A Novel Tri-Axial Piezoelectric MEMS Accelerometer with Folded Beams
Abstract
:1. Introduction
2. Structural Design
3. Theoretical Model and Simulation
3.1. Theoretical Model
- Voltage sensitivity of z-axis
- Voltage sensitivity of y-axis
- Voltage sensitivity of x-axis
3.2. Simulation
4. Fabrication and Measurement
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shanmugavel, S.; Yao, K.; Luong, T.D.; Oh, S.R.; Chen, Y.; Tan, C.Y.; Gaunekar, A.; Ng, P.H.Y.; Li, M.H.L. Miniaturized acceleration sensors with in-plane polarized piezoelectric thin films produced by micromachining. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 2289–2296. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, M.; Si, C.; Han, G.; Ning, J.; Yang, F.; Wang, X. A T-Shape Aluminum Nitride Thin-Film Piezoelectric MEMS Resonant Accelerometer. J. Microelectromech. Syst. 2019, 28, 776–781. [Google Scholar] [CrossRef]
- Tsai, C.C.; Chien, Y.C.; Hong, C.S.; Chu, S.Y.; Wei, C.L.; Liu, Y.H.; Kao, H.Y. Study of Pb (Zr0.52Ti0.48) O3 microelectromechanical system piezoelectric accelerometers for health monitoring of mechanical motors. J. Am. Ceram. Soc. 2019, 102, 4056–4066. [Google Scholar] [CrossRef]
- Ai, C.; Zhao, X.; Li, S.; Li, Y.; Bai, Y.; Wen, D. Fabrication and Characteristic of a Double Piezoelectric Layer Acceleration Sensor Based on Li-Doped ZnO Thin Film. Micromachines 2019, 10, 331. [Google Scholar] [CrossRef] [Green Version]
- Ramany, K.; Shankararajan, R.; Savarimuthu, K.; Elumalai, P.; Rajamanickam, G.; Narendhiran, S.; Perumalsamy, R. Experimental Study of Different Vanadium Dopant Concentrations in ZnO Nanorods for a Low Frequency Piezoelectric Accelerometer. J. Electron. Mater. 2019, 48, 5310–5322. [Google Scholar] [CrossRef]
- Gesing, A.L.; Masson, Z.N.; Arellano, D.C.; Alves, F.; Paul, S.; Cordioli, J.A. Middle ear ossicular chain vibration detection by means of an optimized MEMS piezoelectric accelerometer. IEEE Sens. J. 2018, 19, 2079–2086. [Google Scholar] [CrossRef]
- Gupta, N.; Pandey, A.; Vanjari, S.R.K.; Dutta, S. Influence of residual stress on performance of AlN thin film based piezoelectric MEMS accelerometer structure. Microsyst. Technol. 2019, 25, 3959–3967. [Google Scholar] [CrossRef]
- Xu, M.-H.; Zhou, H.; Zhu, L.-H.; Shen, J.-N.; Zeng, Y.-B.; Feng, Y.-J.; Guo, H. Design and fabrication of a D 33-mode piezoelectric micro-accelerometer. Microsyst. Technol. 2019, 25, 4465–4474. [Google Scholar] [CrossRef]
- Fei, C.; Liu, X.; Zhu, B.; Li, D.; Yang, X.; Yang, Y.; Zhou, Q. AlN piezoelectric thin films for energy harvesting and acoustic devices. Nano Energy 2018, 51, 146–161. [Google Scholar] [CrossRef]
- Gerfers, F.; Kohlstadt, M.; Bar, H.; He, M.-Y.; Manoli, Y.; Wang, L.-P. Sub-μg ultra-low-noise MEMS accelerometers based on CMOS-compatible piezoelectric AlN thin films. In Proceedings of the TRANSDUCERS 2007—2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007; pp. 1191–1194. [Google Scholar]
- Akiyama, M.; Kano, K.; Teshigahara, A. Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl. Phys. Lett. 2009, 95, 162107. [Google Scholar] [CrossRef]
- Morito, A.; Toshihiro, K.; Kazuhiko, K.; Akihiko, T.; Yukihiro, T.; Nobuaki, K. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 2009, 21, 593–596. [Google Scholar] [CrossRef]
- Mayrhofer, P.; Rehlendt, C.; Fischeneder, M.; Kucera, M.; Wistrela, E.; Bittner, A.; Schmid, U. ScAlN MEMS cantilevers for vibrational energy harvesting purposes. J. Microelectromech. Syst. 2016, 26, 102–112. [Google Scholar] [CrossRef]
- Hewa-Kasakarage, N.N.; Kim, D.; Kuntzman, M.L.; Hall, N.A. Micromachined piezoelectric accelerometers via epitaxial silicon cantilevers and bulk silicon proof masses. J. Microelectromech. Syst. 2013, 22, 1438–1446. [Google Scholar] [CrossRef]
- Kovacs, A.; Vízváry, Z. Structural parameter sensitivity analysis of cantilever-and bridge-type accelerometers. Sens. Actuators A Phys. 2001, 89, 197–205. [Google Scholar] [CrossRef]
- Tahmasebipour, M.; Vafaie, A. A highly sensitive three axis piezoelectric microaccelerometer for high bandwidth applications. Micro Nanosyst. 2017, 9, 111–120. [Google Scholar] [CrossRef]
- Wang, Q.-M.; Yang, Z.; Li, F.; Smolinski, P. Analysis of thin film piezoelectric microaccelerometer using analytical and finite element modeling. Sens. Actuators A Phys. 2004, 113, 1–11. [Google Scholar] [CrossRef]
- Mukhiya, R.; Gopal, R.; Pant, B.; Khanna, V.; Bhattacharyya, T. Design, modeling and FEM-based simulations of a 1-DoF MEMS bulk micromachined piezoresistive accelerometer. Microsyst. Technol. 2015, 21, 2241–2258. [Google Scholar] [CrossRef]
- Devoe, D.L.; Pisano, A.P. Surface micromachined piezoelectric accelerometers (PiXLs). J. Microelectromech. Syst. 2001, 10, 180–186. [Google Scholar] [CrossRef]
- Zou, Q.; Tan, W.; Kim, E.S.; Loeb, G.E. Single-and triaxis piezoelectric-bimorph accelerometers. J. Microelectromech. Syst. 2008, 17, 45–57. [Google Scholar]
- Xu, M.-h.; Wang, J.-y.; Han, R.-h.; Zhou, H.; Guo, H. Analytical and finite element analysis of a new tri-axial piezoelectric accelerometer. In Proceedings of the 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Xi’an, China, 21–24 October 2016; pp. 71–75. [Google Scholar]
- Tian, B.; Liu, H.; Yang, N.; Zhao, Y.; Jiang, Z. Design of a piezoelectric accelerometer with high sensitivity and low transverse effect. Sensors 2016, 16, 1587. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Guo, H. Design of a Bulk-Micromachined Piezoelectric Accelerometer. In Proceedings of the 2007 IEEE Ultrasonics Symposium Proceedings, New York, NY, USA, 28–31 October 2007; pp. 2598–2601. [Google Scholar]
- Takei, R.; Makimoto, N.; Tabaru, T.; Akiyama, M.; Itoh, T.; Kobayashi, T. Scandumu aluminium nitride vibration energy harvester with a stres compensation. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 1879–1882. [Google Scholar]
- Shen, Z.; Shih, W.Y.; Shih, W.-H. Mass detection sensitivity of piezoelectric cantilevers with a nonpiezoelectric extension. Rev. Sci. Instrum. 2006, 77, 065101. [Google Scholar] [CrossRef]
- Wingqvist, G.; Tasnadi, F.; Zukauskaite, A.; Birch, J.; Arwin, H.; Hultman, L. Increased electromechanical coupling in w−ScxAl1− xN. Appl. Phys. Lett. 2010, 97, 112902. [Google Scholar] [CrossRef]
- Zhang, S.; Fu, W.; Holec, D.; Humphreys, C.; Moram, M. Elastic constants and critical thicknesses of ScGaN and ScAlN. J. Appl. Phys. 2013, 114, 243516. [Google Scholar] [CrossRef]
- Caro, M.A.; Zhang, S.; Riekkinen, T.; Ylilammi, M.; Moram, M.A.; Lopez-Acevedo, O.; Molarius, J.; Laurila, T. Piezoelectric coefficients and spontaneous polarization of ScAlN. J. Phys. Condens. Matter 2015, 27, 245901. [Google Scholar] [CrossRef]
- Sun, C.-L.; Lam, K.; Choy, S.; Chan, H.L.; Zhao, X.-Z.; Choy, C. High sensitivity cymbal-based accelerometer. Rev. Sci. Instrum. 2006, 77, 036109. [Google Scholar] [CrossRef]
Parameters | Dimensions (μm) |
---|---|
Length of the mass | 7000 |
Width of the mass | 3500 |
Length of the beam1 | 2750 |
Width of the beam1 | 1250 |
Length of the beam2 | 3750 |
Width of the beam2 | 1250 |
Length of the top electrode pad | 1500 |
Width of the top electrode pad | 500 |
The thickness of the Si substrate | 550 |
Material | Density (kg/m³) | Young’s Modulus (GPa) | Piezoelectric Coefficient d31 = g31εrε0 (pC/N) | Relative Permittivity εr |
---|---|---|---|---|
AlN | 3300 | 244 | −1.784 | 9 |
Sc0.2Al0.8N | 3587 | 189 | −3.436 | 13.7 |
Si | 2320 | 160 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Hu, B.; Cai, Y.; Liu, W.; Tovstopyat, A.; Sun, C. A Novel Tri-Axial Piezoelectric MEMS Accelerometer with Folded Beams. Sensors 2021, 21, 453. https://doi.org/10.3390/s21020453
Liu Y, Hu B, Cai Y, Liu W, Tovstopyat A, Sun C. A Novel Tri-Axial Piezoelectric MEMS Accelerometer with Folded Beams. Sensors. 2021; 21(2):453. https://doi.org/10.3390/s21020453
Chicago/Turabian StyleLiu, Yan, Bohao Hu, Yao Cai, Wenjuan Liu, Alexander Tovstopyat, and Chengliang Sun. 2021. "A Novel Tri-Axial Piezoelectric MEMS Accelerometer with Folded Beams" Sensors 21, no. 2: 453. https://doi.org/10.3390/s21020453
APA StyleLiu, Y., Hu, B., Cai, Y., Liu, W., Tovstopyat, A., & Sun, C. (2021). A Novel Tri-Axial Piezoelectric MEMS Accelerometer with Folded Beams. Sensors, 21(2), 453. https://doi.org/10.3390/s21020453