
A New Form of Humor
Mapping Constraint-Based Computational Morphologies

to a Finite-State Representation

Attila Novák

MTA-PPKE Hungarian Language Technology Research Group and
Pázmány Péter Catholic University, Faculty of Information Technology

50/a Práter street, 1083 Budapest, Hungary
novak.attila@itk.ppke.hu

Abstract
MorphoLogic’s Humor morphological analyzer engine has been used for the development of several high-quality computational
morphologies, among them ones for complex agglutinative languages. However, Humor’s closed source licensing scheme has been
an obstacle to making these resources widely available. Moreover, there are other limitations of the rule-based Humor engine: lack of
support for morphological guessing and for the integration of frequency information or other weighting of the models. These problems
were solved by converting the databases to a finite-state representation that allows for morphological guessing and the addition of
weights. Moreover, it has open-source implementations.

Keywords: morphological analysis, finite-state morphology, morphological guessing

1. Introduction
MorphoLogic’s Humor (’High speed Unification MOR-
phology’) morphological analyzer engine (Prószéky and
Kis, 1999) has been used for the development of several
high quality computational morphologies. These include
ones for agglutinating languages, such as Hungarian and
other members of the Uralic language family: Komi, Ud-
murt, Lowland Mari, Northern Mansi and two Khanty di-
alects. Furthermore, it has been used to create morpholo-
gies for several Indo-European languages including Pol-
ish, English, German, French and Spanish. Most of these
resources were created using a morphological description
development environment that can generate the resources
used by the analyzer engine from a feature-based human-
readable description that contains no redundant information
and is thus easy to maintain (Novák, 2008).
However, one aspect of morphological processing is not
covered by the original Humor implementation. It does not
support a suffix-based analysis of word forms whose stem
is not in the stem database of the morphological analyzer.
The system cannot be easily modified to add this feature.
Such a morphological guesser would be a very useful tool,
because every corpus of natural language text contains a
significant amount of words with novel stems.
Moreover, integration and appropriate usage of frequency
information, as would be needed by data-driven statistical
approaches to text normalization (e.g. automatic spelling
error correction or speech recognition), is not possible
within the original Humor system. Being able to create
a statistical model could also be useful when building an
unknown-word guesser, since this could provide a natural
way of ranking weakly constrained guessed analyses.
A third factor that can be mentioned here is that Humor’s
closed-source licensing scheme has been an obstacle to
making these resources widely available.
The problems above could be solved by converting the mor-

phological databases to a representation that can be com-
piled and used by finite-state morphological tools.
The structure of this paper is as follows. First we introduce
the Humor morphological analyzer and the morphological
grammar formalism that we used to create and maintain
Humor morphological databases. This is followed by a
brief description of the Xerox finite-state tools and formal-
ism, which we used as a target representation when con-
verting our morphologies. Then we describe how various
components of Humor morphological databases were con-
verted to a finite-state representation. We show that sig-
nificant analysis speed benefits can be obtained by convert-
ing the original Humor databases to finite-state transducers,
although this also results in a significant increase of run-
time (and compile-time) memory requirements. The paper
is concluded by a short section on the implementation of
morphological guessing and a final section on further prob-
lems to solve.

2. The Humor morphological analyzer
The Humor analyzer performs a classical ’item-and-
arrangement’ (IA)-style analysis, where the input word is
analyzed as a sequence of morphs. Each morph is a spe-
cific realization (an allomorph) of a morpheme.
The word is segmented into parts which have (i) a surface
form (that appears as part of the input string, the morph),
(ii) a lexical form (the ’quotation form’ of the morpheme)
and (iii) a (possibly structured) category label.
The following analyses of the Hungarian word form
Várnának contain two morphs each, a stem and an inflec-
tional suffix, delimited by a plus sign.

analyzer>Várnának
Várna[S_N]=Várná+nak[I_Dat]
vár[S_V]=Vár+nának[I_Cond.P3]

1068

The lexical form of the stem differs from the surface form
(following an equal sign) in both analyses: the final vowel
of noun stem (having a category label [S_N]) is length-
ened from a to á, while the verbal stem (having a category
label [S_V]) differs in capitalization. In this example, the
labels of stem morphemes have the prefix S_ while inflec-
tional suffixes have the prefix I_.
The category label of stems is their part of speech, while
that of prefixes and suffixes is a mnemonic tag expressing
their morphosyntactic function. In the case of homony-
mous lexemes where the category label alone is not suf-
ficient for disambiguation, an easily identifiable indexing
tag is often added to the lexical form to distinguish the
two morphemes in the Humor databases. The disam-
biguating tag is a synonymous word identifying the mor-
pheme at hand. Using this disambiguating tag is im-
portant in the case of homonymous stems where there is
also a difference in the paradigms of the distinct mor-
phemes, especially when using the morphology to perform
word form generation. E.g. in the Hungarian database,
the word daru ‘crane’ is represented as two distinct mor-
phemes: daru_gép[N] ‘crane_machine[N]’ and
daru_madár[N] ‘crane_bird[N]’, since a num-
ber of their inflected forms differ, e.g. plural of the machine
is daruk while that of the bird is darvak.
The same formalism was used to distinguish all homony-
mous/polysemic stems in the morphological databases cre-
ated for the other Uralic languages. These tags could be
used to assign glosses to each stem unambiguously. Thus
the output of the morphology could be used directly to cre-
ate word sense disambiguated corpora with an interlinear
annotation in a semi-automatic manner. The automatic an-
notation of the texts was checked and corrected manually.
A snapshot of the web-based manual annotation tool can
be seen in Figure 1, with the fragment of a Northern Mansi
text with trilingual glossing.

Figure 1: Snapshot of a manual disambiguation tool
used for morphosyntactic and lexical semantic disam-
biguation. The fragment is in Northern Mansi with
Hungarian–English–German glossing and Hungarian and
English translations.

When doing morphological analysis, the program performs
a depth-first search on the input word form for possible
analyses. It looks up morphs in the lexicon the surface
form of which matches the beginning of the yet unanalyzed
part of the input word. The lexicon may contain morph se-

quences, i.e. ready-made analyses for irregular forms of
stems or suffix sequences, which can thus be identified by
the analyzer in a single step.
Two kinds of checks are performed at each morph lookup
step: a local compatibility check of the next morph with the
previous one and a global word structure check on each lo-
cally compatible candidate morph by traversing a determin-
istic extended finite-state automaton (EFSA) that describes
possible word structures.
The lexical database of the Humor analyzer consists of an
inventory of morpheme allomorphs, the word grammar au-
tomaton and two types of data structures used for the lo-
cal compatibility check of adjacent morphs. One of these
are continuation classes and binary continuation matrices
describing the compatibility of those continuation classes.
The other are binary vectors of properties and requirements.
Each morph has a continuation class identifier on both its
left and right hand sides, in addition to a right-hand-side bi-
nary properties vector and a left-hand-side binary require-
ments vector. The latter may contain don’t care positions.
A sample of Humor representation of morphs can be seen
in Figure 2 below.
Local compatibility check is performed as follows: a morph
(typically a suffix) may be attached to another morph
(typically a stem) if the right-hand-side properties of the
stem match the left-hand-side requirements of the suffix,
by checking both compatibility of the continuation matrix
codes and matching of the corresponding binary vectors.
Multiple binary continuation matrices can be defined; e.g. a
different matrix for verbs and other stems. The gross size of
matrices can thus be reduced by eliminating empty regions
that would necessarily be there if a single matrix were used.
The matrix to be used for compatibility check is selected
using a subset of the binary properties of the left-hand-side
(stem) morph.
The word grammar automaton used to check overall
word structure may have extra binary state variables in
addition to its main state variable, which can be used
to handle non-local constraints within the word without
an explosion of the size of the automaton. An exam-
ple of such a non-local constraint is related to the way
superlatives are marked in Hungarian. Superlative is
expressed by a combination of two morphemes: the
superlative prefix leg- and the comparative suffix -bb. In
general, a word form that contains a superlative prefix
without the comparative suffix licensing it later within the
word is ill-formed1. However, quite a few morphemes
may intervene, e.g. leg[Sup]+isten+tagad+ó+bb[Cmp]
SUP+God+deny+V>Adj+CMP, ‘the most atheist’.
Similarly, verbal prefixes can either stand on their
own or they must be followed by a verbal stem or a
verb-forming suffix somewhere within the word, e.g.
be[VPfx]+zebra+csı́k+oz[N>V] in+zebra+stripe+N>V
‘to make sg. zebra striped’.
An example of the word grammar automaton formalism is
presented in Figure 3. This fragment of the Hungarian word
grammar shows the non-final state N2 of the automaton

1There are a few stems that license the superlative prefix them-
selves, such as utolsó ‘last’: leg+utolsó ‘the very last’ is a well-
formed Hungarian word.

1069

kutya,#599,1000000100100100,#48,.0..............,kutya,S_N
kutyá,#916,1000000100100100,#48,.0..............,kutya,S_N

t, #738,0010000000000000,#34,10......0.......,t, I_ACC
at, #738,0010000000000000,#37,10.0..1.1.......,at, I_ACC
et, #738,0010000000000000,#37,10.1..1.1.......,et, I_ACC
ot, #738,0010000000000000,#37,10.0..0.1.......,ot, I_ACC
öt, #738,0010000000000000,#37,10.11.0.1.......,öt, I_ACC

Figure 2: Humor representation of the allomorphs of the Hungarian stem morpheme kutya ‘dog’ and those of the accusative
suffix. The fields separated by commas are the following: surface form, right-hand-side continuation class, right-hand-
side binary properties vector, left-hand-side continuation class, left-hand-side binary requirements vector, lexical form,
morphosyntactic tag

reached when the final member of a nominal compound has
been encountered. In this state, inflections (the arc labeled
inf) may follow in addition to various derivational suf-
fixes. When the inflection arc is traversed, the cleared state
of two flags is checked: there must not have been either a
dangling verbal prefix or a dangling superlative prefix in the
word. When encountering a comparative ndercmp2 or a
verbalizer suffix vder, the respective flag (sup or vpfx)
is cleared.

#right compound member encountered
N2:
inf -> END ?{0.0} #?{!sup !vpfx}
119sfx -> ADJ ={1...} #={lcase}
nder-119 -> N2 ={1...} #={lcase}
ndercmp -> ADJ ={10..} #={lcase !sup}
nder2_adj ->ADJ
nder2 -> N2
vder -> V ={1..0} #={lcase !vpfx}

Figure 3: Fragment of the Hungarian word grammar au-
tomaton – non-final state N2.

In addition, the morphological database of the Humor an-
alyzer contains a mapping from right-hand-side property
vectors to sets of possible morphological category labels,
which are used as arc labels in the word grammar automa-
ton, such as inf, ndercmp or vder in Figure 3. The
lookup and local compatibility check of each morph in the
word form is followed by a move in the word grammar au-
tomaton. The move is possible if, at the current state of
the automaton, there is an outgoing arc labeled by one of
the morphological category labels to which the right-hand-
side property vector of the currently looked up morph is
mapped. At the end of the word, the automaton must be in
final state for the current analysis to be acceptable.
The database would be difficult to create and maintain di-
rectly in the format used by the analyzer, because it con-
tains redundant and hard-to-read low-level data structures.
To avoid these problems, a higher-level morphological de-
scription formalism and a development environment were
created that facilitate the creation and maintenance of the
morphological databases (Novák, 2008). All Humor mor-
phologies built after the creation of the development envi-

2A comparative suffix may be attached to nouns in Hungarian.

ronment were developed using this higher-level formalism.
A morphological description created using the higher-level
formalism consists of morpheme-inventories that contain
only unpredictable features of morphemes and rules that in-
troduce all redundant features and generate allomorphs of
each morpheme. The morpheme database may also contain
irregular allomorphs. Figure 4 shows some entries from the
high-level stem database.

kutya[N];
fa+kutya[N];
vad+kutya[N];
föld@i+kutya[N];

...
Balzac[N];phon:balzak;
...
bokor[N];stemalt:VZA;
málna+bokor[N];
orgona+bokor[N];
rózsa+bokor[N];

...
hát[N];rp:LOW;
barát[N];rp:=Ai;

only lemma and PoS tag for regular words

closed stem alternation class

irregular phonetic form

segmentation of compounds
triggers inheritance

unpredictable properties

Figure 4: Entries in the high-level stem database.

Figure 5 below shows an example of the rule formalism
used to infer properties of morphemes and restrictions they
impose on their neighbors and generate allomorphs and set
their properties and restrictions. The rule in this example
generates allomorphs of a/e-final nouns, adjectives and nu-
merals. The final vowel of such words is lengthened when
one of a group of suffixes is attached to them. Suffixes
that trigger lengthening have the property FVL (final vowel
lengthening). Others do not have this property. The rule
checks that the pronounciation of the word is also a/e-final
(otherwise there is no lengthening). Then it generates an
allomorph that is identical to the lemma and another one
with the final vowel lengthened. The identical allomorph
constrains morphs on their right not to have the FVL prop-
erty. The lengthened allomorphs, on the other hand, require
them to have that property.
The high-level human-readable description is transformed
by the system to a redundant but still human-readable allo-
morph database by applying the rules to the morpheme de-
scriptions. This is then transformed to the low-level repre-
sentations of the analyzer using an encoding definition de-

1070

#final vowel lengthening:
#kutya -> kutyá, eke ->eké
root:/[ae]\+*$/&&phon:/[ae]\+*$/
+;!FVL;;
+/a(?=\+*$)/á/;FVL;;
+/e(?=\+*$)/é/;FVL;;

Figure 5: Fragment of the Hungarian rule grammar: a rule
generating allomorphs of Hungarian final vowel lengthen-
ing stems.

scription. This defines how each high-level feature should
be encoded for the analyzer. Certain features are mapped to
binary properties while the rest determine the continuation
matrices, which are generated by the system dynamically.
In the following sections, we describe our approach to open
up new possibilities for using the linguistic resources cre-
ated in the Humor formalism by converting them to a finite-
state representation.

3. Finite-state morphologies
The most influential implementation of finite-state tools for
morphological processing is the xfst-lookup combo of Xe-
rox (Beesley and Karttunen, 2003). xfst is an integrated
tool that can be used to build computational morphologies
implemented as finite-state transducers. The other tool,
lookup consists of optimized run-time algorithms to imple-
ment morphological analysis and generation using the lex-
ical transducers compiled by xfst.
The formalism for describing morphological lexicons in
xfst is called lexc. It is used to describe morphemes, or-
ganize them into sublexicons and describe word grammar
using continuation classes. A lexc sublexicon consists of
morphemes having an abstract lexical representation that
contains the morphological tags and lemmas and usually
a phonologically abstract underlying representation of the
morpheme, which is in turn mapped to genuine surface rep-
resentations by a system of phonological rules.
The phonological rules can either be formulated as a se-
quential or a parallel rule system. xfst can be used to com-
pile and compose sequential rule systems with a lexc lex-
icon, yielding a single transducer mapping surface word
forms to lexical representations directly. A similar com-
piler, twolc is available for implementing parallel two-level
constraints.
The Xerox finite-state transducer implementation makes a
factorization of the state space of the transducers possible
in a manner similar to the extended word grammar automa-
ton of the Humor analyzer. The construct is called flag di-
acritics. Flag diacritics are implemented as special epsilon
arcs, traversed by the lookup algorithm without consum-
ing input. At the same time, traversal of the arc affects
the extended state of the transducer: the state of the vari-
able denoted by the flag can be checked, set or cleared by
the operation specified on the flag diacritics arc. If a flag
checking operation fails, the lookup algorithm must stop
exploring the given path in the transducer and backtrack.
Although handling of flag diacritics during lookup incurs

some speed penalty, this feature is very useful. Using flag
diacritics can help prevent the size explosion of the trans-
ducer due to long distance dependencies in the morphol-
ogy. Furthermore, it can also be used to describe constraints
between adjacent morphemes in a linguistically expressive
and easy-to-understand manner. Using an xfst-operation,
flag diacritics expressing such local constraints can often be
eliminated from the transducer gaining lookup speed bene-
fits without a significant transducer size penalty.
The Xerox tools implement a powerful formalism to de-
scribe complex types of morphological structures. This
suggested that mapping of the morphologies implemented
in the Humor formalism to a finite-state representation
should have no impediment.
However, the Xerox tools, although made freely available
for academic and research use in 2003 with the publication
of (Beesley and Karttunen, 2003), do not differ from Hu-
mor in two significant respects: a) they are closed-source
and b) cannot handle weighted models. Luckily, a few years
later quite a few open-source alternatives to xfst were de-
veloped. One of these open-source tools, Foma (Hulden,
2009), can be used to compile and use morphologies writ-
ten using the lexc/xfst formalism. Another tool, OpenFST
(Allauzen et al., 2007), is capable of handling weighted
transducers, and a third tool, HFST (Lindén et al., 2011),
can convert transducers from one format to the other and
act as a common interface above the Foma and OpenFST
backends.

4. The Humor-to-lexc conversion
As the morphological models created with the Humor for-
malism contain a full description of the morphology includ-
ing morphophonology, neither the sequential (xfst) nor the
parallel (twolc) rule component of the finite-state formal-
ism is needed for the conversion of the Humor grammars to
a finite-state representation.
The lexical form and category label of each morph is
mapped to the lexical side of the lexc representation of the
morpheme, while its surface form is mapped to the surface
side. The latter one is real surface form instead of the ab-
stract underlying phonological representation that is com-
mon in usual lexc lexicon sources. Appropriate alignment
of corresponding symbols in the lexical and surface rep-
resentations is provided by the implementation of the lexi-
con converter. Tags are represented as single multicharacter
symbols.
Local morph adjacency constraints represented as matrix
codes, continuation matrices, binary properties and require-
ments vectors can be represented directly as lexc continua-
tion classes. To simplify the mapping, a switch was added
to the piece of code in the development environment that
generates the Humor encoding. When the switch is present,
the program creates matrices that alone completely describe
all morph adjacency constraints, thus binary vectors can be
ignored. When generating the lexc representation of each
morph, the sublexicon it is to be included in is determined
by its left matrix name and code. Its continuation class is
determined by its right matrix name and code along with
its word grammar category. Figure 6 below shows some
entries from the stem database converted to their lexc repre-

1071

sentation as well as a fragment of a sublexicon representing
a row of a Humor continuation matrix. Right matrix name
and code hook back to the morpheme lexicons indexed by
their left matrix name and code through these sublexicons,
directly encoding the compatibility relations encoded in the
Humor matrices. Also note that in the representation in
Figure 6, the word kutya ‘dog’ has a different left and right
continuation class code than in the Humor lexicon fragment
shown in Figure 2. The reason for this is that the matrices
alone represent all adjacency constraints here and are thus
more complex than those in the original Humor lexicon.

LEXICON Root
<%@U%.St%.START%@>; M_n_1049;

LEXICON M_n_1049
L_n_0;
...
L_n_50;
...
L_n_61;
...

LEXICON L_n_50
...
kutya[S_N]:kutya0 R_(nstem12_%!sup_%!cmpd)_n_2263;
kutya[S_N]:kutyá0 R_(nstem12_%!sup_%!cmpd)_n_2865;

LEXICON L_n_61
...
bokor[S_N]:bok0r0 R_(nstem12_%!sup_%!cmpd)_n_2833;
bokor[S_N]:bokor0 R_(nstem12_%!sup_%!cmpd)_n_1907;
mogyoró*bokor[S_N]:mogyoró0bok0r0 R_(nstem12_%!sup_cmpd)_n_2833;
mogyoró*bokor[S_N]:mogyoró0bokor0 R_(nstem12_%!sup_cmpd)_n_1907;

root lexicon

a lexicon representing
a matrix row

class n 50 morphs (left matrix code)

lexical form

surface form word
grammar
category

right matrix code

Figure 6: Fragment of the lexc representation of converted
Humor data structures: a row of a continuation matrix and
stem allomorphs

The easiest way to map the Humor word grammar to a
finite-state representation is using flag diacritics. The main
state variable of the automaton is mapped to one flag (called
St), while the extended binary state variables to one addi-
tional generated flag each. The exact set of flag diacritics
arcs attached to the representation of each morph is deter-
mined by the word grammar category of the morph. The
sublexicon fragment at the bottom of Figure 7 illustrates
how this is implemented. Figure 7 also shows the con-
verted representation of the allomorphs of the Hungarian
accusative suffix.
Elimination of the word grammar state flag St is possible to
improve the speed of lookup on the transducer. However, it
may result in a considerable growth of the state space.
Table 1 presents a brief comparison of a version of our Hun-
garian morphology containing about 144000 morphs in the
original Humor-compiled lexicon format and the converted
version compiled by the Xerox xfst tool, with and without
the elimination of the St flag and used for analysis using the
Xerox lookup tool.

Humor lex lexc with St lexc no St
runtime mem 3.3 MB 20.6 MB 38.5 MB
lookup speed 4700 w/s 12500 w/s 33333 w/s

Table 1: Comparison of the original Humor and xfst-
compiled equivalents of a 144000-morph Hungarian lexi-
con

LEXICON L_n_121
t[I_ACC]:t0 R_(inf)_n_2557;

LEXICON L_n_172
et[I_ACC]:et0 R_(inf)_n_2557;

LEXICON L_n_302
at[I_ACC]:at0 R_(inf)_n_2557;

LEXICON L_n_342
ot[I_ACC]:ot0 R_(inf)_n_2557;

LEXICON L_n_330
öt[I_ACC]:öt0 R_(inf)_n_2557;

LEXICON R_(nstem12_%!sup_%!cmpd)_n_2865
...
@U.St.N1@@P.St.N2@@P.I.+@ M_n_2865;
@U.St.N+P@@P.St.N+P+N@ M_n_2865;

lexicon of all state
transition arcs with this
word grammar category

suffix allomorphs
(of accusative)

St: N1 → N2, set flag I

Figure 7: Fragment of the lexc representation of converted
Humor data structures: allomorphs of the Hungarian ac-
cusative suffix and a sublexicon of state transitions labeled
by the word grammar category nstem12 !sup !cmpd

Finite-state conversion results in a significant increase of
the memory footprint (>11 times) of the morphological an-
alyzer. However, it also yields a significant analysis speed
benefit (>7 times). Elimination of further flags roughly
doubles the size of the compiled lexicon for each elimi-
nated flag. It also leads to an extremely long compilation
time but it does not result in any significant speed benefit.

5. Implementing a morphological guesser
The original Humor analyzer engine is not capable of an-
alyzing word forms the stem of which is neither included
in the stem lexicon nor is covered by the compounding and
derivational model implemented in the morphology. How-
ever, the grammar defined by the rules is capable of gener-
ating a lexicon containing the proper allomorphs and prop-
erties of a set of properly formulated pseudo-stems. This
can be transformed to a guesser lexicon by substituting a
regular expression at the beginning of the pseudo-stems and
combining it with the regular affix inventory. The usual
strategy of doing lookup with the regular lexical transducer
first then defaulting to the guesser transducer can then be
used to return possible analyses for all word forms in the
input.

6. Problems
A problem that currently impedes achieving all the goals
set forth in the introduction is that although xfst correctly
compiles all lexc lexicons generated from the Humor lexi-
con sources, and they also work correctly using the Xerox
lookup utility, the open-source Foma tool fails to compile
many of them. In other cases, even if the Foma lexc com-
pilation itself succeeds, further finite-state operations fail.
This seems not to be due to bugs in the morphology con-
version but rather to bugs and limitations in Foma. Errors
range from segmentation faults to messages like Stack full.
Nevertheless, we hope that these problems will not be too
difficult to overcome.
Another problem is that even when conversion of a lexicon
is successful and we also succeed in extracting the lower

1072

language of the transducer that could be used e.g. for cor-
rection candidate generation in a spelling correction task,
the presence of flag diacritics seems to be a problem for the
Foma med (minimum error distance) algorithm, which can
normally be used to generate correction candidates. The
problem is that the med algorithm considers flag diacritics
arcs regular arcs and does not handle them properly. On the
other hand, an attempt to eliminate all relevant flags results
in unfeasibly big transducers or automata.

7. Summary
In this paper, we described an approach to open up new
possibilities for using the linguistic resources created in
the Humor morphological formalism by converting them to
a finite-state representation. The morphological databases
were converted to a representation that can be compiled and
used by finite-state morphological tools, among them ones
with open-source implementation. The finite-state repre-
sentation can be used for suffix-based morphological guess-
ing, and it provides a natural means for introducing fre-
quency data, also making composition with weighted error
models possible. Although this latter goal could not yet
be achieved due to problems with the finite-state compiler
tool we used, we are confident that these problems can be
overcome.

Acknowledgment
This work was partially supported by the grants TÁMOP-
4.2.1./B-11/2/KMR-2011-002 and TÁMOP-4.2.2./B-10/1-
2010-0014.

8. References
Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech

Skut, and Mehryar Mohri. 2007. OpenFst: A general
and efficient weighted finite-state transducer library. In
Jan Holub and Jan Zdárek, editors, Proceedings of the
Ninth International Conference on Implementation and
Application of Automata, (CIAA 2007), volume 4783
of Lecture Notes in Computer Science, pages 11–23.
Springer.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI Studies in Computational Lin-
guistics. CSLI Publications.

Mans Hulden. 2009. Foma: a finite-state compiler and li-
brary. In Alex Lascarides, Claire Gardent, and Joakim
Nivre, editors, Proceedings of EACL 2009, pages 29–32.
The Association for Computer Linguistics.

Krister Lindén, Miikka Silfverberg, Erik Axel-
son, Sam Hardwick, and Tommi Pirinen, 2011.
HFST—Framework for Compiling and Applying Mor-
phologies, volume Vol. 100 of Communications in
Computer and Information Science, pages 67–85.

Attila Novák. 2008. Language resources for Uralic minor-
ity languages. In Proceedings of the SALTMIL Workshop
at LREC-2008: Collaboration: Interoperability between
People in the Creation of Language Resources for Less-
resourced Languages, pages 27–32.

Gábor Prószéky and Balázs Kis. 1999. A unification-based
approach to morpho-syntactic parsing of agglutinative

and other (highly) inflectional languages. In Proceedings
of the 37th annual meeting of the Association for Compu-
tational Linguistics on Computational Linguistics, pages
261–268. Association for Computational Linguistics.

1073

