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Abstract
In this paper we present a system for experimenting with combinations of dependency parsers. The system supports initial training
of different parsing models, creation of parsebank(s) with these models, and different strategies for the construction of ensemble
models aimed at improving the output of the individual models by voting. The system employs two algorithms for construction of
dependency trees from several parses of the same sentence and several ways for ranking of the arcs in the resulting trees. We have
performed experiments with state-of-the-art dependency parsers including MaltParser (Nivre et al., 2006), MSTParser (McDonald,
2006), TurboParser (Martins et al., 2010), and MATEParser (Bohnet, 2010), on the data from the Bulgarian treebank – BulTreeBank.
Our best result from these experiments is slightly better then the best result reported in the literature for this language (Martins et al.,
2013).
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1. Introduction
Training dependency parsing models for a given language
is an easy task if there exists a treebank for it. The main
challenge is to construct the best possible parser exploit-
ing the current available technology. Besides using one
of the growing number of available parsers, one generally
has two paths of improving: (1) developing a new frame-
work for parsing; or (2) combining the strengths of existing
ones. Since the first option is a challenge for most of the
groups, we decided to build a system which would support
researchers to cope with the second one. Here we present
a system for experimenting with different parsing models
and combining their outputs in an attempt to obtain better
final results.
Our focus on ensemble models for parsing is motivated by
a number of works like (McDonald and Nivre, 2007) and
our previous experiments with MaltParser and MSTParser
(Simov et al., 2013) which have shown the usefulness of
this technique. In our original experiment we trained four-
teen different parsing models using two of the most popular
parsing systems: MaltParser and MSTParser. For this task
we experimented with different parsing algorithms and sets
of features. The result was a parsebank containing four-
teen versions of the original treebank produced by each of
the models. We used this parsebank for experimenting with
methods for combining the outputs of different parsers. The
choice of method was influenced by questions like: whether
we would like to have complete dependency trees or also
partial trees are acceptable; how the alternative arcs for a
given node are selected - voting or machine-learning ap-
proaches; which measure we would like to improve (global
for the whole tree or local for some subtrees).
The experience gained during these experiments was used
for implementing a system to facilitate the whole process.
For testing the system we have trained new models using
MSTParser, TurboParser, and MATEParser. A combina-
tion of the new seven models and the existing fourteen was
used to carry out the new voting experiments reported here.
The best parser combination we obtained performs compa-

rably to the best dependency parsing results for Bulgarian
reported in literature.
The structure of the paper is as follows: first we report on
the construction of a parsebank of parses; then we present
the techniques for combining parsing models via voting and
machine learning; in section 4 we describe a system which
performs all experiments via parameters we identified dur-
ing combination of parsers. The last section concludes the
paper.

2. Preliminary Experiments on Bulgarian
Dependency Parsing

In this section we present the initial experiments we per-
formed in order to assemble different parsing models for
Bulgarian. Our work is inspired by the in-depth analy-
sis of performance of two of the most influential depen-
dency parsing models: transition-based and graph-based,
presented in (McDonald and Nivre, 2007). This analy-
sis shows that the two frameworks make different errors
on the same training and test datasets. The authors con-
clude the paper by proposing three approaches for using
the advantages of both frameworks: (1) Ensemble systems
– weighted combinations of both systems’ outputs; (2) Hy-
brid systems – design of a single system integrating the
strengths of each framework; and (3) Novel approaches
– based on a combination of new training and inference
methods. In their further work (see (Nivre and McDonald,
2008)) the authors present a hybrid system that combines
the two models. The work presented in the paper is along
the lines of their first suggestion – a system to facilitate the
integration of the outputs of several parsing models.

2.1. Parser Models and Extension of the Treebank
The data used throughout our experiments consists of the
dependency conversion1 of the HPSG-based Treebank of
Bulgarian – the BulTreeBank. This data set contains non-
projective dependency trees, which are more suitable for

1www.bultreebank.org/dpbtb/
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MLT01 MLT02 MLT03 MLT04 MLT05 MLT06 MLT07
LAS 0.835 0.788 0.843 0.809 0.825 0.820 0,863
UAS 0.842 0.887 0.860 0.869 0.869 0.886 0.899

MLT08 MLT09 MLT10 MLT11 MLT12 MST01 MST02
LAS 0.848 0.871 0.844 0.851 0.847 0.852 0.828
UAS 0.890 0.908 0.886 0.887 0.888 0.898 0.872

MST03 MST04 MST05 MST06 TURBO01 TURBO02 MATE01
LAS 0.85 0.849 0.858 0.856 0.885 0.888 0.891
UAS 0.902 0.901 0.911 0.91 0.924 0.927 0.929

Table 1: Average LAS and UAS scores from the 10-fold cross validation for each of the tested parsing models.

describing the relatively free word order of Bulgarian sen-
tences.
Initially we used it to train 12 models using MaltParser
(Nivre et al., 2006) with different parsing algorithm settings
and features, and two models with MSTParser (McDonald,
2006) with two different sets of features.
We evaluated each parsing model using 10-fold cross vali-
dation. The treebank was divided into 10 parts, and each
model was trained using 90% of the data and tested on
the remaining 10% for each of the 10 data partitions. The
trained model was applied on the corresponding test set for
evaluation purposes, but also the predicted parses for each
sentence were stored. In this way, for each model we con-
structed a treebank of the suggested parses. At the end we
had the original treebank plus fourteen treebanks of parses
– the parsebank.
For the MSTParser models we selected the two best per-
forming models on average with major difference in the
scope of features. The first model uses features over a sin-
gle edge, while the second one uses features over pairs of
adjacent edges. The rest of the parameters were chosen for
the parser’s optimal labeled and unlabeled accuracy, on av-
erage: features for MST01 model: loss-type: punc; second-
order: false; training-iterations: 15; trainingk: 1; decode-
type: non-proj; create-forest: true; for MST02 model: loss-
type: punc; second-order: true; training-iterations: 15;
trainingk: 1; decode-type: non-proj; create-forest: true.
For MaltParser we chose the following three algorithms:
Covington non-projective, Stack Eager and Stack Lazy.
According to the Covington algorithm, each new token is
attempted to be linked to the preceding token. In our study,
we configured the Covington model with root and shift op-
tions set to true. During the parsing process, the root could
be treated as a standard node and attached with a RightArc
transition. The option Shift = true allows the parser to skip
remaining tokens in Left. The Stack algorithms use a stack
and a buffer, and produce a tree without post-processing
by adding arcs between the two top nodes on the stack.
Via a swap transition, we obtain non-projective dependency
trees. The difference between the Eager algorithm and the
Lazy algorithm is the time when the swap transition is ap-
plied (as soon as possible for the first algorithm and as long
as possible respectively for the second one). The execution
of algorithms with LIBLINEAR method is faster than al-
gorithms with LIBSVM method and results are better. On

the basis of these six models we constructed additional six
ones by extending the set of node features.
Table 1 contains the average Labeled Attachment Scores
(LAS) and Unlabeled Attachment Scores (UAS) for the
fourteen models obtained in the 10-fold cross validation
(MLT01-MLT12 and MST01-MST02).

2.2. Combining Parses by Voting

We use two algorithms for the construction of a single de-
pendency tree from all parser models’ predictions.
The first algorithm, denoted LocTr, is reported in (Attardi
and Dell’Orletta, 2009). It constructs the dependency tree
incrementally starting from an empty tree and then select-
ing the arc with the highest weight that could extend the
current partial tree. The algorithm chooses the best arc lo-
cally.
The second algorithm, denoted GloTr, is the Chu-Liu-
Edmonds algorithm for maximal spanning tree imple-
mented in the MSTParser (McDonald, 2006). This algo-
rithm starts with a complete dependency graph including
all possible dependency arcs. Then it selects the maximal
spanning tree on the basis of the weights assigned to the
potential arcs. The arcs that are not proposed by any of the
parsers are deleted. The algorithm is global with respect to
selection of arcs.
These two voting algorithms are included in our system for
experiments with dependency parsers. The user can specify
which one should be used in their experiments, or alterna-
tively compare the performance of both.
We investigated three voting settings: (1) the arcs in the
dependency tree are ranked by the number of the parsers
that predicted them; (2) the arcs are ranked by the sum of
UAS measures for all parsers that predicted them; and (3)
the arcs are ranked by the average of the UAS measures of
the parsers that predicted them.
We ran both algorithms (LocTr and GloTr) for construc-
tion of dependency trees on the basis of combinations of
dependency parses over results from all models and only
for some of the models. Although the results are not drasti-
cally different, they show that combining only a few of the
models could give better results. Table 2 shows the results
from combining all models and the best combinations for
3, 4 and 5 models.
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Models Algorithm Rank01 Rank02 Rank03
Number Sum Average

LAS UAS LAS UAS LAS UAS
All LocTr 0.856 0.919 0.857 0.921 0.788 0.843

GloTr 0.869 0.919 0.873 0.921 0.779 0.837
MLT08, LocTr 0.876 0.920 0.878 0.922 0.844 0.885

MLT09, MLT11 GloTr 0.873 0.920 0.873 0.922 0.827 0.886
MLT07, MLT08, LocTr 0.872 0.918 0.877 0.922 0.830 0.871
MLT09, MLT11 GloTr 0.846 0.898 0.847 0.909 0.828 0.884
MLT07, MLT08, LocTr 0.875 0.923 0.875 0.924 0.828 0.872

MLT09, MLT11, MST01 GloTr 0.876 0.923 0.877 0.924 0.821 0.870

Table 2: Voting using algorithms LocTr and GloTr for tree construction.

Models Algorithm Rank01 Rank02 Rank03
Number Sum Average

LAS UAS LAS UAS LAS UAS
All LocTr 0.862 0.929 0.863 0.929 0.819 0.878

GloTr 0.8921 0.9288 0.8922 0.9289 0.8384 0.8716
MLT07, MLT09, MATE01, Turbo02 LocTr 0.893 0.933 0.897 0.936 0.883 0.921

GloTr 0.9016 0.9330 0.9054 0.9363 0.8896 0.9199
MLT01, MLT09, MATE01, Turbo02 LocTr 0.89 0.932 0.894 0.936 0.882 0.922

GloTr 0.8997 0.9322 0.9049 0.9359 0.8900 0.9199
MLT01, MLT03, MST01, MST04 LocTr 0.858 0.906 0.85 0.897 0.847 0.893

GloTr 0.8634 0.9037 0.8526 0.8968 0.8493 0.8934
MLT09, MST03, MST01, MST04 LocTr 0.869 0.914 0.871 0.916 0.88 0.924

MST06, Turbo01, Turbo02 GloTr 0.8711 0.9138 0.8742 0.9161 0.8826 0.9229
MLT02, MLT08, MST04 LocTr 0.817 0.86 0.825 0.87 0.849 0.894

GloTr 0.8187 0.86 0.8281 0.8701 0.8508 0.8945

Table 3: Voting using algorithms LocTr and GloTr for tree construction with the new models.

2.3. Combining Parses by Machine Learning
We conducted two experiments where machine learning
techniques were used for ranking the arcs suggested by the
different parsing models. This was done with the help of
the package RandomForest2 of the system R3. The parse-
bank was once again divided into training and test parts in
the same proportion: 90% and 10%.
Our goal was to evaluate each arc as correct or incorrect
for a given context. Each arc (Arc or ArcN) was modeled
by three features: relation (Rel), distance in words to the
parent node (Dist) and direction of the parent node (Dir):
Left, the parent node is on the left, and Right the parent
node is on the right. The features for each word (Word)
include: the word form (WF), lemma (Lemma), morphosyn-
tactic tag (POS).
For the first experiments we have used all the arcs for a
given word as a context and the trigrams around the word
and the parent word.
The tuples generated from the training part of the tree-
bank were used to train the RandomForest in regression
mode, then the model was applied to test set to rank each
arc. These weights were used by the algorithms LocTr and
GloTr. The results are presented in Table 4.
In the second experiment the candidate arc was evaluated
within the context of one alternative arc for a word.
All sub-vectors are the same except that as a context we use

2http://cran.r-project.org/web/packages/randomForest/
randomForest.pdf

3http://www.r-project.org/

one arc ArcAlt and the grammatical features for its parent
node: AltParentPOS. Some of the arcs could receive more
than one weight because each arc could have more than one
alternative. We used these weights to define three models:
(1) prefer as a weight the maximum of the weights; (2) pre-
fer as a weight the minimum of the weights; and (3) assign
as a weight the multiplication of the weights. The results
from this experiment are presented in Table 5.
These results show that machine learning can be applied
successfully for improving the voting models. The results
also show the difference between the two combining algo-
rithms (LocTr and GloTr).

3. System for Experiments with Dependency
Parsers

The results reported above show that there does not exist
yet one good approach to parsing combinations. The per-
formance of an ensemble model depends on the following
parameters: the initial parsing models; the algorithms for
selection of arcs (in our case LocTr and GloTr); the se-
lections of ranks for the alternative arcs - via voting or via
machine learning; and the number of the combined models.
The search for optimal solution becomes unfeasible with
so many parameters. For example, for the fourteen models
only the possible combinations between them amount to
16369. This motivated us to implement a system which
provides facilities for the following tasks:

• Treebank declaration. A treebank as a set of one
or more files in CoNLL 2006 Shared Task format is
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Model Algorithm LAS UAS
MLearn14 LocTr 0.859 0.92
MLearn14 GloTr 0.896 0.925

Table 4: Results for the first experiment with RandomForest.

Model Algorithm MinRank MaxRank MultRank
LAS UAS LAS UAS LAS UAS

MLearn01 LocTr 0.844 0.903 0.843 0.902 0.828 0.887
MLearn01 GloTr 0.899 0.929 0.897 0.926 0.886 0.915

Table 5: Results for the second experiment with RandomForest.

provided. Additional columns could be added after
the original columns. The treebank is named within
the system. A partitioning of the data into N sets
of approximately equal length is performed (if de-
sired) in one of three possible ways: (1) sentences
from the original data set are assigned to N data sets
in consecutive order (sentence1 is assigned to set1,
sentence2 to set2, etc.), (2) sentences are assigned ran-
domly to the N data sets, or (3) the data is split into
data sets by preserving the original order of the sen-
tences (sentence1 to sentencem are assigned to set1,
sentencem+1 to sentencem+n are assigned to set2, etc).

• Training of initial parsing models. For the moment
we provide access to the four parsers. The user has the
possibility to provide the name of the parser, the fea-
tures to be used and the specific treebank to be used
for training and testing if there is more than one tree-
bank. The model is trained on each of the training part
and applied on the test part and evaluated. The result
is stored in the parsebank. Thus, at the end we have
the average value of the scores (LAS and UAS) and
the parsebank itself.

• Ranking of arcs. This part contains a simple rule
language where for a given arc it determines its
rank. The rule is described in the following for-
mat: If context(Arc) then r(Arc) = f (Arc), where
context(Arc) is a simple conjunction of elementary
predicates like pos(Arc) = string; f (Arc) returns a
real number. The function f (Arc) is an expres-
sion over elementary functions and could contain
calls to external programs like machine learning sys-
tems. The rules are working in the following way: if
context(Arc) is true, then the value returned by f (Arc)
is stored as a ranking for this arc. The rules can be
grouped together in named lists. The rules in the list
are applied in sequence and the value from the first ap-
plied rule is stored as a rank for the arc. In this way we
could rank the whole treebank for each list. The ranks
are used for combination of parsers. Training of ma-
chine learning systems for ranking is not incorporated
in the system yet.

• Combination of models. To perform a combination
experiment the user needs to specify the treebank, the
list of models to be combined, the ranking model,
the algorithm for selection of arcs. On the basis of

these parameters the system enumerates all the possi-
ble combinations, evaluates each of them, and gener-
ate the results for error analysis. In this way the user
could find the best combination for his/her task.

Having this functionality we are able to reproduce all the
experiments reported above. In addition, when more data
becomes available we will be able to perform similar ex-
periments for it in two ways: (1) by using the same param-
eters with the new data; (2) by combining models trained
on different datasets.

4. New Experiments
In order to extend the coverage of the experiments to in-
clude other parsing systems and to try to achieve a better
overall result we have trained several new parsing models
and added them to the previous ones.
Four new MST parsing models were trained in addition to
the two available ones. The new models differ from the
existing ones in the choice of number of iterations and or-
der of features: MST03 (order:1, iters:10), MST04 (or-
der:1, iters:20), MST05 (order:2, iters:10), the best per-
forming MST model in our experiments, and MST06 (or-
der:2, iters:20).
Two models were trained using the TurboParser, which dif-
fer mainly in the complexity of features used during train-
ing. The default training option model type=standard was
chosen for model Turbo01. It includes the options: enable
arc-factored parts, consecutive sibling parts, and grandpar-
ent parts. Turbo02 has been trained with a more com-
plex setting model type=full. It includes the options of
Turbo01 and in addition enables arbitrary sibling parts,
non-projectivity parts, grand-sibling third-order parts, and
tri-sibling third-order parts.
In addition, a model was trained with the default settings of
MATEParser (training-iterations=10, threshold=0.3).
The results from the 10-fold cross validation for the new
models are presented in Table 1. Most of the new models
outperform the old ones in terms of LAS and UAS scores.
The best performing model is MATE01, with 92.9% UAS
and 89.1% LAS, followed by TURBO02 with 92.7% UAS
and 88.8% LAS.
The possible combinations of all 21 parser models are more
than 2 million. Here we will list some of the results we ob-
tained. They represent the best results, the worst results
and some average results. Also the results for the combina-
tion of all models and for one of the minimal combinations.
The conclusion is that the size of the combination does not
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predict the best result of the ensemble model although the
combinations with size around the middle (12-13 in our
case) tend to have better results. The initial expectations
on the basis of the previous experiments were that Rank2
(sum) would always be better that Rank1 (number), but the
combination MLT01, MLT03, MST01, MST04 constitutes
a contra example. The best results are LAS 0.9054 and
UAS 0.9363 (see Table 3).
We are still working on extending the system to incorporate
the machine learning module which we have previously ex-
perimented with. Therefore currently we only present re-
sults with the other voting techniques.

5. Conclusion and Future Work
In this paper we presented several approaches for combin-
ing parses produced by several parsing models. These ap-
proaches include three types of voting and two machine
learning approaches. Also, for the construction of the com-
bined trees we used two different algorithms – one perform-
ing local optimization and one performing global optimiza-
tion.
On the basis of the experience we gained during our ex-
periments we implemented a first version of a system to
support the user in the design and implementation of such
combination setups.
In future, we will extend the system with direct interaction
with machine learning frameworks like R or Weka. Also,
we are planing to extend the system for creation of web
services for selected combination via the Storm framework.
It is a distributed realtime computation system4 for actual
implementation of running selected models in parallel.
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