Growth Rate and Not Growing Season Explains the Increased Productivity of Masson Pine in Mixed Stands
Abstract
:1. Introduction
2. Results
2.1. Cambial Activity and Xylem Formation Dynamics Between Pure and Mixed Stands
2.2. Comparison of Simulated Parameters of Xylem Formation Between Pure and Mixed Stands
3. Materials and Methods
3.1. Study Site
3.2. Experimental Design and Data Collection
3.3. Parameters of Simulated Xylem Formation Dynamics
4. Discussion
4.1. Enhanced Xylem Cell Production in Mixed Stands
4.2. Increased Xylem Growth Rate in Mixed Stands
4.3. Application in Forest Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szabó, P.; Kunes, P.; Svobodová-Svitavská, H.; Svarcová, M.G.; Krízová, L.; Suchánková, S.; Müllerová, J.; Hédl, R. Using historical ecology to reassess the conservation status of coniferous forests in Central Europe. Conserv. Biol. 2017, 31, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.L.C.; Kuchma, O.; Krutovsky, K.V. Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Glob. Ecol. Conserv. 2018, 15, e00419. [Google Scholar] [CrossRef]
- Liu, X.Q.; Feng, Y.H.; Hu, T.Y.; Luo, Y.; Zhao, X.X.; Wu, J.; Maeda, E.E.; Ju, W.M.; Liu, L.L.; Guo, Q.H.; et al. Enhancing ecosystem productivity and stability with increasing canopy structural complexity in global forests. Sci. Adv. 2024, 10, eadl1947. [Google Scholar] [CrossRef] [PubMed]
- Jactel, H.; Bauhus, J.; Boberg, J.; Bonal, D.; Castagneyrol, B.; Gardiner, B.; Gonzalez-Olabarria, J.R.; Koricheva, J.; Meurisse, N.; Brockerhoff, E.G. Tree Diversity Drives Forest Stand Resistance to Natural Disturbances. Curr. For. Rep. 2017, 3, 223–243. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Y.; Castro-Izaguirre, N.; Baruffol, M.; Brezzi, M.; Lang, A.N.; Li, Y.; Härdtle, W.; Oheimb, G.; Yang, X.; et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 2018, 362, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.H.; Schmid, B.; Loreau, M.; Forrester, D.; Fei, S.L.; Zhu, J.X.; Tang, Z.Y.; Zhu, J.L.; Hong, P.B.; Ji, C.J.; et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 2022, 376, 865–868. [Google Scholar] [CrossRef] [PubMed]
- de-Dios-García, J.; Pardos, M.; Calama, R. Interannual variability in competitive effects in mixed and monospecific forests of Mediterranean stone pine. For. Ecol. Manag. 2015, 358, 230–239. [Google Scholar] [CrossRef]
- del Río, M.; Vergarechea, M.; Hilmers, T.; Alday, J.G.; Avdagic, A.; Binderh, F.; Bosela, M.; Dobor, L.; Forrester, D.I.; Halilovic, V.; et al. Effects of elevation-dependent climate warming on intra- and inter-specific growth synchrony in mixed mountain forests. For. Ecol. Manag. 2021, 479, 118587. [Google Scholar] [CrossRef]
- Williams, L.J.; Butler, E.E.; Cavender-Bares, J.; Stefanski, A.; Rice, K.E.; Messier, C.; Paquette, A.; Reich, P.B. Enhanced light interception and light use efficiency explain overyielding in young tree communities. Ecol. Lett. 2021, 24, 996–1006. [Google Scholar] [CrossRef]
- Hossain, M.L.; Li, J.F.; Hoffmann, S.; Beierkuhnlein, C. Biodiversity showed positive effects on resistance but mixed effects on resilience to climatic extremes in a long-term grassland experiment. Sci. Total Environ. 2022, 827, 154322. [Google Scholar] [CrossRef] [PubMed]
- Krepkowski, J.; Bräuning, A.; Gebrekirstos, A.; Strobl, S. Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia. Trees-Struct. Funct. 2011, 25, 59–70. [Google Scholar] [CrossRef]
- Chuine, I. A unified model for budburst of trees. J. Theor. Biol. 2000, 207, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Rathgeber, C.B.K.; Cuny, H.E.; Fonti, P. Biological Basis of Tree-Ring Formation: A Crash Course. Front. Plant Sci. 2016, 7, 734. [Google Scholar] [CrossRef]
- Rossi, S.; Girard, M.J.; Morin, H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob. Change Biol. 2014, 20, 2261–2271. [Google Scholar] [CrossRef]
- Rossi, S.; Anfodillo, T.; Cufar, K.; Cuny, H.E.; Deslauriers, A.; Fonti, P.; Frank, D.; Gricar, J.; Gruber, A.; Huang, J.G.; et al. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Change Biol. 2016, 22, 3804–3813. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ma, Q.; Rossi, S.; Biondi, F.; Deslauriers, A.; Fonti, P.; Liang, E.; Mäkinen, H.; Oberhuber, W.; Rathgeber, C.B. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl. Acad. Sci. USA 2020, 117, 20645–20652. [Google Scholar] [CrossRef]
- Gao, S.; Liang, E.; Liu, R.; Babst, F.; Camarero, J.; Fu, Y.; Piao, S.; Rossi, S.; Shen, M.; Wang, T.; et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat. Ecol. Evol. 2022, 6, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, Q.; Bai, C.; Zhao, W.; Rodríguez-Hernández, D.I.; Guo, X. Influence of Slope Aspect and Position on Xylem Formation Dynamics in Subtropical Chinese Fir Plantations. Forests 2024, 15, 1193. [Google Scholar] [CrossRef]
- Deslauriers, A.; Huang, J.G.; Balducci, L.; Beaulieu, M.; Rossi, S. The Contribution of Carbon and Water in Modulating Wood Formation in Black Spruce Saplings. Plant Physiol. 2016, 170, 2072–2084. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Rossi, S.; Liang, H.; Guo, X.; Ma, Q.; Zhang, S.; Kang, J.; Zhao, P.; Zhang, W.; Ju, Y. Effects of nitrogen addition and increased precipitation on xylem growth of Quercus acutissima Caruth. in central China. Tree Physiol. 2022, 42, 754–770. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Huang, J.; Li, J.; Liang, H.; Yu, B.; Ma, Q.; Jiang, S.; Lu, X.; Fu, S.; Ye, Q. Nitrogen addition to the canopy of Castanopsis chinensis (Sprengel) Hance promoted xylem formation in a subtropical forest in China. Ann. For. Sci. 2020, 77, 56. [Google Scholar] [CrossRef]
- Williams, L.J.; Paquette, A.; Cavender-Bares, J.; Messier, C.; Reich, P.B. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 2017, 1, 63. [Google Scholar] [CrossRef]
- Sapijanskas, J.; Paquette, A.; Potvin, C.; Kunert, N.; Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 2014, 95, 2479–2492. [Google Scholar] [CrossRef]
- Forrester, D.I. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. For. Ecol. Manag. 2014, 312, 282–292. [Google Scholar] [CrossRef]
- Alberti, G.; Nock, C.; Fornasier, F.; Scherer-Lorenzen, M.; De Nobili, M.; Peressotti, A.; Hoenig, L.; Bruelheide, H.; Bauhus, J. Tree functional diversity influences belowground ecosystem functioning. Appl. Soil Ecol. 2017, 120, 160–168. [Google Scholar] [CrossRef]
- Bosela, M.; Kulla, L.; Roessiger, J.; Seben, V.; Dobor, L.; Büntgen, U.; Lukac, M. Long-term effects of environmental change and species diversity on tree radial growth in a mixed European forest. For. Ecol. Manag. 2019, 446, 293–303. [Google Scholar] [CrossRef]
- Chen, R.; Guo, X.; Ge, Y.; Li, Q.; Ming, A.; Min, H.; Shen, W. Tree species mixing effects on the radial growth of Pinus massoniana and Castanopsis hystrix: A comparison between even-aged and uneven-aged stands. For. Ecol. Manag. 2024, 566, 122058. [Google Scholar] [CrossRef]
- Guo, X.; Huang, J.; Buttò, V.; Luo, D.; Shen, C.; Li, J.; Liang, H.; Zhang, S.; Hou, X.; Zhao, P. Auxin concentration and xylem production of Pinus massoniana in a subtropical forest in south China. Tree Physiol. 2022, 42, 317–324. [Google Scholar] [CrossRef]
- Zhou, X.T.; Zhao, M.X.; Zhou, L.Y.; Yang, G.; Huang, L.Q.; Yan, C.Q.; Huang, Q.S.; Ye, L.; Zhang, X.B.; Guo, L.P.; et al. Regionalization of Habitat Suitability of Masson’s Pine based on geographic information system and Fuzzy Matter-Element Model. Sci. Rep.-UK 2016, 6, 34716. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, S.; Lu, Y.; Froese, R.E.; Xu, X.; Zeng, J.; Ming, A.; Liu, X.; Xie, Y.; Li, Q. Thinning effects on forest evolution in Masson pine (Pinus massoniana Lamb.) conversion from pure plantations into mixed forests. For. Ecol. Manag. 2020, 477, 118503. [Google Scholar] [CrossRef]
- Pausas, J.G.; Bladé, C.; Valdecantos, A.; Seva, J.P.; Fuentes, D.; Alloza, J.A.; Vilagrosa, A.; Bautista, S.; Cortina, J.; Vallejo, R. Pines and oaks in the restoration of Mediterranean landscapes of Spain: New perspectives for an old practice—A review. Plant Ecol. 2004, 171, 209–220. [Google Scholar] [CrossRef]
- Jactel, H.; Nicoll, B.C.; Branco, M.; Gonzalez-Olabarria, J.R.; Grodzki, W.; Långström, B.; Moreira, F.; Netherer, S.; Orazio, C.; Piou, D.; et al. The influences of forest stand management on biotic and abiotic risks of damage. Ann. For. Sci. 2009, 66, 701. [Google Scholar] [CrossRef]
- You, Y.M.; Huang, X.M.; Zhu, H.G.; Liu, S.R.; Liang, H.W.; Wen, Y.G.; Wang, H.; Cai, D.X.; Ye, D. Positive interactions between and species in the uneven-aged mixed plantations can produce more ecosystem carbon in subtropical China. For. Ecol. Manag. 2018, 410, 193–200. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, K.; Liu, X.; Peng, S. Simulation of the biomass dynamics of Masson pine forest under different management. J. For. Res. 2006, 17, 305–311. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Koppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- He, Y.J.; Qin, L.; Li, Z.Y.; Liang, X.Y.; Shao, M.X.; Tan, L. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. For. Ecol. Manag. 2013, 295, 193–198. [Google Scholar] [CrossRef]
- Rossi, S.; Anfodillo, T.; Menardi, R. Trephor: A new tool for sampling microcores from tree stems. IAWA J. 2006, 27, 89–97. [Google Scholar] [CrossRef]
- Rossi, S.; Deslauriers, A.; Anfodillo, T. Assessment of cambial activity and xylogenesis by microsampling tree species: An example at the alpine timberline. IAWA J. 2006, 27, 383–394. [Google Scholar] [CrossRef]
- Deslauriers, A.; Morin, H.; Begin, Y. Cellular phenology of annual ring formation of in the Quebec boreal forest (Canada). Can. J. For. Res. 2003, 33, 190–200. [Google Scholar] [CrossRef]
- Rossi, S.; Deslauriers, A.; Morin, H. Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 2003, 21, 33–39. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.; Kim, S.; Roh, Y.; Abu Salim, K.; Lee, W.K.; Son, Y. Forest structure and carbon dynamics of an intact lowland mixed dipterocarp forest in Brunei Darussalam. J. For. Res. 2018, 29, 199–203. [Google Scholar] [CrossRef]
- Shu, W.W.; Shen, X.X.; Lei, P.F.; Xiang, W.H.; Ouyang, S.A.; Yan, W.D. Temporal changes of fine root overyielding and foraging strategies in planted monoculture and mixed forests. Bmc Ecol. 2018, 18, 9. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.H.; Zhou, Y.C.; Bai, Y.X. The effect of mixed forest identity on soil carbon stocks in mixed forests. Sci. Total Environ. 2024, 907, 167889. [Google Scholar] [CrossRef]
- Bongers, F.J.; Schmid, B.; Bruelheide, H.; Bongers, F.; Li, S.; von Oheimb, G.; Li, Y.; Cheng, A.P.; Ma, K.P.; Liu, X.J. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat. Ecol. Evol. 2021, 5, 1594–1630. [Google Scholar] [CrossRef] [PubMed]
- Zeller, L.; Pretzsch, H. Effect of forest structure on stand productivity in Central European forests depends on developmental stage and tree species diversity. For. Ecol. Manag. 2019, 434, 193–204. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, Z.; Zhou, F.; Liu, X.; Fonti, P.; Gao, J.; Fang, K. Intra-annual dynamic of opposite and compression wood formation of Pinus massoniana Lamb. in humid subtropical China. Front. For. Glob. Change 2023, 6, 1224838. [Google Scholar] [CrossRef]
- Rathgeber, C.B.K.; Rossi, S.; Bontemps, J.-D. Cambial activity related to tree size in a mature silver-fir plantation. Ann. Bot. 2011, 108, 429–438. [Google Scholar] [CrossRef]
- Qian, N.; Gao, H.; Xu, Z.; Song, C.; Dong, C.; Zeng, W.; Sun, Z.; Siqing, B.; Liu, Q. Cambial phenology and wood formation of Korean pine in response to climate change in Changbai Mountain, Northeast China. Dendrochronologia 2022, 77, 126045. [Google Scholar] [CrossRef]
- Ren, P.; Ziaco, E.; Rossi, S.; Biondi, F.; Prislan, P.; Liang, E.Y. Growth rate rather than growing season length determines wood biomass in dry environments. Agric. For. Meteorol. 2019, 271, 46–53. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Li, X.; Nie, X.Q.; Liu, S.R. Effects of environmental factors and tree species mixtures on the functional groups of soil organic carbon across subtropical plantations in southern China. Plant Soil 2022, 480, 265–281. [Google Scholar] [CrossRef]
- Wambsganss, J.; Freschet, G.T.; Beyer, F.; Goldmann, K.; Prada-Salcedo, L.D.; Scherer-Lorenzen, M.; Bauhus, J. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests. Funct. Ecol. 2021, 35, 1886–1902. [Google Scholar] [CrossRef]
- Zeng, W.X.; Xiang, W.H.; Zhou, B.; Ouyang, S.A.; Zeng, Y.L.; Chen, L.; Zhao, L.J.; Valverde-Barrantes, O.J. Effects of tree species richness on fine root production varied with stand density and soil nutrients in subtropical forests. Sci. Total Environ. 2020, 733, 139334. [Google Scholar] [CrossRef] [PubMed]
- Schoonmaker, A.L.; Hillabrand, R.M.; Lieffers, V.J.; Chow, P.S.; Landhäusser, S.M. Seasonal dynamics of non-structural carbon pools and their relationship to growth in two boreal conifer tree species. Tree Physiol. 2021, 41, 1563–1582. [Google Scholar] [CrossRef]
- Blumstein, M.; Oseguera, M.; Caso-McHugh, T.; Des Marais, D.L. Nonstructural carbohydrate dynamics’ relationship to leaf development under varying environments. New Phytol. 2024, 241, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.R.; Chen, Z.; Piao, S.L.; Peng, C.H.; Ciais, P.; Wang, Q.F.; Li, X.R.; Zhu, X.J. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910–4915. [Google Scholar] [CrossRef]
- Astigarraga, J.; Andivia, E.; Zavala, M.A.; Gazol, A.; Cruz-Alonso, V.; Vicente-Serrano, S.M.; Ruiz-Benito, P. Evidence of non-stationary relationships between climate and forest responses: Increased sensitivity to climate change in Iberian forests. Glob. Change Biol. 2020, 26, 5063–5076. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sancho, E.; Treydte, K.; Lehmann, M.M.; Rigling, A.; Fonti, P. Drought impacts on tree carbon sequestration and water use—Evidence from intra-annual tree-ring characteristics. New Phytol. 2022, 236, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Cabon, A.; Kannenberg, S.A.; Arain, A.; Babst, F.; Baldocchi, D.; Belmecheri, S.; Delpierre, N.; Guerrieri, R.; Maxwell, J.T.; McKenzie, S.; et al. Cross-biome synthesis of source versus sink limits to tree growth. Science 2022, 376, 758–761. [Google Scholar] [CrossRef] [PubMed]
- Brzostek, E.R.; Dragoni, D.; Schmid, H.P.; Rahman, A.F.; Sims, D.; Wayson, C.A.; Johnson, D.J.; Phillips, R.P. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Glob. Change Biol. 2014, 20, 2531–2539. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Bastos, A.; Ciais, P.; Wang, X.H.; Rödenbeck, C.; Gentine, P.; Chevallier, F.; Humphrey, V.W.; Huntingford, C.; O’Sullivan, M.; et al. Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability. Nat. Commun. 2022, 13, 3469. [Google Scholar] [CrossRef]
- Lavorel, S.; Grigulis, K. How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. J. Ecol. 2011, 100, 128–140. [Google Scholar] [CrossRef]
- Forrester, D.I.; Bauhus, J.; Cowie, A.L.; Vanclay, J.K. Mixed-species plantations of with nitrogen-fixing trees: A review. For. Ecol. Manag. 2006, 233, 211–230. [Google Scholar] [CrossRef]
Year | Xylem Growth Parameters | Pure Stands | Mixed Stands |
---|---|---|---|
2022 | Onset (DOY) | 70 ± 9 | 67 ± 2 |
End (DOY) | 351 ± 3 | 351 ± 3 | |
Growing season length (days) | 281 ± 5 | 284 ± 3 | |
Total cell number (cells) | 25 ± 3 | 48 ± 3 | |
T-max (DOY) | 168 ± 8 | 188 ± 5 | |
Average growth rate (cells day−1) | 0.10 ± 0.02 | 0.22 ± 0.015 | |
2023 | Onset (DOY) | 67 ± 4 | 67 ± 4 |
End (DOY) | 351 ± 2 | 351 ± 2 | |
Growing season length (days) | 284 ± 2 | 284 ± 2 | |
Total cell number (cells) | 28 ± 2 | 38 ± 3 | |
T-max (DOY) | 141 ± 4 | 155 ± 3 | |
Average growth rate (cells day−1) | 0.13 ± 0.005 | 0.16 ± 0.004 |
Treatment | Species | Stem Density (Tree ha−1) | DBH (cm) | Height (m) | Canopy Coverage (%) |
---|---|---|---|---|---|
Pure stands | Pinus massoniana | 358 (325−400) | 45.4 ± 9.0 | 25.6 ± 3.2 | 77.3 (73.7–79.9) |
Mixed stands | Pinus massoniana | 242 (225−275) | 41.1 ± 5.7 | 20.6 ± 3.3 | 83.5 (82.5–84.7) |
Castanopsis hystrix | 325 (300−350) | 22.1 ± 6.5 | 18.1 ± 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, C.; Zhao, W.; Klisz, M.; Rossi, S.; Shen, W.; Guo, X. Growth Rate and Not Growing Season Explains the Increased Productivity of Masson Pine in Mixed Stands. Plants 2025, 14, 313. https://doi.org/10.3390/plants14030313
Bai C, Zhao W, Klisz M, Rossi S, Shen W, Guo X. Growth Rate and Not Growing Season Explains the Increased Productivity of Masson Pine in Mixed Stands. Plants. 2025; 14(3):313. https://doi.org/10.3390/plants14030313
Chicago/Turabian StyleBai, Chunmei, Wendi Zhao, Marcin Klisz, Sergio Rossi, Weijun Shen, and Xiali Guo. 2025. "Growth Rate and Not Growing Season Explains the Increased Productivity of Masson Pine in Mixed Stands" Plants 14, no. 3: 313. https://doi.org/10.3390/plants14030313
APA StyleBai, C., Zhao, W., Klisz, M., Rossi, S., Shen, W., & Guo, X. (2025). Growth Rate and Not Growing Season Explains the Increased Productivity of Masson Pine in Mixed Stands. Plants, 14(3), 313. https://doi.org/10.3390/plants14030313