
ON UNTOUCHABLE NUMBERS AND RELATED PROBLEMS
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Abstract. In 1973, Erdős proved that a positive proportion of numbers are untouchable,
that is, not of the form σ(n) − n, the sum of the proper divisors of n. We investigate the
analogous question where σ is replaced with the sum-of-unitary-divisors function σ∗ (which
sums divisors d of n such that (d, n/d) = 1), thus solving a problem of te Riele from 1976.
We also describe a fast algorithm for enumerating untouchable numbers and their kin.

1. Introduction

If f(n) is an arithmetic function with nonnegative integral values it is interesting to con-
sider Vf (x), the number of integers 0 ≤ m ≤ x for which f(n) = m has a solution. That
is, one might consider the distribution of the range of f within the nonnegative integers.
For some functions f(n) this is easy, such as the function f(n) = n, where Vf (x) = ⌊x⌋, or
f(n) = n2, where Vf(x) = ⌊√x⌋. For f(n) = ϕ(n), Euler’s ϕ-function, it was proved by
Erdős [Erd35] in 1935 that Vϕ(x) = x/(log x)1+o(1) as x → ∞. Actually, the same is true
for a number of multiplicative functions f , such as f = σ, the sum-of-divisors function, and
f = σ∗, the sum-of-unitary-divisors function, where we say d is a unitary divisor of n if d | n,
d > 0, and gcd(d, n/d) = 1. In fact, a more precise estimation of Vf(x) is known in these
cases; see Ford [For98].

The arithmetic function s(n) := σ(n)−n has been considered since antiquity. In studying
Vs(x) one immediately sees that if p, q are distinct primes, then s(pq) = p+ q+1. Assuming
that every even number m ≥ 8 can be represented as a sum p + q, where p, q are distinct
primes (a slightly stronger form of Goldbach’s conjecture), it follows that all odd numbers
m ≥ 9 are values of s. We do know that even a stronger form of Goldbach’s conjecture
is almost always true – see [MV75] for example – so as a consequence all odd numbers,
except for those in a set of asymptotic density 0, are values of s. But what of even values?
In 1973, Erdős [Erd73] showed that if U is the set of positive even numbers such that no
s(n) ∈ U , then U has positive lower density. The set U is popularly known as the set of even
“untouchable” (or “nonaliquot”) numbers. (There is one odd untouchable number, namely
5; conjecturally there are no more.) It is not known if U possesses an asymptotic density
nor if the upper density of U is smaller than 1

2
. It is known that the lower density of the

untouchable numbers is at least 0.06, see [CZ11].
In his thesis in 1976, te Riele [tR76] described an algorithm for enumerating all untouchable

numbers to a given bound N . He did not compute the complexity of this algorithm, but
it seems to be of the shape N2+o(1). In fact, his algorithm does more than enumerate
untouchable numbers: it computes all solutions to the inequality s(n) ≤ N with n composite.
In this paper we describe an algorithm that achieves the more modest goal of enumerating
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the untouchable numbers to N . Our algorithm has running time of the shape N1+o(1). The
algorithm of te Riele is based on an earlier one of Alanen [Ala72]. Alanen was able to count
the untouchable numbers to 5,000, while with te Riele’s improvements, he got the count to
20,000. We provide some statistics to N = 108 indicating that the density of untouchable
numbers perhaps exists.

te Riele [tR76] also suggested some problems similar to the distribution of untouchable
numbers. Let s∗(n) := σ∗(n) − n and let sϕ(n) := n − ϕ(n). (te Riele did not consider
the latter function.) In both cases, we again have almost all odd numbers in the range,
since for p, q distinct primes, s∗(pq) = s(pq) = p + q + 1 and sϕ(pq) = p + q − 1. Numbers
missing from the range of s∗ are known as “unitary untouchable” numbers and numbers
missing from the range of sϕ are known as “noncototients”. Solving a problem of Sierpiński,
it has been shown that there are infinitely many noncototients (see [BS95, FL00, GM05]),
but we do not know if their lower density is positive. Nothing seems to be known about
unitary untouchables. te Riele used a version of his algorithm to compute that the number
of unitary untouchable numbers to 20,000 is only 160; perhaps a reasonable interpretation
of that data might lead one to think that they have density 0. In this paper we apply our
algorithm to enumerate both the unitary untouchables and noncototients to 108 leading us
to conjecture that both sets have a positive asymptotic density, though the density of the
unitary untouchables seems to be small. The previous best count on unitary untouchables
was to 105, a result of David Wilson, as recorded in Guy’s Unsolved Problems in Number

Theory. The previous best count for noncototients was to 104, by T. D. Noe, as recorded in
the Online Encyclopedia of Integer Sequences.

Our principal result is the following.

Theorem 1.1. The set of unitary untouchable numbers has a positive lower density.

Our proof follows the same general plan as that of Erdős [Erd73], except that an important
special case is dealt with via covering congruences. That covering congruences should arise
in the problem is not totally unexpected. As noted by te Riele [tR76], if the conjecture
of de Polignac [dP49] that every large odd number can be represented as 2w + p, where
w ≥ 1 and p is an odd prime1, then since s∗(2wp) = 2w + p + 1, it would follow that the
unitary untouchable numbers have asymptotic density 0. However, Erdős [Erd50] and van
der Corput [vdC50] independently showed that de Polignac’s conjecture is false. As an
important ingredient in our proof of Theorem 1.1, we use the Erdős argument for disproving
de Polignac’s conjecture, an argument which involves covering congruences.

Though it is not known if the set of untouchable numbers has upper density smaller than
1
2
nor if the set of noncototients has upper density smaller than 1

2
, we can achieve such a

result for unitary untouchables.

Theorem 1.2. The set of unitary untouchable numbers has upper density smaller than 1
2
.

Our proof of this theorem follows from noting that de Polignac’s conjecture, mentioned
above, does hold for a positive proportion of numbers.

1Note that de Polignac allowed p = 1 in his conjecture, but the set of numbers 2w + 1 has density 0.
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2. Proof of Theorem 1.1

The set of positive lower density that we identify will be a subset of the integers that are
2 (mod 4). We begin with the following result.

Lemma 2.1. Let n be a positive integer. If n > 1 is odd or if n is divisible by 4 and also

two distinct odd primes, then s∗(n) 6≡ 2 (mod 4).

Proof. If pa is a power of an odd prime p, then σ∗(pa) = 1+pa is even. Thus, if n > 1 is odd,
then σ∗(n) is even, so that s∗(n) is odd; in particular, we have s∗(n) 6≡ 2 (mod 4). Similarly,
if n is divisible by k distinct odd primes, then 2k | σ∗(n). Hence, if k ≥ 2 and 4 | n, then
s∗(n) ≡ 0 6≡ 2 (mod 4). This concludes the proof of the lemma. �

We would like to handle the case of 4 | n and n is divisible by only one odd prime. The
following result almost shows that such numbers are negligible.

Lemma 2.2. The set of numbers s∗(2wpa) where p is an odd prime and a ≥ 2 has asymptotic

density 0.

Proof. We have s∗(2wpa) = 1 + 2w + pa. If s∗(2wpa) ≤ x, we have

2w ≤ x and pa ≤ x.

The number of choices for 2w is thus O(log x) and the number of choices for pa with a ≥ 2 is
thus O(

√
x/ logx). Thus, in all there are just O(

√
x) numbers 2wpa to consider, and so just

O(
√
x) numbers s∗(2wpa) ≤ x. Hence such numbers comprise a set of asymptotic density 0,

proving the lemma. �

For the case of s∗(2wp) we invoke the proof using covering congruences that shows that a
certain positive proportion of integers are not of this form.

Proposition 2.3. There are integers c, d with d odd such that if p is an odd prime, w is a

positive integer, then s∗(2wp) 6≡ c (mod d).

Proof. It is easy to verify that each integer w satisfies at least one of the following congru-
ences:

w ≡ 1 (mod 2), w ≡ 1 (mod 3),

w ≡ 2 (mod 4), w ≡ 4 (mod 8), (1)

w ≡ 8 (mod 12), w ≡ 0 (mod 24).

For each modulus m ∈ {2, 3, 4, 8, 12, 24} we find an odd prime q such that the multiplicative
order of 2 modulo q is exactly m. Valid choices for q are listed in the table below. With a
pair m, q, note that for any integer b, if w ≡ b (mod m), then s∗(2wp) 6≡ 1 + 2b (mod q) for
p 6= q. Choices for b are given in the above chart, and the consequently forbidden residue
class for N = s∗(2wp) is given in the table below.

m b q 2b mod q N mod q Conclusion:

2 1 3 2 N ≡ p N 6≡ 0 (mod 3) or p = 3
3 1 7 2 N ≡ 3 + p N 6≡ 3 (mod 7) or p = 7
4 2 5 −1 N ≡ p N 6≡ 0 (mod 5) or p = 5
8 4 17 −1 N ≡ p N 6≡ 0 (mod 17) or p = 17
12 8 13 −4 N ≡ −3 + p N 6≡ −3 (mod 13) or p = 13
24 0 241 1 N ≡ 2 + p N 6≡ 2 (mod 241) or p = 241
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Upon applying the Chinese Remainder Theorem to the six forbidden residue classes in the
last column, i.e.,

N ≡ 0 (mod 3), N ≡ 0 (mod 5),

N ≡ 3 (mod 7), N ≡ −3 (mod 13), (2)

N ≡ 0 (mod 17), N ≡ 2 (mod 241),

we obtain the residue class c (mod d), where c = −1518780 and d = 3 · 5 · 7 · 13 · 17 · 241 =
5592405.

To summarize the argument so far, suppose s∗(2wp) ≡ c (mod d). Since the congruences
(1) cover all integers, we must have w ≡ b (mod m) for one of the six choices for b (mod m)
in (1). In particular, unless p is the prime q corresponding to m, we have s∗(2wp) forbidden
from the corresponding residue class modulo q in (2). And in particular s∗(2wp) cannot be
in the residue class c (mod d).

We finally consider numbers of the form s∗(2wq) where q ∈ {3, 5, 7, 13, 17, 241}. Suppose
N ≡ c (mod d) and N = s∗(2wq). If w ≡ 1 (mod 2), then q = 3 and N = 2w + 4. Since
n ≡ 3 (mod 7), we have 2w ≡ −1 (mod 7), which has no solutions.

Suppose w ≡ 1 (mod 3); therefore p = 7 and N = 2w + 8. From the prior case, we
may ssume that w is even, so that 2w ≡ 1 or 4 (mod 5), so that N ≡ 4 or 2 (mod 5),
contradicting N ≡ 0 (mod 5).

If w ≡ 2 (mod 4), then q = 5 and n = 2w + 6, contradicting n ≡ 0 (mod 3).
Similarly, if w ≡ 4 (mod 8), then q = 17 and n = 2w + 18, contradicting n ≡ 0 (mod 3).
If w ≡ 8 (mod 12), then q = 13 and n = 2w + 14. This implies that n ≡ 4 (mod 7), a

contradiction.
Finally, if w ≡ 0 (mod 24), then q = 241 and n = 2w+242. This implies that n ≡ 243 ≡ 5

(mod 7), a contradiction.
This proves the proposition. �

For each positive integer k, let Pk denote the product of the first k primes. Further, let

Qk =
Pk

gcd(d, Pk)

where d = 5592405 is as in Proposition 2.3.

Proposition 2.4. Suppose that k is a positive integer such that s∗(Qk)/Qk > 1. The set of

unitary untouchable numbers has lower density at least
(

1− Qk

s∗(Qk)

)

ϕ(Qk)

dQ2
k

.

Proof. There are ϕ(Qk) residue classes r mod Q2
k with Qk a unitary divisor of r. For each

such choice of r, let r′ be that residue class mod dQ2
k with r′ ≡ c (mod d) and r′ ≡ r

(mod Q2
k), where c = −1518780 and d = 5592405 are as in Proposition 2.3. The proposition

will follow if we show that the lower density of the set of unitary untouchable numbers u ≡ r′

(mod dQ2
k) is at least

(

1− Qk

s∗(Qk)

)

1

dQ2
k

. (3)

Consider values of n with s∗(n) ≡ r′ (mod dQ2
k) and s∗(n) ≤ x. Since r′ (mod dQ2

k) con-
tains only numbers that are 2 mod 4 (since the hypothesis implies that k > 1), Lemmas 2.1,
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2.2, and Proposition 2.3 imply that we may restrict our attention to numbers n that are
2 mod 4 and divisible by at least two distinct odd primes. Since 2 is a unitary divisor of such
numbers n, if s∗(n) ≤ x, it follows that x ≥ 1+2+n/2, and in particular, n < 2x. It follows
from [tR76, Lemma 9.2] (which is attributed to [Sco73]) that the number of n < 2x with
σ∗(n) 6≡ 0 (mod dQ2

k) is o(x) as x → ∞. Thus, we may assume that σ∗(n) ≡ 0 (mod dQ2
k),

which in turn implies that n ≡ −r′ (mod dQ2
k). Since Qk is a unitary divisor of r′ it follows

that Qk is a unitary divisor of n. This implies that

s∗(n) = σ∗(n)− n = σ∗(Qk)σ
∗(n/Qk)− n ≥ σ∗(Qk)n/Qk − n = (s∗(Qk)/Qk)n.

Since s∗(n) ≤ x, we have n ≤ (Qk/s
∗(Qk))x. Thus the number of values of s∗(n) with these

constraints is at most (Qk/s
∗(Qk))(x/dQ

2
k)+o(x) as x → ∞. Hence, within the residue class

r′ (mod dQ2
k) the lower density of the unitary untouchable numbers is at least the expression

given in (3). This completes the proof of the proposition. �

Since the sum of the reciprocals of the primes is divergent it follows that

s∗(Qk)

Qk

=
∏

p|Qk

(

1 +
1

p

)

− 1 ≥
∑

p|Qk

1

p
→ ∞ as k → ∞.

Thus there is a value of k with s∗(Qk)/Qk > 1, and with this value of k, Proposition 2.4
implies that the lower density of the set of unitary untouchable numbers is positive. This
completes the proof of Theorem 1.1.

We remark that with k = 13 we have s∗(Qk)/Qk > 1.019288. Using this value of k
in Proposition 2.4, gives a lower density greater than 9.4 × 10−20 for the set of unitary
untouchable numbers.

We also remark that if s∗(Qk)/Qk > 2, the above argument plus that of [Erd73] imply that
the lower density of the set of numbers which are simultaneously untouchable and unitary
untouchable is at least (1−2Qk/s

∗(Qk))ϕ(Qk)/dQ
2
k. With k = 64, this gives a lower density

of at least 4.9× 10−131 for such “very untouchable” numbers.

3. Proof of Theorem 1.2

We again focus on numbers s∗(2wp) with w ≥ 1 and p an odd prime. But instead of
looking at even numbers not of this form, we look at even numbers that are of this form.
We have

s∗(2wp) = 2w + p+ 1.

Thus, Theorem 1.2 will follow if we show that the set of numbers of the form 2w + p has a
positive lower density. (The case w = 0 is not permitted in our problem, since s∗(20p) = 1,
but the set of numbers of the form 20 + p has density 0. In addition, the case p = 2 is not
permitted in our problem, but again the set of numbers of the form 2w + 2 has density 0.)

Though it is not hard to prove the result directly using the Cauchy–Schwarz inequality
and sieve methods, this theorem is already in the literature. In particular, in 1934, Ro-
manov [Rom34] proved that the lower density of numbers of the form 2w + p is positive.
Chen and Sun [CS04] proved that the lower density is at least 0.0868, and this was improved
in Habsieger and Roblot [HR06], Lü [L07], and Pintz [Pin06] to 0.09368. It follows that if
U∗ is the set of unitary untouchable numbers, we have

9.4× 10−20 < dU∗ ≤ d̄ U∗ ≤ 0.40632,
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where d denotes lower asymptotic density and d̄ denotes upper asymptotic density.

4. The enumeration of unitary untouchable numbers

In this section we introduce our methods on calculating the density of the set of unitary
untouchable numbers. We begin with the following elementary observation.

Proposition 4.1. Let m, j be positive integers with m odd. Then

(i) s∗(2m) = 3σ∗(m)− 2m,

(ii) s∗(2j+1m) = 2s∗(2jm)− σ∗(m).

Proof. This follows immediately from the fact that σ∗(2jm) = (2j + 1)σ∗(m). �

We now can describe our procedure. Say we wish to enumerate the even unitary untouch-
able numbers in [1, N ]. For each odd number m ≤ N we compute σ∗(m) (more on this
later). Then starting with t = 3σ∗(m)− 2m we iterate the recurrence t 7→ 2t− σ∗(m) until
we exceed N . Each number t visited is an even number that is unitary touchable. Thus,
after exhausting this procedure, we have visited every even unitary touchable number in
[1, N ], so the even numbers not visited comprise the even unitary untouchable numbers in
[1, N ].

In our implementation we used trial division to factor each odd number m in [1, N ].
Instead one might use the method of Moews and Moews [MM06] which can compute each

σ∗(m) for m up to N in time Õ(N). (The expression Õ(x) denotes the bound x(log x)O(1).)
Since it is time consuming to manage set membership in the set of even touchable numbers,

we instead initialize a function f defined as identically 1 for all even numbers up to N .
Whenever we visit an even touchable number t in [1, N ], we reassign f(t) to 0. At the
end of the procedure, our function f is then the characteristic function of the even unitary
untouchable numbers in [1, N ].

There remains the task of finding the odd unitary untouchable numbers in [1, N ]. Note
that 3, 5, and 7 are all unitary untouchable. As remarked earlier, it follows from a slightly
stronger form of Goldbach’s conjecture (namely, every even number starting at 8 is the sum
of two distinct primes) that every odd number n ≥ 9 is of the form s∗(pq) = p + q + 1
where p, q are distinct primes. Thus, to enumerate the odd unitary untouchable numbers
to N it suffices to verify this slightly stronger form of Goldbach’s conjecture to N . On
the webpage [Oli12] (maintained by Oliveira e Silva) the verification of this stronger form of
Goldbach’s conjecture is reported to N = 4×1018. In our calculation of unitary untouchables
we search only to 108, so the three odd unitary untouchables 3, 5, and 7 are the only odd
ones in this range. Concerning the time bound of Õ(N), this too can stand as a time bound
for verifying the slightly stronger form of Goldbach’s conjecture that we are using, modulo
the reasonable assumption that every even n ≥ 8 has a decomposition as p + q where p, q
are primes and p ≤ (log n)O(1). Even without such an assumption, since exceptions are rare,
the theoretical time bound of Õ(N) might still be achievable.

In the table below we record counts to 108 for unitary untouchables. Here, N(x) denotes
the number of unitary untouchable numbers up to x, D(x) denotes the density of the set of
unitary untouchable numbers in [1, x], and ∆ records the difference from the prior entry.
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x N(x) ∆ 100D(x) x N(x) ∆ 100D(x)

100000 862 862 0.862 6000000 60257 10176 1.00428
200000 1846 984 0.923 7000000 70518 10261 1.0074
300000 2811 965 0.937 8000000 80987 10469 1.01234
400000 3790 979 0.9475 9000000 91087 10100 1.01208
500000 4841 1051 0.9682 10000000 101030 9943 1.0103
600000 5795 954 0.965833 20000000 203113 102083 1.01557
700000 6810 1015 0.972857 30000000 304631 101158 1.01544
800000 7828 1018 0.9785 40000000 405978 101347 1.01495
900000 8865 1037 0.985 50000000 509695 103717 1.01939
1000000 9903 1038 0.9903 60000000 615349 105654 1.02558
2000000 19655 9752 0.98275 70000000 720741 105392 1.02963
3000000 29700 10045 0.99 80000000 821201 100460 1.0265
4000000 40302 10602 1.00755 90000000 923994 102793 1.02666
5000000 50081 9779 1.00162 100000000 1028263 104269 1.02826

All of our calculations were done with Mathematica, using their FactorInteger function
to factor each odd number m appearing. It should be expected that with a more serious
implementation using the techniques of [MM06], one could go considerably further.

5. The enumeration of noncototients and untouchable numbers

The algorithms for enumerating noncototients and untouchable numbers are more or less
similar to the algorithm introduced in the previous section. However, the relations we employ
are different. The following statement is an elementary exercise.

Proposition 5.1. Let sϕ(n) := n − ϕ(n). Suppose also that m, j are positive integers with

m odd. The following statements hold:

(i) sϕ(2m) = 2m− ϕ(m),
(ii) sϕ(2

j+1m) = 2sϕ(2
jm).

Since sϕ(n) ≡ n (mod 2) when n > 2, to count even noncototients it suffices to consider
only n = 2jm with m, j positive integers and m odd. Further, for such a number n, we have
sϕ(n) > m, so if we are enumerating to N , we need only consider odd numbers m < N .
Thus, we have an entirely analogous algorithm as for the unitary untouchables.

We record below our counts for noncototients to 108. Let Nϕ(x) denotes the number of
noncototients up to x and let D(x) denote their density. As before ∆ records the difference
in the count from the prior entry.
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x Nϕ(x) ∆ D(x) x Nϕ(x) ∆ D(x)

100000 10527 10527 0.10527 6000000 674884 113034 0.112481
200000 21433 10906 0.107165 7000000 788080 113196 0.112583
300000 32497 11064 0.108323 8000000 901478 113398 0.112685
400000 43559 11062 0.108898 9000000 1014711 113233 0.11274
500000 54757 11198 0.109514 10000000 1128160 113449 0.112816
600000 65938 11181 0.109897 20000000 2262697 1134537 0.113135
700000 77115 11177 0.110164 30000000 3398673 1135976 0.113289
800000 88306 11191 0.110383 40000000 4534957 1136284 0.113374
900000 99554 11248 0.110616 50000000 5671818 1136861 0.113436
1000000 110786 11232 0.110786 60000000 6808454 1136636 0.113474
2000000 223337 112551 0.111669 70000000 7944836 1136382 0.113498
3000000 335920 112583 0.111973 80000000 9081939 1137103 0.113524
4000000 448955 113035 0.112239 90000000 10218937 1136998 0.113544
5000000 561850 112895 0.11237 100000000 11355049 1136112 0.11355

The case for s(n) is somewhat different. First note that we have the analogous elementary
exercise.

Proposition 5.2. Let s(n) := σ(n)− n. Suppose also that m, j are positive integers and m
is odd. The following statements hold:

(i) s(2m) = 3σ(m)− 2m,

(ii) s(2j+1m) = 2s(2jm) + σ(m).

In the case of untouchables, it is not enough to check the numbers s(2jm) ≤ N for odd
m ≤ N . We have s(n) even if and only if

1. n is even and not a square nor twice a square, or
2. n is an odd square.

When enumerating the even values of s(n) in [1, N ], in case 1 it suffices to take s(2jm) for
odd m < N (since s(2jm) > m) with m not a square. In case 2, we must consider s(m2) for
odd m < N (since s(m2) > m). Case 1 is entirely analogous to the enumeration of unitary
untouchables and noncototients, except that if σ(m) is odd (signifying that m is a square),
we do not enter a loop that increases the power of 2, and we pass over this m. To deal with
the odd squares, it is helpful to use the case 1 calculation to find s(p2) for prime p < N .
These are detected as follows. If σ(m) = m + 1, signifying that m is a prime, we record
the number m + 1 as an even value of s since it is s(m2). This would leave the values of
s(m2) ≤ N with m odd and composite. In this case, we have that m < N2/3. Indeed, if
g | m and m1/2 ≤ g < m, then s(m2) > gm ≥ m3/2. Thus, we may run a small side program
for odd composite numbers m < N2/3, computing s(m2) in each case.

We conclude that as with the enumeration of the unitary untouchable numbers, both the
enumeration of the noncototients and untouchable numbers to N can be achieved in time
Õ(N). Here are our counts of untouchable numbers to 108.
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x Nσ(x) ∆ D(x) x Nσ(x) ∆ D(x)

100000 13863 13863 0.13863 6000000 936244 158572 0.156041
200000 28572 14712 0.14286 7000000 1095710 159466 0.15653
300000 43515 14940 0.14505 8000000 1255016 159306 0.156877
400000 58459 14944 0.146148 9000000 1414783 159767 0.157198
500000 73565 15106 0.14713 10000000 1574973 160190 0.157497
600000 88828 15263 0.148047 20000000 3184111 1609138 0.159206
700000 104062 15234 0.14866 30000000 4804331 1620220 0.160144
800000 119302 15240 0.149128 40000000 6430224 1625893 0.160756
900000 134758 15456 0.149731 50000000 8060163 1629939 0.161203
1000000 150232 15474 0.150232 60000000 9694467 1634304 0.161574
2000000 305290 155058 0.152645 70000000 11330312 1635845 0.161862
3000000 462110 156820 0.154037 80000000 12967239 1636927 0.16209
4000000 619638 157528 0.15491 90000000 14606549 1639310 0.162295
5000000 777672 158034 0.15553 100000000 16246940 1640391 0.162469

6. Discussion

We have been able to get considerably farther than prior searches for unitary untouchables,
noncototients, and untouchables. As remarked earlier, our algorithm is essentially linear,
while the earlier methods seem to have traversed over a substantially larger search space.
The method of te Riele elaborates on an earlier method of Alanen [Ala72], and we have not
seen any other algorithms discussed.

In [tR76], te Riele suggests an interesting random model that possibly could predict the
approximate number of untouchables, in their various guises, to N . Namely, in each case,
one might compute the number M(N) of integers that the functions s∗, sϕ, s take to even
numbers in [1, N ]. Assuming randomness, the number of even numbers not touched would
be about 1

2
N(1 − 1/N)M(N). This is an appealing thought, and it should be remarked that

via the continuity of the distribution functions for σ∗(n)/n, ϕ(n)/n, and σ(n)/n, in each
case, we have M(N) ∼ cN for a positive constant c that is appropriate for the particular
function. (In the case of s∗ one needs to add in N/ log 2 to what the distribution-function
argument gives, coming from the density-0 set of integers 2wp.) te Riele found that when
N = 20,000, the number of even untouchables is 2565, compared with a prediction of 2610.
For unitary untouchables, the number of even ones is 157 compared with a prediction of 90.

We have worked out this computation at N = 108. In the case of s∗, we found that there
are 290,100,230 numbers n with s∗(n) even and at most 108. This suggests that there are
about

1

2
108

(

1− 2

108

)290,100,230

≈ 151,075

unitary untouchables to 108 compared with the actual number of 1,028,263. Thus, the
heuristic model seems not too good for unitary untouchables.

It is better for noncototients. In the case of sϕ, there are 85,719,597 values of n with sϕ(n)
even and at most 108. This would suggest that there are about

1

2
108

(

1− 2

108

)85,719,597

≈ 9,003,659
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noncototients to 108, compared with the actual number of 11,355,049.
It is better still for untouchables. There are 62,105,426 values of n with s(n) even and at

most 108. The model suggests then that there are about

1

2
108

(

1− 2

108

)62,105,426

≈ 14,433,734

untouchables to 108, compared with the actual number of 16,246,940.
We record some open problems. The data suggest that in all the cases we considered,

the density exists. Can this be proved? Is there a positive proportion of even numbers
are touchable? The same question for cototients. Can one prove that the lower density of
noncototients is positive?
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