Coherence Properties of a Supercontinuum Generated by Cascade Raman Processes in a Hollow-Core Fiber Filled with a Mixture of Deuterium and Hydrogen
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chirped Pulses of 1 ps Duration
3.1.1. Supercontinuum Generation upon Excitation of Vibrational Levels in D2 and H2
3.1.2. Supercontinuum Generation upon Excitation of Vibrational and Rotational Levels in D2 and H2
3.2. Chirped Pulses of 25 ps Duration
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petersen, C.R.; Prtljaga, N.; Farries, M.; Ward, J.; Napier, B.; Lloyd, G.R.; Nallala, J.; Stone, N.; Bang, O. Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt. Lett. 2018, 43, 999–1002. [Google Scholar] [CrossRef]
- Pupeza, I.; Huber, M.; Trubetskov, M.; Schweinberger, W.; Hussain, S.A.; Hofer, C.; Fritsch, K.; Poetzlberger, M.; Vamos, L.; Fill, E.; et al. Field-resolved infrared spectroscopy of biological systems. Nature 2020, 577, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Borondics, F.; Jossent, M.; Sandt, C.; Lavoute, L.; Gaponov, D.; Hideur, A.; Dumas, P.; Février, S. Supercontinuum-based Fourier transform infrared spectromicroscopy. Optica 2018, 5, 378–381. [Google Scholar] [CrossRef]
- Israelsen, N.M.; Petersen, C.R.; Barh, A.; Jain, D.; Jensen, M.; Hannesschläger, G.; Lichtenberg, P.T.; Pedersen, C.; Podoleanu, A.; Bang, O. Real-time high-resolution mid-infrared optical coherence tomography. Light Sci. Appl. 2019, 8, 11. [Google Scholar] [CrossRef]
- Zorin, I.; Brouczek, D.; Geier, S.; Nohut, S.; Eichelseder, J.; Huss, G.; Schwentenwein, M.; Heise, B. Mid-infrared optical coherence tomography as a method for inspection and quality assurance in ceramics additive manufacturing. Open Ceram. 2022, 12, 100311. [Google Scholar] [CrossRef]
- Jahromi, K.E.; Pan, Q.; Hogstedt, L.; Friis, S.M.M.; Khodabakhsh, A.; Moselund, P.M.; Harren, F.J.M. Mid-infrared supercontinuum-based upconversion detection for trace gas sensing. Opt. Express 2019, 27, 24469–24480. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Li, W.; Cui, Y.; Wang, Z. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 μm. Opt. Lett. 2018, 43, 4671–4674. [Google Scholar]
- Cao, L.; Gao, S.; Peng, Z.; Wang, X.; Wang, Y.; Wang, P. High peak power 2.8 μm Raman laser in a methane-filled negative-curvature fiber. Opt. Express 2018, 26, 5609–5615. [Google Scholar] [CrossRef]
- Lanari, A.M.; Mulvad, H.C.H.; Mousavi, S.M.A.; Davidson, I.A.; Fu, Q.; Norak, P.; Richardson, D.J.; Poletti, F. High power Raman second stokes generation in a methane filled hollow core fiber. Opt. Express 2023, 31, 41191–41201. [Google Scholar] [CrossRef] [PubMed]
- Gladyshev, A.; Yatsenko, Y.; Kolyadin, A.; Kompanets, V.; Bufetov, I. Mid-infrared 10-µJ-level sub-picosecond pulse generation via stimulated Raman scattering in a gas-filled revolver fiber. Opt. Mat. Express 2020, 10, 3081–3089. [Google Scholar] [CrossRef]
- Gladyshev, A.; Yatsenko, Y.; Kolyadin, A.; Bufetov, I. Visible to Mid-Infrared Supercontinuum Initiated by Stimulated Raman Scattering of 1.03 μm Ultrashort Pulses in a Gas-Filled Silica Fiber. Photonics 2022, 9, 997. [Google Scholar] [CrossRef]
- Gladyshev, A.V.; Dubrovskii, D.S.; Juravleva, E.E.; Kosolapov, A.F.; Yatsenko, Y.P.; Bufetov, I.A. Raman generation of ps pulses at λ = 3.9 μm in a hollow-core revolver fiber. Optoelectron. Instrum. Proc. 2023, 59, 10–17. [Google Scholar] [CrossRef]
- Sakr, H.; Chen, Y.; Jasion, G.T.; Bradley, T.D.; Hayes, J.R.; Mulvad, H.C.H.; Davidson, I.A.; Fokoua, E.N.; Poletti, F. Hollow core optical fibres with comparable attenuation to silica fibres between 600 and 1100 nm. Nat. Commun. 2020, 11, 6030. [Google Scholar] [CrossRef] [PubMed]
- Belardi, W.; Knight, J.C. Hollow antiresonant fibers with reduced attenuation. Opt. Lett. 2014, 39, 1853–1855. [Google Scholar] [CrossRef]
- Yu, F.; Knight, J.C. Negative curvature hollow-core optical fiber. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 146–155. [Google Scholar] [CrossRef]
- Yu, F.; Song, P.; Wu, D.; Birks, T.; Bird, D.; Knight, J. Attenuation limit of silica-based hollow-core fiber at mid-IR wavelengths. APL Photonics 2019, 4, 080803. [Google Scholar] [CrossRef]
- Fokoua, E.N.; Mousavi, S.A.; Jasion, G.T.; Richardson, D.J.; Poletti, F. Loss in hollow-core optical fibers: Mechanisms, scaling rules, and limits. Adv. Opt. Photonics 2023, 15, 1–83. [Google Scholar] [CrossRef]
- Ding, W.; Wang, Y.Y.; Gao, S.F.; Wang, M.L.; Wang, P. Recent progress in low-loss hollow-core anti-resonant fibers and their applications. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–12. [Google Scholar] [CrossRef]
- Chen, Y.; Petrovich, M.N.; Fokoua, E.N.; Adamu, A.I.; Hassan, M.R.A.; Sakr, H.; Slavík, R.; Gorajoobi, S.B.; Alonso, M.; Ando, R.F.; et al. Hollow Core DNANF Optical Fiber with <0.11 dB/km Loss. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 24–28 March 2024. Technical Digest Series (Optica Publishing Group, 2024), paper Th4A.8. [Google Scholar]
- Yatsenko, Y.P.; Gladyshev, A.V.; Bufetov, I.A. Coherent mid-IR supercontinuum in a hollow core fiber filled with a mixture of deuterium and nitrogen. Bull. Lebedev Phys. Inst. 2023, 50, S996–S1005. [Google Scholar] [CrossRef]
- Dudley, J.; Taylor, R. Supercontinuum Generation in Optical Fibers, 1st ed.; University Press: Cambridge, UK, 2010; pp. 32–52. [Google Scholar]
- Chen, Y.; Sidorenko, P.; Antonio-Lopez, E.; Amezcua-Correa, R.; Wise, F. Efficient soliton self-frequency shift in hydrogen-filled hollow-core fiber. Opt. Lett. 2022, 47, 285–288. [Google Scholar] [CrossRef]
- Gao, S.-F.; Wang, Y.-Y.; Belli, F.; Brahms, C.; Wang, P.; Travers, J.C. From Raman frequency combs to supercontinuum generation in nitrogen-filled hollow-core anti-resonant fiber. Laser Photonics Rev. 2022, 16, 2100426. [Google Scholar] [CrossRef]
- Ottush, J.J.; Rockwell, D.A. Measurement of Raman Gain Coefficients of Hydrogen, Deuterium, and Methane. IEEE J. Quant. Electr. 1988, 24, 2076–2080. [Google Scholar] [CrossRef]
- Edwards, H.G.M.; Long, D.A.; Sherwoud, G. Line widths in the pure rotational Raman spectra of hydrogen and deuterium self-broadened and broadened by foreign gases. J. Raman Spectrosc. 1991, 22, 607–611. [Google Scholar] [CrossRef]
- Wahlstrand, J.K.; Zahedpour, S.; Cheng, Y.-H.; Palastro, J.P.; Milchberg, H.M. Absolute measurement of the ultrafast nonlinear electronic and rovibrational response in H2 and D2. Phys. Rev. A 2015, 92, 063828. [Google Scholar] [CrossRef]
- Dudley, J.M.; Genty, G.; Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 2006, 78, 1135–1184. [Google Scholar] [CrossRef]
- Benabid, F.; Bouwmans, G.; Knight, J.C.; Russell, P.S.J.; Couny, F. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen. Phys. Rev. Lett. 2004, 93, 123903. [Google Scholar] [CrossRef]
- Couny, F.; Carraz, O.; Benabid, F. Control of transient regime of stimulated Raman scattering using hollow-core PCF. J. Opt. Soc. Am. B. 2009, 26, 1209–1215. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yatsenko, Y.; Pryamikov, A.; Gladyshev, A. Coherence Properties of a Supercontinuum Generated by Cascade Raman Processes in a Hollow-Core Fiber Filled with a Mixture of Deuterium and Hydrogen. Photonics 2024, 11, 1176. https://doi.org/10.3390/photonics11121176
Yatsenko Y, Pryamikov A, Gladyshev A. Coherence Properties of a Supercontinuum Generated by Cascade Raman Processes in a Hollow-Core Fiber Filled with a Mixture of Deuterium and Hydrogen. Photonics. 2024; 11(12):1176. https://doi.org/10.3390/photonics11121176
Chicago/Turabian StyleYatsenko, Yury, Andrey Pryamikov, and Alexey Gladyshev. 2024. "Coherence Properties of a Supercontinuum Generated by Cascade Raman Processes in a Hollow-Core Fiber Filled with a Mixture of Deuterium and Hydrogen" Photonics 11, no. 12: 1176. https://doi.org/10.3390/photonics11121176
APA StyleYatsenko, Y., Pryamikov, A., & Gladyshev, A. (2024). Coherence Properties of a Supercontinuum Generated by Cascade Raman Processes in a Hollow-Core Fiber Filled with a Mixture of Deuterium and Hydrogen. Photonics, 11(12), 1176. https://doi.org/10.3390/photonics11121176