GIS and Transport Modeling—Strengthening the Spatial Perspective
Abstract
:1. Introduction
2. GIS and Transport Modeling: A Brief Overview
2.1. Spatial Characteristics and Relationships
2.2. Examples for Geospatial Transport Modeling Approaches
3. Geospatial Data for Transport Models
3.1. Current Status
3.1.1. (Geospatial) Data Types
3.1.2. Transport Data Formats and Standards
3.1.3. Data Models, Scale and Resolution
3.2. Research Directions
3.2.1. Data Availability, Accessibility and Privacy Concerns
3.2.2. Data Quality, Fitness of Use, Metadata and Standardization
3.2.3. Data Models for Dynamic Environments
3.2.4. Data Characteristics and Spatial Pitfalls
3.2.5. Cost of Data Acquisition and Impact on Model Results
4. GIS and Disaggregated Transport Models
4.1. Current Status
4.2. Research Directions
4.2.1. Emergent Phenomena from Spatial Heterogeneity
4.2.2. Emergent Phenomena from Adaptive Behavior
4.2.3. Limited by Complexity? New Views on Validation
5. The Role of (Geo-) Visualization in Transport Modeling
5.1. Current Status
5.1.1. General Framework for the Visualization of Transport Data and Models
5.1.2. Geo-Visualization Concepts for Transport Data and Models
5.1.3. Efficient Geo-Visualization Features
5.2. Research Direction
5.2.1. Development of Geo-Visualization Guidelines
5.2.2. Trade-off between Visual Accessibility and Level of Detail
5.2.3. Communicating Model and Process Dynamics
5.2.4. The Right Tool for the Job
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ABM | Agent-Based Model |
API | Application Programming Interfaces |
FCD | Floating Car Data |
FSM | Four-Step Model |
GIS | Geographical Information Systems |
GIScience | Geographical Information Science |
GIS-T | GIS for Transport |
GPS | Global Positioning System |
GTFS | General Transport Feed Specification |
GWR | Geographically Weighted Regression Analysis |
ICT | Information and Communications Technology |
INSPIRE | Infrastructure for Spatial Information in the European Community |
ITS | Intelligent Transportation Systems |
MAUP | Modifiable Areal Unit Problem |
OD | Origin-Destination |
PSI | Public Sector Information (Directive 2003/98/EC) |
TAZ | Traffic Analysis Zone |
References
- Hägerstraand, T. What about people in regional science? Pap. Reg. Sci. 1970, 24, 7–24. [Google Scholar] [CrossRef]
- Buliung, R.N.; Kanaroglou, P.S. Activity-travel behaviour research: Conceptual issues, state of the art, and emerging perspectives on behavioural analysis and simulation modelling. Transp. Rev. 2007, 27, 151–187. [Google Scholar] [CrossRef]
- Miller, H.J. Modelling accessibility using space-time prism concepts within geographical information systems. Int. J. Geogr. Inf. Syst. 1991, 5, 287–301. [Google Scholar] [CrossRef]
- Waters, N. Transportation GIS: GIS-T. In Geographical Information Systems: Principles, Techniques, Management and Applications; Longley, P.A., Goodchild, M., Maguire, D.J., Rhind, D.W., Eds.; Wiley: New York, NY, USA, 1999; pp. 827–844. [Google Scholar]
- Miller, H.J. Potential contributions of spatial analysis to geographic information systems for transportation (GIS-T). Geogr. Anal. 1999, 31, 373–399. [Google Scholar] [CrossRef]
- Thill, J.-C. Geographic information systems for transportation in perspective. Transp. Res. Part C Emerg. Technol. 2000, 8, 3–12. [Google Scholar] [CrossRef]
- Goodchild, M.F. GIS and transportation: Status and challenges. GeoInformatica 2000, 4, 127–139. [Google Scholar] [CrossRef]
- Ortúzar, J.D.D.; Willumsen, L.G. Modelling Transport, 4th ed.; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- Dueker, K.J.; Peng, Z.-R. Geographic information systems for transport (GIS-T). In Handbook of Transport Modelling, 2nd ed.; Hensher, D., Button, K.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 303–327. [Google Scholar]
- Miller, H.; Goodchild, M. Data-driven geography. GeoJournal 2015, 80, 449–461. [Google Scholar] [CrossRef]
- Shaw, S.-L. Geographic information systems for transportation: From a static past to a dynamic future. Ann. GIS 2010, 16, 129–140. [Google Scholar] [CrossRef]
- Miller, H.J.; Shaw, S.-L. Geographic information systems for transportation in the 21st century. Geogr. Compass 2015, 9, 180–189. [Google Scholar] [CrossRef]
- McNally, M.G. The four-step model. In Handbook of Transport Modelling; Hensher, D., Button, K.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 35–53. [Google Scholar]
- Balmer, M. Travel Demand Modeling for Multi-Agent Transport Simulations: Algorithms and Systems; ETH Zurich: Zurich, Switzerland, 2007. [Google Scholar]
- Van Acker, V.; Van Wee, B.; Witlox, F. When transport geography meets social psychology: Toward a conceptual model of travel behaviour. Transp. Rev. 2010, 30, 219–240. [Google Scholar] [CrossRef] [Green Version]
- McNally, M.G.; Rindt, C.R. The activity-based approach. In Handbook of Transport Modelling; Hensher, D., Button, K.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 55–73. [Google Scholar]
- Wong, D. The modifiable areal unit problem (MAUP). In The Sage Handbook of Spatial Analysis; Fotheringham, S., Rogerson, P.A., Eds.; SAGE Publications Ltd.: London, UK, 2009; pp. 105–123. [Google Scholar]
- Manley, D.; Flowerdew, R.; Steel, D. Scales, levels and processes: Studying spatial patterns of british census variables. Comput. Environ. Urban Syst. 2006, 30, 143–160. [Google Scholar] [CrossRef]
- Parenteau, M.-P.; Sawada, M.C. The modifiable areal unit problem (MAUP) in the relationship between exposure to No2 and respiratory health. Int. J. Health Geogr. 2011, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Viegas, J.M.; Martinez, L.M.; Silva, E.A. Effects of the modifiable areal unit problem on the delineation of traffic analysis zones. Environ. Plan. B Plan. Design 2009, 36, 625–643. [Google Scholar] [CrossRef]
- Wallentin, G.; Loidl, M. Agent-based bicycle traffic model for salzburg city. GI_Forum J. Geogr. Inf. Sci. 2015, 2015, 558–566. [Google Scholar] [CrossRef]
- Páez, A.; Scott, D.M. Spatial statistics for urban analysis: A review of techniques with examples. GeoJournal 2004, 61, 53–67. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Sener, I.N.; Pendyala, R.M.; Bhat, C.R. Accommodating spatial correlation across choice alternatives in discrete choice models: An application to modeling residential location choice behavior. J. Transp. Geogr. 2011, 19, 294–303. [Google Scholar] [CrossRef]
- Bolduc, D.; Dagenais, M.G.; Gaudry, M.J.I. Spatially autocorrelated errors in origin-destination models: A new specification applied to aggregate mode choice. Transp. Res. Part B Meth. 1989, 23, 361–372. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression-modelling spatial non-stationarity. J. R. Stat. Soc Ser. D (Stat.) 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Lopes, S.; Brondino, N.; Rodrigues da Silva, A. GIS-based analytical tools for transport planning: Spatial regression models for transportation demand forecast. ISPRS Int. J. Geo-Inf. 2014, 3, 565–583. [Google Scholar] [CrossRef]
- Chen, S.; Tan, J.; Claramunt, C.; Ray, C. Multi-scale and multi-modal GIS-T data model. J. Transp. Geogr. 2011, 19, 147–161. [Google Scholar] [CrossRef]
- Greulich, C.; Edelkamp, S.; Gath, M. Agent-based multimodal transport planning in dynamic environments. In KI 2013: Advances in Artificial Intelligence; Timm, I., Thimm, M., Eds.; Springer: Berlin, Germany, 2013; Volume 8077, pp. 74–85. [Google Scholar]
- Nantes, A.; Ngoduy, D.; Bhaskar, A.; Miska, M.; Chung, E. Real-time traffic state estimation in urban corridors from heterogeneous data. Transp. Res. Part C Emerg. Technol. 2015, 66, 99–118. [Google Scholar] [CrossRef]
- Dobler, C.; Lämmel, G. Integration of a multi-modal simulation module into a framework for large-scale transport systems simulation. In Pedestrian and Evacuation Dynamics; Weidmann, U., Kirsch, U., Schreckenberg, M., Eds.; Springer: Berlin, Germany, 2014; pp. 739–754. [Google Scholar]
- Wong, K.I.; Wong, S.C.; Tong, C.O.; Lam, W.H.K.; Lo, H.K.; Yang, H.; Lo, H.P. Estimation of origin-destination matrices for a multimodal public transit network. J. Adv. Transp. 2005, 39, 139–168. [Google Scholar] [CrossRef]
- Goodchild, M.F. Geographic information systems and disaggregate transportation modeling. Geogr. Syst. 1998, 5, 19–44. [Google Scholar]
- Kapl, B.; Schwillinsky, S. Open Transport Data—OTD; ITS Austria—Austria Tech: Vienna, Austria, 2015; p. 40. [Google Scholar]
- Liu, L.; Biderman, A.; Ratti, C. Urban mobility landscape: Real time monitoring of urban mobility patterns. In Proceedings of the International Conference on Computers in Urban Planning and Urban Management, Hong Kong, China, 16–18 June 2009.
- Castro, P.; Zhang, D.; Li, S. Urban traffic modelling and prediction using large scale taxi gps traces. In Pervasive Computing; Kay, J., Lukowicz, P., Tokuda, H., Olivier, P., Krüger, A., Eds.; Springer: Berlin, Germany, 2012; Volume 7319, pp. 57–72. [Google Scholar]
- Calabrese, F.; Diao, M.; Di Lorenzo, G.; Ferreira, J., Jr.; Ratti, C. Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transp. Res. Part C Emerg. Technol. 2013, 26, 301–313. [Google Scholar] [CrossRef]
- Kitchin, R. The real-time city? Big data and smart urbanism. GeoJournal 2014, 79, 1–14. [Google Scholar] [CrossRef]
- Yuan, Y.; Van Lint, H.; Van Wageningen-Kessels, F.; Hoogendoorn, S. Network-wide traffic state estimation using loop detector and floating car data. J. Intell. Transp. Syst. 2014, 18, 41–50. [Google Scholar] [CrossRef]
- Sagl, G.; Delmelle, E.; Delmelle, E. Mapping collective human activity in an urban environment based on mobile phone data. Cartogr. Geogr. Inf. Sci. 2014, 41, 272–285. [Google Scholar] [CrossRef]
- Versichele, M.; Neutens, T.; Delafontaine, M.; Van de Weghe, N. The use of bluetooth for analysing spatiotemporal dynamics of human movement at mass events: A case study of the ghent festivities. Appl. Geogr. 2012, 32, 208–220. [Google Scholar] [CrossRef]
- Hasan, S.; Zhan, X.; Ukkusuri, S.V. Understanding urban human activity and mobility patterns using large-scale location-based data from online social media. In Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, Chicago, IL, USA, 11 August 2013; pp. 1–8.
- Nitsche, P.; Widhalm, P.; Breuss, S.; Brändle, N.; Maurer, P. Supporting large-scale travel surveys with smartphones—A practical approach. Transp. Res. Part C Emerg. Technol. 2014, 43, 212–221. [Google Scholar] [CrossRef]
- Resch, B.; Blaschke, T.; Mittlboeck, M. Live geography: Interoperable geo-sensor webs facilitating the vision of digital earth. Int. J. Adv. Netw. Serv. 2010, 3, 323–332. [Google Scholar]
- Boyd, D.; Crawford, K. Critical questions for big data. Inf. Commun. Soc. 2012, 15, 662–679. [Google Scholar] [CrossRef]
- Gil, J. Building a multimodal urban network model using openstreetmap data for the analysis of sustainable accessibility. In Openstreetmap in Giscience; Jokar Arsanjani, J., Zipf, A., Mooney, P., Helbich, M., Eds.; Springer: New York City, NY, USA, 2015; pp. 229–251. [Google Scholar]
- Google General Transit Feed Specification Reference. Available online: https://developers.google.com/transit/gtfs/reference (accessed on 9 September 2015).
- Steiner, D.; Hochmair, H.; Paulus, G. Quality assessment of open realtime data for public transportation in the netherlands. GI_Forum J. Geogr. Inf. Sci. 2015, 2015, 579–588. [Google Scholar] [CrossRef]
- Graser, A.; Dragaschnig, M.; Ponweiser, W.; Koller, H.; Marcinek, M.-S.; Widhalm, P. FCD in the real world—System capabilities and applications. In Proceedings of the ITS World Congress, Vienna, Austria, 22–26 October 2012.
- Krampe, S.; Leitinger, S.; Pucher, G.; Rehrl, K. FCD modellregion salzburg—Einsatz und nutzen von extended floating car data im bundesland salzburg. In Angewandte Geoinformatik AGIT; Strobl, J., Blaschke, T., Griesebner, G., Zagel, B., Eds.; VDE Verlag: Salzburg, Austria, 2013; pp. 450–455. [Google Scholar]
- Sun, D.; Zhang, C.; Zhang, L.; Chen, F.; Peng, Z.-R. Urban travel behavior analyses and route prediction based on floating car data. Transp. Lett. 2014, 6, 118–125. [Google Scholar] [CrossRef]
- Shaw, S.-L.; Wang, D. Handling disaggregate spatiotemporal travel data in gis. GeoInformatica 2000, 4, 161–178. [Google Scholar] [CrossRef]
- Tranmer, M.; Steel, D.G. Using census data to investigate the causes of the ecological fallacy. Environ. Plan. A 1998, 30, 817–831. [Google Scholar] [CrossRef] [PubMed]
- Devillers, R.; Bédard, Y.; Jeansoulin, R.; Moulin, B. Towards spatial data quality information analysis tools for experts assessing the fitness for use of spatial data. Int. J. Geogr. Inf. Sci. 2007, 21, 261–282. [Google Scholar] [CrossRef]
- Liang, K.; Li, Z.; Zhang, Y.; Song, J. Towards GIS-T information fusion. In Proceedings of the IEEE 5th International Conference on Intelligent Transportation Systems, Singapore, 6 September 2002; pp. 668–673.
- Rossi, L.; Walker, J.; Musolesi, M. Spatio-temporal techniques for user identification by means of GPS mobility data. EPJ Data Sci. 2015, 4. [Google Scholar] [CrossRef]
- De Montjoye, Y.-A.; Hidalgo, C.A.; Verleysen, M.; Blondel, V.D. Unique in the crowd: The privacy bounds of human mobility. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Bergman, C.; Sainio, J.; Westerholm, J. Methods for deriving and calibrating privacy-preserving heat maps from mobile sports tracking application data. J. Transp. Geogr. 2015, 48, 135–144. [Google Scholar] [CrossRef]
- Elwood, S.; Leszczynski, A. Privacy, reconsidered: New representations, data practices, and the geoweb. Geoforum 2011, 42, 6–15. [Google Scholar] [CrossRef]
- Scassa, T. Legal issues with volunteered geographic information. Can. Geogr./Géogr. Can. 2013, 57, 1–10. [Google Scholar] [CrossRef]
- Krumm, J.; Caruana, R.; Counts, S. Learning likely locations. In User Modeling, Adaptation, and Personalization; Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G., Eds.; Springer: Berlin, Germany, 2013; Volume 7899, pp. 64–76. [Google Scholar]
- Ricker, B.; Schuurman, N.; Kessler, F. Implications of smartphone usage on privacy and spatial cognition: Academic literature and public perceptions. GeoJournal 2014, 80, 1–16. [Google Scholar] [CrossRef]
- Anselin, L.; Rey, S. Properties of tests for spatial dependence in linear regression models. Geogr. Anal. 1991, 23, 112–131. [Google Scholar] [CrossRef]
- Cheng, T.; Haworth, J.; Wang, J. Spatio-temporal autocorrelation of road network data. J. Geogr. Syst. 2012, 14, 389–413. [Google Scholar] [CrossRef]
- Anthony, H.A. Lecorbusier: His ideas for cities. J. Am. Inst. Plan. 1966, 32, 279–288. [Google Scholar] [CrossRef]
- Davidson, W.; Donnelly, R.; Vovsha, P.; Freedman, J.; Ruegg, S.; Hicks, J.; Castiglione, J.; Picado, R. Synthesis of first practices and operational research approaches in activity-based travel demand modeling. Transp. Res. Part A Policy Pract. 2007, 41, 464–488. [Google Scholar] [CrossRef]
- Pinjari, A.R.; Bhat, C.R. Activity-based travel demand analysis. In A Handbook of Transport Economics; de Palma, A., Lindsey, R., Quinet, E., Vickerman, R., Eds.; Edward Elgar: Cheltenham, UK, 2011; pp. 213–248. [Google Scholar]
- Castiglione, J.; Bradley, M.; Gliebe, J. Activity-Based Travel Demand Models: A Primer; Transportation Research Board: Washington, DC, USA, 2014. [Google Scholar]
- Batty, M.; Torrens, P.M. Modelling and prediction in a complex world. Futures 2005, 37, 745–766. [Google Scholar] [CrossRef]
- Zheng, N.; Waraich, R.A.; Axhausen, K.W.; Geroliminis, N. A dynamic cordon pricing scheme combining the macroscopic fundamental diagram and an agent-based traffic model. Transp. Res. Part A Policy Practice 2012, 46, 1291–1303. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, K.; Zhu, F. Agent-based traffic simulation and traffic signal timing optimization with GPU. In Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011; pp. 145–150.
- Krajzewicz, D.; Erdmann, J.; Behrisch, M.; Bieker, L. Recent development and applications of sumo-simulation of urban mobility. Int. J. Adv. Syst. Meas. 2012, 5, 128–138. [Google Scholar]
- Wahle, J.; Bazzan, A.L.C.; Klügl, F.; Schreckenberg, M. The impact of real-time information in a two-route scenario using agent-based simulation. Transp. Res. Part C Emerg. Technol. 2002, 10, 399–417. [Google Scholar] [CrossRef]
- Dallmeyer, J.; Schumann, R.; Lattner, A.D.; Timm, I.J. Don’t go with the ant flow: Ant-inspired traffic routing in urban environments. J. Intell. Transp. Syst. Technol. Plan. Oper. 2015, 19, 78–88. [Google Scholar] [CrossRef]
- Thompson, J.; Savino, G.; Stevenson, M. Reconsidering the safety in numbers effect for vulnerable road users: An application of agent-based modeling. Traffic Inj. Prev. 2015, 16, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Nagel, K.; Flötteröd, G. Agent-based traffic assignment: Going from trips to behavioral travelers. In Proceedings of the 12th International Conference on Travel Behaviour Research, Jaipur, India, 13–18 December 2009; pp. 261–293.
- Mayrhofer, C. Performance, scale & time in agent-based traffic modelling with netlogo. GI_Forum J. Geogr. Inf. Sci. 2015, 2015, 567–570. [Google Scholar]
- Waraich, R.; Charypar, D.; Balmer, M.; Axhausen, K. Performance improvements for large-scale traffic simulation in matsim. In Computational Approaches for Urban Environments; Helbich, M., Jokar Arsanjani, J., Leitner, M., Eds.; Springer: Berlin, Germany, 2015; Volume 13, pp. 211–233. [Google Scholar]
- Meister, K.; Rieser, M.; Ciari, F.; Horni, A.; Balmer, M.; Axhausen, K.W. Anwendung eines agentenbasierten modells der verkehrsnachfrage auf die schweiz. Straßenverkehrstechnik 2009, 53, 269–280. [Google Scholar]
- Cyganski, R.; Justen, A. Maßnahmensensitive nachfragemodellierung in mikroskopischen personenverkehrsmodellen. In Proceedings of DVWG-Workshop on Verkehrsmodelle im Überblick, Stuttgart, Germany, 14 November 2007; pp. 168–183.
- Balmer, M.; Meister, K.; Rieser, M.; Nagel, K.; Axhausen, K.W. Agent-based simulation of travel demand: Structure and computational performance of MATSim-T. In Proceedings of the 2nd TRB Conference on Innovations in Travel Modeling, Portland, OR, USA, 22–24 June 2008.
- Arentze, T.A.; Timmermans, H.J.P. A learning-based transportation oriented simulation system. Transp. Res. Part B Meth. 2004, 38, 613–633. [Google Scholar] [CrossRef]
- Lee, K.S.; Eom, J.K.; Moon, D.-S. Applications of transims in transportation: A literature review. Procedia Comput. Sci. 2014, 32, 769–773. [Google Scholar] [CrossRef]
- Fellendorf, M. Vissim: A microscopic simulation tool to evaluate actuated signal control including bus priority. In Proceedings of the 64th Institute of Transportation Engineers Annual Meeting, Dallas, TX, USA, 16–19 October 1994.
- Caliper Transcad Transportation Planning Software. Available online: http://www.caliper.com/tcovu.htm (accessed on 14 May 2016).
- Bradley, M.; Bowman, J.L.; Griesenbeck, B. Sacsim: An applied activity-based model system with fine-level spatial and temporal resolution. J. Choice Model. 2010, 3, 5–31. [Google Scholar] [CrossRef]
- Wilensky, U. Netlogo; Center for Connected Learning and Computer-Based Modeling, Northwestern University: Evanston, IL, USA, 1999. [Google Scholar]
- North, M.J.; Collier, N.T.; Ozik, J.; Tatara, E.R.; Macal, C.M.; Bragen, M.; Sydelko, P. Complex adaptive systems modeling with repast simphony. Complex Adapt. Syst. Model. 2013, 1, 1–26. [Google Scholar] [CrossRef]
- Scholz, J. Shortest paths for groups: Introducing a predictive memory for cognitive agents. GI_Forum J. Geogr. Inf. Sci. 2015, 2015, 571–574. [Google Scholar] [CrossRef]
- Gershenson, C.; Rosenblueth, D.A. Self-organizing traffic lights at multiple-street intersections. Complexity 2012, 17, 23–39. [Google Scholar] [CrossRef]
- Klügl, F.; Oechslein, C.; Puppe, F.; Dornhaus, A. Multi-agent modelling in comparison to standard modelling. Simul. News Eur. 2004, 40, 3–9. [Google Scholar]
- Tang, W.; Bennett, D.A. The explicit representation of context in agent-based models of complex adaptive spatial systems. Ann. Assoc. Am. Geogr. 2010, 100, 1128–1155. [Google Scholar] [CrossRef]
- Nash, J. Non-cooperative games. Ann. Math. 1951, 54, 286–295. [Google Scholar] [CrossRef]
- Myerson, R.B. Game Theory: Analysis of Conflict; Harvard University: Cambridge, MA, USA, 1991. [Google Scholar]
- Braess, D. Über ein paradoxon aus der verkehrsplanung. Unternehmensforschung 1968, 12, 258–268. [Google Scholar] [CrossRef]
- Scholz, J. Shortest paths from a group perspective-a note on selfish routing games with cognitive agents. In Proceedings of the 26th International Catographic Conference, Dresden, Germany, 25–30 August 2013.
- Windrum, P.; Fagiolo, G.; Moneta, A. Empirical Validation of Agent-Based Models: Alternatives and Prospects. Available online: http://jasss.soc.surrey.ac.uk/10/2/8/8.pdf (accessed on 2 June 2016).
- Hollander, Y.; Liu, R. The principles of calibrating traffic microsimulation models. Transportation 2008, 35, 347–362. [Google Scholar] [CrossRef]
- Liu, F.; Janssens, D.; Cui, J.; Wang, Y.; Wets, G.; Cools, M. Building a validation measure for activity-based transportation models based on mobile phone data. Expert Syst. Appl. 2014, 41, 6174–6189. [Google Scholar] [CrossRef]
- Grimm, V.; Revilla, E.; Berger, U.; Jeltsch, F.; Mooij, W.M.; Railsback, S.F.; Thulke, H.H.; Weiner, J.; Wiegand, T.; DeAngelis, D.L. Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science 2005, 310, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Millington, J.D.A.; O’Sullivan, D.; Perry, G.L.W. Model histories: Narrative explanation in generative simulation modelling. Geoforum 2012, 43, 1025–1034. [Google Scholar] [CrossRef]
- Stanilov, K. Space in agent-based models. In Agent-Based Models of Geographical Systems; Heppenstall, J.A., Crooks, T.A., See, M.L., Batty, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 253–269. [Google Scholar]
- Andrienko, N.; Andrienko, G. Designing visual analytics methods for massive collections of movement data. Cartogr. Int. J. Geogr. Inf. Geovis. 2007, 42, 117–138. [Google Scholar] [CrossRef]
- Thomas, J.J.; Cook, K.A. A visual analytics agenda. IEEE Comput. Graph. Appl. 2006, 26, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Brodersen, L. Geocommunication and Information Design; Forlaget Tankegang: Frederikshavn, Denmark, 2008. [Google Scholar]
- Kraak, M.-J. Geovisualization illustrated. ISPRS J. Photogramm. Remote Sens. 2003, 57, 390–399. [Google Scholar] [CrossRef]
- Frihida, A.; Marceau, D.J.; Thériault, M. Extracting and visualizing individual space-time paths: An integration of gis and kdd in transport demand modeling. Cartogr. Geogr. Inf. Sci. 2004, 31, 19–28. [Google Scholar] [CrossRef]
- Cyganski, R.; von Schmidt, A.; Teske, D. Applying geovisualisation to validate and communicate simulation results of an activity-based travel demand model. GI_Forum J. Geogr. Inf. Sci. 2015, 2015, 575–578. [Google Scholar] [CrossRef]
- Andrienko, N.; Andrienko, G. Visual analytics of movement: An overview of methods, tools and procedures. Inf. Vis. 2013, 12, 3–24. [Google Scholar] [CrossRef]
- Siła-Nowicka, K.; Vandrol, J.; Oshan, T.; Long, J.A.; Demšar, U.; Fotheringham, A.S. Analysis of human mobility patterns from gps trajectories and contextual information. Int. J. Geogr. Inf. Sci. 2015, 30, 1–26. [Google Scholar] [CrossRef]
- Dodge, S.; Weibel, R.; Lautenschütz, A.-K. Towards a taxonomy of movement patterns. Inf. Vis. 2008, 7, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Kwan, M.-P. Interactive geovisualization of activity-travel patterns using three-dimensional geographical information systems: A methodological exploration with a large data set. Transp. Res. Part C Emerg. Technol. 2000, 8, 185–203. [Google Scholar] [CrossRef]
- Yuan, M. Space-time modeling. In International Encyclopedia of Human Geography; Kitchin, R., Thrift, N., Eds.; Elsevier: Oxford, UK, 2009; pp. 286–295. [Google Scholar]
- Andrienko, G.; Andrienko, N.; Jankowski, P.; Keim, D.; Kraak, M.J.; MacEachren, A.; Wrobel, S. Geovisual analytics for spatial decision support: Setting the research agenda. Int. J. Geogr. Inf. Sci. 2007, 21, 839–857. [Google Scholar] [CrossRef]
- MacEachren, A.M. How Maps Work—Representation, Visualization and Design; The Guilford Press: New York, NY, USA; London, UK, 2004. [Google Scholar]
- Keim, D.; Kohlhammer, J.; Ellis, G.; Mansmann, F. Mastering the Information Age—Solving Problems with Visual Analytics; Eurographics Association: Goslar, Germany, 2010; p. 182. [Google Scholar]
- Traun, C.; Loidl, M. Cartography rocks!—Eine wissenschaft im wandel. In Proceedings of the 18 Münchner Fortbildungsseminar des Runden Tisch GIS, München, Germany, 10 April 2013; pp. 61–71.
- Picozzi, M.; Verdezoto, N.; Pouke, M.; Vatjus-Anttila, J.; Quigely, A. Traffic visualization—Applying information visualization techniques to enhance traffic planning. In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications, Barcelona, Spain, 21–24 February 2013; pp. 554–557.
- Chen, J.; Shaw, S.-L.; Yu, H.; Lu, F.; Chai, Y.; Jia, Q. Exploratory data analysis of activity diary data: A space-time GIS approach. J. Transp. Geogr. 2011, 19, 394–404. [Google Scholar] [CrossRef]
- Slocum, T.A.; McMaster, R.B.; Kessler, F.C.; Howard, H.H. Thematic Cartography and Geovisualization, 3rd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Andrienko, G.; Andrienko, N.; Demsar, U.; Dransch, D.; Dykes, J.; Fabrikant, S.I.; Jern, M.; Kraak, M.-J.; Schumann, H.; Tominski, C. Space, time and visual analytics. Int. J. Geogr. Inf. Sci. 2010, 24, 1577–1600. [Google Scholar] [CrossRef]
- Chen, W.; Guo, F.; Wang, F.-Y. A survey of traffic data visualization. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2970–2984. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Z.; Yu, B.; Zhao, H.; Yuan, X. Tripvista: Triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection. In Proceedings of the 2011 IEEE Pacific Visualization Symposium (PacificVis), Hong Kong, China, 1–4 March 2011; pp. 163–170.
- Azmandian, M.; Singh, K.; Gelsey, B.; Chang, Y.-H.; Maheswaran, R. Following human mobility using tweets. In Proceedings of the 8th International Workshop, ADMI 2012, Valencia, Spain, 4–5 June 2012; pp. 139–149.
- Kisilevich, S.; Krstajic, M.; Keim, D.; Andrienko, N.; Andrienko, G. Event-based analysis of people’s activities and behavior using flickr and panoramio geotagged photo collections. In Proceedings of the 14th International Conference Information Visualisation, London, UK, 26–29 July 2010; pp. 289–296.
- Liu, X.; Yan, W.Y.; Chow, J.Y.J. Time-geographic relationships between vector fields of activity patterns and transport systems. J. Transp. Geogr. 2015, 42, 22–33. [Google Scholar] [CrossRef]
- Von Landesberger, T.; Brodkorb, F.; Roskosch, P.; Andrienko, N.; Andrienko, G.; Kerren, A. Mobilitygraphs: Visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering. IEEE Trans. Vis. Comput. Graph. 2016, 22, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Demšar, U.; Virrantaus, K. Space-time density of trajectories: Exploring spatio-temporal patterns in movement data. Int. J. Geogr. Inf. Sci. 2010, 24, 1527–1542. [Google Scholar] [CrossRef]
- Wood, J.; Slingsby, A.; Dykes, J. Visualizing the dynamics of london’s bicycle-hire scheme. Cartogr. Int. J. Geogr. Inf. Geovis. 2011, 46, 239–251. [Google Scholar] [CrossRef]
- Boyandin, I.; Bertini, E.; Bak, P.; Lalanne, D. Flowstrates: An approach for visual exploration of temporal origin-destination data. Comput. Graph. Forum 2011, 30, 971–980. [Google Scholar] [CrossRef]
- Guo, D.; Zhu, X.; Jin, H.; Gao, P.; Andris, C. Discovering spatial patterns in origin-destination mobility data. Trans. GIS 2012, 16, 411–429. [Google Scholar] [CrossRef]
- Straub, M.; Graser, A. Learning from experts: Inferring road popularity from gps trajectories. GI_Forum J. Geogr. Inf. Sci. 2015, 2015, 41–50. [Google Scholar]
- Kraak, M.-J. The space-time cube revisited from a geovisualization perspective. In Proceedings of the 21st International Cartographic Conference (ICC), Durban, South Africa, 10–16 August 2003; pp. 1988–1995.
- Wang, Z.; Yuan, X. Urban trajectory timeline visualization. In Proceedings of the International Conference on Big Data and Smart Computing (BIGCOMP), Bangkok, Thailand, 15–17 January 2014; pp. 13–18.
- Widener, M.J.; Farber, S.; Neutens, T.; Horner, M. Spatiotemporal accessibility to supermarkets using public transit: An interaction potential approach in cincinnati, ohio. J. Transp. Geogr. 2015, 42, 72–83. [Google Scholar] [CrossRef]
- Kim, H.-M.; Kwan, M.-P. Space-time accessibility measures: A geocomputational algorithm with a focus on the feasible opportunity set and possible activity duration. J. Geogr. Syst. 2003, 5, 71–91. [Google Scholar] [CrossRef]
- Brodkorb, F.; Kuijper, A.; Andrienko, G.; Andrienko, N.; von Landesberger, T. Overview with details for exploring geo-located graphs on maps. Inf. Vis. 2015. [Google Scholar] [CrossRef]
- Graser, A. Visualisierung raum-zeitlicher daten in geoinformationssystemen am beispiel von quantum gis mit “time manager”-plug-in. In Proceedings of the Free and Open Source Software for Geographical Information Systems, Heidelberg, Germany, 5–7 April 2011; pp. 73–75.
Use Case | 2D Visualization | 3D Visualization | Animated | Literature | |
---|---|---|---|---|---|
Overall activity/density | Heatmap Point density map | Surface map (2.5D; density as z dimension) Space-time density (time as z dimension) | Evolving map | [125,126] | |
Main movements: direction and volume | Vector fields | 3D vector fields | Evolving vector fields | [127] | |
Clustered flows | Mobility graph | Mobility prism | [128,129] | ||
OD relations: direction and volume | Flow map (volume as line width) | Extruded flow map | Evolving flow map | [122,130,131,132] | |
Network graph: flow volume | Mapped network (volume as line width) | Extruded network map | Evolving network map | [133] | |
Microsimulation for intersections | Mapped trajectories | Extruded map symbol | Animation of queue buildup | [124] | |
Individual trajectories | Path | Space–time path | Animated path | [134,135] | |
Accessibility | Isochrones Potential path area | Space–time prism Potential path space | Evolving isochrones | [3,136,137] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loidl, M.; Wallentin, G.; Cyganski, R.; Graser, A.; Scholz, J.; Haslauer, E. GIS and Transport Modeling—Strengthening the Spatial Perspective. ISPRS Int. J. Geo-Inf. 2016, 5, 84. https://doi.org/10.3390/ijgi5060084
Loidl M, Wallentin G, Cyganski R, Graser A, Scholz J, Haslauer E. GIS and Transport Modeling—Strengthening the Spatial Perspective. ISPRS International Journal of Geo-Information. 2016; 5(6):84. https://doi.org/10.3390/ijgi5060084
Chicago/Turabian StyleLoidl, Martin, Gudrun Wallentin, Rita Cyganski, Anita Graser, Johannes Scholz, and Eva Haslauer. 2016. "GIS and Transport Modeling—Strengthening the Spatial Perspective" ISPRS International Journal of Geo-Information 5, no. 6: 84. https://doi.org/10.3390/ijgi5060084
APA StyleLoidl, M., Wallentin, G., Cyganski, R., Graser, A., Scholz, J., & Haslauer, E. (2016). GIS and Transport Modeling—Strengthening the Spatial Perspective. ISPRS International Journal of Geo-Information, 5(6), 84. https://doi.org/10.3390/ijgi5060084