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The magnitude response of matched z-transform (MZT) filters deviates from the response of analog filters in a 
relatively gradual fashion.  The error can be minimized by adding zeros to an all-pole filter or by shifting the position of 
the poles or zeros in a biquadratic filter.  A set of efficient closed form algorithms is presented which provide optimum 
coefficients. The resulting filters (dubbed “MZTi”) display excellent agreement with the analog target filters, both in 
their magnitude and phase responses. 

INTRODUCTION 
Most digital filters employed in the equalization of 

loudspeakers have been derived using the bilinear z-
transform (BZT).  The BZT method seeks to provide a 
digital approximation of an analog filter which is 
guaranteed to be stable and which exhibits no image 
distortion due to reflection about the Nyquist frequency.  
While it achieves these goals, it does so by introducing 
response distortions that are often larger than the image 
distortions it seeks to avoid.  It could be said that the 
cure it provides is worse than the disease it treats. 

The professional audio industry’s near universal 
reliance on the BZT method can be attributed to both 
convenience and ignorance.  The BZT method offers a 
closed-form, computationally inexpensive solution, 
which produces useable, though often imprecise, 
approximations of all common filter types.  In short, it is 
a convenient solution.  Its lack of precision has been 
tolerated because few end users are aware of its 
shortcomings, and even fewer are aware that better 
performance is achievable.   

More precise filters have been created using 
variations of the BZT method [3], and using various 
methods to improve the accuracy of matched z- 
transform (MZT) derived filters [4].  Unfortunately, no 
MZT improvement algorithm has been publicly 
disclosed which offers a closed-form solution with 
broad applicability.  Iterative methods can provide 
highly optimized results, but are too computationally 
expensive to be used for real-time coefficient 
calculations. 

This paper presents a set of closed-form solutions 
that can be applied to each of the filter types that are 
commonly implemented with biquadratic IIR (Infinite 
Impulse Response) filters.  The approach in each case is 
to first calculate some or all of the filter coefficients 

using the standard MZT method, then to calculate the 
difference in response between the ideal analog filter 
and the MZT filter.  Finally, a closed-form calculation is 
used to determine the coefficients of a filter which 
exactly matches the target magnitude response at 
selected frequencies.     

Filters derived using the particular set of 
techniques presented here have been dubbed “MZTi” 
filters, for “matched z-transform, improved”.  

1 BACKGROUND 

1.1 Optimization Criteria 
The methodologies presented in this paper can be 

generalized to any application.  The primary aspect that 
renders them specialized to loudspeaker equalization is 
the particular choice of optimization criteria.  

Digital filters applied to loudspeakers are nearly 
always equalization filters.  After application of these 
filters, the magnitude response of the system will 
typically be nearly flat.  Consequently, it is not a good 
assumption that the accuracy of the response of a bell 
filter is more critical at its peak than in the rising 
response region of its response.  On the contrary, if a 
high frequency boost filter matches well at its peak, but 
not in the rising response leading up to the peak, the 
error in the net response will be much greater, and much 
more audible, than if the rising response were optimized 
at the expense of matching the peak boost.   

The Orfanidis BZT method [3], while a significant 
improvement over the standard BZT approach, 
optimizes the width of the bell at its –3 dB points and 
the response at the Nyquist frequency.  Unfortunately, 
the response on the low frequency side of the bell often 
deviates significantly from ideal.  And, of course, the 
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necessary antialias filter drives the response of the 
system toward zero at Nyquist, rendering moot the 
precise match of the filter at that frequency. 

The general rule that was applied during the 
development of the MZTi methods was this: never 
sacrifice lower frequency precision in order to obtain 
higher frequency precision.  Any response deviation at 6 
kHz will be much more audibly significant than a 
similar error at 20 kHz.  The methods presented herein 
employ an exact match at very low frequencies and seek 
to match the ideal response as closely as possible and as 
high in frequency as possible, finally, allowing the filter 
to diverge slightly from ideal as the Nyquist frequency 
is approached. 

1.2 Bell Filters 
One of the most common applications of digital 

filters in audio is the bell filter, which is often referred 
to, somewhat imprecisely, as a “parametric filter”.  The 
first sweepable-frequency, or parametric, filters 
happened to be bell filters.  Hence the label, “parametric 
filter”, became closely associated with bell filters; even 
though shelf filters, bandpass filters, and even high-pass 
and low-pass filters are parametric, as long as they are 
adjustable.  A bell filter is most commonly realized with 
two poles and two zeros - in other words, with a fully 
utilized, biquadratic filter section.   

There is no universal definition of the parameters 
of a bell filter.  The analog response always takes the 
form: 
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but a constant Q produces widely varying bell width, 
and does not give complementary filters (i.e., a boost 
filter is not the inverse of a cut filter with the same Q).   
Many practitioners in the professional audio field have 
adopted an adjustment to Q which provides 
complementary filters with a more-or-less constant bell 
width.  If g0 is the gain at the center frequency, and 
given a nominal Q, called Qnom, calculate an adjusted Q 
according to: 
 
If g0 > 2, 

.2* 2
00 −= ggQQ nom

 (2) 
 
If 0.5 < g0 < 2, 

.* 0gQQ nom=  (3) 
 
If g0 < 2, 

.21* 2
00 ggQQ nom −=  (4) 

The BZT implementation of a bell filter works 
well with center frequencies below 1/2-Nyquist, but the 

response deviates significantly from ideal with higher 
center frequencies.  As the center frequency approaches 
Nyquist, the BZT method “pre-warps” the center 
frequency and Q of the filter so that the center 
frequency and width of the bell is approximately 
preserved.  However, the resulting filter response 
deviates from ideal, slightly in the rising response 
region and significantly at high frequencies. Regardless 
of the target filter shape, the response of a BZT bell 
filter returns to unity at Nyquist.  Consequently, a BZT-
derived filter will poorly emulate any bell filter with a 
response that should not return to unity at Nyquist.  
Figure 1 illustrates an example of such a filter. 
 

 
Figure 1: Analog vs. BZT Bell Filter, 15 kHz, +15 dB, 
Q = 2.0, SR = 48 kHz 

The Orfanidis method reduces the deviation from 
ideal near Nyquist, but exacerbates the problem in the 
rising response region. 
 

 
Figure 2: Analog vs. Orfanidis BZT Bell Filter, 15 kHz, 
+15 dB, Q = 2.0, SR = 48 kHz 

Orfanidis suggested several alternative methods 
for optimizing the shape of bell filters.  If we specify the 
lower band edge frequency and calculate the upper band 
edge frequency using the pre-warped geometric mean 
rule [3, sec. 5], the response matches the target response 
much better in the rising response region.  This 
particular variation is the BZT-based filter that best 
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meets the optimization criteria we have established for 
loudspeaker equalization. 
 

 
Figure 3: Analog vs. Orfanidis BZT Bell Filter, with 
pre-warped f2 

The standard MZT approach produces a filter 
which gradually departs from ideal as frequency 
increases.  For low-Q, high frequency filters, the 
discrepancy may be significant.  The example in figure 
4 shows a 1.5 dB overshoot at the peak of the filter, and 
a 4.5 dB difference at Nyquist. 
 

 
Figure 4: Analog vs. Standard MZT Bell Filter, 15 kHz, 
+15 dB, Q = 2.0 

A more precise bell filter is of particular interest 
and value and the MZT approach is an attractive starting 
point for two reasons.  It preserves the resonant 
frequency and decay of the target filter, and it has a 
particularly benign error function.   

1.3 Error Functions 
To identify potential means of improving the 

precision of digital filters, it is instructive to assess the 
characteristics of their error functions - the difference 
between the response of an analog target filter and the 
response of a candidate digital filter.  The figures below 
compare the response and error functions of BZT and 
MZT realizations of two particular filters.  The filters 
are a high frequency, underdamped, 2nd order low-pass 
filter and a high frequency bell filter with 15 dB of 

center frequency gain and moderate Q.  They were 
chosen specifically because they represent a worst case: 
standard filter methods do not emulate them very well.   

The BZT method doesn’t work well at all for an 
underdamped low-pass filter.  The frequency and height 
of the response peak is correct, but its width exhibits 
severe distortion caused by frequency warping.  
Parametric pre-warping is of no help, because changing 
the Q of the filter also changes the height of the peak. 
The BZT bell filter matches a little better, but is still 
noticeably deficient.   

Note the shape of the error functions (the bold 
curves).  In both BZT examples the error function has 
two inflection points.  A correction filter would have to 
be quite complex to correct the response with any 
degree of precision.   
 

 
Figure 5: Error Function, BZT Low-pass Filter, 18 kHz, 
Q=2.8 

 
Figure 6: Error Function, BZT Bell Filter, 15 kHz, +15 
dB, Q = 2.0 
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Figure 7: Error Function, MZT Low-pass Filter, 18 kHz, 
Q=2.8 

 
Figure 8: Error Function, Analog vs. MZT Response, 15 
kHz Bell Filter (Q = 2.0) 

The MZT filters exhibit similar or greater amounts 
of error, but the error functions are much simpler.  We 
should be able to improve the response significantly 
with relatively simple filters.   All that is required is a 
closed-form solution to determine a “best” correction 
filter. 

An algorithm has been developed which provides 
a digital filter whose analog magnitude response exactly 
matches a target magnitude response at selected 
frequencies. It is a closed-form approach and is 
relatively inexpensive, computationally.  This algorithm 
will be used in all of the MZTi calculations presented in 
this paper. 

2 AN FIR CURVE FIT TRANSFORM 
The analog frequency response of a digital filter 

can be calculated directly by substituting e-jωT for z-1 in 
the z-domain expression for the filter.  Given a 
specification of a target filter at a small number of 
frequencies, a system of equations can be generated.  
The solution of this system of equations gives the 
coefficients of a digital filter that matches the response 
of the target filter at the specified frequencies. 

A single-zero filter can be completely specified 
with two values (b0 and b1, or g and b1), so we only need 
the response of the target filter at two frequencies - for 
example, DC and Nyquist.  However, as we discussed 
earlier, Nyquist is not an optimum defining point for 
loudspeaker equalization filters. We will show that 
using a lower frequency as the second defining point 
provides results in accordance with the stated 
optimization criteria.   

Similarly, a two-zero filter can be completely 
specified with three values (b0, b1, and b2).  To solve a 
system of equations for a 2nd order correction filter, we 
will need three frequency response points. 

The closed form solution of the system of 
equations is greatly simplified if the frequencies 
selected are rational fractions of the Nyquist frequency.  
Using DC and 1/2-Nyquist for the one-zero case, and 
DC, 1/3- and 2/3-Nyquist for the two-zero case, results 
in surprisingly simple expressions for the response of 
the digital filter.  It also provides correction filters with 
the desired nature - they match exactly at low to mid 
frequencies and diverge from ideal only as Nyquist is 
approached.  Because the expressions are simple, the 
calculation of the error functions is inexpensive. 

To derive an error function, the response of a 
“candidate” digital filter must be calculated.  In the case 
of a biquadratic filter, substituting e-jωT for z-1 in the z-
domain expression for the filter results in: 
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At 1/2-Nyquist, e-jωT = -j, so the analog response of 

a digital biquadratic filter is simply: 
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At 1/3-Nyquist, e-jωT = .5 - 0.866j, so the response 

of the filter is: 
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At 2/3-Nyquist, e-jωT = -.5 - 0.866j, so the response 

of the filter is: 
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The magnitude responses are considerably 

simpler: 
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A target correction filter may be obtained by 

dividing the desired response at the cardinal frequencies 
by these relatively simple expressions.  

Given a target frequency response specification at 
DC (H0) and 1/2-Nyquist (H1), the coefficients of a 1st-
order FIR (Finite Impulse Response) filter can be 
calculated as: 
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Given the target frequency response specification 

at DC (H0), 1/3-Nyquist (H1), and 2/3-Nyquist (H2) the 
coefficients of a 2nd-order FIR filter can be calculated 
as: 
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If the resulting coefficients are real, then they 

specify a filter which matches the target response 
exactly at the specified frequencies. If the target 
response is not achievable, b1 and/or b2 will be complex.  
In that case, an approximate curve fit may be obtained 
by using the magnitude of the complex value as the 
coefficient.  For the filter derivations defined in this 
paper, the coefficients have always been real. 

For a detailed derivation of the FIR curve fit 
transform, please refer to the appendix.  

3 MZTi FILTERS 
The above technique can be used to improve MZT 

filters.  In this paper we will present a solution for a 
variable-Q low-pass filter, which is useful in and of 
itself, and can also be applied to any filter with an IIR 
component.  We will also present solutions for bell 
filters employing varying numbers of coefficients. 

3.1 MZTi 2nd-Order Low-pass Filter 
A low-pass filter is an all-pole filter.  

Consequently, in a typical biquadratic MZT 
implementation, only the poles, or “a” coefficients, are 
utilized.  The zeros, or “b” coefficients, are available for 
de-aliasing.  We’ll show how to develop both a one-zero 
and a two-zero correction filter using the approach 
given above.   

The normalized (ω0 = 1) response of a variable-Q, 
2nd-order low-pass filter is: 
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Applying the standard MZT methodology [1, 2], the “a” 
coefficients can be calculated as follows: 
 
 If Q > 0.5, the IIR coefficients are: 
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 If Q < 0.5, the IIR coefficients are: 
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The FIR coefficients (b0, b1 and b2), are available 
for de-aliasing.  To determine the optimum coefficients, 
we evaluate the difference between the gain of the 
analog filter and the all-pole digital filter. 

For a single-zero de-aliasing filter, compare the 
response of the digital, MZT filter to the analog target 
filter at DC and 1/2-Nyquist (fN/2 or ωN/2).  To find the 
1/2-Nyquist gain of the analog target filter, substitute 
jfN/2f0 for s in the system equation above.  Then 
calculate the analog gain magnitude,  
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The gain of the digital filter at 1/2-Nyquist is 
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The coefficients of a single-zero filter to correct 

for the difference are: 
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To obtain a two-zero, de-aliasing filter, calculate 

the response of the target correction filter at 1/3- and 
2/3-Nyquist.  The magnitude response of the digital 
filter at 1/3-Nyquist is: 
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At 2/3-Nyquist, the response is: 
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The target correction filter is defined at three 

frequencies: 
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The two-zero filter coefficients to provide this 

filter are: 
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Figure 9 shows the response of an MZTi low-pass 

filter, compared to the analog target filter.  The bold 
curve is the error function.  Note that the only 
discrepancy occurs at very high frequencies.  The 
response matches very well up to 20 kHz. 
 

 
Figure 9: MZTi Low-pass Filter, Single-Zero Correction 
Filter, 18 kHz, Q = 2.8 

Higher-order, low-pass filters can be synthesized 
by applying the 2nd-order, low-pass methodology to 
each pair of poles. 

3.2 MZTi Bell Filters 
The normalized response of a bell filter, 
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can also be represented as: 
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The partial filters, 1/B(s) and 1/A(s), are each 

2nd-order, low-pass filters.  The resonant frequency of 
each is the center frequency of the parametric filter.  
The Q of 1/B(s) is Q.  The Q of 1/A(s) is Q/g0.   

3.2.1 Bicubic and Biquartic MZTi Bell Filters 
Using the corrected 2nd-order, low-pass filter 

algorithm in section 3.1, the coefficients for the two 
partial filters can be calculated with de-aliasing.  Then, 
the partial filters can be combined to form a complete 
bell filter. 
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Figure 10: Bicubic MZTi Bell Filter And Partial Filters, 
15 kHz, +15 dB, Q = 2.0 

An example illustrates how this approach 
minimizes the error near Nyquist.  The 15 kHz, 15 dB 
boost (gain = 5.623) filter with a Q of 2.0 can be 
synthesized by calculating the coefficients for two 
2nd-order, low-pass filters, one with a Q of 2.0 and an 
inverted one with a Q of 2/5.623 or 0.355.  The 
responses of the two MZTi partial filters, as well as the 
net parametric boost filter, are shown in Figure 10 
compared to the corresponding ideal filters.  Note that 
the deviation of the two partial filters from ideal is very 
similar, but in opposite directions.  When the filters are 
combined, the deviations nearly cancel; giving a net 
result that is very nearly ideal - with only a 1 dB error at 
Nyquist. 

The 2nd-order, low-pass calculations used to 
determine the coefficients for the two low-pass filters 
employed a single-zero correction.  Consequently, the 
method always returns the value of b2 as zero.  After 
1/A(s) is inverted, its a2 coefficient is zero.  The 
complete filter can be implemented with three “a” 
coefficients and three “b” coefficients.  This can be 
termed a “bicubic” implementation: 
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The same procedure can be carried out using 

two-zero correction of the low-pass filters.  In this case, 
each partial filter consumes a complete biquadratic 
section.  The net result is a biquartic or dual-biquad 
solution.  When a digital signal processing platform is 
based on biquadratic filters, there may be cases where 
two biquads would be used even if the bicubic solution 
is satisfactory. In those cases, there is no reason not to 
implement a biquartic filter.  

3.2.2 Biquadratic MZTi Bell Filter 
A bell filter implemented as a single biquadratic 

filter requires all of its a and b coefficients to model the 
analog poles and zeros, so there are no coefficients left 

over for de-aliasing.  Consequently, the only correction 
that can be realized without increasing the order of the 
filter is to shift the zeroes and/or poles.   

Of the several methods that have been proposed 
for determining a helpful shift of the zeros of an MZT 
filter [4], all have limited effectiveness.  Shifting a real 
zero can reduce overshoot, but exhibits a poorly 
matched response in the rising response region.  
Methods of shifting the complex zeros have only been 
effective over a limited range of conditions.  

From Clark/Ifeachor [4], “No generic shifting 
principle was found for complex roots.  Complex-root 
shifting methods tended to produce response distortion 
at particular root positions, produce non-conjugate 
roots, or not produce a closed-form solution for the 
shifting factor.”  Parametric pre-warping tended to 
improve the accuracy of the response at a specific 
frequency (i.e., center frequency gain) while sacrificing 
the accuracy of the response at other frequencies. 

A new algorithm is presented here which precisely 
matches the analog magnitude response up to 
2/3-Nyquist, then deviates only slightly at frequencies 
approaching Nyquist. 

As discussed earlier, a bell filter can be 
represented as the quotient of a pair of 2nd-order, low-
pass filters.  If the higher Q filter is in the numerator, the 
result is a boost filter.  Conversely, if the lower Q filter 
is in the numerator, the result is a cut filter.  Because a 
high Q filter has an inherently longer resonant decay 
than a low Q filter, the impulse response of a bell filter 
is most strongly affected by the higher Q part of the 
filter.  Therefore, to achieve the most precise impulse 
response, we will retain the MZT-derived coefficients 
for the higher Q half of the filter and shift the lower Q 
half of the filter.  Consequently, we will be shifting the 
zeros of boost filters, but we will be shifting the poles of 
cut filters.  The algorithm produces minimum phase 
filters, so it may be simplified by only implementing the 
boost filter case.  When a cut filter is encountered, 
derive the digital filter for the complementary boost 
filter, then invert the result. 

The coefficients to be “shifted” will actually be 
calculated directly, using the FIR curve fit transform 
given above. In this case, however, the ideal “correction 
filter” includes both the inverted error function of the 
high-Q half of the filter and the analog response of the 
low-Q half of the filter. This is obtained simply by 
dividing the analog filter response by the response of 
the MZT-derived, high-Q half of the bell filter (at 1/3- 
and 2/3-Nyquist).  Presented as a step-wise process, the 
single-biquad, MZTi bell filter algorithm is as follows: 
 
1) If center frequency gain (g0) is less than 1, set g0 = 
1/g0.  In other words, convert a cut filter specification to 
a boost filter specification. 
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2) Calculate the “a” coefficients for the filter, using the 
standard MZT method. 
 
3) Calculate the magnitude response of the analog target 
filter and the magnitude response of the all-pole digital 
filter at DC, 1/3-, and 2/3-Nyquist.  Divide the analog 
response magnitude by the digital response magnitude 
to obtain a three-frequency “correction filter” 
specification. 
 
4) Use the FIR curve fit transform to determine the 
optimum, minimum phase, two-zero, correction filter 
coefficients: b0, b1, and b2. 
 
5) If the original filter was a cut filter, invert the digital 
filter. 
 

Figure 11 shows the response of the worst case 
bell filter, calculated as just described.  Note that the 
agreement is nearly perfect up to 2/3-Nyquist.  The error 
at 20 kHz is less than 1 dB. 
 

 
Figure 11: Biquadratic MZTi Bell Filter, 15 kHz, +15 
dB, Q = 2.0 

4 PHASE RESPONSE 
MZT filters are inherently minimum phase.  Filters 

designed using the FIR curve fit transform are also 
minimum phase by design.  It would be expected that a 
minimum phase filter that more closely approximates its 
analog target’s magnitude response will also more 
closely approximate its phase response.   

This presumption is born out by comparisons of 
the phase response of various filters.  As an example, 
figures 12 and 13 compare the phase response of a bell 
filter with the phase response of an analog target filter.  
With the exception of a fractional sample of delay, the 
MZTi phase response matches closely up to 20 kHz. 

 

 
Figure 12: BZT Bell Filter Phase Response 

 

 
Figure 13: Biquadratic MZTi Bell Filter Phase Response 

5 CONCLUSIONS 
A set of closed-form filter development techniques 

was presented that improves the respone of MZT filters.  
Specific algorithms were presented for low-pass filters 
and bell filters.  The same techniques may be applied, 
by extension, to other filter types.   

The resultant filters exhibit magnitude and phase 
responses that closely match their analog target filters. 
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APPENDIX - DERIVATION OF THE FIR CURVE 
FIT TRANSFORM 

where 
101 xky −= .  Substituting 

1
 and 

1 xb = 210 byb −= in 
(37) we get 
 

The frequency response of a normalized 2nd order 
FIR system, , is given by: 2
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We compute  by solving the above quadratic 
equation. 

2b
 

From the above relation we get  
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(35) where 
  

We compute the correction filter by matching the 
frequency response at three different frequency points 

, 00 =f ω=1f , and ωπ −=2f , where ω  is any arbitrary 
frequency point less than Nyquist.  These frequencies 
are selected as they result in relatively simple equations 
when evaluated on (35).  Let , ||)0(|0 Hk = )(|1 ωHk = , and 

|)(|2 ωπ −= Hk .  So, 
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Each value of  results in two different values for 

.  After we compute 
1b  and  we can compute from 

(36).   

1b

2b 2b 0b

 
2100 bbbk ++=  (36) 

This procedure results in four different solutions 
for . Some or all of the solutions may be 
complex. Of the real solutions, all have the same 
magnitude response, but the phase responses are 
different. Because the filter may need to be inverted 
later in the algorithm, only the minimum phase solution 
is acceptable.  In the applications presented here, it was 
found, empirically, that the minimum phase filter was 
always returned by the following solutions: 

},,{ 210 bbb
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We now solve for 

1b  in the above system of 
equations.  Subtracting (38) from (37) results in:   
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From (36), .  Substituting this in (39) 

we get  
1020 bkbb −=+

,
2
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=b  

  
,)( 2

101101 bkbbkba −=−=   
.2100 bbkb −−=   

where .  Therefore,  ωcos4/)( 2
2

2
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010

2
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Solving the above quadratic equation we get two 

values for 
1b . 
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We now solve for with 

1
.  From (35) we get  

2b 1 xb =
 

,  (41) 
201 bby +=
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