
Modff(?T(Fun(Cov(T)"p, Sp)) € Mod g ;. (Fun(Cov(T)?, Sp))

denote the full subcategory spanned by the tempered Ag r-modules.

Proposition 5.4.2. Let G be an oriented P-divisible group over an Ey-ring A and
let T be an object of 7. Then the equivalence

LocSysg“(T') ~ Mod g, , (Fun(Cov(T)°?, Sp))
of Proposition restricts to an equivalence of co-categories
LocSysg(T') — Modje . (Fun(Cov(T)°, Sp)).

In other words, a G-pretempered local system F € LocSysg (T) is G-tempered (in the
sense of Definition if and only if the restriction Fo = F |cov(r)or 5 tempered
(in the sense of Notation[5.4.1)).

Before giving the proof of Proposition let us note some of its consequences.

Corollary 5.4.3. Let G be an oriented P-divisible group over an E-ring A and let
X = X be a constant orbispace (Example . Then every G-pretempered local
system on X is G-tempered. Consequently, the restriction procedure of Variant|[5.1.15
determines an equivalence of co-categories LocSysg(X) ~ LocSys 4(X).

Proof. Using Remark [5.2.10, we can reduce to the case where X is contractible, in
which case the desired result follows from Proposition (note that condition (B})
of Notation [5.4.1]) is vacuous when the space T is contractible). O
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Corollary 5.4.4. Let G be an oriented P-divisible group over an Ey-ring A, let X
be an orbispace, and let Ay be the trivial G-pretempered local system on X. Then Ax
is G-tempered.

Proof. Since the collection of G-tempered local systems is stable under pullback
(Remark [5.2.9)), we can assume without loss of generality that X is the final object of
OS. In this case, the desired result follows from Corollary |5.4.3| O

Example 5.4.5. Let G be an oriented P-divisible group over an E-ring A and let p be
a prime number. Using Example [5.1.14] we can identify the objects of LocSysg*(BC,)
with pairs (M, ( : N — M"%), where M is a Cj-equivariant object of the oo-category
Mod 4 and ¢ is a morphism of Aléc” -modules. Under this identification, LocSysg (BC,)
corresponds to the full subcategory spanned by those pairs (M, ¢ : N — M"?) where
¢ exhibits M"“» as the completion of N with respect to the augmentation ideal
Ic, = AL(BG,).

Proof of Proposition[5.4.9. Let G be an oriented P-divisible group over an E.-ring
A, let T be an object of .7, and let .%# be a G-pretempered local system on T'. It
follows immediately from the definitions that if .# is G-tempered (in the sense of
Definition , then the restriction #( = F |cov(r)er is tempered (in the sense
of Notation . Conversely, assume that % is tempered; we will show that .%#
satisfies condition (B”) of Remark Choose any morphism 7” — T in .7, and
let 5 :T] — T" exhibit T{] as a connected covering space of 7" whose automorphism
group Aut(7{/T") is cyclic of order p, for some prime number p. We wish to show
that the fiber of the canonical map

0 - y(T”) . y(T(/)/)hAut(To”/T”)
is local with respect to the ideal the ideal I(T§/T") < AL(T").
Form a commutative diagram in 7
T —1T}

Pl

T// Tl

BN

T

where the vertical maps are finite coverings the horizontal maps have connected
homotopy fibers. Since ( has degree p, the map v has degree either 1 or p. We
consider these cases separately:
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(1)

Suppose that « has degree p: that is, the upper square in the preceding diagram
above is a pullback. Then we can 1dent1fy Aut(T{/T") with Aut(T3/T"), and
AG with the tensor product AL ® AT AG Invoking our assumption that .%#
G-pretempered, we can identify 6 Wlth the natural map

AL @4 F(T) — (AF @ g F (1)
~ (AT” ®AT' JOZ( ))hAut (T5/1")
~ AT” ®AT' ﬁ(T )hAut(T’/T’)’

here the second equivalence follows from the observation that A’ is finite flat as a
module over AL . It follows that the fiber of € is given by AL ® AT fib(p), where p
denotes the canonical map .7 (T") — .Z (T})*70/T). Our assumption that .7
is tempered guarantees that fib(u) is local with respect to the ideal I(T{/T"), so
that AL /®AT/ fib(11) is local with respect to the ideal I(T;/T")A%(T") = I(Ty/T")

(see Remark [5.2.3 -

Suppose that v has degree 1: that is, Tf is isomorphic to 7”. In this case, our
assumption that .# is G-pretempered allows us to identify 6 with the canonical
map ;

AG @y F(T') = (A @y F (T,
Since T{ is a connected cyclic p-fold covering map of 77, there is a pullback

diagram of spaces
T —— EC,

T" —~ BC,,

where the horizontal maps have connected homotopy fibers. It follows that we can

identify ATO with the tensor product AT” ® 4EC AEC” Set M = AT” ® AT F(T")

and regard M as module over the tempered function spectrum AG Then 6

can be identified with the natural map M — (Aa’ ® B¢ M)"r. Applying
G

Lemma {4.6.12| (and Theorem [4.6.2)), we deduce that fib(¢) is I¢,-local when

viewed as an Ao ”-module spectrum. It is therefore I (Ty)T") = I, AG(T")
when viewed as an AL -module spectrum.

]
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5.5 Recognition Principle for Tempered Local Systems

We now provide an alternate characterization of tempered local systems for oriented
P-divisible groups.

Theorem 5.5.1. Let G be an oriented P-divisible group over an Ey-ring A and let
F be a G-pretempered local system on an orbispace X. Then F is G-tempered if and
only if it satisfies the following condition:

(¥) Let T € I)x, let Ty € Cov(T) be a connected covering space for which the
automorphism group Aut(Ty/T') is a cyclic group of order p, and let M denote the
cofiber of the multiplication map A Quz F(T) — F(To). Then multiplication
by p is an equivalence from M to itself, and the action of Aut(Ty/T) on my (M)
has no nonzero fixed points.

Before giving the proof of Theorem [5.5.1} let us note some of its consequences.

Corollary 5.5.2. Let G be an oriented P-divisible group over an Eo-ring A, let X
be an orbispace, and let F be an object of Moda, . Suppose that, for every morphism
T — T in I)x, the induced map AL Quz, F(T) — F(T") is an equivalence. Then
F is a G-tempered local system on X.

Corollary admits a weak converse:

Corollary 5.5.3. Let G be an oriented P-divisible group over an Ey-ring A, let p be
a prime number, and let X be an orbispace which satisfies the following condition:

(x) For every finite abelian group H, the canonical map XBHw) — XBH s surjective
on connected components.

Let F be an object of the c0-category Mod 4, which is p-nilpotent (that is, the localiza-
tion F|[1/p| vanishes). Then F is a G-tempered local system if and only if, for every
morphism T" — T in Tjx, the induced map AL Quz F(T') — F(I") is an equivalence.

Remark 5.5.4. Condition (x) of Corollary is automatic in the following cases:
e The orbispace X has the form X (), where X is a p-finite space.

e The orbispace X has the form X//H, where H is a finite p-group and X is an
H-space.
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Proof of Corollary[5.5.3. The “if” direction of Corollary follows from Corollary
(.5.2l Conversely, suppose that .# is G-tempered. Let us say that a morphism
f: T — T in Jx is good if the induced map 6 : AL Qur, F(T) — F(T") is an
equivalence. Note that the collection of good morphisms in )x is closed under
composition. We wish to show that every morphism f : 7" — T"in J)x is good. Since
7 is G-pretempered, this condition is automatic when f has connected homotopy
fibers. In general, the morphism f factors as a composition 7" EiR T EiN T, where
f" is a covering map and f’ has connected homotopy fibers. It will therefore suffice
to show that every covering map Ty — T is good. Proceeding by induction on the
order of the finite group Aut(7y/7T), we can reduce to the case where Aut(7/7) is a
cyclic group of prime order. If Aut(7y/7") has order p, then Theorem m guarantees
that multiplication by p induces an equivalence from the cofiber cofib(6) to itself.
Since .7 is p-nilpotent, it follows that # is an equivalence. To handle the case where
Aut(T,/T) has order prime to p, we apply hypothesis (x) to factor the map T'— X
as a composition 7' % T,y — X, where m;(T},)) is the p-local factor of m(T). Then
both g and g|r, have connected homotopy fibers, and are therefore good (since .Z is
G-pretempered). It follows that the covering map Ty — T is also good. O

Corollary 5.5.5. Let G be an oriented P-divisible group over an Ey-ring A, let p be
a prime number, and let T be the classifying space of a finite abelian p-group. Then
evaluation on T induces an equivalence of co-categories

LocSyse®(T) ~ Modiz(p ).

Here LocSysgﬂ(p)(T) denotes the full subcategory of LocSysg(T') spanned by the p-

ii(Tl;(p) < Modz, is defined similarly.

nilpotent objects, and Mod
The proof of Theorem will require the following;:

Lemma 5.5.6. Let p be a prime number and let M be a Cp-equivariant object of the
aw-category of spectra. Suppose that the p-completion of M is E(n)-local for some
n» 0. Then M"°r vanishes if and only if the map p : M — M is invertible and the
action of C, on (M) has no nonzero fized points.

Proof. Note that if the map p : M — M is an equivalence, then the cohomology of C),
with coefficients in 7, (M) vanishes in degrees > 0. It follows that the canonical map
M"® — M induces an isomorphism from m,(M"*) to the fixed points for the action
of C, on m,(M). This proves the “if” direction of Lemma Conversely, suppose
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that the homotopy fixed point spectrum M"“? vanishes; we will complete the proof by
showing that the map p : M — M is an equivalence. Let N denote the p-completion
M; we wish to show that N ~ 0. By assumption, there exists some integer n for
which the spectrum N is F(n)-local. Choose n to be as small as possible; we will
complete the proof by showing that n = 0. Assume otherwise, so that n > 0 and the
localization L (,)(N) does not vanish. It follows from Theorem Ambi.5.4.3 that the
homotopy fixed point spectrum L) ()" also does not vanish. This contradicts
the vanishing of M", since the p-completion functor M — M, commutes with
limits and the K (n)-localization functor Ly, commutes with limits when restricted

to E(n)-local spectra. O

Proof of Theorem[5.5.1. Let # be a G-pretempered local system on an orbispace X.
Suppose we are given an object T' € J)x, a connected covering space Ty € Cov(T), and
an isomorphism of finite groups Aut(7y/7T") ~ C, for some prime number p. We will
prove that the following assertions are equivalent:

(a) The fiber of the comparison map 6 : .F (1) — .F (Tp)"(70/T) is [(Ty/T)-local.

(b) Let p: AQ ® az, F(T') — F(Tp) be the canonical map. Then multiplication by
p induces an equivalence from fib(p) to itself, and the abelian group . (fib(p))
contains no nonzero elements which are fixed by the action of the cyclic group
Aut(T,/T).

Allowing T" and Ty to vary, this will show that .% is a G-tempered local system if and
only if it satisfies condition (*) of Theorem (see Remark [5.2.8)).

Note that the map 6 factors as a composition

N

(1) & (AT @ F(T)
S (A& @ur, F (1))

AR gz(TO)hAut(To /T),

where 6" is obtained from p by passing to homotopy fixed points for the action of
Aut(T,/T). Note that the fiber fib(#') is given by the tensor product

fib(AG — (AQ)" /) @4 F(T),

which is I(Ty/T)-local because the first factor is I(Tp/T)-local (note that Ay is a
G-tempered local system; see Corollary |5.4.4). The map 6" fits into a commutative
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diagram of fiber sequences

where the upper horizontal map is an equivalence and the lower horizontal map
has I(T/T)-local domain and codomain (Proposition [£.6.8). It follows that fib(6”)
is also I(Ty/T)-local. Note that spectra AZ ®uz, F(T') and F(Ty) are both AQ-
modules, and therefore I(Ty/T)-complete when viewed as modules over AL. Passing
to homotopy fixed points, we deduce that the domain and codomain of 8” are both
I(Ty/T)-complete. Consequently, the fiber fib(6") is I(7,/T')-local if and only if it
vanishes. It follows that (a) can be restated as follows:

(a/) The map 6" : (AQ ® az, F(T ))RAut(To/T) g7 (T, )PAut(To/T) is an equivalence.

The equivalence of (a’) and (b) now follows from Lemma [5.5.6] O

5.6 Extrapolation from Small Groups

Let A be an E,-ring and let G be an oriented P-divisible group over A. It follows
from Remark [5.2.11| that for any orbispace X, the co-category LocSysg(X) can be
identified with the inverse limit

lim LocSyse (7).
T—-X

indexed by the collection of all objects T' € .7 equipped with a map of orbispaces
TG) — X. We now formulate a refinement of this result.

Notation 5.6.1. Let h = {hy}pep be a collection of nonnegative integers, indexed by
the set P of all prime numbers. We let .7 (< h) denote the full subcategory of .77
spanned by those spaces of the form BH, where H is a finite abelian group with the
following additional property:

(x) For each prime number p € P, the quotient H/pH has dimension < h, when
regarded as a vector space over the finite field F,,.
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If G is a P-divisible group over an E,-ring A, we will say that G has height < h
if, for each prime number p, the p-local summand G, has height < h,,.

Theorem 5.6.2. Let G be an oriented P-divisible group over an Eo-ring A. Let
h = {hy}pep be a collection of nonnegative integers such that G has height < h. Then
the functor
OSP — Caty, X — LocSysg (X)
is a right Kan extension of its restriction to 7 (< E)Op < OS8°P. In other words, for
every orbispace X, the canonical map
LocSysg(X) — lim LocSysg(T')
T—X
is an equivalence of co-categories, where T ranges over objects of T (< l_i) equipped
with a map of orbispace T-) — X.

Let us first note some consequences of Theorem [5.6.2}

Corollary 5.6.3. Let G be an oriented P-divisible group over an Eo-ring A. Let
h = {hy}pep be a collection of nonnegative integers such that G has height < h. Then
the functor

OS® — CAlg, X — A
is a right Kan extension of its restriction to 7 (< E)Op < OS8°P. In other words, for
every orbispace X, the canonical map

X : T
Ag — lim Ag
T—-X

is an equivalence of E-algebras, where T' ranges over objects of T (< ﬁ) equipped with
a map of orbispace T — X.
Proof. Let X be an orbispace and let Ay € LocSysg‘(X) be as in Example [5.1.5] Since

G is oriented, Ay is G-tempered (Corollary [5.4.4)). Combining Theorem with
Remark [5.1.20 we obtain equivalences

AG >~ Map(4y, Ax)
~ lim Map(f*Ay, [*Ax)

fT—->X
~ 1 T'
~ lim Ag;
fT—-X

here the limit is taken over objects T' € .7 (ﬁ) equipped with a map of orbispaces
f:7T0) - X O
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Remark 5.6.4. In §7.6] we will discuss some more concrete variants of Corollary
5.6.3| which can be used to obtain information about the G-tempered cohomology ring
AE(X): see Theorems [7.6.3) and [7.6.5]

Example 5.6.5. Let p be a prime number and let G be an oriented p-divisible group
over an E,-ring A. It follows from Theorem and Corollary that, for any
orbispace X, the canonical maps

LocSysg (X) — lim LocSysg(T') AL — lim AG
T—-X T—-X

are equivalences, where both limits are taken over the collection of maps 7)) — X
where T is the classifying space of a finite abelian p-group.

Example 5.6.6. Let pup» be the multiplicative P-divisible group, viewed as an
oriented P-divisible group over the complex K-theory spectrum KU (Construction

2.8.6)). It follows from Theorem and Corollary that, for any orbispace X,

the canonical maps

LocSysg(X) — lim LocSysg(T)  KUG — lim KUG
T—-X T—-X

are equivalences, where both limits are taken over the collection of maps T(-) — X
where T is the classifying space of a finite cyclic group.

Example 5.6.7. Let A be an E-ring, let E be an oriented elliptic curve over A, and
let E[P®] denote the torsion subgroup of E, regarded as an oriented P-divisible group

as in Construction [2.9.6] It follows from Theorem [5.6.2] and Corollary that, for
any orbispace X, the canonical maps

LOCSYSE[POC] (X) - lll_n LOCSYSE[POO](T) A)E([POO] - lan AE[PM]
T-X T-X

are equivalences, where both limits are taken over the collection of maps T(-) — X
where T is the classifying space of a finite abelian group that can be generated by two
elements.

The proof of Theorem is based on a reformulation of condition (B) appearing
in the definition of G-tempered local system (Definition . First, we need a
bit of terminology. Let R be an E,-ring and let K < |Spec(R)| be a cocompact
closed subset (that is, a closed subset with quasi-compact complement). Then K
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can be realized as the vanishing locus of a finitely generated ideal I < my(R). We
will say that an R-module spectrum M is K-complete (K -local, K -nilpotent) if it is
I-complete (I-local, I-nilpotent), in the sense of Definition SAG.I1.4.3.1.1 (Definition
SAG.I11.4.2.4.1, Definition SAG.11.4.1.1.6 ). We say that a morphism of R-modules
M — M exhibits M as the completion of M along K if it exhibits M as the completion
of M with respect to I. We will be particularly interested in the case where R is
a tempered function spectrum Ag; in this case, there are several closed subsets of
| Spec(R)| of geometric interest.

Notation 5.6.8. Let G be a P-divisible group over an E,-ring A. For each finite
abelian group M, we let |G[M]| denote the underlying topological space of the finite
flat A-scheme representing the functor

CAlgA - S B — MapModz(M7 G(B>)

Note that for every subgroup My € M, the canonical map ¢y, : |G[M/Mo]| — |G[M]|
is a closed embedding. We let |G[M]|9°¢ < |G[M]| denote the union of the images of
the maps ¢y, where Mj ranges over all nontrivial subgroups of M. More informally,
|G[H]|4® is the closed subset of |G[M]| which parametrizes maps M — G which are
degenerate in the sense that they annihilate some nonzero subgroup of M (at the level
of geometric points).

Now Suppo/’seihat G is equipped with a preorientation. Let T be an object of .7,
and let M = m(T") be the Pontryagin dual of the finite abelian group m(7), so that
we can identify |G[M]| with the Zariski spectrum | Spec(AL)|. We let | Spec( AL )|
denote the image of |G[M]|¢® under this identification.

Theorem 5.6.9. Let G be a preoriented P-divisible group over an E.-ring A and let
T be an object of 7. Then an object F € Mod . (Fun(Cov(T)°P,Sp)) is tempered
(in the sense of Notatz'on if and only if it satisfies the following condition, for
every object T" € Cov(T):

(x) Let Cov®(T") < Cov(T") denote the full subcategory of Cov(T") spanned by those
connected covering maps T" — T which are not homotopy equivalences. Then
the canonical map

F(T') — lim F(T")
T"eCov® (T")°P
exhibits LLHT,,GCOVO(T,)OP F(T") as the completion of F(T") along the closed subset

| Spec(AEL)[*s = | Spec(AL)|.
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Remark 5.6.10. In the situation of Theorem [5.6.9} the limit lim_, _ Cov® (T7)op F(T")
is automatically complete for the closed subset |Spec(AL )[4 < |Spec(A4L)|. Con-
sequently, condition (x) is satisfied if and only if the fiber of the map .7 (T") —

im_, (e F(T") is local with respect to | Spec(AL )[4 (that is, it arises from a

quasi-coherent sheaf on the complement of | Spec(Ag )|4®).

Corollary 5.6.11. Let G be an oriented P-divisible group over an E-ring A, let
X be an orbispace, and let F € LocSysg® (X) be a G-pretempered local system on X.
Then F is G-tempered if and only if, for each T € T, the following condition is

satisfied:

(+") Let Cov®(T') < Cov(T') denote the full subcategory of Cov(T') spanned by those
connected covering maps T' — T which are not homotopy equivalences. Then
the canonical map

F(T)— lim  F(T)
T’eCov® (T)oP
exhibits liI—nT’eCovo(T’)OP F(T") as the completion of F(T) along the closed subset

| Spec(AG)|%8 = | Spec(AG)].

Proof of Theorem [5.6.9 from Theorem[5.6.9 Let LocSysg : OS® — Cat., be a right
Kan extension of the functor

" T—T() LocSyse 5
T (< hyr L= ogor Loee, oot

given informally by LocSysg(X) = lim,,__ LocSysg(T') where the limit is taken over

objects T € 7 (< ﬁ) We wish to show that for every orbispace X, the canonical map
LocSysg (X) — LocSysg (X) is an equivalence of oo-categories. By the transitivity of
Kan extensions (Proposition HT'T.4.3.2.8 ), it will suffice to prove this in the special
case where X = T7) is representable by an object T' € .7. We proceed by induction
on the order of the finite group m(T). If T belongs to .7 (< h), there is nothing
to prove. Otherwise, let f/OT c J)r be the full subcategory spanned by those maps
T" — T which are not surjective on fundamental groups. Then ‘ZOT contains every

map 1" — T where T” belongs to .7 (< h). It follows that we can identify LocSysg (T)
(75 LocSysg(T"). Let Cov®(T) be as in Theorem [5.6.9} so that

we can regard Cov’(T') as a full subcategory of ,?/OT Moreover, the inclusion functor

with the limit lim
<1

Cov®(T) — 77 has a left adjoint, and is therefore left cofinal. We have a commutative
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diagram of co-categories

LocSysg(T) —=lim,, . . (Tyer LocSysg (1)

| |

LocSysg(T) —lim_, . . (Tyer LocSysg (1),
where the bottom horizontal map is an equivalence (by the preceding argument) and
the right vertical map is an equivalence (by our inductive hypothesis). It therefore
suffice to show that the upper horizontal map is an equivalence of co-categories.
Let ¢ : Mod(Sp) — CAlg be as in Construction . We then have a commutative
diagram of oco-categories

LocSysg (T) lir_nT/ecovo(T)op LocSysg (1)

iL :

Funcaie(Cov(T)°P, Mod(Sp)) — Funcai (Cov®(T)°P, Sp)

where the horizontal maps are given by restriction and the vertical maps are fully
faithful embeddings. Moreover, Theorem [5.6.9] implies that an object .# of the oo-
category Funcais(Cov(7")°P, Mod(Sp)) belongs to the essential image of ¢ if and only
if Z |cove (T)er belongs to the essential image of :° and the canonical map

0:F(T)— lim F(T)
T'eCov® (T)oP
exhibits lim_, . . (T)Opﬁ (T") as the completion of % (T') along the closed subset
| Spec(AL)|4e = | Spec(AL)|. Our assumption that T does not belong to .7 (< h)
guarantees that there exists some prime number p for which the quotient 71 (T")/pm(T)

has dimension strictly larger than the height of the p-divisible group Gy,. It fol-
lows that | Spec(AL)|4® is equal to | Spec(AL)|. Consequently, a functor a func-
tor # € Funca(Cov(T)?, Mod(Sp)) belongs to the essential image of ¢ if and
only if F |cove(r)er belongs to the essential image of ° and the map 6§ is an equiv-
alence: that is, % is a ¢-right Kan extension of its restriction to the subcat-
egory Cov®(T)® < Cov(T)°?. The desired result now follows from Proposition
HTT.4.3.2.15. O

The proof of Theorem |5.6.9| will require the following general fact about completions:
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Proposition 5.6.12. Let R be an Ey-ring. Let S be a finite partially ordered set, let
{K}ses be a collection of cocompact closed subsets of | Spec(R)| parametrized by s,
and let M : S°° — Modpg be a diagram of R-modules parametrized by S°P. Assume
that the following conditions are satisfied:

(a) The partially ordered set S is a lower semilattice. That is, S contains a greatest
element 1, and every pair of elements s,s' € S have a greatest lower bound
snses.

(b) The construction s — K is a homomorphism of lower semilattices. That is, we
have K1 = |Spec(R)|, and Kz gy = K50 Ky for all s,s' € S.

(¢) For s < s <1, the map M(s') — M(s) exhibits M(s) as the completion of
M(s") along the closed subset K. In particular, each M (s) is K-compete.

Let K =

s<1 Ks. Then the following conditions are equivalent:

(1) For each s € S, the map M(1) — M(s) exhibits M(s) as the completion of
M (1) along K.

(2) Let M" =lim _ M(s). Then the canonical map M(1) — M" exhibits M" as the
completion of M (1) along K.

Proof. Assume first that (2) is satisfied, and choose s € S. We wish to prove that
the map M (1) — M(s) exhibits M (s) as the completion of M (1) along K. We may
assume that s = 1 (otherwise there is nothing to prove). For ¢ # 1, condition (c)
implies that M(t) is K;-complete. Let M(t)%. denote the completion of M(t) along
K,. Then M(t)%, is also the completion of M (t) along the intersection K, n K,
which is equal to K,; by virtue of (b). Applying (c), we conclude that the canonical
map M (t) — M(s A t) exhibits M(s A t) as the completion of M; along K. Since
completion along K, commutes with with limits, we obtain an equivalence

Ml ~1im M (), ~lim M(s A t) ~ M.
t#1 t#1
In other words, the canonical map M’ — M, exhibits M, as the completion of M’
along K. It will therefore suffice to show that the natural map M — M’ induces an
equivalence after completion along K. This follows immediately from assumption (2),
since K is contained in K.
The implication (1) = (2) can be rephrased as follows:
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() Let N be an R-module. Then the canonical map N — lim  Ng, exhibits
liLn# . Ni, as the completion of N along K.

To prove (x), we note that for each s € S there is a fiber sequence
N'— N — Ng_,

where N’ is K-local. It therefore suffices to prove that condition (*) holds for N” and
Ng. individually. Moreover, if N is K -complete (K;-local) for some other index ¢ € S,
then N' and Ng are K;-complete (K;-local). Applying this observation repeatedly,
we may reduce to the case where N is either K -local or K -complete for every value
ses.

Let S’ < S be the collection of those elements s € S for which N is K,-complete.
Then the completions N vanish for s ¢ S’. It follows that the functor (S\{1})® —
Modp given by s — Np is a right Kan extension of its restriction to (S"\{1})°?, so
that

lim Ng, ~ lim Ng,.
teS\{1} teS\{1}

Using conditions (a) and (b), we see that S’ is closed under finite meets in .S. Since
S’ is finite, it has a smallest element s. There are two cases to consider:

e Suppose that s # 1. Then K, € K. Since s € S’, the R-module N is K-
complete and therefore also K-complete. We are therefore reduced to proving
that the canonical map

N lm Nj > lm N~ NG
teS\{1} teS\{1}
is an equivalence, which is clear.
e Suppose that s = 1, so that the completion Ng, vanishes for ¢ # 1. Then N
is local with respect to the closed subset K < | Spec(R)|, so that the canonical

map N —lim  Ng, ~ 0 exhibits lim  Ng, ~ 0 as the completion of N along
K.

]

Proof of Theorem[5.6.9. Let G be an oriented P-divisible group over an E.-ring A,
let T be an object of .7, and let .# be an object of Moda .. (Fun(Cov(T')°?, Sp)).
Assume first that .# is tempered; we wish to show that .# satisfies condition (*) of
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Theorem [5.6.9f Let 7" be a connected covering space of T, so that the restriction
of # to Cov(T") determines a functor M : Cov(7")? — ModAg. Let S denote the
collection of subgroups of m1(T"), ordered by inclusion. We have an evident functor
Cov(T") — S, which carries a covering space 7" — T" to the image of the induced
homomorphism 71 (7") < m(T"). Let M : S°* — Mod AT be the right Kan extension
of My along the map Cov(7")°? — S°P. Unwinding the definitions, we see that if
H < m(T") is the image of the fundamental group of some covering space T” of T”,
then M (H) can be identified with the homotopy fixed point spectrum % (T")rAut(T"/T"),

For every subgroup H < m(T"), let K;; < |Spec(AL)| denote the image of the
closed embedding |Spec(AL)| < | Spec(AL)|, where T” is the connected covering
space of T" with fundamental group H. We claim that the constructions

He— Ky Hw— M(H)

satisfy hypotheses (a) through (c) of Proposition [5.6.12;

(a) As a partially ordered set, S is a lower semi-lattice. This is clear, since the
intersection of a finite collection of subgroups of m;(7"”) is again a subgroup of
T (T/>

(b) The construction H — Ky is a homomorphism of lower semilattices. At
the level of geometric points, this follows from the observation that a group
homomorphism 7;:(-77) — G(k) factors through the Pontryagin dual of an
intersection of subgroups H n H' if and only if it factors through both H and
H.

(¢) For H < H' < m(T'), the map M (H') — M(H) exhibits M(H) as the comple-
tion of M(H') along the closed subset Ky < |Spec(AL)|. Write H = 7 (T")

and H' = m(T") for covering maps 7" — T" — T". Unwinding the definitions,
we wish to show that the map

(@-(Tu)hAut(T”/T’) _ y(T”’)hAut(TW/T’)

exhibits .7 (T")MA(T"/T) as a completion of .Z (T")MA(T"/T") with respect to
the relative augmentation ideal I(7"/T"). Since the formation of comple-

tions completions commutes with limits, it will suffice to show that the map
ﬁ . y(T//) N g;(T///)hAut(T”’/T”) exhibits gé*(T///)hAut(T”’/T”) as the I(T////T//)_
completion of .7 (T"), which follows from our assumption that .% is tempered.
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Note that the verification of condition (¢) does not require the assumption that H
is a proper subgroup of 71 (1”). It follows that the functor M : S°» — Mod 1 satisfies

G

condition (1) of Proposition [5.6.12 It therefore also satisfies condition (2): that is,
the canonical map

F(T') = M(m(T')) —» lim M(H)~ lm F(T")

HomT) T"eCov®(T")oP

exhibits lim F(T") as the completion of .7 (T”) along the closed set

<——T"eCov°(T")°P

U Ky = | Spec(AL)[des

Hcm (T/)

of Notation (.6.8.

Suppose now that % satisfies condition (*) of Theorem ; we wish to show
that it also satisfies condition (Bj) of Notation [5.4.1] Let 7" be a connected covering
space of T and let T” be a connected covering space of T'. We will show that the
map 7 (T") — F(T")MT/T) exhibits .7 (T")MT/T) as an I(T"/T")-completion
of Z#(T"). We proceed by induction on the order of the finite group m (7). Let S,
{Mpy}nres, and {Kp}ges be defined as in the first part of the proof. Then the data

satisfies conditions (a) through (c¢) of Proposition [5.6.12| (the proof is exactly as above,
except that (c) follows from the inductive hypothesis rather than our assumption that
F arises from a G-tempered local system). Hypothesis () of Theorem then

guarantees that the map

M(m(T) ~ F(T') > lm  F(T")~ lm M(H)
T7eCov® (T")°P Homy (T7)

exhibits LiLanm(T/) M (H) as the completion of M (7 (1")) along | Spec(AL)[4e. Ap-
plying Proposition [5.6.12, we deduce that if H < m;(7") is the fundamental group of
a connected covering space T” of T”, then the canonical map

f(T/) ~ M(m (T')) — M(H) ~ ﬁ(T”)hAut(T”/T’)

exhibits 7 (T")AT"/T) a5 an I(T"/T")-completion of .Z (T"), as desired. O
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5.7 Digression: The co-Category LocSysg (X)

Let G be a preoriented P-divisible group over an E,-ring A and let X be an
orbispace. Then the oo-category LocSysg(X) is a localization of the stable oo-
category LocSysg®(X): that is, the inclusion functor LocSysg(X) < LocSysg (X)
admits a left adjoint L : LocSysg“(X) — LocSysg(X) (Proposition [5.2.12). It
follows that the oo-category LocSysg (X) admits a semi-orthogonal decomposition
(+ LocSysg (X), LocSysg (X)) (see Proposition SAG.I1.4.2.1.4); here + LocSysg (X) de-
notes the full subcategory of LocSys&®(X) spanned by those G-pretempered local
systems .# satisfying L.%# ~ 0 (or, equivalently, the full subcategory spanned by those
objects .F satisfying ExtLOCSysprc(X)(J 4) ~ 0 whenever ¢ is G-tempered). Our goal
in this section is to give an explicit description of the subcategory * LocSysg(X) in
the special case where G is oriented (Theorem [5.7.3)).

Definition 5.7.1. Let G be a preoriented P-divisible group over an E-ring A, and
let % € LocSysg ' (X) be a G-pretempered local system on an orbispace X. We will say
that . is null if, for every object T € J)x, the AL -module .Z(T) is | Spec(Ag |-
nilpotent. We let LocSysg'(X) denote the full subcategory of LocSysi®(X) spanned
by the null G-pretempered local systems on X.

Remark 5.7.2. Let G be a preoriented P-divisible group over an E, -ring A and let
F € LocSysg’ (X) be a G-pretempered local system on an orbispace X. Then:

e If % isnull and f:Y — X is any map of orbispaces, then the pullback f*.# is
null.

e Suppose that there exists a collection of maps {f, : X, — X} which induces a
surjection | [, m0(XZ) — mo(XT), for each T' € F. If each pullback f*.% is null,
then .# is null.

Our main result can be stated as follows:

Theorem 5.7.3. Let G be an oriented P-divisible group over an Ey-ring A. Then,
for any orbispace X, the subcategories (LocSysa'(X), LocSysg (X)) determine a semi-
orthogonal decomposition of LocSysg (X). In other words, a G-pretempered local
system # on X is null if and only if it is annihilated by the localization functor

L : LocSysg (X) — LocSysg (X) of Proposition |5.2.13.

Remark 5.7.4. Let G be an oriented P-divisible group over an E,-ring A. For any
orbispace X, the inclusion functor LocSysg (X) < LocSysg° (X) preserves small colimits
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(Theorem [5.3.1]), and therefore admits a right adjoint L : LocSysg®(X) — LocSysg (X)
(Corollary HTT.5.5.2.9 ). It follows that LocSysg®(X) admits a semi-orthogonal
decomposition (LocSysg(X), LocSysg (X)*), where LocSysg (X)* < LocSysg (X) is the
right orthogonal to the subcategory LocSysg (X): that is, the full subcategory spanned
by those objects which are annihilated by the functor L’. We do not know an analogue
of Theorem for the subcategory LocSysg(X)*.

Before giving the proof of Theorem [5.7.3] let us note some consequences.

Corollary 5.7.5. Let G be an oriented P-divisible group over an Ey-ring A and let
f X =Y be a morphism of orbispaces. Then the diagram of co-categories

LocSysg(Y) — LocSysg“(Y)

| |

LocSysg (X) — LocSysg“ (Y)
is left adjointable. That is, if
Lyx : LocSysg“ (X) — LocSysg (X) Ly : LocSysg“(Y) — LocSysg(Y)

denote left adjoints to the inclusion maps, then the evident natural transformation
Ly o f* — f*o Ly is an equivalence of functors from LocSysg°(Y) to LocSysg(X).

Proof. Let .# be a G-pretempered local system Y, so that we have a fiber sequence
F' — F %5 Ly Z in the oo-category LocSysg®(Y). Pulling back along f, we obtain a
fiber sequence

fr7 -7 B Ly g

We wish to show that f*(«) exhibits f*Ly.# as a LocSysg(X)-localization of f*.%

Since f*Ly .7 is G-tempered, it will suffice (by virtue of Theorem [5.7.3] E ) to show that
the pullback f*.%" is null. This follows from Remark [5.7.2] m, since .#" is null (Theorem
5.7.3). O

Remark 5.7.6. Let G be an oriented P-divisible group over an E,-ring A, let
F € LocSysg®(X) be a G-pretempered local system on an orbispace X, and let
«:.# — L.Z be a morphism which exhibits L.% as a LocSysg(X)-localization of

. Then the forgetful functor LocSysg®(X) — LocSys 4(|X]) of Variant carries
a to an equivalence in LocSys,(|X]). In other words, replacing a G-pretempered
local system . with the associated G-tempered local system does not change the
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underlying local system of .%. To prove this, it suffices to observe that ¥ = fib(«a)
is null (Theorem [5.7.3)), so that ¢ (T") vanishes whenever 7' is contractible (since the
topological space | Spec(AL)[9° is empty when T is contractible).

The proof of Theorem [5.7.3| will require some preliminaries. We begin by observing
that for each orbispace X, Proposition [5.1.9 supplies an equivalence of co-categories

LocSysg“(X) ~ lim LocSysg"(T).

7 0P
Tey/x

By virtue of Remarks[5.2.11]and [5.7.2] this restricts to equivalences of full subcategories

LocSysg”(X) ~ lim LocSysg(T) LocSysg(X) =~ lim LocSysg(T).

77 OP 77O0p
Te<7/x Te,7/x

nul

Consequently, to show that the pair (LocSysg (X), LocSysg (X)) is a semi-orthogonal
decomposition of the stable co-category LocSysg©(X), it will suffice to establish the
following special case of Theorem [5.7.3;

Proposition 5.7.7. Let G be an oriented P-divisible group over an Eo-ring A. Then,
for every object T € T, the subcategories (LocSysg’ (T), LocSysg(T)) determine a
semi-orthogonal decomposition of the stable co-category LocSysg (T).

Our next step is to describe the co-category LocSysg (T') more concretely.

Notation 5.7.8. Let G be a preoriented P-divisible group over an E,-ring A, let T
be an object of .7, and let .% be an Ag r-module object of Fun(Cov(7")°?, Sp). We will
say that % is null if, for every connected covering space Ty of T', the spectrum 7% (Tp)
is | Spec(A&)|%8-nilpotent, when viewed as a module over the tempered function
spectrum AZ. We let Modj‘gT(Fun(Cov(T)Op, Sp)) denote the full subcategory of
Mod g, . (Fun(Cov(1')°?, Sp)) spanned by the null Ag r-modules.

Lemma 5.7.9. Let G be a preoriented P-divisible group over an Ey-ring A and let T
be an object of 7. Then the equivalence LocSysg (1) ~ Mod g . (Fun(Cov(T)°P, Sp))
of Proposition restricts to an equivalence of w-categories LocSysat(T) ~
MongT(Fun(COV(T)Op, Sp)). In other words, a G-pretempered local system F on T
is null (in the sense of Deﬁmtion if and only if the restriction Fo = F |cov(r)or

is null (in the sense of Notation .
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Proof. Tt follows immediately from the definition that if .# € LocSysg®(7T') is null,
then .%o = F |cov(r)er is null. Conversely, suppose that % is null; we wish to show
that .% is null. In other words, we wish to show that for each morphism a: 7" — T in
T, the AL -module .7 (T") is | Spec(AL )|%s-nilpotent. Note that the map a factors
as a composition 17" LA VA T, where ~ exhibits 7" as a connected covering space
of T and 8 has connected homotopy fibers. Since .# is null, the spectrum .7 (7”) is
| Spec(AE)|4°&-nilpotent, and our assumption that .# is G-pretempered supplies an
equivalence .7 (T") ~ AL ® ! F(T"). Tt follows that .Z (T") is also | Spec(Ag )|%-
nilpotent when viewed as a module over A% . It now suffices to observe that the map
of Zariski spectra | Spec(Ag )| — | Spec(AL )| carries the closed subset | Spec(Ag )|4®
into | Spec(Ag )|%°® (see Remark . O

Using Proposition [5.1.12 Proposition [5.4.2 and Lemmas [5.7.9] we see that Propo-
sition reduces to the following result (which no longer requires the assumption
that G is oriented):

Proposition 5.7.10. Let G be a preoriented P-divisible group over an Ey-ring A
and let T be an object of 7. Then the pair of subcategories

(Mod%™  (Fun(Cov(T)°?, Sp)), Mod‘f(r;T (Fun(Cov(T)°?,Sp)))

Aa,T

is is a semi-orthogonal decomposition of the stable co-category
Mod g . (Fan(Cov(T)°?, Sp)).
The proof of Proposition [5.7.10] will require some preliminaries.

Notation 5.7.11. Let G be a preoriented P-divisible group over an E,-ring A,
let T be an object of 7, and let M be an AL-module spectrum. We let M. €

Mod g . (Fun(Cov(T)°?, Sp)) denote the functor given informally by the formula
M ifTy~T
0 otherwise.

My (Ty) = {

More precisely, if ¢ : Mod(Sp) — CAlg is the forgetful functor, then we view M. as a
functor from Cov(T")°? to Mod(Sp) fitting in to a commutative diagram

!

Cov(T)°P 2> Mod(Sp)
| §
gov A% CAlg,
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such that ML(T) = M and M; is a g¢-right Kan extension of its restriction to
{T} < Cov(T)°P.
More generally, if T € Cov(T) is a connected covering space of T and M is a

module over the tempered function spectrum Az, we let M'T e

of Mod, ,, (Fun(Cov(1")°?, Sp)) given by the g-left Kan extension of M'T along the

forgetful functor Cov(7T)°? — Cov(T")°. More explicitly, if Ty is a connected covering

space of T', then the spectrum M'T 7

which case it is equivalent to a direct sum of copies of M (indexed by the set of all

denote the object

(Ty) vanishes unless Ty is isomorphic to T, in

isomorphisms of Ty with T in the category Cov(T)).

Remark 5.7.12. Let G be a preoriented P-divisible group over an E,-ring A, let
T be an object of 7, and let M be an AL-module spectrum. Then, for any object
F € Modyg . (Fun(Cov(T')°?, Sp)), we have a canonical homotopy equivalence

MapModAGT<M7!‘7 F) =~ Mapyiod (M, fib(#(T) - lm  F(Tp))).
’ G ToeCov® (TP

More generally, if T' is a connected covering space of T and M is an Az—module
spectrum, then we have a canonical homotopy equivalence

MapModAG’T(M!T/QH F) ~ Mapl\/{odAg (M, fib(F(T) — B Lilli F(To)))-
ToECOVO(T)Op

Remark 5.7.13. Let G be a preoriented P-divisible group over an E,-ring A, let T
be an object of .77, and let .# be an Ag r-module object of Fun(Cov(7")°?, Sp). Then
Z is tempered (in the sense of Notation |5.4.1)) if and only if it satisfies the following
condition:

(¥) For every connected covering space T of T and every Ag—module M which
is | Spec(Ag)|%°8-nilpotent, the mapping space MapMOdAGT(M!T/T,f) is con-
tractible. ’

This follows by combining the calculation of Remark [5.7.12| with the criterion of
Theorem [5.6.9

Proof of Proposition|5.7.1() Let G be a preoriented P-divisible group over an E,-ring
A and let T be an object of .7. Let C € Mod ¢ . (Fun(Cov(T)°P, Sp)) be the smallest
stable subcategory which is closed under small colimits and contains every object of

|
the form Mz 7

spectrum which is | Spec(AL )|%8-nilpotent. It follows from Proposition HA.1.4.4.11

where T is a connected covering space of T"and M is a Az—module
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that the stable co-category Mod g, (Fun(Cov(7T)°?, Sp)) admits a semi-orthogonal
decomposition (C,C*), where C* denotes the full subcategory spanned by those objects
# for which the mapping space Mapy;.q AGT(% ,.#) is contractible for each ¢4 € C.

Remark [5.7.13| shows that C* = Mod™ (Fun(Cov(T)?, Sp)). We will complete the
proof by showing that C = Modﬂg (Fun(Cov(7T)°?, Sp)). The inclusion

,T

Cc Modﬂg (Fun(Cov(T')°?, Sp))

T

is clear, since Modjucl; - (Fun(Cov(T)°P, Sp)) is a stable subcategory of the co-category

Mod 4 . (Fun(Cov(T'), Sp)) which is closed under small colimits and contains M /7

whenever M € Mod AT is | Spec(AL)|%E-nilpotent. Conversely, suppose that .Z is
an Ag r-module object of Fun(Cov(7)°P, Sp) which is null; we wish to show that .#
belongs to C. Note that .Z fits into a fiber sequence .#' — % — Z", where %’
belongs to C and .Z#" is tempered. We will complete the proof by showing that .Z#” ~ 0.
Suppose otherwise: then there exists some connected covering space T of T such that
Z"(T) is not zero. Choose T so that the fundamental group m(7T) is as small as
possible. It then follows that .#"(Ty) ~ 0 for every connected covering space Ty of T
ToeCov® (T)op F"(T) vanishes.
Since .#" is tempered, Theorem implies that .#"(T) is | Spec(AL)|4E-local. On
the other hand, .#” is null (since both .#’ and .# are null), so that .Z"(T) is also

| Spec(AL)|4E-nilpotent. It follows that .Z”(T) vanishes, contradicting our choice of
T. O

which is not isomorphic to T. Consequently, the limit lim

5.8 Tensor Products of Tempered Local Systems

We now exploit Theorem to construct a tensor product operation in the
setting of tempered local systems.

Notation 5.8.1. Let G be a preoriented P-divisible group over an E.,-ring A. For
each orbispace X, we let Ay denote the composite functor

% — TP LS CAlg,

which we view as a commutative algebra object of Fun(y/;p, Sp). Then the co-category
Mody, = Mod (Fun(75", Sp)) inherits a symmetric monoidal structure, given by
the formation of relative tensor product over Ay (see §HA.4.5.2)). We will denote this
relative tensor product operation by

® : Mod g, x Moda, — Mody, .
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Concretely, it is given by the formula (F @¥)(T) = F(T) @4z, 4(T).

From the levelwise description of the tensor product ®, we immediately deduce
the following:

Proposition 5.8.2. Let A be an E-ring, and let G be a preoriented P-divisible group
over A. For every orbispace X, the full subcategory LocSysg®(X) < Mody, contains
the unit object Ax and is closed under the tensor product functor ® of Notation|5.8.1|
In particular, LocSysg® (X) inherits the structure of a symmetric monoidal co-category.

Remark 5.8.3 (Functoriality). In the situation of Proposition[5.8.2, let f : X — Y be a
morphism of orbispaces. Then the pullback functor f* : LocSysg (YY) — LocSysg® (X)
of Remark is given by precomposition with the forgetful functor .7x — 7y, and
can therefore be promoted to a symmetric monoidal functor: that is, it commutes
with the tensor product operation ® of Notation [5.8.1]

Proposition 5.8.4. Let A be an E-ring, let G be a preoriented P-divisible group over
A, and let X be an orbispace. Then the full subcategory LocSysa'(X) < LocSysa®(X)
is a tensor ideal. That is, if F belongs to LocSysa(X) and 4 belongs to LocSysa®(X),
then F @9 belongs to LocSysg'(X).

Proof. For each object T' € J)x, we have (F @¥)(T) = F(T') ®az, 4(T). Since .7 is
null, Z(T) is | Spec(AL)|4&-nilpotent when viewed as an AL-module. It follows that
the tensor product 7 (T') ® 4z ¢ (T') is also | Spec(Ag)|**-nilpotent. O

Corollary 5.8.5. Let A be an Eo-ring, let G be an oriented P-divisible group over
A, let X be an orbispace, and let L : LocSysg (X) — LocSysg (X) be a left adjoint to
the inclusion (Proposition . Then the localization functor L is compatible with
the symmetric monoidal structure of Proposition . That is, if o : F — F' is a
morphism in LocSysg®(X) for which L(a) : L(F) — L(F') is an equivalence, and 4
is any object of LocSysg®(X), then the induced map L(F ®Y) — L(F' ®Y) is an

equivalence.
Proof. Combine Proposition [5.8.4] with Theorem [5.7.3| m

Corollary 5.8.6. Let A be an Ey-ring, let G be an oriented P-divisible group
over A, and let X be an orbispace. Then there is an essentially unique symmetric
monoidal structure on the co-category LocSysg(X) for which the localization functor
L : LocSysg®(X) — LocSysg (X) is symmetric monoidal.
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Proof. Combine Corollary with Proposition HA.2.2.1.9. m

Construction 5.8.7 (The Tempered Tensor Product). Let G be an oriented P-
divisible group over an E,-ring A. For any orbispace X, we will regard LocSysg (X) as
equipped with the symmetric monoidal structure of Corollary [5.8.61 We will denote
the underlying tensor product of this symmetric monoidal structure by

® : LocSysg (X) x LocSysg(X) — LocSysg (F,9)— FRY.

Concretely, it is given by the formula . ® ¥ = L(F# ®%), where L : LocSysg® (X) —
LocSysg (X) is left adjoint to the inclusion functor.

Remark 5.8.8. In the situation of Construction the unit object of the sym-
metric monoidal co-category LocSysg(X) is the trivial G-tempered local system Ay
of Example [5.1.5 (which is G-tempered by virtue of Corollary |5.4.4)).

Remark 5.8.9. Let G be an oriented P-divisible group over an E,-ring A, and let
Z and ¢ be G-tempered local systems on an orbispace X. It follows from Theorem
that the tensor product .# ®% of Construction [5.8.7] can be characterized as
follows:

e There exist Ag-linear maps yr : F(T) @4z 9(T) — (F ®9Y)(T), depending
functorially on T € 73"

e For each T' e J3, the fiber fib(ur) is | Spec(Ag)|**-nilpotent (when regarded
as an A&-module).

Remark 5.8.10. In the situation of Remark [5.8.9] the map uz Is an equivalence
whenever T is contractible (Remark [5.7.6). It follows that the forgetful functor
LocSysg(X) — LocSys 4 (|X]|) (see Variant is symmetric monoidal: that is, it
carries the tensor products of tempered local systems (given by Construction to
the pointwise tensor product of Mod 4-valued local systems on |X]|.

Warning 5.8.11. In the situation of Remark 5.8.9, the map pir : F(T') @4z 4 (T') —
(Z ®%9)(T) is generally not an equivalence when T is not contractible. That is, the
tensor product of tempered local systems cannot be computed levelwise.

Example 5.8.12. Let G be an oriented P-divisible group over an E-ring A and let
X be a space. Applying Remark and Corollary to the constant orbispace
X, we obtain an equivalence of symmetric monoidal co-categories LocSysg(X) ~
LocSys 4(X). In particular, when X ~ = is contractible, we obtain an equivalence of
symmetric monoidal oo-categories LocSysg (*) ~ Mod 4.
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Note that if we are given a map of orbispaces f : X — Y, then the symmetric
monoidal pullback functor f* : LocSysg (YY) — LocSysg®(X) automatically restricts
to a lax symmetric monoidal functor LocSysg(Y) — LocSysg(X), which we will also
denote by f*.

Proposition 5.8.13. Let G be an oriented P-divisible group over an B, -ring A.
For every map of orbispaces f : X — Y, the pullback functor f* : LocSysg(Y) —
LocSysg (X) is symmetric monoidal.

Proof. 1t follows from Remark that the pullback functor f* preserves unit
objects. We will complete the proof by showing that for every pair of objects .#,. %" €
LocSysg(Y), the canonical map a : f*Z Qf* F' — f*(F ®.F') is an equivalence.
We have a commutative diagram

frFRfF T —— fH(FRF)

l |

f* Zef F 2= fH(FRF)
in the co-category LocSysg - (X). Note that the upper horizontal map is an equivalence,
and that the fibers of the vertical maps belong to LocSysg'(X). It follows that

fib(a) € LocSysg' (X) n LocSysg (X), so that fib(a) ~ 0 and « is an equivalence. [

Proposition 5.8.14. Let G be an oriented P-divisible group over an E.-ring A, let
f X =Y be a map of orbispaces, and let F € LocSysg(X) and 4 € LocSysg(Y) be
G-tempered local systems on X and Y, respectively. If Y ~ = is a final object of OS,
then the canonical map

0: 907 - [*9Q0.F
is an equivalence in LocSysg (X). In other words, the map pr : 4(T) Qur, F(T) —
(f*9®F)(T) of Remark is an equivalence for each object T'€ T3

Proof. Let us regard .Z as fixed, and let C denote the full subcategory of LocSysg(Y)
spanned by those objects ¢ for which the morphism 6 is an equivalence. Then C
is a stable subcategory of LocSysg(Y), and it follows from Theorem that C is
closed under small colimits. Since LocSysg(Y) is equivalent to Mod4 as a symmetric
monoidal oo-category (Example [5.8.12), to prove that C = LocSysg(Y) it will suffice
to show that C contains the unit object of LocSysg(Y), which is immediate. [
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Remark 5.8.15. Let G be an oriented P-divisible group over an E,-ring A and
let f: X — Y be a map of orbispaces. It follows from Proposition that the
ao-category LocSysg(X) is tensored over LocSysg(Y), with action given concretely by
the construction

LocSysg (Y) x LocSysg (X) — LocSysg (X) (Y, F)— ("9 F.

Proposition [5.8.14) makes this action explicit in the special case where Y = = is a final
object of OS. In this case, we can identify LocSysg(Y) with the co-category Mod 4
(Example [5.8.12)). Then LocSysg (X) inherits an action of Mod 4, which we will denote
by

Mod 4 x LocSysg(X) — LocSysg (X) (M, .7)— M®aF .

Proposition [5.8.14] asserts that this action is computed levelwise: that is, it is given
on objects by the formula (M ®4 .7 )(T) = M ®4 F (T).

6 Analysis of LocSysg(X)

Let G be an oriented P-divisible group over an E.-ring A. In §5 we introduced
the co-category LocSysg (X) of G-tempered local systems on an orbispace X (Definition
. Our goal in this section is to develop an arsenal of tools for working with
G-tempered local systems, which can often be used to translate questions about
G-tempered local systems on orbispaces to questions about ordinary local systems on
spaces.

To simplify the discussion, let us assume for the moment that the E,-ring A is
p-local for some prime number p and that G is a p-divisible group of some fixed height
h = 0. We will say that a G-tempered local system .# € LocSysg(X) is K(n)-local
if, for each object T e J)x, the spectrum % (T) is K (n)-local; here K (n) denotes the
nth Morava K-theory (at the prime p). The collection of K(n)-local G-tempered
local systems span a full subcategory LocSysg(") (X) < LocSysg(X). In , we show
that the oo-category LocSysg(X) admits a semi-orthogonal decomposition by the
subcategories {LocSysg(") (X)}o<n<n (Corollary . Consequently, the problem of
understanding the oo-category LocSysg (X) can be partially reduced to the problem of
understanding the subcategories LocSysg(n) (X).

In , we study the oo-category LocSysg(") (X) in the special case where n = h is
the height of the p-divisible group G. In this case, we show that the forgetful functor
LocSysg (X) — LocSys 4 (|X]) of Variant restricts to an equivalence of full subcat-
egories LocSyss™ (X) ~ LocSysh ™ (|X|), where LocSysh ™ (|X|) ~ Fun(|X|, Mod’; ™)
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denotes the co-category of local systems on |X| with values in the co-category Modﬁl{(n)
of K(n)-local A-modules (Theorem . This can be regarded as a categori-
fication of Theorem /4.2.5] which asserts that the Atiyah-Segal comparison map
¢+ AL (X) — A*(|X]) is an isomorphism in the case where A is K(n)-local and
G = G¥¢ is the Quillen p-divisible group of A.

To understand the co-categories LocSysIé(") (X) for n < h, it will be convenient to
enlarge the E,-ring A. To every Ey-algebra B over A, we can associate a p-divisible
group Gp over B, obtained from G by extensions of scalars. In §6.2] we study the
relationship between the oo-categories LocSysg(X) and LocSysg , (X). In the special
case where B = L (n)(A) is the K (n)-localization of A, we show that the subcategories
LocSyss™ (X) and LocSysg;n) (X) are equivalent (Corollary [6.2.8)). We may therefore
assume without loss of generality that the Ey-ring A is K (n)-local. In this case, the

orientation of G determines a short exact sequence
0— Gy G — Gy — 0,

where Gy = G% is the Quillen p-divisible group of A (see Corollary and Gy is
an étale p-divisible group of height h —n. Set A = (Q,,/Z,)" " and let B = Split, (1)
be a splitting algebra of + (Definition . Then B is a faithfully flat A-algebra
(Proposition , so that A can be identified with the totalization fo the cosimplicial
A-algebra

B*=(B3Bs1B3---).
According to Proposition [6.2.6] the theory of G-tempered local systems satisfies

faithfully flat descent: that is, we can identify LocSysg(X) with the totalization of
the cosimplicial co-category LocSysg ., (X). Consequently, various questions about the

structure of the oo-category LocSysIé(”) (X) can be addressed after extending scalars
along the maps A — B™, so that the p-divisible group G splits as a direct sum
Go @ A. Beware that the A-algebras B™ are essentially never K(n)-local (so that,
after extending scalars, we cannot identify Gg with the Quillen p-divisible group of
B™), but (if desired) this can rectified by replacing each B™ by its K (n)-localization.

Let £* (X) denote the formal loop space of X given by Construction . In ,
we construct a fully faithful embedding of co-categories

® : LocSysg(X) < LocSysg, (£*(X)),

which can be regarded as a categorification of the character isomorphism Ag (X) ~

Ag, (LY(X)) of Theorem m (see Theorem [6.4.1). In we identify the essential
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image of ® with the full subcategory LocSysg (£*(X)) of isotropic local systems on
L*(X) (Definition . For m > 0, every K (m)-local object of LocSysg, (£*(X)) is
automatically isotropic (Corollary , and the embedding above restricts to an
equivalence of co-categories

LocSysg(m) (X) ~ LocSysg m)([,A(X))

(beware that the situation is a bit more complicated if m = 0, or if G is a P-divisible
group with nonvanishing components Gy, for ¢ # p). Consequently, for the purpose
of understanding the oo-category LocSysg(") (X) when n > 0, we can replace G by the
p-divisible group Gg (at the cost of replacing X by the more complicated orbispace
L£2(X)), thereby reducing to the situation studied in .

6.1 Localization and Completions of Tempered Local Sys-
tems

Let A be an Ey-ring and let [ < m(A) be a finitely generated ideal. We let
Mod "™ Mod*P | and Mod "™ denote the full subcategories of Mod, spanned
by those A modules which are [-nilpotent, I-local, and I-complete, respectively (see
Chapter SAG.I1.4). The oo-category Mod, then admits a pair of semi-orthogonal
decompositions (ModiIll @ Modioc(l)) and (ModLOC(]) Modiplm). In particular, for
every A-module M, there are essentially unique fiber sequences

M — M — M} I'y(M)—>M-— M

where M} is I-complete, I';(M) is I-nilpotent, and M’ and M” are I-local. Our goal
in this section is to establish a generalization of this picture, where we replace Mod 4
with the oo-category LocSysg(X) of G-tempered local systems on an orbispace X.
In this situation, we can make sense of the sequence on the left for any preoriented
P-divisible group G over A (Corollary [6.1.6), and the sequence on the right under the
assumption that G is oriented (Corollary .

Definition 6.1.1. Let A be an E,-ring, let G be a preoriented P-divisible group
over A, let X be an orbispace, and let I < my(A) be a finitely generated ideal. We
will say that a G-tempered local system .# € LocSysg(X) is I-nilpotent (I-local,
I-complete) if, for every object T' € J)x, the spectrum % (T') is I-nilpotent (/-local,
I- complete) when viewed as an A-module. We let LocSysl(\;,11 )(X) (LocSysé,OC )(X),
Opid) (X)) denote the full subcategory of LocSysg (X) spanned by those objects
are which are I-nilpotent (I-local, I-complete).

LocSysg
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Warning 6.1.2. Let A be an E,-ring, let I < my(A) be a finitely generated ideal,
and let C be a presentable A-linear stable co-category. We say that an object C' € C is
I-nilpotent if, for each element x € I, the colimit of the diagram

CHC5HC5H05 ...

vanishes (Definition SAG.I1.4.1.1.6 ), and that C is I-complete if, for each element
x € I, the limit of the diagram

NN Yoo NYe

vanishes (see Corollary SAG.I1.4.3.3.3). In the situation of Definition [6.1.1} a G-
tempered local system .% is I-complete in the sense of Definition if and only if it is
I-complete when viewed as an object of the A-linear co-category C = LocSysg (X): this
follows from the fact that the evaluation functors # — #(T) are jointly conservative
and preserve small limits (Corollary . If G is oriented, then .%# is [-nilpotent in
the sense of Definition [6.1.1]if and only if it is I-nilpotent when viewed as an object
of C = LocSysg(X) (since the evaluation functors . — % (T) also preserve small
colimits when G is oriented; see Corollary . Beware that this is generally not
true if G is only assumed to be preoriented.

Remark 6.1.3 (Functoriality). Let G be a preoriented P-divisible group over an
Eyp-ring A, let I < m9(A) be a finitely generated ideal, and let f: X — Y be a map of
orbispaces. If # € LocSysg(Y) is I-nilpotent (I-local, I-complete), then the pullback
f*(Z) € LocSysg (X) is also I-nilpotent (I-local, I-complete).

Proposition 6.1.4. Let A be an Ey-ring, let G be a preoriented P-divisible group
over A, and let X be an orbispace. Then the inclusion functor

LocSyse?™ (X) < LocSysg (X)

admits a left adjoint. Moreover, if o : F — F' is a morphism in LocSysg(X), then
the following conditions are equivalent:

(1) The morphism o exhibits F' as a LocSyse?")(X)-localization of .F .

(2) For every object T € Fx, the induced map o(T) : F(T) — F'(T) exhibits
F'(T) as an I-completion of F(T) in the c0-category Mod 4.
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Proof. Fix an element = € I. For each object # € LocSysg(X), let ©,(%) denote
the limit of the tower --- = # = F 5 7, and let .Z,, denote the cofiber of
the canonical map ©,(%#) — Z#. By construction, = acts by an equivalence on
0.(F). It follows that multiplication by x acts by a homotopy equivalence from
Mapy oesyse () (O(F), 9) to itself, for every object 4 € LocSysg(X). In particular,
the canonical map

MapLocSysG(X) (61" (ﬁ.)’ O, (g)) - MapLocSysG(X) (61 (y) ) g)

is a homotopy equivalence. If ¢ is I-complete, then it is annihilated by the functor
©,, so that the mapping space Mapy,.gys, (x)(Oz(F),¥) is contractible. It follows
that the canonical map

MapLocSysG(X) (g[(/\x)’ g) - MapLocSysG(X) (327 g)

is a homotopy equivalence.
Choose a finite collection of generators x1,...,x, € m(A) for the ideal I, and let
F € LocSysg(X). Let a denote the composite map

A A A A A /
F — y(ml) - (ﬁ(an))(acg) - "'((5@;1)) T )(a:n) F =7

Corollary implies that for every object 7' € J)x, the canonical map % (T') —
F'(T) exhibits .Z'(T) as an I[-completion of .Z(T), so that .#' is I-complete. It
follows from the above analysis that «a exhibits .#" as a LocSysgpl(]) (X)-localization
of .#. This completes the proof that LocSysgpl(I) (X) is a localization of LocSysg(X),
and proves that (1) = (2).

We now complete the proof by showing that (2) = (1). Let 8 : .% — ¢ be a
morphism in LocSysg (X) satisfying condition (2). Then ¢ is I-complete, so that
factors as a composition .# 5 %’ 5 & where « is defined as above. Then o and
8 both satisfy condition (2). It follows that for every object T € )x, the induced
map #'(T) — 4(T) is an equivalence. We conclude that v is an equivalence, so that

B = 7o« exhibits ¥4 as a LocSysgpl(I) (X)-localization of .%. ]

Notation 6.1.5 (Completion with Respect to an Ideal). Let G be a preoriented
P-divisible group over an E,-ring A, let X be an orbispace, and let I < mo(A) be a
finitely generated ideal. For each G-pretempered local system .# on X, we let %}
denote the image of .# under the functor LocSysg (X) — LocSysgpl(I) (X) which is left
adjoint to the inclusion. More informally, .# is the G-tempered local system on X
given by the formula .7} (T) = #(T);. We will refer to .#; as the I-completion of

F.
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In the situation of Notation [6.1.5, the completion .#; ~ 0 vanishes if and only
if the G-tempered local system .# is [-local, in the sense of Definition [6.1.1] We
therefore obtain the following;:

Corollary 6.1.6. Let A be an Ey-ring, let G be a preoriented P-divisible group
over A, and let X be an orbispace. For every finitely generated ideal I < my(A),
the pair of stable subcategories (LocSysI(’;OC(I) (X),LocSysgpl(I) (X)) determine a semi-
orthogonal decomposition of LocSysg(X). In particular, every G-tempered local system
F determines an (essentially unique) fiber sequence F' — F — F;, where F' is
I-local and F 7 is I-complete.

Proposition 6.1.7. Let G be an oriented P-divisible group over an E,-ring A, let

I < mo(A) be a finitely generated ideal, and let X be an orbispace. Then the inclusion
Nil(1)

LocSysg ' (X) = LocSysg (X) admits a right adjoint. Moreover, if o : F' — F is a
morphism in LocSysg(X), then the following conditions are equivalent:
(1) The morphism « exhibits F' as a LocSysgﬂ(I) (X)-colocalization of F .

(2) For every object T € T)x, the morphism a(T') induces an equivalence of A-module
spectra F'(T) ~ T F(T).

Proof. We proceed as in the proof of Proposition [6.1.4] Fix an element x € I. For
each object .Z € LocSysg(X), let #[x 1] denote the colimit of the sequence

x

FEFEH T

and let T'(,) % denote the fiber of the canonical map .# — Z[z~']. By construction,
x acts by an equivalence on .Z [z~ !]. Tt follows that multiplication by z acts by
a homotopy equivalence from Mapy,.g.s.x)(¥4, F[27']) to itself, for every object
¢ € LocSysg (X). In particular, the canonical map

MapLocSysG(X) (g[xil]a y[xil]) - MapLocSysG(X) (g7 ‘gg['xil])

is a homotopy equivalence. If ¢ is I-nilpotent, then ¥[z71] ~ 0, so that the mapping
space Mapy ,.sys., ) (¢, F[271]) is contractible. It follows that the natural map

MapLocSysG (X) (g7 F(w) y) - MapLocSysG(X) (g7 y)

is a homotopy equivalence.
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Choose a finite collection of generators xy,...,z, € m(A) for the ideal I, and let
F € LocSysg(X). Let a denote the composite map

F' = F(xn)(”'<r($1)y)) — F(m)gz — 7.

Corollary implies that for every object T" € Jx, a induces an equivalence
F'(T) ~T; Z(T), so that F' is [-nilpotent. It follows from the above analysis that

« exhibits Z' as a LocSysIéﬂ(I) (X)-colocalization of .%. This completes the proof that

LocSysl(\I;ﬂ(]) (X) is a colocalization of LocSysg(X), and shows that (1) = (2).

We now complete the proof by showing that (2) = (1). Let 8 : 4 — Z be a
morphism in LocSysg (X) satisfying condition (2). Then ¢ is [-nilpotent, so that
factors as a composition

g5 F 5 F,
where « is defined as above. Then « and § both satisfy condition (2). It follows that for
every object T' € F)x, the induced map 4 (T') — .#'(T) is an equivalence. We conclude
that ~ is an equivalence, so that § = a0 exhibits ¢ as a LocSysléﬂ(I) (X)-colocalization
of 7. ]

Notation 6.1.8. Let G be an oriented P-divisible group over an E -ring A, let X be
an orbispace, and let I < my(A) be a finitely generated ideal. We let

I'; : LocSysg (X) — LocSysgﬂ(D (X)

denote a right adjoint to the inclusion functor, whose existence is asserted by Propo-
sition [6.1.7} More informally, the functor I'; carries each G-tempered local system
Z to an [-nilpotent G-tempered local system I'; %, given informally by the formula
(T #)(T) =T 1(F(T)).

Warning 6.1.9. In the situation of Notation |6.1.8 suppose that we assume only
that G is a preoriented P-divisible group over A. Then, to every G-tempered local
system % € LocSysg(X), we can associate a G-pretempered local system I'; % by the
formula (I'; #)(T) =T/ (% (T)). However, this formula need not define a G-tempered
local system unless G is oriented.

In the situation of Notation [6.1.8] the G-tempered local system I'; .% vanishes if
and only if .# is I-local. This proves the following:

Corollary 6.1.10. Let A be an Ey-ring, let G be an oriented P-divisible group
over A, and let X be an orbispace. For every finitely generated ideal I < my(A),
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the pair of stable subcategories (LocSyslglm (X),LocSysIéOC(I) (X)) determine a semi-
orthogonal decomposition of LocSysg(X). In particular, every G-tempered local system
F determines an (essentially unique) fiber sequence Uy F — F — F", where T'; F
is I-nilpotent and F" is I-local.

Combining Corollaries |6.1.6| and [6.1.10] with Proposition HA.A.8.20, we obtain
the following:

Corollary 6.1.11. Let A be an E-ring, let G be an oriented P-divisible group over
A, and let X be an orbispace. Then, for every finitely generated ideal I < my(A), the
ao-category LocSysg(X) is a recollement of the full subcategories

LocSysIéoc(I) (X), LocSysgpM) (X) < LocSysg(X),
in the sense of Definition HA.A.8.1.

Corollary 6.1.12. Let A be an E-ring, let G be an oriented P-divisible group over
A, and let X be an orbispace. Then, for every finitely generated ideal I < my(A), the
functor of I-completion determines an equivalence of co-categories

LocSysl(\I;ﬂ(I) (X) — LocSysgpl(I) (X).
We now specialize to a particularly important case.

Definition 6.1.13. Let p be a prime number, let A be a p-local E,-ring, and let G
be an oriented P-divisible group over A. Let .# be a G-tempered local system on
an orbispace X. We will say that .% is K(n)-local if, for each object T' € J)x, the
spectrum # (T') is K (n)-local (here K (n) denotes the nth Morava K-theory spectrum
at the prime p). We let LocSysg(") (X) denote the full subcategory of LocSysg(X)
spanned by the K (n)-local G-tempered local systems on X.

We say that .# is E(n)-local if, for each object T" € J)x, the spectrum . (T')
is E(n)-local (where E(n) denotes the nth Johnson-Wilson spectrum at the prime
p). We let LocSysg(n) (X) denote the full subcategory of LocSysg (X) spanned by the
E(n)-local G-tempered local systems on X.

Remark 6.1.14. Let p be a prime number, let A be a p-complete E,-ring, and let G
be an oriented P-divisible group over A. Then A is complex periodic. For each m > 0,
we let 32 < m(A) denote the mth Landweber ideal of A (Definition Or.4.5.1). Then:
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e A G-tempered local system .Z is E(n)-local if and only if it is J2, ;-local. That
is, we have

jA

LocSysg(n) (X) = LocSysIéoc( "“)(X).

e A G-tempered local system is K (n)-local if and only if it is both 37!, ;-local and

J/-complete. That is, we have
ocC A
LocSysi ™ (X) = LocSysg (j”“)(X) A LocSyseP @) (X).

Notation 6.1.15. Let G be an oriented P-divisible group over a p-local E,-ring
A and let X be an orbispace. It follows from Corollaries [6.1.6] and [6.1.10] that the
inclusion functors

LocSySg(n) (X) < LocSysg(X) LocSysg(n) (X < LocSysg(X)

admits left adjoints, which we will denote by Lg) : LocSysg(X) — LocSysg(n) (X)
and Ly, : LocSysg(X) — LocSysg(") (X), respectively. Concretely, these functors
are given by the formulae

(Lem) Z)T) = Lew)(F(T))  (Lrwm F)T) = Lrm/(F (1))
for T e F)x.

Proposition 6.1.16. Let G be an oriented P-divisible group over a p-local Eo,-ring A,
and let X be an orbispace. Then, for each n = 1, the stable co-category LocSysg(n) (X)
is a recollement of the full subcategories

LocSysa™ Y (X), LocSysa™ (X) < LocSyse™ (X).

Proof. Let I = 37 be the nth Landweber ideal of A. For .# € LocSysg(X), Corollaries
[6.1.6] and [6.1.10] supply fiber sequences

F - F > F] I % —>F%—> 37"

where .#' and .Z" are [-local (that is, E(n — 1)-local). If Z is E(n)-local, then .7}
and I'; # are also F(n)-local (so that #} is K(n)-local). O

Corollary 6.1.17. Let G be an oriented P-divisible group over a p-local Eq-ring
A, and suppose that the p-divisible group G,y has height < h for some nonnegative
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integer h. Then, for any orbispace X, the stable co-category LocSysg(X) admits a
semi-orthogonal decomposition by full subcategories

(LocSysg(O) (X), LocSysg(l)(X), SR LocSysg(h) (X)).
In particular, every G-tempered local system % on X admits a canonical filtration
0=%(-1)->F0)—->7(1)—> > F(h)=7F,

where each cofiber F(n)/ F(n — 1) is K(n)-local.

6.2 Change of Ring

Let ¢ : A — B be a morphism of E-rings. If G is a preoriented P-divisible group
over A, we let Gp denote the preoriented P-divisible group over B obtained from G
by extension of scalars along ¢. For each orbispace X, we let Ay, B : ,Z;p — CAlg
denote the functors given by Notation [5.1.2] so that we have an equivalence of functors
By (o) ~ B®4 Ax(e). There is an evident restriction of scalars functor

¢4 : Modp, — Mody, .

In what follows, we will generally abuse notation by identifying an object ¢ € Modp,
with its image under ¢,. The functor ¢, admits a left adjoint ¢*. For each object
# € Mody,, we denote ¢* .# by B ®4 F; concretely, it is given by the formula

(B®4s F)(T) = Bh @z F(T) ~ Boy F(T)
for T e Z;’(p.

Proposition 6.2.1. Let ¢ : A — B be a morphism of E-rings, let G be a preoriented
P-divisible group over A, and let X be an orbispace. Then:

(a) An object 9 € Modp, is a Gg-pretempered local system on X if and only ¢, 9
is a G-pretempered local system on X.

(b) An object 9 € Modp, is a Gp-tempered local system on X if and only ¢+ is a
G-tempered local system on X.

(c) If F € Mody, is a G-pretempered local system on X, then ¢* F = B®s F is a
G g-pretempered local system on X.
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(d) If G is oriented and .F is a G-tempered local system on X, then ¢* F = By .F
is a Gpg-tempered local system on X.

Proof. Assertions (a), (b), and (c¢) follow immediately from the definitions. To prove
(d), it will suffice (by virtue of (b)) to show that if G is oriented, .# is a G-tempered
local system on X, and M is an A-module spectrum, then the relative tensor product
M ®a F (given by (I'e T) — M ®4 F(T)) is also a G-tempered local system on
X, which follows from Remark |5.8.15 O

Remark 6.2.2. In the situation of Proposition [6.2.1, assume that G is oriented.
Then:

(1) If 4 — ¢’ is a morphism in LocSysg:, (X) which exhibits ¢” as a LocSysg , (X)-
localization of ¢, then the induced map ¢,¥% — ¢,%  exhibits ¢, ¥’ as a
LocSysg (X)-localization of ¢, 4.

(2) If # — F' is a morphism in LocSysg*(X) which exhibits .’ as a LocSysg (X)-
localization of .%, then the induced map

B®jy.F =¢*F — ¢* F' = BRy.F'
exhibits B®a .# as a LocSysg , (X)-localization of B ®4 7.

These assertions follow from Theorem [5.7.3 combined with the observation that the

adjoint functors
*

@
LocSyslge(X)<7;>LOCSysI§JeB (X)

*
carry LocSysg”(X) into LocSysr(lf}lB (X) and vice-versa.
In the situation of Proposition [6.2.1] the extension of scalars functor
LocSysg (X) — LocSysg, (X) F — By F

is symmetric monoidal with respect to the levelwise symmetric monoidal structure on
the oo-categories LocSysg*(X) and LocSysg |, (X) (given by the tensor product ® of
Notation [5.8.1)). If G is oriented, then it restricts to a lax symmetric monoidal functor

¢* : LocSysg(X) — LocSysg , (X) F — B®a F .
In fact, we can say more:
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Proposition 6.2.3. Let ¢ : A — B be a morphism of E-rings, let G be a preoriented
P-divisible group over A, and let X be an orbispace. Then the lax symmetric monoidal

functor
¢* : LocSysg(X) — LocSysg , (X) F —> B F

is symmetric monoidal.

Proof. Let .# and ¥ be G-tempered local systems on X; we wish to show that the
canonical map 0 : (¢* %) ® (¢*Y) — ¢*(F ®Y) is an equivalence in the co-category
LocSysg, (X). Unwinding the definitions, we see that ¢ fits into a commutative
diagram

(¢ F)Q(¢*F) — ¢*(F BY)

l l

(6" 7) @ (6" 9) —"=¢"(F ®Y)
where the upper horizontal map is an equivalence, and the left vertical map ex-
hibits (¢* #) ® (¢*¥) as a LocSysg,, (X)-localization of the levelwise tensor product
(¢p* F)®(¢*4). It will therefore suffice to show that the right vertical map exhibits
¢*(F ®%Y) as a LocSysg , (X)-localization of ¢*(.# ®%), which follows from Remark
6.2.2] O

Remark 6.2.4. Let G be a preoriented P-divisible group over an E,-ring A, and let
X be an orbispace. Then we can regard C = Mody, as an A-linear co-category. If B is
an E.-algebra over A, then Cp = Modp, can then be identified with the co-category
B®4C ~ Modg(C) of B-module objects of C. By virtue of Proposition [6.2.1] this
identification restricts to equivalences

LocSysg;, (X) ~ B ®4 LocSysg“(X) ~ Modg(LocSysg (X))
LocSysg, (X) ~ B ®4 LocSysg(X) ~ Modp(LocSysg(X)).

Example 6.2.5. Let G be an oriented P-divisible group over an E-ring A and let
I < m(A) be a finitely generated ideal, and let B = L;(A) denote the I-localization
of A (so that B is I-local as an A-module, and the fiber of the map A — B is
I-nilpotent). Then, for any A-linear co-category C, we can identify Modg(C) with the
full subcategory of C spanned by the I-local objects. In particular, for any orbispace
X, the forgetful functor LocSysg ,(X) — LocSysg(X) is a fully faithful embedding,

whose essential image is the subcategory LocSysg " (X) < LocSysg (X) appearing in

Definition [6.1.1]
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Let A be complex periodic and p—local (for some prime number p). Applying the
above analysis in the case where I = 37!, is the (n + 1)st Landweber ideal of A, we
obtain an equivalence LocSysG )(X) = LocSysg,(X), where B = L;(A) = Lg(A)
is the FE(n)-localization of A.

Proposition 6.2.6 (Faithfully Flat Descent). Let A be an Ey-ring, let G be an
oriented P-divisible group over A, and let A* be a flat hypercovering of A (see Definition
SAG.D.6.1.4 ). Then, for any orbispace X, extension of scalars induces an equivalence
of co-categories

LocSysg (X) — Tot(LocSysg . (X)).

Proof. Since G is oriented, the co-category C = LocSysg(X) is compactly generated
(Corollary [5.3.3). By virtue of Remark we are reduced to proving that the
canonical map C — Tot(A®*®4C) is an equivalence, which is a special case of Corollary
SAG.D.7.7.7. O

Let G be a preoriented P-divisible group over an E,-ring A and let I < my(A)
be a finitely generated ideal. Let B be an E -algebra over A and let J = Imq(B)
be the ideal generated by the image of I. Then a B-module spectrum M is J-
nilpotent (J-local, J-complete) if and only if it is I-nilpotent (/-local, I-complete)
when viewed as an A-module. It follows that, for any orbispace X, the forgetful functor
LocSysg, (X) — LocSysg(X) restricts to functors

LocSyslé11 D(X) = LocSysg'™ (X)
LocSySIcJ;O;(J) (X) = LocSyseP(X)
LocSysgﬁ(J) (X) = LocSysaP D (X).

Proposition 6.2.7. Let G be an oriented P-divisible group over an E-ring A and let
I < mo(A) be a finitely generated ideal. Let B be an Eq,-algebra over A, let J = Imy(B)
denote the ideal generated by I, and suppose that the map of completions A} — B} is
an equivalence. Then, for any orbispace X, the restriction functors

LocSysgs” (X) = LocSysg (X)  LocSysgh”) (X) — LocSysg? ) (X)

are equivalences of co-categories.
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Proof. Let ¢ : A — B exhibit B as an Ej-algebra over A. We will show that
the forgetful functor ¢, : LocSysgljlg(J) (X) — LocSysp'(X) is an equivalence; the
analogous assertion for complete objects is then a formal consequence (see Corollary
6.1.12). Note that ¢, admits a left adjoint ¢* : LocSyse ) (X) — LocSysgl}B(J)(X).
Since ¢, is conservative, it will suffice to show that the unit map id — ¢.¢* is an

equivalence of functors from LocSysIéﬂ(I) (X) to itself. In other words, it will suffice to

show that if .% is [-nilpotent, then the canonical map % — B®,4 .% is an equivalence
of G-tempered local systems on X. Fix an object 1" e Z;p; we wish to show that the
canonical map 6 : % (T) - B®4.% (T) is an equivalence. This is clear: the homotopy
fiber fib(f) can be identified with the tensor product fib(¢) ®4 % (T), which vanishes
because fib(¢) is I-local and .#(T') is [-nilpotent. O

Corollary 6.2.8. Let p be a prime number, let ¢ : A — B be a map of p-local
E-rings, and let G be an oriented P-divisible group over A. Let n be a nonnegative
integer for which ¢ induces an equivalence Ly (A) — Lim)(B). Then, for any
orbispace X, the forgetful functor

LocSysgf:) (X) — LocSysg(n) (X)
is an equivalence of co-categories.

Proof. When n = 0, this follows from Example [6.2.5] Let us therefore assume that
n > 0. In this case, we can apply Proposition m (with I = (p)) to reduce to
the case where A and B are p-complete. Our assumption that G is oriented then
guarantees that A is complex periodic (so that B is also complex periodic). Using
Example again, we can replace A by L) (A) and thereby reduce to the case
where A is F(n)-local. In this case, a G-tempered local system .# on X is K (n)-local
if and only if it is J2-complete, where J7' denotes the nth Landweber ideal of m(A)
(Remark . The desired result now follows from Proposition . O

6.3 The Infinitesimal Case

Let p be a prime number, which we regard as fixed throughout this section. Let
A be a p-local E,-ring and let G be an oriented p-divisible group over A. For any
orbispace X, Corollary asserts that the stable oo-category LocSysg(X) admits a
semi-orthogonal decomposition by the full subcategories {LocSysg(m) (X)}m=0- The
last of these subcategories admits a more concrete description:
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Theorem 6.3.1. Let G be an oriented p-divisible group of height n over a p-local
Eyw-ring A, and let X be an orbispace with underlying space |X|. Then the forgetful
functor LocSysg (X) — LocSys 4 (IX|) of Variant[5.1.15 restricts to an equivalence of
o0-categories

LocSysa™(X) ~ LocSysh ™ (]X|).

Here LocSysh ™ (IX|) = Fun(|X|, Mod’ ™) denotes the full subcategory of LocSys ,(|X|)
spanned by those local systems of A-modules on |X| which take K(n)-local values.

Remark 6.3.2. To prove Theorem [6.3.1] we are free to replace A by its K(n)-
localization Lk, (A) (see Corollary 6.2.8). If n > 0, the orientation of G then
determines an equivalence G ~ G, where G¢ is the Quillen p-divisible group of A

(Proposition [2.5.6)).

Remark 6.3.3. Let A be an E,-ring which is K (n)-local and complex periodic, and
let G = G be the Quillen p-divisible group of A. For any orbispace X, the forgetful
functor LocSysg(X) — LocSys 4(]X|) of Variant carries the trivial G-tempered
local system Ay to the trivial local system Ay . Since Ay is K (n)-local, Theorem
[6.3.1] implies that the induced map

C : EthocSysG(X) (AX7 AX) = EXtEocSysA(\XD (A\X| ) A\X|)

is an isomorphism. Combining this observation with Remark [5.1.20, we recover
the statement that the Atiyah-Segal comparison map ¢ : A&(X) — A*(|X]) is an
isomorphism. In other words, we can regard Theorem [6.3.1| as a categorified version

of Theorem [4.2.5]

Proof of Theorem[0.3.1. Without loss of generality, we may assume that the E.-ring
A is K(n)-local and that G = G is the Quillen p-divisible group of A (Remark
6.3.2). Let us abuse notation by identifying |X| with the full subcategory of Z;p
spanned by those objects T' — X where T' is contractible. Let C € Mod,4, denote the
full subcategory spanned by those Ax-modules .%# which are right Kan extensions
of their restriction to |X|, and let C* ™ denote the full subcategory of C spanned by
those objects .# for which the spectrum .# (T') is K (n)-local for T € |X|. Applying
Proposition HTT.4.3.2.15 (to the fibration ¢ : Mod(Sp) — CAlg of Construction
5.1.8)), we deduce that the restriction functors

C — LocSys 4(X) F — F |
cEM - LocSysh ™ (X) F — F |x
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are equivalences of oo-categories. It will therefore suffice to show that CKX™ =
K(n)
LocSysg ' (X).
Unwinding the definitions, we see that a module .# € Mod 4, belongs to cim f
and only if it satisfies the following conditions:

(a) For each T € |X|, the spectrum .#(T') is K (n)-local.

(b) For each object T'€ J)x having universal cover Ty € Cov(T), the canonical map
F(T) — F(Ty)"AT0/T) i an equivalence.

Suppose first that .7 € LocSysg(n) (X); we wish to show that . satisfies (a) and
(b). Condition (a) is obvious. To prove (b), it suffices to show that .#(T) is I(Ty/T)-
complete when viewed as a module over AL, = AT. We will assume that n > 0
(otherwise there is nothing to prove), so that A is complex periodic. Let 34 < m(A)
denote the nth Landweber ideal of A. Then the inverse image of the vanishing locus
of 34 under the map | Spec(AL)| — | Spec(A)| is contained in the zero section: that
is, some power of the ideal I(Ty/T) is contained in J}AL(T). Consequently, to show
that .Z (T) is I(Ty/T)-local, it suffices to show that it is J/-local, or equivalently that
it is K (n)-local (which follows by assumption).

Now suppose that .Z satisfies (a) and (b). It follows immediately that for each
T € J)x, the spectrum .#(T') is K(n)-local. We will show that .% is a G-tempered
local system. We first verify condition (B) of Definition Let T be any object of
Tx and let Ty € Cov(T') be a connected covering space of T'; we wish to show that
the map 6 : .F(T) — F(Ty)"*(70/T) has I(Ty/T)-local fiber. To prove this, let 7} be
a universal cover of Tj. We then have a commutative diagram

f(T) 0 ﬁ(TO)hAUt(TO/T)

\/

F (Tl )hAut(Tl/T)

where the vertical maps are equivalences by virtue of assumption (b). It follows that 6
is an equivalence (so that fib(#) ~ 0 is automatically I(7y/T")-local).

It remains to prove that . is a G-pretempered local system on X. Fix a map
u:T" — T in J)x with connected homotopy fibers; we wish to show that the canonical
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map p: AL ® az, F(T') — F(T") is an equivalence. Form a pullback square

Té HT@

L

T ——T,
where T is a universal cover of T'. Using condition (b), we can identify p with the map
g Ag =Y y(TO)hAut(TO/T) N E(Té)hAUt(Té/T'),
G

Since Ag is finite and flat as a module over A%, the functor M — AL ® ALM

commutes with limits. Consequently, it will suffice to show that the natural map
’ T
po: AL ®z F(To) ~ AG @5 F(T) — F(T})

is an equivalence. In other words, we can replace T by Ty (and 7" by T{) and thereby
reduce to the problem of showing that p is an equivalence in the special case T is
contractible. Setting M = % (T'), we are reduced to the problem of showing that
the canonical map AT ®4 M — M7 is an equivalence. It follows from Proposition
Ambi.5.4.6 that this map is an equivalence after K (n)-localization, and is therefore
an equivalence (since both AT ®4 M and M are K (n)-local). O

6.4 Categorified Character Theory

Let G be a preoriented P-divisible group over an E,-ring A which splits as a
direct sum Go@ A, where A is the constant P-divisible group associated to a colattice
A (Construction . For any orbispace X, Theorem supplies an equivalence
of y : A% ~ Aé[;(x) . When G is oriented, this result has a counterpart for tempered
local systems:

Theorem 6.4.1. Let G be an oriented P-divisible group over an E.-ring A which
decomposes as a sum Go@ A, for some colattice A. For any orbispace X, there ezists
a symmetric monoidal fully faithful embedding

® : LocSysg (X) — LocSysg, (£ (X)).

The remainder of this section is devoted to the proof of Theorem [6.4.1] In what
follows, we fix a preoriented P-divisible group Gy over an E,-ring A, a colattice A
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with Pontryagin dual /A\, and an orbispace X. Let G denote the direct sum Gg@ A,
which we also regard as a preoriented P-divisible group over A. Our first step is to
construct a functor W : LocSysg, (£*(X)) — LocSysg (X) which will be right adjoint
to the embedding ® of Theorem (at least in the case where G is oriented), but
is much easier to describe.

Notation 6.4.2. For each object T'€ 7, we will identify the set of connected com-
ponents mo(L(T)) = mo(TP*) with the set Hom(/A\, m1(T)) of group homomorphisms
from A to the finite group m(7T). If v : A (T) is a group homomorphism, we will
write £(T), for the corresponding connected component of £2(T) (so that £2(T),

is homotopy equivalent to T', by evaluation at the base point of the classifying space
BA).

Construction 6.4.3 (The Functor ¥). For every functor 4 : 7%
a functor ¥ (¥) : ﬂ/;p — Sp by the formula

o) Sp, we define

V@1 = [ 9N

a:/A\—nrl (T)
The construction 4 ~— ¥ (%) then determines a lax symmetric monoidal functor

T : Fun( Sp) — Fun(7%, Sp);

/CA(X)’

see Construction [6.4.10] below for a more precise description of this functor. In
particular, the functor ¥ carries commutative algebra objects of Fun( f LA X ,Sp)
to commutative algebra objects of Fun(ﬂ/x ,Sp). By virtue of Proposition
it carries the trivial Go-pretempered local system A a ) on L£2(X) to the trivial
G-pretempered local system Ay on X. It follows that ¥ also determines a functor

MOdéE MOdA

LA’
which we will also denote by U.

Remark 6.4.4. Let Ay be the trivial G-tempered local system on X, which we view
as a commutative algebra object of the functor co-category Fun(ﬂ/x ,Sp). Let # be
an Ay-module. For each object T e J)x, we can view .7 (T') as a module over the ring
spectrum

AL _ALA(T _ H ALA T)a.

a: Aﬁwl (T)
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For each homomorphism « : A — (T'), we define
A
F (D)o = Ag, " @1 F(T).

Then .#(T) factors as a product || F(T)a, where each factor (1), is a

Ao (T)
A
module over the tempered function spectrum AéO(T)“ ~ Ago.
Unwinding the definitions, we see that:

(a) The Ax-module .# is a G-pretempered local system on X if and only if, for each
object T' € J)x, each morphism f : T" — T with connected homotopy fibers,
and each homomorphism « : A — 7m1(7"), the canonical map

AGy ®az, F(T)a — F(T')a

is an equivalence. Here we abuse notation by identifying o with its image in
Hom(A, m1(T)).

() An object # € LocSysg‘(X) is G-tempered if and only if, for each object
T € ), each connected covering space Ty € Cov(7'), and each homomorphism
a: A — m(Tp), the canonical map

F(T)a — F (T

exhibits .7 (Tp)2Au(10/T) a5 the completion of % (T'), with respect to the aug-
mentation ideal I(T,/T) < Ag,(T); here we abuse notation by identifying «
with its image in Hom(/A\7 m(T)).
Remark 6.4.5. Let 4 be an Apaxy-module object of Fun(ﬂ/cg’A(X), Sp). Using the
conventions of Remark , we see that the Ayx-module W (%) of Construction
is given by the formula ¥ (%) (T)a =% (L(T)); here T denotes an object of Fjx and
a any homomorphism from A to (7).

Combining Remarks [6.4.4] and [6.4.5] we obtain the following:

Proposition 6.4.6. For every Gg-pretempered local system & on the formal loop
space LX), the Ax-module U(94) of Construction m is a G-pretempered local
system on X. If 4 is a Go-tempered local system on L(X), then W(¥) is G-tempered
local system on X.
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Notation 6.4.7 (The Functor V). It follows from Proposition that the construc-
tion & — U (%) restricts to functors

WP : LocSysg: (L4(X)) — LocSysg®(X) ¥ : LocSysg, (£*(X)) — LocSysg (X).

The lax symmetric monoidal structure on ¥ then determines a lax symmetric monoidal
structure on the functor P (with respect to the levelwise tensor product ® of Notation
. If G is oriented, it determines a lax symmetric monoidal structure on ¥ (with
respect to the tempered tensor product of Construction .

Remark 6.4.8. The lax symmetric monoidal functor WP™ is actually symmetric
monoidal. However, the functor ¥ is not symmetric monoidal.

We can now formulate Theorem [6.4.1] more precisely:

Theorem 6.4.9. If G is an oriented P-divisible group, then the functor U of Notation
has a fully faithful left adjoint ® : LocSysg(X) — LocSysg, (£(X)). Moreover,

the lax symmetric monoidal structure on VU induces a symmetric monoidal structure
on .

We now construct the left adjoint ® appearing in Theorem [6.4.9

Construction 6.4.10. Let M™ — A! be a Cartesian fibration which classifies the
formal loop functor £* : OS Jcrx) — OS8)x; so that the fibers are given by

(J)r = OS/[,A(X) Mzr = OS/X .

We let M denote the full subcategory of M* spanned by the objects which belong
either to the full subcategory 7 sax) € OS, ax) = Mg or to Tjx = OS)x ~ M.
More informally, M is an oo-category equipped with a functor M — A! having fibers
My = 9/ £AX)) M = I)x, with morphisms given by

(To,c™T) =[] Mapy , (To,LNTh)a)

a:/A\—>7r1 (Ty1)

Map v((To, T1) = Mappg

/£8(X)

for TO € Mo, T, e Ml.

Note that we have an evident retraction r of M™ onto the subcategory Mg (whose
restriction to M is the formal loop functor £ : OS Jerx) — OS)x). Let Ay denote
the opposite of the composite functor

M MF 5 ME — 08 2%, CALg™ .
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op
/LA (X)
is the trivial Go-tempered local system A.a ), and whose restriction to M ~ Jx

We regard Ay as a functor from M to CAlg, whose restriction to My’ ~

is the trivial G-tempered local system Ay.

Let ¢ : ZﬂA(X) = My — M and ¢, : Tx = M; — M be the inclusion maps,
and let ¢ : Mod(Sp) — CAlg be the fibration of Construction [5.1.8] Unwinding the
defintions, we see that the functor ¥ of Construction is given (on Apa xy-modules)
by the composition

FunCAlg(Q?/cfA(x), Mod(Sp))
LO—*> FunCAlg(MOP,MOd(Sp))
—  Funca (7, Mod(Sp))

MOdAx’

10

where (] is given by precomposition with ¢; and ¢¢, is given by g¢-right Kan extension
along tg. It follows that ¥ admits a left adjoint ®, given by the composition

Mody,, =~ FuncAlg(Z;p,Mod(Sp))
RZiN Funcaie (M, Mod(Sp))

%
to

—> FunCAlg(ZOEpA(X) s MOd(Sp))
>~ MOdA

where (§ is given by precomposition with ¢y and ¢y is given by g¢-left Kan extension
along ¢;.

More informally: if 7 is an Ag-module object of Fun(75", Sp), then O(F) is
given by the formula ®(%)(T) = lim,_, (AG, ® AT F(T")), where the colimit is indexed
by the opposite of the co-category 7)x X7, 1h e Tr) 1 M)+

Remark 6.4.11. Let T be an object of .7. By definition, the space £*(X)T =
Mapgs(T, £4(X)) can be identified with the filtered colimit

lim Mapepg(7T' x B.//\\’,X),

Z=A\
indexed by the collection of all finite subgroups A’ < A (and A’ denotes the Pontryagin
dual group Hom(A', Q/Z)). If Ag € A is a finite subgroup, we will say that a map of
orbispaces f: T — EA(X) is represented by a map fo: T x BAy — X if it is the image
of fo under the composite map

Mapps(T x BAg,X) — lim Mapos(T x BA,X) ~ Mapes (T, £*(X)).
ANCA

210



If this condition is satisfied, then the construction A’ — T' x BA’ determines a right
cofinal functor

{Finite subgroups A’ < A containing Ao} — F)x X7 g TT) ) LX)

If # is a Ag-module object of Fun(g/(;(p, Sp), we therefore obtain an equivalence

O(F)T) = lim (Ag,®
AoSA'CA

AT< BV F (T x BA")).

Example 6.4.12. Let .# be a G-pretempered local system on X, let T be an object
of 7, and let f : T — L*X) be a map of orbispaces which is represented by
fo: T x B/AXO — X, for some finite subgroup Ag € A. Let p : A — /A\O denote
the Pontryagin dual of the inclusion map, so that we can view the pair (0, p) as a
homomorphism from A to X. Our assumption that .%# is G-pretempered guarantees
that all of the transition maps in the filtered diagram

{48, ® r.ow F (T x BN)}aeven
of Remark are equivalences. We therefore obtain an equivalence
B(F)T) = Ag,®,raws, F(T x Bho)
i1, acssamve ([ [#(T x Bh)a)

A:I(;O ®ATxBKO ﬁ(T X BKO)(O,p)

Go

0

AL, ®

0

10

A@AB/A\O g(T X BKO)(O,p);

Go
here the tensor product is formed along the augmentation map e : Ag§° — A

Proposition 6.4.13. Let .7 be an Ax-module object of Fun(75°, Sp). If 7 is a
G-pretempered local system on X, then ®(F) is a Go-pretempered local system on
LAX). If G is oriented and .F is a G-tempered local system on X, then ®(.F) is a
Go-tempered local system on L*(X).

Proof. Assume first that .% is a G-pretempered local system on X. Fix an object
T € 7 equipped with a map f: T — £A(X), and let 7" be a connected covering space
of T. We wish to show that the canonical map

0 Ag, ®az O"(F)(T) — B(F)(T")
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is an equivalence. Choose a representative of f by a map of orbispaces fy : T x B//X\O — X,
where Ag is a finite subgroup of A, and let p : A — Ay be the Pontryagin dual of the
inclusion map. Using Example [6.4.12] we see that # is obtained from the tautological
map

by extending scalars along the augmentation map e : AEQO — A. It will therefore
suffice to show that 6 is an equivalence, which follows from our assumption that .% is
G-pretempered (by virtue of assertion (a) of Remark .

Now suppose that .% is a G-tempered local system on X and that G is oriented.
We wish to show that ®(.F) is a Gy-tempered local system on £*(X). We will
prove this by verifying condition (B”) of Remark . Let f: T — £*X) and
fo: T x B//\\O — X be as above, and let T be a connected covering space of T' for
which the automorphism group Aut(7y/7) is cyclic of order p, for some prime number
p. We then have a fiber sequence Ty — T — BC), and the ideal I(T,/T) < Ag, (T) of
Notation is generated by the image of the augmentation ideal I, = Ag (BC,).
Using the description of ®(.%)(T) and ®(%)(T,) supplied by Example we can
identify ¢ with the composition of the natural map

hC)

g A ® 3, F (T % BAo)o,) — A ® s, F (T % BRo)sh
0 0

with the map £” which appears in the diagram of fiber sequences maps £ and £’
appearing in the diagram

A® s, (F(Tp x BKO)(O,p))th — (A® 51, Z(Tp x B/A\o)(mp))hcp

Go Go

le le

&-/l ~
(A ®AB[A\0 y(T X BAO)(O,p))hCP

l |

A® iy F(T x Bho)gh) ——(A® i, F(T x Bho),)" .
Go Go

Our assumption that .% is G-tempered guarantees that the fiber fib(¢') is I(7/7')-local
(see Remark [6.4.4). It will therefore suffice to show that fib(¢') is also (Ty/T)-local,
or equivalently that it is I¢ -local when viewed as a module over ACB;S”. Since the
square on the lower right is a pullback, it induces an equivalence fib(§') = fib(y). It
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will therefore suffice to show that fib(y) is /¢, -local. In fact, our assumption that G
is oriented guarantees that the domain and codomain of « are individually /¢, -local

(Proposition |4.6.8)). O

Notation 6.4.14 (The Functor ®). It follows from Proposition that the
functor @ : ModA — MOdAﬁAOQ of Construction [6.4.10| restricts to a functor ®P*c :
LocSysg(X) — LocSysge (£ (X)), which is left adjoint to the functor U™ of Notation
[6.4.7 If the P-divisible group G is oriented, then ®P™ restricts to a functor

® : LocSysg (X) — LocSysg, (£ (X)),

which is left adjoint to the functor ¥ : LocSysg, (£*(X)) — LocSysg(X) of Notation
6.4.7

Remark 6.4.15. Suppose that G is oriented. Then the functor ®**° : LocSysg‘ (X) —
LocSysge (L4 (X)) carries the full subcategory LocSysg (X) < LocSysg©(X) into the full
subcategory LocSysgh (£ (X)) € LocSysge (£*(X)). This follows from Theorem m
together with the fact that the right adjoint WP : LocSysge (£ (X)) — LocSysg©(X)
carries Go-tempered local systems to G-tempered local systems (Proposition .

Proposition 6.4.16. The functor ®P* : LocSysg‘(X) — LocSyspre(ﬁA( ) is fully
faithful. In particular, if G is oriented, then the functor

® : LocSysg(X) — LocSysg, (£ (X)
is fully faithful.

Proof. Let be a Gg-pretempered local system on X; we wish to show that the unit
map u : F — (VP o OP*)(F) is an equivalence. Choose an object T' € J equipped
with a map f: T — X, and let « : A>m (T') be a homomorphism; we wish to show
that « induces an equivalence of Af -modules

Urg + F(T)o — UP(OP(F))(T) 0.

Note that the image of a can be identified with the Pontryagin dual /A\O for some

fini A A LA pA .
nite subgroup Ay € A, and that the map £*(T), — L*(T) —= L£%(X) is then
represented by the composition

LMT) x Bhg % T L5 X,
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where a is obtained by amalgamating the homotopy equivalence EA(T)a ~ T with
the inclusion map Ag < 7 (T). Let p: A — Ay denote the Pontryagin dual of the
inclusion Ay < A. Using the descriptions of ®P™ and WP* supplied by Remark
and Example we can identify ur, with the composite map

ﬁ(T)Oc - ﬁ(ﬁA(T)a X BKO)(O,,D) - A®ABJ\0 y('CA(T)a X BRO)(O,p)
Go

determined by a. Since a has connected homotopy fibers and .# is G-pretempered,
we can use Remark to rewrite this map as

3’5(7")& N Ag;(T)aXBAo ®A£ ﬁ(T)a

— A® 3, AGD PR @ F(T)s
Go 0

0

T/
AGO ®A£0 ‘gg (T)a )

where 7" denotes the homotopy fiber of the map £*(T), x BA, — BA, given by
projection onto the second factor. The desired result now follows from the observation
that the composite map 7" — L*(T), x BAg % T is a homotopy equivalence. H

Proof of Theorem[6.4.9. Suppose that G is oriented. Then the functors UP* and ¥
of Notation admit left adjoints ®P* and ¢ (Notation , which are fully
faithful by virtue of Proposition[6.4.16, Moreover, since the functors UP* and ¥ are lax
symmetric monoidal with respect to the tensor products ® and ®, the left adjoints ®P™
and ® inherit the structure of colax symmetric monoidal functors with respect to ®
and ®. In particular, for every pair of G-tempered local systems .%,% € LocSysg (X),
we have canonical maps

§:0P(FZ DY) - O (F)DPP(Y) 0 B(FRY) — (F) @ (Y

which fit into a commutative diagram

PP (F RY) —L OP(7)ROP(Y)

u \LU
0

(T R9) (F) R D(Y).

To complete the proof, it will suffice to show that # is an equivalence (and to prove
an analogous assertion for unit objects, which we leave to the reader). From the
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description of ®P supplied by Example , it is easy to see that the map @ is
an equivalence. It follows from the construction of the tempered tensor product
on LocSySGO(EA(X)) that the fiber fib(v) belongs to LocSyslélé(EA(X)). Similarly,
using the construction of the tempered tensor product on LocSysg(X) together with
Remark , we conclude that fib(u) belongs to LocSysgh (£*(X)). It follows that
the fiber fib(f) must belong to the intersection LocSysg, (£"(X)) n LocSysgn (L (X)),
and therefore vanishes (Theorem [5.7.3)). O

6.5 Isotropic Local Systems

Let Gy be an oriented P-divisible group over an E.-ring, and let G = Gy @ A,
where A is a colattice. For every orbispace X, Theorem supplies a fully faithful
embedding

® : LocSysg (X) — LocSysg, (£ (X)).

The goal of this section is to describe the essential image of the embedding ®.

We begin with a few heuristic remarks. Let Y be an orbispace and let T'= BH be
the classifying space of a finite abelian group H. Evaluation at the base point of T'
then determines a map

ev . MapOS(T7Y) - MapOS(*7Y) = ’Y’

Roughly speaking, one can think of a point f of the space Y7 ~ Mapy,s(T,Y) as
consisting of a point y = ev(f) of the underlying space |Y|, together with an “action”
of the group H on y.

Suppose now that Y = £*(X), for some colattice A. In this case, every point
y € |Y| can be represented by a map of orbispaces fy : B/A\o — X, for some finite
subgroup AAO < A (see Remark [6.4.11)). For any homomorphism of finite abelian groups

u: H — Ay, we obtain the composite map

u,id

B(H x Ay) 9 BR, 2 X

then represents a map BH — £*(X) = Y. This can be viewed as an action of H on
the point y of a special type: roughly speaking, it is associated to the monodromy of
the profinite torus BA. We now axiomatize a relative version of this condition.

Definition 6.5.1. Let X be an orbispace and let A be a colattice. We will say
that a morphism f : 7" — T be a morphism in the oo-category <7/ £hx) 18 relatively
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monodromic if the structure map T'— £ can be represented (in the sense of Remark

6.4.11|) by a composite map

T x BAg % BH — X
where A is a finite subgroup of A, H is a finite abelian group, and the composite map
(T x BAy) — m (T x BAg) % m(BH) = H
is surjective.

Warning 6.5.2. In the situation of Definition [6.5.1], let Y denote the formal loop
space £*(X). The notion of relatively monodromic morphism in .y is not intrinsic
to the orbispace Y: it depends on the presentation of Y as a formal loop space.

Example 6.5.3. Let X be an orbispace, let A be a colattice, and let f : 7" — T be a
morphism in the co-category 7, zax. If f induces a surjection m,(7") — mi(7T'), then
it is relatively monodromic. The converse holds if A = 0 is the trivial colattice (in
which case £*(X) can be identified with X).

Remark 6.5.4. Let X be an orbispace, let A be a colattice, and suppose we are
given a composable pair of morphisms 7" L7 % T in the co-category 9/ chxy- I
(g o f) is relatively monodromic, then g and f are relatively monodromic. Conversely,
if g is relatively monodromic and f induces a surjection of fundamental groups
m(T") — m(T), then g o f is relatively monodromic.

Warning 6.5.5. In the situation of Definition [6.5.1] the collection of relatively
monodromic morphisms is not necessarily closed under composition. However, one can

show that it is closed under composition if the orbispace X is corporeal (see Remark
3.3.15)).

Example 6.5.6. Let X be an orbispace and let A be a colattice. Then any morphism
f T — T in the oo-category T erx) admits an essentially unique factorization
as a composition 7" % T, LN T, where ¢ induces an epimorphism of fundamental
groups m(1T") — m(Tp) and h induces a monomorphism of fundamental groups
m1(Ty) — mi(T). It follows from Remark that f is relatively monodromic if and

only if A is relatively monodromic.
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Remark 6.5.7. Let X be an orbispace and let A be a colattice. Using Remark
and Example we see that every relatively monodromic morphism 77 — T in
9/ £A(x) can be factored as a composition of relatively monodromic morphisms

LTy >T > T, =T

where f induces a surjection 71 (T") — mo(Tp), and each of the maps T; — T;,4 exhibits
T; as a connected covering space of T, 1, where the automorphism group Aut(7;/7T;.1)
is cyclic of order p; for some prime number p;.

Definition 6.5.8. Let A be a colattice, let X be an orbispace, and let Gy be a
preoriented P-divisible group over an E -ring A. We will say that a Ggy-pretempered
local system ¢ on EA(X) is isotropic if, for every relatively monodromic morphism
[T — T in J)ax, the induced map

AL, @y, 9(T) > H(T)
is an equivalence.

Remark 6.5.9. In the situation of Definition [6.5.8] it suffices to verify that the map
AL, @41, 9(T) — 9(T)

is an equivalence in the special case where f : T — T is a relatively monodromic
map which exhibits 7" as a connected covering space of T" whose automorphism group

Aut(7"/T) is cyclic of prime order (see Remark [6.5.7]).

Remark 6.5.10. Let A be a colattice, let f : X — Y be a map of orbispaces, and let
Gy be a preoriented P-divisible group over an E-ring A. Let 4 be a Gy-pretempered

local system on the formal loop space £2(Y). If ¢ is isotropic, then the pullback
L(£)*(9) € LocSyses (L2(X)) is isotropic.

Proposition 6.5.11. Let A be a colattice, let X be an orbispace, and let Gy be an
oriented P-divisible group over an Ey-ring A. Let G be a Go-tempered local system
on the formal loop space L*(X). Then 9 is isotropic if and only if it satisfies the
following condition:

(¥) Let T be an object of T, paxy and let Ty € Cov(T') be a connected covering space
of T such for which the map Ty — T is relatively monodromic and Aut(Ty/T)
is a cyclic group of order p, for some prime number p. Then Aut(Ty/T) acts
trivially on the homotopy groups m.(%(1v)[1/p]).
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Proof. Let T and Ty € Cov(T) be as in (), and let M denote the cofiber of the map
0: AL, Rz, 9(T) = (o).

Since ¢ is pretempered, the canonical map M — M|[1/p] is an equivalence (Theorem
5.5.1]). We therefore obtain another fiber sequence

Ag)o[l/p]@)Agou/p] — 4(T)[1/p] —» 4(T0)[1/p] — M.

Note that the group Aut(7,/T) acts trivially on the first term (since AZ[1/p] is
a direct factor of AL[1/p]), and that Aut(7,/T) has no nonzero fixed points on
T« (M) (Theorem [5.5.1). It follows that the induced map (¥ (Ty)[1/p]) — (M)
is an epimorphism, whose kernel is the subgroup of 7.(¥(7y)[1/p]) which is fixed
by the action of Aut(7,/T"). Consequently, the group Aut(7p/7T") acts trivially on
(9 (To)[1/p]) if and only if M ~ 0: that is, if and only if € is an equivalence. The
desired result now follows from Remark [6.5.9] O

Corollary 6.5.12. Let A be a colattice, let X be an orbispace, and let Gy be an
oriented P-divisible group over an Ey-ring A. Suppose that A = A, is p-nilpotent,
for some prime number p. Then every p-nilpotent Gg-tempered local system ¥4 €
LocSysg, (L*(X)) is isotropic.

Proof. We verify condition (*) of Proposition . Let T be an object of 7
and let Ty € Cov(T) be a connected covering space of T such for which the map
To — T is relatively monodromic and Aut(7y/T) is a cyclic group of order ¢, for some
prime number ¢. Using the assumption that A = A(,), we deduce that ¢ = p. Our
assumption that ¢ is p-nilpotent then guarantees that 7, (¥4 (1y)[1/p]) vanishes, and
therefore carries a trivial action of Aut(7y/T). O

We can now state the main result of this section:

Theorem 6.5.13. Let A be a colattice, let X be an orbispace, let Go be an oriented
P-divisible group over an E-ring A, and set G = Go@A. Let 9 be a Gg-pretempered
local system on the formal loop space EA(X). Then ¢ is isotropic if and only if it
belongs to the essential image of the functor

®P™ : LocSysg*(X) — LocSys&e (L£4(X))
of Notation [6.4.14.
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Variant 6.5.14. In the situation of Theorem |6.5.13] suppose that the P-divisible
group G is oriented. Then the functor

® : LocSysg (X) — LocSysg, (£ (X))

is a fully faithful embedding, whose essential image consists of the isotropic G-
tempered local systems on £*(X). This follows from Theorem : note that if a
Go-tempered local system ¢ on L(X) is isotropic, then it can be identified with ®(.%)
(Theorem [6.5.13)), where .Z = ®(¥) is G-tempered by virtue of Proposition [6.4.6]

Proof of Theorem[6.5.13 Assume first that we can write ¥4 = ®P*°(F), for some
G-pretempered local system % on X. We wish to show that ¥ is isotropic. Fix
a relatively monodromic morphism g : 7" — T in 7 ax). Then the structural
map f : T — X is represented by a map fy : T x BAy — X which factors as a
composition T x BAg J5 T 5 X for some object T € .7 for which the composition
T x B/A\o — T x B/AXO 5, T has connected homotopy fibers. We wish toA shovi that the
canonical map 6 : AL ® A%, G(T) — 9(T") is an equivalence. Let p : A - Ay denote
the Pontryagin dual of the inclusion map. Using the description of ®P™ supplied by
Example [6.4.12] we see that 6 can be obtained from a map
g . AIC;’OXBAO ®A2XB;\0 LQZ(T X BKO)(O,p) e ﬂ(T’ X BKO)(O,[))
0
by extending scalars along the augmentation map ¢ : Aé’}o — A. It will therefore

suffice to show that @ is an equivalence. This follows from our assumption that .% is
G-pretempered (and Remark [6.4.4)), which allows us to identify both sides with the

tensor product AQ;B do T F (T)4; here a denotes the composite homomorphism
Go

AL Ry m(T x Bho) Y2, /(7).

We now prove the converse. Let ¢ be a Gy-pretempered local system on the formal
loop space £*(X) which is isotropic, in the sense of Definition We wish to show
that the counit map v : P*¢(UP*(¥)) — ¢ is an equivalence. Fix an object 7" in &
and a map of orbispaces ' : T — L'A(X), which we may assume is represented by
fo: T x BJA\O — X for some finite subgroup Ag € A (Remark . Let p: A — /AXO
denote the Pontryagin dual of the inclusion, and set T = L(T" x B//\?))(O,pﬁ so that
the map f’ factors as a composition 77 % T ER LA(X) where f is given by the
restriction of the map L£(f)) : LT x B/A\o) — L(X). Using the descriptions of
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®P® and WP supplied by Remark and Example |6.4.12] we see that the map
orre(wPre(4)) (1) — 4(T1") determined by v can be identified with the composition
A®  si, G(LNT' x Bho)oy) = AG, ®az, 9(T)

Go

2 (T

where v is obtained by applying the functor ¢ to the morphism ¢ : 7" — T in the co-
category .7, o x). Note that the evaluation map ev : LMT"x BAg) 0,0 x BA — T"x BAg
factors as a composition

LMT' x BAo) o) x BA P8 LAT" % BAg)o,) x By % T' x BA,,
so the map f is represented by the composition

T x BAg = LMT' x BAg) o, x BAe 5 T x BR, 1 X.
The composition 1" x B/A\o LN o B/AXO ST % B/AXO is homotopic to the identity
map, and therefore has connected homotopy fibers. It follows that ¢ is relatively
monodromic, so that v is an equivalence by virtue of our assumption that ¥ is
isotropic. O

Corollary 6.5.15. Let A be a colattice, let Gy be an oriented P-divisible group over
an Ex-ring A, and set G = Go @ A. Let f : X —> Y be a map of orbispaces, and
let 4 be a Go-tempered local system on the formal loop space L*(Y). If 4 belongs
to the essential image of the functor ® : LocSysg(Y) < LocSysg, (£*(Y)), then the
pullback L(f)*(4) belongs to the essential image of the functor ® : LocSysg(X) <
LocSysg, (£*(X)).

Proof. Combine Variant [6.5.14] with Remark [6.5.10} O

Corollary 6.5.16. Let p be a prime number, let A ~ (Q,/Z,)" be a p-nilpotent
colattice, let X be an orbispace, let Gg be an oriented P-divisible group over an E-ring
A, and set G = Go @ A. Then every p-nilpotent object of LocSysg, (L™(X)) belongs
to the essential image of the embedding

® : LocSysg (X) — LocSysg, (£*(X)).

Proof. Combine Variant [6.5.14] with Corollary [6.5.12 [
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7 Ambidexterity for Tempered Local Systems

Let G be an oriented P-divisible group over an E -ring A. In we associated to
each map of orbispaces f : X — Y a pullback functor f* : LocSysg(Y) — LocSysg(X)
(Remark [5.2.9). If .7 is a G-local system on Y, then the pullback f*.Z is given
concretely by the formula

(f* FNT LX) = F(T L5 v);

in particular, it preserves small limits and colimits (since these are computed levelwise).
It follows from the adjoint functor theorem (Corollary HT'T.5.5.2.9) that the pullback
functor f* admits both left and right adjoints.

Notation 7.0.1 (Direct Image Functors). Let G be an oriented P-divisible group
over an E-ring and let f : X — Y be a map of orbispaces. We let f, : LocSysg(X) —
LocSysg(Y) denote a left adjoint to the pullback functor f* : LocSysg(Y) —
LocSysg (X), and we let f, : LocSysg(X) — LocSysg(Y) denote a right adjoint
to the pullback functor f* : LocSysg(Y) — LocSysg(X).

Our goal in this section is to prove Theorem [1.1.21] which asserts that if f : X — Y
is a map of m-finite spaces, then there is a canonical equivalence Nmy : fi ~ f, which
we call the norm map of f (see Theorem for a more precise statement). In
[6], we proved an analogous assertion for (ordinary) local systems with values in the
co-category Spg(,y of K (n)-local spectra. Let us begin by recalling some of the main
steps in the argument given in [6]:

(a) Let f: X — Y be a map of n-finite spaces, and let fi, fs : LocSysgy,c . (X) —
LocSysSpK(n) (Y) denote the left and right adjoint of the pullback functor f* :
LocSyssp, ., Y) — LocSyssp,. ., (X). Then there exists an integer m » 0 for
which the homotopy fibers of f are m-truncated. The norm equivalence of
[6] was constructed by a recursive procedure: more precisely, the norm map
Nmy : fi — f, was constructed using the inverse norm map ngl D0 — O
associated to the relative diagonal ¢ : X — X xy X (which we can assume to
have been previously constructed, since the homotopy fibers of § are (m — 1)-
truncated). The difficulty is then to show that the map Nm;/ is invertible.

(b) Let p denote the residue characteristic of the Morava K-theory K(n). Then the
c0-category Spg () 1s p-local, in the sense that the multiplication £ : M — M is
an equivalence for every K (n)-local spectrum and every prime number ¢ # p.
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Combining this observation with formal arguments, we can reduce to the case
where the spaces X and Y are connected and p-finite.

Any map of connected p-finite spaces f : X — Y can be factored as a composition
X = X(0) > X(1) =+ - X(1) = Y,

where each of the maps X (i) — X (i + 1) is equivalent to a principal fibration
whose fiber is an Eilenberg-MacLane space K (F,,d). We can therefore assume
without loss of generality that the map f fits into a fiber sequeence

XLy KF,d+1).

Using the fact that the norm transformation Nmy : fi — f. can be computed
fiberwise, one can reduce to the case where Y = = consists of a single point, so
that X = K(F,,d) is an Eilenberg-MacLane space.

Let E e LocSysg,, (X) be the constant local system E associated to a Lubin-
Tate spectrum E. In this case, the norm map Nmy : fi(#) — f.(%) can be
identified with a bilinear form AForm(f) : E[X]|®g F[X] — FE on the E-module
spectrum E[X]| = Lg @) (E®s X7 (X)). Using formal arguments, one can reduce
to proving that this bilinear form is nondegenerate (that is, it exhibits [ X] as a
self-dual object of the co-category of K (n)-local E-modules).

In the case where X = K(F,, d), the homotopy groups of E[X] can be computed
explicitly (by a mild extension fo the work of Ravenel-Wilson on the K(n)-
homology of Eilenberg-MacLane spaces). In particular, one can show that E[X]
is a projective E-module of finite rank, and the nondegeneracy of the bilinear
form b can be verified by an algebraic calculation.

Our proof of Theorem [1.1.21| will loosely follow the same approach. We begin in
by giving a concrete description of the direct image functor

f« : LocSysg (X) — LocSysg(Y)

associated to a map of orbispaces f : X — Y. Using this description, we show that
both the functors f, and f. of Notation satisfy a Beck-Chevalley condition for
pullback diagrams of orbispaces (Theorem and Corollary [7.1.7). In §7.2] we
carry out an analogue of (a) by using the Beck-Chevalley construction to produce a
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norm map Nmy : fi — f,, under the assumption that we have already constructed
an invertible norm map Nm; : d; ~ d, for the relative diagonal § : X — X xy X (see
Notation .

Recall that, for any orbispace X, the co-category LocSysg(X) can be equipped with
a symmetric monoidal structure given by the tempered tensor product of studied in
In §7.3] we combine the results of §6] to show that the functor f; : LocSysg (X) —
LocSysg(Y) always satisfies a projection formula with respect to the tempered tensor
product (Theorem . Using this, we carry out an analogue of step (e): assuming
that the norm transformation Nmy : fi — f, has been constructed, we show that it
is an equivalence if and only if a certain map AForm(f): [X/Y]®[X/Y] — Ay is a
duality pairing in the co-category LocSysg(Y) (Proposition [7.3.15).

Choose a prime number p. In , we will prove that the norm map Nmy : fi — f,
is an equivalence in the special case where X = X(7) and Y = Y7 are representable
by p-finite spaces X and Y, respectively (Theorem . In this case, we can
proceed as in (¢) to reduce to the case where the map f fits into a fiber sequence
XLy K(F,,d + 1). The essential case is where Y = = is a single point, so
that X = K(F,,d) is an Eilenberg-MacLane space. In this case, the calculations of
show that the tempered function spectrum Ag is a projective A-module of finite
rank, which can be described explicitly in terms of the arithmetic of the p-divisible
group G, (Theorem [£.4.16). The map AForm(f) : [X/Y]® [X /Y] — Ay can then
be identified with a bilinear form on the A-linear dual (Ag&)Y, whose nondegeneracy
can be verified by an explicit calculation as in (f); see Proposition [7.5.2] Beware
that the analogue of step (d) is somewhat nontrivial in our case: a tempered local
system .% € LocSysg(Y) is generally not determined by its restriction to the points of
Y (the forgetful functor LocSysg(Y) — LocSys,(Y') of Variant is usually not
conservative). Consequently, the reduction to the essential case Y = = will require
considerably more effort than the analogous reduction in [6].

In @, we show that the norm map Nm; : fi — f, is an equivalence for a general
map of 7-finite spaces f : X — Y. In the special case where G = Gy, is a p-divisible
group for some fixed prime number p, this is a straightforward consequence of the
analogous assertion for p-finite spaces. It is possible to reduce to the case G = G;,) by
combining the categorified character theory of with descent arguments (Proposition
6.2.6). However, we will adopt a different approach, which is instead based on
tempered versions of the celebrated induction theorems of Artin and Brauer. In §7.4]
we associate to a transfer map trx,y : AG(X) — A& (Y) to each map f: X — Y of
m-finite spaces. In the special case where A = KU is the complex K-theory spectrum,
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G = pupx is the multiplicative P-divisible group, and f : BH — BG is the covering
map associated to an inclusion of finite groups H < G, the map trx, recovers
the induction homomorphism Ind$ : Rep(H) — Rep(G) of representation theory
(Proposition [7.6.7). The classical Artin (Brauer) induction theorem asserts that
Rep(G) is generated rationally (integrally) by elements of the form Ind$ (), where H
is a cyclic (elementary) subgroup of G. In we prove analogues of both of these
theorems for the tempered cohomology theory of 7-finite spaces (Theorems and
7.6.5)), which we apply in to reduce the study of the norm map Nmy : fi — f, to
the case where f is a map between nilpotent m-finite spaces (and therefore factors as
a product of maps between p-finite spaces, for various primes p).

We conclude in and by describing some applications to the theory of
tempered local systems on m-finite spaces:

e Let X be a 7-finite space. Then the co-category LocSysg(X) is compactly
generated (Corollary [5.3.3]). Moreover, an object % € LocSysg(X) is compact
if and only if it is dualizable (Proposition [7.8.8)).

e Let f: X — Y be a map of w-finite spaces. Then the functors f; ~ f, and f*
carry compact objects to compact objects (Proposition [7.8.5)).

e Let X be a m-finite space. Then LocSysg(X) is proper when viewed as an A-
linear co-category. That is, for every pair of compact objects %, ¥ € LocSysg(X),
the mapping spectrum Map(.%#,¥) is a perfect A-module (the oo-category

LocSysg (X) is generally not smooth, but satisfies a weaker “p-adic smoothness”
property for each prime number p: see Warning [7.9.12)).

e Let X be a w-finite space and let .# be a G-tempered local system on X. If .F
is dualizable, then .% (T) is a perfect A-module for each T" € J)x (Proposition
7.9.1). The converse holds if .# is p-nilpotent, for any prime number p (Theorem

7.9.2).
e Let X and Y be 7w-finite spaces. Then external tensor product
: LocSysg (X) x LocSysg(Y) — LocSysg(X x Y)
induces fully faithful embedding of co-categories
A LocSysg (X) ®4 LocSysg (Y) < LocSysg(X x Y)

(Corollary [7.8.12)). If G is a p-divisible group, then the essential image of A
includes all p-nilpotent objects of LocSysg (X x Y) (Proposition [7.8.13]).
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Warning 7.0.2. The exposition in this section has been arranged in a somewhat
circular fashion:

e In §7.2] we define the notion of a vg-ambidextrous morphism of orbispaces
f: X =Y (Notation [7.2.3)) and state (but do not yet prove) that every truncated
relatively m-finite morphism f : X — Y is vg-ambidextrous (Theorem [7.2.10)).

e In §7.4] we associate a transfer map trxyy : Ag&(X) — A&(Y) to each relatively
m-finite morphism f : X — Y. The definition of this transfer map trx,y depends

on Theorem [7.2.10]

e In we give a proof of Theorem [7.2.10] which exploits the existence of the
transfer maps trx,y and their basic properties (Theorem [7.2.10| also depends on
Theorem [7.5.1) which we will prove using transfer maps).

However, the circularity is only apparent: to prove Theorem for an n-truncated
morphism f : X — Y, we will only make use of transfer maps trx,y» associated to
(n — 1)-truncated morphisms f’ : X’ — Y’ which can be constructed assuming that
Theorem holds for (n — 1)-truncated morphisms of orbispaces.

7.1 Direct Images of Tempered Local Systems

Let G be an oriented P-divisible group over an E,-ring A. Our goal in this
section is to give an explicit description of the direct image functor f, : LocSysg(X) —
LocSysg(Y) associated to a map of orbispaces f: X — Y.

Construction 7.1.1 (The Direct Image Functor). Let f : X — Y be a map of
orbispaces, so that composition with f determines a functor of co-categories (of) :
Iix — Tpv. Let G be a preoriented P-divisible group over an E..-ring A and let .% be
an Ay-module object of Fun(Z’, Sp) and let g : Mod(Sp) — CAlg be the fibration
of Construction , so that we can identify 7 with a functor 73’ — Mod(Sp)
such that go .# = Ayx. We let f, .# denote a ¢-right Kan extension of .# along the
functor (of) : Ijx — Ty, which we view as an Ay-module object of the oo-category
Fun( /f(p, Sp). We refer to f. % as the direct image of F along f. Concretely, it is
given by the formula
(fZ)T) = lim F(T).
Teg/oTprx

Note that the construction .7 — f, % determines a functor f, : Mody, — Mody,,

which is right adjoint to the restriction functor f*: Mods, — Mod,.
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Proposition 7.1.2. Let G be a preoriented P-divisible group over an Ey-ring and
let f: X —Y be a map of orbispaces. Then:

(1) If 7 is a G-pretempered local system on X, then the direct image f. F is a
G-pretempered local system on Y.

(2) If F is a G-tempered local system on X, then the direct image fi F is a G-
tempered local system on Y.

Notation 7.1.3. Let G be an oriented P-divisible group over an E -ring A and let
f : X =Y be a map of orbispaces. By virtue of Proposition the direct image
functor f, of Construction restricts to functors

LocSysg (X) — LocSysg (Y) LocSysg (X) — LocSysg (Y).

We will abuse notation by denoting both of these functors by f.. Note that they are
right adjoint to the pullback functors

f* : LocSysg  (Y) — LocSysg© (X) f* : LocSysg (Y) — LocSysg (X).

of Remarks [5.1.6] and [5.2.9

Example 7.1.4 (The Global Sections Functor). Let G be an preoriented P-divisible
group over an E,-ring A and let .% be a G-tempered local system on an orbispace X.
We let I'(X; .#) denote the image of .% under the functor

LocSysg (X) &5 LocSysg () =~ Mod 4,

where ¢ : X — = denotes the projection map from X to a point. We will refer to the
construction .% — ['(X;.%) as the tempered global sections functor. Concretely, it is
given by the formula

L(X;.7) = lim F(T).

Te ?&p

In the special case where X = X(=) is the orbispace represented by a space X, we
will denote the A-module I'(X; . %) by I'(X; .#).

Example 7.1.5 (Tempered Cohomology). Let G be an oriented P-divisible group
over an E.-ring A. For every orbispace X, the tempered function spectrum A% can be
identified with T'(X; Ax), where Ay is the trivial G-tempered local system of Notation
0. 1. 2L
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Proof of Proposition[7.1.9. Suppose first that .# is a G-pretempered local system on
X; we will show that the direct image f,.# is a G-pretempered local system on Y.
Fix a morphism 7" — T in .7)y with connected homotopy fibers; we wish to show that
the canonical map

0 : Ag ®ar, (f« Z)T) — (f« Z)(T")

is an equivalence. Unwinding the definitions, we see that this map factors as a
composition
Aoy (lm FT) > lim (45 @y F(1)
Te‘y/g“prX TE‘ZE?XYX
— Lin y(T/ X7 T)

= _ —op
Te‘y/TxYx

lim  Z(T)

= —op
T Et‘y/T’xYx

Te

where the first map is an equivalence because A(T;' is a projective A&-module of
finite rank, the second is an equivalence by virtue of our assumption that % is
G-pretempered, and the third map is supplied by the left cofinality of the functor

p . @TXYX i <7./T’XYX T > T/ XTT

(which follows from the observation that p is right adjoint to the forgetful functor).
This completes the proof of (1).

Now suppose that % is G-tempered; we wish to show that the direct image
f+«F is also G-tempered. Choose an object T € .7)y and a connected covering space
Ty € Cov(T); we wish to show that the fiber of the canonical map « : (fy Z#)(T) —
(fo F)(Tp)rAu8T/T) i [(Ty/T)-local. Let C denote the co-category Fjrxyx, and let
D < C denote the full subcategory spanned by those objects T for which the map
T — T factors through Ty. Unwinding the definitions, we see that o can be identified
with the restriction map

lim #(T) - lim #(T),

TeC°P TeDOP

and can therefore be written as a limit of maps

az: Z(T)— lim F(T).

T'ep°P
/T
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For each T € C, let Ty denote any connected component of the fiber product T' x ¢ Tj.
Then a7 coincides with the canonical map .7 (T) — .7 (T,)""“To/T) Note that the
ideal I(T/T) = AL(T) is generated by the image of the ideal I(Ty/T) < AL(T).Our
assumption that .# is G-tempered guarantees that the fiber fib(az) is 1(T/T)-local
when viewed as a module over AL, hence also I(Ty/T)-local when viewed as a module
over AL. Since the collection of I(Ty/T)-local AL-modules is closed under limits, it
follows that fib(«) is also I(Ty/T)-local. O

Theorem 7.1.6 (The Beck-Chevalley Condition). Let G be an oriented P-divisible

group and let o :

x Ly

oo
XL .ov

be a pullback diagram of orbispaces. Then the associated diagram of pullback functors

LocSysg/(Y) S LocSysg (X)

LocSysg (Y') A LocSysg (X))

is right adjointable. In other words, the canonical equivalence f™g* ~ ¢ f* induces a
natural transformation g* f, — flLg"™* which is also an equivalence.

Proof. Let .Z be a G-tempered local system on X; we wish to show that the Beck-
Chevalley map ¢* f. % — f.g"* F is an equivalence of G-tempered local systems on
Y’. This follows from the description of the direct image supplied by Construction
when evaluated on an object T' € )y, both sides can be identified with the
limit LiLnTﬁ (1'), indexed by the opposite of the co-category Jjrx,,x' =~ Trxyx. O

Passing to left adjoints (and exchanging the roles of X and Y’), we obtain the
following formal consequence of Theorem

Corollary 7.1.7. Let G be an oriented P-divisible group and let o :

x Ly

L

X——Y
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be a pullback diagram of orbispaces. Then the associated diagram of pullback functors

LocSysg/(Y) S LocSysg (X)

LocSysg (Y') AN LocSysg (X)

is left adjointable: that is, the canonical equivalence g™ f* ~ f™*qg* induces a natural
transformation f{g"™ — g* fi which is also an equivalence.

7.2 The Tempered Ambidexterity Theorem

Let X be an co-category which admits pullbacks and let v : C — X be a functor
of co-categories. Recall that v is said to be a Beck-Chevalley fibration if the following
conditions are satisfied (see Definition Ambi.4.1.3):

(1) The map v is both a Cartesian fibration and a coCartesian fibration. In
particular, every object X € X determines an oo-category Cx = C x x{X}, and
every morphism f: X — Y in C determines an adjunction

i
CXT‘T>CY‘

(2) For every pullback square
x Loy
b
x-—1oy

! %

in the oo-category X, the Beck-Chevalley transformation f/¢”* — g¢*fi is an
equivalence of functors from Cy- to Cx.

Construction 7.2.1. Let G be an oriented P-divisible group over an E,-ring A.
Then the construction X — LocSysg(X) determines a functor of co-categories

LocSysg(e) : OSP — Catop.
We let vg : TotSysg — OS be a Cartesian fibration which is classified by the functor

LocSysg. The ao-category TotSysg can be described more informally as follows:
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e The objects of LocSysg are pairs (X,.#), where X is an orbispace and .Z is a
G-tempered local system on X.

e A morphism from (X,.%) to (Y,¥) in LocSysg is given by a map of orbispaces
f: X =Y together with a map .% — f*% of G-tempered local systems on X
(or equivalently a map fi.# — ¢ of G-tempered local systems on Y).

Corollary can now be restated as follows:

Proposition 7.2.2. Let G be an oriented P-divisible group over an Ey-ring A. Then
the map vg : LocSysg — OS of Construction is a Beck-Chevalley fibration.

We now apply the general formalism of §Ambi.4.1 to the Beck-Chevalley fibration
va : LocSysg — OS. For the reader’s convenience, we include a brief summary.

Notation 7.2.3. Let G be an oriented P-divisible group over an E -ring A. For
every map of orbispaces f : X — Y, we let

¢f : f! o f* - idLocSysG(Y) l/Jf : idLocSysG(X) - f* © f!

denote a compatible counit and unit for the adjunction between the functors f; :
LocSysg (X) — LocSysg(Y).

Applying Construction Ambi.4.1.8 to the Beck-Chevalley fibration vg : LocSysg —
OS, we obtain the following data:

e A collection of orbispace maps f : X — Y which we refer to as weakly vg-
ambidextrous maps, together with natural transformations vy : f*o fi —
idrocsyse (X) when f is weakly v-ambidextrous.

e A smaller collection of orbispace maps f : X — Y which we refer to as vg-
ambidextrous maps, for which vy is the counit of an adjunction (which exhibits f,
as the right adjoint of f*); in this case, we let iy : idpocsyse(v) = fio f* denote
a compatible unit for the adjunction.

This data is uniquely determined (up to homotopy) by the following requirements:

e Every equivalence of orbispaces f : X — Y is vg-ambidextrous. Moreover, the
morphisms

Ky - idLocSysG(Y) - f! © f* Vi f* © f! - idLocSysG(X)

are homotopy inverses to ¢ and vf, respectively.
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e A map of orbispaces f : X — Y is weakly vg-ambidextrous if and only if the
relative diagonal § : X — X xy X is vg-ambidextrous. In this case, the natural
transformation vy is given by the composition

* * Hs * % :
f f! = Ty 701010 T = ldLOCSySG(X)'

Here the first map is the inverse of the Beck-Chevalley transformation associated
to the pullback diagram
X xy X —=X

e A map of orbispaces f : X — Y is vg-ambidextrous if and only if, for every
pullback diagram
X ——=X
oo

Y —Y,

the map [’ is weakly vg-ambidextrous and the natural transformation vy :
I o fi = idpocsysg (X') is the counit of an adjunction.

e Every vg-ambidextrous map f : X — Y is n-truncated for some n » 0 (so
that the preceding properties supply a recursive algorithm for “computing” the
natural transformations py and vy).

If a map of orbispaces f : X — Y is weakly v-ambidextrous, then the natural
transformation vy : f* o fi — idpecsysg (X) can be identified with a natural transfor-
mation Nmy : fy — f, between the functors fi, f, : LocSysg(X) — LocSysg(Y). We
will refer to Nmy as the norm map associated to f. Note that vy is the counit of an
adjunction if and only if the form map Nmy : fi(#) — f.(.#) is an equivalence, for
every G-tempered local system % on X.

We now describe a source of examples of vg-ambidextrous morphisms of orbispaces.

Definition 7.2.4. Let f : X — Y be a map of orbispaces. We will say that f is
relatively m-finite if, for every object T' € J)y, the orbispace T) xy X is (representable
by) a w-finite space.

Example 7.2.5. Every equivalence of orbispaces is relatively w-finite.
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Remark 7.2.6. Suppose we are given a pullback diagram of orbispaces

X ——=X

Tl

Y —Y.
If f is relatively m-finite, then so is f.

Proposition 7.2.7. Let f : X — Y be a map of orbispaces, and suppose that Y = Y ()
is representable by a m-finite space Y. Then f is relatively w-finite if and only if X is
representable by a m-finite space X .

Proof. Suppose first that X is representable by a 7-finite space X. Then, for any
object T € )y, the fiber product of orbispaces T) xy X is representable by the
m-finite space T' xy X, so f is relatively w-finite.

For the converse, suppose that f is relatively m-finite and let X = |X]| be the
underlying space of X (Notation [3.1.5)). For each point y € Y, the fiber X xy {y}
underlies the orbispace X xy {y} and is therefore w-finite by virtue of our assumption
on f. Since Y is m-finite, it follows that X is w-finite. We will complete the proof by
showing that the canonical map X — X () is an equivalence of orbispaces. Let T be
an object of .7; we wish to show that upper horizontal map in the diagram o :

XT — > XT

L

Yl — s y7T

is a homotopy equivalence. Since the lower horizontal map is a homotopy equivalence
by assumption, it will suffice to show that ¢ is a pullback square. In other words,
it will suffice to show that for every map of orbispaces n : T(-) — Y, the diagram o
induces a homotopy equivalence X” xyr {n} — X7 xyr {n}. To prove this, we can
replace f by the projection map X xy T(7) — T() in which case the representability
of X is automatic from our assumption that f is relatively w-finite. O]

Corollary 7.2.8. Let f: X =Y and g : Y — Z be maps of orbispaces. If f and g are
relatively w-finite, then (go f) : X — Z is relatively 7-finite.

Proof. Fix an object T' € .7)z. We wish to show that the fiber product TG) x7 X is
representable by a m-finite space. This follows by applying Proposition to the
map

fr: T x; X —TE) x5 Y;
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note that fr is relatively w-finite (by virtue of our assumption on f and Remark
7.2.6) and the codomain of fr is representable by a m-finite space (by virtue of our
assumption on g). ]

Remark 7.2.9. Let f : X — Y be a relatively 7-finite map of orbispaces and let
n = —2 be an integer. Then the following conditions are equivalent:

(a) The map f is n-truncated (as a morphism in the co-category OS). In other
words, for every orbispace Z, the induced map Mapyg(Z, X) — Mappng(Z,Y) has
n-truncated homotopy fibers.

(b) For each object T' € )y, the fiber product T) xy X is representable by a
m-finite space Z for which the projection map Z — T has n-truncated homotopy
fibers.

(¢) For each point y € |Y|, the fiber X, = {y} xyX is (repesentable by) an n-truncated
m-finite space.

In particular, if the underlying space |Y| is connected, then f is n-truncated for some
n >» 0.

We can now state the main result of this paper; the proof will be given in

Theorem 7.2.10 (Tempered Ambidexterity). Let G be an oriented P-divisible group
over an E,-ring A and let f : X — Y be a map of orbispaces which is relatively mw-finite
and n-truncated for some n > 0. Then f is vg-ambidextrous.

Remark 7.2.11. In the statement of Theorem [7.2.10] the requirement that f is
relatively n-truncated is essentially a technicality. Any relatively m-finite map of
orbispaces f : X — Y can be realized as a coproduct of relatively m-finite maps
{fi : Xi = Yi}ier, where the underlying spaces |Y;| are connected. Then each f; is
relatively n-truncated for some integer n (which might depend on i), so Theorem
supplies norm equivalences Nmy, : fii >~ f;.. Taking the product of these equivalences
as 1 varies, we obtain an equivalence Nmy : fi ~ f, of functors fi, f. : LocSysg(X) —
LocSysg(Y).

7.3 Projection Formulas

Let G be an oriented P-divisible group over an E,-ring A. For every map of
orbispaces f : X — Y, the pullback functor f* : LocSysg(Y) — LocSysg(X) is
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symmetric monoidal with respect to the tempered tensor product (Proposition [5.8.13]).
In particular, for every pair of objects .# € LocSysg(Y), ¢ € LocSysg(X), we obtain
a comparison map

HMfFFRY) - AfFFRfF NHY)
~ Af(FRNY)
- y®f'g7

which we will denote by 84 ¢ and refer to as the projection morphism from fi(f*.% ®%)
to ¥ ®f1%¢. The main result of this section can be stated as follows:

Theorem 7.3.1 (Projection Formula for f). Let G be an oriented P-divisible group
over an Eo-ring A and let f: X — Y be a morphism of orbispaces. Then, for every
pair of objects F € LocSysg(Y) and & € LocSysg(X), the projection morphism

Bzyg: H(f* FRY) > FRHY

is an equivalence in LocSysg(Y).

We will give the proof of Theorem at the end of this section. First, let us
describe some of its consequences.

Construction 7.3.2. Let G be an oriented P-divisible group over an E-ring A and
let f: X — Y be a map of orbispaces. We let [X/Y] denote the G-tempered local
system fi(Ay) € LocSysg(Y). In the special case where X = X(7) and Y = Y are
representable by spaces X and Y, we will denote [X/Y] simply by [X/Y].

For any G-tempered local system .# on Y, Theorem supplies a canonical
equivalence

(fro fIUF) = ([ (F) ® Ax) — F ®fi(Ax) = F Q[X/Y].

Remark 7.3.3 (Compatibility with Pullback). Every commutative diagram of orbis-
paces o :

X~ %

I
Y Iy

determines a comparison map

[X'/Y'] = g™ (Ax) = 9" fi(Ax) = g*[X/Y].
This map is an equivalence when o is a pullback square (Corollary [7.1.7)).
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Remark 7.3.4. Let G be an oriented P-divisible group over an E,-ring A. For every
orbispace X, we will abuse notation by identifying [X/x] with its image under the
equivalence of oo-categories LocSyse (#) >~ Mod 4. Note that if B is an E-algebra over
A, then we have a canonical equivalence Map , ([X/#], B) ~ Bg. In particular, we can
view [X/x] as an A-linear predual of the tempered function spectrum Ag. Concretely,
one can show that it is given by the formula

[X/+] = lim (Ag)",

Te ZX

where (AL)Y denotes the A-linear dual of the tempered function spectrum AL.

In the special case where X = K (F,, m) is (representable by) an Eilenberg-MacLane
space, Theorem guarantees that the functor B — Map  ([X/+], B) ~ Bg
commutes with filtered colimits. Restricting our attention to A-algebras of the form
B = A® M, we conclude that the functor M — Map, dA([X/ x|, M) also commutes
with filtered colimits: that is, [X/«] is perfect as an A-module spectrum. In this case,

the double duality map
[X/5] = [X/]"" ~ (Ag)”
is an equivalence: that is, [X/x] can be identified with the A-linear dual of the tempered

function spectrum Ag. In particular, the homotopy groups m.[X/#]| can be identified
with the G-tempered homology groups AS(X) of Notation [4.4.13]

For any map of orbispaces f : X — Y, the pullback functor f* : LocSysg(Y) —
LocSysg (X) is symmetric monoidal (with respect to the tempered tensor products
on both sides) and can therefore be regarded as a LocSysg(Y)-linear functor (where
LocSysg(Y) acts on LocSysg (X) via the functor f*). It follows from Theorem|[7.3.1]that
the left adjoint fi : LocSysg(X) — LocSysg(Y) inherits the structure of LocSysg(Y)-
linear functor, Combining Theorem with Remark HA.7.3.2.9, we obtain the
following;:

Corollary 7.3.5. Let G be an oriented P-divisible group over an Ey-ring A and let
f: X =Y be a map of orbispaces. Then the functor fi : LocSysg(X) — LocSysg (Y)
can be regarded as a LocSysg(Y)-linear functor, and the unit and counit maps

¢f : f'f* - idLocSysG(Y) %‘ : idLocSysG(X) - f*f'

can be regarded as LocSysg (Y)-linear natural transformations.
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Remark 7.3.6. In the situation of Corollary [7.3.5] the functor fif* is a LocSysg(Y)-
linear object of LocSysg(Y), and is therefore given by tensor product with the object

[X/Y] = fif*(Ay) introduced in Construction |7.3.2] The LocSysg(Y)-linear natural
transformation ¢ : fif* — id can then be identified with a morphism € : [X/Y] — Ay,
which is given by evaluating ¢; on the G-tempered local system Ay .

Combining Corollary with a simple inductive argument, we obtain the
following:

Corollary 7.3.7. Let G be an oriented P-divisible group over an E,-ring A. Then:

(a) If f: X =Y is a weakly vg-ambidextrous map of orbispaces, then vy : f*o fi —
idLocSysG(X) has the structure of a LocSysg(Y)-linear natural transformation.

(b) If [+ X = Y is a v-ambidextrous map of orbispaces, then jiy : idiocsysg(v) —
fio f* has the structure of a LocSysg(Y)-linear natural transformation.

Warning 7.3.8. The statement of Corollary is somewhat imprecise: what
we really mean (and will make use henceforth) is that the natural transformations
vy and gy (when defined) have canonical promotions to LocSysg (Y)-linear natural
transformations, which can be obtained by a suitable refinement of the ambidexterity

constructions of §7.2

Variant 7.3.9. Let f : X — Y be a map of orbispaces. Then we can regard the pullback
f* : LocSysg (Y) — LocSysg (X) as a symmetric monoidal functor from LocSysg(Y)
to LocSysg (X). Then, for every pair of objects .# € LocSysg(Y), & € LocSysg(X),
we obtain a canonical map

FRf(Y9) — [I(Ff(Y))
= f*(f*

Theorem 7.3.10 (Projection Formula for f,). Let G be an oriented P-divisible group
over an Ex-ring A and let f : X — Y be a morphism of orbispaces which is vg-
ambidextrous. Then, for every pair of objects F € LocSysg(X), ¢4 € LocSysg(Y),
the preceding construction induces an equivalence F Q@f. Y — f.(f* F R®Y) of G-
tempered local systems on Y.
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Proof. Theorem is equivalent to the assertion that f* admits a LocSysg(Y)-
linear right adjoint: that is, that we can find a LocSysg(Y)-linear functor g :
LocSysg(X) — LocSysg(Y) and together with compatible LocSysg(Y)-linear nat-
ural transformations

u: id-LocSysG(Y) —>go f* v f* ©cg— idLOcSySG(X) .

If f is vg-ambidextrous, this follows from Corollary (we can take g = fi, u = iy,
and v = vy). O

Remark 7.3.11. It follows from Theorem[7.3.10that if f : X — Y is vg-ambidextrous,
then f, : LocSysg(X) — LocSysg(Y) has the structure of a LocSysg (Y)-linear functor.
The proof gives a more precise description of this struture: it is given by transporting
the LocSysg (Y)-linearity of the functor f; (supplied by Theorem along the norm

equivalence Nmy : fi = f, supplied by our assumption that f is vg-ambidextrous.

Assuming Theorem [7.2.10] we can now deduce Theorem [4.7.1] which was stated
without proof in §4.7

Corollary 7.3.12. Let G be an oriented P-divisible group over an Ey-ring A and let
X be a w-finite space. Then, for every map of Ey-rings A — B, the canonical map
A& — BE extends to an equivalence p : B ®4 Ay — BE of Ey-algebras over B.

Proof. 1t follows from Theorem [7.2.10] that the projection map f : X — = is vg-
ambidextrous. The desired result now follows by applying the projection formula of
Theorem [7.3.10]in the special case where .% = B and 4 = Ay. H

Construction 7.3.13 (The Ambidexterity Form). Let G be an oriented P-divisible
group over an E,-ring A, and let f : X — Y be a weakly vg-ambidextrous map of
orbispaces. Then v induces a LocSysg (Y)-linear natural transformation

(o f5Yo(fiof*) = fio(f*o fi)of* D fioidisesyse) ofs = fio f*,

which we can identify with a map m : [X/Y]® [X/Y] — [X/Y] of G-tempered local
systems on Y. We let AForm( f) denote the composition

[X/YT@ [X/Y] = [X/Y] = Ay

We will refer to AForm(f) as the ambidexterity form of f.
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Remark 7.3.14. Let G be an oriented P-divisible group over an E.-ring A, and
suppose we are given a pullback diagram of orbispaces

X' —=X

T

Y =Y
where f and f’ are weakly vg-ambidextrous. Then the ambidexterity form AForm(f’) :
[X/Y'N® [X/Y'] - Ay can be identified with the image under the pullback ¢g* of the
ambidexterity form AForm(f) : [X/Y] ® [X/Y] — Ay. In particular, if AForm(f) is a
duality datum (in the symmetric monoidal co-category LocSysg(Y)), then AForm(f’)

is a duality datum (in the symmetric monoidal oo-category LocSysg(Y')).

Proposition 7.3.15. Let G be an oriented P-divisible group over an E-ring A and
let f: X =Y be a map of orbispaces which is weakly vg-ambidextrous. The following
conditions are equivalent:

(a) The map vy : f*o fi —id of Notation is the counit of an adjunction.

(b) For every object .# € LocSysg(X), the norm map Nmy : fi(F) — f.(F) of
Notation [7.2.5 is an equivalence.

(¢) The ambidexterity form AForm(f) : [X/Y]®[X/Y] — Ay of Construction
is a duality datum: that is, it exhibits [X/Y] as a self-dual object of the co-category

LocSysg(Y)).
(d) The map f is vg-ambidextrous.

Proof. The equivalence (a) < (b) is a tautology, and the equivalence (a) < (c¢) follows
from Proposition Ambi.5.1.8. The implication (d) = (a) is clear. The converse follows
from the observation that if the morphism f : X — Y satisfies condition (c), then any

pullback of f also satisfies condition (¢) (Remark [7.3.14)). O

Corollary 7.3.16. Let G be an oriented P-divisible group over an Ey-ring A and
let f:X —Y be a map of orbispaces which is n-truncated for some n » 0. Then f is
vg-ambidestrous if and only, for every T € J)y, the pullback diagram of orbispaces

XT*>X

lfT if
TG =Y

exhibits fr as a vg-ambidextrous morphism of orbispaces.
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Proof. The “only if” direction is clear, since the collection of vg-ambidextrous mor-
phisms is closed under pullback. To prove the reverse direction, we proceed by
induction on n. Using the inductive hypothesis, we can assume without loss of gener-
ality that f is weakly vg-ambidextrous. In this case, the desired result follows from

Proposition [7.3.15 and Remark [7.3.14| (since LocSysg(Y) can be identified with the
limit of the diagram of symmetric monoidal co-categories {LocSysg(T)}7e z%p). O

Proof of Theorem[7.3.1]. Since a morphism of G-tempered local systems is an equiv-
alence if and only if it is an equivalence after localization at every prime, we may
assume without loss of generality that the E,-ring A is p-local, for some prime number
p. We will prove the following assertion:

(#,) For every oriented P-divisible group over a p-local E,-ring A, every map of
orbispaces f : X — Y, and every pair of objects # € LocSysg(Y) and ¥ €
LocSysg (X), the projection morphism

Brg: H(f* FRY) > FNYG
becomes an equivalence after E(n)-localization.

Note that Theorem follows from (*,) for n » 0 (it suffices to take n to be any
upper bound for the height of the p-divisible group G,). We will prove (x,) by
induction on n. For the remainder of the proof, we regard n as fixed and assume that,
if n > 0, then (*,-1) holds. Note that, to prove that the projection map Sz« is an
equivalence, it will suffice to show that it becomes an equivalence after extending
scalars to the localization Ay, for every maximal ideal m < 7y(A). We may therefore
assume that A is local. It follows that, for every prime number ¢, the (-divisible
group Gy, has some fixed height h,. By virtue of (,_1), it will suffice to show that
Lk (B#y) is an equivalence in the oo-category LocSysg(") (Y). To prove this, we can
extend scalars to the K'(n)-localization Lk ,)(A), and thereby reduce to the case where
A is K (n)-local (beware that this replacement will generally injure our hypothesis that
A is local). In this case, our hypothesis that G is oriented guarantees the existence of
a connected-étale sequence of p-divisible groups

0->GES5 Gy — G —0,

where G denotes the Quillen p-divisible group of A and G’ is an étale p-divisible

group of height h, —n (Proposition 2.5.6). Set A = (Q,/Z,)"» " ® D,,,(Q,/ Zo)",
and let B = Split, (e) be the splitting algebra of the monomorphism e (Definition
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[2.7.12). Then B is faithfully flat over A (Proposition [2.7.15). It will therefore suffice to
show that 82« becomes an equivalence after extending scalars from A to B. Replacing
A by B (which might injure our hypothesis that A is K(n)-local), we are reduced
to the problem of showing that 87« is an equivalence in the special case where G
splits as a direct sum Gg @ A, where Gy is a p-divisible group of height n. Replacing
G by Gy (and f by the morphism £*(f) : £L*(X) — £*(X)), we can reduce to the
case where G is a p-divisible group of height n. Invoking our inductive hypothesis
again, we are reduced to showing that [ﬂ(ﬁ 7 ) is an equivalence in the co-category

LocSysg(n) (Y). In this case, Theorem supplies equivalences

LocSyse ™ (X) ~ Fun(|X|, Mod5™)  LocSys&™(Y) ~ Fun(]Y|, Mod ;™).

Under these equivalences, the pullback functor f* can be identified with the func-
tor U : Fun(]Y|,M0d§(")) — Fun(]X|,Mod§(n)) induced by composition with |f]| :
IX| — |Y], and the functor Lk, fi with its left adjoint V' : Fun(|X|,M0df(")) —
Fun(]Y], Modf(")), given by left Kan extension along the map of spaces |[X| — |Y|. Let
" and ¢’ be the images of Lg () # and L,y ¢ in the oo-categories Fun(]Y], Mod’ ™)
and Fun(|X], Modf(n)), respectively. Then the evaluation of Lk )87 «» at a point
y € |Y| can be identified with the natural map

limy (F'(y)®Y' () — F'(y)® lim F'(x),

z€[Xly z€[X]y
where |X|, denotes the homotopy fiber of the map |X| — |Y| over the point y. Since the

tensor product ® on Modf(") preserves small colimits in each variable, we conclude
that Ly n)B7 is an equivalence. O

7.4 Transfer Maps in Tempered Cohomology

For every preoriented P-divisible group G over an E, -ring A, the formation
of tempered cohomology groups Ag(e) of Construction can be regarded as a
contravariant functor from (the homotopy category of) the category of orbispaces to the
category of graded-commutative rings. However, when G is oriented, then Theorem
7.2.10| supplies a much richer structure: tempered cohomology is also covariantly
functorial for relatively w-finite maps of orbispaces with 7-finite fibers.

Construction 7.4.1 (The Transfer Map). Let G be an oriented P-divisible group
over an E,-ring A, and let f : X — Y be a morphism of orbispaces which is relatively
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m-finite (Definition [7.2.4) and let Nm; : fi = f, be the isomorphism of Notation
(see Remark [7.2.11). We let tryy : AG — A& be the map given by the composition

Nm>!
Ag = F(X;Ax) = F(Y; f*Ax) b F(Y§ f!Ax) - F(Y;Ay) = Aé-

We will refer to trx,y as the transfer map associated to f. Passing to homotopy groups,
we obtain a map of tempered cohomology groups A& (X) — A&(Y), which we will also
denote by trxy and refer to as the transfer map.

In the special case where X = X(7) and Y = Y() are represented by spaces X and
Y, respectively, we will denote the transfer map trx,y by trx y.

Warning 7.4.2. Let f : X — Y be a morphism of orbispaces which is relatively
m-finite. The transfer map trxy : A% — A§ is not a morphism of ring spectra.
However, it is a morphism of A&. In particular, at the level of tempered cohomology
rings, we have the projection formula

trxy ((ffu) - v) = u - trxyy (v).

Warning 7.4.3. To define the transfer maps of Construction in complete
generality, we need the full strength of Theorem [7.2.10, which asserts that every
truncated relatively 7-finite morphism of orbispaces is ambidextrous with respect to
the Beck-Chevalley fibration v : TotSysg — OS of §7.2] However, to construct the
transfer map trx,y : AL — AY for a particular map of orbispaces f : X — Y, we
only need to know that f is v-ambidextrous. Our proof of Theorem will make
use of this observation: to show that every n-truncated relatively m-finite morphism
f: X =Y is v-ambidextrous, we will use transfer maps associated to (n — 1)-truncated
relatively m-finite morphisms of orbispaces.

We now summarize some of the basic formal properties of Construction [7.4.1

Proposition 7.4.4 (Push-Pull). Let G be an oriented P-divisible group over an
Ex-ring A. Suppose we are given a pullback diagram of orbispaces

fl
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where the map f (and therefore f') is relatively w-finite. Then the diagram of tempered

function spectra
trys 7
X! X /Y v/
Ac - Ag

/% *

g g

trx/y
X Y
AG AG

commutes up to homotopy. In particular, the diagram of graded abelian groups
tryr pyr
AG(X) = AG(Y)

3 *

g g

% AT
AG(X) — A& (Y)
Proof. Decomposing Y as a disjoint union if necessary, we can assume that f is

truncated. In this case, the desired result follows from the compatibility of norm maps
with pullback (Remark Ambi.4.2.3). O

Proposition 7.4.5. Let G be an oriented P-divisible group over an Eo-ring A, and
suppose we are given relatively m-finite morphisms of orbispaces X LY %7 Then
the transfer map trx,z : Aé — Aé is homotopic to the composition try,;z otrxyy. In
particular, we have a commutative diagram of graded abelian groups

Ag(Y)

N

Ag(X) AG(2).

tI‘x/Z

Proof. Decomposing Z into connected components if necessary, we may assume that
f and g are truncated. In this case, the desired result follows from the compatibility
of norm maps with composition (Remark Ambi.4.2.4). O

Remark 7.4.6 (Functoriality for Correspondences). Define a category C as follows:
e The objects of C are orbispaces.
e For orbispaces X and Y, Home(X,Y) is the set of equivalence classes of diagrams
XMLy,

where f is relatively 7-finite.
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e Given morphisms X < M — Y and Y < N — Z of C, their composition is given
by (the equivalence class of) the diagram

X—MxyN-—-Z

Every oriented P-divisible group G over an E -ring A then determines a functor
C — hMod 4, which carries each orbispace X to the tempered function spectrum Ag,

and each correspondence X L MLY to the composite map
X f* oM Bwy ooy

The compatibility of this construction with composition is precisely the content of

Propositions |7.4.4) and [7.4.5| In particular, the construction X — Ag(X) determines
a functor from C to the category of graded abelian groups (or graded modules over

T(A)).

Remark 7.4.7. The category C appearing in Remark can be identified with
the homotopy category of an co-category C (where the morphism spaces Mapg(X,Y)

can be identified with the summand of the Kan complex OS’ spanned by those
diagrams X « M % Y where g is relatively 7-finite. Using a more elaborate version
of the ambidexterity formalism of §Ambi.4, one can upgrade Remark to obtain
a functor of co-categories Ag : C — Mod . We will return to this point in a future
work.

Remark 7.4.8 (Change of Ring). Let G be an oriented P-divisible group over an
E,-ring A and let f : X — Y be a relatively 7-finite morphism of orbispaces. Then,
for every E-algebra B over A, the diagram

tr
AL A
trx/y
Bg — Bg
commutes (up to homotopy) in the co-category of A%-modules. In particular, we

obtain a commutative diagram of graded abelian groups

trx/y

AG(X) —= A& (Y)

|

B&(X) 2% By(Y)
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Remark 7.4.9 (Compatibility with Character Maps). Let Go be an oriented P-
divisible group over an E,-ring A, let A be a colattice, and let G = Go@® A (which we
also regard as an oriented P-divisible group over A). Then, for any map of orbispaces
f: X =Y, the diagram of A-modules

trx/y
X Y
AG AG

£AX) YA ey LA(Y)
Ag, ————Ag,

0
commutes (up to homotopy), where the horizontal maps are the transfer morphisms of
Construction [7.4.1 and the vertical maps are the character equivalences of Notation
4.3.3] In particular, we have a commutative diagram of graded abelian groups

try v "
A&(X) / As(Y)
~ X ~ X
tr X v
EO(‘CA(X)) LA (X)) LA (Y) AEO(‘CA(Y))

We now describe the behavior of transfers in the “rational” case.

Definition 7.4.10. For every 7-finite space X define the mass of X to be the rational
number

Mass(X) = Z H |7 (X, 2)| 51"

z n>0

where the sum is taken over a set of representatives for the set my(X) of connected
components of X. Note that if S is a set of prime numbers and X is S-finite (Definition

1.1.25)), then Mass(X) belogns to the subring Z[S™'] < Q.

Proposition 7.4.11. Let G be an oriented P-divisible group over an E-ring A. Let
S be a set of prime numbers with the property that, for each p € S, the p-divisible
group G,y vanishes (so that p is invertible in my(A), by virtue of Remark .
Then, for every connected connected S-finite space X, the unit map A — Ag is an
equivalence.
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Proof. Let gy denote the full subcategory of .7 spanned by those objects of the
form BH, where every prime divisor of H belongs to S. For each T'€ gy, the unit
map A — AL is an equivalence (since G (p) vanishes for p € S) and the unit map
A — AT is an equivalence (since every element of S is invertible in my(A)). It follows
that for T' € Jg), the Atiyah-Segal comparison map AL — A’ is an equivalence.
Let C be the full subcategory of OS spanned by those orbispaces X for which the
Atiyah-Segal comparison map Ag — AXI. Then C contains Js) and is closed under
small colimits, and therefore contains every orbispace X : .7°? — § which is a left
Kan extension of its restriction to ﬁ(g‘)’ It follows that C contains the representable
orbispace X(7) whenever X is S-finite. We are therefore reduced to showing that
the unit map A — A% is an equivalence, which is clear (since every element of S is
invertible in mo(A)). O

Proposition 7.4.12. Let G be an oriented P-divisible group over an Eo-ring A. Let
S be a set of prime numbers with the property that, for each p € S, the p-divisible
group G, vanishes. Let f: X —'Y be a map of S-finite spaces, which decompose
into connected components

x=1]x v-=]]v
el jed

Then the diagram
M
Hz’e[ A—— HjeJ A

\L trx/y \L
A ——4¢

commutes, where the vertical maps are the equivalences supplied by Proposition
and M 1is given by the matriz of rational numbers

~ Mass(X;)

M;j = Mass(fib(X; — Yj)) = Mass(Y;)
j

Remark 7.4.13. In the situation of Proposition [7.4.12 each of the prime numbers
p € S is invertible in the commutative ring my(A), so we can view the rational numbers
M;; € Z[S™'] as elements of my(A).

Proof of Proposition[7.4.13. Choose an integer n such that the homotopy fibers of
f are n-truncated. We proceed by induction on n. Using Proposition [7.4.4] we can
reduce to the case where Y = {y} consists of a single point. We may also assume
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without loss of generality that X is connected. If n = 0, then f is a homotopy
equivalence and there is nothing to prove. Assume therefore that n > 0 and choose a
point x € X, so that the inclusion {x} < X has (n — 1)-truncated homotopy fibers.
We then have a commutative diagram

A A M A

) Weyx X/ (v}
Ag Ag — Ay},
where the vertical maps are the unit morphisms (which are equivalences by virtue of
Proposition [7.4.11)), for some elements M and N of the commutative ring my(A). The
commutativity of the diagram shows that M - N = 1, and our inductive hypothesis
implies that N = Mass(£2(X)). It follows that

1 1
M= N Mass(2(X)) = Mass(X).

]

By combining Remarks [7.4.8] [7.4.9, and Proposition [7.4.12] we obtain (at least in
principle) a complete recipe for computing the rationalized transfer map

trX/y : Q@AE(X) - Q®AE(Y>7

where X and Y are 7-finite spaces. Using Remark [7.4.8] we can reduce to the case
where A is an E-algebra over Q and G is the constant P-divisible group associated
to a colattice A. We can then use Remark [7.4.9) to reduce to the case where G = 0 (at
the cost of replacing X and Y by the mapping spaces X BA and YBA) in which case
the transfer map is given by the formula of Proposition [7.4.12] For some illustrations
of this principle, see the proofs of Propositions [7.5.2] and [7.6.7}

7.5 Tempered Ambidexterity for p-Finite Spaces
We now prove a weak form of Theorem

Theorem 7.5.1. Let G be an oriented P-divisible group over an E-ring A and
let f: X — Y be amap of p-finite spaces, for some prime number p. Then f is
vg-ambidextrous.
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The proof of Theorem [7.5.1| will require some preliminaries. We begin by carrying
out the essential step.

Proposition 7.5.2. Let G be an oriented P-divisible group over an Ky -ring A, let p
be a prime number, and let X = K(F,,m) be an Eilenberg-MacLane space for some
m > 0. Assume that the projection map f: X — = is weakly vg-ambidextrous. Then
f is vg-ambidextrous.

Proof. Without loss of generality, we may assume that m > 0 and that the p-divisible
group G, has some fixed height n. Let X = K(F,,m), and assume that the
projection map f : X — = is weakly vg-ambidextrous. We wish to show that f is
vg-ambidextrous. By virtue of Proposition [7.3.15] it will suffice to show that the
ambidexterity form AForm(f) : [X/«] ®a [X/+] — A is a duality datum: that is, that
it exhibits [ X /] as a self-dual object of the oo-category Mod 4. Remark implies
that [X /] is a projective A-module of finite rank, and that 7o[X /#] can be identified
with the G-tempered homology ring AS (X) of Notation It will therefore suffice
to show that the ambidexterity form AForm(f) induces a perfect pairing

AF (X) ®ry(a) AF(X) — mo(A),
or equivalently that the dual map
mo(AForm(f)Y) : mo(A) — AG(X) Rro(A) AL (X)

is a duality datum in the ordinary category Modfo( A)- Unwinding the definitions, we
see that this map carries the element 1 € 7y(A) to

trx/xx (1) € Ag(X x X) =~ AG(X) ®ny(a) Ag(X),

where try, x.x denotes the transfer map of Construction m (which is well-defined
by virtue of our assumption that f is weakly vg-ambidextrous).

Let R = mo(A)™® denote the quotient of m(A) by its nilradical. Set B = R ®q,(a)
A% (X), and let e denote the image of try,x« x (1) in the tensor product B®g B. Then
B is a projective R-module of finite rank. We will complete the proof by showing
that e induces an isomorphism from B to its R-linear dual. Note that the existence
of the oriented P-divisible group G guarantees that the tensor product A ®g Fy
vanishes for every prime number ¢ (see Remark . Applying the May nilpotence
conjecture (Theorem 2 of [14]), we deduce that every torsion element of my(A) is
nilpotent. Consequently, the commutative ring R is torsion-free.
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Using Theorem (and Remark [4.4.18)), we see that the spectrum Spec(Ag (X))
is a truncated p-divisible group over my(A) of level 1, height (Z), and dimension
d= (:;11) It follows that Spec(B) is a truncated p-divisible group over R of level 1
and dimension d. If m > n, then B ~ 0 and there is nothing to prove. Otherwise,
Proposition Ambi.5.2.2 implies that the trace map tr : B — R is divisible by p?, and
the pairing
tr(zy)

pd
determines a perfect pairing of B with itself (in the category of R-modules). We will

(z,y) —

complete the proof by showing that the dual pairing is given by e. To prove this,
we are free to replace A by the localization A[%], and thereby reduce to the case
where G, is an étale p-divisible group. Replacing A by a faithfully flat extension, we
may further assume that G, ~ (Q,,/Z,)" is a constant p-divisible group. Writing

G=Go®(Q,/Z,)" with Ggg) ~ 0, Theorem supplies an isomorphism

AG(X) ~ AG (XP%) ~ A2(XPE) ~ ] mo(A),

a:B ZZ‘—hX

where the product is taken over the (finite) collection of all homotopy classes of maps « :
BZ, — X. Using Remark and Proposition [7.4.12] we see that this isomorphism
carries e to the matrix of rational numbers {e, g} given by en 5 = Mass({a} x , szz {8}).
The desired equality now follows from the observation that e, 3 vanishes when a and
3 belong to different connected components of X?%r, and is otherwise given by

Mass(K (Fp,m —1)P%) = H 7y (K(F,,m — 1)B%)| =D’

=0

= [ [ (BZyF,) Y

120
- Hp(_l)i(mfnlfi)
120
= pzzzo( 1)i(m7n171)
= pZZZO(_l)i(mn—_ll—i)+(_1)i(mn__21_z)
= pd‘

We now consider some cases where ambidexterity is easy to verify.
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Proposition 7.5.3. Let G be an oriented P-divisible group over an E,-ring A and
let f: X —Y be amap of spaces which exhibits X as a summand of Y. Then f is
vg-ambidextrous.

Proof. By virtue of Corollary [7.3.16] we may assume without loss of generality that
Y € .7 is the classifying space of a finite abelian group. In this case, either the map f
is a homotopy equivalence or the space X is empty. In the former case there is nothing
to prove, and in the latter case we have that [X /Y] ~ 0, so that f is vg-ambidextrous

by virtue of Proposition [7.3.15] [

Proposition 7.5.4. Let G be an oriented P-divisible group over an E,-ring A and
let f: X —Y be a map of orbispaces. Suppose that X decomposes as a finite disjoint
union | [,.; X;. If each fi = flx, is vg-ambidextrous, then f is vg-ambidestrous.

Proof. The map f factors as a composition
X =[x 2= Ty & v,
el iel
where ¢ is given by the identity on each factor. Note that for every pullback diagram
yA ]_[iEI X;

if/ J/Hie[fi

T(_) - Hie[ Y

for T e 7, the map f’ is a pullback of some f; and is therefore vg-ambidextrous
by assumption. Applying Corollary [7.3.16] we deduce that f’ is vg-ambidextrous.
It will therefore suffice to show that ¢ is vg-ambidextrous. Note that g is weakly
vg-ambidextrous by virtue of Proposition [7.5.3] It will therefore suffice to show that
for every pullback diagram

Hie[ Y/ Hz’e[ Y

o

Y’ Y,
the norm map Nmy : gi — ¢, is an equivalence. This follows immediately from the
additivity of the co-category LocSysg(Y'). O

Note that for every orbispace X, we can regard the co-category LocSysg(X) as
an Ag-linear co-category. If f : X — Y is a map of orbispaces, then it induces an
A&-linear functor f* : LocSysg(Y) — LocSysg(X), which we can identify with an
A%-linear functor A ® ay, LocSysg(Y) — LocSysg(X).
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Proposition 7.5.5. Let G be an oriented P-divisible group over an E,-ring A and
let f:T"— T be a morphism in 7 with connected homotopy fibers. Then the natural
map

p: AL ®az, LocSysg (T") — LocSysg (1)

is fully faithful.
Proof. For every pair of objects % ,¥9 € LocSysg(T), the functor p induces a map
AL @z Map(:F,9) — Map(f*(F), /*(%)).

By virtue of Corollary it will suffice to show that this map is an equivalence in
the special case when Z# is compact. Without loss of generality, we may assume that
F = [Ty/T], for some connected covering space Ty € Cov(T). Then Tf = Ty xr T'
is a connected covering space of T, and we can identify f*(.%) with the object
[75/T"] (Remark [7.3.3)). Unwinding the definitions, we are reduced to showing that
the canonical map

AL @4 9(Ty) - 9(T5)

is an equivalence. This follows from our assumption that ¢ is G-pretempered, since
the diagram of E.-rings
AG — Ag

AL —— AY
is a pushout square. O

Corollary 7.5.6. Let G be an oriented P-divisible group over an Ey-ring A, let f :
T — T be a morphism in 7 with connected homotopy fibers, and let b : F ®Y — Ar
be a morphism of G-tempered local systems on I". Then b is a duality datum in the
w-category LocSysg(T') if and only if the pullback map

frO) fHF) R FH(G) — [*(Ar) ~ Ap
is a duality datum in the co-category LocSysg(T”).

Proof. 1t is clear that if b is a duality datum, then so is f*(b). Conversely, assume that
f*(b) is a duality datum. Set B® = AL and let B* denote the cosimplicial A%-algebra
given by the tensor powers of BY. Since B is a faithfully flat AL-algebra and the
ao-category LocSysg (T') is compactly generated, we can identify LocSysg (T') with the
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totalization of the cosimplicial symmetric monoidal co-category B* ® AZ LocSysg (T)
(see Corollary SAG.D.7.7.7). It will therefore suffice to show that for each k = 0, the
image of b in the co-category B ® AT LocSyse (T) is a duality datum. Without loss

of generality we may assume that & = 0. Set C = B° ®ar, LocSys(G T') and suppose
we are given a pair of objects 57, 7" € C; we wish to show that the composite map

Map, (.4 @ H#") — Mapp(F @ A, F QG Q") > Map.(F @ #, H")

is an equivalence, and that an analogous statement holds with the roles of % and ¢
reversed. By virtue of Proposition [7.5.5] we can identify C with a full subcategory of
LocSysg(T”), so that the desired result follows from our assumption that f*(b) is a
duality datum. O

Corollary 7.5.7. Let G be an oriented P-divisible group over an E,-ring A, let
g:T" — T be a morphism in 7 with connected homotopy fibers, and suppose we are
given a pullback diagram of spaces

X —X

N

T 2T
If f is weakly vg-ambidextrous and [’ is vg-ambidextrous, then f is vg-ambidextrous.

Proof. Combine Proposition [7.3.15, Remark [7.3.14] and Corollary [7.5.6] O]

Proposition 7.5.8. Let G be a p-divisible group of dimension < 1 over a commutative
ring R, let V' be a finite-dimensional vector space over F,, let G[V] be the finite flat
group scheme over R classifying maps from V into G, and let U < G[V] be the open
subset whose k-valued points are given by injective maps V- — G(k), for every field
k. Let Alt | denote the R-scheme of Construction Ambi.5.2.11 and let D(Alt(m[; )
denote its Cartzer dual. Let n be a nonzero element of the exterior power N\™(V), so
that n induces a map

¢ : G[V] > D(Altgp)

of finite flat group schemes over R. Then ¢(U) does not intersect the zero section of

D(ALt&)).

Proof. Without loss of generality, we may assume that R is an algebraically closed
field. In this case, the p-divisible group G fits into a (canonically split) exact sequence

0-G->G->G"—>0
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where G’ is connected and G” is étale. We have a commutative diagram of R-schemes

G[V]——D(Altg))

-

G"[V]—=D(Alt&,)

where the vertical maps are homeomorphisms. We may therefore replace G by G” and
thereby reduce to the case where G is étale. Since R is an algebraically closed field,
G|p] is a constant group scheme associated to a vector space W of finite dimension
over F,,. Then D(Alt(ggﬂ) is also a constant group scheme, associated to the Fj-vector
space /\""W. We are therefore reduced to verifying the following elementary fact of
linear algebra: every injective map of F,-vector spaces V' — W induces an injection
of exterior powers A"V — A" W. O

Proposition 7.5.9. Let G be an oriented P-divisible group over an Ey-ring A, let p
be a prime number, and suppose we are given a fiber sequence of spaces X Ly
K(F,,m). Then f is vg-ambidextrous.

Proof. Given a fiber sequence of spaces X Lya K (F,,m), we will say that n is
good if f is vg-ambidextrous. We wish to show that every map n:Y — K(F,,m) is
good. The proof proceeds by induction on m. In the case m = 0, f is the inclusion
of a summand and the desired result follows from Proposition [7.5.3] For m > 0, we
observe that the relative diagonal § : X — X xy X fits into a fiber sequence

X5 X xy X - K(F,,m—1),

and is therefore vg-ambidextrous by virtue of our inductive hypothesis. Note that
if a map 1’ : Y’ — K(F,,m) factors as a composition Y’ — Y 5> K(F,,m), then we
have a commutative diagram of fiber sequences

X — Y " K(F,.m)

|

X ——Y "> K(F,,m)

where the left square is a pullback. Applying Corollaries [7.3.16| and [7.5.7] we deduce
the following:
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(a) If the map 7 : Y — K(F,,m) is good, then so is any composite map Y’ — Y >
K(F,,m).

(b) To show that a map n:Y — K(F,,m) is good, it will suffice to show that any
composition T — Y 5> K(F,,m) is good for T € 7.

(¢) If g : T" — T is a morphism in .7 with connected homotopy fibers some
composite map 7" % T > K(F,, m) is good, then 7 is good.

We must show that every morphism 7 : Y — K(F,,m) is good. By virtue of (b), it
will suffice to prove this in the special case where Y ~ BM is the classifying space
of a finite abelian group M. In this case, the map 7 factors through the localization
BMy, so we can use (a) to reduce further to the case where M is a finite abelian
p-group. Let k = dimg, (M /pM) denote the minimal number of generators of M. Our
proof will proceed by induction on k.

Let us abuse notation by identifying n with its homotopy class, regarded as an
element of the cohomology group H™(Y; F,). Choose a surjection of abelian groups
ZF — M and let u: BZ* — BM =Y be the induced map of classifying spaces. For
1 <i<k,let oy € H(B(Z /pZ)*;F,) denote the cohomology class corresponding
to the homomorphism (Z /pZ)* — F, given by projection onto the ith factor. In
what follows, we will abuse notation by identifying each a; with its images under the
natural maps

HY(B(ZpZ)*;¥,) — H(B(Z /p' Z)";F,) — H (BZ";F,).

A standard calculation shows that the cohomology ring H*(B Z*; F,) is an exterior
algebra on the classes {a;}1<i<k. In particular, we can write

w*(n) = Y edoi, U v, ) e \ H(BAF,) ~ H™(BASF,),

i Fy

where 7 ranges over all sequences 0 < i; < --- <, < k and each coefficient c; is an
element of F,. For ¢ » 0, the map u factors as a composition

BZF - B(Z/p'Z) %Y

and the equality



holds in the ring H*(B(Z /p' Z)*; F,). By virtue of (b), it will suffice to show that the
composite map
B(Z/p 7)Y 2 K(F,,m)

is good. By construction, this map also factors as a composition
B(Z /p' Z)F — B(Z /pZ)* > K(F,,m),

where 7’ represents the cohomology class > =c+(c;, U -+ U ;) € H"(B(Z /pZ)*; F)).
Applying (a), we can replace n by 7’ and thereby reduce to the case where Y has the
form B(Z /pZ)*.

If each of the coefficients c; vanishes, then the map n : ¥ — K(F,,m) is null-
homotopic. In this case, f is a pullback of the projection map K(F,,m — 1) — =,
which is vg-ambidextrous by virtue of Proposition [7.5.2] We may therefore assume
that some coefficient ¢; is nonzero. Let AForm(f) : [X/Y]® [X/Y] — Ay be the
ambidexterity form of f (Construction [7.3.13)); we wish to show that AForm(f) is a
duality pairing (Proposition . To prove this, it will suffice to show that for
every pair of G-tempered local systems .%,¥ € LocSysg (YY), the composite map

=

ap([X/Y]® 7, [X/Y]®Q[X/Y]®Y)
Map([X/Y]® F,9)

074 : Map(Z,[X/Y]®¥9) —
AForm(f)

is an equivalence of A&-modules (and that a similar assertion holds for the composition
of AForm(f) with the automorphism of [X /Y| ® [X /Y] given by exchanging the two
factors, though this is actually unnecessary: one can show that the ambidexterity
form of f is symmetric).

Let C < LocSysg(Y) denote the full subcategory spanned by those G-tempered
local systems .# for which the map 6z« is an equivalence of spectra. Since the
construction .Z — 60z 4 carries colimits in LocSysg(Y) to limits in Fun(A', Sp), the
ao-category C is presentable and closed under small colimits in LocSysg(Y). Let
C* be the full subcategory of LocSysg(Y) spanned by those objects .% for which
the spectrum Map(.%,,.#) vanishes for each object .#, € C. Then every object
F € LocSysg (Y) fits into an essentially unique fiber sequence %' — % — F" where
F' e Cand F" € Ct. Tt will therefore suffice to show that C* contains only zero
objects of LocSysg(Y).

Fix an object .Z € C*; we will complete the proof by showing that .# belongs to C
(in which case it follows that .# ~ 0). Note that if Y; € Cov(Y) is a connected covering
space of Y which the covering map Yy — Y is not an isomorphism, then fundamental
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group m(Yp is an F,-vector space of dimension < k, and our inductive hypothesis
(together with Remark guarantees that [Yy/Y] belongs to C. It follows that the
spectrum Map([Yy/Y], .#) ~ F(Yy) vanishes. Since .# is G-tempered, the canonical
map .Z(Y) — F(Yy)MAu00/Y) exhibits .7 (Y, )MAO0/Y) ~ 0 as the 1(Y,/Y)-completion
of Z(Y). It follows that .Z(Y) is I(Y,y/Y)-local when viewed as an A%-module.

Let J < AL (K(F,,m)) denote the kernel of the augmentation map

€: AG(K(F,,m)) — mo(A)

(given by pullback along the inclusion of the base point to K (F,, m)), and let J <
AL(Y) denote the ideal generated by the image of J under the pullback map n* :
AL(K(F,,m)) — AL(Y). It follows from Proposition and Theorem that
the vanishing locus of J is contained in the union of the vanishing loci of the ideals
I(Yy/Y), where Yj is a connected covering space of Y which is not equivalent to Y.
The preceding argument then shows that .# is J-local when viewed as an object fo
the co-category LocSysg(Y) (where we view LocSysg(Y) as an A& -linear co-category).
Using the commutativity of the diagram

A%(Kl(F,m)) —E>7roj:4)
AL () —L s a0 (x),

we see that J is annihilated by the pullback map f*. In particular, for each element
x € J, multiplication by z induces a nullhomotopic map from [X /Y] to itself. It
follows that the tensor product [X /Y] ® .# is simultaneously J-nilpotent and J-local,
and therefore vanishes. Similarly, multiplication by each x € J induces a nullhomotopic
map from [X/Y]®¥ to itself, so that [X/Y]®¥ is J-complete. Since .Z is J-local,
the spectrum Map(.#, [ X /Y] ®¥) vanishes. It follows that the domain and codomain
of 0z« are both trivial, so that 62« is a homotopy equivalence and .# belongs to C,
as desired. O

Proof of Theorem[7.5.1, Let f: X — Y be a map of p-finite spaces; we wish to show
that f is vg-ambidextrous. Factoring f as a composition (using the Postnikov tower
of X as an object of S)y), we can assume that there exists some integer n > —1
for which the homotopy fibers of f are n-truncated and n-connective. By virtue of
Corollary [7.3.16] we can also assume that Y is the classifying space of a finite abelian
p-group. We now consider several cases:
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e If n = —1, then the desired result follows from Proposition [7.5.3]

e Ifn =0, then X is a covering space of Y. Using Proposition [7.5.4] we can assume
that X is a connected covering space of Y. Then f induces a monomorphism of
fundamental groups m1(X) — 7 (Y). Proceeding by induction, we can reduce
to the case where the quotient group m(Y")/m1(X) is cyclic of order p. In this
case, X is the fiber of a map Y — K(F,, 1), so the desired result follows from
Proposition [7.5.9]

e Suppose that n > 1, so that the homotopy fiber of f has the form K(G,n) for
some finite p-group G (which is abelian for n > 2). Proceeding by induction on
the order of the group GG, we can reduce to the case where G is cyclic of order p
(so that the fundamental group 71(X) automatically acts trivially on G). Then
X is the homotopy fiber of a map ¥ — K(F,,n + 1), and the desired result
again follows from Proposition [7.5.9

O

7.6 Induction Theorems

Let G be a finite group and let H < G be a subgroup. If V' is a finite-dimensional
complex representation of H, then the tensor product C[G]| ®cpm) V is a finite-
dimensional complex representation of G, which we denote by Ind% (V) and refer
to as the induced representation. The construction V' — Ind$ (V) determines a
homomorphism of abelian groups

Ind% : Rep(H) — Rep(G)  [V]— [Ind$(V)],

which we refer to as the induction homomorphism. The celebrated induction theorems
of Artin and Brauer assert that every representation of G can be expressed as a linear
combination of representations induced from special kinds of subgroups of G.

Theorem 7.6.1 (Artin Induction Theorem). Let G be a finite group and let Rep(G)

denote its representation ring. Then the localization Rep(G)[‘—(l;'] is generated, as a
1

|G‘], by the images of the induction maps

module over Z|

Ind% : Rep(H)[Kl;’] — Rep(G)[|é|]7

where H ranges over the collection of cyclic subgroups of G.
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Theorem 7.6.2 (Brauer Induction Theorem). Let G be a finite group. Then the
representation ring Rep(G) is generated, as an abelian group, by the images of the
induction maps

Ind$ : Rep(H) — Rep(G),

where H ranges over subgroups of G which factor as a product C x P, where C' is
cyclic and P is a p-group (for some prime number p).

Our goal in this section is to prove analogues of Theorems [7.6.1] and [7.6.2] in the
setting of tempered cohomology. Let h = {hy}pep be a collection of nonnegative
integers. Recall that a P-divisible group G has height < h if each summand G is a
p-divisible group of height < h,,, and that .7 (< E) < 7 denotes the full subcategory
spanned by those objects of the form BH, where each p-local component H, can be
generated by < hy, elements (Notation [5.6.1).

Theorem 7.6.3 (Tempered Artin Induction Theorem). Let b = {h,},ep be a collection
of nonnegative integers, let G be an oriented P-divisible group of height < h over an
Ey-ring A, and let X be a w-finite space. Assume that each homotopy group m,(X, x)
has order invertible in the commutative ring mo(A). Then the tempered cohomology
ring AL (X) is generated (as an abelian group) by the images of transfer maps

tryx £ AL(T) — AL (X)
where T belongs to T (< h).

Remark 7.6.4. In the situation of Theorem [7.6.3] suppose that X = BG is the
classifying space of a finite group GG. In that case, every map of classifying spaces
f : BH — BG factors as a composition BH EiR BH, EiN BG, where f’ induces
a surjection on fundamental groups and f” induces an injection on fundamental
groups. Using Proposition , we see that the image of the transfer map trpy/pe is
contained in the image of the transfer map trpp,/pe. Consequently, Ag (BG) can also
be generated by the images of transfer maps trpy/pg, where H ranges over abelian
subgroups of G (having the property that each H, can be generated by at most h,,
elements).

Theorem 7.6.5 (Tempered Brauer Induction Theorem). Let h = {hp}pep be a col-
lection of nonnegative integers, let G be an oriented P-divisible group of height < h
over an Eo-ring A, and let X be a w-finite space. Then the tempered cohomology ring
AL(X) is generated, as an abelian group, by the images of the transfer maps

tI‘y/X . A%(Y) — A%(X),

257



where Y ranges over w-finite spaces (equipped with map to X ) having the following
property:

(x) For some prime number p, the space Y factors as a product T x P, where
T e 7(<h) and P is a connected p-finite space.

Remark 7.6.6. In the situation of Theorem [7.6.5] suppose that the w-finite space
X is n-truncated for some n > 1. Any map of spaces f : Z — X factors as a
composition Z Iy I X, where the homotopy fibers of f” are (n — 1)-truncated
and the homotopy fibers of f’ are n-connective. It follows that, for any base point
z € Z, we have isomorphisms

Tm(Z, 2) ifm<n
Tm(Y,9(2) ~ { im(m,(Z,2) - (X, f(2)) ifm=n
0 ifm>n.

If Z satisfies condition () of Theorem [7.6.5] then so does Y, and the image of the
transfer map trz x is contained in the image of try x (Proposition . It follows
that the tempered cohomology ring A% (X) is generated by the images of the transfer
maps try,x associated to (n — 1)-truncated maps ¥ — X which satisfy condition (x).

We now show that Theorems [7.6.1| and [7.6.2| can be deduced from their tempered
counterparts. First, we need to relate the transfers of with the classical induction

maps.

Proposition 7.6.7. Let G be a finite group and let H < G be a subgroup. Let
G = pupx», regarded as an oriented P-divisible group over the complexr K-theory

spectrum KU (Construction . Then the diagram of abelian groups

trpu/BG

KU%(BH) KU (BG)

G
Ind

Rep(H)

Rep(G)
commutes, where the vertical maps are the isomorphisms supplied by Example [{.1.7)

Proof. Define a C-linear map

Ind% : {Class functions H — C} — {Class functions G — C}
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by the formula
G 1 —1
md5(x)(9) = 7= >, x(sgs™),

|H| s€G,sgs—1eH
and consider the diagram
KUY (BH) om/ne KUY (BG)
l Ind§ l
Rep(H) Rep(G)
\L [V]—xv \L [V]—xv
Indg

{Class functions H — C} {Class functions G — C}.

A standard elementary calculation shows that the lower square commutes. Moreover,
the lower vertical maps are injective. Consequently, it will suffice to show that the
outer rectangle commutes. Let KUc = C®g KU denote the complexification of
the complex K-theory spectrum. Then, over the ring spectrum KUg, we have an
isomorphism of P-divisible groups

Q/Z ~ Ggug a — exp(2mia),
so that Theorem supplies isomorphisms
(KUg)4(BG) ~ KUL(L/%(BG)) ~ {Class functions G — C}

KUc)L(BH) ~ KUL(LR/%2(BH)) ~ {Class functions H — C}.
G C

By virtue of Example 4.3.9] we are reduced to verifying the commutativity of the
outer rectangle in the diagram

treu/BG

KUY (BH) KUY (BG)
(KUc)%(BH) (KUc)%(BG)
tr BH B
KUY (LQ/Z(BH)) — L220me8I206 g0, (£Q/2(Ba))

G
IndZ

{Class functions H — C}

{Class functions G — C}.

259



In fact, the entire diagram commutes: for the upper square this follows from Remark
7.4.8, for the middle square it follows from Remark and for the lower square it
follows from Proposition [7.4.12 [

Proof of Theorems[7.6.1 and[7.6.3 from Theorems|[7.6.3 and[7.6.5. We give an argu-
ment that Theorem implies Theorem the proof that Theorem implies
Theorem [7.6.1] is similar. Let KU denote the complex K-theory spectrum and let
G = pp» be the multiplicative P-divisible group over KU, endowed with the orien-
tation of Construction 2.8.6] Let G be a finite group, so that X = BG is a m-finite
space. Then Theorem implies that the tempered cohomology ring KU (X) is
generated by the images of the maps try x : KU&(Y) — KUL(X), where f: Y — X
is a map satisfying condition (x) of Theorem . Moreover, since X is 1-truncated,
we may assume without loss of generality that the map f : Y — X is O-truncated
(Remark , so that we can identify Y with the classifying space of a subgroup

H < G. In this case, () guarantees that H factors as a product of a cyclic group and

a p-group for some prime number p. Combining this observation with Proposition
we deduce that the representation ring Rep(G) is generated by the images of
the induction maps Ind$ : Rep(H) — Rep(G), where H ranges over subgroups of G
which are products of cyclic groups with p-groups. O

Theorem [7.6.5] has a local version:

Theorem 7.6.8. Let p be a fixed prime number, let h = {he}eep be a collection of
nonnegative integers, let G be a P-divisible group of height < h over a p-local By -ring
A, and let X be a w-finite space. Then the tempered cohomology ring A%L(X) is
generated, as an abelian group, by the images of the transfer maps

tI‘y/X . A%(Y) — A%(X),

where Y ranges over m-finite spaces of the form T x P, where T € 7 (< l_i) and P is a
connected p-finite space.

Proof of Theorem[7.6.5 from Theorem[7.6.8 Let G be a P-divisible group over an
E.-ring A, let X be a m-finite space, and let I < AL (X) be the subgroup generated
by the images of the transfer maps try,x : AG(Y) — AG(X), where Y — X satisfies
condition (x) of Theorem . It follows from the projection formula of Warning
that I is an ideal. Consequently, to show that I coincides with A% (X), it will
suffice to show agreement after localizing at every prime number p. By virtue of
Corollary we can replace A by the localization A, and thereby reduce to the
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case where A is p-local, in which case the desired result follows immediately from
Theorem [7.6.8 O

Warning 7.6.9. In our deduction of Theorem from Theorem [7.6.8] we invoked
the fact that the formation of tempered cohomology of m-finite spaces is compatible
with faithfully flat base change (Corollary . To prove Theorems and
m we will not use this fact (despite the fact that it would simplify our argument
somewhat). This is actually important to the overall logic of @: to prove that the
tempered function spectrum A& of an n-truncated, m-finite space X is compatible
with base change, we use the fact that the projection map X — = is v-ambidextrous

(Theorem [7.2.10)), whose proof will make use of Theorem and Theorem [7.6.§
(applied to the same 7-finite space X), but will not use Theorem [7.6.5]

Proof of Theorem[7.6.5 Let G be an oriented P-divisible group over an E-ring A.
Let S be the (finite) collection of all prime numbers which divide the order of some
homotopy group m,(X, z), and assume that each p € S is invertible in the commutative
ring mo(A). Without loss of generality, we may assume that for each p € S, the p-
divisible group Gy,) has some fixed height %,. Let A be the colattice P,.¢(Q, / Z,)"

and let A ~ [ L es Zh

p
classes of maps BA — X, and choose a representative f; : BA — X for each homotopy

» denote its Pontryagin dual. Let I be the set of all homotopy

class 7 € I. By virtue of Proposition [3.4.7] we can choose finite subgroups M; < A
such that each of the maps f; factors as a composition

BA — BM, % X.

By construction, the finite group (]\Z)(p) can be generated by < h, elements for each
p € S (and vanishes for p ¢ 5). We will complete the proof by showing that the
transfer maps tr /X induce a surjection

D Ae(BM;) — Ag(X).
el
Let G” denote the sum @),.4 Gy and let C' = Split, (G') be a splitting algebra
for G’ (Definition [2.7.7)). Then C is a direct limit of finite étale A-algebras, and there
is an isomorphism p : A — G{ of P-divisible groups over C. The restriction of p
to each M, is then classified by a map of A-algebras u; : AgMi — (. We can then
factor the unit map A — C' as a composition A — B — (', where B is a finite étale

A-algebra (of nonzero degree), C' is faithfully flat over B, and each of the maps u;
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factors through some map of A-algebras flgMi — B, which we can identify with a map
of B-algebras v; : BgMi — B. Since BgMi is an étale B-algebra, this map decomposes
the commutative ring B (B ]\Z) as a Cartesian product of 7y(B) with some auxiliary
commutative ring R; (so that v; is given by projection onto the first factor). Let
& € B?;(B]\//Ti) be the element which corresponds to the pair (1,0) under this product
decomposition. We will prove the following:

(a) The sum > trpm Jx (&) is an invertible element of the tempered cohomology
ring B&(X).

o BB — BY(X) is
surjective (since its image is automatically an ideal). Since B is finite flat (and
faithfully ﬂat) over A, it will then follow from Remark [£.7.4] that the transfer map
P, AL (BM ) — AL (X) is also surjective, completing the proof of Theorem .
Let C* denote the cosimplicial B-algebra given by the iterated tensor powers of

Note that if (a) is satisfied, then the transfer map &P,

C over B. Since C' is faithfully flat over B, the canonical map B — Tot(C*) is an
equivalence. It then follows from Lemma that the map of tempered function
spectra BE — Tot(CgY) is also an equivalence. Consequently, to show that the
element ), _,tr Bil, /X(fi) is an invertible element of the tempered cohomology ring
B&(X) = m(B&) is invertible, it will suffice to show that its image in C&(X) =
mo(C&) is invertible. Set Gy = @,5 G(y), s0 that the P-divisible group G splits as
a direct sum Goc @ A. We then have a commutative diagram

tr

®e; C%(BI) P 0 (X)
\LN ~ trBI\/Z.B/A\/XBA lw ~
@ie[ COGO (BMzBA) : O&o( )7

where the vertical maps are the character isomorphisms supplied by Theorem [4.3.2
Note that the mapping space Z = X P* splits as a disjoint union of connected S-finite
spaces | [,.; Zi, so that the tempered cohomology ring C’%O (X Bj\) can be identified
with [ [,.; m0(C) (Proposition . Using Proposition , we see that the image
of X tT 57, x (&) under this identification is given by the tuple of rational numbers

Mass( BM; )

WZ)}% 1, each of which is invertible in my(C). O

Our proof of Theorem will use a similar strategy. However, it is somewhat
more complicated, because we cannot explicitly describe the tempered cohomology
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rings which appear. We will need a few preliminary remarks. Recall that if G is a
finite p-group acting on a finite set X, then the fixed point set X¢ = {z € X : (Vg e
G)[x9 = z]} satisfies | XY = |X| (mod p). We will need an analogous fact for 7-finite
spaces:

Lemma 7.6.10. Let X be a w-finite space, and let p be a prime number which does
not divide the order of any homotopy group of X. Let G be a finite p-group acting on
X. Then:

(1) The homotopy fized point set X" is also a w-finite space, whose homotopy
groups have order not divisible by p.

(2) If X is connected, then X"C is connected.

(3) We have Mass(X"%) = Mass(X) (mod p) in the commutative ring Z,).

Proof. Decomposing X as a disjoint union, we may assume without loss of generality
that mo(X) consists of a single orbit of G. If X is not connected, then G has no fixed
points on the set my(X) and therefore the homotopy fixed point space X"“ is empty.
On the other hand, the mass Mass(X) is the product of |m(X)| with the mass of any
connected component of X, and is therefore divisible by p (in the ring Z,)). We may
therefore assume without loss of generality that X is connected. Since X is m-finite,
there exists an integer n » 0 for which X is n-truncated. We proceed by induction on
n. If n = 0, then X is contractible and the result is clear. To carry out the inductive
step, assume that n > 0 and let Y = 7<,,_1(X) be the (n — 1)-truncation of X. Then
Y inherits an action of GG, and our inductive hypothesis guarantees that Y"“ is a
connected 7-finite space satisfying Mass(Y"“) = Mass(Y') (mod p). Fix a base point
y € Y'Y Then G acts on the homotopy fiber F' = {y} xy X, and we have a homotopy
fiber sequence
FhG _, xhG _, yhG,

which yields an equality

Mass(X"“) = Mass(Y") - Mass(F"%)
= Mass(Y) - Mass(EF"¢)

(
- Mass(F') - Mass(F")
ass(F"¢
= Mass(X) h/ll\das(s.fF))



We may therefore replace X by F' and thereby reduce to the case where X ~ K (M, n)
is the Eilenberg-MacLane space associated to a finite group M whose order is not
divisible by p.

Suppose now that n > 2, so that the group H is abelian. In this case, the action
of Gon X = K(M,n) is classified by an action of G on the group M together with a
k-invariant € H"*1(G; M). Since G is a finite p-group and M has order relatively
prime to p, the invariant n automatically vanishes. It follows that the homotopy fixed
point space X" is nonempty, and its homotopy groups (for any choice of base point)
are given by
ME ifx=n

W*(XhG) _ Hn_*(G; M) ~
0 otherwise.

Assertions (1) and (2) are now immediate, and (3) follows from the identity |[M¢| =
It remains to treat the case n = 1. In this case, the action of G on X is encoded
by a homotopy fiber sequence

X — Xy > BG.

Choose a point = € X},¢ lying over the base point of BG and set G = ™1 (Xng, x), sO
that we have an exact sequence of finite groups 0 - M — G % G — 0. Note that
the space of pointed sections of the map u can be identified with the set of sections of
@ in the category of groups, or equivalently with the set of all p-Sylow subgroups of G
(by identifying a section of ¢ with its image in é) We therefore obtain a homotopy
equivalence

XhG

12

{Unpointed sections of u}

0

{Pointed sections of u}as

{p-Sylow subgroups of é}h M-

0

It follows immediately that X"¢ is a n-finite space whose homotopy groups are
equivalent to subgroups of M (and therefore not divisible by p). Note that the
collection of p-Sylow subgroups of G form a single orbit under the action of G (by
Sylow’s theorem), hence also under the action of M (since G is generated by M
together with any choice of p-Sylow subgroup P < CNJ), this proves that X"¢ is
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connected. The congruence

|{p-Sylow subgroups of G}|
M )
= Mass(X) - [{p-Sylow subgroups of G'}|
= Mass(X) (mod p)

Mass(X ")

also follows from Sylow’s theorem (which guarantees that the number of p-Sylow
subgroups of G is congruent to 1 modulo p). m

Variant 7.6.11. Let X be a w-finite space, let p be a prime number which does not
divide the order of any homotopy group of X, and suppose that X is equipped with an
action of G = Z for some nonnegative integer n. Then X hG is a m-finite space, whose
homotopy groups have order not divisible by p, and we have Mass(X"¢) = Mass(X)
(mod p) in the commutative ring Z,).

Proof. Let Aut(X) € X denote the subspace consisting of homotopy equivalences
from X to itself, and let BAut(X) denote its classifying space. Then BAut(X)
is a mw-finite space, and the action of G on X is classified by a pointed map f :
BG — BAut(X). It follows from Proposition that the map f is homotopic
to a composition BG — B(G/Gy) — BAut(X) for some subgroup Gy < G of finite
index. Then Go ~ Z acts trivially on X, so the homotopy fixed point space X hGo ig
equivalent to the mapping space Fun(BGg, X) ~ X (by virtue of our assumption that
the homotopy groups of X have order relatively prime to p). The desired result now
follows by applying Lemma to the residual action of the finite p-group G/Gy
on XhGo, [

We will also need the notion of a p-Sylow map between m-finite spaces (see [17] for
a general discussion).

Definition 7.6.12. Let X be a connected m-finite space and let p be a prime number.
We say that a map of spaces f : Y — X is p-Sylow if Y is connected and, for each
integer m > 1, the induced map of homotopy groups 7,,,(Y,y) — 7, (X, f(y)) induces
an isomorphism from 7,,(Y,y) to a p-Sylow subgroup of m,,(X, f(y)); here y € Y is
any choice of base point.

Example 7.6.13. Let GG be a finite group. Then a map of spaces Y — BG is p-Sylow
if and only if it induces a homotopy equivalence of Y with a connected covering space
of BG whose fundamental group is a p-Sylow subgroup P < G.
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Remark 7.6.14. Let X be a connected m-finite space and let f : Y — X be a p-Sylow
map. Then Y is a connected p-finite space. Moreover, the homotopy fiber fib(f) is a
m-finite space whose homotopy groups have order relatively prime to p, and the mass

~ Mass(Y) | (Y]

Mass(fib(f)) = Mass(X) - ]‘_[(’ﬂ-n(X)’

)(_1)n € Zg,)

n>0

is not divisible by p.

Lemma 7.6.15. Let X be a connected w-finite space and let p be a prime number.
Then there exists a p-Sylow map f:Y — X.

Proof. Note that X is n-truncated for some n » 0. We proceed by induction on n. If
n = 1, the desired result follows from Sylow’s theorem (Example |7.6.13)). For n > 1,
let X’ denote the truncation 7<,_1(X). Our inductive hypothesis then guarantees that
there exists a p-Sylow map Y’ — X’. Replacing X by the fiber product X x x/ Y’ we
can reduce to the case where X' is p-finite. The construction z — m, (X, ) determines
a local system of finite abelian groups on X. Since n > 1, this is the pullback of a local
system L of finite abelian groups on X’. Write £ as a direct sum £, @ L_, where L, is
a local system of finite abelian p-groups on X’ and £_ is a local system of finite abelian
groups of order relatively prime to p. It follows from obstruction theory that the map
X — X' is classified by a k-invariant n € H*™(X’; £) ~ H*"(X"; £, )@H" " (X' L ).
Since X' is p-finite, the cohomology group H"*'(X’; £_) vanishes. It follows that
n is the image of a cohomology class n, € H*™(X’; £,), which is the k-invariant
associated to a map Y — X'. By construction, this space is equipped with a p-Sylow
map Y — X. O

Remark 7.6.16 (Uniqueness of p-Sylow Maps). Let X be a m-finite space and let p
be a prime number. One can show that the p-Sylow map ¥ — X of Lemma is
unique up to homotopy equivalence. However, it is not unique up to a contractible
space of choices. More precisely, let C = §,x be the full subcategory spanned by the
p-Sylow maps. By refining the argument of Lemma [7.6.15, one can show that C is
a connected 7-finite space, whose homotopy groups have order relatively prime to p
(moreover, if X is n-truncated, then C is also n-truncated).

Lemma 7.6.17. Let p be a prime number and let G be an oriented P-divisible group
over a p-local Ex-ring A. Let f 'Y — X be a p-Sylow map of connected m-finite
spaces. Assume that, for every prime number { # p which divides the order of some
homotopy group of X, the (-divisible group Gy vanishes. Then the transfer map
try/x : AG(Y) = AL (X) carries 1 to an invertible element of AL(X).
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Proof. Let us say that an object B € CAlg, is good if the image of try,x(1) in the
tempered cohomology ring BE(X) ~ m(Bg) is invertible. Using Lemma [4.2.11] we
see that the collection of good E-algebras over A is closed under limits. We wish to
prove that A is good.

Without loss of generality, we may assume that the p-divisible group G, has some
fixed height h. Then A is E(h)-local. We will complete the proof by showing that
every E(n)-local A-algebra is good, for any n = 0. Our proof proceeds by induction
on n. For n > 0, we have a pullback diagram of A-algebras

B L) (B)

| |

Lipn-1)(B) — Lgm-1)(Lrxm) (B))

where the bottom left and right corners are good by virtue of our inductive hypothesis.
We may therefore replace A by L, (B) and thereby reduce to the case where A is
K (n)-local. In this case, our orientation of G supplies an exact sequence of p-divisible
groups

O_’G%LG(p)_’G/_’Oa

where G’ is an étale p-divisible group of height h — n (Proposition . Set
A=(Q,/Z,)" ™ and let C' = Split, (i) be a splitting algebra of f (Definition .
Then C' is a faithfully flat A-algebra (Proposition , so A can be realized as
the totalization Tot(C*) of the cosimplicial A-algebra C* given by the iterated tensor
powers of C' over A. It will therefore suffice to show that C' is good. Using our
inductive hypothesis again, we can replace A by Ly, (C) and thereby reduce to
the case where A is K (n)-local and the p-divisible group Gy splits as a direct sum
Go @ A, where Gy = G is the Quillen p-divisible group of A. In this case, Remark
7.4.9| supplies a commutative diagram

try/x

A(Y) Ag(X)
T
A, (vBY) L ag, (xR,

where the vertical maps are the character isomorphisms of Theorem [4.3.2, Using
Lemma |4.4.17 and Theorem |4.2.5] we deduce that Atiyah-Segal comparison map

A%, (58 - 40(x )
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is an isomorphism. Consequently, an element of the tempered cohomology ring
A, (XP1) is invertible if and only if it is invertible when evaluated at any point
of the mapping space X BA , which we can represent by a map of spaces u : BA - X.
Using Remark- we are reduced to showing that the transfer map associated to the
projection Y2 x  ;z {u} — {u} carries the identity element 1 € A (YBA X pi {u})
to an invertible element in Ag ({u}) =~ mo(A). By virtue of Prop081t10n 2| this is
equivalent to the assertion that the mass of the 7-finite space Z = VB x| ;5 {u} is
an invertible element of the commutative ring my(A). Note that Z can be identified
with the homotopy fixed point space for an action of A on the homotopy fiber

= fib(X — Y). Applying Variant and Remark we deduce that
Mass(Z) = Mass(F') (mod p) is an invertible element of the local ring Z,), and
therefore also invertible in the commutative ring m(A). O

Proof of Theorem[7.6.8, We proceed as in the proof of Theorem [7.6.3] with a few
modifications. Let G be an oriented P-divisible group over a p-local E,-ring A, let
X be a 7-finite space, and let S be the (finite) collection of all prime numbers other
than p which divide the order of some homotopy group m,(X,z). Without loss of
generality, we may assume that for each ¢ € S, the /-divisible group Gy has some
fixed height hy. Let A be the colattice @, 4(Q,/Z¢)" and let A~ [Tses Z}* denote
its Pontryagin dual. Let Z denote the mapping space X BA Then Z is also a 7-finite
e Zi where I denotes the
finite set mo(Z) = Homhs(B/A\, X). For each i € I, we have an evaluation map

space, which decomposes into connected components | |

ev;: BA x Z; — X,

which we can identify with a map e; : BA — X% Since X% is also a m-finite space,
each of the maps e; factors as a composition BA — BJ\/ZZ- “, X% for some finite
subgroup M; < A (Proposition . It follows that the evaluation maps ev; admit a
corresponding factorization as

BA x Z, — BM, x Z; <5 X,

For each ¢ € I, choose a p-Sylow map Y; — Z; (Lemma [7.6.15)). Let g; denote the

composite map Y; x B]\Z — Z; X B]\Z 2y X, We will complete the proof by showing

that the transfer maps tr induce a surjection

(BM; xY;)/X

@ AL(BIE, x V;) —» AL(X).

el
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Let G’ denote the sum @, s G(¢) and let C = Split, (G’) be a splitting algebra
for G’ (Definition 2.7.7). Then C'is a direct limit of finite étale A-algebras, and there
is an isomorphism p : A — G, of P-divisible groups over C’.A The restriction of p
to each M, is then classified by a map of A-algebras u; : AgMi — (. We can then
factor the unit map A — C' as a composition A — B — C, where B is a finite étale
A-algebra (of nonzero degree), C' is faithflgly flat over B, and each of the maps u;
factors through some map of A-algebras ngi — B, which we can identify with a map
of B-algebras v; : BgMi — B. Since BgMi is an étale B-algebra, this map decomposes
the commutative ring B%(B]\//Ti) as a Cartesian product of my(B) with some auxiliary
commutative ring R; (so that v; is given by projection onto the first factor). Let
& € B%(B]\Z) be the element which corresponds to the pair (1,0) under this product
decomposition. We will prove the following:

(@) The sum >} tr 57 y:y,x (&) is an invertible element of the tempered cohomol-
oy ring B (X).

Note that if (a) is satisfied, then the transfer map @, , B&(BM;) — BY(X) is
surjective (since its image is automatically an ideal). Since B is finite flat (and
faithfully ﬂat) over A, it will then follow from Remark - that the transfer map
P, AL (BM x Y;) = AL (X) is also surjective, completing the proof of Theorem
[[.6.8

Let C* denote the cosimplicial B-algebra given by the iterated tensor powers of
C over B. Since C' is faithfully flat over B, the canonical map B — Tot(C*) is an
equivalence. It then follows from Lemma that the map of tempered function
spectra BE — Tot(CgY) is also an equivalence. Consequently, to show that the
element > .t L BiT X)) + (&) is an invertible element of the tempered cohomology ring
B&(X) = m(Bg) is invertible, it will suffice to show that its image in C&(X) =
mo(CE) is invertible. Set Go = @Zés Gyy), so that the P-divisible group G¢ splits as
a direct sum Goc @ A. We then have a commutative diagram

i x

@iel C?}(BMZ X YD

| |

@ie[ Cg-}o((B]/\ZZ X }/’L)BK> I O%/(XBA)7

where the vertical maps are the character 1somorphlsms supplied by Theorem [4.3.2}
Since each Y; is p-finite, the mapping spaces (BM X Y)BA can be identified Wlth a
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disjoint union
[ BMxY)
acHom(A,M;)
By construction, the image of £ under the character map can be identified with the
element of the tempered cohomology ring

CL((BM; xY)P ~ T[] ©&%(BM xY)

aeHom(IA\,Mi)

which takes the value 1 on the connected component corresponding to the homomor-
phism A — ]\//Z which is Pontryagin dual to the inclusion map, and 0 on all other
connected components. We are therefore reduced to showing that each of the transfer
maps .

try. . itz C&,(BM; xY;) — C& (Z;)

carries 1 to an invertible element of the tempered cohomology ring Cg (Z;). In
try;/z, (1)

fact, we claim that tr g5 ., (1) = A (which will imply the desired result,
by virtue of Lemma [7.6.17)). Using the functoriality of the transfer (Proposition

7.4.5), we are reduced to verifying the identity try. ;57 v,y (1) = [M;] in the tempered
cohomology ring C’%O(B]\Z x Y;). Using the push-pull identity of Proposition |7.4.4]

we are reduced to showing that transfer along the base point inclusion {e} — BM,;
satisfies tr, py7. (1) = [M;], which is a special case of Proposition [7.4.12 O

7.7 Proof of Tempered Ambidexterity

Let G be an oriented P-divisible group over an E,-ring A, which we regard as fixed
throughout this section. Our goal in this section is to prove Theorem [7.2.10 which
asserts that every n-truncated relatively 7-finite morphism of orbispaces f : X — Y is
vg-ambidextrous. Our proof will proceed by induction on n. The case n = —1 follows
from Proposition (and Corollary [7.3.16)). To carry out the inductive step, we
will prove the following:

Proposition 7.7.1. Let n be a nonnegative integer, and let f : X — Y be a morphism
of orbispaces which is relatively m-finite and n-truncated. Assume that every (n — 1)-
truncated, relatively m-finite morphism of orbispaces is vg-ambidextrous. Then f is
vg-ambidextrous.

The proof will make use of the following:
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Lemma 7.7.2. Let f : X' — X be a vg-ambidextrous morphism of orbispaces. Suppose
that the transfer map try x : AL(X') — AG(X) is surjective. Then every G-tempered
local system % on X can be realized as a direct summand of fi(9), for some G-tempered
local system 4 on X'.

Proof. By virtue of the projection formula (Theorem [7.3.1]), it will suffice to treat the
case . = Ayx. Let u: Ay, — f.(Ax) and v : fi(Ax) — Ay be the unit and counit
maps. For any element ¢ € AL (X'), the composite map

u fx(t) ijjl v
Ax — f*(AX/) - f*(AX/) - f!(AX/) — Ax

is given by multiplication by the element tryx/x(t) € A& (X). Choosing ¢ such that
trx/x(t) = 1, we see that this diagram exhibits Ay, as a retract of fi(Ay). O

Proof of Proposition[7.7.1. Let f : X — Y be a map of orbispaces which is n-truncated
and relatively m-finite; we wish to show that f is vg-ambidextrous. By virtue of
Corollary , we may assume without loss of generality that Y = Y() where
Y € 7 is the classifying space of a finite abelian group. Our assumption that f is
relatively m-finite then implies that X is representable by a 7-finite space X. Using
Proposition [7.5.3, we can assume that X is connected. If n = 0, then X is a connected
covering space of Y € 7, and is therefore also the classifying space of a finite abelian
group. In this case, we can identify f with a finite product of maps f(,) : X,) — Yy
between p-finite spaces, so that the desired result follows from Theorem [7.5.1] We
will therefore assume that n > 0, so that the space X is n-truncated. Note that
the relative diagonal map ¢ : X — X Xy X is (n — 1)-truncated, and is therefore
vg-ambidextrous by virtue of our inductive hypothesis. It follows that f is weakly
vg-ambidextrous. In particular, for every G-tempered local system .%# on X, we can
associate a norm map Nmy : fi(.#) — f.(.#) (Notation [7.2.3).

Let AForm(f) : [X/Y]®[X/Y] — Ay denote the ambidexterity form of Construc-
tion Then f is vg-ambidextrous if and only if AForm(f) is a duality datum
in the oo-category LocSysg(Y) (Proposition [7.3.15). Let S be the (finite) set of all
prime numbers which divide the order of some homotopy group of X, and let N be
the product of all the numbers which belong to S. Then A[+] and {A()}yes comprise
a faithfully flat covering of A. By virtue of Proposition [6.2.6 the ambidexterity form
AForm(f) is a duality datum in LocSysg (Y') if and only if its image is a duality datum
in each of the symmetric monoidal co-categories

1
A[N] ®4 LocSysg(Y) Ay ®4 LocSysg (V).
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It will therefore suffice to show that f is vg-ambidextrous after extending scalars
from A to the localizations A[+] and A, for p € S. We now break into two cases:

e Suppose that A = A[+]: that is, every prime number p € S is invertible in A.
To complete the proof, it will suffice to show that the norm map Nmy; : fi(#) —
f+(F) is an equivalence for every G-tempered local system .% on X. Using
Theorem [7.6.3] we can choose a map of spaces g : X' — X, where X' is a finite
disjoint union of objects of .7 and the transfer map try/ x : A& (X') - AL (X)
is surjective. Moreover, we can assume that the map g is (n — 1)-truncated (this
is automatic for n > 2, and for n = 1 it follows from Remark . Invoking
Lemma we deduce that % can be written as a direct summand of ¢(¥),
for some object ¢4 on LocSysg(X). It we are therefore reduced to showing that
the norm map Nmy : fi(gn¥4) — f«(9(¥)) is an equivalence. By assumption,
every (n — 1)-truncated morphism of 7-finite spaces is vg-ambidextrous. In
particular, we have a norm equivalence Nm, : ¢i(¥) — ¢.(¥¢). Moreover, the

composition
Nmy

fx(Nmy)
[(9(#)) — [(9(9)) == [u(94(9))
is given by the norm map Nm, s associated the composition (go f): X' - Y
(Remark Ambi.4.2.4). It will therefore suffice to show that the composite map
g o [ is vg-ambidextrous. Writing X’ as a union of connected components
[ I;c; X/, we are reduced to showing that each of the composite maps h; : X <

X% xLyis vg-ambidextrous (Proposition [7.5.3)). This is clear, since h; is

a map between classifying spaces of finite abelian groups, and therefore factors
as a finite product of maps (X)) — Y between p-finite spaces (each of which
is vg-ambidextrous by virtue of Theorem [7.5.1]).

e Suppose that the E,-ring A is p-local, for some prime number p. As before, we
will complete the proof by showing that the norm map Nmy : fi(.#) — f.(F)
is an equivalence for every G-tempered local system .% on X. Using Theorem
we can choose a map of spaces g : X' = [[,.; X] — X, where each X/
is a product of an object of .7 with a p-finite space, and the transfer map
trx)x @ AG(X') — AG(X) is surjective. By virtue of Remark , we can
assume without loss of generality that g is (n — 1)-truncated. Lemma
implies that . can be written as a direct summand of ¢(¥¢), for some object
4 on LocSysg(X). It we are therefore reduced to showing that the norm map
Nmy : fi(g9) — f«(9(¥)) is an equivalence. As above, we note that ¢ is

272



vg-ambidextrous and that the composition

F(90(@)) 5 (@) 250 1 (g.(9))

can be identified with the norm map Nmgy.s : (go f)(¥) — (go f)«(¥). It will
therefore suffice to show that go f is vg-ambidextrous. By virtue of Proposition
[7.5.3], we are reduced to showing that each of the composite maps g o f is vg-
ambidextrous. Writing X" as a union of connected components [ [,.; X/, we are
reduced to showing that each of the composite maps h; : X/ — X' %5 X Ly
is vg-ambidextrous. This again follows from Theorem [7.5.1] since h; can be
written as a finite product of maps between (-finite spaces (which are classifying

spaces of finite abelian /-groups for ¢ # p).

]

7.8 Applications of Tempered Ambidexterity

Our goal in this section is to summarize some of the consequences of tempered
ambidexterity. Let G be an oriented P-divisible group over an E,-ring A. Then
Theorem [7.2.10| immediately implies the following:

Proposition 7.8.1. Let f : X — Y be a map of w-finite spaces. Then the functors
fi, s 1 LocSysg (X) — LocSysg (Y) are equivalent.

Corollary 7.8.2. Let f : X — Y be a map of w-finite spaces. Then the func-
tor f. : LocSysg(X) — LocSysg(Y) preserves small colimits, and the functor
fi : LocSysg (X) — LocSysg (Y) preserves small limits.

Fix a prime number p. It follows immediately from the definition that for every
map of spaces f : X — Y, the pullback functor f* : LocSysg(Y) — LocSysg(X)
carries LocSysg(m) (Y) into LocSysg(m) (X) for every nonnegative integer m. Since the
collection of K (m)-local spectra is closed under the formation of limits, the description
of f. supplied by Construction shows that the functor f, carries LocSysg(m) (X)
into LocSysg(m) (Y). In particular, for each object .# € LocSysg(X), the canonical

map fyF — fu(Li@m)F) factors through L) fi F.

Corollary 7.8.3. Let f : X — Y be a map of m-finite spaces. Then, for every
object F € LocSysg(X) and every integer m = 0, the canonical map L) (f« F) —
fe(Lgm) F) is an equivalence in LocSysg(Y).

273



Proof. We wish to prove that the map f..# — fi(Lgm) %) is a K(m)-equivalence.
Let .#" denote the fiber of the canonical map F — Ly (m) % ; we wish to prove that

f+F' is K(m)-acyclic: that is, that the mapping space Maproesysg (v) (f+ F'.9) is
7.8 L

contractible for every object ¢4 € LocSysg(m)

(Y). Using Proposition [7.8.1] we obtain

a homotopy equivalence

MapLocSysG(Y) (f* 35/7 g) = MapLocSysG (X)(ylv f* g)?

so that the desired result follows from the K (m)-acyclicity of .#’ (since the pullback
f*9 is K(m)-local). O

Remark 7.8.4. Using Corollary we can deduce Theorem [7.2.10] from Theorem
Ambi.5.2.1. However, we do not know a direct proof of Corollary [7.8.3|

Proposition 7.8.5. Let f : X — Y be a map of w-finite spaces. Then the functors
f* : LocSysg(Y) — LocSysg(X) and fi : LocSysg(X) — LocSysg(Y) preserve

compact objects.

Proof. Proposition supplies an equivalence f, ~ fi; it will therefore suffice to
show that f* and fi preserve compact objects. By virtue of Proposition HT'T.5.5.7.2,
it will suffice to prove that the right adjoint functors f, and f* preserve filtered
colimits. In the second case this is obvious, and in the first case it follows from

Corollary [7.8.3] O

If % is a G-tempered local system on a space X, then the A-module I'(X;.%) is
given by the direct image ¢, .%, where ¢ is the projection map from X to a point (and
we identify LocSysg () with the co-category Mod4). We therefore have the following
consequence of Corollary and Proposition [7.8.5}

Corollary 7.8.6. Let X be a w-finite space. Then the tempered global sections functor
['(X;e) : LocSysg(X) — Mody F - 1(X;.%)

commutes with small colimits, and carries compact objects of LocSysg(X) to compact
objects of Mod 4.

Notation 7.8.7. For every space X, we view LocSysg(X) as an A-linear co-category.
For every pair of objects .#,% € LocSysg(X), we write Map(¥,.#) for the A-module
classifying morphisms from .% to ¢ (so that we have canonical homotopy equivalences
Mapyoq,, (M, Map(¥, 7)) ~ Mapy gesys, (x) (M ®4 Y, F), depending functorially on
M € Mod A)-
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Proposition 7.8.8. Let X be a w-finite space and let F € LocSysg(X). The following
conditions are equivalent:

(1) The object .F is a compact object of LocSysg(X)

(2) The object F is dualizable (with respect to the tensor product introduced in .
Proof. If .Z is dualizable, then the functor

Y +— Map(ZF,9)
~ Map(Ay, #" ®Y)
~ [IN(X;.77RY)

commutes with small colimits, since the functors 4 — .7 ® ¥ and I'(X; ) commute
with small colimits (Corollary [7.8.6). This shows that (2) = (1).

We now prove that (1) = (2). Let C < LocSysg(X) be the full subcategory
spanned by the dualizable objects. Then C is a stable subcategory of LocSysg(X),
and the first part of the proof shows that every object of C is compact in LocSysg.
Applying Proposition HTT.5.3.5.11 , we obtain a fully faithful embedding f : Ind(C) —
LocSysg (X) which preserves filtered colimits. We will show that f is an equivalence
of co-categories. It will then follow that every compact object of LocSysg(X) is a
retract of an object of C; since C is closed under retracts, the implication (1) = (2)
follows.

Using Corollary HT'T.5.5.2.9, we see that f admits a right adjoint g. To prove
that f is an equivalence of co-categories, it will suffice to show that g is conservative.
Fix an object .%# € LocSysg(X) such that g(-%) ~ 0; we wish to show that % ~ 0.
Choose any object T' € J)x. Then we have an equivalence % (T") ~ Map(fiAr, ¥ ) =
Map([7'/X],#). This spectrum vanishes, since [1'/X] = fiAr is a self-dual object of
LocSysg (X). O

Corollary 7.8.9. Let X be a w-finite space. Then LocSysg(X) is a proper A-linear
aw-category. That is, for every pair of compact objects F,9 € LocSysg(X), the
A-module Map(.%#,%9) is perfect.

Proof. Since .% and ¢ are compact, they are dualizable (Proposition [7.8.8)). We then
have a equivalences

Map(7,9) ~ Map(Ay, 7" ®@¥Y) ~'(X; 7' ®Y).

We now observe that the tensor product .#" ®¥ is dualizable and therefore compact,
and the functor I'(X; e) preserves compact objects by virtue of Corollary [7.8.6, [
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Recall that if X and Y are w-finite spaces, then Corollary [4.7.11] guarantees that
the multiplication map A& ®4 AL — A&*Y is an equivalence of A-modules. We now
establish a relative version of this result.

Notation 7.8.10 (External Tensor Products). Let G be an oriented P-divisible
group over an E -ring A, let X and Y be spaces, and let gx : X x Y — X and
gy : X x Y — Y denote the projection maps. Then the pullback functors

LocSysg(X) =, LocSysg(X x Y) & LocSysg(Y)
determine an A-linear functor
A LocSysg (X) ®4 LocSysg (Y) — LocSysg(X x Y).
In particular, we obtain an external tensor product functor
: LocSysg (X) x LocSysg (Y) — LocSysg (X x Y),
which is A-linear separately in each variable, given concretely by the formula
FNRY =qx F ¢y Y .

Proposition 7.8.11 (Kinneth Formula). Let G be an oriented P-divisible group
over an Ey-ring A. Let X and Y be m-finite spaces. Then, for every pair of objects
F € LocSysg(X) and & € LocSysg(Y), the canonical map

0. T(X; 7))@ T'(V;9) > T(X xY; FXY)
is an equivalence in Mod 4.

Proof. Form a pullback diagram of spaces

Xxy -2 . x
iqy lpy
Yy |2% ]

Using Theorem [7.3.10| (and Theorem [7.1.6)), we see that 6 factors as a composition of
equivalences

NX; 7)@4T(YV;9) (py+« F) @a (px+Y)
Py« (F ®pypx«Y)
py«(F Qx«qy Y)
py«(ax+ (0% F Qqy b))
= (X xY;ZFXY).

bole Lo
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Corollary 7.8.12. Let G be an oriented P-divisible group over an E.-ring A. Let
X and Y be w-finite spaces. Then the A-linear functor

A LoceSysg (X) ®4 LocSysg (Y) — LocSysg (X x Y)

of Notation is fully faithful.

Proof. For every pair of objects .# € LocSysg(X) and ¢ € LocSysg (Y), we let .Z X9
denote the image of (.#,¥) in the tensor product LocSysg (X)®aLocSysg (Y). We also
define .7 X4 € LocSysg (X x Y) as in Notation [7.8.10] so that F XY ~ A\(F H¥Y).

Since LocSysg (X) and LocSysg (V') are compactly generated A-linear co-categories,
the tensor product LocSysg(X) ®a LocSysg(Y) is also compactly generated. To
prove that A is fully faithful, it will suffice to prove the following (see Proposition
HTT.5.3.5.11):

(a) The functor A carries compact objects of LocSysg (X )®4LocSysg (V') to compact
objects of LocSysg (X x Y).

(b) The functor A is fully faithful when restricted to compact objects.

Let C denote the full subcategory of LocSysg (X )®niod, LocSysg (V') spanned by the
compact objects, and let Cy denote the full subcategory of LocSysg (X )®4LocSysg(Y)
spanned by objects of the form .# X|¥, where .%# € LocSysg(X) and ¢ € LocSysg(Y)
are compact. Then C is generated by Cy under colimits and retracts. Consequently,
to prove (a), it will suffice to show that \((¥ X¥) ~ ¥ XI¥ is a compact object of
LocSysg (X xY') whenever .# € LocSysg (X) and ¢ € LocSysg (YY) are compact. This
follows immediately from Corollary [7.8.8] since it is clear that .# K ¥ is dualizable
whenever . and ¢ are dualizable.

To prove (b), it will suffice to show that for every pair of objects C,C" € C, the
canonical map

0: MLOCSYSG(X)®AM)CSYSG(Y)(O7 C") — Map(A(C), \(C"))

is an equivalence of A-modules If we regard C” as fixed, then the collection of those
objects C' € C for which # is an equivalence is closed under retracts and finite colimits;
we may therefore assume without loss of generality that C' has the form .# X]¥, where
F € LocSysg(X) and ¢ € LocSysg (Y) are compact. By a similar argument, we may
suppose that ¢" = F' K9’ where Z' € LocSysg(X) and ¢’ € LocSysg (V). In this
case, the # can be identified with the canonical map

NX; 72"7)Yo.T(V;9"R9) > T(X xY;(F'QF )X (4 ®9)),
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which is an equivalence by virtue of Proposition [7.8.11} O

In the situation of Corollary [7.8.12 the embedding
A LocSysg (X) ®4 LocSysg (V) — LocSysg (X x Y)
is generally not essentially surjective. However, we have the following partial result:

Proposition 7.8.13. Let p be a prime number and let G be an oriented p-divisible
group over an Ex-ring A. Let X and Y be w-finite spaces, and let

A LocSysg (X) ®4 LocSysg (V) < LocSysg (X x Y)

be the fully faithful embedding of Corollary|7.8.12. Then the essential image of A
includes all p-nilpotent objects of LocSysg(X x Y).

Proof. Let # be a p-nilpotent object of the co-category LocSysg (X x Y); we wish
to show that . belongs to the essential image of X\. Let Af : LocSysg(X x Y) —
LocSysg (X) ®4 LocSysg (Y) be a right adjoint to A\. Then we have a canonical fiber
sequence #' — F 5 F" where F' ~ (Ao \%)(F) belongs to the essential image of A
and .#" is annihilated by the functor A\¥. We will complete the proof by showing that u
is nullhomotopic, so that .Z is equivalent to a direct summand of .#" and therefore also
belongs to the essential image of A. By virtue of our assumption that .% is p-nilpotent,
it will suffice to show that the multiplication map p : .#" — Z” is an equivalence.
Assume otherwise. Then we can choose an object T € <7/va such that for which
the map p : F"(T) — F"(T) is not an equivalence. Choose a connected covering
space Ty € Cov(T) for which the fundamental group of T is the p-local summand of
the fundamental group of 71 (7"). Our assumption that G is a p-divisible group then
guarantees that the pullback map AL — A is an equivalence, so that I(T,/T) is the
zero ideal of AL(T). Invoking the fact that .#” is a tempered local system, we see that
the canonical map .#"(T) — .Z"(Ty)MAT0/T) is an equivalence. It follows that the
map p : Z"(Ty) — F"(T}) is not an equivalence: in other words, the cofiber F" /p F"
does not vanish on Tj. is nonzero. Set fo = f|r, and go = g|7,, and regard the product
Ty x Ty as an object of J)x«y via the product map fo x go : To x Ty — X x Y. Using
Corollary [5.5.5] we deduce that (#" /p.Z")(Ty) can be identified with the tensor
product A X Aoy (ZF" |p F")(Ty x Ty). Tt follows that the spectrum .Z" (T x Tp)
does not vanish, contradicting our assumption that .#” is annihilated by the functor
A O
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Remark 7.8.14. Assume that G is an oriented p-divisible group (for some prime
number p) and let X and Y be w-finite spaces. Proposition [7.8.13|is equivalent to the
assertion that the embedding

A LocSysg (X) ®4 LocSysg (Y) < LocSysg(X x Y)

becomes an equivalence after extending scalars along the p-completion functor Mod, —
Modipl(p ). More precisely, A induces an equivalence of co-categories

Cpl(p) LOCSysgpl(p)(Y) ~ LocSysgpl(p) (X xY).

A

X : LocSys2 ™) (X) ®Ortod

7.9 Dualizability of Tempered Local Systems

Let G be an oriented P-divisible group over an E,-ring A. For any m-finite space
X, the co-category LocSysg(X) is compactly generated co-category (Corollary [5.3.3)),
whose compact objects are the dualizable tempered local systems on X (Proposition
. In this section, we study the condition of dualizability in more detail.

Proposition 7.9.1. Let G be an oriented P-divisible group over an E-ring A, and
let 7 be a G-tempered local system on an orbispace X. If F is a dualizable (as an
object of LocSysg(X), then F(T) is a perfect A-module for each object T € Tx.

Proof. Let T be an object of .7 equipped with a map f : T — X. Then f*(.%) is a
dualizable object of LocSysg(7) and therefore compact as an object of LocSysg (T

)
(Proposition [7.8.8). Applying Corollary we conclude that % (T') ~ I'(T; f*(.7))
is a perfect A-module. n

Proposition has a partial converse.

Theorem 7.9.2. Let G be an oriented P-divisible group over an Ey-ring A, let F
be a G-tempered local system on an orbispace X, and let p be a prime number. The
following conditions are equivalent:

(1) For each object T € T, the cofiber of the map p : F(T) — F(T) is perfect
when regarded as an A-module.

(2) The cofiber F [p.F = cofib(p : F — F) is dualizable when regarded as an object
of LocSysg(X) (with respect to the tempered tensor product of Construction

:
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Remark 7.9.3. Let G be an oriented P-divisible group over an E,-ring A and let
p be a prime number. Let X be an orbispace and let LocSyser® (X) denote the full
subcategory of LocSysg(X) spanned by the p-complete tempered local systems. Then
the symmetric monoidal structure on tempered local systems (Construction
induces a symmetric monoidal structure

& : LocSysa™ (X) x LocSysa?® (X) — LocSyse?'® (X) FRY = (F®9Y)()

Using Theorem [7.9.2] we see that the following conditions on p-complete tempered
local system .# € LocSysg(X) are equivalent:

(1) For each object T' € J)x, the spectrum #(T') is dualizable as an object of the

pl(p) (

co-category Modi with respect to the completed tensor product).

(2) The tempered local system .% is a dualizable object of LocSysa? ™ (X).

Remark 7.9.4. Let G be an oriented P-divisible group over an E,-ring A, let p be
a prime number, and let .% be a G-tempered local system on an orbispace X which

satisfies the equivalent conditions of Remark[7.9.3] Then, for every object T" € J)x, the

spectrum % (T) is dualizable as an object of the co-category Modi?l(p ) (with respect to
G
the completed tensor product). When 7 (7T') is a p-group, this follows from Corollary

5.5.5| (and the general case follows from a similar argument).

Example 7.9.5. Let G be an oriented P-divisible group over a p-complete E.-ring
A and let f:T" — T be any morphism in 7. It follows from Proposition that
the direct image f.(Az ) is dualizable as an object of the oo-category LocSysg (7)),
and therefore also with respect to the completed tensor product on the subcategory
LocSysgpl(p ) (T). Applying Remark we deduce that the tempered function
spectrum A:g is dualizable as an object of the co-category of p-complete modules
over AL. In other words, the cofiber AL /pAL ~ cofib(p : AL — AL) is a perfect
AL-module. Beware that AL itself is usually not perfect as an AG-module (unless
the map f : 7" — T has connected homotopy fibers, in which case Ag is a projective
module of finite rank over AL).

Remark 7.9.6. Let G be an oriented P-divisible group over an E.,-ring A, and let
Z be a G-tempered local system on an orbispace X. Suppose that, for every object
T € ), the spectrum .7 (T) is perfect as an A-module. Using Remark , we
conclude that for every prime number p, the completion .# (Ap) is dualizable with respect

to the completed tensor product on the co-category LocSysgpl(p ) (X). One can also
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show (by a much easier argument) that the rationalization Q ®g .# is dualizable as
an object of the symmetric monoidal co-category Q ®4 LocSysg(X). However, it does
not follow formally that .# is a dualizable as an object of LocSysg(X) (it unlikely
that this is true in general: see Warning [7.9.12)).

Our proof of Theorem will make use of some auxiliary constructions which
may be of independent interest.

Construction 7.9.7 (Integral Transforms). Let G be an oriented P-divisible group
over an E -ring A. Let X and Y be orbispaces, and let

mx X xY =X v X xY =Y

denote the projection maps. Let J# be a G-tempered local system on the product
X xY. We let T : LocSysg(X) — LocSysg(Y) denote the functor given by the
formula

T;((gz) = WY[(%®W; gZ)

We refer to T as the integral transform associated to the G-tempered local system

H

Example 7.9.8 (The Functor f, as an Integral Transform). Let f : X — Y be a
morphism of orbispaces, let I'(f) : X — X x Y denote its graph, and set J# =
L(f)(Ax) € LocSysg(X x Y). Then the integral transform T is given by the
construction

Tw(F) = m(H @mx(F))
Ty (D(f)i(Ax) @ 3 (F))
(D )i(Ax @ T(f)* 1% (F))
~ (my o T'(f)((mx o T'(f))*(F))
~ fi(F).

where the second equivalence is provided by the projection formula of Theorem [7.3.1]

Example 7.9.9 (The Functor f* as an Integral Transform). Let f : Y — X be
a morphism of orbispaces, let T'(f) : Y — X x Y denote its graph, and set & =
L(f)(Ax) € LocSysg(X x Y). Then the integral transform T, is given by the
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construction
T (F) = m(H @y (F))
~ (D )(Ay) @ mx(F))
m(L()(Ay @ T(f) 73 (F))
=~ (my o I(f)h((mx o T(f))*(F))
=~ f(F)
where the second equivalence is provided by the projection formula of Theorem [7.3.1]

Example 7.9.10. Let X and Y be w-finite spaces, and consider the pullback diagram

X xY -2 X
K
Y <

Suppose we are given tempered local systems ¢ € LocSysg(X) and 5 € LocSysg(Y),
where ¢ is dualizable. Set # = ¥V [X]. 7 € LocSysg(X x Y). The the integral
transform T, is given by the construction

Tw(F) = my( X Qmx(F))
=~ (X (97) @7y (H) @ Tk (F))
(% (9" Q.F)) Q@ H
a9 @F)®H
*. (9 @ F) QA
~ Hom(¥Y,%)®s H .
Here the second equivalence is given by the projection formula of Theorem

the third by the Beck-Chevalley property of Corollary [7.1.7, and the fourth from
ambidexterity for the projection map ¢ : X — » (Proposition [7.8.1]).

Remark 7.9.11. Let G be an oriented P-divisible group over an E. -ring A, and let
X and Y be 7w-finite spaces. It follows from Proposition that LocSysg(X) is
canonically self-dual as an A-linear co-category. Consequently, we can identify the
tensor product LocSysg (X)) ®4 LocSysg (Y) with the co-category of colimit-preserving
A-linear functors from LocSysg(X) to LocSysg(Y). Under this identification, the
formation of integral transforms # — T, corresponds to a functor

M LocSysg (X x Y) — LocSysg (X) ®4 LocSysg (V).
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Unwinding the definitions, we see that A\ can be identified with the right adjoint of
the functor

A LoceSysg (X) ®4 LocSysg (V) — LocSysg (X x Y).

classifying the external tensor product of G-tempered local systems (Notation .
It follows from Corollary that the functor \f is essentially surjective: in other
words, every colimit-preserving A-linear functor from LocSysg(X) to LocSysg(Y)
is equivalent to the integral transform 7', for some G-tempered local system ¢ €
LocSysg(X x Y). Beware that J# is not unique: it can be chosen canonically by
demanding that it belongs to the essential image of the functor A\, but this choice

might not be desirable (see Warning (7.9.12)).

Proof of Theorem[7.9.9. Let .7 be a G-tempered local system on an orbispace X with
the property that, for every object T' € J)x, the cofiber .#(T')/p.#(T) = cofib(p :
F(T) — F(T)) is a perfect A-module. We wish to show that . /p.# is a dualizable
object of LocSysg(X) (the converse follows from Proposition [7.9.1]). By virtue of
Remark , we may assume that X = X () is representable by an object X € .7.
Without loss of generality, we can replace A by A,y and thereby reduce to the case
where A is p-local. Let S be the collection of all prime numbers ¢ # p which divide
the order of the fundamental group 7;(X). Note that replacing G by the oriented
P-divisible group G’ = G,y @ @D, G() does not change the co-category LocSysg(X)
(see Proposition . We may therefore replace G by G’ and thereby reduce to the
case where the (-divisible groups Gy, vanish for ¢ ¢ S U {p}. By virtue of Proposition
6.2.6} it will suffice to test the dualizability of .Z /p.Z after faithfully flat base change.
We may therefore assume without loss of generality that the P-divisible group G splits
as a direct sum Gy @ A, where Gy = Gy, is a p-divisible group and A is the constant
P-divisible group associated to a colattice with A,y ~ 0. In this case, Theorem m
supplies a fully faithful symmetric monoidal embedding

® : LocSysg (X) — LocSysg, (£4(X)),

whose essential image is spanned by the isotropic objects of LocSysg, (£*(X)) (Theo-
rem . It is not difficult to see that if the isotropic Go-tempered local system
O(F /p.F) is dualizable, then the dual ®(.F p.#)" is also isotropic and can therefore
be written as ®(¥¢), where ¢ is a dual of ¥ /p.% in the co-category LocSysg(X). We
may therefore replace . by ®(.%), X by £L*(X), and G by Gy, thereby reducing to
the case where G is a p-divisible group and X is a w-finite space (which might no
longer belong to 7).
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Let 0 : X — X x X be the diagonal map and set %y = 6,Ax. Then T, is
the identity functor (see Example or , so we can identify .7 /p % with
the G-tempered local system Ty /p #, (% ). It follows from the above analysis that
H o /p K o belongs to Cy. Let us say that an object £ € LocSysg (X x X) is good if
the integral transform T (%) is a dualizable object of LocSysg(X). It will therefore
suffice to show that J# /p ¢ is good. In fact, we will prove something stronger:
every compact p-nilpotent object of LocSysg (X x X) is good.

Given a pair of objects T, 7" € J)x, let JZ 17 denote the external tensor product
[T/X]| X [T'/X], which we view as a G-tempered local system on X x X Let C,
be the smallest stable subcategory of LocSysg (X x X) which contains the objects
H rr [p X rroand is closed under retracts, let C; € LocSysg (X x X) be the sub-
category generated by Cp under small colimits, and let Cy € LocSysg (X x X) be the
smallest subcategory which contains the objects J# 7 and is closed under shifts and
small colimits. Then we have inclusions

Co € C; € Cy < LocSysg(X x X)
with the following properties:

e The oo-category C, is the essential image of the functor A appearing in Corollary
7.8.12l Consequently, Cy contains all p-nilpotent objects of LocSysg (X x X)

(Proposition [7.8.13)).

e For every object ¢ € C,, the fiber of the rationalization map 4 — ¢[p~!] belongs
to C;. Consequently, C; also contains all p-nilpotent objects of LocSysg (X x X).

e The oo-category C; is equivalent to Ind(Cy). Consequently, if a compact object
of LocSysg (X x X) is contained in Cy, then it is also contained in Cy.

We will complete the proof by showing that every object of Cy is good. Since the
collection of good objects of LocSysg (X x X) is closed under shifts, suspensions,
and retracts, it will suffice to show that each of the G-tempered local systems
A [p A e is good. Using the self-duality of [T/X] and Example [7.9.10] we

obtain an equivalence
Tty jp st g (F) = (F(T)[p F (1) @4 [T/ X],

which is dualizable by virtue of our assumption that % (T')/p % (T) is perfect as an
A-module (together with the dualizability of the object [T7/X]). O
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Warning 7.9.12. For every n-finite space X, the oco-category of tempered local
systems LocSysg (X)) is a proper A-linear oo-category (Corollary [7.8.9). However, it is
usually not a smooth A-linear co-category: that is, the identity functor idpeesysg (x)
LocSysg (X) — LocSysg(X) need not be compact as an object of the co-category
End 4 (LocSysg (X)) of A-linear endofunctors of LocSysg (X). In essence, this is due
to the failure of the embedding

A LoceSysg (X) ®4 LocSysg (X) — LocSysg (X x X)

of Corollary [7.8.12 to be an equivalence of co-categories. By virtue of Remark [7.9.11],
the smoothness of LocSysg(X) is equivalent to the compactness of A(§ Ay ), where

§: X — X x X is the diagonal map and A\¥ denotes the right adjoint of the functor
A LocSysg (X) ®a LocSysg (X) — LocSysg (X x X).

The G-tempered local system 6 Ay is compact when viewed as an object of the
aw-category LocSysg (X x X) but usually does not belong to the essential image of
the functor A, so that A(§Ay) need not be compact.

Note that when G is a p-divisible group, then the functor A induces an equivalence
on p-nilpotent objects. One can use this to show that the co-category LocSysgpl(p ) (X)
is “p-adically smooth”: that is, it is fully dualizable when viewed as an object of the
symmetric monoidal (o0, 2)-category of Modipl(p ) linear oo-categories (this smoothness
was implicitly used in our proof of Theorem [7.9.2)).
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